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Preface

Although the first decades of the 20th century saw some strong debates on set
theory and the foundation of mathematics, afterwards set theory has turned
into a solid branch of mathematics, indeed, so solid, that it serves as the
foundation of the whole building of mathematics. Later generations, honest
to Hilbert’s dictum, “No one can chase us out of the paradise that Cantor
has created for us” proved countless deep and interesting theorems and also
applied the methods of set theory to various problems in algebra, topology,
infinitary combinatorics, and real analysis.

The invention of forcing produced a powerful, technically sophisticated
tool for solving unsolvable problems. Still, most results of the pre-Cohen era
can be digested with just the knowledge of a commonsense introduction to
the topic. And it is a worthy effort, here we refer not just to usefulness, but,
first and foremost, to mathematical beauty.

In this volume we offer a collection of various problems in set theory. Most
of classical set theory is covered, classical in the sense that independence
methods are not used, but classical also in the sense that most results come
from the period, say, 1920–1970. Many problems are also related to other fields
of mathematics such as algebra, combinatorics, topology, and real analysis.

We do not concentrate on the axiomatic framework, although some as-
pects, such as the axiom of foundation or the rôle of the axiom of choice, are
elaborated.

There are no drill exercises, and only a handful can be solved with just
understanding the definitions. Most problems require work, wit, and inspira-
tion. Some problems are definitely challenging, actually, several of them are
published results.

We have tried to compose the sequence of problems in a way that earlier
problems help in the solution of later ones. The same applies to the sequence
of chapters. There are a few exceptions (using transfinite methods before
their discussion)—those problems are separated at the end of the individual
chapters by a line of asterisks.

We have tried to trace the origin of the problems and then to give proper
reference at the end of the solution. However, as is the case with any other
mathematical discipline, many problems are folklore and tracing their origin
was impossible.

The reference to a problem is of the form “Problem x.y” where x denotes
the chapter number and y the problem number within Chapter x. However,
within Chapter x we omit the chapter number, so in that case the reference
is simply “Problem y”.

For the convenience of the reader we have collected into an appendix all
the basic concepts and notations used throughout the book.

Acknowledgements We thank Péter Varjú and Gergely Ambrus for their
careful reading of the manuscript and their suggestions to improve the presen-
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tation. Collecting and writing up the problems took many years, during which
the authors have been funded by various grants from the Hungarian National
Science Foundation for Basic Research and from the National Science Foun-
dation (latest grants are OTKA T046991, T049448 and NSF DMS-040650).

We hope the readers will find as much enjoyment in solving some of the
problems as we have found in writing them up.

Péter Komjáth and Vilmos Totik
Budapest and Szeged-Tampa, July 2005



Part I

Problems



1

Operations on sets

Basic operations among sets are union, intersection, and exponentiation. This
chapter contains problems related to these basic operations and their relations.

If we are given a family of sets, then (two-term) intersection acts like
multiplication. However, from many point of view, the analogue of addition
is not union, but forming divided difference: A∆B = (A \ B) ∪ (B \ A), and
several problems are on this ∆ operation.

An interesting feature is that families of sets with appropriate set opera-
tions can serve as canonical models for structures from other areas of math-
ematics. In this chapter we shall see that graphs, partially ordered sets, dis-
tributive lattices, idempotent rings, and Boolean algebras can be modelled by
(i.e., are isomorphic to) families of sets with appropriate operations on them.

1. For finite sets Ai we have

|A1 ∪ · · · ∪ An| =
∑

i

|Ai| −
∑
i<j

|Ai ∩ Aj | +
∑

i<j<k

|Ai ∩ Aj ∩ Ak| − · · · ,

and

|A1 ∩ · · · ∩ An| =
∑

i

|Ai| −
∑
i<j

|Ai ∪ Aj | +
∑

i<j<k

|Ai ∪ Aj ∪ Ak| − · · · .

2. Define the symmetric difference of the sets A and B as

A∆B = (A \ B) ∪ (B \ A).

This is a commutative and associative operation such that ∩ is distributive
with respect to ∆.

3. The set A1∆A2∆ · · ·∆An consists of those elements that belong to an
odd number of the Ai’s.
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4. For finite sets Ai we have

|A1∆A2 · · ·∆An| =
∑

i

|Ai|−2
∑
i<j

|Ai ∩Aj |+4
∑

i<j<k

|Ai ∩Aj ∩Ak|− · · · .

5. Let our sets be subsets of a ground set X, and define the complement of
A as Ac = X \ A. All the operations ∩, ∪ and \ can be expressed by the
operation A ↓ B = (A ∪ B)c. The same is also true of A | B = (A ∩ B)c.

6. For any sets
a) ⋃

i∈I

⋂
j∈Ji

Ai,j =
⋂

f∈
∏

i∈I
Ji

⋃
i∈I

Ai,f(i)

b) ⋂
i∈I

⋃
j∈Ji

Ai,j =
⋃

f∈
∏

i∈I
Ji

⋂
i∈I

Ai,f(i)

c) ∏
i∈I

⎛
⎝⋃

j∈Ji

Ai,j

⎞
⎠ =

⋃
f∈
∏

i∈I
Ji

(∏
i∈I

Ai,f(i)

)

d) ∏
i∈I

⎛
⎝⋂

j∈Ji

Ai,j

⎞
⎠ =

⋂
f∈
∏

i∈I
Ji

(∏
i∈I

Ai,f(i)

)

(general distributive laws).
7. Let X be a set and A1, A2, . . . , An ⊆ X. Using the operations ∩, ∪ and ·c

(complementation relative to X), one can construct at most 22n

different
sets from A1, A2, . . . , An.

8. Let
X = {(x1, . . . , xn) : 0 ≤ xi < 1, 1 ≤ i ≤ n}

be the unit cube of Rn, and set

Ak = {(x1, . . . , xn) ∈ X : 1/2 ≤ xk < 1}.

Using the operations ∩, ∪, and ·c (complementation with respect to X),
one can construct 22n

different sets from A1, A2, . . . , An.
9. Using the operations \, ∩ and ∪ one can construct at most 22n−1 different

sets from a given family A1, A2, . . . , An of n sets. This 22n−1 bound can
be achieved for some appropriately chosen A1, A2, . . . , An.
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10. For given Ai, Bi, i ∈ I solve the system of equations
(a) Ai ∩ X = Bi, i ∈ I,

(b) Ai ∪ X = Bi, i ∈ I,
(c) Ai \ X = Bi, i ∈ I,
(d) X \ Ai = Bi, i ∈ I.
What are the necessary and sufficient conditions for the existence and
uniqueness of the solutions?

11. If A0, A1, . . . is an arbitrary sequence of sets, then there are pairwise dis-
joint sets Bi ⊆ Ai such that ∪Ai = ∪Bi.

12. Let A0, A1, . . . and B0, B1, . . . be sequences of sets. Then the intersection
Ai ∩ Bj is finite for all i, j if and only if there are disjoint sets C and D
such that for all i the sets Ai \ C and Bi \ D are finite.

13. Let X be a ground set and A ⊆ P(X) such that for every A ∈ A the
complement X \A can be written as a countable intersection of elements
of A. Then the σ-algebra generated by A coincides with the smallest
family of sets including A and closed under countable intersection and
countable disjoint union.

14. Define

lim inf
n→∞ An :=

∞⋃
n=1

∞⋂
m=n

Am,

lim sup
n→∞

An :=
∞⋂

n=1

∞⋃
m=n

Am,

and we say that the sequence {An} is convergent if these two sets are the
same, say A, in which case we say that the limit of the sets {An} is A.
Then
a) lim infn An ⊆ lim supn An,
b) lim infn An consists of those elements that belong to all, but finitely

many of the An’s.
c) lim supn An consists of those elements that belong to infinitely many

An’s.
15. Let X be a set and for a subset A of X consider its characteristic function

χA(x) =
{

1 if x ∈ A,
0 if x ∈ X \ A.

The mapping A → χA is a bijection between P(X) and X{0, 1}. Further-
more, if B = lim infn→∞ An, then

χB = lim inf
n→∞ χAn ,

and if C = lim supn→∞ An, then
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χC = lim sup
n→∞

χAn .

16. A sequence {An}∞
n=1 of sets is convergent if and only if for every sequences

{mi} and {ni} with limi→∞ mi = limi→∞ ni = ∞ we have⋂
i

(Ami∆Ani) = ∅.

17. A sequence {An}∞
n=1 of sets converges if and only if for every sequences

{mi} and {ni} with limi→∞ mi = limi→∞ ni = ∞ we have

lim
i→∞

(Ami
∆Ani

) = ∅

(if we regard ∆ as subtraction, then this says that for convergence of sets
“Cauchy’s criterion” holds).

18. If An, n = 0, 1, . . . are subsets of the set of natural numbers, then one can
select a convergent subsequence from {An}∞

n=0.
19. Construct a sequence {An}∞

n=0 of sets which does not include a convergent
subsequence.

20. If H is any family of sets, then with the inclusion relation H is a partially
ordered set. Every partially ordered set is isomorphic with a family of sets
partially ordered by inclusion.

21. Every graph is isomorphic with a graph where the set of vertices is a family
of sets, and two such vertices are connected precisely if their intersection
is not empty.

22. Let H be a set that is closed for two-term intersection, union and symmet-
ric difference. Then H is a ring with ∆ as addition and ∩ as multiplication,
in which every element is idempotent: A ∩ A = A.

23. If (A,+, ·, 0) is a ring in which every element is idempotent (a · a = a),
then (A, +, ·, 0) is isomorphic with a ring of sets defined in the preceding
problem.

24. With the notation of Problem 22 let H be the set of all subsets of an
infinite set X, and let I be the set of finite subsets of X. Then I is an
ideal in H. If a 
= 0 is any element in the quotient ring H/I, then there
is a b 
= 0, a such that b · a = b (in other words, in the quotient ring there
are no atoms).

25. If H is a family of subsets of a given ground set X which is closed for
two-term intersection and union, then H is a distributive lattice with the
operations H ∧ K = H ∩ K, H ∨ K = H ∪ K.

26. Every distributive lattice is isomorphic to one from the preceding problem.
27. If H is a family of subsets of a given ground set X which is closed under

complementation (relative to X) and under two-term union, then H is a
Boolean algebra with the operations H · K = H ∩ K, H + K = H ∪ K,
H ′ = X \ H and with 1 = X, 0 = ∅.
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28. Every Boolean algebra is isomorphic to one from the preceding problem.
29. P(X), the family of all subsets of a given set X, is a complete and com-

pletely distributive Boolean algebra with the operations H · K = H ∩ K,
H + K = H ∪ K, H ′ = X \ H and with 1 = X, 0 = ∅ (in the Boolean
algebra set a  b if a · b = a, and completeness means that for any set
K in the Boolean algebra there is a smallest upper majorant supK and
a largest lower minorant inf K, and complete distributivity means that

inf
i∈I

sup
j∈Ji

ai,j = sup
f∈
∏

i∈I
Ji

inf
i

ai,f(i)

for any elements in the algebra).
30. Every complete and completely distributive Boolean algebra is isomorphic

with one from the preceding problem.
31. Let H be a family of sets such that if H∗ ⊂ H is any subfamily, then there

is a smallest (with respect to inclusion) set in H that includes all the sets
in H∗, and there is a largest set in H that is included in all elements of
H∗. Then every mapping f : H → H that preserves the relation ⊆ (i.e.,
for which f(H) ⊆ f(K) whenever H ⊆ K) there is a fixed point, i.e., a
set F ∈ H with f(F ) = F .

* * *

32. The converse of Problem 31 is also true in the following sense. Suppose
that H is a family of sets closed for two-term union and intersection such
that for every mapping f : H → H that preserves ⊆ there is a fixed point.
Then if H∗ ⊂ H is any subfamily, then there is a smallest set in H that
includes all the sets in H∗, and there is a largest set in H that is included
in all elements of H∗.

33. With the notation of Problem 24 for each a 
= 0 there are at least contin-
uum many different b 
= 0 such that b · a = b.

34. With the notation of Problem 24 let H be the set of all subsets of a set
X of cardinality κ, and let I be the ideal of subsets of X which have
cardinality smaller than κ. Then the quotient ring H/I is of cardinality
2κ.



2

Countability

A set is called countable if its elements can be arranged into a finite or infi-
nite sequence. Otherwise it is called uncountable. This notion reflects the fact
that the set is “small” from the point of view of set theory; sometimes it is
negligible. For example, the set Q of rational numbers is countable (Problem
9) while the set R of real numbers is not (Problem 7), hence “most” reals
are irrational. On the other hand, a claim that a certain set is not countable
usually means that the set has many elements.

If in an uncountable set A a certain property holds with the exception of
elements in a countable subset B, then the property holds for “most” elements
of A (in particular A \ B is not empty). In this section many problems are
related to this principle; in particular many problems claim that a certain set
in R (or Rn) is countable. Actually, the very first “sensational” achievement
of set theory was of this sort when G. Cantor proved in 1874 that “most” real
numbers are transcendental (and hence there are transcendental numbers),
for the algebraic numbers form a countable subset of R (see Problems 6–8).
Other examples when the notion of countability appears in real analysis will
be given in Chapters 5 and 13.

The cardinality of countably infinite sets is denoted by ω or ℵ0.

1. The union of countably many countable sets is countable.
2. The (Cartesian) product of finitely many countable sets is countable.
3. The set of k element sequences formed from a countable sets is countable.
4. The set of finite sequences formed from a countable set is countable.
5. The set of polynomials with integer coefficients is countable.
6. The set of algebraic numbers is countable.
7. R is not countable.
8. There are transcendental real numbers.
9. The following sets are countable:
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a) Q;
b) set of those functions that map a finite subset of a given countable set

A into a given countable set B;
c) set of convergent sequences of natural numbers.

10. If Ai ⊆ N, i ∈ I is an arbitrary family of subsets of N, then there is
a countable subfamily Ai, i ∈ J ⊂ I such that ∩i∈JAi = ∩i∈IAi and
∪i∈JAi = ∪i∈IAi.

11. If A is an uncountable subset of the real line, then there is an a ∈ A such
that each of the sets A ∩ (−∞, a) and A ∩ (a,∞) is uncountable.

12. If k and K are positive integers and H is a family of subsets of N with
the property that the intersection of every k members of H has at most
K elements, then H is countable.

13. The set of subintervals of R with rational endpoints is countable.
14. Any disjoint collection of open intervals (open sets) on R (in Rn) is count-

able.
15. Any discrete set in R (in Rn) is countable.
16. Any open subset of R is a disjoint union of countably many open intervals.
17. The set of open disks (balls) in R2 (Rn) with rational radius and rational

center, is countable (rational center means that each coordinate of the
center is rational).

18. Any open subset of R2 (Rn) is a union of countably many open disks
(balls) with rational radius and rational center.

19. If H is a family of circles such that for every x ∈ R there is a circle in H
that touches the real line at the point x, then there are two intersecting
circles in H.

20. Is it true that if H is a family of circles such that for every x ∈ R there is
a circle containing x, then there are two intersecting circles in H?

21. Let C be a family of circles on the plane such that no two cross each
other. Then the points where two circles from C touch each other form a
countable set.

22. One can place only countably many disjoint letters of the shape T on the
plane.

23. In the plane call a union of three segments with a common endpoint a
Y -set. Any disjoint family of Y -sets is countable.

24. If A is a countable set on the plane, then it can be decomposed as A =
B ∪ C such that B, resp. C has only a finite number of points on every
vertical, resp. horizontal line.

25. A is countable if and only if A×A can be decomposed as B∪C such that
B intersects every “vertical” line {(x, y) : x = x0} in at most finitely
many points, and C intersects every “horizontal” line {(x, y) : y = y0}
in at most finitely many points.
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26. If A ⊂ R is countable, then there is a real number a such that (a+A)∩A =
∅.

27. If A ⊂ R2 is such that all the distances between the points of A are
rational, then A is countable. Is there such an infinite bounded set not
lying on a straight line?

28. Call a sequence an → ∞ faster increasing than bn → ∞ if an/bn → ∞. If
{b(i)

n }, i = 0, 1, . . . is a countable family of sequences tending to ∞, then
there is a sequence that increases faster than any {b(i)

n }.
29. If there are given countably many sequences {s(i)

n }∞
n=0, i = 0, 1, . . . of

natural numbers, then construct a sequence {sn}∞
n=0 of natural numbers

such that for every i the equality sn = s
(i)
n holds only for finitely many

n’s.
30. Construct countably many sequences {s(i)

n }∞
n=0, i = 0, 1, . . . of natural

numbers, with the property that if {sn}∞
n=0 is an arbitrary sequence of

natural numbers, then the number those n’s for which sn = s
(i)
n holds is

unbounded as i → ∞.
31. Are there countably many sequences {s(i)

n }∞
n=0, i = 0, 1, . . . of natural

numbers, with the property that if {sn}∞
n=0 is an arbitrary sequence of

natural numbers, then the number those n’s for which sn = s
(i)
n holds

tends to infinity as i → ∞?
32. Let {rk} be a 1–1 enumeration of the rational numbers. Then if {xn}

is an arbitrary sequence consisting of rational numbers, there are three
permutations πi, i = 1, 2, 3 of the natural numbers for which xn = rπ1(n)+
rπ2(n) + rπ3(n) holds for all n.

33. With the notation of the preceding problem give a sequence {xn} consist-
ing of rational numbers for which there are no permutations πi, i = 1, 2,
of the natural numbers for which xn = rπ1(n) + rπ2(n) holds for all n.

34. Any two countably infinite Boolean algebras without atoms (i.e., without
elements a 
= 0 such that a · b = a or a · b = 0 for all b) are isomorphic.

35. Let A = (A, . . .) be an arbitrary algebraic structure on the countable
set A (i.e., A may have an arbitrary number of finitary operations and
relations). Then the following are equivalent:
a) A has uncountably many automorphisms;
b) if B is a finite subset of A then there is a non-identity automorphism

of A which is the identity when restricted to B.
36. Suppose we know that a rabbit is moving along a straight line on the

lattice points of the plane by making identical jumps every minute (but
we do not know where it is and what kind of jump it is making). If we
can place a trap every hour to an arbitrary lattice point of the plane that
captures the rabbit if it is there at that moment, then we can capture the
rabbit.
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37. Let A ⊂ [0, 1] be a set, and two players I and II play the following game:
they alternatively select digits (i.e., numbers 0–9) x0, x1, . . . and y0, y1, . . .,
and I wins if the number 0.x1y1x2y2 . . . is in A, otherwise II wins. In this
game if A is countable, then II has a winning strategy.

38. Let A ⊂ [0, 1] be a set, and two players I and II play the following game:
I selects infinitely many digits x1, x2, . . . and II makes a permutation
y1, y2, . . . of them. I wins if the number 0.y1y2 . . . is in A, otherwise II
wins. For what countable closed sets A does I have a winning strategy?

39. Two players alternately choose uncountable subsets K0 ⊃ K1 ⊃ · · · of the
real line. Then no matter how the first player plays, the second one can
always achieve ∩∞

n=0Kn = ∅.

* * *

40. Let κ be an infinite cardinal. Then H is of cardinality at most κ if and
only if H × H can be decomposed as B ∪ C such that B intersects every
“vertical” line {(x, y) : x = x0} in less than κ points, and C intersects
every “horizontal” line {(x, y) : y = y0} in less than κ points.
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Equivalence

Equivalence of sets is the mathematical notion of “being of the same size”.
Two sets A and B are equivalent (in symbol A ∼ B) if there is a one-to-one
correspondence between their elements, i.e., a one-to-one mapping f : A → B
of A onto B. In this case we also say that A and B are of the same cardinality
without telling what “cardinality” means.

A finite set cannot be equivalent to its proper subset, but things change
for infinite sets: any infinite set is equivalent to one of its proper subsets. In
fact, quite often seemingly “larger” sets (like a plane) may turn out to be
equivalent to much “smaller” sets (like a line on the plane).

The notion of infinity is one of the most intriguing concepts that has been
created by mankind. It is with the aid of equivalence that in mathematics we
can distinguish between different sorts of infinity, and this makes the theory
of infinite sets extremely rich.

This chapter contains some simple exercises on equivalence of sets often
encountered in algebra, analysis, and topology. To establish the equivalence
of two sets can be quite a challenge, but things are tremendously simplified
by the equivalence theorem (Problem 2): if each of A and B is equivalent to a
subset of the other one, then they are equivalent. The reason for the efficiency
of the equivalence theorem lies in the fact that usually it is much easier to
find a one-to-one mapping of a set A into B than onto B.

1. Let f : A → B and g : B → A be 1-to-1 mappings. Then there is a
decomposition A = A1 ∪ A2 and B = B1 ∪ B2 of A and B into disjoint
sets such that f maps A1 onto B1 and g maps B2 onto A2.

2. (Equivalence theorem) If two sets are both equivalent to a subset of the
other one, then the two sets are equivalent.

3. There is a 1-to-1 mapping from A(
= ∅) to B if and only if there is a
mapping from B onto A.

4. If A is infinite and B is countable, then A ∪ B ∼ A.
5. If A is uncountable and B is countable, then A \ B ∼ A.
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6. The set of irrational numbers is equivalent to the set of real numbers.
7. The Cantor set is equivalent to the set of infinite 0–1 sequences.
8. Give a 1-to-1 mapping from the first set into the second one:

a) N × N; N
b) (−∞,∞); (0, 1)
c) R; the set of infinite 0–1 sequences
d) the set of infinite 0–1 sequences; [0, 1]
e) the infinite sequences of the natural numbers; the set of infinite 0–1

sequences
f) the set of infinite sequences of the real numbers; the set of infinite 0–1

sequences
In each of the above cases a)–f) the two sets are actually equivalent.

9. Give a mapping from the first set onto the second one:
a) N; N × N
b) N; Q
c) Cantor set; [0, 1]
d) set of infinite 0–1 sequences; [0, 1]
In each of the above cases a)–d) the two sets are actually equivalent.

10. Give a 1-to-1 correspondence between these pairs of sets:
a) (a, b); (c, d) (where a < b and c < d, and any of these numbers can be

±∞ as well)
b) N; N × N
c) P(X); X{0, 1} (X is an arbitrary set)
d) set of infinite sequences of the numbers 0, 1, 2; set of infinite 0–1 se-

quences
e) [0, 1); [0, 1) × [0, 1)

11. There is a 1-to-1 correspondence between these pairs of sets:
a) set of infinite 0–1 sequences; R
b) R; Rn

c) R; set of infinite real sequences
12. We have

a) B∪CA ∼BA ×CA provided B ∩ C = ∅,
b) C

(
BA
)
∼C×BA,

c) C(A × B) ∼CA ×CB.

13. Let X be an arbitrary set.
a) X is similar to a subset of P(X).
b) X 
∼ P(X).
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Continuum

A set is called of power continuum (c) if it is equivalent with R. Many sets
arising in mathematical analysis and topology are of power continuum, and
the present chapter lists several of them. For example, the set of Borel subsets
of Rn, the set of right continuous real functions, or a Hausdorff topological
space with countable basis are all of power continuum.

The continuum is also the cardinality of the set of subsets of N, and
there are many examples of families of power continuum (i.e., families of
maximal cardinality) of subsets of N or of a given countable set with a certain
prescribed property. In particular, several problems in this chapter deal with
almost disjoint sets and their variants: there are continuum many subsets of
N with pairwise finite intersection (cf. Problems 29–43).

The problem if there is an uncountable subset of R which is not of power
continuum arose very early during the development of set theory, and the
“NO” answer has become known as the continuum hypothesis (CH). Thus,
CH means that if A ⊆ R is infinite, then either A ∼ N or A ∼ R (other
formulations are: there is no cardinality κ with ℵ0 < κ < c; ℵ1 = 2ℵ0). This
was the very first problem on Hilbert’s famous list on the 1900 Paris congress,
and finding the solution had a profound influence on set theory as well as
on all of mathematics. Eventually it has turned out that it does not lead
to a contradiction if we assume CH (K. Gödel, 1947) and neither leads to a
contradiction if we assume CH to be false (P. Cohen, 1963). Therefore, CH is
independent of the other standard axioms of set theory.

1. The plane cannot be covered with less than continuum many lines.
2. The set of infinite 0–1 sequences is of power continuum.
3. The set of infinite real sequences is of power continuum.
4. The Cantor set is of power continuum.
5. An infinite countable set has continuum many subsets.
6. An infinite set of cardinality at most continuum has continuum many

countable subsets.
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7. There are continuum many open (closed) sets in Rn.
8. A Hausdorff topological space with countable base is of cardinality at most

continuum.
9. In an infinite Hausdorff topological space there are at least continuum

many open sets.
10. If A is countable and B is of cardinality at most continuum, then the set

of functions f : A → B is of cardinality at most continuum.
11. The set of continuous real functions is of power continuum.
12. The product of countably many sets of cardinality at most continuum is

of cardinality at most continuum.
13. The union of at most continuum many sets of cardinality at most contin-

uum is of cardinality at most continuum.
14. The following sets are of power continuum.

a) Rn, n = 1, 2, . . .

b) R∞ (which is the set of infinite real sequences)
c) the set of continuous curves on the plane
d) the set of monotone real functions
e) the set of right-continuous real functions
f) the set of those real functions that are continuous except for a countable

set
g) the set of lower semi-continuous real functions
h) the set of permutations of the natural numbers
i) the set of the (well) orderings of the natural numbers
j) the set of closed additive subgroups of R (i.e., the set of additive sub-

groups of R that are at the same time closed sets in R)
k) the set of closed subspaces of C[0, 1]
l) the set of bounded linear transformations of L2[0, 1]

15. R cannot be represented as the union of countably many sets none of
which is equivalent to R.

16. If A ⊂ R2 is such that each horizontal line intersects A in finitely many
points, then there is a vertical line that intersects the complement R2 \A
of A in continuum many points.

17. If A is a subset of the real line of power continuum, then there is an
a ∈ A such that each of the sets A ∩ (−∞, a) and A ∩ (a,∞) is of power
continuum.

18. Let A = (A, . . .) be an arbitrary algebraic structure on the countable
set A (i.e., A may have an arbitrary number of finitary operations and
relations). Then the following are equivalent:
a) A has uncountably many automorphisms,
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b) A has continuum many automorphisms.
19. A σ-algebra is either finite or of cardinality at least continuum.
20. A σ-algebra generated by a set of cardinality at most continuum is of

cardinality at most continuum.
21. There are continuum many Borel sets and Borel functions on the real line

(in Rn).
22. There are continuum many Baire functions on [0, 1].
23. The power set P(X) of X is of bigger cardinality than X.
24. If A has at least two elements, then the set XA of mappings from X to A

is of bigger cardinality than X.
25. The following sets are of cardinality bigger than continuum.

a) set of real functions
b) set of the 1-to-1 correspondences between R and R2

c) set of bases of R considered as a linear space over Q (Hamel bases)
d) set of Riemann integrable functions
e) set of Jordan measurable subsets of R

f) set of the additive subgroups of R

g) set of linear subspaces of C[0, 1]
h) set of linear functionals of L2[0, 1]

26. Which of the following sets are of power continuum?
a) the set of real functions that are continuous at every rational point
b) the set of real functions that are continuous at every irrational point
c) the set of real functions f that satisfy the Cauchy equation

f(x + y) = f(x) + f(y)

27. If A is a set of cardinality continuum, then there are countably many
functions fk : A → N, k = 0, 1, . . . such that for an arbitrary function
f : A → N and for an arbitrary finite set A′ ⊂ A there is a k such that
fk agrees with f on A′.

28. The topological product of continuum many separable spaces is separable.
29. There are continuum many sets Aγ ⊆ N such that if γ1 
= γ2, then

Aγ1 ∩ Aγ2 is a finite set (such a collection is called almost disjoint).
30. Let k be a natural number, and suppose that Aγ , γ ∈ Γ is a family of

subsets of N such that if γ1 
= γ2, then Aγ1 ∩Aγ2 has at most k elements.
Then Γ is countable.

31. To every x ∈ R one can assign a sequence {s(x)
n } of natural numbers such

that if x < y, then s
(y)
n − s

(x)
n → ∞ as n → ∞.
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32. There are continuum many sequences {sγ}∞
n=0 of natural numbers such

that if γ1 
= γ2, then |sγ1
n − sγ2

kn
| tends to infinity as n → ∞, no matter

how we choose the sequence {kn}.
33. Let k be a positive integer, and suppose that {sγ

n}∞
n=0, γ ∈ Γ is a family

of sequences of natural numbers such that if γ1 
= γ2 then sγ1
n = sγ2

n holds
for at most k indices n. Then Γ is countable.

34. There is an almost disjoint family of cardinality continuum of subsets of
N each with upper density 1.

35. Let k ≥ 2 be an integer. Then there is a family of cardinality continuum
of subsets of N such that the intersection of any k members of the family
is infinite, but the intersection of any k + 1 members is finite.

36. If H is an uncountable family of subsets of N such that the intersection of
any finitely many members of the family is infinite, then the intersection
of some infinite subfamily of H is also infinite.

37. There is a family of cardinality continuum of subsets of N such that the
intersection of any finitely many members of the family has positive upper
density, but the intersection of any infinitely many members is of density
zero.

38. If H is a family of subsets of R such that the intersection of any two sets
in H is finite, then H is of cardinality at most continuum.

39. There is a family H of cardinality bigger than continuum of subsets of R
such that the intersection of any two sets in H is of cardinality smaller
than continuum.

40. The are continuum many sets Aγ ⊂ N such that if γ1 
= γ2, then either
Aγ1 ⊂ Aγ2 or Aγ2 ⊂ Aγ1 .

41. There are continuum many sets Aγ ⊂ N such that if γ1 
= γ2, then each
of the sets Aγ1 \ Aγ2 , Aγ2 \ Aγ1 , and Aγ1 ∩ Aγ2 is infinite.

42. For every real number x give sets Ax, Bx ⊆ N such that Ax ∩Bx = ∅, but
for different x and y the set Ax ∩ By is infinite.

43. There is a family Ax, x ∈ R of subsets of the natural numbers such that
if x1, . . . , xn are different reals and ε1, . . . , εn ∈ {0, 1}, then the density of
the set Aε1

x1
∩ · · · ∩ Aεn

xn
is 2−n (here A1 = A and A0 = N \ A).

44. There is a function f : R2 → N such that f(x, y) = f(y, z) implies
x = y = z.
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Sets of reals and real functions

This chapter contains various problems from analysis and from the topology
of Euclidean spaces that are connected with the notions of “countability” and
“continuum”. They include problems on exceptional sets (like a monotone
real function can have only countably many discontinuities), Lindelöf-type
covering theorems and their consequences, Baire properties, Borel sets, and
Peano curves.

1. If A ⊂ R is such that for every a ∈ A there is a δa > 0 such that either
(a, a + δa) ∩ A = ∅ or (a − δa, a) ∩ A = ∅, then A is countable.

2. Any uncountable subset A of the real numbers includes a strictly decreas-
ing sequence converging to a point in A.

3. Every discrete set on R (in Rn) is countable.
4. A right-continuous real function can have only countably many disconti-

nuities.
5. Let f be a real function such that at every point f is continuous either

from the right or from the left. Then f can have only countably many
discontinuities.

6. A monotone real function can have only countably many discontinuities.
7. If a real function has right and left derivatives at every point, then it is

differentiable at every point with the exception of a countable set.
8. A convex function is differentiable at every point with the exception of a

countable set.
9. The set of local maximum values of any real function is countable.

10. The set of strict local maximum points of a real function is countable.
11. If every point is a local extremal point for a continuous real function f ,

then f is constant.
12. If a collection Gγ , γ ∈ Γ of open sets in Rn covers a set E, then there is a

countable subcollection Gγi , i = 0, 1, . . ., that also covers E (this property
of subsets of Rn is called the Lindelöf property).
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It is customary to rephrase the problem by saying that in Rn every open
cover of a set includes a countable subcover.

13. If a collection Gγ , γ ∈ Γ of semi-open intervals in R covers a set E, then
there is a countable subcollection Gγi , i = 0, 1, . . ., that also covers E.
The same is true if the Gγ ’s are arbitrary nondegenerated intervals.

14. If a collection Gγ , γ ∈ Γ , nondegenerated intervals in R covers a set E,
then there is a countable subcollection Gγi , i = 0, 1, . . ., that also covers
E.

15. Let the real function f be differentiable at every point of the set H ⊂ R.
Then the set of those y for which f−1{y}∩H is uncountable is of measure
zero.

16. Call a rectangle almost closed if its sides are parallel with the coordi-
nate axes, and it is obtained from a closed rectangle by omitting the four
vertices. Show that any union of a family of almost closed rectangles is
already a union of a countable subfamily. Is the same true if the rectangles
are closed?

17. Call x an accumulation point of a set A ⊂ R (A ⊂ Rn) if every neighbor-
hood of x contains uncountably many points of A. An uncountable set A
has an accumulation point that lies in A.

18. For an uncountable A ⊂ R let A∗ be the set of those a ∈ A that are
accumulation points of both A∩ (−∞, a) and of A∩ (a,∞). Then A \A∗

is countable, and A∗ is densely ordered.
19. The set of accumulation points of any set A is either empty or perfect.
20. Any closed set in R (Rn) is the union of a perfect and a countable set.
21. A nonempty perfect set in Rn is of power continuum.
22. A closed set in R (Rn) is either countable, or of power continuum.
23. Define the distance between two real sequences {aj}∞

j=0 and {bj}∞
j=0 by

the formula

d
(
{aj}∞

j=0, {bj}∞
j=0

)
=

∞∑
j=0

1
2j

|aj − bj |
1 + |aj − bj |

.

With this R∞ becomes a complete separable metric space.
24. Every closed set in R∞ is the union of a perfect and a countable set.
25. Every closed set in R∞ is either countable or of cardinality continuum.
26. Every Borel set in Rn is a (continuous and) one-to-one image of a closed

subset of R∞.
27. In Rn every Borel set is either countable or of cardinality continuum.
28. If a < b and [a, b] = ∪∞

i=0Ai, then there is an interval I ⊂ [a, b] and an i
such that the set Ai is dense in I (Baire’s theorem).
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29. If a < b and [a, b] = ∪∞
i=0Ai, then there is an interval I ⊂ [a, b] and an

i such that for any subinterval J of I the intersection Ai ∩ J is of power
continuum.

30. If A ⊂ Rn is a set with nonempty interior, then A cannot be represented
as a countable union of nowhere dense sets (Baire’s theorem).

31. If A ⊂ Rn is a set with nonempty interior and A = ∪∞
i=0Ai, then there

is a ball B ⊂ A and an i such that for any ball B′ ⊂ B the intersection
Ai ∩ B′ is of power continuum.

32. There are pairwise disjoint sets Ax ⊂ R, x ∈ R such that for any x ∈ R
and any open interval I ⊂ R the set I ∩ Ax is of power continuum.

33. There is a real function that assumes every value in every interval contin-
uum many times.

34. There is a continuous function f : [0, 1] → [0, 1] that assumes every value
y ∈ [0, 1] continuum many times.

35. There exists a continuous mapping from [0, 1] onto [0, 1] × [0, 1] (such
“curves” are called area filling or Peano curves).

36. There are continuous functions fn : [0, 1] → [0, 1], n = 0, 1, 2, . . . with
the property that if x0, x1, . . . is an arbitrary sequence from [0, 1], then
there is a t ∈ [0, 1] such for all n we have fn(t) = xn (thus, F (t) =
(f0(t), f1(t), . . .) is a continuous mapping from [0, 1] onto the so-called
Hilbert cube [0, 1]∞ ≡ N[0, 1]).

* * *

37. If {aξ}ξ<ω1 is a transfinite sequence of real numbers which is convergent
(i.e., there is an A ∈ R such that for every ε > 0 there is a ν < ω1 for
which ξ > ν implies |aξ−A| ≤ ε), then there is a τ < ω1 such that aξ = aζ

for ξ, ζ > τ .
38. If {aξ}ξ<α is a (strictly) monotone transfinite sequence of real numbers,

then α is countable.
39. For every limit ordinal α < ω1 there is a convergent, strictly increasing

transfinite sequence {aξ}ξ<α of real numbers (convergence means that
there is an A ∈ R such that for every ε > 0 there is a ν < α for which
ξ > ν implies have |aξ − A| ≤ ε).
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Ordered sets

Now we equip our sets with a structure by telling which element is larger than
the other one. The theory of ordered sets is extremely rich, in fact, this list of
problems is the longest one in the book.

This chapter contains problems on ordered sets and mappings between
them. The types of ordered sets and arithmetic with types will be discussed
in the next chapter. Occasionally later chapters will also discuss problems on
ordered sets if the solution requires the methods of those chapters.

Particularly important are the well-ordered sets (see below), for they pro-
vide the infinite analogues of natural numbers. Well orderings offer enumera-
tion of the elements of a given set in a transfinite sequence and thereby the
possibility of proving results by transfinite induction.

Let A be a set and ≺ a binary relation on A. If a ≺ b does not hold,
then we write a 
≺ b. 〈A,≺〉 is called an ordered set (sometimes called linearly
ordered) if

• ≺ irreflexive: a 
≺ a for any a ∈ A,
• ≺ transitive: a ≺ b and b ≺ c imply a ≺ c,
• ≺ trichotomous: for every a, b ∈ A one of a ≺ b, a = b, b ≺ a holds.

With every such “smaller than” relation ≺ we associate the corresponding
“smaller than or equal” relation : a  b if either a ≺ b or a = b. This  has
the following properties:

• antisymmetric: a  b and b  a imply a = b,
• transitive: a  b and b  c imply a  c,
• dichotomous: for every a, b ∈ A either of a  b or b  a holds.

If 〈A,≺〉 is an ordered set and B ⊂ A is a subset of A, then for notational
simplicity we shall continue to denote the restriction of ≺ to B × B by ≺, so
〈B,≺〉 is the ordered set with ground set B and with the ordering inherited
from 〈A,≺〉.
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The ordered set 〈A,≺〉 is called well ordered if every nonempty subset
contains a smallest element, i.e., if for every X ⊆ A, X 
= ∅ there is an a ∈ X
such that for every b ∈ X we have a  b.

If 〈A,≺〉 is an ordered set, then X ⊆ A is an initial segment if a ∈ X and
b ≺ a imply b ∈ X (intuitively, X consists of a starting section of 〈A,≺〉), and
in a similar fashion X ⊆ A is called an end segment if a ∈ X and a ≺ b imply
b ∈ X. An initial segment that is not the whole set is called a proper initial
segment. The intervals of 〈A,≺〉 are its “convex” (or “connected”) subsets,
i.e., X ⊆ A is an interval if a, b ∈ X and a ≺ c ≺ b implies c ∈ X . The intervals
generate the so-called interval topology (also called order topology) on A. This
is also the topology that is generated by the initial and end segments of 〈A,≺〉.

Ordered sets are special algebraic structures (with no operations, and a
single binary relation). Isomorphism among ordered sets is called similarity:
〈A1,≺1〉 and 〈A2,≺2〉 are similar if there is an f : A1 → A2 1-to-1 correspon-
dence between the ground sets A1 and A2 that also preserves the ordering, i.e.,
a ≺1 b implies f(a) ≺2 f(b). In particular, similarity implies the equivalence
of the ground sets. A mapping f from 〈A1,≺1〉 into 〈A2,≺2〉 (not necessarily
onto) is called monotone if a <1 b implies f(a) <2 f(b). This is just the same
as the notion of homomorphism from 〈A1,≺1〉 into 〈A2,≺2〉.

The lexicographic product of 〈A1,≺1〉 and 〈A2,≺2〉 is the ordered set 〈A1×
A2,≺〉 where (a1, a2) ≺ (a′

1, a
′
2) precisely if a1 ≺1 a′

1 or if a1 = a′
1 and

a2 ≺2 a′
2 (i.e., in this ordering the first coordinate is decisive). On the other

hand, in antilexicographic ordering first we compare the second coordinates
and only when equality occurs compare the first coordinates. One can define
in a similar manner the lexicographic or antilexicographic product of more
than two sets. Lexicographic (antilexicographic) ordering is sometimes called
ordering according to the first (last) difference.

Let 〈Ai, <i〉, i ∈ I be ordered sets with pairwise disjoint ground sets Ai

and let the index set I be also ordered by the relation <. The ordered union
of 〈Ai, <i〉, i ∈ I with respect to the ordered set 〈I, <〉 is the ordered set
〈B,≺〉 in which B = ∪i∈IAi, and for a ∈ Ai and b ∈ Aj the relation a ≺ b
holds if and only if i < j or i = j and a <i b. The antilexicographic product
of 〈A1,≺1〉 and 〈A2,≺2〉 is nothing else than the ordered union of the sets
〈A1 × {a},≺a〉, a ∈ A2 (where (p, a) ≺a (q, a) if and only if p ≺1 q) with
respect to 〈A2,≺2〉.

Unless otherwise stated, if A is a subset of the real line, then we regard A
to be ordered with respect to the standard < relation between the reals. In
this chapter we mean strict monotonicity if we say that a real-valued function
on a subset of the reals is monotone.

An important concept related to ordered sets is their cofinality, which will
be used many times in later chapters. A theorem of Hausdorff (Problem 44)
says that in every ordered set 〈A,≺〉 there is a well-ordered cofinal subset, i.e.,
a subset B ⊆ A such that 〈B,≺〉 is well ordered and for every a ∈ A there is
a b ∈ B with a  b. Now the cofinality cf(〈A,≺〉) is defined as the smallest
possible order type of such cofinal 〈B,≺〉’s.
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The solutions of some problems require the following important result of
R. Laver (see On Fräıssé’s order type conjecture, Ann. Math., 93(1971), 89–
111): If 〈Ai, <i〉, i = 0, 1, 2, . . ., are ordered sets such that neither of them
includes a densely ordered subset, then there are i < j such that 〈Ai, <i〉 is
similar to a subset of 〈Aj , <j〉. The proof is considerably more complicated
than it could be given in this book.

1. Any infinite sequence of different elements in an ordered set includes an
infinite monotone subsequence.

2. Any two open subintervals of R are similar.
3. Give an ordered set with a smallest element, in which every element has

a successor and every element but the least has a predecessor, yet the set
is not similar to N.

4. Give an ordering on the reals for which every element has a successor, as
well as a predecessor.

5. An infinite ordered set 〈A,≺〉 is similar to N if and only if for every a ∈ A
there are only finitely many elements b ∈ A with b ≺ a.

6. What are those infinite ordered sets 〈A,≺〉 for which it is true that every
infinite subset of A is similar to 〈A,≺〉?

7. An infinite ordered set 〈A,≺〉 is similar to Z if and only if it has no smallest
or largest element, and every interval {c : a ≺ c ≺ b}, a, b ∈ A is finite.

8. What are the infinite ordered sets 〈A,≺〉 for which every interval {c :
a ≺ c ≺ b}, a, b ∈ A is finite?

9. There is a countable ordered set that has continuum many initial seg-
ments.

10. There is an ordered set of cardinality continuum that has more than con-
tinuum many initial segments.

11. There are infinitely many pairwise nonsimilar ordered sets such that every
one of them is similar to an initial segment of any other one.

12. Let 〈A,≺〉 and 〈A′,≺′〉 be ordered sets such that each of them is similar
to a subset of the other one. Then there are disjoint decompositions A =
A1 ∪ A2 and A′ = A′

1 ∪ A′
2 such that 〈Ai,≺〉 is similar to 〈A′

i,≺′〉 for
i = 1, 2.

13. If 〈A, <〉 and 〈B,≺〉 are ordered sets such that 〈A, <〉 is similar to an initial
segment of 〈B,≺〉 and 〈B,≺〉 is similar to an end segment of 〈A, <〉, then
〈A, <〉 and 〈B,≺〉 are similar.

14. If 〈A, <〉 and 〈B,≺〉 are ordered sets such that 〈A, <〉 is similar to an
initial segment and to an end segment of 〈B,≺〉 and 〈B,≺〉 is similar an
interval of 〈A, <〉, then 〈A, <〉 and 〈B,≺〉 are similar.

15. There are continuum many subsets of Q no two of them similar.
16. How many subsets A does R have for which A is similar to R?
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17. There are continuum many pairwise disjoint subsets of R each similar to
R.

18. If A ⊆ R, A 
= ∅, then R has continuum many subsets similar to A.
19. R has 2c subsets of cardinality continuum no two of which are similar.
20. If we omit a countable set from the set of irrational numbers, then the set

obtained is similar to the set of the irrational numbers.
21. If 〈A,≺〉 has a countable subset B that is dense in A (i.e., for every

a1, a2 ∈ A, a1 ≺ a2 there is b ∈ B such that a1  b  a2), then 〈A,≺〉 is
similar to a subset of R.

22. Suppose A, B ⊆ R are two similar subsets of R. Is it true that then their
complements R \ A and R \ B are also similar? What if A and B are
countable dense subsets of R?

23. Let M be a set of open subsets of R ordered with respect to inclusion
“⊂”. Then 〈M,⊂〉 is similar to a subset of the reals.

24. There is a family F of closed and measure zero subsets of R such that
〈F ,⊂〉 is similar to R.

25. There is a family of cardinality bigger than continuum of subsets of R
that is ordered with respect to inclusion.

26. Any countable ordered set is similar to a subset of Q ∩ (0, 1).
27. Any countable densely ordered set without smallest and largest elements

is similar to Q.
28. Any countable densely ordered set is similar to one of the sets Q ∩ (0, 1),

Q∩ [0, 1), Q∩ (0, 1], Q∩ [0, 1] (depending if it has a first or last element).
29. There is an uncountable ordered set such that all of its proper initial

segments are similar to Q or to Q ∩ (0, 1].
30. There is an uncountable ordered set which is similar to each of its un-

countable subsets.
31. The antilexicographically ordered set of infinite 0–1 sequences that contain

only a finite number of 1’s is similar to N.
32. The lexicographically ordered set of infinite 0–1 sequences that contain

only a finite number of 1’s is similar to Q ∩ [0, 1).
33. The lexicographically ordered set of infinite 0–1 sequences is similar to

the Cantor set.
34. The lexicographically ordered set of sequences of natural numbers is sim-

ilar to [0, 1).
35. Consider the set A of all sequences n0,−n1, n2,−n3, . . . where ni are nat-

ural numbers. Then A, with the lexicographic ordering, is similar to the
set of irrational numbers.

36. An ordered set is well ordered if and only if it does not include an infinite
decreasing sequence.
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37. If A ⊆ R is well ordered, then it is countable.
38. If U is a family of open (closed) subsets of R that is well ordered with

respect to inclusion, then U is countable.
39. If 〈A,≺〉 is well ordered, then for any f : A → A monotone mapping and

for any a ∈ A we have a  f(a).
40. There is at most one similarity mapping between two well-ordered sets.
41. A well-ordered set cannot be similar to a subset of one of its proper initial

segments.
42. Given two well-ordered sets, one of them is similar to an initial segment

of the other.
43. Two well-ordered sets, each of which is similar to a subset of the other

one, are similar.
44. (Hausdorff’s theorem) For every ordered set 〈A,≺〉 there is a subset B ⊆ A

such that 〈B,≺〉 is well ordered and cofinal (if a ∈ A is arbitrary, then
there is a b ∈ B with a  b). Furthermore, B ⊆ A can also be selected in
such a way that the order type of 〈B,≺〉 does not exceed |A| (the ordinal,
with which the cardinal |A| is identified).

45. If every proper initial segment of an ordered set is the union of countably
many well-ordered sets, then so is the whole set itself.

46. If 〈A,≺〉 is a nonempty countable well-ordered set, then A × [1, 0) with
the lexicographic ordering is similar to [0, 1).

47. There is an ordered set that is not similar to a subset of R, but all of its
proper initial segments are similar to (0, 1) or to (0, 1]. Furthermore, this
set is unique up to similarity.

48. Call a point x ∈ A in an ordered set 〈A,≺〉 a fixed point if f(x) = x
holds for every monotone f : A → A. A point x ∈ A is not a fixed point
of 〈A,≺〉 if and only if there is a monotone mapping from 〈A,≺〉 into
〈A \ {x},≺〉.

49. If x 
= y are fixed points of 〈A,≺〉, then y is a fixed point of 〈A \ {x},≺〉.
50. Every countable ordered set has only finitely many fixed points.
51. For each n < ∞ give a countably infinite ordered set with exactly n fixed

points.
52. If 〈A,≺〉 has infinitely many fixed points, then it includes a subset similar

to Q.
53. Every ordered set is similar to a set of sets ordered with respect to inclu-

sion.
54. Let M be a family of subsets of a set X that is ordered with respect to

inclusion and which is a maximal family with this property. Define ≺ on
X as follows: let x ≺ y be exactly if there is an E ∈ M, such that x ∈ E
but y 
∈ E. Then 〈X,≺〉 is an ordered set. What are the initial segments
in this ordered set?
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55. Every ordered set is similar to some 〈X,≺〉 constructed in the preceding
problem.

56. If 〈A,≺〉 is an ordered set, then there is an ordered set 〈A∗,≺∗〉 such that
if A∗ = B ∪C is an arbitrary decomposition, then either B or C includes
a subset similar to 〈A,≺〉.

57. To every infinite ordered set there is another such that neither one is
similar to a subset of the other.

58. To every countably infinite ordered set 〈A,≺〉 there is another countably
infinite ordered set that does not include a subset similar to 〈A,≺〉.

59. For every n show n countable ordered sets such that neither of them is
similar to a subset of another one.

60. If 〈Ai,≺i〉, i = 0, 1, . . ., are countable ordered sets, then there are i < j
such that 〈Ai,≺i〉 is similar to a subset of 〈Aj ,≺j〉.

61. Every countably infinite ordered set is similar to one of its proper subsets.
62. There is an infinite ordered set that is not similar to any one of its proper

subsets.
63. In every infinite ordered set the position of one element can be changed

in such a way that we get an ordered set that is not similar to the original
one.

64. One can add to any ordered set one element so that the ordered set so
obtained is not similar to the original one. Is the same true for removing
one element?

65. Every ordered set is a subset of a densely ordered set.
66. Every densely ordered set is a dense subset of a continuously ordered set.
67. Any two continuously ordered sets without smallest and largest elements

that include similar dense sets are similar.
68. A continuously ordered set containing at least two points includes a subset

similar to R.
69. If 〈A,≺〉 is continuously ordered and An = {c : an  c  bn} is a

sequence of nested closed intervals, i.e., An+1 ⊆ An for all n = 0, 1, . . .,
then ∩∞

n=0An 
= ∅.
70. There is an infinite ordered set 〈A,≺〉 that is not continuously ordered

but for every sequence {An}∞
n=0 of nested closed intervals ∩∞

n=0An 
= ∅.
71. Call a subset of an ordered set scattered, if it does not include a subset

that is densely ordered. The union of finitely many scattered subsets of
an ordered set is scattered.

72. A subset of the real line is scattered if and only if it has a countable
closure.

73. A bounded subset A of the real line is scattered if and only if for any
sequence ε0, ε1, . . . of positive numbers there exists a natural number N



Problems Chapter 6 : Ordered sets 29

such that A can be covered with some intervals I0, I1, . . . , IN of length
|Ii| = εi.

74. If α is an ordinal then let H(α) be the set of all functions f : α → {−1, 0, 1}
for which D(f) = {β < α : f(β) 
= 0} is finite. Order H(α) according to
last difference, i.e., for f, g ∈ H(α) set f ≺ g if f(β) ≺ g(β) holds for the
largest β < α with f(β) 
= g(β). Then 〈H(α),≺〉 is scattered.

75. The product of two scattered ordered sets is scattered.
76. The ordered union of scattered ordered sets with respect to a scattered

ordered set is scattered.
77. Every nonempty ordered set is either scattered, or is similar to the ordered

union of nonempty scattered sets with respect to a densely ordered set.
78. Let F be a family of ordered sets with the following properties:

• if 〈S,≺〉 ∈ F and 〈S′,≺′〉 is similar to 〈S,≺〉, then 〈S′,≺′〉 ∈ F ,
• if 〈S,≺〉 ∈ F and S′ is a subset of S then 〈S′,≺〉 ∈ F ,
• F is closed for well-ordered and reversely well-ordered unions,
• there is a nonempty 〈S,≺〉 in F .
Then every ordered set is either in F , or it is similar to an ordered union
of nonempty sets in F with respect to a densely ordered set.

79. Let O be the smallest family of ordered sets that contains ∅, 1 and is
closed for well-ordered and reversely well-ordered unions as well as for
similarity. Then O is precisely the family of scattered sets.

80. An ordered set is scattered if and only it can be embedded into one of the
〈H(α),≺〉 defined in Problem 74.

81. We say that an ordered set 〈A,≺〉 has countable intervals if for every
a, b ∈ A, a ≺ b the set {c ∈ A : a ≺ c ≺ b} is countable. There is
a maximal ordered set 〈A,≺〉 with countable intervals in the sense that
every ordered set with countable intervals is similar to a subset of 〈A,≺〉.

82. Pick a natural number n1, and for each i = 1, 2, . . . perform the following
two operations to define n2i and n2i+1:
(i) write n2i−1 in base i + 1, and while keeping the coefficients, replace

the base by i + 2. This gives a number that we call n2i;
(ii) set n2i+1 = n2i − 1.
If n2i+1 = 0 then we stop, otherwise repeat this process. For example, if
n1 = 23 = 24 + 22 + 21 + 1, then n2 = 34 + 32 + 31 + 1 = 94, n3 = 93,
n4 = 44 + 42 + 41 = 276, n5 = 275, then, since 275 = 44 + 42 + 3, we have
n6 = 54 + 52 + 3 = 3253, etc.
(a) No matter what n1 is, there is an i such that ni = 0.
(b) The same conclusion holds if in (i) the actual base is changed to any

larger base (i.e., when the bases are not 2, 3, . . . but some numbers
b1 < b2 < . . .).
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* * *

83. In every densely ordered set there are two disjoint dense subsets.
84. The elements of any ordered set can be colored by two colors in such a

way that in between any two elements of the same color there is another
one with a different color.

85. There is an ordered set which is not well ordered, yet no two different
initial segments of it are similar.

86. There exists an ordered set that cannot be represented as a countable
union of its well-ordered subsets, but in which every uncountable subset
includes an uncountable well-ordered subset.

87. There are two subsets A, B ⊂ R of power continuum such that any sub-
set of A that is similar to a subset of B is of cardinality smaller than
continuum.

88. There is an infinite subset X of R such that if f : X → X is any monotone
mapping, then f is the identity.

89. To every ordered set 〈A,≺〉 of cardinality κ ≥ ℵ0 there is another ordered
set of cardinality κ that does not include a subset similar to 〈A,≺〉.

90. For every infinite cardinal κ there is an ordered set of cardinality κ that
has more than κ initial segments.

91. In a set of cardinality κ there is a family of subsets of cardinality bigger
than κ that is ordered with respect to inclusion.

92. If H is a family of subsets of an infinite set of cardinality κ that is well
ordered with respect to inclusion, then H is of cardinality at most κ.

93. If κ is an infinite cardinal, then in the lexicographically ordered set κκ
(which is the set of transfinite sequences of type κ of ordinals smaller
than κ ordered with respect to first difference) every well-ordered subset
is of cardinality at most κ.

94. Let κ be an infinite cardinal and let T be the set κ{0, 1} of 0–1 sequences
of type κ ordered with the lexicographic ordering. Then
a) every nonempty subset of T has a least upper bound,
b) every subset of T has cofinality at most κ,
c) every well-ordered subset of T is of cardinality at most κ.

95. Every ordered set of cardinality κ is similar to a subset of the lexicograph-
ically ordered κ{0, 1}.

96. Let κ be an infinite cardinal and Fκ the set of those f : κ → {0, 1} for
which there is a last 1, i.e., there is an α < κ such that f(α) = 1 but for
all α < β < κ we have f(β) = 0. Every ordered set of cardinality κ is
similar to a subset of the lexicographically ordered Fκ.
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97. If 〈A,≺〉 is an ordered set and κ is a cardinal, then there is an ordered
set 〈B, <〉 such that if B = ∪ξ<κBξ is an arbitrary decomposition of B
into at most κ subsets, then there is a ξ < κ such that 〈Bξ, <〉 includes a
subset similar to 〈A,≺〉.
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Partially ordered sets

Let A be a set and ≺ a binary relation on A. 〈A,≺〉 is called a partially ordered
set if

• ≺ irreflexive: a 
≺ a for any a ∈ A,
• ≺ transitive: a ≺ b and b ≺ c imply a ≺ c.

Thus, the difference with ordered sets is that here we do not assume tri-
chotomy (comparability of elements).

In a partially ordered set 〈A,≺〉 two elements a, b are called comparable if
(exactly) one of a = b, a ≺ b or b ≺ a holds, otherwise they are incomparable.
An ordered subset of a partially ordered set is called a chain and a set of
pairwise incomparable elements an antichain.

The main problem that we treat in this chapter is how information on
the size of chains and antichains can be related to the structure of the set in
question.

1. In an infinite partially ordered set there is an infinite chain or an infinite
antichain.

2. If in a partially ordered set all chains have at most l < ∞ elements and
all antichains have at most k < ∞ elements, where k, l are finite numbers,
then the set has at most kl elements.

3. If in a partially ordered set all chains have at most k < ∞ elements, then
the set is the union of k antichains.

4. If in a partially ordered set all antichains have at most k < ∞ elements,
then the set is the union of k chains.

5. There is a partially ordered set in which all chains are finite, still the set
is not the union of countably many antichains.

6. There is a partially ordered set in which all antichains are finite, still the
set is not the union of countably many chains.
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7. If in a partially ordered set all chains are finite and all antichains are
countable, then the set is countable.

8. If in a partially ordered set all antichains are finite and all chains are
countable, then the set is countable.

9. There is a partially ordered set of cardinality continuum in which all chains
and all antichains are countable.

10. If in a partially ordered set all chains and all antichains have at most κ
elements, then the set is of cardinality at most 2κ.

11. If κ is an infinite cardinal, then there is a partially ordered set of cardi-
nality 2κ in which all chains and all antichains have at most κ elements.

12. For every cardinal κ there is a partially ordered set 〈P,≺〉 in which every
interval [x, y] = {z : x  z  y} is finite, yet P is not the union of κ
antichains.

13. If 〈P,≺〉 is a partially ordered set, call two elements strongly incompatible
if they have no common lower bound. Let c(P,≺) be the supremum of |S|
where S ⊆ P is a strong antichain, that is, a set of pairwise strongly
incompatible elements.
(a) If c(P,≺) is an infinite cardinal that is not weakly inaccessible, i.e., it

is not a regular limit cardinal, then c(P,≺) is actually a maximum.
(b) If κ is a regular limit cardinal, then there is a partially ordered set

〈P,≺〉 such that c(P,≺) = κ yet there is no strong antichain of cardi-
nality κ.

14. If 〈A,≺〉 is a partially ordered set, then there exists a cofinal subset B ⊆ A
such that 〈B,≺〉 is well founded (i.e., in every nonempty subset there is
a minimal element).

15. If there is no maximal element in the partially ordered set 〈P,≺〉, then
there are two disjoint cofinal subsets of 〈P,≺〉.

16. There is a partially ordered set 〈P,≺〉 which is the union of countably
many centered sets but not the union of countably many filters. (A subset
Q ⊆ P is centered if for any p1, . . . , pn ∈ Q there is some q  p1, . . . , pn

in P . A subset F ⊆ P is a filter, if for any p1, . . . , pn ∈ F there is some
q  p1, . . . , pn with q ∈ F .)

17. For two real functions f 
= g let f ≺ g if f(x) ≤ g(x) for all x ∈ R. In this
partially ordered set there is an ordered subset of cardinality bigger than
continuum. No such subset can be well ordered by ≺.

The following problems use two orderings on the set ωω of all functions
f : ω → ω: let f � g if f(n) < g(n) for all large n, and f ≺ g if
g(n) − f(n) → ∞ as n → ∞.

18. Each of 〈ωω,�〉 and 〈ωω,≺〉 has an order-preserving mapping into the
other, but they are not isomorphic.
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19. For any countable subset {fk}k of ωω there is an f larger than any fk

with respect to ≺.
20. 〈ωω,≺〉 includes a subset of order type ω1.
21. 〈ωω,≺〉 includes a subset of order type λm for each m = 1, 2, . . ..
22. If θ is an order type and 〈ωω,≺〉 includes a subset similar to θ, then it

includes such a subset consisting of functions that are smaller than the
identity function.

23. If θ1, θ2 are order types and 〈ωω,≺〉 includes subsets similar to θ1 and
θ2, respectively, then it includes subsets similar to θ1 + θ2 and θ1 · θ2,
respectively. It also includes a subset similar to θ∗

1 , where θ∗
1 is the reverse

type to θ1.
24. If θi, i ∈ I are order types where 〈I, <〉 is an ordered set, and 〈ωω,≺〉

includes subsets similar θi and also a subset similar to 〈I, <〉, then it
includes subsets similar to

∑
i∈I(<) θi. In particular, 〈ωω,≺〉 includes a

set of order type α for every α < ω2.
25. If ϕ < ω1 is a limit ordinal and

f0 ≺ f1 ≺ · · · ≺ fα ≺ · · · ≺ gα ≺ · · · g1 ≺ g0, α < ϕ,

then there is an f with fα ≺ f ≺ gα for every α < ϕ.
26. There exist functions

f0 ≺ f1 ≺ · · · ≺ fα ≺ · · · ≺ gα ≺ · · · g1 ≺ g0, α < ω1,

such that there is no function f with fα ≺ f ≺ gα for every α < ω1.
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Ordinals

Ordinals are the order types of well-ordered sets. They are the infinite ana-
logues of the natural numbers, and in many respect they behave like the latter
ones. In fact, the finite ordinals are the natural numbers, and hence the trans-
finite class of ordinals can be considered as an endless continuation of the
sequence of natural numbers.

This chapter contains various problems on ordinals and on operations on
them. The problems specifically related to ordinal arithmetic will be the con-
tent of the next chapter.

The von Neumann definition of ordinals is as follows (see below): a set α
is called an ordinal if it is transitive and well ordered with respect to ∈. When
we talk about such an α we shall always assume that it is equipped with the ∈
relation. It can be shown that every well-ordered set 〈A,≺〉 is similar to such
a unique α. Therefore, we can set α as the order type of 〈A,≺〉. In particular,
the order type of α is α.

We set β < α if β ∈ α. It follows that

α is the set of ordinals smaller than α, and among ordinals the
relation β < α is the same as β ∈ α, and β ≤ α is the same as β ⊆ α.

We shall not explicitly use von Neumann’s definition, but we shall use the
just-listed boldfaced convention.

In this chapter α, β, . . . always denote ordinals. As always, ω, the smallest
infinite ordinal, is the set of natural numbers, i.e., the set of finite ordinals.
An ordinal α is called a successor ordinal if it is of the form β+1. The positive
ordinals that are not successors are called limit ordinals. Thus, α is a limit
ordinal if and only if β < α implies β + 1 < α. The first ordinal 0 is neither
limit, nor successor.

The first problem deals with the von Neumann definition of ordinals. A
set x is called transitive if y ∈ x and z ∈ y imply z ∈ x (or equivalently
y ∈ x =⇒ y ⊂ x). We say that ∈ is a well-ordering on the set x if its
restriction to x is a well-ordering on x. Call a set N-set (N for Neumann) if
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it is transitive and well ordered by ∈. We always consider an N-set with the
well-ordering ∈, and for notational convenience sometimes we write <∈ for
∈. Part (h) shows that for a well-ordered set 〈A,≺〉 we could define its order
type as the unique N-set similar to it, and this is exactly the von Neumann
definition of ordinals.

1. (a) Every element of an N-set is an N-set.
(b) If x is an N-set, then y = x ∪ {x} is an N-set, and if z is an N-set

containing x, then y ⊂ z.
(c) If x is an N-set, y ∈ x, then y is an initial segment of x.
(d) If x is an N-set and Y ⊂ x is one of its initial segments, then Y is an

N-set, and either Y = x or Y ∈ x.
(e) If x, y are N-sets, then x = y or x ∈ y or y ∈ x.
(f) For N-sets x, y define x < y if x ∈ y. Then this is irreflexive, transitive

and trichotomous. Furthermore, if B is a nonempty set of N-sets, then
there is a smallest element of B with respect to < (“well order”).

(g) If x, y are different N-sets, then they are not similar.
(h) Every well-ordered set is similar to a unique N-set.

2. There is no infinite decreasing sequence of ordinals.
3. Arbitrary infinite sequence of ordinals includes an infinite nondecreasing

subsequence.
4. The following relations are true:

a) 1 + ω = ω, ω + 1 
= ω,
b) 2 · ω = ω, ω · 2 
= ω.

5. If a and b are natural numbers, then what is (ω + a) · (ω + b)?
6. Solve the following equations for the ordinals ξ and ζ:

(a) ω + ξ = ω

(b) ξ + ω = ω

(c) ξ · ω = ω

(d) ω · ξ = ω

(e) ξ + ζ = ω

(f) ξ · ζ = ω

7. Solve the equation ξ + ζ = ω2 + 1 for the ordinals ξ and ζ.
8. Which one is bigger?

a) ω + k or k + ω (k is a positive integer)
b) k · ω or ω · k (k ≥ is an integer)
c) ω + ω1 or ω1 + ω

d) P (ω) = ωn · an + · · ·+ ω · a1 + a0 or ωn+1, where n ≥ 1 and a0, . . . , an

are natural numbers
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e) P (ω) = ωn · an + · · ·+ ω · a1 + a0 or Q(ω) = ωm · a′
m + · · ·+ ω · a′

1 + a′
0,

where n, m, a0, a
′
0 . . . , an, a′

n are natural numbers
9. Addition among ordinals is monotonic in both arguments, and strictly

monotonic in the second argument. The same is true of multiplication
provided the first factor is nonzero.

10. a) γ + α = γ + β implies α = β,
b) α + γ = β + γ does not imply α = β,
c) γ · α = γ · β, γ > 0 imply α = β,
d) α · γ = β · γ, γ > 0 do not imply α = β.
Does the answer change in b) or d) if γ is a natural number?

11. If α · γ = β · γ and γ is a successor ordinal, then α = β.
12. If k is a positive integer and αk = βk, then α = β.
13. If ξ is a limit ordinal, then

a) supη<ξ(α + η) = α + ξ,
b) supη<ξ(α · η) = α · ξ.
Are the analogous relations true if we change the order of the terms in
the sums and products?

14. If α ≤ β, then the equation α + ξ = β is uniquely solvable for ξ. Is the
same true for the equation ξ + α = β?

15. If 0 < α, then for any β there are unique ζ and ξ < α such that β = α·ζ+ξ.
16. If α > 0 is an arbitrary ordinal and β is sufficiently large, then α+β = β.
17. If α + β = β + α for all ordinals β, then α = 0.
18. Every ordinal can be written in a unique manner in the form β +n where

β is a limit ordinal or zero and n is a natural number.
19. The limit ordinals are the ones that have the form ω · β, β ≥ 1.
20. A positive ordinal α is a limit ordinal if and only if n·α = α for all positive

integer n.
21. Let n be finite and α a limit ordinal. Then (α + n) · β = α · β + n if β is

a successor ordinal, and (α + n) · β = α · β if β is 0 or a limit ordinal.
22. If k ≥ 1, n are natural numbers and α is a limit ordinal, then (α · n)k =

αk · n.
23. Given α > 0, what are those natural numbers n such that α can be written

as α = n · β for some ordinal β?
24. In each case find all ordinals α that satisfy the given equation.

a) α + 1 = 1 + α

b) α + ω = ω + α

c) α · ω = ω · α
d) α + (ω + 1) = (ω + 1) + α
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e) α · (ω + 1) = (ω + 1) · α
25. If n is a positive integer, then

∑
ξ<ωn ξ = ω2n−1.

26. For every α there are only finitely many distinct γ such that α = ξ+γ with
some ξ. Is the analogous statement true for the representation α = γ + ξ?

27. For every α 
= 0 there are only finitely many γ such that α = ξ · γ with
some ξ. Is the analogous statement true for the representation α = γ · ξ?

28. Let m be a positive integer. A successor ordinal can be represented as a
product with m factors only in finitely many ways.

29. The equation ξ2 + ω = ζ2 has no solution for ξ and ζ.
30. Give infinitely many ξ and ζ such that ξ is infinite, and ξ2 + ω2 = ζ2.
31. Solve α2 · 2 = β2 for α and β.
32. For every natural number k there is an infinite sequence of ordinals that

form an arithmetic progression and in which each term is a kth power.
33. Give ordinals α and β with the property that for no n = 2, 3, . . . is αn ·βn

or βn · αn an nth power.
34. The sum ω +1+2+ · · · does not change if we alter the position of finitely

many terms in it.
35. One can get infinitely many different ordinals from the sum 1+2+3+· · ·+ω

by changing the position of finitely many terms in it.
36. For every n ≥ 1 give a sum α0 + α1 + · · · of positive ordinals from which

one can get exactly n different sums by taking a permutation of the terms
(possibly infinitely many) in the sum.

37. The sum of the n + 1 ordinals 1, 2, . . . , 2n−1, ω in all possible orders take
2n different values.

38. Let g(n) be the maximum number of different ordinals that can be ob-
tained from n ordinals by taking their sums in all possible n! different
orders. Then

lim
n→∞ g(n)/n! = 0.

39. For every n give n ordinals such that all products of them taken in all
possible n! orders are different.

40. Let α be a limit ordinal, and call a set A ⊆ α of ordinals closed in α if the
least upper bound of any increasing transfinite subsequence of A is in A
or is equal to α. Then A is closed in α if and only if it is a closed subset
of the topological space (α, T ), where the topology T is generated by the
intervals {ξ : ξ < τ}, {ξ : τ < ξ < α}, τ < α (this topology is called
the interval topology on α).
It is also true that A is closed in α if and only if the supremum of every
subset B ⊂ A is in A or is equal to α.
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41. With the notation of the preceding problem a function f : α → α is
continuous in the interval topology if and only if f(supA) = supξ∈A f(ξ)
for any set A ⊂ α with supA < α.

42. If A ⊆ α is of cardinality κ, then its closure in the interval topology is
also of cardinality κ.

43. If {aξ}ξ<ω1 is a transfinite sequence of countable ordinals converging in
the topology on ω1 to a σ ∈ ω1, then there is a ν < ω1 such that aξ = aζ

for all ξ, ζ > ν.
44. Assume that f : ω1 × ω1 → ω has the property that for α < ω1, n < ω

the set {β < α : f(β, α) ≤ n} is finite. Then all the sets

Zf (α, n) =
{
β < α : there are β = β0 < β1 < · · · < βk = α,

with f(βi, βi+1) ≤ n
}

are also finite.
45. There is a function f : ω1 × ω1 → ω such that for α < ω1, n < ω the

set {β < α : f(β, α) ≤ n} is finite and for any α0 < α1 < · · · we have
supk<ω f(αk, αk+1) = ω.

46. Two players, I and II, play the following game of length ω. At round i first
I chooses a countable ordinal αi at least as large as the previous ordinal
chosen by him, then II selects a finite subset Si of αi. After ω many steps
II wins if S0 ∪ S1 ∪ · · · = sup

(
{αi : i < ω}

)
.

(a) II has a winning strategy.
(b) II even has a winning strategy that chooses Si only depending on

i, αi−1, and αi.

47. Two players, I and II, alternatively select countable ordinals. After ω steps
they consider the set of all selected ordinals, and II wins if it is an initial
segment, otherwise I wins.
(a) There is a winning strategy for II.
(b) There is no such winning strategy if the choice of II depends only on

the set of ordinals selected before (by the two players).
(c) Even such a strategy exists if II is allowed to select finitely many

ordinals in every step.

* * *

48. Let κ be an infinite cardinal and let two players alternately choose sets
K0 ⊃ K1 ⊃ · · · of cardinality κ. Then no matter how the first player plays,
the second one can always achieve ∩∞

n=0Kn = ∅.
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Ordinal arithmetic

This chapter can be regarded as the “infinite analogue” of classical number
theory. It contains problems on the arithmetic properties of ordinals such as
divisibility, representation in a base, decomposition, primeness, etc.

A special role is played by the so-called normal representation (Problem
16) which is representation in base ω. In fact, many problems simplify con-
siderably if the ordinals are written in normal form.

In this chapter α, β, . . . always denote ordinals.
If α · β = γ, then we say that α (β) is a left (right) divisor of γ, and also

that γ is a right (left) multiple of α (β).

1. If A is any set of nonzero ordinals, then there is a largest ordinal γ that
divides every element of A from the left (this γ is called the greatest
common left divisor of A). Every ordinal that divides every element of A
from the left also divides γ from the left.

2. α is a limit ordinal if and only if ω divides α from the left.
3. α is divisible from the left by ω+2 and by ω+3 if and only if it is divisible

from the left by ω2.
4. α is divisible from the right by 2 and 3 if and only if it is divisible from

the right by 6. Is the same true for divisibility from the left?
5. α is divisible from the right by ω + 2 and by ω + 3 if and only if it is

divisible from the right by ω + 6.
6. Every ordinal α has only a finite number of right divisors. Is the same

true of left divisors? What if α is a successor ordinal?
7. If α and β are right divisors of γ ≥ 1, then either

a) α divides β from the right, or
b) β divides α from the right, or
c) α = ξ+p, β = ξ+q, where ξ is a limit ordinal or 0, and p, q are positive

natural numbers.
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In case c) if [p, q] is the smallest common multiple of p and q, then ξ+[p, q]
is the smallest common left multiple of α and β, and ξ +[p, q] also divides
γ from the right.

8. Any set of positive ordinals has a greatest common right divisor, and this
greatest common right divisor is divisible from the right by any common
right divisor.

9. Any set of positive ordinals has a least common (positive) right multiple,
and this least common right multiple divides every common right multiple
from the left.

10. Exhibit two ordinals that do not have a common (nonzero) left multiple.
11. Define ordinal exponentiation by transfinite recursion in the following way:

γ0 = 1, γα+1 = γα · γ, and for limit ordinal α let γα be the supremum of
the ordinals γη, η < α. For γ > 1 the following are true:
(i) γα · γβ = γα+β ,

(ii) (γα)β = γα·β ,
(iii) if α < β then γα < γβ ,
(iv) α ≤ γα.

12. Consider the set Φα,γ of all mappings f : α → γ for which all but finitely
many elements are mapped to 0, and for f, g ∈ Φα,γ , f 
= g let f ≺ g if
f(ξ) < g(ξ) for the largest ξ < α for which f(ξ) 
= g(ξ). Then 〈Φα,γ ,≺〉 is
well ordered, and its order type is γα.

13. For any integer n > 1 we have
a) nωω

= ωωω

,
b) (ω + n)ω = ωω.

14. If α is a limit ordinal, then 1α + 2α = 3α.
15. The following are true:

a) 2ω = ω,
b) if α is countable, then so is 2α,
c) for any cardinal κ = ωσ we have 2ωσ = κ,
d) if α is infinite, then the cardinality of 2α is equal to the cardinality of

α,
e) every ordinal can be written in a unique manner in the form

2ξn + 2ξn−1 + · · · + 2ξ0 , (9.1)

where ξ0 < ξ1 . . . < ξn.
What is the form (9.1) of the ordinal ω4 · 6 + ω2 · 7 + ω + 9?

16. If γ ≥ 2, then every ordinal can be written in a unique way in the form

γξn · ηn + · · · + γξ0 · η0,
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where ξ0 < ξ1 < . . . < ξn, and 1 ≤ ηj < γ for all 1 ≤ j ≤ n.
This form is called the representation of the given ordinal in base γ. The
representation of an ordinal α in base ω is called the normal form of α.

17. If
α = ωξn · an + · · · + ωξ0 · a0, (9.2)

ξ0 < ξ1 < · · · < ξn, a0, a1. . . . , an ∈ N is the normal expansion of α, then
α < ωξn+1, and for any ωξn+1 ≤ β we have α + β = β.

18. Find the normal form of the sum and product of two ordinals given in
normal form.

19. If the normal form (9.2) of α has (n+1) components, then for m = 1, 2, . . .
the normal form of αm has (n + 1) components if α is a limit ordinal and
it has mn + 1 components if α is a successor ordinal.

20. If the normal form of α is (9.2), then every 0 < β < ωξ0 is a left divisor
of α, and besides these there are only finitely many left divisors of α.

21. Given α > 0, what are those natural numbers k such that α can be written
as α = β · k for some ordinal β?

22. Given an ordinal α, what is
∑

β<ωα β?
23. If ωα = A ∪ B, then either A or B is of order type ωα.
24. For every α there is a natural number N such that if α is decomposed as

α = A0 ∪ · · · ∪ AN into N + 1 disjoint sets, then there is a j such that
∪i�=jAi has order type α.

25. If κ is an infinite cardinal, then every ordinal α of cardinality at most κ
can be decomposed as α = A0 ∪ A1 ∪ · · · such that every An is of order
type smaller than κω.

26. Call an ordinal α > 0 (additively) indecomposable if it cannot be written
as a sum of two smaller ordinals. Give the first three infinite indecompos-
able ordinals.

27. For every ordinal there is a bigger indecomposable ordinal. Also, for every
countable ordinal there is a bigger indecomposable countable ordinal.

28. If α is arbitrary, and γ is the smallest ordinal for which there is a β such
that α = β + γ, then γ is indecomposable.

29. α is indecomposable if and only if it does not have a right divisor that is
a successor ordinal bigger than 1.

30. α is indecomposable if and only if ξ + α = α for every ξ < α.
31. The supremum of indecomposable ordinals is indecomposable.
32. If α is indecomposable, then so is every β · α, β > 0.
33. If α is indecomposable, then α is divisible from the left by all 1 ≤ β < α.
34. The smallest indecomposable ordinal bigger than α ≥ 1 is α · ω.
35. Every positive ordinal can be represented in a unique manner as a sum of

a finite sequence of nonincreasing indecomposable ordinals.



46 Chapter 9 : Ordinal arithmetic Problems

36. Let α = β1 + β2 + · · ·+ βn be the decomposition of α from the preceding
problem. Then α = β + γ for some β, γ 
= 0 if and only if there are a 1 ≤
m ≤ n such that γ = βm+βm+1+· · ·+βn and β = β1+β2+· · ·+βm−1+δ,
where δ is an arbitrary ordinal smaller than βm.

37. The indecomposable ordinals are precisely the ordinals of the form ωα.
38. Call an ordinal α > 1 prime if it cannot be written as the product of two

smaller ordinals. Give the first three infinite prime ordinals.
39. α > 1 is prime if and only if α = β · γ, γ > 1 imply γ = α.
40. If α is an indecomposable ordinal, then α + 1 is prime.
41. An infinite successor ordinal is prime if and only if it is of the form ωξ +1.

42. A limit ordinal is prime if and only if it is of the form ωωξ

.
43. Every ordinal has at most one infinite right divisor that is prime.
44. Every successor ordinal has at most one infinite left divisor that is prime.

However, a limit ordinal may have infinitely many infinite left prime di-
visors.

45. Every ordinal α > 1 is the product of finitely many prime ordinals. In
general, this representation is not unique even if we require that no factor
can be omitted without changing the product.

46. Every α > 1 has a unique representation

α = a1 · · · am · b1 · c1 · b2 · · · bs · cs · bs+1,

where a1 ≥ . . . ≥ am are limit primes, c1, . . . , cs are infinite successor
primes, and b1, . . . , bs+1 > 1 are natural numbers (some of the terms may
be missing).

47. Call two positive ordinals α and β additively commutative if α+β = β+α.
If α is additively commutative with both β and γ, then β and γ are also
additively commutative.

48. For every positive ordinal α there are only countably many ordinals with
which α is additively commutative.

49. Let n, m be given positive integers. Two ordinals α and β are additively
commutative if and only if α · n and β · m are additively commutative.

50. Two ordinals α and β are additively commutative if and only if there are
positive integers n, m such that α · n = β · m.

51. Two ordinals α and β are additively commutative if and only if there are
natural numbers n, m and an ordinal ξ such that α = ξ · n, β = ξ · m.

52. For any α the ordinals that additively commute with α are of the form
β ·n, n = 1, 2, . . ., where β is the smallest ordinal additively commutative
with α.
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53. If the normal form of α > 0 is (9.2), then the ordinals additively commu-
tative with α are the ones with normal form

ωξn · c + ωξn−1 · an−1 · · · + ωξ0 · a0

where c is an arbitrary positive natural number.
54. The sum of n nonzero ordinals α1, . . . , αn is independent of their order if

and only if there are positive integers m1, . . . , mn and an ordinal ξ such
that α1 = ξ · m1, α2 = ξ · m2, . . ., αn = ξ · mn.

55. Let g(n) be the maximum number of different ordinals that can be ob-
tained from n ordinals by taking their sums in all possible n! different
orders.
(a) For each n

g(n) = max
1≤k≤n−1

(k2k−1 + 1)g(n − k).

(b) g(1) = 1, g(2) = 2, g(3) = 5, g(4) = 13, g(5) = 33, g(6) = 81,
g(7) = 193, g(8) = 449, g(9) = 332, g(10) = 33 · 81, g(11) = 812,
g(12) = 81 · 193, g(13) = 1932, g(14) = 332 · 81, g(15) = 33 · 812.

(c) For m ≥ 3 we have g(5m) = 33 ·81m−1 g(5m+1) = 81m, g(5m+2) =
193 · 81m−1, g(5m + 3) = 1932 · 81m−2 and g(5m + 4) = 1933 · 81m−3.

(d) For n ≥ 21 we have g(n) = 81g(n − 5).
56. Call two ordinals α > 1 and β > 1 multiplicatively commutative if α ·β =

β · α. If γ > 1 is multiplicatively commutative with the ordinals β and γ,
then β and γ are also multiplicatively commutative.

57. No successor ordinal bigger than 1 is multiplicatively commutative with
any limit ordinal, and no finite ordinal bigger than 1 is multiplicatively
commutative with any infinite ordinal.

58. For every ordinal α > 1 there are only countably many ordinals that are
multiplicatively commutative with α.

59. Let m, n be positive integers. Two ordinals α and β are multiplicatively
commutative if and only if αn and βm are multiplicatively commutative.

60. Two infinite ordinals α, β are multiplicatively commutative if and only if
there are natural numbers n, m such that αn = βm.

61. Two limit ordinals α < β are multiplicatively commutative if and only
if there is a θ and positive integers p, r such that β = ωθ·r · α, and the
highest power of ω in the normal representations of α is ωθ·p.

62. If α is an infinite successor ordinal and ξ > 1 is the smallest ordinal multi-
plicatively commutative with α, then every ordinal that is multiplicatively
commutative with α is of the form ξn with n = 0, 1 . . ..

63. Two infinite successor ordinals α and β are multiplicatively commutative
if and only if there is an ordinal ξ and natural numbers n, m with which
α = ξn and β = ξm.
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64. The ordinals ω2 + ω and ω3 + ω2 are multiplicatively commutative, but
there is no ordinal ξ and natural numbers n, m with which α = ξn and
β = ξm would be true.

65. The product of n ordinals α1, . . . , αn, αi ≥ 2 is independent of their order
if and only if there are positive integers m1, . . . , mn for which αm1

1 =
αm2

2 = · · · = αmn
n .

66. For every n give n ordinals such that all products of them taken in all
possible n! orders are different.

67. There are no different infinite ordinals that are simultaneously additively
and multiplicatively commutative.

68. For infinite α the following statements are pairwise equivalent:
a) if ξ < α and θ < α, then ξ · θ < α,
b) if 1 ≤ ξ < α then ξ · α = α,

c) α = ωωβ

for some β.
69. Call an ordinal α epsilon-ordinal, if ωα = α. Find the smallest epsilon-

ordinal.
70. For every ordinal there is a larger epsilon-ordinal and for every countable

ordinal there is a larger countable epsilon-ordinal.
71. If α is an epsilon-ordinal, then

(i) ξ + α = α for ξ < α,
(ii) ξ · α = α for 1 ≤ ξ < α,
(iii) ξα = α for 2 ≤ ξ < α.

72. If β ≥ ω and βα = α, then α is an epsilon-ordinal.
73. α is an epsilon-ordinal if and only if ω < α and βγ < α whenever β, γ < α.
74. For infinite ordinals α < β we have αβ = βα if and only if α is a limit

ordinal and β = γ · α, where γ > α is an epsilon ordinal.
75. Define the product

∏
ξ<θ αξ of a transfinite sequence {αξ}ξ<θ of ordinals,

and discuss its properties!
76. If α0 +α1 + · · · is a sum of a sequence of ordinals of type ω, then by taking

a permutation of (possibly infinitely many of) the terms in the sum, one
can get only finitely many different ordinals.

77. If α0+α1+· · · is a sum of a sequence of ordinals of type ω, then by deleting
finitely many terms and taking a permutation of (possibly infinitely many
of) the remaining terms in the sum, one can get only finitely many different
ordinals.

78. Given a positive integer n give a sum α0 + α1 + · · · of a sequence of
infinite ordinals of type ω such that one can get exactly n different values
by taking a permutation of the terms in the sum.
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79. If α0 ·α1 · · · is a product of a sequence of ordinals of type ω, then by taking
a permutation of (possibly infinitely many of) the terms in the product,
one can get only finitely many different ordinals.

80. If α0·α1 · · · is a product of a sequence of ordinals of type ω, then by deleting
finitely many terms and taking a permutation of (possibly infinitely many
of) the remaining terms in the product, one can get only finitely many
different ordinals.

81. Given a positive integer n give a product α0 · α1 · · · of a sequence of
infinite ordinals of type ω such that one can get exactly n different values
by taking a permutation of the terms in the product.

82. Permuting finitely many terms in a sum
∑

β≤ω αβ (but keeping the per-
muted sum of type ω + 1), one may get infinitely many different ordinals.

83. If γ is a countable ordinal and {αβ}β<γ is a sequence of ordinals, then
there are only countably many different sums of the form

∑
β<γ απ(β),

where π : γ → γ is any mapping.
84. Permuting finitely many terms in a product

∏
β≤ω αβ (but keeping the

permuted sum of type ω + 1), one may get infinitely many different ordi-
nals.

85. If γ is a countable ordinal and {αβ}β<γ is a sequence of ordinals, then
there are only countably many different products of the form

∏
β<γ απ(β),

where π : γ → γ is any mapping.
86. Write Γ (α) =

∏
ξ<α ξ. Calculate Γ (ω), Γ (ω + 1), Γ (ω · 2), and Γ (ω2).

87. Find all operations F from the ordinals to the ordinals that are continuous
in the interval topology and that satisfy the equation F(α + β) = F(α) +
F(β) for all α and β.

88. Is there a not identically zero operation F from the ordinals to the ordinals
that is continuous in the interval topology and that satisfies the equation
F(α + β) = F(β) + F(α) for all α and β?

89. Find all operations F from the ordinals to the ordinals that are continuous
in the interval topology and that satisfy the equation F(α + β) = F(α) ·
F(β) for all α and β.

90. Is there a not identically zero and not identically 1 operation F from the
ordinals to the ordinals that is continuous in the interval topology and
that satisfies the equation F(α + β) = F(β) · F(α) for all α and β?

91. Define the Hessenberg sum (or natural sum) α ⊕ β of ordinals α, β with
normal form

α = ωδn · an + · · · + ωδ0 · a0, β = ωδn · bn + · · · + ωδ0 · b0 (9.3)

(with possibly ai = 0 or bi = 0) as

α ⊕ β = ωδn · (an + bn) + · · ·ωδ0 · (a0 + b0).
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(a) ⊕ is an associative and commutative operation.
(b) If β < γ, then α ⊕ β < α ⊕ γ.
(c) For a given α how many solutions does the equation x⊕ y = α have?
(d) Is Fα(x) = α ⊕ x continuous?
(e) α1 + · · · + αn ≤ α1 ⊕ · · · ⊕ αn. When does the equality hold?
(f) α1 ⊕ · · · ⊕ αn ≤ max{α1, . . . , αn} · (n + 1).

92. α1 ⊕ · · · ⊕ αn is the largest ordinal that occurs as the order type of A1 ∪
· · · ∪An, where A1, . . . , An are subsets of some ordered set of order types
α1, . . . , αn, respectively.

93. If F(α, β) is a commutative operation on the ordinals which is strictly
increasing in either variable, then F(α, β) ≥ α ⊕ β holds for all α, β.

The “superbase” form of a natural number in base b is obtained by writing
the number in base b, and all exponents and exponents of exponents,
etc., in base b. For example, if b = 2, then 141 = 27 + 23 + 22 + 1 =
222+2+1 + 22+1 + 22 + 1, and the latter form is its “superbase” 2 form.

94. Pick a natural number n1, and for each i = 1, 2, . . . perform the following
two operations to define the numbers n2i and n2i−1:
(i) write n2i−1 in “superbase” form in base i + 1, and while keeping all

coefficients, replace the base by i+2. This gives a number that we call
n2i.

(ii) set n2i+1 = n2i − 1.
If n2i+1 = 0, then we stop, otherwise repeat these operations. For example,
if n1 = 23, then its “superbase” 2 form is 23 = 222

+ 22 + 2 + 1, so
n2 = 333

+ 33 + 3 + 1 = 7625597485018, n3 = 7625597485017. Since
n3 = 333

+ 33 + 3, and here we change the base 3 to base 4, we have
n4 = 444

+ 44 + 4, which is the following 155-digit number:

1340780792994259709957402499820584612747936582059239
3377723561443721764030073546976801874298166903427690
031858186486050853753882811946569946433649006084356.

(a) No matter what n1 is, there is an i such that ni = 0.
(b) The same conclusion holds if in (i) the actual base is changed to any

larger base (i.e., when the bases are not 2, 3, . . . but some numbers
b1 < b2 < . . .).
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Cardinals

Cardinals express the size of sets. Saying that two sets are equivalent (are
of equal size) is the same as saying that their cardinality is the same. The
cardinality of the set A is denoted by |A|, and it can be defined as the smallest
ordinal equivalent to A: |A| = min{α : α ∼ A}.

We set |A| < |B| if A is equivalent to a subset of B but not vice versa. It is
easy to see that this is the same as |A| being smaller than |B| in the “smaller”
relation (i.e., in ∈) among ordinals. If κi, i ∈ I are cardinals, then their sum∑

i∈I κi is defined as the cardinality of ∪i∈IAi, where Ai are disjoint sets of
cardinality κi, and their product

∏
i∈I κi is defined as the cardinality of the

product set
∏

i∈I Ai (recall that this is the same as the set of choice functions
f : I → ∪i∈IAi, f(i) ∈ Ai for all i). Finally, we set |A||B| as the cardinality
of the set BA (which is the set of functions f : B → A from B into A).

This chapter contains problems related to cardinal operations. The fun-
damental theorem of cardinal arithmetic (Problem 2) says that for infinite
cardinals κ, λ we have κ + λ = κλ = max{κ, λ}. Quite often this makes ques-
tions on cardinal addition and multiplication trivial. The situation is com-
pletely different with cardinal exponentiation; it is not trivial at all, and is
one of the subtlest question of set theory with problems leading quite often
to independence results. For this reason we shall barely touch upon cardinal
exponentiation in this book.

An important property of some cardinals is their regularity: κ = cf(κ). It
is equivalent to the fact that κ cannot be reached by (i.e., not the supremum
of) less than κ smaller ordinals. Another equivalent formulation is that a set
of cardinality κ is not the union of fewer than κ sets of cardinality smaller
than κ (see Problems 9, 10). Some properties hold only for regular cardinals,
and quite frequently proofs are simpler for regular cardinals than for singular
(=nonregular) ones.

The finite cardinals are just the natural numbers. Infinite cardinals are
listed in an endless “transfinite sequence” ω0, ω1, . . . , ωα, . . ., numbered by
ordinals α. Here ω0 = ω is the smallest infinite cardinal, and this numbering
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is done so that β < α implies ωβ < ωα. If κ = ωα, then ωα+1 is the successor
cardinal to κ (i.e., the smallest cardinal larger than κ), and is denoted by κ+.
It is always a regular cardinal.

For historical reasons we also write ℵα instead of ωa (note that ωα has
two faces; it is an ordinal and also a cardinal, and we use the aleph notation
when we emphasize the cardinal aspect).

CH, the continuum hypothesis (i.e., that there is no cardinal between ω
and c) can be expressed as c = ℵ1 or as 2ℵ0 = ℵ1. The generalized continuum
hypothesis (GCH) stipulates that for all α we have 2ℵα = ℵα+1. This is also
independent of the axioms of set theory (cf. the introduction to Chapter 4).

1. What is the cardinal a0 · a1 · · · if the ai’s are positive integers?
2. (Fundamental theorem of cardinal arithmetic) For every infinite cardinal

κ we have κ2 = κ.
3. If at least one of κ > 0 and λ > 0 is infinite, then

κ + λ = κλ = max{κ, λ}.

4. If X is of cardinality κ ≥ ℵ0, then the following sets are of cardinality κ:
a) set of finite sequences of elements of X,
b) set of those functions that map a finite subset of X into X.

5. Let X be a set of infinite cardinality κ, and call a set Y ⊂ X “small” if
there is a decomposition of X into subsets of cardinality κ each of which
intersects Y in at most one point. Then X is the union of two of its “small”
subsets.

6. The supremum of any set of cardinals (considered as a set of ordinals) is
again a cardinal.

7. If ρ1 + ρ2 =
∑

ξ<α λξ, then there are cardinals λ
(i)
ξ , i = 1, 2, ξ < α such

that ρi =
∑

ξ<α λ
(i)
ξ , i = 1, 2, and for all ξ we have λξ = λ

(1)
ξ + λ

(2)
ξ .

8. If α is the cofinality of an ordered set, then α is a regular cardinal.
9. If κ is an infinite cardinal, then cf(κ) coincides with the smallest ordinal

α for which there is a transfinite sequence {κξ}ξ<α of cardinals smaller
than κ with the property κ =

∑
ξ<α κξ.

10. An infinite cardinal is regular if and only if κ is not the sum of fewer than
κ cardinals each of which is less than κ.

11. A successor cardinal is regular.
12. Which are the smallest three singular (i.e., not regular) infinite cardinals?
13. cf(ℵα) = ℵα if α is a successor ordinal, and cf(ℵα) = cf(α) if α is a limit

ordinal.
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14. Let n be a natural number. The cardinality of a set H is at most ℵn if
and only if n+2H(≡ Hn+2) can be represented in the form A1 ∪ · · · ∪
An+2, where Ak is finite “in the direction of the kth coordinate”, i.e., if
h1, . . . , hk−1, hk+1, . . . hn+2 are arbitrary elements from H, then there are
only finitely many h ∈ H such that (h1, . . . , hk−1, h, hk+1, . . . hn+2) ∈ Ak.

15. The cardinality of a set H is at most ℵα+n if and only if n+2H(≡ Hn+2)
can be represented in the form A1 ∪ · · · ∪ An+2, where the cardinality
of Ak “in the direction of the kth coordinate” is smaller than ℵα, i.e., if
h1, . . . , hk−1, hk+1, . . . hn+2 are arbitrary elements from H, then there are
fewer than ℵα elements h ∈ H such that

(h1, . . . , hk−1, h, hk+1, . . . hn+2) ∈ Hk.

16. (Cantor’s inequality) For any κ we have 2κ > κ.
17. (König’s inequality) If ρi < κi for all i ∈ I, then∑

i∈I

ρi <
∏
i∈I

κi.

18. If the set of cardinals {κξ}ξ<θ, 0 < κξ < κ is cofinal with κ, then∏
ξ<θ κξ > κ.

19. If κ is infinite, κ =
∑

ξ<cf(κ) κξ where κ > κξ > 1, then∏
ξ<cf(κ)

κξ = κcf(κ).

20. If κ is infinite, then κcf(κ) > κ.
21. If λ ≥ 2 and κ is infinite, then cf(λκ) > κ.
22. (Bernstein–Hausdorff–Tarski equality) Let κ be an infinite cardinal and λ

a cardinal with 0 < λ < cf(κ). Then

κλ =

(∑
ρ<κ

ρλ

)
κ.

23. If α is a limit ordinal, {κξ}ξ<α is a strictly increasing sequence of cardinals
and κ =

∑
ξ<α κξ, then for all 0 < λ < cf(α) we have κλ =

∑
ξ<α κλ

ξ .

24. If λ is singular and there is a cardinal κ such that for some µ < λ for
every cardinal τ between µ and λ we have 2τ = κ, then 2λ = κ, as well.

25. If there is an ordinal γ such that 2ℵα = ℵα+γ holds for every infinite
cardinal ℵα, then γ is finite.

26. The operation κ �→ κcf(κ) on cardinals determines
(a) the operation κ �→ 2κ,
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(b) the operation (κ, λ) �→ κλ.
27. If n is finite, then for λ ≥ 1

(a) ℵλ
α+n = ℵλ

α ℵα+n.
(b) ℵλ

n = 2λℵn.
28. When does ∏

n<ω

ℵn = 2ℵ0

hold?
29. ∏

n<ω

ℵn = ℵℵ0
ω .

30. If for all n < ω we have 2ℵn < ℵω, then 2ℵω = ℵℵ0
ω .

31. If ρ ≥ ω is a given cardinal, then there are infinitely many cardinals κ for
which κρ = κ, and there are infinitely many for which κρ > κ.

32. There are arbitrarily large cardinals λ with λℵ0 < λℵ1 .
33. For an infinite cardinal κ let µ be the minimal cardinal with 2µ > κ. Then

{κλ : λ < µ} is finite.
34. For an infinite cardinal κ let ρ = ρκ be the smallest cardinal such that

κρ > κ. Then ρκ is a regular cardinal. What is ρω? And ρωω?
35. The smallest κ for which 2κ > c holds is regular.
36. Let κ0 = ℵ0, and for every natural number n let κn+1 = ℵκn . Then

κ = supn κn is the smallest cardinal with the property κ = ℵκ.
37. There are infinitely many cardinals κ such that the set of cardinals smaller

than κ is of cardinality κ (i.e., κ = ℵκ). If we call such cardinals κ ”large”,
then are there cardinals κ such that the set of ”large” cardinals smaller
than κ is of cardinality κ?

38. Under GCH (generalized continuum hypothesis) find all cardinals κ for
which κℵ0 < κℵ1 < κℵ2 hold.

39. Assuming GCH evaluate
∏

β<α ℵβ .

40. Under GCH determine κλ.
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Partially ordered sets

Let A be a set and ≺ a binary relation on A. 〈A,≺〉 is called a partially ordered
set if

• ≺ irreflexive: a 
≺ a for any a ∈ A,
• ≺ transitive: a ≺ b and b ≺ c imply a ≺ c.

Thus, the difference with ordered sets is that here we do not assume tri-
chotomy (comparability of elements).

In a partially ordered set 〈A,≺〉 two elements a, b are called comparable if
(exactly) one of a = b, a ≺ b or b ≺ a holds, otherwise they are incomparable.
An ordered subset of a partially ordered set is called a chain and a set of
pairwise incomparable elements an antichain.

The main problem that we treat in this chapter is how information on
the size of chains and antichains can be related to the structure of the set in
question.

1. In an infinite partially ordered set there is an infinite chain or an infinite
antichain.

2. If in a partially ordered set all chains have at most l < ∞ elements and
all antichains have at most k < ∞ elements, where k, l are finite numbers,
then the set has at most kl elements.

3. If in a partially ordered set all chains have at most k < ∞ elements, then
the set is the union of k antichains.

4. If in a partially ordered set all antichains have at most k < ∞ elements,
then the set is the union of k chains.

5. There is a partially ordered set in which all chains are finite, still the set
is not the union of countably many antichains.

6. There is a partially ordered set in which all antichains are finite, still the
set is not the union of countably many chains.
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7. If in a partially ordered set all chains are finite and all antichains are
countable, then the set is countable.

8. If in a partially ordered set all antichains are finite and all chains are
countable, then the set is countable.

9. There is a partially ordered set of cardinality continuum in which all chains
and all antichains are countable.

10. If in a partially ordered set all chains and all antichains have at most κ
elements, then the set is of cardinality at most 2κ.

11. If κ is an infinite cardinal, then there is a partially ordered set of cardi-
nality 2κ in which all chains and all antichains have at most κ elements.

12. For every cardinal κ there is a partially ordered set 〈P,≺〉 in which every
interval [x, y] = {z : x  z  y} is finite, yet P is not the union of κ
antichains.

13. If 〈P,≺〉 is a partially ordered set, call two elements strongly incompatible
if they have no common lower bound. Let c(P,≺) be the supremum of |S|
where S ⊆ P is a strong antichain, that is, a set of pairwise strongly
incompatible elements.
(a) If c(P,≺) is an infinite cardinal that is not weakly inaccessible, i.e., it

is not a regular limit cardinal, then c(P,≺) is actually a maximum.
(b) If κ is a regular limit cardinal, then there is a partially ordered set

〈P,≺〉 such that c(P,≺) = κ yet there is no strong antichain of cardi-
nality κ.

14. If 〈A,≺〉 is a partially ordered set, then there exists a cofinal subset B ⊆ A
such that 〈B,≺〉 is well founded (i.e., in every nonempty subset there is
a minimal element).

15. If there is no maximal element in the partially ordered set 〈P,≺〉, then
there are two disjoint cofinal subsets of 〈P,≺〉.

16. There is a partially ordered set 〈P,≺〉 which is the union of countably
many centered sets but not the union of countably many filters. (A subset
Q ⊆ P is centered if for any p1, . . . , pn ∈ Q there is some q  p1, . . . , pn

in P . A subset F ⊆ P is a filter, if for any p1, . . . , pn ∈ F there is some
q  p1, . . . , pn with q ∈ F .)

17. For two real functions f 
= g let f ≺ g if f(x) ≤ g(x) for all x ∈ R. In this
partially ordered set there is an ordered subset of cardinality bigger than
continuum. No such subset can be well ordered by ≺.

The following problems use two orderings on the set ωω of all functions
f : ω → ω: let f � g if f(n) < g(n) for all large n, and f ≺ g if
g(n) − f(n) → ∞ as n → ∞.

18. Each of 〈ωω,�〉 and 〈ωω,≺〉 has an order-preserving mapping into the
other, but they are not isomorphic.
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19. For any countable subset {fk}k of ωω there is an f larger than any fk

with respect to ≺.
20. 〈ωω,≺〉 includes a subset of order type ω1.
21. 〈ωω,≺〉 includes a subset of order type λm for each m = 1, 2, . . ..
22. If θ is an order type and 〈ωω,≺〉 includes a subset similar to θ, then it

includes such a subset consisting of functions that are smaller than the
identity function.

23. If θ1, θ2 are order types and 〈ωω,≺〉 includes subsets similar to θ1 and
θ2, respectively, then it includes subsets similar to θ1 + θ2 and θ1 · θ2,
respectively. It also includes a subset similar to θ∗

1 , where θ∗
1 is the reverse

type to θ1.
24. If θi, i ∈ I are order types where 〈I, <〉 is an ordered set, and 〈ωω,≺〉

includes subsets similar θi and also a subset similar to 〈I, <〉, then it
includes subsets similar to

∑
i∈I(<) θi. In particular, 〈ωω,≺〉 includes a

set of order type α for every α < ω2.
25. If ϕ < ω1 is a limit ordinal and

f0 ≺ f1 ≺ · · · ≺ fα ≺ · · · ≺ gα ≺ · · · g1 ≺ g0, α < ϕ,

then there is an f with fα ≺ f ≺ gα for every α < ϕ.
26. There exist functions

f0 ≺ f1 ≺ · · · ≺ fα ≺ · · · ≺ gα ≺ · · · g1 ≺ g0, α < ω1,

such that there is no function f with fα ≺ f ≺ gα for every α < ω1.
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Transfinite enumeration

This chapter deals with a fundamental technique based on the well-ordering
theorem. Most of the problems in this chapter require the construction of some
objects sometimes with quite surprising properties (like Problem 7: there is a
set A ⊂ R2 intersecting every line in exactly two points). The objects cannot
be given at once, but are obtained by a transfinite recursive process. The idea
is to have a well ordering of the underlying structure (in the aforementioned
example a well-ordering of the lines on R2 into a transfinite sequence {�α}α<c

of type c) and based on that the object is constructed one by one (in the
example constructing an increasing sequence {Aα}α<c of sets such that Aα

has at most two points on any line, and it has exactly two points on �α).
Of similar spirit is the transfinite construction of some closure sets such

as the set of Borel sets, the set of Baire functions, or the algebraic closures of
fields.

This transfinite enumeration technique will be routinely used in later chap-
ters.

1. If Ai, i ∈ I is an arbitrary family of sets, then there are pairwise disjoint
sets Bi ⊂ Ai such that ∪i∈IBi = ∪i∈IAi.

2. If there are given κ ≥ ℵ0 sets Xξ each of cardinality κ, then there are
pairwise disjoint subsets Yξ ⊆ Xξ each of cardinality κ. Further, we can
even have |Xξ \ Yξ| = κ for all ξ < κ.

3. If there are given κ ≥ ℵ0 sets Xξ, ξ < κ each of cardinality κ, then
there are pairwise disjoint sets Yα, α < κ such that for all α, ξ < κ the
intersection Yα ∩ Xξ is of cardinality κ.

4. Let κ be an infinite cardinal, X a set of cardinality κ, and F a family of
cardinality at most κ of mappings with domain X. Then there is a family
H of cardinality 2κ of subsets of X with the property that if H1, H2 ∈ H
are two different sets and f ∈ F is arbitrary, then f [H1] 
= H2.

5. If X is an infinite set of cardinality κ, then there is an almost disjoint
family H of cardinality bigger than κ of subsets of X each of cardinality
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κ (the intersection of any two members of H is of cardinality smaller than
κ).

6. There is a family {Nα}α<ω1 of subsets of N such that for α < β < ω1 the
set Nβ \ Nα is finite, but the set Nα \ Nβ is infinite.

7. There is a subset A of R2, that has exactly two points on every line.
8. Suppose that to every line � on the plane a cardinal 2 ≤ m� ≤ c is assigned.

Then there is a subset A of the plane such that |A ∩ �| = m� holds for
every �.

9. If L1 and L2 are two disjoint sets of lines lying on the plane, then the
plane can be divided into two sets A1∪A2 in such a way that every line in
L1 resp. L2 intersects A1 resp. A2 in fewer than continuum many points.

10. R can be decomposed into continuum many pairwise disjoint sets of power
continuum, such that each of these sets intersects every nonempty perfect
set.

11. R can be decomposed into continuum many pairwise disjoint and non-
measurable sets.

12. R can be decomposed into continuum many pairwise disjoint sets each of
the second category.

13. There is a subset A of R2 that has at most two points on every line,
but A is not of measure zero (with respect to two-dimensional Lebesgue
measure).

14. There is a second category subset A of R2 that has at most two points on
every line.

15. There is a set A ⊂ R such that every x ∈ R has exactly one representation
x = a + b with a, b ∈ A.

16. If A ⊂ R is an arbitrary set, then there is a function f : A → A that
assumes every value only countably many times and for which f(a) < a
for all a ∈ A, except for the smallest element of A (if there is one).

17. Every real function is the sum of two 1-to-1 functions.
18. There is a real function that is not monotone on any set of cardinality

continuum.
19. There is a real function F such that for all continuous real functions f

the sum F + f assumes all values y ∈ R in every interval.
20. There is a real function f such that if {xn}∞

n=0 is an arbitrary sequence
of distinct real numbers and {yn}∞

n=0 is an arbitrary real sequence, then
there is an x ∈ R such that for all n we have f(x + xn) = yn.

21. For X ⊆ Rn let XL be the set of all limit points of X, and starting from
X0 = X form the sets

Xα =
{

XL
β if α = β + 1,

∩ξ<αXξ if α is a limit ordinal.
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Then there is a countable ordinal θ such that Xα = Xθ for all α > θ, and
the set X \ Xθ is countable. Furthermore Xθ is empty or it is perfect.

22. Every closed set in Rn is the union of a perfect set and a countable set.
23. Starting from an arbitrary set X and a family H of subsets of X form

the families Hα of sets in the following way: H0 = H; for every ordinal α
let Hα+1 be the family of sets that can be obtained as a countable union
of sets in Hα or that are the complements (with respect to X) of some
sets in Hα; and for a limit ordinal α set Hα = ∪β<αHβ . Then Hω1 = Hα

for every α > ω1, and Hω1 is the σ-algebra generated by H (this is the
intersection of all σ-algebras including H, and is the smallest σ-algebra
including H).

24. The σ-algebra generated by at most continuum many sets is of power at
most continuum.

25. The family of Borel sets in Rn is the smallest family of sets containing the
open sets and closed under countable intersection and countable disjoint
union.

26. Starting from the set C[0, 1] of continuous functions on the interval [0, 1]
form the following families Bα of functions: B0 = C[0, 1]; for every α
let Bα+1 be the set of those functions that can be obtained as pointwise
limits of a sequence of functions from Bα; and for a limit ordinal α let
Bα = ∪β<αBβ . Then Bω1 = Bα for all α > ω1, and Bω1 is the smallest set
of functions that is closed for pointwise limits and that includes C[0, 1]
(this is the set of so-called Baire functions on [0, 1]).

27. Let 〈A, · · ·〉 be an algebraic structure with at most ρ finitary operations.
Then the subalgebra in A generated by a subset of κ(
= 0) elements has
cardinality at most max{κ, ρ,ℵ0} (the subalgebra generated by a set X
of elements is the intersection of all subalgebras that include X).

28. If F is any field of cardinality κ, then there is an algebraically closed field
F ⊂ F∗ of cardinality at most max{κ,ℵ0} (a field

F∗ = 〈F ∗,+, ·, 0, 1〉

is called algebraically closed if for any polynomial an ·xn + · · ·+a1 ·x+a0
with ai ∈ F ∗ there is an a ∈ F ∗ such that an · an + · · · + a1 · a + a0 = 0).

29. Every ordered set of cardinality κ is similar to a subset of the lexicograph-
ically ordered set κ{0, 1}.

30. Every ordered set is a subset of an ordered set no two different initial
segments of which are similar.
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Euclidean spaces

The problems in this section exhibit some interesting sets or interesting prop-
erties of sets in Euclidean n space or in their Hilbert space generalizations.
Sometimes the set is given by an explicit construction, at other times by the
transfinite enumeration technique of the preceding chapter.

1. If U is a family of open subsets of Rn that is well ordered with respect to
inclusion, then U is countable.

2. Call a set A ⊂ Rn an algebraic variety if there is a non-identically zero
polynomial P (x1, . . . , xn) of n variables such that A is its zero set: A =
{(a1, . . . , an) : P (a1, . . . , an) = 0}. Then Rn cannot be covered by less
than continuum many algebraic varieties.

3. There is a set A ⊂ R3 of power continuum such that if we connect the
different points of A by a segment, then all these segments are disjoint
(except perhaps for their endpoints).

4. From any uncountable subset of Rn (n = 1, 2, . . .) one can select uncount-
ably many points such that all the distances between these points are
different.

5. In �2 there are continuum many points such that all distances between
them are rational (hence from this set one cannot select uncountably many
points such that all the distances between the selected points are different).

6. If all the distances between the points of a set H ⊂ �2 are the same, then
H is countable.

7. If �2 is decomposed into countably many sets, then one of them includes
an infinite subset A such that all the distances between the points in A
are the same.

8. There are continuum many points in �2 of which every triangle is acute.
9. The plane can be colored with countably many colors such that no two

points in rational distance get the same color.
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10. Rn can be colored with countably many colors such that no two points in
rational distance get the same color.

11. The plane can be decomposed into countably many pieces none containing
the three nodes of an equilateral triangle.

12. Call a set A ⊂ R2 a “circle” if there is a point P ∈ R2 such that each
half-line emanating from P intersects A in one point. The plane can be
written as a countable union of “circles”.

13. R3 can be decomposed into a disjoint union of circles of radius 1.
14. R3 can be decomposed into a disjoint union of lines no two of which are

parallel.
15. If A, B are any two intervals on the real line (of positive length), then

there are disjoint decompositions A =
⋃
{Ai : i = 0, 1, . . .} and B =⋃

{Bi : i = 0, 1, . . .} such that Bi is a translated copy of Ai.
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Zorn’s lemma

In this chapter we investigate Zorn’s lemma, a powerful tool to prove results
for infinite structures. Assume (P,≤) is a partially ordered set. A chain L ⊆ P
is a subset in which any two elements are comparable, i.e., for x, y ∈ L either
x ≤ y or y ≤ x holds. Zorn’s lemma states that, if in a partially ordered set
(P,≤) every chain L has an upper bound (an element p ∈ P such that x ≤ p
holds for x ∈ L), then (P,≤) has a maximal element, that is, some element
p ∈ P with the property that for no x ∈ P does p < x hold.

Zorn’s lemma is equivalent to the axiom of choice as well as to the well-
ordering theorem (see Problem 5), in particular it is independent of the other
standard axioms of set theory. Still, as is the case with the axiom of choice,
in everyday mathematics it is accepted, and it provides a convenient way to
establish certain maximal objects. This chapter contains ample examples for
that.

1. Deduce Zorn’s lemma from the well-ordering theorem.
2. Prove that Zorn’s lemma implies the axiom of choice.
3. Give a direct deduction of the well-ordering theorem from Zorn’s lemma.
4. Give a direct deduction of Zorn’s lemma from the axiom of choice.
5. The axiom of choice, the well-ordering theorem, and Zorn’s lemma are

pairwise equivalent.
6. With the help of Zorn’s lemma, prove the following.

(a) The set R+ of positive real numbers is the disjoint union of two
nonempty sets, each closed under addition.

(b) In a ring with unity, every proper ideal can be extended to a maximal
ideal.

(c) Every filter can be extended to an ultrafilter.
(d) Every vector space has a basis. In fact, every linearly independent

system of vectors can be extended to a basis.
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(e) Every vector space has a basis. In fact, every generating system of
vectors includes a basis.

(f) For Abelian groups the group D ⊇ A is called the divisible hull of A if
it is divisible and for every x ∈ D there is some natural number n that
nx ∈ A. If D1, D2 are divisible hulls of A, then they are isomorphic
over A: there is an isomorphism ϕ : D1 → D2 which is the identity on
A.

(g) Every field can be embedded into an algebraically closed field.
(h) Every algebraically closed field has a transcendence basis.
(i) Assume F is a field in which 0 is not the sum of nonzero square

elements. Then F is orderable, that is, there is an ordering < on F in
which x < y implies that x + z < y + z holds for every z, and x < y,
z > 0 imply that xz < yz.

(k) If G is an Abelian group and A is a divisible subgroup, then A is a
direct summand of G.

(l) Every connected graph includes a spanning tree.
(m) If (V,X) is a graph with chromatic number κ then there is a decom-

position of V into κ independent (=edgeless) sets such that between
any two there goes an edge.

(n) If X is a compact topological space and + is an associative operation
on X which is right semi-continuous (i.e., the mapping x �→ p + x is
continuous for every p ∈ X), then + has a fixed point, that is, an
element p ∈ X, that p + p = p.

7. Let S be a set, F ⊆ P(S) a family of subsets such that every x ∈ S is
contained in only finitely many elements of F and for every finite X ⊆ S
some G ⊆ F constitutes an exact cover of X (i.e., every x ∈ X is contained
in one and only one element of G). Then there is an exact cover G ⊆ F of
S.

8. (a) For any partially ordered set (P, <) there is an ordered set (P, <′) on
the same ground set that extends (P, <), i.e., x < y implies x <′ y.

(b) Prove that actually x < y holds if and only if x <′ y for every such
extension.

(c) If, in part (a), (P, <) is well-founded, then (P, <′) can be made well
ordered.

(d) Why does part (b) imply part (a) ?
9. (Alexander subbase theorem) Assume that X is a topological space with

a subbase S with the finite cover property, i.e., if the union of some sub-
family S ′ ⊆ S covers X, then some finitely many members of S ′ cover X,
as well. Then X is compact.

10. (Tychonoff’s theorem) The topological product of compact spaces is com-
pact.
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Hamel bases

In this chapter we consider Hamel bases, i.e., bases of the vector space of the
reals (R) over the field of the rationals (Q). To elaborate, such a basis is a set
B = {bi : i ∈ I} such that every real x can be uniquely written in the form
x = λ0b0 + · · · + λnbn where λ0, . . . , λn are nonzero rationals and b0, . . . , bn

are distinct elements of B.
Hamel bases can be used in many intriguing constructions involving the

reals. This chapter lists some problems on Hamel bases, as well as on their
applications.

Let us call a set H ⊂ R rationally independent if it is an independent set
in the vector space R over the field Q, and let us call H a generating subset
if the linear hull of H (over Q) is the whole R.

1. If H ⊂ R is rationally independent, then there is a Hamel basis including
H.

2. If H ⊂ R is a generating set, then it includes a Hamel basis.
3. Every Hamel basis has cardinality c.
4. There are 2c distinct Hamel bases.
5. There is an everywhere-dense Hamel basis.
6. There is a nowhere-dense, measure zero Hamel basis.
7. There is a Hamel basis of full outer measure.
8. A Hamel basis, if measurable, is of measure zero.
9. A Hamel basis cannot be an analytic set.

10. If the continuum hypothesis is true, then R\{0} is the union of countably
many Hamel bases.

11. (Cont’d) If R \ {0} is the union of countably many Hamel bases, then the
continuum hypothesis holds.
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12. If the continuum hypothesis is true, then there is a Hamel basis B =
{bi : i ∈ I} such that the set B+ of real numbers x written in the form
x =

∑
{λibi : i ∈ I} with nonnegative coefficients is a measure zero set.

13. Describe, in terms of Hamel bases, all solutions of the functional equations
(a) f(x + y) = f(x) + f(y) (additive functions, Cauchy functions);
(b) f(x + y) = f(x)f(y);
(c) f(xy) = f(x)f(y);

(d) f(x+y
2 ) = f(x)+f(y)

2 ;
(e) f(x + y) = f(x) + f(y) + c with some fixed constant c;
(f) f(x + y) = g(x) + h(y);
(g) f(x + y) = af(x) + bf(y) with some fixed constants a, b.

14. If the real numbers α, β are not commensurable, then for any A, B ∈ R
there is a function f : R → R for which f(x + y) = f(x) + f(y) always
holds and f(α) = A, f(β) = B.

15. The function F (x) = x (for x ∈ R) is the sum of two periodic functions.
16. (Cont’d) The function F (x) = x2 (for x ∈ R) is the sum of three periodic

functions but not of two.
17. (Cont’d) Let k ≥ 1 be a natural number. The function F (x) = xk (for

x ∈ R) is the sum of (k + 1) periodic functions but not the sum of k
periodic functions.

18. There exists A ⊂ R such that there are countably infinitely many subsets
of R congruent to A.

19. There is a set A ⊂ R different from ∅ and R such that for all x ∈ R only
finitely many of the sets A, A + x, A + 2x, A + 3x, . . . are different.

20. There exists a set A ⊂ R with both A, R \ A everywhere dense, which
has the property that if a is a real number, then either A ⊆ A + a or
A + a ⊆ A.

21. There exists a partition of the set R \ Q of irrational numbers into two
sets, both closed under addition.

22. There exists a partition of the set R+ = {x ∈ R : x > 0} of positive real
numbers into two nonempty sets, both closed under addition.

23. We are given 17 real numbers with the property that if we remove any
one of them then the remaining 16 numbers can be rearranged into two
8-element groups with equal sums. Prove that the numbers are equal.

24. R is the union of countably many sets, none of which including a (non-
trivial) 3-element arithmetic progression.

25. If a rectangle can be decomposed into the union of finitely many rectangles
each having commeasurable sides, then the original rectangle also has
commeasurable sides.
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26. The set of reals carries an ordering ≺ such that there are no elements
x ≺ y ≺ z, forming a 3-element arithmetic progression (that is, y = x+z

2 ).
27. There is an addition preserving bijection between R and C.
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The continuum hypothesis

The continuum hypothesis (CH) claims that every infinite subset of the reals
is equivalent either to N or to R. It is independent of the standard axioms
of set theory (see the introduction to Chapter 4), and in general it is not
assumed when one deals with set theory or problems related to set theory.

Since the continuum hypothesis says something about the set of the reals, it
is no wonder that it has many equivalent formulations involving real functions
or sets in Euclidean spaces. This chapter lists several of these reformulations.
Also, in the presence of CH the set of reals “looks differently” than otherwise,
and this is reflected in the existence of sets (such as Lusin sets or Sierpinski
sets) with various properties. The problems below contain several examples of
this phenomenon. CH coupled with the enumeration technique of Chapter 12
is particularly powerful, for in a construction only countably many previously
constructed objects have to be taken care of.

1. (Sierpinski’s decomposition) CH is equivalent to the statement that the
plane is the union of two sets, A and B, such that A intersects every
horizontal line and B intersects every vertical line in a countable set.

2. CH holds if and only if the plane is the union of the graphs of countably
many x �→ y and y �→ x functions.

3. CH is equivalent to the existence of a decomposition R3 = A1 ∪ A2 ∪ A3
such that if L is a line in the direction of the xi-axis then Ai ∩L is finite.

4. For no natural number m exists a decomposition R3 = A1 ∪A2 ∪A3 such
that if L is a line in the direction of the xi-axis then |Ai ∩ L| ≤ m.

5. c ≤ ℵn if and only if there is a decomposition Rn+2 = A1∪A2∪· · ·∪An+2
such that if L is a line in the direction of the xi-axis then Ai ∩L is finite.

6. CH holds if and only if there is a surjection from R onto R × R of the
form x �→ (f1(x), f2(x)) with the property that for every x ∈ R either
f ′
1(x) or f ′

2(x) exists.
7. CH holds if and only if R is the union of an increasing chain of countable

sets.
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8. CH holds if and only if there is a function f : R → P(R) with f(x) count-
able for every x ∈ R and such that f [X] = R holds for every uncountable
set X ⊆ R.

9. CH holds if and only if there exist functions f0, f1, . . . : R → R such that
if a ∈ R then for all but countably many x ∈ R the set Ax,a = {n < ω :
fn(x) = a} is infinite.

10. CH holds if and only if there exist functions f0, f1, . . . : R → R such that
if a = {a0, a1, . . .} is an arbitrary real sequence then for all but countably
many x ∈ R the set Ax,a = {n < ω : fn(x) = an} is infinite.

11. CH holds if and only if there exist an uncountable family F of real se-
quences with the property that if {a0, a1, . . .} is an arbitrary real sequence
then for all but countably many {yn} ∈ F there are infinitely many n with
yn = an.

12. CH holds if and only if there exist functions f0, f1, . . . : R → R with the
property that if X ⊆ R is uncountable then fn[X] = R holds for all but
finitely many n < ω.

13. CH holds if and only if there is a family {Aα : α < ω1} of infinite subsets
of ω such that if X ⊆ ω is infinite then there is some α < ω1 with Aα \X
finite.

14. CH holds if and only if there is a family H = {Ai : i ∈ I} of subsets of
R with |I| = c, |Ai| = ℵ0 such that if B ⊆ R is infinite then for all but
countably many i we have Ai ∩ B 
= ∅.

15. CH holds if and only if R can be decomposed as R = A∪B into uncount-
able sets in such a way that for every real a the intersection (A + a) ∩ B
is countable.

16. CH holds if and only if the plane can be decomposed into countably many
parts none containing 4 distinct points a, b, c, and d such that dist(a, b) =
dist(c, d) (“dist” is the Euclidean distance).

17. CH holds if and only if R can be colored by countably many colors such
that the equation x + y = u + v has no solution with different x, y, u, v of
the same color.

18. If the continuum hypothesis holds then there is a function f : R → R
such that for every x ∈ R we have

lim
h→0

max (f(x − h), f(x + h)) = ∞.

19. CH holds if and only if there exists an uncountable family F of entire
functions (on the complex plane C) such that for every a ∈ C the set
{f(a) : f ∈ F} is countable.

20. (a) If CH holds, then there is a set A of reals of cardinality continuum
such that A intersects every set of first category in a countable set
(such a set is called a Lusin set).
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(b) Every Lusin set is of measure zero.
21. CH is equivalent to the statement that there is a Lusin set and every

subset of R of cardinality < c is of first category.

22. (a) If CH holds, then there is a set A of reals of cardinality continuum
such that A intersects every set of measure zero in a countable set
(such a set is called a Sierpinski set).

(b) Every Sierpinski set is of first category.
23. CH is equivalent to the statement that there is a Sierpinski set and every

subset of R of cardinality < c is of measure zero.
24. If CH holds and A ⊆ [0, 1]2 is a measurable set of measure one, then there

exist sets B, C ⊆ [0, 1] of outer measure one with B × C ⊆ A. (Note
that there is an A ⊆ [0, 1]2 of measure one such that if B, C ⊆ [0, 1] are
measurable sets with B × C ⊆ A, then they are of measure zero.)

25. If CH holds, then there is an uncountable set A ⊆ R such that if G ⊇ Q
is an open set then A \ G is countable (A is concentrated around Q).

26. If CH holds, then there is an uncountable A ⊂ R such that any uncount-
able B ⊂ A is dense in some open interval.

27. If CH holds, then there is an uncountable densely ordered set 〈A,≺〉 such
that any nowhere dense set (in the interval topology) in 〈A,≺〉 is count-
able.

28. If CH holds, then there is an uncountable set A ⊆ R such that if ε0, ε1, . . .
are arbitrary positive reals then there is a cover I0 ∪ I1 ∪ · · · of A such
that In is an interval of length εn.

29. If CH holds, then there is a permutation π : R → R of the reals such that
A ⊆ R is of first category if and only if π[A] is of measure zero.
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Ultrafilters on ω

If X is a ground set, then a family F of subsets of X is called a filter if

• ∅ 
∈ F ,
• A, B ∈ F implies A ∩ B ∈ F ,
• A ∈ F and A ⊆ B imply B ∈ F .

A filter F is called principal or trivial if F = {A ⊂ X : A0 ⊂ A} for some
A0 ⊂ X.

A filter that is not a proper subset of another filter is called an ultrafilter.
The elements of an ultrafilter F can be considered as “large” subsets of

X, and if the set of elements of X for which a property holds belongs to F ,
then we consider the property to hold for almost all elements of X.

Ultrafilters play important roles in algebra and logic; in particular, the
ultraproduct construction is based on them. They also appear in several so-
lutions in this book.

A dual concept to filter is the concept of an ideal. If X is a ground set,
then a family I of subsets of X is called an ideal if

• X 
∈ I,
• A, B ∈ I implies A ∪ B ∈ I
• A ∈ I and B ⊆ A imply B ∈ I.

An ideal that is not a proper subset of another ideal is called a prime ideal.
It is clear that F is a filter (ultrafilter) if and only if {X \ F : F ∈ F} is

an ideal (prime ideal).
This chapter contains various problems on, and properties of ultrafilters

on the set of natural numbers. Problem 19 gives an application in analysis,
it verifies the existence of Banach limits—a limit concept that extends the
standard notion of limit to all real sequences.

1. A filter F on ω is an ultrafilter if and only if for every A ⊂ ω exactly one
of A or X \ A belongs to F .
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2. Every filter on ω is included in an ultrafilter.
3. There are 2c ultrafilters on ω.
4. If U1, . . . ,Un are nonprincipal ultrafilters on ω, then there is some infinite,

co-infinite A ∈ U1 ∩ . . . ∩ Un.
5. If U is an ultrafilter on ω and 0 = n0 < n1 < · · · are arbitrary natural

numbers, then there exists an A ∈ U with A ∩ [ni, ni+1) = ∅ for infinitely
many i < ω.

6. If U is an ultrafilter on ω, then U contains a set A ⊂ ω of lower density
zero.

7. There is an ultrafilter U on ω such that every A ∈ U has positive upper
density.

8. Is there a translation invariant ultrafilter on ω? Is there a translation
invariant ultrafilter on Q?

9. Let U be a nonprincipal ultrafilter on ω. Two players consecutively say
natural numbers 0 < n0 < n1 < · · · with player I beginning. Player I wins
if and only if the set [0, n0)∪ [n1, n2)∪· · · is in U . Show that neither player
has a winning strategy.

10. (CH) There is nonprincipal ultrafilter U on ω such that if A0 ⊇ A1 ⊇
A2 ⊇ · · · are elements of U , then there is an element B of U such that
B \ An is finite for every n. (Such an ultrafilter is called a p-point.)

11. (CH) There is a nonprincipal ultrafilter U on ω such that if f : [ω]r →
{1, 2, . . . , n} is a coloring of all r-element subsets of ω with finitely many
colors, then there is a monochromatic element of U . (Such an ultrafilter
is called Ramsey ultrafilter).

12. Assume that (A,≺) is a countable ordered set and U is a Ramsey ultrafilter
on A. Then there is an element B ∈ U which is a set of type either ω or
ω∗.

13. Let U be a Ramsey ultrafilter on ω and let f : ω → ω be arbitrary. Then
either f is essentially constant (i.e., {n < ω : f(n) = k} ∈ U for some
k < ω), or f is essentially one-to-one (i.e., f A is one-to-one on a set
A ∈ U).

14. Let U be a Ramsey ultrafilter on ω and n0 < n1 < · · · arbitrary numbers.
Then there is a set A ∈ U with |A ∩ [ni, ni+1)| = 1 for all i = 0, 1, . . ..

15. Let U be a Ramsey ultrafilter on ω, {an} a positive sequence converging
to 0 and ε > 0 arbitrary. Then there is an A ∈ U with∑

n∈A

an < ε.

16. There are an ultrafilter U on ω and a positive sequence {an} converging
to 0, such that if A ∈ U then

∑
n∈A an = ∞.
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17. There is an ultrafilter U on ω that is not generated by less than continuum
many elements, i.e., if F is a family of subsets of U of cardinality smaller
than continuum, then there is an element A ∈ U such that F 
⊂ A for
F ∈ F .

18. Associate with every A ⊆ ω the real number xA = 0, α0α1 . . . where αi = 1
if and only if i ∈ A. This way to every subset U of P(ω) we associate a
subset XU of [0, 1]. Show that if U is a nonprincipal ultrafilter on ω, then
XU cannot be a Lebesgue measurable set.

19. If D is a nonprincipal ultrafilter and {xn : n < ω} is a sequence of reals,
then set limD xn = r if and only if {n : p < xn < q} ∈ D holds whenever
p < r < q. If this is the case we say that {xn} has a D-limit.
(a) Every bounded sequence has a unique D-limit.
(b) The D-limit of a convergent sequence coincides with its ordinary limit.
(c) limD cxn = c limD xn.
(d) limD(xn + yn) = limD xn + limD yn.
(e) | lim supD xn| ≤ supn |xn|.
(f) If the sequences {xn} and {yn} have the property that xn − yn → 0,

then limD xn = limD yn.
(g) If limD xn = a and f is a real function continuous at the point a, then

limD f(xn) = f(a).
(h) If r ∈ R is a limit point of the set {xn : n < ω} then there exists a

nonprincipal ultrafilter D such that limD xn = r.
(i) Set limD xn = ∞ if and only if {n : p < xn} ∈ D holds whenever p <

∞, and define limD xn = −∞ analogously. Then every real sequence
has a (possibly infinite) D-limit.

20. Show that there is a function f : P(N) → [0, 1] such that f(A) = d(A)
whenever the set A ⊆ N has density d(A), and f is finitely additive, i.e.,
f(A ∪ B) = f(A) + f(B) when A, B are disjoint.

21. Let there be an infinite sequence of switches, S0, S1, . . . each having three
positions {0, 1, 2}, and a light also with three states {L0, L1, L2}. They
are connected in such a way that if the positions of all switches are si-
multaneously changed then the state of the light also changes. Let us also
suppose that if all the switches are in the ith position then the light is
also in the Li state. Show that there is a (possibly principal) ultrafilter U
that determines the state of the light in the sense that it is Li precisely
when

{j : Sj is in the ith position} ∈ U .

22. Suppose that in an election there are n ≥ 3 candidates and a set of voters
I, each of whom makes a ranking of the candidates. There are two rules
for the outcome:
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• if all the voters enter the same ranking, then this is the outcome,
• if a candidate a precedes candidate b in the outcome depends only on

their order on the different ranking lists of the individual voters (and
it does not depend on where a and b are on those lists, i.e., on how
the voters ranked other candidates).

Then there is an ultrafilter F on I such that the outcome is an order π if
and only if the set Fπ of those voters i ∈ I whose ranking is π belongs to
F . In particular, if I is finite, then in every such voting scheme there is a
dictator whose ranking gives the outcome.
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Families of sets

The problems in this chapter discuss various combinatorial properties of fam-
ilies of sets and functions.

1. For every cardinal κ ≥ ω there is a family Aξ,η, ξ < κ, η < κ+ of subsets
of κ+ such that for fixed ξ the sets Aξ,η, η < κ+ are disjoint, and for each
η < κ+ the set κ+ \ ∪ξ<κAξ,η is of cardinality < κ+. (Such a family is
called an Ulam matrix. The matrix is of size κ × κ+, the κ+ elements in
a row are disjoint, and yet the union of the κ elements in every column is
κ+ save a set of size < κ+).

2. For every cardinal κ ≥ ω there is a family F of κ+ almost disjoint subsets
of κ of cardinality κ, that is, for A, B ∈ F , A 
= B we have |A| = |B| = κ
but |A ∩ B| < κ.

3. If X is an infinite set of cardinality κ, then there are 2κ subsets Aγ ⊂ X
such that if γ1 
= γ2, then each of the sets Aγ1 \ Aγ2 , Aγ2 \ Aγ1 , and
Aγ1 ∩ Aγ2 is of cardinality κ.

4. For every cardinal κ ≥ ω there are κ+ subsets of κ so that selecting any
two of them, one includes the other.

5. If X is an infinite set of cardinality κ, then there is a family F of cardinality
2κ of subsets of A such that no member of F is a proper subset of another
member of F (such a family is called an antichain).

6. Let κ ≥ ω be a cardinal. For every S, the set [S]κ is the union of 2κ

antichains.
7. If κ is an infinite cardinal, then there are 2κ sets Aα, Bα, α < 2κ of

cardinality κ such that Aα ∩ Bβ 
= ∅ if and only if α 
= β.
8. Let κ be an infinite cardinal and Ai, Bi, i ∈ I a family of sets with the

property |Ai|, |Bi| ≤ κ and Ai∩Bj 
= ∅ if and only if i 
= j. Then |I| ≤ 2κ.
9. There are two disjoint families F ,G ⊂ P(N) of subsets of N such that

every infinite subset A ⊆ N includes an element of F and of G.
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10. For any infinite set X there are two disjoint families F ,G ⊂ P(X) of
countably infinite subsets of X such that every infinite subset A ⊆ X
includes an element of F and of G.
Call a family F of subsets of a set S independent if the following statement
is true: if X1, . . . , Xn are different members of F , ε1, . . . , εn < 2, then

Xε1
1 ∩ · · · ∩ Xεn

n 
= ∅

where for a set X we put X1 = X, X0 = S \ X.
11. For every κ ≥ ω there is an independent family of cardinality 2κ of subsets

of κ.
12. For every κ ≥ ω there are 22κ

ultrafilters on κ.
13. Let A be an infinite set of cardinality κ. Then there is a family F of

cardinality 2κ of functions f : A → ω with the property that if f1, . . . , fn ∈
F are finitely many different functions from F , then there is an a ∈ A
where the functions f1, . . . , fn take different values: fi(a) 
= fj(a) if 1 ≤
i < j ≤ n.

14. Let A be an infinite set of cardinality 2κ. Then there is a family G of
cardinality κ of functions fk : A → κ such that for an arbitrary function
f : A → κ and for an arbitrary finite set A′ ⊂ A there is a g ∈ G such
that g agrees with f on A′.

15. Let κ be infinite. If Ti, i < 2κ are 2κ topological spaces each of which
has a dense subset of cardinality at most κ, then the same is true of their
product.

16. Let F be a countable family of infinite sets with |A∩B| = 1 for A, B ∈ F ,
A 
= B. Then there is a set X with 1 ≤ |X ∩ A| ≤ 2 for every A ∈ F .

17. Let F be a countable family of infinite sets with |A∩B| ≤ 2 for A, B ∈ F ,
A 
= B. Then there are two sets X, Y such that for every A ∈ F either
|A ∩ X| = 1 or |A ∩ Y | = 1.

18. Prove that for every ℵ1 ≤ κ < ℵω there is a family F ⊆ [κ]ℵ0 of cardinality
κ such that for every X ∈ [κ]ℵ0 there is some Y ∈ F with X ⊆ Y . Prove
that no such family exists for κ = ℵω.

19. If κ, µ are infinite cardinals, then there is an almost disjoint family of µ-
element sets which is not κ-colorable. That is, there is H ⊆ [V ]µ for some
set V with |H ∩ H ′| < µ for H,H ′ ∈ H, H 
= H ′, such that if F : V → κ
is a coloring then some member of H is monocolored.
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The Banach–Tarski paradox

This chapter deals with a surprising consequence of the axiom of choice,
namely the so-called Banach–Tarski paradox claiming that any two balls
(with possibly different radii) in the space can be decomposed into each
other, i.e., if B1 and B2 are such balls then there are disjoint decomposi-
tions B1 = E1 ∪ · · · ∪ En, B2 = F1 ∪ · · · ∪ Fn such that each Ei is congruent
to Fi. Actually, any two bounded sets in R3 with nonempty interior can be
decomposed into each other.

A “common sense” argument against such a decomposition runs as follows:
take a nontrivial finitely additive and isometry invariant measure µ on all
subsets of R3 (think of µ as a “volume” associated with each set). Then the µ-
measure of B1 is different from the µ-measure of B2 if their radii are different,
hence the aforementioned decomposition of B1 into B2 is impossible, since
measure is preserved under isometry. Of course, this argument fails if there is
no such measure, and the Banach–Tarski paradox shows precisely that such
a measure does not exist in R3. Hidden behind the Banach–Tarski paradox is
the axiom of choice appearing, for example, in the solution of Problem 17,(c).

Let us also note that in R and R2 there are finitely additive isometry
invariant measures (see Chapter 28), so in R and R2 a Banach–Tarski type
paradox cannot be established. The difference between R,R2, and R3 (and
of course every Rn with n ≥ 3) is that the isometry groups of R and R2 are
relatively simple, while that of R3 includes a free subgroup generated by two
appropriate rotations.

This chapter contains various problems regarding decompositions (via dif-
ferent kinds of transformations on the parts) culminating in Problem 17 con-
taining the Banach–Tarski paradox. We consider the equidecomposability of
subsets of some set X, where sets are decomposed into the union of finitely
many subsets and are transformed by the elements of Φ, a family of X → X
bijections, containing the identity, closed under composition and taking in-
verse (i.e., Φ is a group with respect to composition). If A, B ⊆ X, then A
is equidecomposable to B via Φ, in symbol A ∼Φ B, if there are partitions
A = A1 ∪ · · · ∪An, B = B1 ∪ · · · ∪Bn, such that Bi = fi[Ai] for some fi ∈ Φ.
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If there is no danger of confusion we simply write A ∼ B instead of A ∼Φ B.
A  B if A ∼ B′ holds for some B′ ⊆ B. {A1, . . . , At} is a p-cover of A (is
a ≤ p-cover of A) if A1, . . . , At ⊆ A and every element of A is in exactly p
of the Ai’s (and every element of A is in ≤ p of the Ai’s). If A, B ⊆ X, then
pA ∼ qB denotes that there is a p-cover {A1, . . . , At} of A such that for ap-
propriate f1, . . . , ft ∈ Φ, the sets f1[A1], . . . , ft[At] constitute a q-cover of B.
If, on the other hand, f1[A1], . . . , ft[At] is just a ≤ q-cover of B, then we write
pA  qB. A ⊆ X is paradoxical if A ∼ 2A. Usually it is “obvious” what Φ is,
still, in most cases, we indicate it. If X = Sn (the n-dimensional unit sphere)
then Φ is the set of rotations around its center; if X = Rn, then Φ is the set
of the congruences; if X is a group, then Φ is the set of left multiplications:
Φ = {fx : x ∈ X} where fx(y) = xy.

1. ∼ is an equivalence relation.
2. If A  B and B  A, then A ∼ B.
3. If pA  qB and qB  rC, then pA  rC holds as well (p, q, r are nonzero

natural numbers).
4. If pA  qB, qB  pA hold for some natural numbers p, q, then pA ∼ qB.
5. If pA ∼ qB and qB ∼ rC, then pA ∼ rC holds as well (p, q, r are nonzero

natural numbers).
6. If kpA  kqB holds for some natural numbers k, p, q, k ≥ 1, then pA  qB.

Therefore, kpA ∼ kqB implies pA ∼ qB.
7. The following are equivalent.

(a) (n + 1)A  nA for some natural number n;
(b) A is paradoxical;
(c) A can be decomposed as A = A′ ∪ A′′ with A′ ∼ A′′ ∼ A;
(d) For every k ≥ 2, A can be decomposed as A = A1 ∪ · · · ∪ Ak with
A1 ∼ A2 ∼ · · · ∼ Ak ∼ A;
(e) pA ∼ qA holds whenever p, q are positive natural numbers.

8. If A is paradoxical and A  B  nA holds for some natural number n,
then B is paradoxical as well.

9. (a) There exists a countable, paradoxical planar set.
(b) There exists a bounded paradoxical set on the plane.

10. If A ⊆ S2, |A| < c then S2 ∼ S2 \ A (via rotations).
11. [0, 1] ∼ (0, 1] (with translations).
12. Q ∼ Q \ I, where Q is the unit square, I is one of its (closed) sides (via

translations).
13. If P is a (closed) planar polygon, F is its boundary, then P ∼ P \ F (via

translations).
14. If P , Q are planar polygons, equidecomposable in the geometrical sense,

then they are equidecomposable (via planar congruences).
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15. Assume that E ∼ Z holds (via translations) for some E ⊆ Z. What is E?
16. (a) No nonempty subset of Zn is paradoxical (via translations).

(b) No nonempty subset of an Abelian group is paradoxical (via multipli-
cation by group elements).
(c) No nonempty subset of R is paradoxical (via congruences).

17. (a) For some A ⊆ F2, natural number n, ℵ0A  F2 = nA. (F2 is the free
group generated by 2 elements.) Notice that this gives that A, therefore
F2 is paradoxical.
(b) There are two independent rotations around the center of S2.
(c) S2 is paradoxical (via rotations).
(d) If A, B ⊆ S2 both have inner points, then A ∼ B (via rotations).
(e) B3, the unit ball of R3 is paradoxical (via congruences).
(f) (Banach–Tarski paradox) If A, B ⊆ R3 are bounded sets with inner
points, then A ∼ B (via congruences).

18. If A, B ⊆ R2 are bounded sets with inner points and ε > 0, then A is
equidecomposable into B via ε-contractions, that is, there are partitions
A = A1 ∪ · · · ∪ An and B = B1 ∪ · · · ∪ Bn and bijections fi : Ai → Bi

such that for x, y ∈ Ai one has d (fi(x), fi(y)) ≤ εd(x, y) (d(x, y) is the
distance of x and y).
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Stationary sets in ω1

This chapter deals with two basic notions of infinite combinatorics, namely
with the club (closed and unbounded) sets and with stationary sets in ω1.

First some definitions. We say that a sequence {αn}∞
n=0 of ordinals from

ω1 converges to α if αn ≤ α for all n and for every β < α there is an N such
that αn > β for n > N . Note that then necessarily α < ω1. It is easy to see
that this is the same as convergence in the order topology on ω1 (generated by
sets of the form {α : α < β} and {α : α > β}). A subset A ⊆ ω1 is called

• closed if αn → α and each αn is in A then α ∈ A,
• unbounded if given any β < ω1 there is a β < α ∈ A,
• club set if it is closed and unbounded.

A set is closed precisely if it is closed in the order topology, and a closed set
is unbounded precisely if it is not compact in this topology.

A set S ⊆ ω1 is stationary if it has a nonempty intersection with every
club set. Otherwise, it is a nonstationary set.

Closed sets play the role of “full measure” sets among subsets of ω1, while
stationary sets play the role of “sets of positive measure”. Club sets are very
“thick”, the intersection of any countable family of club sets is still a club
set, while stationary sets are still sufficiently “thick” in the sense that if some
property holds for the elements of a stationary set then we consider it to hold
for many elements (like elements in a set of positive measure). The analogy
with measure theory stops here: there is an uncountable family of disjoint
stationary sets.

A function f : A → ω1 is a regressive function if f(x) < x holds for every
x ∈ A \ {0}. The basic connection between stationary sets and regressive
functions is Fodor’s theorem (Problem 9): if f is regressive function on a
stationary set, then it is constant on a stationary subset.

1. When is a cofinite subset of ω1 a club?
2. Assume that A ⊆ B ⊆ ω1.
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(a) Does the stationarity of A imply the stationarity of B?
(b) Does the clubness of A imply the clubness of B?
(c) Does the nonstationarity of B imply the nonstationarity of A?

3. The intersection of countably many club sets is a club set again.
4. The union of countably many nonstationary sets is nonstationary.
5. If S is stationary, C is closed, unbounded, then S ∩ C is stationary.
6. If Cα are club sets for α < ω1, then their diagonal intersection

�{Cα : α < ω1} = {α < ω1 : β < α −→ α ∈ Cβ}

is also a club set.
7. If f : [ω1]<ω → ω1 is a function, then the set

C(f) = {α < ω1 : if β1, . . . , βn < α then f(β1, . . . , βn) < α}

is a closed, unbounded set.
8. If C ⊆ ω1 is a club set, then there is a function f : [ω1]<ω → ω1 such that

C(f) \ {0} ⊆ C.
9. A set is closed, unbounded if and only if it is the range of a strictly

increasing, continuous ω1 → ω1 function.
10. If f, g : ω1 → ω1 are strictly increasing continuous functions, then for club

many α < ω1, f(α) = g(α) holds.
11. The set of countable epsilon numbers, i.e.,

{ε < ω1 : ε = ωε}

is a club set.
12. Assume that f : ω1 → ω1 is a regressive function. Then some value is

assumed uncountably many times.
13. Assume S ⊆ ω1 is a stationary set and f : S → ω1 is a regressive function.

Then some value is assumed uncountably many times.
14. If N ⊆ ω1 is nonstationary, then there is a regressive function f : N → ω1

that assumes every value countably many times.
15. If N ⊆ ω1 is nonstationary, then there is a regressive function f : N → ω1

that assumes every value at most twice.
16. (Fodor’s theorem) If S ⊆ ω1 is a stationary set and f : S → ω1 is a

regressive function, then some value is assumed on a stationary set.
17. If S ⊆ ω1 is a stationary set and F (α) ⊆ α is a finite set for α ∈ S, then

for some finite set s the set {α ∈ S : F (α) = s} is stationary.
18. A slot machine returns ℵ0 quarters when a quarter is inserted. Still, no

matter what strategy she follows, if somebody starts with a single coin
(and plays through a transfinite series of steps), after countably many
steps she loses all her money.
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19. There are two disjoint stationary sets.
20. If f : ω1 → R is monotonic, then it is constant from a point onward.
21. If f : ω1 → R is continuous, then it is constant from a point onward.
22. ω1, endowed with the order topology, is not metrizable.

23. (a) If α < ω1, then α × ω1 is a normal topological space.
(b) ω1 × ω1 is a normal topological space.

24. (ω1 + 1) × ω1 is not a normal topological space.
25. Assume that we are given ℵ1 disjoint nonstationary sets. Prove that there

are ℵ1 of them with nonstationary union.
26. Two players, I and II, play by alternatively selecting elements of a de-

creasing sequence A0 ⊇ A1 ⊇ · · · of stationary subsets of ω1. Player II
wins if and only if

⋂
{Ai : i < ω} has at most one element. Show that II

has a winning strategy.
27. Assume that there are ℵ2 stationary sets with pairwise nonstationary in-

tersection. Show that there are ℵ2 stationary sets with pairwise countable
intersection.

28. (CH) Assume that we are given ℵ2 closed, unbounded subsets of ω1. Prove
that the intersection of some ℵ1 of them is a closed, unbounded set.

29. If there are ℵ2 functions from ω1 into ω such that any two differ on a
closed, unbounded set then there are ℵ2 such functions such that any two
are eventually different.

30. There exists a regressive function f : ω1 → ω1 such that for every limit
ordinal α < ω1 there is an increasing sequence αn, n < ω, converging to
α with f(αn+1) = αn for all n.
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Stationary sets in larger cardinals

Now we consider the analogues of questions discussed in the preceding chapter
but for larger cardinals. In general, the discussion will be given in a regular
cardinal (instead of ω1), but we shall also indicate how everything works in
any ordinal of cofinality larger then ω. We shall copy the treatment for ω1
only to the extent that is necessary; several new features will emerge in the
problems. For example, Problem 20 proves the deep result of Solovay: any
stationary set in κ can be decomposed into κ disjoint stationary sets.

In this chapter, unless otherwise stated, κ is always an uncountable regular
cardinal.

We say that a transfinite sequence {ατ : τ < µ} of elements of κ converges
to some α < κ if ατ ≤ α for all τ < µ and for every β < α there is a ν < µ
such that ατ > β whenever τ > ν. A set C ⊆ κ is called

• closed if whenever a transfinite sequence {ατ : τ < µ} of elements of C
converges to some α < κ then α ∈ C,

• unbounded if for any β < κ there is an α ∈ C with β < α < κ,
• a club set if it is closed and unbounded.

It is true again that a set C ⊂ κ is closed if and only if it is closed in the order
topology on κ, and a closed set is unbounded precisely if it is not compact in
this topology.

If something holds for every element of a club set, we sometimes use the
lingo almost everywhere, or for almost every, in short, a.e.

A set S ⊆ κ is stationary if it has a nonempty intersection with every
closed, unbounded set. Otherwise, it is nonstationary. For A ⊆ κ a function
f : A → κ is regressive if f(x) < x holds for every x ∈ A, x 
= 0.

1. The intersection of less than κ many club sets is a club set again.
2. If C ⊆ κ is a club set, then for a.e. α the intersection C ∩ α is a cofinal

set in α of order type α
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3. If f : [κ]<ω → [κ]<κ is a function then the set

C(f) = {α < κ : if β1, . . . , βn < α then f(β1, . . . , βn) ⊆ α}

is a closed, unbounded set. In the other direction, if C ⊆ κ is a club set
then there is a function f : κ → κ such that C(f) \ {0} ⊆ C.

4. Let A be an algebraic structure on the set A of cardinality κ, with fewer
than κ finitary operations, and let {aγ : γ < κ} be an enumeration of A.
Then for almost all α < κ the set {aγ : γ < α} is a substructure of A.

5. If Cα are club sets for α < κ then their diagonal intersection

�{Cα : α < κ} = {α < κ : β < α −→ α ∈ Cβ}

is also a club set.
6. The union of less than κ many nonstationary sets is nonstationary.
7. If S is stationary, C is closed, unbounded, then S ∩ C is stationary.
8. If µ < κ is regular, then S =

{
α < κ : cf (α) = µ

}
is stationary. Is it a

club set? What if the condition cf (α) = µ is relaxed to cf (α) ≤ µ or to
cf (α) ≥ µ?

9. (Fodor’s theorem, pressing down lemma) If S ⊆ κ is a stationary set
and f : S → κ is a regressive function, then some value is assumed on a
stationary set.

10. Assume that µ < κ is such that if τ < κ then τµ < κ (for example, if κ =
(2µ)+). Let S ⊆

{
κ : cf (α) = µ+

}
be a stationary set and f(α) ∈ [α]≤µ

for α ∈ S. Then f is constant on a stationary set.
11. If Aα (α < κ) are nonstationary, then so is

⋃{
Aα \ (α + 1) : α < κ

}
.

12. Let {Aα : α < κ} be disjoint nonstationary sets in κ. Then A =
⋃
{Aα :

α < κ} is stationary if and only if B = {min(Aα) : α < κ} is.
13. Out of κ disjoint nonstationary sets the union of some κ is nonstationary.
14. If A, B are subsets of κ define A ≤ B if A\B is nonstationary. Set A < B

if A ≤ B but B ≤ A is not true. (This gives a Boolean algebra if we
identify two sets when their symmetric difference is nonstationary.) Prove
that every family of at most κ sets has a least upper bound.

In Problems 15–19 we extend these notions to subsets of limit ordinals.
If α is a limit ordinal, X ⊆ α is unbounded if it contains arbitrarily large
elements below α. It is closed if it contains its limit points smaller than α.
For cf (α) > ω, S ⊆ α is stationary if it intersects every closed, unbounded
subset of α. If cf (α) = ω, then we declare α (and all subsets thereof)
nonstationary.

15. (a) Every stationary set is unbounded.
(b) cf (α) is the minimal cardinality/ordinal of the closed, unbounded sets

in α.
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(c) If cf (α) = ω then there are two disjoint closed, unbounded sets in α.
(d) If cf (α) > ω then the intersection of less than cf (α) closed, unbounded

sets is a closed, unbounded set.
(e) If cf (α) = ω then X ⊆ α intersects every closed, unbounded set if

and only if X includes some end segment of α.
16. Assume that κ = cf (α) > ω. Let C ⊆ α be a closed, unbounded set of

order type κ with increasing enumeration C = {cγ : γ < κ}.
(a) If D is closed, unbounded in κ then {cγ : γ ∈ D} is closed, unbounded

in α.
(b) If D is closed, unbounded in α then {γ : cγ ∈ D} is closed, unbounded

in κ.
(c) X ⊆ α is stationary if and only if {γ : cγ ∈ X} is stationary in κ.

17. (a) If cf (α) < α, then there exists a regressive f : α \ {0} → α such that
f−1(ξ) is bounded for every ξ < α.

(b) If S ⊆ α is stationary, f : S → α is regressive, then there is a station-
ary S′ ⊆ S such that f is bounded on S′.

18. If C ⊆ κ is closed, unbounded, then for a.e. α < κ the set C ∩ α is a club
set in α.

19. If S, T ⊆ κ are stationary sets, define S < T if for almost every α ∈ T ,
S ∩ α is stationary in α. Then

(a) S < S never holds;
(b) < is transitive;
(c) < is well founded.

20. (Solovay’s theorem) If S ⊆ κ is a stationary set, then it is the union of κ
disjoint stationary sets. Prove this theorem through the following steps.
Assume that S is a counterexample.

(a) Every stationary subset of S is also a counterexample.
(b) If f : S → κ is regressive, then it is essentially bounded, i.e., there

are an ordinal γ < κ and a closed, unbounded set C ⊆ κ such that
f(α) < γ holds for α ∈ C ∩ S.

(c) Almost every element of S is a regular cardinal.
(d) There is a closed, unbounded set D ⊆ κ such that if α ∈ D ∩ S then

α is an uncountable, regular cardinal and S ∩ α is stationary in α.
(e) Conclude by showing that no set D as in (d) exists.

21. There is a function f : κ → κ such that if X ⊆ κ has a club subset, then
f [X] = κ.

22. If S ⊆ κ is stationary, then there is a family F of 2κ stationary subsets of
S such that A \ B, B \ A are stationary if A, B are distinct elements of
F .
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23. Assume that κ, µ are regular cardinals, κ > µ+, µ > ω. There exists a
family {Cα : α < κ, cf (α) = µ} such that Cα is closed, unbounded in α
and for every closed unbounded subset E ⊆ κ, there is some Cα ⊆ E.

24. Assume that κ ≥ ω2 is a regular cardinal. Then there exists a family
{Cα : α < κ, cf (α) = ω} such that Cα is a cofinal subset of α of type ω
and for every closed, unbounded subset E of κ, there is some Cα ⊆ E.
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Canonical functions

In this chapter for a regular uncountable cardinal κ we introduce a family of
κ+ functions that possess various canonicity properties. In some sense they
are the first κ+ functions from κ into the ordinals, this makes it possible to
use them for various diverse results in set theory.

For κ > ω regular we construct the canonical functions hα : κ → κ for
α < κ+ as follows. h0(γ) = 0 for γ < κ. hα+1(γ) = hα(γ) + 1 (γ < κ).
If α < κ+ is limit with µ = cf (α) < κ then fix a sequence {ατ : τ < µ}
converging to α and set

hα(γ) = sup {hατ
(γ) : τ < µ}

for γ < κ.
Finally, if cf (α) = κ and {ατ : τ < κ} converges to α, then let

hα(γ) = sup {hατ
(γ) : τ < γ} .

Notice that the values of the functions hα(γ) depend on the above se-
quences converging to α, as well.

1. Describe hα for α ≤ κ · 2.
2. If β < α < κ+, then hβ(γ) < hα(γ) holds for a.e. γ.
3. If {fα : α < κ+} is a system of κ → κ functions such that for β < α < κ+,

fβ(γ) < fα(γ) holds for a.e. γ, then for every α < κ+, fα(γ) ≥ hα(γ)
holds almost everywhere.

4. If f(γ) < hα(γ) holds on a stationary set for some function f : κ → κ,
then there is a β < α such that f(γ) ≤ hβ(γ) holds for stationary many
γ.

5. If f(γ) < hα(γ) holds on a stationary set, then f(γ) = hβ(γ) holds on a
stationary set for some β < α.
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6. Assume that {fα : α < κ+} is a family of κ → κ functions that

a) f0(γ) = 0 a.e.;
b) fβ(γ) < fα(γ) for a.e. γ (β < α < κ+);
c) if f(γ) < fα(γ) for stationarily many γ then f(γ) ≤ fβ(γ) for station-

arily many γ, for some β < α.
Then fα(γ) = hα(γ) holds for a.e. γ.

7. For every α < κ+, hα(γ) < |γ|+ holds for a.e. γ. (Here |γ|+ is the cardinal
successor of |γ|.)

In Problems 8–13 we describe an alternative construction of canonical
functions. Fix, for every 0 < α < κ+, a surjection gα : κ → α. Let fα(γ)
be the order type of the set gα[γ] (a subset of α). For α = 0 set f0(γ) = 0
(γ < κ).

8. If gα, g′
α : κ → α are surjections, then the above derived functions fα, f ′

α

agree almost everywhere.
9. If 0 < β < α < κ+ then for a.e. γ < κ, gβ [γ] = gα[γ] ∩ β holds.

10. If β < α then fβ(γ) < fα(γ) holds a.e.
11. If f(γ) < fα(γ) holds on a stationary set for some function f : κ → κ,

then there is a β < α such that f(γ) = fβ(γ) holds for stationary many
γ.

12. fα(γ) = hα(γ) almost everywhere.
13. fα(γ) < |γ|+ holds for every γ.



23

Infinite graphs

It frequently occurs in mathematics that a relation is visualized by drawing a
graph. If the underlying set is infinite, then we get an infinite graph. Formally,
a graph is a pair G = (V,X) where V is a set (the vertex set) and X ⊆ [V ]2,
i.e., it is a subset of the two element sets of V (the edge set). Sometimes we
just speak of X, therefore identifying the graph with its edge set. We say that
x and y are joined if {x, y} ∈ X. The complement (V, X) of a graph (V,X)
is
(
V, [V ]2 \ X

)
, that is, it has the same set of vertices and two vertices are

joined in (V, X) if and only if they are not joined in (V,X). The degree of a
vertex v is the number of edges emanating from v.

We call (V ′, X ′) a subgraph of (V,X) if V ′ ⊆ V and X ′ ⊆ X. It is an
induced subgraph if

X ′ = {{x, y} : x, y ∈ V ′, {x, y} ∈ X},

i.e., if two elements in V ′ are connected precisely if they are connected in
(V,X).

A subset A ⊆ V is independent if it contains no edges: X ∩ [A]2 = ∅.
A subset X ′ ⊆ X is a matching if every vertex is an endpoint of precisely

one edge in X ′.
A path in a graph is a (finite, one-way or two-way infinite) sequence

{. . . , vn, vn+1, . . .} of consecutively joined points (i.e., {vn, vn+1} ∈ V for all
n). A circuit is such a finite sequence with the same starting and ending point.

A forest is a graph with no circuits.
If (V,X), (W, Y ) are graphs, a topological (V,X) is given by an injection

f : V → W and a function g that sends every edge e = {x, y} in X into a path
in (W, Y ) connecting f(x) and f(y), the paths {g(e) : e ∈ X} being vertex
disjoint except at their extremities.

A good coloring or sometimes a coloring of a graph (V,X) with a color set C
is a mapping f : V → C such that f(x) 
= f(y) for {x, y} ∈ X (i.e., the vertices
are colored in such a way that vertices that are joined get different colors).
The chromatic number Chr(X) of a graph (V,X) is the smallest cardinal κ
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for which the graph can be colored by κ colors. Therefore, a graph (V,X) has
a good coloring with κ colors if and only if Chr(X) ≤ κ.

More generally, if F is a set system over a ground set S, then a good
coloring of F is a coloring of S in such a way that for no F ∈ F get all points
of F the same color (there is no monochromatic F ).

One would expect that the chromatic number of a graph is large only if the
graph includes a large complete subgraph. Problem 24 shows it otherwise: the
chromatic number can be arbitrarily large even if the graph does not contain
three pairwise connected points. Still, a large chromatic number does imply
the existence of certain types of subgraphs, e.g., every uncountably chromatic
graph must include an infinite path, all circuits of even length and all odd
circuits of sufficiently large length (Problems 29, 30).

Let Kκ denote the complete graph (i.e., any two different points are joined)
on a vertex set of cardinality κ. A graph (V,X) is called bipartite if the vertex
set can be decomposed as V = V1 ∪ V2 such that all edges go between V1 and
V2 (in this case V1 and V2 are called the bipartition classes). Kκ,λ denotes
the complete bipartite graph with bipartition classes of cardinality κ and λ,
respectively.

We also make the following definition. Given a class F of graphs, a univer-
sal graph in F is a graph X0 ∈ F such that every graph X ∈ F is (isomorphic
to) a subgraph of X0. If X0 ∈ F is such that every X ∈ F appears as an
induced subgraph in X0 then it is a strongly universal graph.

Many problems from this section are used elsewhere in the book. Problem
8 is particularly useful if one wants to deduce a conclusion for infinite sets
provided one knows it for all finite subsets. It states the compactness property
for graph coloring.

There are some more problems on infinite graphs in Chapter 24.

1. An infinite graph or its complement includes an infinite complete sub-
graph.

2. The pairs of ω are colored with k < ω colors. Then there is a partition of
ω into k parts such that the ith part is a finite or one-way infinite path
in color i.

3. If X is a graph on κ ≥ ω vertices then either X or its complement includes
a topological Kκ.

4. If the degree of every vertex in a graph is at most n < ω, then the graph
can be colored with n + 1 colors.

5. If the degree of every vertex in a graph is at most κ ≥ ω, then the graph
can be colored with κ colors.

6. If the vertex set of a graph has a well-ordering in which every vertex is
joined to fewer than κ smaller vertices, then the graph is κ-colorable.

7. Let κ ≥ ω. If the vertex set of a graph has an ordering in which every
vertex is joined to fewer than κ smaller vertices, then the graph is κ-
colorable.
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8. (de Bruijn–Erdős theorem) If, for some n < ω, every finite subgraph of
a graph X is n-colorable, then so is X.

9. A graph is finitely chromatic if and only if every countable subgraph is
finitely chromatic.

10. Let X be a graph on some well-ordered set. Then X is finitely chromatic
if and only if every subset of order type ω is finitely chromatic.

11. Construct a graph X on ω2
1 such that every subgraph of order type ω1 is

countably chromatic yet X is uncountably chromatic.
12. Given the graphs (V,X) and (W, Y ) form their product X ×Y as follows.

The vertex set is V × W , and 〈x, y〉 is joined to 〈x′, y′〉 if and only if
{x, x′} ∈ X and {y, y′} ∈ Y . If the chromatic number of (V,X) is the
finite k and the chromatic number of (W, Y ) is infinite, then the chromatic
number of (V × W, X × Y ) is k.

13. (a) If the vertices of a graph (V,X) are partitioned as {Vi : i ∈ I} and Xi

is the subgraph induced by Vi then Chr(X) ≤
∑

Chr(Xi).
(b) If the edges of a graph (V,X) are decomposed into the subgraphs

{Xi : i ∈ I}, then Chr(X) ≤
∏

Chr(Xi).
14. Assume that X is a bipartite graph with bipartition classes A and B and

for every x ∈ A the set Γ (x) of the neighbors of x is finite. Then there is a
matching of A into B in X if and only if for any finite subset {x1, . . . , xk}
of A the set Γ (x1) ∪ · · · ∪ Γ (xk) has at least k elements.

15. Assume that p, q ≥ 1 are natural numbers and X is a graph as in the
preceding problem. There is a function f : E → {0, 1, . . . , p} on the edge
set E such that ∑

e: x∈e

f(e) = p (x ∈ A),

∑
e: y∈e

f(e) ≤ q (y ∈ B)

if and only if the following condition holds: for any k-element finite subset
{x1, . . . , xk} of A, the set Γ (x1) ∪ · · · ∪ Γ (xk) has at least pk/q elements.

16. A graph X is planar if and only if

(a) X includes no topological K5 or K3,3;
(b) X has only countably many vertices with degree at least 3;
(c) X has at most continuum many vertices.
(A graph is planar if it can be drawn in the plane where the vertices are
represented by distinct points, the edges by noncrossing Jordan curves.)

17. A graph is spatial (it can be represented as in the previous problem but
in the 3-space) if and only if it has at most continuum many vertices.

18. For an infinite cardinal κ the complete graph on κ+ vertices is the union
of κ forests but the complete graph on (κ+)+ vertices is not.
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19. The edge set of a graph can be decomposed into countably many bipartite
graphs if and only if the chromatic number of the graph is at most c.

20. There exists a strongly universal countable graph.
21. There is no universal countable Kω-free graph.
22. There is no universal countable locally finite graph (that is, in which every

degree is finite).
23. There is no universal Kℵ1-free graph of cardinality c.
24. For every infinite cardinal κ there is a κ-chromatic, triangle-free graph.
25. Define a graph (ω3

1 , X) on the set ω3
1 in such a way that (α, β, γ) and

(α′, β′, γ′) are connected if and only if α < β < α′ < γ < β′ < γ′ or
α′ < β′ < α < γ′ < β < γ. Then A ⊆ ω3

1 spans a countable chromatic
subgraph if and only if its order type (in the lexicographic ordering) is
< ω3

1 .
26. If (V,X) is a graph on the ordered set (V,<) we define the following graph

(V ′, X ′). The vertex set is V ′ = X. We create the edges X ′ as follows.
The edge {x, y} with x < y is joined to the edge {z, t} with z < t if and
only if either y = z or x = t holds.

(a) Chr(X ′) ≤ κ if and only if Chr(X) ≤ 2κ.
(b) If (V,X) does not include odd circuits of length 3, 5, . . . , 2n − 1 then

(V ′, X ′) does not include odd circuits of length 3, 5, . . . , 2n + 1.
(c) For every natural number n and cardinal κ there is a graph with

chromatic number greater than κ, and not including odd circuits of
length 3, . . . , 2n + 1.

27. There is an uncountably chromatic graph all whose subgraphs of cardi-
nality at most c are countably chromatic.

28. If 2ℵ0 = 2ℵ1 = ℵ2, 2ℵ2 = ℵ3, then there is a graph with chromatic number
ℵ2 with no induced subgraph of chromatic number ℵ1.

29. Every uncountably chromatic graph includes Kn,ℵ1 for all finite n, the
complete bipartite graph with bipartition classes of size n, ℵ1, respectively.
In particular, it includes circuits of length 4, 6, . . ..

30. Every uncountably chromatic graph includes every sufficiently long odd
circuit.

31. Every uncountably chromatic graph includes an infinite path.
32. Assume that X is an ℵ1-chromatic graph on the vertex set V . Then V

can be decomposed into the union of ℵ1 disjoint subsets each spanning a
subgraph of chromatic number ℵ1.

33. Assume that X is an uncountably chromatic graph on the vertex set V .
Then V can be decomposed into the union of two (or even ℵ0) disjoint
subsets each spanning a subgraph of uncountable chromatic number.
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34. The following graph (V,X) is uncountably chromatic. The vertex set is

V =
{
f : α → ω injective, α < ω1

}
,

and two functions are joined if one of them extends the other.
35. If the set system H consists of finite sets with at least two elements and

|A ∩ B| 
= 1 holds for A, B ∈ H then H is 2-chromatic.
36. Assume that the set system H consists of countably infinite sets such that

|A∩B| 
= 1 holds for A, B ∈ H. Then H is ω-chromatic but not necessarily
finitely chromatic.

37. Assume that H is a system of ℵ1 three-element sets no two intersecting
in two elements. Then H is ω-colorable.

38. Consider the graph Gn,α with vertex set Sn (the unit sphere of Rn+1)
and two points are connected if their distance is bigger than α. Then
Chr(Gn,α) ≥ n + 2 for all α < 2, and Chr(Gn,α) = n + 2 for α < 2
sufficiently close to 2.

39. For α < 1/2 let the vertices of the graph G be those measurable subsets
E ⊂ [0, 1] which have measure α, and let two such subsets be connected
if they are disjoint. Then the chromatic number of G is ℵ0.
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Partition relations

In partition calculus transfinite generalizations are obtained for the (infinite)
Ramsey theorem: if 2 ≤ k, r < ω and the r-tuples of some infinite set are
colored with k colors, then there is an infinite subset, all whose r-element
subsets get the same color (Problem 2).

If X is a set and f : [X]r → I is a coloring (partition) of its r-tuples, then
Y ⊆ X is called homogeneous or monochromatic with respect to f if there is
an i ∈ I such that f

(
{y1, . . . , yr}

)
= i holds for all {y1, . . . , yr} ∈ [Y ]r. We

usually contract the notation f
(
{y1, . . . , yr}

)
to f(y1, . . . , yr). The partition

relation κ → (λ)r
ρ expresses that if the r-tuples of a set of cardinality κ are

colored with ρ colors then there is a monochromatic subset of cardinality λ
(Rado’s notation). If this statement fails, then we write κ 
→ (λ)r

ρ. With this
notation the infinite Ramsey theorem reads as ω → (ω)r

k for r, k finite.
This branch of combinatorial set theory investigates how large homoge-

neous set can be guaranteed for a given coloring. The most important result
is the Erdős–Rado theorem stating that expr(κ)+ → (κ+)r+1

κ holds when κ
is an infinite cardinal and 1 ≤ r < ω (Problem 25). Here expr denotes the r-
fold iterated exponential function, i.e., exp0(κ) = κ, exp1(κ) = 2κ, exp2(κ) =
22κ

, . . ., etc. These values are sharp.
In this chapter we consider this basic result and various generalizations

and variants. We present applications to point set topology, some problems of
this chapter will also be used elsewhere in the book.

A tournament is a directed graph in which between any two vertices there
is an edge in one and only one direction.

1. If 2 ≤ k < ω, then ω → (ω)2k; i.e., if we color the edges of an infi-
nite complete graph with finitely many colors, then there is an infinite
monochromatic subgraph.

2. (Ramsey’s theorem) If 1 ≤ r < ω, 2 ≤ k < ω, then ω → (ω)r
k. That is, if

we color the r-tuples of an infinite set by finitely many colors, then there
is an infinite monochromatic set.
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3. Every infinite partially ordered set includes either an infinite chain or an
infinite antichain (i.e., either an infinite ordered set or an infinite set of
pairwise incomparable elements).

4. Every infinite ordered set includes either an infinite increasing or infinite
decreasing sequence.

5. If X is an infinite planar set, then there is an infinite convex subset Y ⊆ X,
that is, no point in Y lies in the interior of a triangle formed by three other
elements of Y .

6. Every infinite tournament includes an infinite transitive subtournament.
7. If X is an infinite directed graph with at most one edge between any two

vertices, then either there is an infinite independent set, or there is an
infinite, transitively directed subgraph.

8. The edges of a complete directed graph of cardinality continuum can be
colored by ω colors so that there are no connected edges of the same color
(two edges are connected if the endpoint of one is the starting point of
the other).

9. If f : [ω]2 → ω is a coloring such that for every i < ω there is a finite set
Ai with f(i, j) ∈ Ai (i < j < ω), then there is an infinite set A ⊆ ω which
is endhomogeneous, that is, in A, f(i, j) only depends on i.

10. If f is a coloring of [ω]2 with no restriction on the colors, then there is an
infinite H ⊆ such that either
(a) H is homogeneous for f , or
(b) if x < y, x′ < y′ are from H, then f(x, y) = f(x′, y′) if and only if

x = x′, or
(c) if x < y, x′ < y′ are from H, then f(x, y) = f(x′, y′) if and only if

y = y′, or
(d) the values

{
f(x, y) : {x, y} ∈ [H]2

}
are different.

11. Let f : ω → ω be a function with f(r) → ∞ (r → ∞). Assume that for
every 1 ≤ r < ∞ Hr colors [ω]r with finitely many colors. Then there is
an infinite X ⊆ ω such that Hr on [X]r assumes at most f(r) values. The
statement fails if f(r) 
→ ∞.

12. There is a constant c with the following property. If f : [ω]2 → 3 is a
coloring, then there is an infinite sequence a0 < a1 < · · · with an < cn for
infinitely many n such that f assumes only two values on this sequence.

13. If κ is an uncountable cardinal, then κ → (κ,ℵ0)2. That is, if f : [κ]2 →
{0, 1}, then either there is a set of cardinality κ monochromatic in color 0
or else there is an infinite set monochromatic in color 1. Show this when
κ is
(a) regular,
(b) singular.
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14. For cardinals λ ≥ 2, κ ≥ ω order the κ → λ functions lexicographically.
There is no decreasing sequence of length κ+. There is no increasing se-
quence of length max(κ, λ)+.

15. If 〈A, <〉 is an ordered set, |A| ≤ 2κ, then there is some f : [A]2 → κ with
no x < y < z such that f(x, y) = f(y, z).

16. There is an uncountable tournament with no uncountable transitive sub-
tournament.

17. (Todorcevic) There is a function F : [ω1]2 → ω1 such that for every
uncountable X ⊆ ω1 F assumes every element of ω1 on [X]2.

18. If κ ≥ ℵ0 is a cardinal, r ≥ 1 a natural number and f is a coloring of the
(r +1)-tuples of (2κ)+ with κ colors, then there is a set X ⊆ (2κ)+, |X| =
κ+ on which f is endhomogeneous, that is, for x1 < · · · < xr < y < y′

from X, f(x1, . . . , xr, y) = f(x1, . . . , xr, y
′) holds.

19. If κ ≥ ℵ0 is a cardinal, then (2κ)+ → (κ+)2κ. That is, if the pairs of
(2κ)+ are colored with κ colors, then there is a homogeneous subset of
cardinality κ+.

20. If κ ≥ ℵ0 is a cardinal, then (2κ)+ →
(
(2κ)+ , (κ+)κ

)2
. That is, if

f : (2κ)+ → κ, then either there is a homogeneous subset in color 0
of cardinality (2κ)+ or else there is a homogeneous subset in some color
0 < α < κ of cardinality κ+.

21. If κ is an infinite cardinal and
{
fα : α <

(
2κ
)+} is a sequence of ordinal-

valued functions defined on κ, then there is a pointwise increasing subse-
quence of cardinality

(
2κ
)+, that is, there is a set Z ⊆

(
2κ
)+, |Z| =

(
2κ
)+,

such that fα(ξ) ≤ fβ(ξ) holds for α < β, α, β ∈ Z, ξ < κ.
22. If X is a set then |X| ≤ c if and only if there is an “antimetric” on X, i.e.,

a function d : X × X → [0,∞) which is symmetric, d(x, y) = 0 exactly
when x = y, and for distinct x, y, z ∈ X for some permutation x′, y′, z′ of
them d(x′, z′) > d(x′, y′) + d(y′, z′) holds.

23. 2κ 
→ (κ+)22. That is, if |S| = 2κ, then there is f : [S]2 → {0, 1} with no
monochromatic set of size κ+.

24. 2κ 
→ (3)2κ. That is, if |S| = 2κ, then there is f : [S]2 → κ with no
monochromatic triangle.

25. (Erdős–Rado theorem) If κ is an infinite cardinal, set exp0(κ) = κ and
then by induction expr+1(κ) = 2expr(κ). If κ ≥ ℵ0 is a cardinal, then
expr(κ)+ → (κ+)r+1

κ . That is, if the (r+1)-tuples of expr(κ)+ are colored
with κ colors, then there is a homogeneous subset of cardinality κ+.

26. If κ is an infinite cardinal, r < ω, there is a function f :
[
expr(κ)

]r+1 → κ
such that if x0 < x1 < · · · < xr+1, then f(x0, . . . , xr+1) 
= f(x1, . . . , xr+2),
specifically, expr(κ) 
→ (r + 2)r+1

κ .
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27. Let κ be an infinite cardinal, |A| = κ+, |B| = (κ+)+, and k finite. If
f : A × B → κ, then there exist A′ ⊆ A, B′ ⊆ B, |A′| = |B′| = k such
that A′ × B′ is monochromatic.

28. If |A| = ℵ1, |B| = ℵ0, k is finite, f : A × B → k, then there exist A′ ⊆ A,
B′ ⊆ B, |A′| = |B′| = ℵ0 such that A′ × B′ is monochromatic.

29. (Canonization) Assume λ is a strong limit singular cardinal and S, a set
of cardinality λ is partitioned as S =

⋃
{Sα : α < µ} where µ = cf (λ)

and each Sα is of cardinality < λ. Assume that f : [S]2 → κ with κ < λ.
Then there is a set X ⊆ S, |X| = λ, on which f is canonical in the sense
that if x, y ∈ X then f(x, y) is fully determined by α, β where α, β < µ
are those ordinals with x ∈ Sα, y ∈ Sβ .

30. If λ is a strong limit singular cardinal with cf (λ) = ω, 3 ≤ k < ω, then
λ → [λ]2k holds, that is, if f : [λ]2 → k then on some subset of cardinality
λ f assumes at most two values.

31. For a set I of indices let the sets {Ai, Bi : i ∈ I} be given with |Ai|,
|Bi| ≤ κ and Ai ∩ Bj = ∅ if and only if i = j. Then |I| ≤ 2κ.

32. If κ > ω is regular, then κ → (κ, ω + 1)2. That is, if f : [κ]2 → {0, 1},
then either there is a set of order type κ monochromatic in color 0 or else
there is a set of order type ω + 1 monochromatic in color 1.

33. For k < ω, ω1 → (ω + 1)2k. That is, if we color [ω1]2 with k colors, then
there is a monochromatic set of order type ω + 1.

34. If k < ω and λ denotes the order type of the reals, then λ → (ω + 1)2k
holds. That is, if f : [R]2 → k, then there is a monochromatic set of order
type ω + 1.

35. Assume that κ > ω is a cardinal for which κ → (κ)22 holds. Then κ is
(a) regular,
(b) strong limit (i.e., if λ < κ then 2λ < κ),
(c) not the least cardinal with (a) and (b).

36. Define, for k < ω, by transfinite recursion on α < ω1, the notion of
semihomogeneous coloring f : [S]2 → k for every 〈S, <〉 of order type ωα.
For α = 0, no condition is imposed. For α = β+1, f is semihomogeneous if
and only if there is a decomposition S = S0 ∪S1 ∪ · · · with S0 < S1 < · · ·,
each Si having order type ωβ , f is semihomogeneous on every Si, and
gets the same value on all pairs between distinct Si’s. For α limit, f is
semihomogeneous if and only if there is a decomposition S = S0 ∪S1 ∪ · · ·
where S0 < S1 < · · ·, with Si of order type ωαi where α0 < α1 < · · ·
converges to α, f is semihomogeneous on every Si, and gets the same
value on all pairs between distinct Si’s. Then given β < ω1, k < ω, there
exists α < ω1, such that every semihomogeneous coloring of [ωα]2 with k
colors includes a homogeneous set of type β.
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37. If V , a vector space over Q with |V | ≥ ℵ2, is colored with countably
many colors, then there is a monochromatic solution of x+y = z +u with
pairwise distinct x, y, z, u.

38. If V , a vector space over Q with |V | ≥ c+ is colored with countably many
colors, then there is a monochromatic solution of x + y = z with x, y, z
different from zero and each other. This is not true for |V | ≤ c.

39. If 〈X, T 〉 is a Hausdorff topological space with a dense set of cardinality
κ, then |X| ≤ 22κ

.
40. If 〈X, T 〉 is a Hausdorff topological space with |X| > 22κ

, then there is a
discrete subspace of cardinality κ+.

41. If 〈X, T 〉 is a hereditarily Lindelöf Hausdorff topological space, then |X| ≤
c (“hereditarily Lindelöf” means that every open cover of any subspace
includes a countable subcover).

42. If 〈X, T 〉 is a first countable Hausdorff topological space with no uncount-
able system of pairwise disjoint, nonempty open sets, then |X| ≤ c (“first
countable” means that for every point in the space there is a countable
family {Ui}i<ω of neighborhoods of x such that every neighborhood of x
includes a Ui).

43. If the elements of P(ω) are colored with countably many colors, then there
is a monocolored nontrivial solution of X ∪ Y = Z.

44. There is a set S such that if the elements of P(S) are colored with
countably many colors, then there is a monocolored nontrivial solution
of X ∪ Y = Z with X, Y disjoint.

45. For every set S there is a coloring of P(S) with countably many colors
such that there do not exist pairwise disjoint X0, X1, . . . ⊆ S with all
nonempty, finite subunions in the same color class.

46. For every infinite set S there is a coloring f : [S]ℵ0 → {0, 1} of the
countably infinite subsets of S with two colors that admits no infinite
homogeneous subset, i.e., κ 
→ (ℵ0)ℵ0

2 holds for any κ.
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∆-systems

Regarding the inclusion relation the simplest possible family is a family of
pairwise disjoint sets. Often, from a family of sets one would like to select
a subfamily with such a simple structure, however, with pairwise disjoint
sets this is not always possible. A possible remedy is the selection of a ∆-
system, where {Ai : i ∈ I} is called a ∆-system (or a ∆-family) if the pairwise
intersections of the members is the same; Ai∩Aj = S for some set S (for i 
= j
in I). Thus, a ∆-system has a simple structure: all sets in it have a common
core, and outside this common core the sets are disjoint.

In this chapter we consider the problem how large ∆-systems can be se-
lected from a given family of sets. As an application we shall obtain in Prob-
lem 5 that in no power of R (regarded as a topological space) can one find an
uncountable system of pairwise disjoint open sets.

1. An infinite family of n-element sets (n < ω) includes an infinite ∆-
subfamily.

2. An uncountable family of finite sets includes an uncountable ∆-subfamily.
3. Let F be a family of finite sets, κ = |F| a regular cardinal. Then F has a

∆-subfamily of cardinality κ. This is not true if κ is singular.
4. Is it true that every family F of finite sets with |F| = ℵ1 is the union of

countably many ∆-subfamilies ?
5. Let A, B be arbitrary sets, let B be countable, and let F (A, B) be the set

of all functions from a finite subset of A into B. Then among uncount-
ably many elements of F (A, B) there are two which possess a common
extension.

6. Consider the topological product of an arbitrary number of copies of R,
regarded as a topological space. In this space there are no uncountably
many pairwise disjoint nonempty open subsets.

7. If {Aα : α < ω1} is a family of finite sets, then {Aα : α ∈ S} is a
∆-subsystem for some stationary set S.
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8. (a) Let F be a family of countable sets, |F| = c+. Then F has a ∆-
subfamily F ′ ⊆ F with |F ′| = c+.

(b) Let F be a family of sets of cardinality ≤ µ, with λ = |F| regular and
with the property that κ < λ implies κµ < λ (for example, λ = (2µ)+).
Then F has a ∆-subfamily of cardinality λ.

9. For µ infinite, there is a set system of cardinality 2µ, consisting of sets of
cardinality µ, with no 3-element ∆-subsystem.

10. For a set I of indices the sets {Ai, Bi : i ∈ I} are given with |Ai|, |Bi| ≤ µ
and Ai ∩ Bj = ∅ holds if and only if i = j. Then |I| ≤ 2µ.

11. Assume that λ > κ ≥ ω and F is a family of cardinality λ of sets of
cardinality < κ. Then there is a subfamily F ′ ⊆ F of cardinality λ such
that ∣∣∣∣∣∣

⋃
A�=B∈F ′

(A ∩ B)

∣∣∣∣∣∣ < λ

assuming that either
(a) λ is regular or
(b) GCH holds.
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Set mappings

In the following problems a set mapping is a function f : S → P(S) for some
set S (or, in some cases, f : [S]n → P(S) for some set S and some finite
n ≥ 2) usually with some restriction on the images. We shall always assume,
even if we do not explicitly mention it, that x /∈ f(x) (or, in the other case,
x1, . . . , xn /∈ f(x1, . . . , xn)). Given a set mapping f : S → P(S) a free set is
some set X ⊆ S with x /∈ f(y) for x, y ∈ X. (If f : [S]n → P(S) then the
condition is that y /∈ f(x1, . . . , xn) for y, x1, . . . , xn ∈ X).

A basic problem for set mappings is how large free set can be guaranteed
under a set mapping. In what follows we shall consider both positive and
negative results on this problem.

1. Assume that f : R → P(R) is a set mapping with x /∈ f(x). Then there
is a free set that is

(a) of the second category,
(b) of cardinality continuum.

2. There is a set mapping f : R → P(R) with f(x) bounded, but with no
2-element free set.

3. There is a set mapping f : R → P(R) with |f(x)| < c and with no
2-element free sets.

4. If f : R → P(R) is a set mapping with f(x) nowhere dense, then there is
always an everywhere dense free set.

5. Assume that f : R → P(R) is a set mapping such that |f(x)| < c, f(x)
not everywhere dense in R. Then there is a 2-element free set. Is there a
3-element free set?

6. Assume that f : R → P(R) is a set mapping such that f(x) is always a
bounded set with outer measure at most 1. Then for every finite n there
is an n-element free set.
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7. (CH) There is a set mapping f : R → P(R) such that for every real
number x ∈ R the image f(x) is a sequence converging to x, yet there is
no uncountable free set.

8. Assume µ < κ are infinite cardinals with κ regular. Let f : κ → [κ]<µ be
a set mapping. There is a free set of cardinality κ if κ is
(a) regular (S. Piccard),
(b) singular (A. Hajnal).

9. Assume that f : S → P(S) is a set mapping with |f(x)| ≤ k for some
natural number k. Then S is the union of at most 2k + 1 free sets.

10. Assume that f : S → P(S) is a set mapping with |f(x)| < µ for some
infinite cardinal µ. Then S is the union of at most µ free sets.

11. Assume that f : ω1 → P(ω1) is a set mapping such that f(x) ∩ f(y) is
finite for x 
= y. Then for every α < ω1 there is a free subset of type α.

12. Assume that f : [S]k → [S]<ω is a set mapping for some set S where k is
finite. If |S| ≥ ℵk then there is a free set of size k + 1, but this is not true
if |S| < ℵk.

13. If f : [S]2 → [S]<ω is a set mapping on a set S of cardinality ℵ2, then for
every n < ω there is a free set of size n.
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Trees

In this chapter we consider the somewhat technical but important notion of
tree. We start with König’s lemma, whose easy yet powerful statement can
be formulated as: if there will be infinitely many generations, then there is an
infinite dynasty. Then we proceed to higher equivalents, that is, to Aronszajn
trees and variants.

A tree 〈T,≺〉 is a partially ordered set in which the set T<x = {y : y ≺ x}
of the elements smaller than x is well ordered for every x ∈ T . The order type
o(x) of T<x denotes how high the element x is in the tree: those elements with
o(x) = α form the αth level Tα of T . In order to be reader-friendly, we will
occasionally use the nonstandard but self-explanatory notation T>x = {y :
x ≺ y}, T<α =

⋃
{Tβ : β < α}, T>α =

⋃
{Tβ : α < β}, etc. The height, h(T )

of T , is the least α with Tα = ∅. An α-branch of a tree 〈T,≺〉 is an ordered
subset b ⊆ T<α that intersects every level Tβ (β < α) (in exactly one point).

A tree 〈T,≺〉 is normal if
(A) for every x ∈ T , T>x contains elements arbitrary high below h(T );
(B) if x ∈ T , then there exist distinct y, y′ with x ≺ y, x ≺ y′, o(y) =

o(y′) = o(x) + 1;
(C) if α < h(T ) is a limit ordinal, x 
= x′ ∈ Tα, then T<x 
= T<x′ .
If s ≺ t, then we call t a successor of s, s a predecessor of t. If s ≺ t or

t ≺ s holds, then we call s, t comparable. If neither s ≺ t nor t ≺ s holds, then
s, t are incomparable. If s ≺ t and there are no further elements between s
and t (i.e., they are on consecutive levels of the tree), then t is an immediate
successor of s, s is an immediate predecessor of t.

If κ is a cardinal, a tree 〈T,≺〉 is a κ-tree if h(T ) = κ and |Tα| < κ holds
for every α < κ.

An Aronszajn tree is an ω1-tree with no ω1-branches, and in general, a κ-
Aronszajn tree is a κ-tree with no κ-branches. If every κ-tree has a κ-branch,
that is, there are no κ-Aronszajn trees, then κ is said to have the tree property.

In a tree 〈T,≺〉 a subset A ⊆ T is an antichain if it consists of pairwise
incomparable elements. An ω1-tree is special if it is the union of countably
many antichains.
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A subset D ⊆ T of a tree is dense if for every x ∈ T there is a y ∈ D with
x  y. A subset D ⊆ T of a tree is open if x ≺ y, x ∈ D imply that y ∈ D.

An ω1-tree is a Suslin tree if there is no ω1-branch or uncountable antichain
in it.

Squashing a tree: if 〈T,≺〉 is a tree, then we can transform it into an ordered
set as follows. Let <α be an ordering on Tα. If x, y are distinct elements of
T , then set x <lex y if and only if either x ≺ y or T≤x is “lexicographically
smaller” than T≤y. That is, if T≤x = {pα(x) : α ≤ o(x)} where pα(x) is the
only element of T≤x on Tα, and T≤y = {pα(y) : α ≤ o(y)} is the corresponding
set for y, then pα(x) <α pα(y) holds for the least α where pα(x) 
= pα(y).
Notice that if 〈T,≺〉 is normal then it suffices to define <α on T0 and for
every element s of T on the set of immediate successors of s.

A Specker type is the order type of an ordered set that does not embed ω1,
ω∗

1 , or an uncountable subset of the reals.
A Countryman type is the order type of an ordered set 〈S,≺〉 if S × S is

the union of countably many chains under the partial order 〈x, y〉  〈x′, y′〉 if
and only if x  x′ and y  y′.

A Suslin line is a nonseparable ordered set that is ccc, that is, it does
not include a countable dense subset and every family of pairwise disjoint
nonempty open intervals is countable.

There are two more notions of trees: in Chapter 31 what we call trees
are certain trees of height ω and of course in graph theory the connected,
circuitless graphs are called trees.

1. (König’s lemma) ω has the tree property, that is, if every level of an infinite
tree is finite, then there is an infinite branch.

2. There is a tree T of height ω, with |Tn| = ℵ0 for every n < ω such that T
has no infinite branch.

3. If an infinite connected graph is locally finite (every vertex has finite
degree), then it includes an infinite path.

4. Suppose that H is an infinite set of finite 0–1 sequences closed under
restriction, that is, if a1 · · · an ∈ H, then a1 · · · am ∈ H holds for every
m < n. Then there is an infinite 0–1 sequence all whose (finite) initial
segments belong to H.

5. Let Ai, i < ω be finite sets and let fk ∈
∏

i<k Ai for k = 0, 1, . . .. Then
there is an f ∈

∏
i<ω Ai such that on any finite set S ⊆ ω the function f

agrees with one of the fk’s (i.e., f S = fk S).
6. An infinite bounded set of reals has a limit point.
7. Given the natural numbers r, k, and s there is a natural number n such

that if all r-tuples of {0, 1, . . . , n−1} are colored with k colors, then there is
a homogeneous subset increasingly enumerated as {a1, . . . , ap} with p ≥ s
and also with p ≥ a1.
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8. A domino is a one-by-one square, where the four sides are colored. Given
a collection D of dominoes with finitely many different color types, we
want to tile the plane with them, i.e., to place a domino on each lattice
point with its center on the lattice point, in a horizontal-vertical position
such that the common sides of neighboring dominoes have the same color.
(a) If for every n < ω an n × n square has a tiling from D, then so has

the plane.
(b) If the plane has a tiling from D, then it has from D′, where D′ is

obtained from D by omitting those types that contain only finitely
many pieces.

9. The vertex set of a locally finite graph can be partitioned into two sets,
A and B such that if for v, a vertex, dA(v), dB(v) denote the number of
vertices joined to v in A, B, respectively, then dA(v) ≤ dB(v) if v ∈ A
and dA(v) ≥ dB(v) if v ∈ B.

10. (a) If a1 + · · · + an is a sum of positive reals, then there are indices 0 =
k(0) < k(1) < · · · < k(r) = n such that S1 ≥ · · · ≥ Sr holds for the
subsums Si = ak(i−1)+1 + · · · + ak(i) and S1 < 2

√
a2
1 + · · · + a2

n.
(b) If

∑∞
1 ai is a divergent series of positive terms and

∑
a2

i < ∞, then
there are indices 0 = k(0) < k(1) < · · · such that S1 ≥ · · · ≥ Sr holds
for the subsums Si = ak(i−1)+1 + · · · + ak(i).

11. There is an Aronszajn-tree.
12. There is a special Aronszajn-tree.
13. Every special ω1-tree is Aronszajn.
14. If 〈T,≺〉 is a tree, then 〈T, <lex〉 is an ordered set.
15. If 〈T,≺〉 is an Aronszajn-tree, then the order type of 〈T, <lex〉 is a Specker

type.
16. There exist functions {eα : α < ω1} such that each eα : α → ω is injective

and for β < α the functions eβ and eα β are identical at all but finitely
many points.

17. The tree T = {eα β : β ≤ α < ω1} (with the functions of the previous
problem) is an Aronszajn-tree, where g ≺ g′ if and only if g′ properly
extends g.

18. Let eα from Problem 16, and set S = {eα : α < ω1}, where ≺ is the
lexicographic ordering. Then the order type of S is a Countryman type.

19. Every Countryman type is a Specker type.
20. An ω1-tree 〈T,≺〉 is special if and only if there is an order preserving

f : 〈T,≺〉 → 〈Q, <〉.
21. Assume that 〈T,≺〉 is an ω1-tree with a function f : T \T0 → T such that

f(t) ≺ t and for every t and for every element s ∈ T the set f−1(s) is the
union of countably many antichains. Then 〈T,≺〉 is special.
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22. If a normal ω1-tree 〈T,≺〉 has no uncountable antichain, then it is a Suslin
tree.

23. If 〈T,≺〉 is a Suslin tree then for all but countably many x ∈ T , the set
T≥x is uncountable.

24. If there is a Suslin tree, then there is a normal Suslin tree.
25. There is a Suslin tree if and only if there is a Suslin line.
26. If 〈T,≺〉 is a Suslin tree, D ⊆ T is dense, open then D is co-countable in

T .
27. If 〈T,≺〉 is a normal Suslin tree, D0, D1, . . . ⊆ T are dense, open sets,

then D0 ∩ D1 ∩ · · · is also a dense, open set.
28. If 〈T,≺〉 is a Suslin tree, A ⊆ T is uncountable then A is somewhere dense,

i.e., there is some t ∈ T such that for every x � t there is y � x, y ∈ A.
29. If 〈T,≺〉 is a normal Suslin tree, f : T → R preserves , then f has

countable range. There is no such f that preserves ≺.

In Problems 30–31 we consider the topology of the tree 〈T,≺〉 generated by
the open intervals, i.e., of the sets of the form (p, q) = {t ∈ T : p ≺ t ≺ q}.
This amounts to declaring t ∈ Tα isolated if α = 0 or successor, and if α
is limit then the sets of the form (s, t] (s ≺ t) give a neighborhood base of
t.

30. If 〈T,≺〉 is a normal Suslin tree, f : T → R is continuous, then f has
countable range.

31. If 〈T,≺〉 is a normal Suslin tree, then it is a normal topological space.
32. On a normal ω1-tree 〈T,≺〉 two players, I and II alternatively pick the

successive elements of the sequence t0 ≺ t1 ≺ · · · with I choosing t0. I
wins if and only if there is an element of T above all of t0, t1, . . ..

(a) I has no winning strategy.
(b) If 〈T,≺〉 is special, II has winning strategy.
(c) If 〈T,≺〉 is Suslin, II has no winning strategy.

33. If κ is regular, λ < κ, 〈T,≺〉 is a κ-tree with |Tα| < λ for α < κ then
〈T,≺〉 has a κ-branch. This is not true if κ is singular.

34. If, for some regular κ ≥ ω, there is a κ-Aronszajn tree, then there is a
normal one.

35. If 〈T,≺〉 is a κ-tree for some regular cardinal κ, then the following are
equivalent.

(a) 〈T,≺〉 has a κ-branch.
(b) 〈T, <lex〉 includes a subset of order type κ or κ∗.
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36. There exists a κ+-Aronszajn tree if κ holds, that is, for every limit
α < κ+ there is a closed, unbounded subset Cα ⊆ α of order type ≤ κ
such that if β < α is a limit point of Cα, then Cβ = Cα ∩ β.

37. There exists a κ+-Aronszajn tree if κ is regular and 2µ ≤ κ holds for
µ < κ.

38. κ has the tree property if κ is real measurable (see Chapter 28).
39. Assume that κ is a singular cardinal such that for every λ < κ there is an

ultrafilter Dλ on the subsets of κ+ such that if A ∈ Dλ then |A| = κ+ and
if Aα ∈ Dλ (α < λ) then

⋂
α<λ Aα ∈ Dλ. Then κ+ has the tree property.

40. If κ → (κ)22 then every ordered set of cardinality κ includes either a well-
ordered or a reversely well-ordered subset of cardinality κ.

41. If every ordered set of cardinality κ includes either a subset of order type
κ or a subset of order type κ∗, then κ is strongly inaccessible.

42. If κ has the tree property, then κ is regular.
43. If κ is the smallest strong limit regular cardinal bigger than ω, then κ

does not have the tree property.
44. For an infinite cardinal κ the following are equivalent.

(a) κ → (κ)22,
(b) κ → (κ)n

σ for any σ < κ and n < ω,
(c) κ is strongly inaccessible and has the tree property,
(d) in any ordered set of cardinality κ there is either a well-ordered or a

reversely well-ordered subset of cardinality κ.
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The measure problem

It has always been an important problem to measure length, area, volume,
etc. In the 19th and 20th centuries various measure and integral concepts
(like Riemann and Lebesgue measures and integrals) were developed for these
purposes and they have proved adequate in most situations. However, it is
natural to ask what their limitations are, e.g., to what larger classes of sets
can the notion of Lebesgue measure be extended by preserving its well-known
properties. The standard proof for the existence of not Lebesgue measurable
set in R (using the axiom of choice!) shows that there is no nontrivial trans-
lation invariant σ-additive measure on all subsets of R. It was S. Banach
who proved that in R and R2 there is a finitely additive nontrivial isometry
invariant measure. If we go to R3, then the situation changes: by the Banach–
Tarski paradox (Chapter 19) a ball can be decomposed into two balls of the
same size; therefore, there is no nontrivial finitely additive isometry invariant
measure on all subsets of Rn with n ≥ 3.

In this chapter we discuss the problem when we do not care for translation
invariance, but want to keep σ-additivity or some kind of higher-order addi-
tivity. Let X be an infinite set. By the phrase “µ is a measure on X” we mean
a measure µ : P(X) → [0, 1] on all subsets of X. Such a measure is called
nontrivial if µ(X) = 1 and µ({x}) = 0 for each x ∈ X. Since we shall only be
interested in nontrivial measures, in what follows we shall always assume that
the measures in question are nontrivial (hence we exclude discrete measures,
which are completely additive). µ is called κ-additive if for any disjoint family
Yi, i ∈ I of fewer than κ sets (i.e., |I| < κ) we have µ(∪i∈IYi) =

∑
i∈I µ(Yi).

The right-hand side is defined as the supremum of its finite partial sums, and,
as a consequence, on the right-hand side only countably many µ(Yi) can be
positive. Instead of ω-additivity we shall keep saying “finite additivity” and
instead of ω1-additivity we say “σ-additivity”.

It turns out (see Problems 8, 9) that the first cardinal κ on which there is a
σ-additive measure has also the stronger property that it carries a κ-additive
measure as well. A cardinal κ > ω is called real measurable if there is a κ-
additive [0, 1]-valued measure on κ. It is called measurable if there is such a
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measure taking only the values 0 and 1. Real measurable but not measurable
cardinals are at most as large as the continuum (Problem 7), but measurable
cardinals are very large, their existence cannot be proven in ZFC (Zermelo–
Fraenkel axiom system with the axiom of choice). On the other hand, R.
Solovay proved in 1966 that if ZFC is consistent with the existence of a real
measurable cardinal, then

• ZFC is consistent with the existence of a measurable cardinal,
• ZFC is consistent with c being real measurable,
• ZF is consistent with the statement that all subsets of R are Lebesgue-

measurable.

In the present chapter we discuss a few properties of measurable cardinals.
One of the main results in this subject is the existence of a normal ultrafilter
on any measurable cardinal (Problem 14), which has the easy consequence
that all measurable cardinals are weakly compact, that is, κ → (κ)22 holds for
them. A stronger Ramsey property will be established in Problem 16.

In analogy with κ-additivity of measures let us call an ideal κ-complete
if it is closed for < κ unions and a filter κ-complete if it is closed for < κ
intersections. Recall that an ideal/filter on a ground set X is called a prime
ideal/ultrafilter if for all Y ⊂ X either Y or X \ Y belongs to it (and this
is equivalent to the maximality of the ideal/filter). A prime ideal I ⊂ P(X)
is called nontrivial if it contains all singletons {x}, x ∈ X, and an ultrafilter
F ⊂ P(X) is called nontrivial if it does not contain any of the {x}, x ∈ X.

In the problems below all measures, prime ideals, and ultrafilters
will be assumed to be nontrivial.

1. On any infinite set there is a finitely additive nontrivial 0–1-valued mea-
sure.

2. Let X be an infinite set and κ ≥ ω a cardinal. The following are equivalent:

• there is a κ-additive 0–1-valued measure on X;
• there is a κ-complete prime ideal on X;
• there is a κ-complete ultrafilter on X.

3. There is no σ-additive [0, 1]-valued measure on ω1 (i.e., ℵ1 is not real
measurable).

4. If R is decomposed into a disjoint union of ℵ1 sets of Lebesgue measure
zero, then some of these sets have nonmeasurable union.

5. If κ is real measurable, then it is a regular limit cardinal.
6. If there is a [0, 1]-valued σ-additive measure µ on [0, 1] then there is such

a µ extending the Lebesgue measure. Furthermore, if µ is κ-additive for
some κ, then so is µ.
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7. If κ > c is real measurable, then it is measurable.
8. If κ is the smallest cardinal on which there is a σ-additive [0, 1]-valued

measure, then κ is real measurable.
9. If κ is the smallest cardinal on which there is a σ-additive 0–1-valued

measure, then κ is measurable.
10. There is no σ-additive 0–1-valued measure on R.
11. If κ is measurable, then it is a strong limit regular cardinal.

If κ > 0 is a regular cardinal, then a filter F on κ is called a normal filter
if for every F ∈ F and every f : F → κ regressive function f there is an
α < κ such that f−1(α) ∈ F .

12. Let κ be regular. An ultrafilter F on κ is normal if and only if it is closed
for diagonal intersection (see Problem 21.5).

13. Let κ be regular and F a normal ultrafilter on κ. Then F is κ-complete
if and only if no element of F is of cardinality smaller than κ.

14. If κ is measurable, then on κ there is a κ-complete normal ultrafilter.
Prove this via the following outline.
(a) Let µ be a κ-additive measure on κ, and for f, g ∈ κκ set f ≡ g if

f(α) = g(α) for a.e. α (i.e., the µ-measure of the set of the excep-
tional α is 0). Then this is an equivalence relation, and between the
equivalence classes f and g of f and g set f ≺ g if f(α) < g(α) a.e.
This is a well-ordering on the set of equivalence classes κκ/≡.

(b) Let Y be the set of those functions f ∈ κκ for which f−1(α) is of
measure 0 for all α ∈ κ, and let f0 ∈ Y be such that its equivalence
class is minimal in Y/≡. Then F = {F : f−1

0 [F ] is of measure 1} is

a κ-complete normal ultrafilter on κ.
15. If κ is measurable, then κ → (κ)r

σ for any r < ω and σ < κ.
16. If κ is measurable, then κ → (κ)<ω

σ for any σ < κ, i.e., if we color the
finite subsets of κ by σ < κ colors then there is a set A of cardinality
κ that is homogeneous in the sense that for every fixed r < ω all the r
tuples of A have the same color (cardinals with the property κ → (κ)<ω

σ

for σ < κ are called Ramsey cardinals).

The following problems lead to the existence of finitely additive isometry
invariant measures on all subsets of R and R2. First we deal with the case
when the whole space has measure 1, and then with the case that extends
Jordan measure (in this case the measure necessarily is extended-valued,
i.e., it is infinite on the whole space). Such measures are called Banach
measures. Note that by the Banach–Tarski paradox (see Chapter 19) in
R3 (and in Rn with n ≥ 3) there is no such measure.
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The construction of finitely additive isometry invariant measures on all
subsets runs parallel with the construction of additive positive linear func-
tionals on the space of bounded functions, which is the analogue of inte-
gration. We shall also construct these so-called Banach integrals in R
and R2 both in the normalized case (when the identically 1 function has
integral 1) and also in the case which extends the Riemann integral. Ac-
tually, Banach measures are obtained by taking the Banach integral of
characteristic functions.
Let BA denote the set of all bounded real-valued functions on the set
A equipped with the supremum norm ‖f‖ = supa∈A |f(a)|. We call a
function I : BA → R

• linear if for any f1, f2 ∈ BA, c1, c2 ∈ R we have I(c1f1 + c2f2) =
c1I(f1) + c2I(f2),

• nontrivial if I(1) = 1, where 1 denotes the identically 1 function,
• normed if it is nontrivial and |I(f)| ≤ ‖f‖ for all f ∈ BA,
• positive if it is nonnegative for nonnegative functions: I(f) ≥ 0 if f ≥ 0.
Positivity is clearly equivalent to monotonicity: if f ≤ g, then I(f) ≤ I(g).
In what follows in statements (a)–(k) the adjective “normed” can be
replaced everywhere by “positive”, since a linear functional I for which
I(1) = 1 is positive if and only if |I(f)| ≤ ‖f‖.
If Φ is a family of automorphisms of A, then we say that I is Φ-invariant
if I(f) = I(fϕ) for all f ∈ BA and ϕ ∈ Φ, where fϕ(x) = f(ϕ(x)).

17. (a) There is a normed linear functional on BN.
(b) There is a translation invariant normed linear functional I on BN,

i.e., if g(n) = f(n + 1), n ∈ N, then I(f) = I(g) (such a functional is
called a Banach limit).

(c) There is a translation invariant normed linear functional on BZ.
(d) For any finite n there is a translation invariant normed linear func-

tional on BZn .
(e) If A is an Abelian group and s1, . . . , sn ∈ A are finitely many elements,

then there is a normed linear functional I on BA that is invariant for
translation with any sj (i.e., if fj(x) = f(sj + x), then I(fj) = I(f)
for all 1 ≤ j ≤ n).

(f) If A is an Abelian group, then there is a translation invariant normed
linear functional on BA.

(g) If A is an Abelian group, then there is a finitely additive translation
invariant measure µ on all subsets of A such that µ(A) = 1. In par-
ticular, there is a finitely additive translation invariant measure µ on
all subsets of Rn such that µ(Rn) = 1.

(h) There is an isometry invariant normed linear functional on BR.
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(i) There is a finitely additive isometry invariant measure µ on all subsets
of R such that µ(R) = 1.

(j) There is an isometry invariant normed linear functional on BR2 .
(k) There is a finitely additive isometry invariant measure µ on all subsets

of R2 such that µ(R2) = 1.

In statements (l)–(p) we allow the measure to take infinite values, and in
these statements Bb

Rn denotes the set of bounded functions on Rn with
bounded support.

(l) There is a translation invariant positive linear functional on Bb
R that

extends the Riemann integral.
(m) For every n there is a translation invariant positive linear functional

on Bb
Rn that extends the Riemann integral.

(n) There is a translation invariant finitely additive measure on all subsets
of Rn that extends the Jordan measure.

(o) For n = 1, 2 there is an isometry invariant positive linear functional
on Bb

Rn that extends the Riemann integral (Banach integral).
(p) For n = 1, 2 there is a finitely additive isometry invariant measure on

all subsets of Rn that extends the Jordan measure (Banach measure).
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Stationary sets in [λ]<κ

In this chapter we consider subsets of [λ]<κ where κ > ω is regular and λ > κ.
X ⊆ [λ]<κ is called

• unbounded if for every P ∈ [λ]<κ there exists some Q ∈ X with P ⊆ Q,
• closed if whenever α < κ and {Pβ : β < α} is an increasing transfinite

sequence of elements of X then
⋃
{Pβ : β < α} ∈ X,

• a club set when it is both closed and unbounded.

If something is true for the elements of a closed, unbounded set, then we
say that it holds for almost every P ∈ [λ]<κ (a.e. P ). Similarly, if X ⊆
[λ]<κ, then some property holds for almost every element of X if there is
a closed, unbounded set C such that it holds for the elements of C ∩ X.
S ⊆ [λ]<κ is stationary if it intersects every closed, unbounded set. Otherwise,
it is nonstationary.

As we shall see these notions extend the classical notion of club sets and
stationary sets. Most of the classical results from Chapters 20–21 have an
analogue in this setting, and the present generalization opens space for some
other questions as well.

We define κ(P ) = P ∩ κ whenever it is < κ, i.e., when P intersects κ in
an initial segment.

1. [λ]<κ is the union of κ bounded sets.
2. The union of < κ bounded sets is bounded again.
3. For every α < λ the cone {P ∈ [λ]<κ : α ∈ P} is a closed, unbounded set.

In general, if Q ∈ [λ]<κ, then {P ∈ [λ]<κ : Q ⊆ P} is a closed, unbounded
set.

4. Every stationary set is unbounded.
5. As all ordinals, specifically all ordinals < κ, are identified with the initial

segment determined by them, κ ⊆ [κ]<κ holds. A set A ⊆ κ is stationary,
(or closed, unbounded) in the sense of κ exactly if it is in the sense of
[κ]<κ.
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6. X ⊆ [λ]<κ is closed if and only if for every directed set Y ⊆ X of car-
dinality < κ,

⋃
Y ∈ X holds (Y is called directed if for any P1, P2 ∈ Y

there is a P ∈ Y such that P1 ∪ P2 ⊆ P ).
7. If f : [λ]<ω → [λ]<κ, then define C(f) = {P ∈ [λ]<κ : P is closed under f}.

(a) C(f) is a closed, unbounded set.
(b) If C is a closed, unbounded set, then C(f) \ {∅} ⊆ C holds for an

appropriate f .
8. The intersection of < κ closed, unbounded sets is a closed, unbounded set

again.
9. For a.e. P , κ ∩ P < κ holds (that is, P intersects the interval κ in an

initial segment).
10. Given an algebraic structure with countably many operations (group, ring,

etc.) on λ, a.e. P ∈ [λ]<κ is a substructure.
11. Almost every P ∈ [λ]<κ is the disjoint union of intervals of the type

[κ · α, κ · α + β) with β = κ(P ).
12. If {Cα : α < λ} are closed, unbounded sets, then so is their diagonal

intersection

∇α<λCα = {P ∈ [λ]<κ : α ∈ P −→ P ∈ Cα}.

13. Assume that S ⊆ [λ]<κ is stationary, f(P ) ∈ P holds for every P ∈ S,
P 
= ∅. Then for some α < λ, f−1(α) is stationary.

14. Assume that S ⊆ [λ]<κ is stationary, f(P ) ∈ [P ]<ω holds for every P ∈ S.
Then for some s, f−1(s) is stationary.

15. If X ⊆ [λ]<κ is a nonstationary set, then there exists a function f with
f(P ) ∈ [P ]<ω for every P ∈ X such that f−1(s) is bounded for every
finite set s.

16. If C ⊆ κ is a closed, unbounded set, then so is {P ∈ [λ]<κ : κ(P ) ∈ C}.
17. If λ is regular, C ⊆ λ is a closed, unbounded set, then

A =
{
P ∈ [λ]<κ : sup(P ) ∈ C

}
is again a closed, unbounded set.

18. If S ⊆ κ is a stationary set, then so is {P ∈ [λ]<κ : κ(P ) ∈ S}.
19. There is a stationary set in [ω2]<ℵ1 of cardinality ℵ2.
20. Every closed, unbounded set in [ω2]<ℵ1 is of maximal cardinality ℵℵ0

2 .
21. Set Z = {P ∈ [λ]<κ : κ(P ) = |P |}. (Remember the identification of

cardinals with ordinals!)
(a) Z is stationary.
(b) If S ⊆ Z is a stationary set, then it is the disjoint union of λ stationary

sets.
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22. Every stationary set in [λ]<κ is the union of κ disjoint stationary sets.
Prove this via the following steps. Let S be a counterexample.

(a) Every stationary S′ ⊆ S is also a counterexample.
(b) For almost every P ∈ S, κ(P ) < |P | holds.
(c) Assume that f(P ) ∈ P holds for every P ∈ S, P 
= ∅. Then there is

some Q ∈ [λ]<κ such that f(P ) ∈ Q holds for a. e. P ∈ S.
(d) κ is weakly inaccessible (a regular limit cardinal).
(e) If S′ ⊆ S is stationary, f(P ) ⊆ P , |f(P )| < κ(P ) holds for P ∈ S′

then there is some Q ∈ [λ]<κ such that f(P ) ∈ Q holds for a. e.
P ∈ S′.

(f) For a. e. P ∈ S, κ(P ) is weakly inaccessible.
(g) For a. e. P ∈ S, S ∩ [P ]<κ(P ) is stationary in [P ]<κ(P ).
(h) Get the desired contradiction.

23. (GCH) Set λ = ℵω, κ = ℵ2. There is a stationary set S ⊆ [λ]<κ such that
every unbounded subset of S is stationary.

24. For any nonempty set A call S ⊆ P(A) A-stationary if for every function
f : [A]<ω → [A]≤ℵ0 there is some B ∈ S, B 
= ∅ which is closed under f .

(a) S = {A} is A-stationary on A.
(b) If S is A-stationary on A, then A =

⋃
S.

(c) If A = λ ≥ ω1 is a cardinal, S ⊆ [λ]<ℵ1 then S is λ-stationary on λ if
and only if it is stationary.

(d) If S is A-stationary, ∅ 
= B ⊆ A, then T = {P ∩ B : P ∈ S} is
B-stationary.

(e) If S is A-stationary, B ⊇ A, then T = {P ⊆ B : P ∩ A ∈ S} is
B-stationary.

(f) If S is A-stationary, F (P ) ∈ P holds for every P ∈ S, P 
= ∅, then for
some x, the set F−1(x) is A-stationary.
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The axiom of choice

In this chapter we do not assume the axiom of choice.
We now enter a strange and interesting world. Strange, as our everyday

tools cannot be used; we no longer have the trivial rule for addition and
multiplication of two cardinals, and as some sets may not be well orderable,
we cannot always apply transfinite induction or recursion. Interesting, as we
are still able to prove some statements similar to the corresponding statements
under the axiom of choice, only it requires delicate arguments, and in some
cases we discover phenomena that can only hold if AC fails.

We can use the notion of a cardinal, in the naive sense, that is, without
the von Neumann identification of cardinals with ordinals. That is, we can
speak of the equality, sum, etc., of two cardinals.

ACω is the axiom of choice for countably many nonempty sets.

1. For no cardinal κ does 2κ = ℵ0 hold.
2. If ϕ is an ordinal, then there is a sequence 〈fα : ω ≤ α < ϕ〉 such that

fα : α × α → α is an injection.
3. If 0 < α < ω2, then there is a surjection R → α.
4. There is a mapping from the set of reals onto a set of cardinality greater

than continuum if either
(a) every uncountable set of reals has a perfect subset, or
(b) every set of reals is measurable, or else
(c) (ACω) there are no two disjoint stationary subsets of ω1.

5. Let Cn denote the axiom of choice for n-element sets. Then Cm implies
Cn if m is a multiple of n.

6. C2 implies C4.
7. C2 and C3 imply C6.
8. If every set carries an ordering then C<ω (the axiom of choice for families

of finite sets) holds.
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9. Let κ, λ be cardinals, n a natural number, and assume that κ+n = λ+n
holds. Then κ = λ.

10. If κ ≥ ℵ0, then κ + ℵ0 = κ.
11. If κ > 1, then κ + 1 < 2κ.
12. If κ ≥ ℵ0, then κ + 2κ = 2κ.
13. Set κ � λ if and only if κ + λ = λ. This � is transitive. Furthermore,

κ � λ holds if and only if ℵ0κ ≤ λ.
14. If κ is of the form either κ = ℵ0λ for some cardinal λ or κ = 2λ for some

cardinal λ ≥ ℵ0, then κ + κ = κ.
15. If a, b are cardinals and 2a = 2b, then a = b.
16. If κ is an infinite cardinal then ℵ0 ≤ 22κ

.
17. ℵ1 ≤ 22ℵ0 .
18. κ · κ ≤ 22κ

holds for every cardinal κ.
19. (Hartogs’ lemma) If κ is a cardinal then there is an ordinal H(κ) with

|H(κ)| ≤ 222κ

such that |H(κ)| 
≤ κ.
20. If κ2 = κ holds for every infinite cardinal κ then the axiom of choice is

true.
21. The generalized continuum hypothesis implies the axiom of choice. That

is, if for no infinite κ exists a cardinal λ with κ < λ < 2κ then the AC
holds.

22. AC is implied by the following statement: if {Ai : i ∈ I} is a set of
nonempty sets, then there is a function that selects a nonempty finite
subset of each.

23. If every vector space has a basis, then the axiom of choice holds.

In the following problem, the chromatic number of graph G = (V,E) is
the minimal cardinality (if it exists) of the form |A| for which there is a
surjection f :V → A which is a good coloring, i.e., if x, y ∈ V are joined,
then f(x) 
= f(y).

24. The axiom of choice is equivalent to the statement that every graph has
a chromatic number.

25. Hajnal’s set mapping theorem (Problem 26.8) implies the axiom of choice.
26. If R is the union of countably many countable sets, then so is ω1 and

cf (ω1) = ω.
27. ω2 is not the union of countably many countable sets.



31

Well-founded sets and the axiom of foundation

In this chapter we investigate well-founded sets. These are partially ordered
sets where every nonempty subset has a least element (one with no predecessor
in the subset). These sets share many properties with the well-ordered sets.
We can, therefore, use some techniques developed for well-ordered sets, as
transfinite induction. In applications, e.g., in descriptive set theory, important
facts can be transformed into the existence (or nonexistence) of an infinite
decreasing chain in some specific partially ordered sets, which we call trees.
That these two properties are equivalent for any given partially ordered set
follows from the axiom of dependent choice (a weakening of the axiom of
choice), which says that if A is a nonempty set, R is a binary relation on A
with the property that for every element x ∈ A there is some y ∈ A such that
R(x, y) holds, then there is an infinite sequence x0, x1, . . . of elements of A
such that R(x0, x1), R(x1, x2), . . . hold.

The axiom of foundation (or regularity) says that if A is a nonempty
set, then there is some element x of it with x ∩ A = ∅. This claims that the
universe is well founded under ∈ and that implies that it is possible to create
every set from the empty set by iterating the power set operation (cumulative
hierarchy).

In this chapter, we assume the axioms of choice and regularity, unless
indicated otherwise.

A class is a defined part of the universe which is not necessarily a set. If
a class is indeed not a set, then we call it a proper class. An operation is a
well-defined mapping on some part of the universe which is possibly not a
function, that is, it does not necessarily go between sets.

1. The following statements are equivalent:
(a) DC, the axiom of dependent choice;
(b) If the nonempty partially ordered set 〈P, <〉 has no minimal element,

then there is an infinite descending chain in 〈P, <〉,
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(c) A partially ordered set is well founded iff there is no infinite descending
chain in it.

2. If 〈P, <〉 is a partially ordered set, then there is an order-preserving
ordinal-valued function f on P , that is, x < y implies f(x) < f(y) if
and only if 〈P, <〉 is well founded.

3. If 〈P, <〉 is a partially ordered set, then there exists a cofinal subset Q ⊆ P
such that 〈Q, <〉 is well founded.

4. Let 〈P, <〉 be a partially ordered set that does not include an infinite in-
creasing or decreasing sequence. Is it true that P is the union of countably
many antichains (an antichain is a set of pairwise incomparable elements)?

5. If 〈P, <〉 is a well-founded set, then there is a unique ordinal-valued func-
tion r (the rank function of 〈P, <〉) with the properties
(a) if x < y, then r(x) < r(y),
(b) if α = r(x) and β < α, then there exists some y < x with r(y) = β.

For κ a cardinal let FS(κ) be the set of all finite strings of ordinals less than
κ. We think the elements of FS(κ) as finite functions from n to κ for some
n < ω and simply write s = s(0)s(1) · · · s(n − 1) (rather than using e.g.,
the ordered sequence notation). If s, t ∈ FS(κ) we set s < t if t properly
extends s, and s � t if t is a one-step extension of s. ŝ t is the juxtaposition
of s and t; that is, if s = s(0)s(1) · · · s(n−1) t = t(0)t(1) · · · t(m−1), then
ŝ t = s(0)s(1) · · · s(n − 1)t(0)t(1) · · · t(m − 1).

For Problems 6–10 we define a set T ⊆ FS(κ) a tree if it is closed under
restriction, i.e., s < t ∈ T implies that s ∈ T . The nth level of T is
formed by those elements of length n. T is well founded if it does not
include an infinite branch, that is, if (T, >) is well founded in the original
sense. In this case, let R(T ) be the ordinal assigned to the root (the empty
sequence) by Problem 5. (Notice that these trees are trees in the sense of
Chapter 27, only turned upside down.)

6. If T ⊆ FS(κ) is a well-founded tree, then R(T ) < κ+. For every ordinal
α < κ+ there is a well-founded tree T ⊆ FS(κ) with R(T ) = α.

7. If T, T ′ are well-founded trees and R(T ) ≤ R(T ′) then T  T ′, i.e., there
is a level and extension preserving (but not necessaily one–one) map from
T into T ′.

8. For any two trees, T and T ′ either T  T ′ or T ′  T holds.
9. Define the Kleene–Brouwer ordering <KB on FS(κ) as follows. If s =

s(0)s(1) · · · s(n) and t = t(0) · · · t(m), then s <KB t if and only if either
s properly extends t or s(i) < t(i) holds for the least i where they differ.
This is an ordering on FS(κ). A tree T ⊆ FS(κ) is well founded if and
only if it is well ordered by <KB.
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10. (Galvin’s tree game) Two players, W and B, play the following game.
They play on the isomorphic well-founded trees, TW and TB . At the be-
ginning both players have a pawn at the root of his/her own tree. At every
round first W makes a move with either pawn, i.e., moves it to one of the
immediate extensions of its current position, then B does the same with
one of the pawns. B may pass but W may not. The winner is whose pawn
first reaches a leaf (that is, queens).
(a) One of the players has a winning strategy.
(b) W has a winning strategy.

11. Exhibit two well-founded sets such that neither has an order-preserving
(not necessarily injective) mapping into the other.
A set (or possibly a class) A is transitive if x ∈ A, y ∈ x imply that y ∈ A.

12. There is no set x with x ∈ x.
13. There are no sets x, y with x ∈ y and y ∈ x.
14. For every natural number n, there is an n-element set A with the following

properties: if x, y ∈ A, then either x ∈ y, or x = y, or y ∈ x, and if x ∈ A,
y ∈ x, then y ∈ A. For a given n, can there be more than one such sets?

15. What are the transitive singletons?
16. The intersection and union of transitive sets are transitive.
17. Let A be a set. Define A0 = {A}, An+1 =

⋃
An for n = 0, 1, . . ., TC(A) =

A0∪A1∪· · · (the transitive closure of A). TC(A) is transitive and if A ∈ B,
B is transitive, then TC(A) ⊆ B.

18. (Cumulative hierarchy) Construct, by transfinite recursion, the following
sets. V0 = ∅. Vα+1 = P(Vα). If α is a limit ordinal, then Vα =

⋃
{Vβ : β <

α}.
If a set x is an element of some Vα then x is a ranked set, and rk(x) (the
rank of x) is the least α with x ∈ Vα.

(a) Every Vα is a transitive set.
(b) Vβ ⊆ Vα holds for β < α.
(c) rk(x) is always a successor ordinal.
(d) If x is ranked and y ∈ x, then y is also ranked and rk(y) < rk(x).
(e) If every element of x is ranked, then so is x.
(f) The axiom of foundation holds if and only if every set is ranked.

19. Solve the equation X × Y = X in sets X, Y .
20. If C is a proper class, then there is a surjection from C onto the class of

ordinals such that the inverse image of every ordinal is a

(a) set,
(b) proper class.
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21. Assume that C is a class, ∼ is an equivalence relation on it. Then there
is an operation F defined on C such that F(x) = F(y) holds iff x ∼ y is
true.

22. The axiom of choice is equivalent to the statement that every set can be
embedded into every proper class.

23. The following are equivalent.

(a) (The axiom of global choice) There is an operation F defined on all
nonempty sets, such that F(X) ∈ X holds for every such set X.

(b) The universe has a well-ordering, that is, a relation < such that every
nonempty class has a <-least minimal element.

(c) Moreover, < is set-like, that is, the predecessors of every set form a
set.

(d) If A, B are proper classes, then there is an injection of A into B.
(e) If A, B are proper classes, then there is a bijection between A and B.

24. If κ is an infinite cardinal, then Hκ = {x : |TC(x)| < κ} is a set (here
TC(x) is the transitive closure of x; see Problem 17).

25. (Mostowski’s collapsing lemma) Assume that M is a class, E is a binary
relation on M which is
(a) irreflexive, that is, xEx holds for no x ∈ M ;
(b) extensional: if {z : zEx} = {z : zEy}, then x = y;
(c) well founded: there is no infinite E-decreasing chain, i.e., a sequence

{xn : n < ω} with xn+1Exn for n = 0, 1, . . ..
(d) set-like: for every x ∈ M , {y : yEx} is a set.
Then there are a unique transitive class N , and a unique isomorphism
π : (M,E) → (N,∈).



Part II

Solutions
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Operations on sets

1. If an element a is contained in exactly s ≥ 1 of the sets A1, . . . , An, then
on the right-hand side this a is counted exactly(

s

1

)
−
(

s

2

)
+
(

s

3

)
+ · · · + (−1)s−1

(
s

s

)
times, and this is 1 because the binomial theorem gives that

0 = (1 − 1)s = 1 −
(

s

1

)
+
(

s

2

)
−
(

s

3

)
+ · · · + (−1)s

(
s

s

)
.

To prove the second identity, set X = ∪Ai, apply the first identity to the
sets A∗

i = X \ Ai and subtract the resulting equation from N = |X|, the
number of elements of X:

|A1 ∩ · · · ∩ An| = N − |A∗
1 ∪ · · · ∪ A∗

n|
= N −

∑
i

|A∗
i | +

∑
i<j

|A∗
i ∩ A∗

j | −
∑

i<j<k

|A∗
i ∩ A∗

j ∩ A∗
k| − · · ·

=
∑

i

(N − |A∗
i |) −

∑
i<j

(N − |A∗
i ∩ A∗

j |) +
∑

i<j<k

(N − |A∗
i ∩ A∗

j ∩ A∗
k|) − · · · ,

and since
N − |A∗

i ∩ A∗
j ∩ · · · ∩ A∗

k| = |Ai ∪ Aj ∪ · · · ∪ Ak|,
we are done.

2. Both the commutativity and the associativity of ∆ can be directly verified.
It is also easy to see that ∩ is distributive with respect the ∆:

A ∩ (B∆C) = (A ∩ B)∆(A ∩ C).

In fact,
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• an element belongs to the left-hand side if and only if it belongs to A and
to exactly one of B and C,

• an element belongs to the right-hand side if and only if it belongs to A
and B or to A and C, but not to A, B, and C,

and it is clear that these two statements are the same.
Thus, H is a ring. Clearly, A∆∅ = A, so the empty set ∅ plays the role

of zero for ∆. Furthermore, A∆A = ∅, hence every set is its own additive
inverse.

3. The statement is clearly true for n = 2 and from here we can pro-
ceed by induction. Suppose we know its validity for some n. Writing B =
A1∆A2∆ · · ·∆An∆An+1 as C∆An+1 with C = A1∆A2∆ · · ·∆An, we can see
that an element a belongs to B if and only if either it belongs to An+1 and
not to C, or it belongs to C and not to An+1. In either case the induction
hypothesis gives that a ∈ B if and only if it belongs to an odd number of the
Ai’s.

4. We apply the characterization given in Problem 3. If a belongs to s of the
Ai’s, then it is counted on the right-hand side(

s

1

)
− 2

(
s

2

)
+ 4

(
s

3

)
− · · · =

1
2
(1 − (1 − 2)s)

times, and this is 0 if s is even and 1 if s is odd.

5. Since Ac = A ↓ A, we can see that A∪B = (A ↓ B)c = (A ↓ B) ↓ (A ↓ B).
Using that A ∩B = (Ac ∪Bc)c, it follows that ∩ can also be expressed via ↓.
Finally, A \ B = A ∩ Bc.

One can proceed similarly with |.

6. Consider part a). If a belongs to the left-hand side then there is an i0 ∈ I
such that a belongs to all the sets Ai0,j , j ∈ Ji0 . But then a belongs to every⋃

i∈I Ai,f(i), so it belongs to the right-hand side as well.
Conversely, if a does not belong to the left-hand side, then for every i ∈ I

there is j ∈ Ji, which we shall denote by f0(i), such that a 
∈ Ai,f0(i). But
then this f0 is in

∏
i∈I Ji, hence a does not belong to the right-hand side.

The other identities can be verified in the same manner.

7. Let H(X;A1, . . . , An) be the collection of those sets that can be obtained
from A1, . . . , An using the operations ∩, ∪, and ·c (complementation with
respect to X). We have to show that

|H(X;A1, . . . , An)| ≤ 22n

. (1.1)

This is clearly true for n = 1, and we can proceed by induction. Thus, suppose
that (1.1) is true for an n. Note that H(X;A1, . . . , An) is nothing else than the
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smallest set containing X;A1, . . . , An that is closed under union, intersection,
and complementation. Therefore, it immediately follows that

H(X;A1, . . . , An, An+1) = {S ∪ T},

where on the right we take all possible unions with S ∈ H(An+1;A1 ∩
An+1, . . . , An ∩ An+1) and T ∈ H(Ac

n+1;A1 ∩ Ac
n+1, . . . , An ∩ Ac

n+1). By the
induction hypothesis these latter sets have at most 22n

elements, so there are
that many choices for S and T . Thus, for S∪T we have at most 22n ·22n

= 22n+1

choices, and this proves (1.1) with n replaced by (n + 1).

8. The hyperplanes xi = 1/2 divide the unit cube into 2n pairwise disjoint
subcubes C1, . . . , C2n of side length 1/2. Clearly, each of C1, . . . , C2n can be
obtained from the sets Ak using the operations ∩ and ·c, and so taking the
union of any possible subcollection of C1, . . . , C2n (there are 22n

different such
subcollections), one can construct 22n

different sets from A1, A2, . . . , An.

9. Let H be the collection of all sets that can be obtained from A1, A2, . . . , An

using the operations \, ∩, and ∪. Note that each such set is a subset of
A1 ∪ · · · ∪ An. Let us also choose a set X that is strictly larger than A1 ∪
· · · ∪An, and consider the set H(X;A1, . . . , An) from the solution of Problem
7. Note that since A \ B = A ∩ Bc, we have H ⊆ H(X;A1, . . . , An). Thus,
if H ∈ H, then H ∈ H(X;A1, . . . , An), and since this latter set is closed for
complementation, we also get Hc ∈ H(X;A1, . . . , An). Moreover, it is not
possible that Hc ∈ H, for then X would belong to H. Thus, for every H ∈ H
there are two different sets (H and Hc) in H(X;A1, . . . , An), and so the first
statement is a consequence of Problem 7.

To show that the bound 22n−1 can be achieved, consider A1, . . . , An from
Problem 8. It is easy to see that using ∪, ∩, and \, all but one of the cubes
C1, . . . , C2n from the solution (namely the one with one vertex at the point
(0, 0, . . . , 0)) can be constructed, and we can form again the union of all pos-
sible subcollections of these 2n − 1 cubes to get 22n−1 different sets.

10. If there is a solution to

(a) Ai ∩ X = Bi, i ∈ I,

then we must have ∪jBj ⊆ X, and then it is easy to see that X ′ = ∪jBj

is also a solution. But then substituting this into the equations we can see
that we must have ∪j(Ai ∩ Bj) = Bi, which holds if and only if Bi ⊆ Ai and
Ai ∩ Bj ⊆ Bi for all i and j 
= i. Thus, the system is solvable if and only if
these two conditions are satisfied, and then one solution is X = ∪jBj . One
can always add elements from outside ∪jAj to X, so the solution is never
unique.

In a similar manner (or take the complement of all sides with respect to a
large set and reduce the problem to Problem (a))
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(b) Ai ∪ X = Bi, i ∈ I,

is solvable if and only if Ai ⊆ Bi and Bi ⊆ Ai ∪Bj for all i and j 
= i. In this
case one solution is X = ∩jBj .

In dealing with
(c) Ai \ X = Bi, i ∈ I,

let Z be the union of all the sets Ai and Bj , and let Y = Z \ X. Then the
system takes the form

(c′) Ai ∩ Y = Bi, i ∈ I,

i.e., the one we have considered in (a).
In a similar manner, the system

(d) X \ Ai = Bi, i ∈ I.

can be reduced to the case (a) if we write X \ Ai as (Z \ Ai) ∩ X.

11. Let

Bi = Ai \

⎛
⎝⋃

j<i

Aj

⎞
⎠ .

It is immediate that these sets are pairwise disjoint and ∪iBi ⊆ ∪iAi. Fur-
thermore, if for an a ∈ ∪iAi the first index i with a ∈ Ai is i0, then clearly
a ∈ Bi0 , so we actually we have ∪Bi = ∪iAi.

12. If the C and D with the prescribed properties exist, then clearly Ai ∩ Bj

is finite for all i and j.
Conversely, suppose that Ai ∩ Bj is finite for all i, j. The sets

C =
∞⋃

i=0

⎛
⎝Ai \

⋃
j≤i

Bj

⎞
⎠ , D =

∞⋃
i=0

⎛
⎝Bi \

⋃
j≤i

Aj

⎞
⎠

are disjoint since Ai \
⋃

k≤i Bk and Bj \
⋃

k≤j Ak are disjoint for all i, j. That
Ai \ C is finite follows from the finiteness of Ai ∩ Bj for all j and hence for
all j ≤ i. We get analogously that Bi \ D are finite for all i.

13. Let S ⊆ P(X) be the smallest family of sets including A and closed under
countable intersection and countable disjoint union (this is the intersection of
all such families). It is clear that S is also closed under finite intersection and
finite disjoint union. Set

B = {A ∈ S : X \ A ∈ S}.

By assumption A ⊆ B.
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If A, B ∈ B, then B \ A = B ∩ (X \ A) ∈ S, A ∪ B = A ∪ (B \ A) ∈ S,
and X \ (A ∪ B) = (X \ A) ∩ (X \ B) ∈ S. These latter two show that B
is closed under two-term union, and hence under finite union. Finally, since
A \ B = A ∩ (X \ B) ∈ S, X \ (B \ A) = (X \ B) ∪ (A ∩ B) ∈ S, B is also
closed under difference (B is a so-called algebra of sets).

If An ∈ B, n = 0, 1, . . ., then, as in the solution of Problem 11, we have

∞⋃
n=0

An =
∞⋃

n=0

⎛
⎝An \

⋃
j<n

Aj

⎞
⎠ ,

and this latter one is a countable disjoint union of elements of B, hence it
belongs to S. Furthermore,

X \
( ∞⋃

n=0

An

)
=

∞⋂
n=0

(X \ An) ∈ S.

These show that B is closed under countable union, hence it is a σ-algebra
including A. Therefore, it includes the σ-algebra A∗ generated by A. On the
other hand, B ⊆ S, and clearly S is a subset of the σ-algebra A∗, and these
show that B = S = A∗.

14. All the statements are immediate consequences of the definitions.

15. Clearly, two subsets of X are the same if and only if their characteristic
functions are the same. Furthermore, if g ∈X{0, 1} is arbitrary, then g = χA,
where A is the set of those x ∈ X where g(x) = 1. Thus, A �→ χA is a 1-to-1
correspondence.

The statements concerning the lim inf and lim sup sets immediately follow
from parts b) and c) of the preceding problem.

16. By the definition {An}∞
n=1 is convergent if and only if every element a

that is contained in infinitely many of the Ai’s is contained in all but finitely
many of the them. This is the same as saying that there is no element a and
two infinite subsequences {mi} and {ni} of the natural numbers with a ∈ Ami

and a 
∈ Ani
, and this is the same as the condition in the problem.

17. See the solution of the preceding problem.

18. Of the infinitely many sets Ai either infinitely many contain 0, or infinitely
many do not contain 0. In the first case let A

(0)
0 , A

(0)
1 , . . . be the sequence of

those Ai’s that contain 0, and in the second case let A
(0)
0 , A

(0)
1 , . . . be the

sequence of those Ai’s that do not contain 0. Now of A
(0)
0 , A

(0)
1 , . . ., either

infinitely many contain 1, or infinitely many do not contain 1. In the first
case let A

(1)
0 , A

(1)
1 , . . . be the sequence of those A

(0)
i ’s that contain 1, and in
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the second case let A
(1)
0 , A

(1)
1 , . . . be the sequence of those A

(0)
i ’s that do not

contain 1. Proceeding similarly with the numbers 2, 3, . . . we get infinitely
many infinite subsequences {A(j)

i }∞
i=0, j = 0, 1, . . . of the original sequence. It

is immediate (see also Problem 14) that the diagonal sequence {A(i)
i }∞

i=0 is
convergent.

19. Let Ai be the set of those real numbers the ith decimal digit (after the
decimal point) of which is 0 (warning: some rational numbers have two decimal
expansions, one finite and one infinite, e.g., 0.1 = 0.09999 · · ·, but in this
solution it does not matter which one we fix). We claim that there is no
convergent subsequence of {Ai}∞

i=1. In fact, let 0 < n1 < n2 < · · · be any
subsequence of the natural numbers, and consider the number

x =
∞∑

j=1

1
10n2j

.

The n2j+1th decimal digit of this is 0, so x belongs to all the sets An2j+1 .
However, the n2jth decimal digit of x is 1, so x does not belong to any of the
sets An2j . Thus, x belongs to lim supj Anj , but does not belong to lim infj Anj ,
i.e., the subsequence {Anj

}∞
j=1 is not convergent.

20. It is clear that ⊂ (proper subset) is irreflexive and transitive (but in general
not trichotomous, i.e., in general for A 
= B we do not have either A ⊂ B or
B ⊂ A), hence it is a partial ordering.

Conversely, let 〈A,≺〉 be a partially ordered set, and consider the family
A of those subsets Ha of A of the form Ha = {b ∈ A : b  a}. It is clear that
a ≺ b exactly if Ha ⊂ Hb, hence 〈A,≺〉 is isomorphic with 〈A,⊂〉.

21. Let (V,E) be a graph where V denotes the set of vertices and E denotes the
set of edges. To every vertex x ∈ V associate the subset Ex of E that consists
of the edges that are adjacent to x. It is clear that Ex and Ey intersect if and
only if there is an edge between x and y, so x �→ Ex ∪ {x} is an appropriate
isomorphism.

22. Clearly, A∆∅ = A, so the empty set ∅ plays the role of zero for ∆. Fur-
thermore, A∆A = ∅, so every set is its own additive inverse. All the other
ring properties follow from Problem 2.

23. Let (A, +, ·, 0) be a ring in which every element is idempotent (a · a = a).
Then

a + a · b + b · a + b = a · a + a · b + b · a + b · b = (a + b) · (a + b) = a + b,

hence a · b + b · a = 0. Putting here b = a we get a + a = a · a + a · a = 0 for
every a. Using this in the preceding formula we obtain
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a · b = a · b + (a · b + b · a) = (a · b + a · b) + b · a = b · a.

Thus, the ring is commutative, in which every element is its own additive
inverse.

Call a subring I ⊂ A a prime ideal if it is not the whole ring A and a ∈ I,
b ∈ A implies a · b ∈ I (that is it is an ideal) and if a · b ∈ I implies that one
of a or b belongs to I. Let the set of prime ideals be X and to every element
a ∈ A associate the set

Ha = {I ∈ X : a 
∈ I},

the set of prime ideals not containing a. We claim that the set H = {Ha}a∈A

is closed for the operations ∩ and ∆, and that a �→ Ha is a ring isomorphism.
First we show that a �→ Ha is a 1-to-1 mapping. Let a and b be two

different elements in A, and first assume that b · a = b. There is an ideal
containing b but not a, e.g., the set {c ∈ A : b · c = c} is such an ideal. Now
it is easy to see that if M is a set of ideals ordered with respect to inclusion
such that every member of M contains b but does not contain a, then their
union also has this property. Thus, by Zorn’s lemma (see Chapter 14) there is
a maximal (with respect to inclusion) ideal I containing b but not containing
a. We claim that this is a prime ideal. In fact, if that was not the case then
we would have c, d 
∈ I with c · d ∈ I. The ideal generated by I and c consists
of all elements c · p + q with p ∈ A and q ∈ I (check the ideal properties for
the set of these elements). Thus, by the maximality of I, there are p1 ∈ A and
q1 ∈ I such that a = c · p1 + q1. In a similar fashion, there are p2 ∈ A and
q2 ∈ I such that a = d · p2 + q2. But then

a = a ·a = (c ·p1 +q1) · (d ·p2 +q2) = c ·d · (p1 ·p2)+q1 · (d ·p2 +q2)+q2 · (c ·p1)

belongs to I, for all the products on the right-hand side are in I (they are the
products of elements of I with some elements of A). This contradiction shows
that, in fact, I is a prime ideal containing b but not a.

If a · b = a, then by the same argument there is a prime ideal containing
a but not b. Finally, if a · b 
= a, b, then (a · b) · a = a · b, and by what we have
just proven, then there is a prime ideal containing a · b but not a. But then
the prime property shows that I must contain b.

Thus, for different elements there are prime ideals containing exactly one
of them, so the mapping a �→ Ha is 1-to-1.

It is clear that H0 = ∅, and

Ha·b = {I ∈ X : a · b 
∈ I} = {I ∈ X : a 
∈ I and b 
∈ I} = Ha ∩ Hb.

It is also clear that if I is a prime ideal and a ∈ I and b 
∈ I or b ∈ I and
a 
∈ I, then a + b 
∈ I. Furthermore, if a 
∈ I and b 
∈ I, then a · b 
∈ I, but
(a ·b) · (a+b) = a ·b+a ·b = 0 is in I, hence a+b must be in I. Thus, a+b 
∈ I
if and only if exactly one of a and b is not in I. Hence Ha+b = Ha∆Hb, and
this completes the proof that the mapping a �→ Ha is an isomorphism.
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24. The intersection of a finite set with any set and symmetric difference of
two finite sets is finite, hence I is a subring which is also an ideal. If H ⊆ X
is infinite, then we can write H as a disjoint union of two infinite sets H1
and H1. Thus, if H denotes the image of H under the ring homomorphism
H → H/I, then H1 
= ∅ is different from H, and H1 ·H = H1, and this proves
that H is not an atom.

25. All the lattice properties are easy to check. The distributivity is also true,
since A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C) and A ∪ (B ∩C) = (A ∪B) ∩ (A ∪C)
(see also the general distributivity laws in Problem 6).

26. Let L be a distributive lattice with the operations ∧ and ∨, and for b, a ∈ L
set a ≤ b if a ∧ b = a. It is easy to see that this is a partial ordering on L.

We call a subset I 
= ∅ of L an ideal if it is closed for ∨, and it is also true
that if a ∈ I and b ≤ a, then b ∈ I. Call an ideal I prime ideal if it is not the
whole L and a ∧ b ∈ I implies that either a or b belongs to I. We denote the
set of prime ideals by X, and for a ∈ L set

Ha = {I ∈ X : a 
∈ I}.

We claim that the family H = {Ha}a∈L of sets is closed under two-term
intersection and union, and that the mapping a �→ Ha is an isomorphism from
L onto {Ha}a∈L considered as a lattice with ∩ and ∪ for operations.

First we show that a �→ Ha is 1-to-1, and to this end it is sufficient to show
that for any two a 
= b in L there is a prime ideal I which contains exactly
one of a and b. First assume that a < b, and let S be the set of all ideals that
contain a but do not contain b. S is not empty, for {c ∈ L : c ≤ a} is such
an ideal. It is easy to show that if M is an ordered subset of S with respect
to inclusion, then the union of the ideals in M is again in M , hence by Zorn’s
lemma (see Chapter 14) there is a maximal element I in S. We claim that I
is a prime ideal. In fact, suppose to the contrary that c ∧ d ∈ I but c, d 
∈ I.
The ideal generated by the set I ∪ {c} consists of those elements p ∈ L for
which there is a q ∈ I with the property that p ≤ c ∨ q (just check that the
set of all these elements form an ideal). Thus, by the maximality of I there
must be an e ∈ I such that b ≤ c ∨ e. In a similar manner there is an f ∈ I
such that b ≤ d ∨ f . But then b ≤ c ∨ (e ∨ f) and b ≤ d ∨ (e ∨ f), hence

b ≤ [c ∨ (e ∨ f)] ∧ [d ∨ (e ∨ f)] = (c ∧ d) ∨ (e ∨ f) ∈ I,

since both c ∧ d ∈ I and e ∨ f ∈ I. Thus, we must have b ∈ I, which is not
the case, hence the claim that I is a prime ideal follows. This verifies that for
a < b there is a prime ideal containing a but not b.

If b < a, then the argument is similar. Finally, if neither a nor b is smaller
than the other one, then a ∧ b is strictly smaller than a, hence, according to
what we have just proven, there is a prime ideal I that contains a∧b but does
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not contain a. The primeness of I shows that we must then have b ∈ I, and
the existence of I has been verified in this case as well.

The proof that H is closed for union and intersection and that a �→ Ha is
an isomorphism is easy:

Ha∧b = {I ∈ X : a ∧ b 
∈ I} = {I ∈ X : a, b 
∈ I}
= {I ∈ X : a 
∈ I} ∩ {I ∈ X : b 
∈ I} = Ha ∩ Hb,

and similarly,

Ha∨b = {I ∈ X : a ∨ b 
∈ I} = {I ∈ X : a 
∈ I or b 
∈ I}
= {I ∈ X : a 
∈ I} ∪ {I ∈ X : b 
∈ I} = Ha ∪ Hb.

27. For every H ∈ H there is a K ∈ H with H · K = 0 and H + K = 1,
namely the complement X \H of H with respect to X has this property. All
the other Boolean algebra properties are easy consequences of properties of
set operations.

28. Let 〈B,+, ·,′ , 0, 1〉 be a Boolean algebra. Then 〈B,∧,∨〉 with ∨ = + and
∧ = · is a distributive lattice, hence it can be represented in the prime ideal
space X as in Problem 26. Following the notation of the proof of Problem 26
it is clear that H0 = ∅ and H1 = X. Thus, all that is left is to show that
Ha′ = X \Ha. But this follows from the other properties that we know of the
mapping a �→ Ha:

X = H1 = Ha∨a′ = Ha ∪ Ha′

and
∅ = H0 = Ha∧a′ = Ha ∩ Ha′ ,

hence Ha′ = X \ Ha as was claimed.

29. P(X) is a Boolean algebra by Problem 27, and clearly the union ∪i∈IHi

of any set of subsets Hi, i ∈ I of X is a subset of X, which is the smallest
set U with U ∩ Hi = Hi for all i. In a similar fashion, ∩i∈IHi is the infimum
of the sets Hi, i ∈ I. Thus, the completeness of P(X) as a Boolean algebra
follows. Complete distributivity was proved in Problem 6.

30. Let (A, +, ·,′ , 0, 1) be a complete and completely distributive Boolean al-
gebra. Let us denote the smallest majorant and the greatest minorant of a
subset B ⊆ A by ∨B and ∧B, respectively. It is clear that ∨{a, b} = a + b
and ∧{a, b} = a · b, and for two elements we shall use ∨ and + and ∧ and ·
interchangeably.

We call an element x ∈ A an atom if there is no a 
= 0, x with a · x = a.
As in the solution to Problem 26, we set a  b if a · b = a. With this partial
ordering an element x is an atom if there is no element between 0 and x; i.e.,
if 0 ≺ a  x implies a = x.
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Let F = A{0, 1} be the set of all functions from A to {0, 1}, and for any
element a of A set a0 = a and a1 = a′. For any f ∈ F consider the greatest
minorant xf of the elements af(a), i.e., we set

xf =
∧
a∈A

af(a).

This may be 0, but if it is not zero, then it is an atom. In fact, if a0 
= 0
and a0  xf , then a0  a

f(a0)
0 , hence f(a0) = 0, and then a0  xf  a0, so

a0 = xf , which shows that xf is, in fact, an atom. Let X be the set of all the
atoms xf .

Assign to any element a ∈ A the set

Ha = {xf ∈ X : xf  a}.

We claim that a �→ Ha is an isomorphism from (A,+, ·,′ , 0, 1) onto P(X).
By complete distributivity we have

1 = ∧{a ∨ a′ : a ∈ A} =
∨

f∈F

∧
a∈A

af(a) =
∨

f∈F
xf ,

and so for every b ∈ A we get (recall that a · b = inf{a, b} = a ∧ b)

b = b · 1 = b · (
∨

f∈F
xf ) =

∨
f∈F

b · xf ,

and here on the right-hand side the nonzero elements b · xf are exactly the
atoms xf  b. Thus, every element in the algebra is the least upper bound of
the atoms below it. This shows that a �→ Ha is a 1-to-1 mapping. Conversely,
if C ⊆ X is a subset of the set of the atoms, and c = ∨C, then for an xf we
have

xf · c = xf ·
(∨

C
)

=
∨

{xf · xg : xg ∈ C},

and this is 0 if xf 
∈ C and is xf if xf ∈ C. Thus, a �→ Ha is a mapping onto
P(X). It is also clear that xf  a · b if and only if xf  a and xf  b, thus
Ha·b = Ha ∩Hb. Furthermore, xf  a if and only if xf 
 a′, so X \Ha = Ha′ .
Finally, xf  a + b if and only if xf  a or xf  b (because if xf 
 a, b then
xf  a′, b′, which implies xf 
 (a′ · b′)′ = a + b), and so Ha+b = Ha ∪ Hb.
Since H0 = ∅ and H1 = X, we are done.

Naturally it is also true that the mapping a �→ Ha preserves the greatest
minorant and the smallest majorant as well.

31. Let H0 be the smallest element of H (there is such, just apply the condition
to H∗ = H). Then for this we have H0 ⊆ f(H0). Let

B = {H ∈ H : H ⊆ f(H)}.
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This set is not empty (H0 ∈ H), and let F be the smallest element in H that
contains all elements of B. We have H ⊆ F for all H ∈ B, hence H ⊆ f(H) ⊆
f(F ) for all H ∈ B, and by taking union we can see that F ⊆ f(F ). On
applying f to both sides we get f(F ) ⊆ f(f(F )), so f(F ) is an element in B,
and hence f(F ) ⊆ F . Thus, f(F ) = F , and F is a fixed point.

* * *

32. Suppose to the contrary that, e.g., there is a subfamily H∗ of sets in H
such that there is no smallest element in H including all the sets in H∗.

Let A0 ∈ H∗ be arbitrary, and by transfinite recursion we select sets
Aξ ∈ H∗, ξ < α as follows. If Aξ, ξ < η have already been selected, and
there is no smallest set in H that includes all Aξ, ξ < η, then terminate the
construction, and set α = η. If, however, there is a smallest set Kη ∈ H
including all the sets Aξ, ξ < η, then Kη cannot include all the sets in H∗,
hence there is a set K∗

η ∈ H∗ that is not included in Kη. Now let Aη be the set
Kη∪K∗

η . It is clear that this process terminates (in fewer than |H∗|+ steps), α
is a limit ordinal (otherwise H∗ would have a largest element), and {Aξ}ξ<α

is a strictly increasing sequence of sets in H. The way we defined α shows
that if B is the set of all sets in H that include all Aξ, ξ < α as a subset, then
there is no smallest set in B. If B is not empty, then we define a transfinite
sequence {Bξ}ξ<β of elements of B. Let B0 ∈ B be arbitrary, and if Bξ, ξ < η
have already been defined for some ordinal η, then let Bη be an element of B
that is strictly included in all sets Bξ, ξ < η if there is one, and if there is no
such set then we put β = η, and the process terminates. It is clear that this
process has to terminate in fewer than |B|+ steps, and by the assumption on
B, β is a limit ordinal.

It is also clear that there cannot be any set H ∈ H that includes all Aξ,
ξ < α and is included in all Bξ, ξ < β, for such an H would belong to B, and
then it would be the smallest element of B. Thus, for all sets H either there
exists a smallest αH < α such that AαH


⊆ H, or there is a smallest βH < β
such that H 
⊆ BβH

.
Now we define a mapping f : H → H as follows. If αH is defined, then let

f(H) = AαH
, otherwise set f(H) = BβH

. It is clear by the definition of the
ordinals αH and βH that this f does not have a fixed point. Thus, if we can
show that f preserves ⊆, then the statement in the problem follows from the
contradiction to the hypothesis in the problem.

Let H ⊆ K be two elements of H. If αK is defined, then αH is also defined,
and αH ≤ αK , hence we have f(H) = AαH

⊆ AαK
= f(K). In a similar way,

if αH is not defined then αK is not defined and βK ≤ βH , so in this case
f(H) = BβH

⊆ BβK
= f(K). The only remaining case is when αH is defined

but βK is not, in which case we have f(H) = AαH
⊂ BβK

= f(B), because
every Aξ is a subset of every Bη. This proves that f preserves ⊆.
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33. Follow the solution of Problem 24, and let H be an infinite subset of X. It
is easy to prove that there is a family F of cardinality continuum of subsets
of H such that if F1, F2 ∈ F , then both F1 \ F2 and F2 \ F1 are infinite; e.g.,
this follows from Problem 4.41. It is now clear that if we take the images of
the sets in F under the ring homomorphism H → H/I used in the solution of
Problem 24, then these images are all different and satisfy the condition that
for them b · a = b but b 
= 0.

34. Just follow the proofs of Problems 24 and 33, and use that if X is a set
of cardinality κ, then there are 2κ subsets of X any two differing in at least κ
elements; see Problem 18.3.



2

Countability

1. Let the sets be A0, A1, . . .. We can assume that neither of these is empty,
and let Ai = {a(i)

0 , a
(i)
1 , . . .} be an enumeration of the elements of Ai. Then

a
(0)
0 , a

(0)
1 , a

(1)
0 , a

(0)
2 , a

(1)
1 , a

(2)
0 , . . .

is an enumeration of the union.

2. It is enough to prove that the product of two countable sets is countable.
Let the sets be

A = {a0, a1, . . .} and B = {b0, b1, . . .}.

Then the elements of the product can be enumerated as

(a0, b0), (a0, b1), (a1, b0), (a0, b2), (a1, b1), (a2, b0), . . . .

3. The set of k element sequences of a set A is nothing else than the k-fold
product of A with itself. Apply Problem 2.

4. The set of finite sequences is the union of the sets of k-element sequences
for all k = 0, 1, . . .. Now the result follows from Problems 3 and 1.

5. Identify each polynomial with the sequence of its coefficients (starting with
the nonzero highest coefficient), and then apply the preceding problem.

6. Recall that a complex number is called algebraic if it is the zero of a not
identically zero polynomial with integer coefficients. Each nonzero polynomial
has at most a finite number of zeros. Hence the set of all zeros of nonzero
polynomials with integer coefficients is countable by Problems 5 and 1.
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7. Suppose R is countable. Then (0, 1) is also countable. Let x0, x1, . . . be an
enumeration of the elements of (0, 1), and let xi = 0.α(i)

1 α
(i)
2 . . . be the decimal

representation of xi (some reals have two decimal representations; in that case
choose either one). Now let bi = 4 if a

(i)
i 
= 4, and let bi = 6 if a

(i)
i = 4. The

number x = 0.b1b2 . . . is in (0, 1) and is different from any of the numbers
x0, x1, . . ., which is a contradiction since in this last sequence we have listed
all numbers in (0, 1). That x 
= xi follows from the fact that the ith digits of
these numbers differ (which in itself does not prove that x 
= xi as is seen from
0.1000 . . . = 0.099999 . . .), and x does not have 0 or 9 among its digits (if two
different decimal expansions represent the same number, then one of them
contains only 0’s and the other one contains only 9’s from a certain point on).

8. This follows from Problems 6 and 7.

9. a) Enumerate the rationals as 0, 1/1, −1/1, 1/2, 2/1, −2/1, −1/2, 1/3,
2/2, 3/1, −3/1, −2/2, −1/3, 1/4, 2/3, 3/2, . . . .

b) If S ⊂ A is a finite set, then let HS be the set of mappings of S into B. If S
has k elements, then clearly HS is equivalent to Bk, hence it is countable by
Problem 2. Now the set in the problem is the union of all the HS ’s for finite
subsets S of A, and there are at most countably many such S’s (see Problem
4). Hence the statement follows from Problem 1.

c) If A = {ai}∞
i=0 is a convergent sequence consisting of natural numbers,

then there is a j such that ak = aj for all k ≥ j. If j is the smallest index with
this property, then associate with S the finite sequence S∗ = {a0, a1, . . . , aj}.
It is clear that S∗ uniquely determines S, hence the statement follows from
Problem 4.

10. For every a ∈ N if a ∈ Ai for some i then select such an Aia , and if a 
∈ Ai

for some i then select such an Ai∗
a
. It is clear that {Aia

, Ai∗
a

: a ∈ N} is an
appropriate subfamily.

11. Let m be the supremum of all those real numbers r for which A∩ (−∞, r)
is countable (if there is no such r, then let m = −∞). We cannot have m = ∞,
since then A, as the union of the countable sets A ∩ (−∞, k), k = 0, 1, 2, . . .,
would itself be countable. It is also clear that A∩(−∞, m) = ∪nA∩(−∞, m−
1/n) is also countable.

In a similar fashion, let M be the infimum of all those real numbers r for
which A∩(r,∞) is countable. Then this M is bigger than −∞, and A∩(M,∞)
is countable. These imply that we cannot have m ≥ M . But then any number
a ∈ (m, M) has the desired property.

12. By Problem 4 the set N has at most countably many subsets consisting
of less than (K + 1) elements, so it is enough to prove that the set T of those
H ∈ H that have at least (K + 1) elements is also countable. Let BK+1 be
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the set of (K + 1) element subsets of N. As we have just mentioned, BK+1
is countable. But every element H ∈ T includes a set B ∈ BK+1 as a subset,
and the condition on the family H ∈ H implies that no B ∈ BK+1 can be
contained in more than k such H. All these imply that T is countable (see
Problem 1), and we are done.

13. Every subinterval (a, b) in question can be identified with the pair (a, b) ∈
Q × Q. Hence the statement follows from Problems 2 and 9, a).

14. Select a rational point from every interval. Thus, there are at most as
many intervals as rational numbers.

The argument is the same for Rn, since the points with rational coordi-
nates are dense and form a countable set.

15. Let A be a discrete set. Write a ball Brx of radius rx around every point
x ∈ A in such a way that Brx

contains only the point x from A. Then the
balls Brx/2 are disjoint. Apply Problem 14.

16. Let G ⊂ R be open. For x, y ∈ G let x ∼ y if the interval [x, y] lies in
G. It is easy to see that this is an equivalence relation, and the equivalence
classes are open intervals. Since the different equivalence classes are disjoint,
and since by Problem 14 there are at most countably many of them, we are
done.

17. Every open disk with rational center (a, b) and rational radius r can be
identified with the triplet (a, b, r). Use now Problems 2 and 9, a). The argu-
ment is the same for Rn.

18. Let G ⊂ R2 be an open set, and let H be the collection of all disks with
rational center and rational radius that lie in G. We are going to show that
these disks cover G (see also Problem 17). For P ∈ G let ρP be the supremum
of all radii ρ ≤ 1 for which the disk Bρ(P ) with center at P and of radius ρ
is included in G, and select a rational number ρP /3 < rP < 2ρP /3. If S is a
point with rational coordinates that lies closer to P than ρP /3, then the ball
BrP

(S) belongs to H (use the triangle inequality) and clearly covers P .

19. Let Hn be the set of those circles in H that have radius ≥ 1/n. Since
H is uncountable (see Problem 7) and H = ∪nHn, at least one of the sets
Hn, say Hn0 , is uncountable. Let k be an integer, and let Hn0,k be the set
of those circles in Hn0 that touch the real line in a point of the interval
((k − 1)/2n, k/2n]. Since ∪k∈ZHn0,k = Hn0 , at least one of the sets, say
Hn0,k0 is uncountable, hence this set contains infinitely many circles that lie
on the same side of the real axis. But it is easy to see that if two circles of
Hn0,k0 lie on the same side of the real axis, then they intersect.

An alternative way is to select for each x ∈ R a circle Cx from H touching
R at x and for each Cx select a point with rational coordinates inside Cx. Then
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two of these selected points must be the same, and then the corresponding
circles intersect.

20. The answer is no: consider the family of circles Cr, 1 ≤ r < ∞, where Cr

is the circle with center at the point (0, r) and of radius 2r − 1.

21. Let Hn be the set of touching points where two circles of radius bigger
than 1/n touch each other. It is enough to prove that each Hn is countable.
Let us divide the plane into the squares

Qj,k = {(x, y) : j/2n ≤ x < (j + 1)/2n, k/2n ≤ y < (k + 1)/2n}

with k, l = 0,±1,±2, . . . of side length 1/2n, and let Hn,j,k = Hn∩Qj,k. Simple
geometry shows that each Hn,j,k can contain at most one point where two
circles of radius bigger than 1/n touch each other from the outside. Associate
with every other point P ∈ Hn,j,k the region between the two circles of radius
bigger than 1/n that touch each from the inside at the point P . Then simple
inspection shows that these regions are pairwise disjoint, so by Problem 14
their number is countable. Thus, each Hn,j,k is countable, and we can conclude
that Hn = ∪∞

j,k=−∞Hn,j,k, as a countable union of countable sets, is countable.

22. A letter T is a Y -set in the sense of the next problem, hence the statement
follows from the next problem.

23. Let H be a set of disjoint Y -sets on the plane, and let Hn be the set of
those elements in H that consist of segments that are longer than 1/n and
for which each angle formed by the segments is also bigger than 2π/n. It is
enough to show that each set Hn is countable. Let us divide the plane into
the squares

Qj,k = {(x, y) : j/2n ≤ x < (j + 1)/2n, k/2n ≤ y < (k + 1)/2n}

with k, l = 0,±1,±2, . . . of side length 1/2n, and let Hn,j,k be the set of
those Y -sets in Hn for which the common point (call it the vertex) of the
segments lies in Qj,k. Simple geometry shows that each Qj,k can contain at
most finitely many vertices of Y -sets from Hn (actually at most 5n), hence
Hn = ∪∞

j,k=−∞Hn,j,k, as a countable union of finite sets, is countable.

24. Let X = {xi}∞
i=0 and Y = {yi}∞

i=0 be a separate enumeration of all the x-
and all y-coordinates of the points in A, and put a point (xi, yk) ∈ A into B
if k ≤ i, otherwise put it into C. Now if a vertical line cuts A then it must
be of the form x = xi0 for some i0, and on this line there are at most i0 + 1
points from B (namely only those (xi0 , yk), k ≤ i0 points that lie in A). In a
similar manner, any horizontal line that intersects A is of the form y = yk0 ,
and there are at most k0 points of C on such a line.
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25. First we verify the sufficiency of the condition, so let A×A = B∪C be an
appropriate decomposition. We have to show that then A must be countable.
In fact, suppose to the contrary that A is uncountable. Take a countably
infinite subset K ⊂ A. Then (A × K) ∩ C is countable, since for each y ∈ K
the number of (x, y) with (x, y) ∈ C is finite. But for every x ∈ A there is a
y ∈ K such that (x, y) ∈ C, because the number of those y for which (x, y) ∈ B
is finite. Thus, (A×K) ∩C has to be uncountable. This contradiction shows
that, indeed, A is countable.

The necessity of the condition is easily established, namely if {x0, x1, . . .}
is an enumeration of the points of A, then B = {(xi, xj) : j ≤ i} and
C = {(xi, xj) : i < j} is clearly an appropriate decomposition.

26. The set S of numbers of the form b − c with b, c ∈ A is countable (see
Problem 2), hence there are real numbers outside S. If a 
∈ S, then (a+A)∩A =
∅.

27. Fix two different points R,S of A, and let CR resp. CS be the family of
all circles with rational radius and with center at R resp. S. The assumption
implies that any point of A lies on one of the circles in CR and also on one of
the circles in CS , hence all points of A are among the points of intersection
of the pairs of circles CR ∈ CR and CS ∈ CS . There are only countably many
pairs (see Problems 2 and 9, a)) and each such pair has at most two common
points, hence the number of points in A is countable.

The answer to the last question is ‘YES’: there is such a set lying on the
circle, namely select an angle α 
= 0, and let A be the set of those points that
are obtained by counterclockwise rotating the point (1, 0) about the origin
by angles nα, n = 0, 1, . . .. Using trigonometric identities it is easy to show
that if both sin(α/2) and cos(α/2) are rational numbers, then the distances
between points of A are rationals. That there is an 0 < α < π/2 for which
both sin(α/2) and cos(α/2) are rational numbers follows from the existence
of Pythagorean triplets. The fact that by selecting α this way all the points of
A are different (hence A is infinite) lies somewhat deeper, and it follows from
the irrationality of α/π.

An alternative way of constructing an infinite set not lying on a straight
line but having all distances rational is to choose infinitely many different
Pythagorean triples (an, bn, cn), i.e., an > bn > cn positive integers with
a2

n = b2
n + c2

n and no common factors, and consider the points (0, 1), (0, 0),
(bn/cn, 0), n = 0, 1, . . .. The only thing we have to check is the distance from
(0, 1) to (bn/cn, 0), but it is

√
1 + (bn/cn)2 = an/cn, a rational number.

28. The sequence {an} with an = n(maxi≤n b
(i)
n ) does the job.

29. The sequence {sn} with sn = 1+maxi≤n s
(i)
n does the job. [W. Sierpiński,

Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965, III.6/1]
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30. Take those sequences that contain only finitely many nonzero elements.
Their number is countable (see Problem 9), and since we can match any initial
segment of any sequence with such a sequence, the property required in the
problem follows. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci.
Publ., Warszawa, 1965, III.6/2]

31. The answer is no: if {s(i)
n }∞

n=0, i = 0, 1, . . . are any sequences of natural
numbers, then there is a sequence {sn} of natural numbers with the property
that for some subsequence {s(ik)

n }∞
n=0, 0 ≤ i1 < i2 < i3 < · · · it is true that

sn 
= s
(ik)
n for all n and k. In fact, if there are infinitely many i’s with s

(i)
0 
= 0,

then let s0 = 0, and let I0 be the set of all i’s for which s
(i)
0 
= 0. If, on the

other hand, there are only finitely many i’s with s
(i)
0 
= 0, then let s0 = 1,

and let I0 be the set of all i’s for which s
(i)
0 = 0. In either case let i0 be the

smallest element of I0.
Next we define s1, I1, and i1. Choose a natural number a1 bigger than

s
(i0)
1 . If there are infinitely many i ∈ I0 with s

(i)
1 
= a1, then let s1 = a1, and

let I1 be the set of all i ∈ I0 for which s
(i)
1 
= a1. If, however, there are only

finitely many i’s with s
(i)
1 
= a1, then let s1 = a1 + 1, and let I1 be the set of

all i’s for which s
(i)
1 = a1. Now let i1 be the smallest element of I1 larger than

i0.
In defining s2, I2 and i2, choose a natural number a2 bigger than s

(i0)
2 and

s
(i1)
2 . If there are infinitely many i ∈ I1 with s

(i)
1 
= a2, then let s2 = a2, and

let I2 be the set of all i ∈ I1 for which s
(i)
2 
= a2. If, however, there are only

finitely many i’s with s
(i)
2 
= a2, then let s2 = a2 +1 and let I2 be the set of all

i’s for which s
(i)
2 = a2, and let i2 be the smallest element of I2 that is larger

than both i0 and i1. If we continue this process, then the construction shows
that sn 
= s

(ik)
n for all n and k.

32. We can inductively define the permutations π1, π2, and π3. Let π1(0) = 0
and π2(0) and π3(0) be arbitrary two values for which rπ2(0)+rπ3(0) = x0−r0.

Now suppose that π1(k), π2(k), and π3(k) have already been defined for
k < n. If n is divisible by 3, then let π1(n) be the smallest natural number
that is not of the form π1(k) for some k < n. Note that for any s there is
a unique t such that rs + rt = xn − rπ1(n), so we can select π2(n) = s and
π3(n) = t where s, t is such a pair that s is different from every π2(k), k < n,
and t is different from every π3(k), k < n.

If n is of the form 3l + 1 then do the same, just select first π2(n) to be the
smallest natural number different from every π2(k), k < n, and then select
π1(n) and π3(n) according to the above process, and similarly if n is of the
form 3l+2, then select first π3(n) to be the smallest natural number different
from every π3(k), k < n, and then select π1(n) and π2(n) according to the
above process. It is clear that this procedure produces three permutations of
N, and the equation xn = rπ1(n) + rπ2(n) + rπ3(n) holds for all n.
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33. Consider as {xn} the sequence 1, 0, 0, 0, . . .. Suppose that for two permuta-
tions π1 and π2 we had xn = rπ1(n)+rπ2(n) for all n. Let π be the permutation
of the natural numbers for which rπ(n) = −rn for all n. Then since xn = 0
for n = 1, 2, . . ., we have π2(n) = π ◦ π1(n) for all n = 1, 2, 3, . . ., and since
both π2 and π ◦ π1 are permutations of N, it follows that we must also have
π2(0) = π ◦ π1(0). But this means that rπ1(0) + rπ2(0) = 0 
= 1 = x0, which is
a contradiction.

34. First of all we prove that the number of elements in a finite Boolean algebra
is a power of 2, and two finite Boolean algebras having the same number of
elements are isomorphic. In fact, if 〈A,+, ·,′ , 0, 1〉 is a finite Boolean algebra,
and S is the set of its atoms (i.e., the elements a ∈ A with the property that
there is no b ∈ A such a · b 
= 0, a), then it is easy to see that every element
is obtained by taking the sum of the elements in some subset C of S, and for
different C’s we get different elements in the Boolean algebra. Thus in this
case, A has 2n elements. If 〈A∗,+∗, ·∗,′′ , 0∗, 1∗〉 is another Boolean algebra
with 2n elements, then the set S∗ of its atoms is of cardinality n, and it is
easy to see that any 1-to-1 correspondence f : S → S∗ extends in a natural
way to an isomorphism from 〈A,+, ·,′ , 0, 1〉 to 〈A∗,+∗, ·∗,′′ , 0∗, 1∗〉.

Now let 〈A,+, ·,′ , 0, 1〉 and 〈A∗,+∗, ·∗, ′′, 0∗, 1∗〉 be two countably infinite
Boolean algebras, and let A = {a0, a1, . . .} and A∗ = {a∗

0, a
∗
1, . . .} be an enu-

meration of the different elements in them. We use a back-and-forth argu-
ment, and for simpler notation we shall write +, ·, ′ instead of +∗, ·∗, ′′. Let
A0 = {0, 1} and A∗

0 = {0∗, 1∗}, and by induction we define increasing subal-
gebras An and A∗

n of some 2kn elements as follows. Suppose that An−1 and
A∗

n−1 have already been defined, and fn−1 : An−1 → A∗
n−1 is an isomor-

phism between them. If n is even, then let aj ∈ A \An−1 be the element with
smallest index j, and let An be the subalgebra generated by aj and An−1.
We claim that there is an element a∗

m ∈ A∗ \ A∗
n−1 such that the subalgebra

A∗
n generated by a∗

m and A∗
n−1 is isomorphic to An, and what is more, the

isomorphism fn−1 can be extended to an isomorphism fn of An onto A∗
n. This

will prove the statement in the problem. In fact, if n is odd then first select
a∗

m ∈ A∗ \ A∗
n−1 to be the element with smallest index m, and let A∗

n be the
subalgebra generated by a∗

m and A∗
n−1, and to this select in a similar fashion

as above an aj ∈ A \ An−1 so that the subalgebra generated by aj and An−1
is isomorphic to A∗

n, and an isomorphism fn can be obtained from an appro-
priate extension of fn−1. Repeating this process it is clear that ∪nAn = A,
∪nA∗

n = A∗, and if we define f(a) = fn(a) with an n for which a ∈ An, then
this is a correct definition, and f establishes an isomorphism from A to A∗.

To simplify notation let us denote aj by a. Since a 
∈ An−1, if s is an atom
of An−1, then there are three possibilities: s · a = 0, s · a 
= 0, s and s · a = s.
Let s1, s2, . . . , skn−1 be the atoms of An−1 arranged in such an order that for
1 ≤ i ≤ p we have si · a = 0, for p < i ≤ q we have si · a 
= 0, si, and for
q < i ≤ kn−1 we have si · a = si (some of these index sets may be empty,
but we shall just discuss the general case). It is easy to see the atoms in An,
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which is the Boolean algebra generated by a and An−1, are the elements

s1, . . . , sp, sp+1 · a, . . . sq · a, sp+1 · a′, . . . sq · a′, sq+1, . . . , skn−1 .

In fact, if s is any of these elements, then consider the set B of all elements
b ∈ An for which s · b = 0, s and s · b′ = 0, s. These elements form a subalgebra
that contains a and all of the si’s, so B = An. Thus, all these s’s are atoms
in An, and clearly the subalgebra generated by them contains An−1 as well
as a, hence there cannot be any other atom in An.

Note that q > p, for otherwise we would have a ∈ An−1. Let s∗
i = fn−1(si)

be the corresponding atoms of A∗
n−1. We claim that there is an element a∗ 
∈

A∗
n−1 such that for 1 ≤ i ≤ p we have s∗

i · a∗ = 0∗, for p < i ≤ q we have
s∗

i · a∗ 
= 0∗, s∗
i , and for q < i ≤ kn−1 we have s∗

i · a∗ = s∗
i . In fact, since we

assumed that the algebras are non-atomic, for every p < i ≤ q there is an
element b∗

i ∈ A∗ such that b∗
i · s∗

i 
= 0∗, s∗
i , and then

a∗ = b∗
p+1 · s∗

p+1 + · · · + b∗
q · s∗

q + s∗
q+1 + · · · + s∗

kn−1

is appropriate. Thus, the atoms of the Boolean algebra generated by a∗ and
A∗

n−1 are

s∗
1, . . . , s

∗
p, s

∗
p+1 · a∗, . . . sq · a∗, s∗

p+1 · a∗′, . . . s∗
q · a∗′, s∗

q+1, . . . , s
∗
kn−1

,

fn(si) = s∗
i for 1 ≤ i ≤ p and q < i ≤ kn−1, and if we define fn(si ·a) = s∗

i ·a∗,
fn(si · a′) = s∗

i · a∗′, then it is easy to see that this defines an isomorphism of
An onto A∗

n, which is an extension of fn−1.

35. In proving that a) implies b), let us assume that A has uncountably many
automorphisms ϕ ∈ Φ and let B ⊂ A be an arbitrary finite subset. Then the
restrictions of the automorphisms ϕ ∈ Φ to B cannot all be different (recall
that there are only countably many mappings from B into A; see Problem 9),
hence there are two distinct automorphisms ϕ1 and ϕ2 that agree on B. But
then the non-identity automorphism ϕ−1

2 ◦ ϕ1 leaves all elements of B fixed,
and this proves property b).

Now let us assume that b) holds. Without loss of generality, we can assume
that the ground set A of the algebra is N. We set N0 = 0, ϕ0 = identity,
and inductively define the numbers Nn and the automorphisms ϕn as follows.
Suppose that these are known for all indices not bigger than n. By assumption
there is a non-identity automorphism ϕn+1 that is the identity on the set
[0, Nn]. Let an+1 be an element with ϕn+1(an+1) 
= an+1, and let Cn+1 be
the set of the inverse images of an+1 under the finitely many mappings ϕεn

n ◦
· · · ◦ ϕε1

1 , where ei = 0 or 1 independently of each other, and ϕε is ϕ if ε = 1
and ϕε is the identity automorphism if ε = 0. We also set Dn+1 to be the set
of all the images of the elements j ≤ Nn under the mappings ϕεn

n ◦ · · · ◦ ϕε1
1

where again εi = 0 or 1 independently of each other.
Let Nn+1 be a number bigger than Nn + 1, the elements of Cn+1 and

Dn+1, an+1 and ϕn+1(an+1). We claim that if ε1, ε2, . . . is any 0–1 sequence,
then the automorphism
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ϕε1,ε2,... = · · · ◦ ϕεn
n ◦ · · · ◦ ϕε1

1 (2.1)

is well defined, and for different 0–1 sequences this defines a different automor-
phism of A. This will prove a), for this way we get as many automorphisms
as infinite 0–1 sequences, and the infinite 0–1 sequences form an uncountable
set (see the solution of Problem 7 or apply Problems 7 and 3.11).

Note that if B is an arbitrary finite subset of A, say B ⊂ [0, Nm], then for
all n ≥ m the automorphisms

ϕεn
n ◦ · · · ◦ ϕε1

1

agree on B. In fact, the image B′ of B under

ϕεm
m ◦ · · · ◦ ϕε1

1

is part of Dm+1 ⊆ Dn+1, hence all the authomorphisms ϕn+1, n ≥ m are the
identities on that image set B′. This proves that the right-hand side of (2.1) is
well defined and is a 1-to-1 homomorphism of A into itself. But it is actually
a mapping of A onto A, and hence it is an automorphism. Indeed, if a ∈ A is
given, then let na be so large that for n > na we have ϕn(a) = a, and choose
b in such a way that ϕεn

na
◦ · · · ◦ ϕε1

1 (b) = a (such a b exists, for ϕεn
na

◦ · · · ◦ ϕε1
1

is an automorphism). It is clear that the image of b under the mapping (2.1)
is a.

Thus, we have found that each ϕε1,ε2,... is an automorphism of A, and it is
left to show that for different 0–1 sequences we obtain different automorphisms
this way. In fact, let ε1, ε2, . . . and ε′

1, ε
′
2, . . . be two different 0–1 sequences,

and let, say, ε1 = ε′
1, . . ., εn = ε′

n but εn+1 = 1 while ε′
n+1 = 0. If bn+1

is the element in A such that ϕεn
n ◦ · · · ◦ ϕε0

0 (bn+1) = an+1, then, by the
choice of the numbers an+1, Nn+1 and of the automorphisms ϕj with j >
n + 1, we have ϕε1,ε2,...(bn+1) 
= an+1, while ϕε′

1,ε′
2,...(bn+1) = an+1, hence

the two automorphisms ϕε1,ε2,... and ϕε′
1,ε′

2,... are different. [M. Makkai, see
G.J. Székely (editor), Contests in Higher Mathematics, Problem Books in
Mathematics, Springer-Verlag, 1996, pp. 74–75.]

36. The possible starting points of the rabbit are the lattice points (a, b),
a, b ∈ Z, and the possible jumps are the vectors (p, q), p, q ∈ Z (which means
that if at a certain time the rabbit is in a position (n, m), then in the next
minute it will be in (n + p, m + q)). Thus, the motion of the rabbit can be
described by the quadruple (a, b, p, q), and the set of all such quadruples is
a countable set (see Problem 2). Let us enumerate all these possible motions
into a sequence {(ai, bi, pi, qi)}∞

i=1. If the motion of the rabbit is according to
the quadruple (ai, bi, pi, qi), then after k hours from the start the rabbit will
be in the position (ai + 60kpi, bi + 60kqi). Thus, if we test with a trap at the
ith hour the coordinate (ai +60ipi, bi +60iqi), then we catch the rabbit. Since
we can do that for every i, we will eventually catch it.
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37. Let A = {ai}∞
i=0, and let ai = 0.α(i)

1 α
(i)
2 α

(i)
2 . . . be the decimal representa-

tion for ai (either one if there are two such representations). Let II select yj = 4
if a

(j)
2j 
= 4, otherwise it selects yj = 6. Then whatever numbers x1, x2, . . . the

player I selects, the number 0.x1y1x2y2 . . . does not coincide with any of the
aj ’s so it is not in A (see also the proof of Problem 7).

38. I can force winning only if he lists only one digit infinitely many times.
In fact, suppose that he lists both the digits a and b infinitely many times.
Let A = {ai}∞

i=0, and let ai = 0.α
(i)
1 α

(i)
2 α

(i)
2 . . . be the decimal representation

of ai (either one if there are two such representations). Then II can play in
the following way: he makes sure that y2j = a if a

(j)
2j 
= a, otherwise he puts

y2j = b. It is easy to see that II can form such a permutation, and then II
wins, for the number 0.y1y2 . . . does not coincide with any one of the ai’s, so
it is not in A.

Thus, I can have a winning strategy only if he selects some finitely many
digits x1, x1, . . . , xm0 , and then on he always selects the same digit, say a (in
other words, for i > m0 he chooses xi = a). In this case II can still form any
permutations, and I wins only if all the (countably many) numbers

m0∑
i=1

xi

10li
+

⎛
⎝ ∞∑

j=1

a

10j
−

m0∑
i=1

a

10li

⎞
⎠ =

a

9
+

m0∑
i=1

xi − a

10li
,

where 1 ≤ l1, . . . , lm0 < ∞ are arbitrary different integers, lie in A. Thus, I
can force winning only if there are a digit 0 ≤ a ≤ 9 and finitely many digits
x1, x2, . . . , xm0 such that A contains all numbers of the form

a

9
+

m0∑
i=1

xi − a

10li
, 1 ≤ l1, . . . lm0 , li 
= lj if i 
= j.

By letting here li tend to infinity for all i = 1, 2, . . . , m0 we get that A
must contain the number a/9 (recall that A is closed).

On the other hand, it is obvious that if A contains a number of the form
a/9, a = 0, 1, . . . , 9, and I chooses the sequence

a, a, . . . ,

then he wins.
Thus, the answer to the problem is that I has a winning strategy if and

only if A contains one of the numbers 0, 1/9, 2/9, . . . , 8/9.

39. This is a special case of Problem 8.48.

* * *
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40. Suppose first that H has cardinality at most κ, and without loss of general-
ity we may assume H = κ. It is clear that the representation H ×H = B ∪C
with B = {(ξ, η) : ξ, η < κ, η < ξ} and C = {(ξ, η) : ξ, η < κ, ξ ≤ η}
is such that B intersects every vertical line {(x, y) : x = ξ} in the set
{(ξ, η) : η < ξ}, which is of cardinality smaller than κ, and similarly C
intersects every horizontal line in less than κ points.

Conversely, suppose that H2 = B ∪ C, where B resp. C intersect every
vertical resp. horizontal lines in less than κ points, and suppose that to the
contrary to what we have to prove, the cardinality of H is bigger than κ. Take
a subset K ⊂ H of cardinality κ. Then (H ×K)∩C is of cardinality at most
κ, since for each y ∈ K the number of (x, y) ∈ C is of cardinality smaller
than κ. But for every x ∈ H there is a y ∈ K such that (x, y) ∈ C, since
the number of those y for which (x, y) ∈ B is of cardinality smaller than κ.
Thus, (H × K) ∩ C has to be at least of the cardinality of H, i.e., it has to
be of cardinality bigger than κ. This contradiction shows that, indeed, H is
of cardinality at most κ.



3

Equivalence

1. By considering A × {0} and B × {1} instead of A and B, we may assume
that A and B are disjoint. Let x ∼ y if x or y can be reached from the other
one by alternatively applying f and g finitely many times. Then this ∼ is
an equivalence relation on A ∪B. Every equivalence class is a finite, one-way
infinite or two-way infinite path . . . xj , xj+1, . . ., where xj+1 = f(xj) if xj ∈ A
and xj+1 = g(xj) if xj ∈ B. Let us call the equivalence class C of type I if it
is a finite path (actually, a cycle), of type II if it is a two-way infinite path, of
type III if it is a one-way infinite path that starts in A, and of type IV if it
is a one-way infinite path that starts in B. Note that if C is of class I, II, or
III, then the restriction of f to C ∩A maps C ∩A onto C ∩B, and similarly,
if C is of class IV, then the restriction of g to C ∩B maps C ∩B onto C ∩A.
Thus, if U is the union of all equivalence classes of type I, II, and III, and
F : A → B is defined as F (x) = f(x) if x ∈ U ∩ A and F (x) = g−1(x) if
x ∈ A \ U , then this F is a 1-to-1 mapping of A onto B. Thus, the selection
A1 = U , A2 = A\U , B1 = f [U ], B2 = B \B1 is a decomposition that satisfies
the requirements. [G. Cantor, this proof is due to Gy. König ]

2. See the preceding problem.

3. If f : A → B is 1-to-1, and the range of f in B is B∗, then let g(x) = f−1(x)
if x ∈ B∗, and otherwise let g(x) = a0 where a0 is a fixed element of A. Then
this g is a mapping from B onto A.

Conversely, let g : B → A be a mapping of B onto A. The relation “x ∼ y
if g(x) = g(y)” is an equivalence relation on B. Let h be a choice function on
the set of equivalence classes, i.e., if C is an equivalence class, then h(C) is an
element of C. It is clear that the map f(x) = h(g−1[x]) is a 1-to-1 mapping
of A into B.

4. A includes an infinite sequence a0, a1, . . . of different elements (just se-
lect the elements a0, a1 . . . from A one after another). Now B ∪ {a0, a1 . . .}
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is countable, so it is equivalent to {a0, a1 . . .}. Let g : B ∪ {a0, a1 . . .} →
{a0, a1 . . .} be a 1-to-1 correspondence. Clearly, the mapping h(x) = g(x) if
x ∈ B ∪{a0, a1 . . .} and h(x) = x otherwise is a 1-to-1 mapping of B ∪A onto
A.

5. The set A \ B cannot be countable, for then A would also be countable.
Thus, it is uncountable, and the previous problem shows that A = (A\B)∪B
is equivalent to A \ B.

6. Use the previous problem and the facts that the set of real numbers is
uncountable, while the set of rational numbers is countable.

7. Recall that the Cantor set is precisely the set of those x ∈ [0, 1] that
have a ternary expansion that does not contain the digit 1. Therefore, the
correspondence

(ε0, ε1, . . .) �→ 0.(2ε0)(2ε1) . . . ,

where the number on the right-hand side is given by its ternary expansion,
establishes an equivalence between the set of infinite 0–1 sequences and the
Cantor set.

8. a) f(n, m) = 2n3m.

b) f(x) = 1/2 + 2(arctanx)/π.

c) In view of b), it is enough to give a 1-to-1 mapping from (0, 1) into the
set of infinite 0–1 sequences. If x ∈ (0, 1), and its binary expansion is x =
0.α1α2 . . . (fix any one if x has two binary expansions), then the mapping
x �→ (α1, α2, . . .) is clearly appropriate.

d) As in Problem 7, associate with an infinite 0–1 sequence ε0, ε1, . . . the
number 0.(2ε0)(2ε1) . . . in ternary form. (Warning: it would be wrong to as-
sociate with it the number 0.ε0ε1 . . . in binary form, for then the sequences
1, 0, 0, 0, . . . and 0, 1, 1, 1, . . . would have the same image.)

e) With a sequence n0, n1, . . . of natural numbers associate the 0–1 sequence,
in which n0 +1 zeros are followed by a single 1, then n1 +1 zeros are followed
by a 1, etc.

f) Let S = {x0, x1, . . .} be a sequence of real numbers, and let

xj = ± · · ·α(j)
−2α

(j)
−1.α

(j)
1 α

(j)
2 . . .

be the binary representation of xj , where α
(j)
−k = 0 except for a finite number

of the k’s (thus, we put infinitely many zeros in front of the standard binary
representation). Let also α

(j)
0 = 1 if xj is positive, and otherwise α

(j)
0 = 0.

Now associate with S the sequence
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α
(0)
0 , α

(0)
−1, α

(1)
0 , α

(0)
1 , α

(0)
−2, α

(1)
−1, α

(2)
0 , α

(1)
1 , α

(0)
2 , α

(0)
−3, α

(1)
−2, α

(2)
−1, α

(3)
0 , α

(2)
1 . . . .

This is a 1-to-1 mapping.

The equivalence of the two sets in a)–f) immediately follows from the
equivalence theorem.

9. a) f(n) = (k, m), where the prime decomposition of n is of the form n =
2k · 3m · · · (here we allow k and m to be equal to 0).

b) f(n) = (−1)kl/(m + 1), where n = 2k · 3l · 5m · · ·

c) If x is in the Cantor set, then it has a ternary representation x = 0.α1α2 . . .,
where each αj is 0 or 2. Let f(x) = 0.(α1/2)(α2/2) . . ., where the number on
the right is understood in binary form.

d) With a 0–1 sequence α1, α2, . . . associate 0.α1α2 . . . in binary form.

10. a) If (a, b) and (c, d) are bounded intervals, then let f(x) = c + (d −
c)(x − a)/(b − a). If, say, a is finite, b = ∞ and (c, d) is finite, then let
f(x) = c+2(d−c)(arctan(x−a))/π. The other cases can be similarly handled.

b) Let g(n, m) = (n+m) · (n+m+1)/2+n (this g is called the Gödel pairing
function). It is easy to see that g is a 1-to-1 mapping of N×N onto N. In fact,
we have g(n, m) = k if and only if n + m is the unique nonnegative integer a
with a(a+1) ≤ 2k < (a+1)(a+2), and then n is equal to k−a(a+1)/2 and
m is a − (k − a(a + 1)/2).

c) Associate with any subset A ⊆ X its characteristic function: χA(x) = 1
if x ∈ A and χA(x) = 0 if x ∈ X \ A. The mapping A �→ χA is a 1-to-1
correspondence (bijection) between the elements of the power set P(X) and
X{0, 1}.

d) If a0, a1, . . . is an infinite sequence of the numbers 0, 1, 2, then let us write
in it instead of 1 the sequence 1, 0, and instead of 2 the sequence 1, 1. Then
we get an infinite 0–1 sequence, and it is easy to see that every infinite 0–1
sequence is obtained from a unique 0–1–2 sequence a0, a1, . . ..

e) Let x ∈ [0, 1) and let x = 0.a1a2 . . . be its decimal expansion, where
infinitely many of the ai’s is different from 9. Let us group consecutive 9’s in
the expansion with the first digit after them that is different from 9, and all
other digits form a single group, e.g., if x = 0.12979996659999793 . . ., then
the grouping is (indicating the groups by brackets)

x = 0.(1)(2)(97)(9996)(6)(5)(99997)(93) . . . ,

and let us call the blocks in this grouping by x1, x2, . . ., i.e.,

x = 0.(x1)(x2)(x3) . . . ,



162 Chapter 3 : Equivalence Solutions

where the harmless brackets are added only to show the grouping. Now let
f(x) = (y, z), where y = 0.(x1)(x3)(x5) . . . and z = 0.(x2)(x4)(x6) . . .. Note
that this form of y and z is the one that we obtain after the aforedescribed
grouping, and conversely, if y = 0.(y1)(y2)(y3) . . . and z = 0.(z1)(z2)(z3) . . .
are given in grouped from, then so is x = 0.(y1)(z1)(y2)(z2) . . ., this x belongs
to [0, 1) and it is the unique number with f(x) = (y, z). [Gy. König ]

11. a) Use the equivalence theorem and Problems 8, c) and d).

b) In view of parts c) and f) of Problem 8, R is equivalent to the set of
infinite real sequences (recall that in Problem 8 the given pairs of sets are
actually equivalent, as is stated in the last part of the problem). Hence the
claim follows from the equivalence theorem, for Rn is the set of real sequences
of length n.

c) As it has just been said, this follows from the equivalence theorem if we
use parts c) and f) of Problem 8.

12. a) With a function f : B ∪ C → A associate the pair (f B, f C).

b) With a g : C × B → A associate f : C →BA, where f(c)(b) = g((c, b)).

c) With a (g, h) ∈CA×CB associate f : C → A×B where f(c) = (g(c), h(c)).

13. For a) consider the imbedding x → {x} of X into P(X).
To verify b) we want to show that there is no mapping from X onto P(X)

(see Problem 3). Let f : X → P(X) be any mapping. We have to show that
f is not onto P(X). Let A = {a ∈ X : a 
∈ f(a)}. We claim that A does not
have a preimage under f . In fact, suppose that is not the case, and f(a0) = A
with some a0 ∈ X. Then there are two possibilities:

1. a0 ∈ A, i.e., a0 ∈ f(a0) which is not possible for then a0 cannot be in
A by the definition of A,

2. a0 
∈ A, which is again not possible, for then a0 
∈ f(a0), so a0 should
belong to A.

Thus, in either case we have arrived at a contradiction, which means that
a0 with the property f(a0) = A does not exist.
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Continuum

1. Let H be a family of lines in the plane such that H has fewer elements
than R. Consider the vertical lines x = r, r ∈ R. Not all of them can belong
to H, say the line l0 : x = r0 is not in H. But then every element of H
intersects the line l0 in at most 1 point, so there are fewer than continuum
many intersections on l0, hence some points of l0 are not covered by any line
in H.

2. See Problem 3.11, a).

3. This follows from Problems 2 and 3.8, f).

4. An x ∈ [0, 1] is in the Cantor set if and only if it can be represented in base
3 as x = 0.α1α2 . . . with αi = 0 or αi = 2. Thus, the Cantor set is equivalent
to the set of 0–2 sequences. Apply Problem 2.

5. Let A = {x0, x1, . . .} be an enumeration of the elements in the set so that
we list each element exactly once. Clearly every subset X ⊆ A is uniquely
determined by the function f(j) = 1 if xj ∈ X and f(j) = 0 if xj 
∈ X. Such
an f is nothing else than a 0–1 sequence, so we can apply Problem 2.

6. It is sufficient to show the claim for R. But R has at most as many countable
subsets as sequences, hence the claim follows from Problems 3 and 5.

7. Let B be the set of all balls in Rn with rational center and rational radius.
Then B is countable (see Problem 2.17), and every open set is a union of a
subset of B (Problem 2.18). Thus, by the preceding problem, there are at most
continuum many of them. It is also clear that there are at least as many open
sets as real numbers, so there are exactly continuum many open sets by the
equivalence theorem.
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The closed sets are the complements of the open ones, so their number is
also continuum.

8. Let {Bi : i < ω} be a countable base for the Hausdorff space X. The
mapping x �→ {i < ω : x ∈ Bi} is an injective mapping of X into P(ω), a set
of size c, hence |X| ≤ c.

9. Let (X, T ) be an infinite topological space with the Hausdorff separation
property, i.e., any two points have disjoint neighborhoods. It is clear that
then any finitely many points can be simultaneously separated by disjoint
neighborhoods.

The solution is based on the following observation: let x0, . . . , xn be differ-
ent points in X such that with some neighborhoods G0, . . . , Gn of them there
is an infinite set An that does not intersect any Gi. Then there is a point
xn+1 ∈ An, a neighborhood Gn+1 of it and an infinite subset An+1 ⊂ An such
that xi 
∈ Gn+1 for all 0 ≤ i ≤ n and Gn+1 ∩ An+1 = ∅. In fact, select any
two points y1, y2 ∈ An and two disjoint neighborhoods U1, U2 for them. We
can also achieve that xi 
∈ U1, U2 for all 0 ≤ i ≤ n. Then either U1 ∩ An is
finite, or An \U2 is infinite. In any case, one of An \U1 or An \U2 is infinite.
Suppose, e.g., that An \ U1 is infinite. Then the xn+1 = y1, Gn+1 = U1 and
An+1 = An \ U1 is an appropriate choice.

Now starting from the empty set, construct the above points and neigh-
borhoods for all n. Then clearly Gn ∩ {x0, x1, . . .} = {xn}, which shows that
if I, J ⊆ N are two different subsets of N, then ∪n∈IGn 
= ∪n∈JGn. Thus, all
the open sets ∪n∈IGn, I ⊆ N are different, and so there are at least continuum
many open sets in X by Problem 5.

10. Without loss of generality, we may assume A = N and B = R. The set of
functions f : N → R is the set of all sequences of real numbers. Now apply
Problem 3.

11. Any continuous f : R → R is uniquely determined by its restriction to Q.
Apply the preceding problem.

12. It is enough to prove that R×R×· · · is of cardinality continuum. But this
set is the same as NR, the set of infinite real sequences. Now apply Problem
3.

13. It is enough to show the claim for disjoint sets. Let the sets be Aγ , γ ∈ Γ ,
and let fγ : Aγ → R be a 1-to-1 mapping. Then the union ∪γ∈Γ Aγ can be
mapped into R × Γ by the 1-to-1 mapping F (a) = (fγ(a), γ) if a ∈ Aγ . Now
apply the preceding problem, according to which R × Γ is of cardinality at
most continuum.

14. a) Apply Problem 12.
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b) See Problem 3.

c) A continuous curve γ is γ(t) = (γ1(t), γ2(t)), t ∈ (0, 1), where γ1, γ2 :
(0, 1) → R are continuous functions. Apply Problems 11 and 12 (see also
Problem 3.10, a)).

d) Let f be a monotone real function, and let Sf be the set of its discontinuity
points. Then Sf is countable (see Problem 5.6). Now let X ⊂ R be countable,
and let MX be the collection of all monotone functions f with Sf ⊂ X. Every
f ∈ MX is uniquely determined by its restriction to the set X ∪Q, and there
are only continuum many functions f : X ∪ Q → R (see Problem 10). Thus,
MX is of cardinality at most continuum.

By Problem 6 there are at most continuum many possibilities for X. Thus,
by Problem 13 the union ∪XMX , which is the set of monotone functions, is of
cardinality at most continuum. Since clearly there are at least as many mono-
tone functions as real numbers, the set of monotone functions is of cardinality
continuum by the equivalence theorem.

e) See the preceding proof, but apply Problem 5.4 instead of 5.6 in the proof.

f) See the solution to Problem d).

g) This problem cannot be solved along the lines of the preceding three prob-
lems. In fact, a lower semi-continuous function can have more than countably
many discontinuity points (consider, e.g., the characteristic function of the
complement of the Cantor set).

The key to the solution is the observation that a function f is lower semi-
continuous if and only if all its level sets of the form {x : f(x) > r} are
open. Furthermore, each f is determined by its level sets {x : f(x) > r} with
rational r. Thus, there are at most as many lower semi-continuous functions
as sequences of open subsets of R, and since there are continuum many open
sets in R (see Problem 7), there are continuum many sequences of them (see
Problem 3).

h) Every permutation is a mapping from N into N, so there are at most
continuum many of them in view of Problem 10. To show that there at least
continuum many permutations, consider the transpositions πi = ((2i)(2i+1))
that interchange 2i and (2i + 1), and leave everything else fixed. For any 0–1
sequence ε := (ε0, ε1, . . .) consider the permutation πε that is the product of
all those πi’s for which εi = 1. For different ε’s we get different πε’s hence, by
Problem 2, there are at least continuum many permutations of N.

i) An ordering of N is a subset of N×N, hence there are at most continuum
many of them in view of Problems 2.2 and 5. Now every permutation π of N
defines a well-ordering of N (set x ≺ y if π(x) < π(y)), so there are at least
continuum many well-orderings by the previous problem.

j) A closed additive subgroup is a closed set. Apply Problem 7 to deduce
that there are at most continuum many closed additive subgroups. But their
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number is exactly continuum by the equivalence theorem and by the fact that
all the sets {nx}∞

n=−∞, x ∈ R are closed additive subgroups of R.

k) For x ∈ (0, 1) let fx ∈ C[0, 1] be the piecewise linear function on [0, 1] that
vanishes outside (0, x) and for which f(x/2) = 1 (thus, the curve of f starts
from the origin, goes straight to the point (x/2, 1), from then to the point
(x, 0), and follows the real line from then on). Since each set {λfx}λ∈R, x ∈
(0, 1) is a closed subspace of C[0, 1] that are different for different x ∈ (0, 1),
there are at least continuum many closed subspaces in C[0, 1]. To show that
their number is exactly continuum, it is enough to prove that there are only
continuum many closed sets in C[0, 1], and by the proof of Problem 7 this will
be accomplished if we show a countable set B of open balls such that every
open set is a union of some balls in B. Clearly as B we can choose the set of
balls Br(P ) = {g : |g − P | < r} with rational radius r and with center at
P where P is a polynomial with rational coefficients (cf. Problem 2.5 and the
fact that Q ∼ Z). This construction works by the Weierstrass approximation
theorem.

l) First of all we should make the clarification that functions in L2[0, 1] are
considered the same if they agree almost everywhere. This makes L2[0, 1] into
a set of power continuum. In fact, we know that L2[0, 1] is isomorphic with
l2, the set of all real sequences (x0, x1, . . .) with

∑
i x2

i < ∞, and by Problem
3 there are at most continuum many such sequences.

Every bounded linear transformation is uniquely determined by its restric-
tion to a dense subset, hence, in view of Problem 10, it is enough to show a
countable dense subset in l2. But that is easy, just take the set of all sequences
(x0, x1, . . .) such that xi = 0 for all i ≥ m with some m, and x0, . . . , xm−1 are
rational numbers (see Problem 2.4).

To show that there are at least continuum many bounded linear operators
on l2, just take the constant multiples of the identity operator.

15. Since R and R∞ are equivalent, it is enough to show that R∞ cannot be
represented as the union of countably many sets none of which is equivalent
to R. Let A0, A1, . . . be subsets of R∞ not equivalent to R. Let A∗

j be the
projection of Aj onto the jth coordinate axis, i.e., A∗

j consists of those numbers
a ∈ R for which there is an (x0, x1, . . .) ∈ Aj with xj = a. Since Aj is of power
less than continuum, it follows that A∗

j cannot be equal to R. Thus, for each
j there is an aj ∈ R \ A∗

j . But then the sequence (a0, a1, . . .) does not belong
to any of the sets A0, A1, . . ., but it belongs to R∞, which means that, as we
have claimed, ∪nAn cannot be the whole R∞. [W. Sierpiński, Cardinal and
Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965, , VI.7. Theorem 15]

16. Consider the lines ln := {(x, y) : x = n}, n = 0, 1, . . ., and their union H.
If none of them intersects R2 \A in continuum many points then H ∩ (R2 \A)
is of cardinality less than continuum by Problem 15. But this is not possible,
for each horizontal line intersects A in at most finitely many points, so each
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such line has to intersect H ∩ (R2 \ A). [P. Erdős, Proc. Amer. Math. Soc.,
1(1950), 127–141]

17. Since, according to Problem 15, countable union of subsets of R each of
cardinality less than continuum is again of cardinality less than continuum,
the proof of Problem 2.11 can be copied by replacing “uncountable” by “of
power continuum” everywhere. [W. Sierpiński, Cardinal and Ordinal Num-
bers, Polish Sci. Publ., Warszawa, 1965, , VI.7/2]

18. The statement follows from the solution of Problem 2.35.

19. Let A be an infinite σ-algebra. We are going to show that there is an infinite
family S of pairwise disjoint sets in A. Since the union of any countable subset
of S is in A, and there are at least continuum many such unions/subsets (see
Problem 5), it follows that the cardinality of A is at least continuum.

Call a nonempty A ∈ A an atom if it cannot be written as the union
of two nonempty disjoint sets in A. Two different atoms cannot have a
nonempty intersection, thus if there are infinitely many atoms, then their
collection can serve as S. If there are only finitely many atoms, then let them
be A0, A1, . . . , Am. Since A is infinite, there must be an element B in A which
is not a union of some of these atoms, and then considering B \(A0∪· · ·∪Am)
instead of B, we can even assume that B is nonempty and does not include as
a subset any atom. Thus, B can be decomposed into nonempty disjoint sets
as B = B1 ∪C1. Here B1 has the same property as B, hence it can be written
as B1 = B2 ∪ C2 with disjoint and nonempty B2 and C2. Do the same thing
with B2, etc. The sets C1, C2, . . . will be nonempty and pairwise disjoint, so
we can take as S their collection.

20. See Problem 12.24.

21. The set of Borel sets is the σ-algebra generated by the open intervals (open
sets in Rn). Thus, there are continuum many Borel sets by Problems 19, 20,
and 7.

A real function f is a Borel function if and only if all of its level sets
{x : f(x) > r} are Borel sets. Furthermore, each f is determined by its level
sets {x : f(x) > r} with rational r. Thus, there are at most as many Borel
functions as sequences of Borel sets, so there are at most continuum many of
them (see the solution to Problem 14, g)).

22. Every Baire function is a Borel function. Use the preceding problem.

23. See Problem 3.13.

24. Let a 
= b be two elements in A, and to a subset Y ⊂ X assign the function
fY which maps the elements in Y to a and the elements in X \ Y to b. For
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different Y ’s these fY ’s are different, so we have at least as many functions in
XA as subsets of X. Apply now Problem 23.

25. a) This is RR, apply Problem 24.

b) Let f : [0, 1] → [0, 1] be an arbitrary function. The mapping F (x) =
(x, f(x)), x ∈ [0, 1] can be extended to a 1-to-1 correspondence between R
and R2. Thus, there are at least as many 1-to-1 correspondences as functions
f : [0, 1] → [0, 1], and we can apply Problem 24.

c) We use that if B is a basis of R considered as a linear space over Q (i.e.,
a Hamel basis), then B is of power continuum (see Problem 15.3). Now let
Y ⊂ B be arbitrary, and consider the set BY consisting of all numbers x in
B \ Y and all 2x with x ∈ Y . Clearly, this is again a basis, and we have as
many such bases as possible choices of Y , i.e., more than continuum many
(see Problem 23).

For more on Hamel bases, see Chapter 15. In particular, Problem 15.4 says
that there are 2c Hamel bases.

d) Let C be the Cantor set, and X ⊂ C. The characteristic function χX is
Riemann integrable. Since C is of power continuum (Problem 4), we get more
than continuum many such functions by taking all subsets of X (Problem 23).

e) Every subset of the Cantor set is Jordan measurable. Since C is of power
continuum (Problem 4), we can apply Problem 23.

f) Let B be a basis of R considered as a linear space over Q (i.e., a Hamel
basis). Then B is of power continuum (see Problem 15.3). Now every X ⊂ B
generates an additive subgroup of R, and these subgroups are different for
different X’s. Apply Problem 23.

g) Let x ∈ (0, 1) be a number and fx(t) be the piecewise linear function that
vanishes outside (0, x) and takes the value 1 at t = x/2 (see the solution to
Problem 14, k)). It is easy to see that these functions are linearly independent,
and any subset Y ⊂ {fx : x ∈ (0, 1)} generates a linear subspace CY which
are different for different Y ’s. Thus, there are at least as many such subspaces
as subsets of {fx : x ∈ (0, 1)}, and since this set is of power continuum, we
can apply Problem 23.

h) Consider the set F = {fx : x ∈ (0, 1)} from the preceding solution. This
is a linearly independent subset of L2[0, 1], and any mapping F : F → R can
be uniquely extended to a linear functional on the (linear) subspace generated
by F , and then (non-uniquely) to a linear functional on L2[0, 1]. Since there
are more than continuum many such F ’s (Problem 24), we are done.

26. a) This set is of bigger cardinality than continuum. To prove that it is
enough to show that there is a closed set E of cardinality continuum which
does not contain a rational point. In fact, then for any subset X ⊂ E its
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characteristic function χX is continuous at every rational point, and there are
more than continuum many such characteristic functions by Problem 23.

To show the existence of E, let {rj}∞
j=0 be an enumeration of the rational

numbers. Do now the Cantor construction with the following modification:
choose a closed interval I of length 1 that does not contain r0, then choose
two disjoint closed subintervals I0 and I1 of I of length < 1/2 such that neither
of them contains r1, then choose disjoint closed subintervals I00, I01 ⊂ I0, and
I10, I11 ⊂ I1 of length < 1/22 such that neither of them contains x2, etc. Let
Jn be the union of all intervals at level n (e.g., J2 = I00 ∪ I01 ∪ I10 ∪ I11),
and set E = ∩nJn. This is a closed set and clearly E ∩ Q = ∅. Since every
0–1 sequence ε = (ε0, ε1, . . .) defines a point xε = ∩nIε0ε1...εn , and these points
are different for different 0–1 sequences, E has continuum many points by
Problem 2.

b) This set is of power continuum. This follows from Problem 14, part f).

c) This set is of cardinality bigger than continuum. In fact, let B be a basis of
R considered as a linear space over Q (i.e., a Hamel basis). Then B is of power
continuum (see 15.3). But (see also the solution to Problem 15.13,(a))) every
mapping f : B → R can be extended to a linear functional (with scalar space
Q) on R, and clearly every linear functional satisfies the Cauchy equation.
Finally use Problem 24 to deduce that there are more than continuum many
f ’s.

27. It is enough to prove the result for a particular A of cardinality continuum.
Let A = N{0, 1} be the set of infinite 0–1 sequences, and let Am be the set of
0–1 sequences of length m. Any mapping of g : Am → N generates a mapping
fg : A → N defined as

fg((ε0, ε1, . . .)) = g((ε0, ε1, . . . , εm−1)).

Now there are countably many ways to map Am into N (see Problem 2.9,
b)), so if F is the set of all fg’s with all possible g : Am → N and all
possible m = 1, 2, . . ., then F is countable. This set F of functions satisfies the
requirements in the problem. Indeed, assume that we are given finitely many
different 0–1 sequences ei = {εi,j}∞

j=0, 0 ≤ i ≤ n, and let f(ei) = ai ∈ N

be given. Let m be so large that all the initial sequences e(m)
i = {εi,j}m−1

j=0 ,
0 ≤ i ≤ n are different. Let g : Am → N be an arbitrary mapping for which
f(e(m)

i ) = ai is satisfied for all i = 0, 1, . . . , n. Then for fg ∈ F we have
fg(ei) = ai, as required.

28. Let A be of power continuum, and for every a ∈ A let Ta be a separable
topological space. Let {x(a)

j }∞
j=0 be a countable dense set in Ta. Consider the

functions fk from the preceding problem and the corresponding elements Fk

in the product space with Fk(a) = x
(a)
fk(a) for all a. This is a countable set

in the product space, and using the definition of product topology and the
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definition of the functions fk it is easy to see that {Fk}∞
k=0 is dense in the

product space.

29. First solution. For every x ∈ (1/10, 1) let

Ax = {[10x], [102x], . . . , [10kx], . . .}

where [·] denotes the integral part. Note that if x ∈ (1/10, 1) then x = 0.α . . .
with α 
= 0, hence the sequence [10x], [102x], . . . consists of positive integers
and it contains for every k = 0, 1, 2, . . . exactly one number from the range
10k ≤ z < 10k+1 (i.e., its decimal form consists of exactly k + 1 digits). If x
and y are different elements of (1/10, 1), then their decimal expansions differ,
say the mth decimal digit in x and y are different. Then [10kx] 
= [10ky] for
k ≥ m, hence the two sets Ax and Ay have only finitely common elements.

Second solution. Let P be the set of prime numbers, and for an infinite
subset Σ = {p0, p1, . . .} of P arranged in increasing order assign

AΣ = {p0, p0p1, p0p1p2, . . .}.

The prime factorization for integers is unique, hence if Σ′ ⊆ P is another
infinite subset of P different from Σ, then AΣ and AΣ′ have only finitely
many common terms. Since the number of different Σ’s is continuum (see
Problems 5 and 2.4), we are done.

Third solution. It is sufficient to show the result for Q rather than for N,
i.e., that there are continuum many sets Aγ ⊂ Q such that if γ1 
= γ2, then
Aγ1 ∩Aγ2 is a finite set. Now choose for every γ ∈ R a rational sequence Aγ =
{r(γ)

k }∞
k=0 converging to γ. These Aγ sets clearly satisfy the requirements, for

two sequences converging to different limits can have only finitely many terms
in common.

Fourth solution. Instead of N work with the set of lattice points N×N on
the plane, and for m ∈ R let Am be the set of points (x, y) ∈ N × N that
are of distance ≤ 1 from the line y = mx. It is clear that Am is infinite (it
has a point on every vertical line x = k, k = 0, 1, 2, . . .) and for any two lines
y = mx and y = m′x there can be only a finite number of lattice points lying
of distance ≤ 1 from both, i.e., Am ∩ Am′ is finite.
[G. Fichtenholz and L. Kantorovich, Studia Math., 5(1934), 69–98]

30. See Problem 2.12.

31. Since R can be mapped onto (1, 2) by a monotone increasing function,
it is enough to construct the sequences in question for x ∈ (1, 2). But the
sequences {s(x)

n } with s
(x)
n = [10nx] (where [·] denotes integral part) clearly
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satisfy the requirements (cf. the first solution to Problem 29). [W. Sierpiński,
Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965, , IV.14/8]

32. Let H be an almost disjoint family of cardinality continuum of infinite
subsets of N. For any H ∈ H let hH

0 < hH
1 < . . . be the listing of different

elements of H, and let sH
n = 2hH

n . It is clear that the family {{sH
n }∞

n=0}H∈H
satisfies the requirements.

An alternative way is to consider the first solution to Problem 29.

33. Let a0, a1, . . . , ak be any sequence of length k of natural numbers. The
assumption implies that there is at most one {sγ

n}∞
n=0 with sγ

n = an for all
n = 0, 1, . . . k. Thus, there are at most as many sequences {sγ

n}∞
n=0, γ ∈ Γ

as (k + 1)-element sequences of the natural numbers, so Γ is countable by
Problem 2.3.

34. Let H be an almost disjoint family of cardinality continuum of infinite
subsets of N, and for each H ∈ H we set H∗ = ∪n∈HAn, where An is the set
{k : 22n ≤ k < 22n+1}. It is clear that the family {H∗ : H ∈ H} is almost
disjoint, and since each H∗ includes as its subset infinitely many An’s, the
upper density of every H∗ is 1 (note that 22n

/22n+1 → 0 as n → ∞).

35. We shall show the k = 3 case; the general case can be verified along
similar lines. Since N and N×N are equivalent, it is enough to show a family
of cardinality continuum of subsets of N×N such that the intersection of any
2 members of the family is infinite, but the intersection of any 3 members is
finite. For x ∈ (1, 2) set

Ax = ∪∞
n=1

{
([10nx], k), (k, [10nx]) : 10n ≤ k < 10n+1} .

Note that if (u, v) ∈ Ax then there is an n with 10n ≤ u, v < 10n+1, and
one of u or v must be equal to [10nx]. It is clear that if x, y ∈ (1, 2), then
Ax ∩Ay contains all pairs ([10nx], [10ny]), n = 1, 2, . . .. On the other hand, if
x, y, z ∈ (1, 2) are all different, and n is sufficiently large, then the numbers
[10nx], [10ny], and [10nz] are all different, so Ax∩Ay ∩Az cannot contain any
pair (u, v) with 10n ≤ u, v < 10n+1. This proves that Ax ∩ Ay ∩ Az is finite.

36. One of 0, 1, 2, . . . must be contained in uncountably many members of H,
say a0 is in every H ∈ H0 where H0 is an uncountable subfamily. Let H0 ∈ H0
be any set in H0, and let a0

0, a
0
1, . . . be the listing of different elements of H0

(one of them is a0). Since every H ∈ H0 intersects H0 in an infinite set, there
must be an a1 
= a0 among a0

0, a
0
1, . . . that is contained in uncountably many

H ∈ H0, and the set of all such H be H1. Choose H1 ∈ H1 arbitrarily. By
the assumption the set H0 ∩ H1 is infinite, and let a1

0, a
1
1, . . . be the listing

of different elements of H0 ∩ H1 (one–one of them is a0 and a1). Then there
must be an a2 
= a0, a1 among a1

0, a
1
1, . . . that is contained in uncountably
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many H ∈ H1, and the set of all such H be H2, etc. We can continue this
process indefinitely, and it is clear that the intersection H1∩H2∩· · · contains
all elements a0, a1, . . ..

37. This immediately follows from Problem 43.

38. Let f(H) be a countable subset of H for every H ∈ H. By condition, the
mapping H �→ f(H) is an injection of H into the set of countable subsets
of R, which is a set of power continuum (see Problem 6). Thus, there are at
most continuum many sets in H.

39. See the solution to Problem 18.2.

40. It is again enough to use Q instead of N (see the second solution to
Problem 29), and then we can set for γ ∈ (0, 1) Aγ = (0, γ) ∩ Q.

41. Consider the preceding solution, but set Aγ = [(0, γ) ∪ (1 + γ, 2)] ∩ Q.

42. Instead of N we work again with Q (see the second solution to Problem
29). For every x ∈ R let Ax be a rational sequence converging to x, and let
Bx = Q \ Ax. It is clear that these sets satisfy the requirements.

43. Since (0, 1) is equivalent with R, it is enough to give Ax for x ∈ (0, 1). Let
[y] denote the integral part of y, and for x ∈ (0, 1) let Am(x) be the set of all
those integers 22m ≤ k < 22m+1

for which the [mx]th binary digit (counted
from the right) is 1, and set

Ax = ∪∞
m=1Am(x).

If x1, . . . , xn are different numbers, then there is an m0 such that for m ≥
m0 the numbers [mx1], . . . , [mxn] are all different. For each such m a set of
the form Am(x1)ε1 ∩ · · ·Am(xn)εn consists of those numbers 22m ≤ k < 22m+1

for which n different binary digits are prescribed (the [mxi]th binary digit is
εi for i = 1, 2, . . . , n), hence the number of elements in such a set is

22m+1 − 22m

2n
.

Thus, if m > m0 + 1 and 22m+1
< N ≤ 22m+2

, then the number of elements
of the set Aε1

x1
∩ · · ·Aεn

xn
in the interval [0, N ] is

N − 22m+1
+ O(2m)

2n
+

22m+1 − 22m

2n
+ O(22m

)

and this divided by N tends to 1/2n as N → ∞.

44. Let f(x, x) = 0, and for x 
= y let f(x, y) = 1+min(Ax∩By) where Ax, By

are the sets from Problem 42. Since By∩Ay = ∅, the equality f(x, y) = f(y, z)
can occur only for x = y = z.
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Sets of reals and real functions

1. Let A1 and A2 be the set of those points a ∈ A for which (a, a+δa)∩A = ∅
and (a − δa, a) ∩ A = ∅, respectively. Notice that if a1, a2 ∈ A1, then the
intervals (a1, a1 + δa1) and (a2, a2 + δa2) are disjoint. Hence A1 is countable
by Problem 2.14. In a similar manner, A2 is also countable.

2. Let A ⊂ R be uncountable. By Problem 1 there is an a ∈ A such that
(a, a + δ) ∩ A is nonempty for all δ > 0. Now let a0 ∈ A be a point with
a < a0 < a + 1, then a1 ∈ A a point with a < a1 < min(a0, a + 1/2), etc..
Clearly the sequence {an} selected this way converges to a.

3. For R this follows from the preceding problem. For Rn apply, e.g., Problem
12 to an open cover ∪a∈AGa of the discrete set A, where each Ga contains only
the point a from A. Since this includes a countable subcover the countability
of A follows.

See also (the solution of) Problem 2.14.

4. Let f be right continuous, and let

oscx = lim sup
y1,y2→x

|f(y1) − f(y2)|

be the oscillation of f at x. f is continuous at x if and only if oscx = 0. Thus,
if Am = {x : oscx > 1/m}, then ∪mAm is the set of discontinuity points
of f , and it is enough to prove that each set Am is countable. Because of
the right continuity of f , for every x ∈ R there is a δx,m > 0 such that for
y ∈ (x, x+ δx,m) we have |f(y)−f(x)| < 1/2m. It follows that in (x, x+ δx,m)
there cannot be any point from Am. Thus, the countability of Am follows from
Problem 1.

5. Follow the preceding solution, and let A+
m be the set of those points in

Am where f is continuous from the right, and in a similar manner let A−
m be
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the set of those points in Am where f is continuous from the left. Now the
preceding solution gives that both A+

m and A−
m are countable, hence the result

follows.

6. Let f be a monotone real function. Then f has a limit f(x − 0) from the
left and a limit f(x + 0) from the right at every point x ∈ R, and an x
is a discontinuity point x if and only if f(x + 0) > f(x − 0). Let us assign
the interval (f(x − 0), f(x + 0)) to every discontinuity point x of f . These
intervals are disjoint: if x1 < x2 are distinct points and x1 < x3 < x2, then
by monotonicity we have f(x1 +0) ≤ f(x3) ≤ f(x2 −0), so (f(x1 −0), f(x1 +
0)) ∩ (f(x2 − 0), f(x2 + 0)) = ∅. Now the result follows from Problem 2.14.

7. Let f be a real function that has right and left derivatives, which we denote
by f ′

+(x) and f ′
−(x), at every point x. Let r0, r1, . . . be an enumeration of the

rational numbers, and for rm < rn let An,m = {x : f ′
+(x) > rn, f ′

−(x) < rm}.
It is enough to show that each An,m is countable. In fact, then ∪n,mAn,m is
also countable, and this is the set of those points in which the right derivative
is bigger than the left derivative. In a similar manner it follows that the set
where the left derivative is bigger than the right derivative is countable, and
these two statements prove the claim.

Let An,m,k be the set of those points x ∈ An,m for which it is true that if
x < y < x + 1/k then∣∣∣∣f(y) − f(x)

y − x
− f ′

+(x)
∣∣∣∣ <

rn − rm

2
,

and if x − 1/k < y < x, then∣∣∣∣f(y) − f(x)
y − x

− f ′
−(x)

∣∣∣∣ <
rn − rm

2
.

Since ∪kAn,m,k = An,m, it is enough to show that each An,m,k is countable.
From the preceding inequalities and the definition of the set An,m it is clear

that if x ∈ An,m,k and 0 < h < 1/k, then the expression (f(x + h) − f(x))/h
is bigger than rn − (rn − rm)/2 = (rn + rm)/2, while (f(x) − f(x − h))/h is
smaller than rm +(rn − rm)/2 = (rn + rm)/2. On applying this to the point x
and x− h we can see (use that f(x)− f(x− h) = f((x− h) + h)− f(x− h)))
that it is not possible to simultaneously have x, (x − h) ∈ An,m,k. But this
means that for any x ∈ An,m,k the interval (x − 1/k, x) does not contain any
point of An,m,k, and we can apply Problem 1 to deduce the countability of
An,m,k.

8. Use the preceding problem and the fact that a convex function has left and
right derivatives at every point.

9. Let f be a real function and let A be the set of maximum values of f . Thus,
a ∈ A if there is a point xa ∈ R and a positive δa such that f(xa) = a, and
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there is no larger value of f in the interval (xa − δa, xa + δa). Let An be the
set of those a ∈ A for which δa > 1/n. It is obvious from the definitions that
if a, b ∈ An are different points, then the distance between xa and xb is at
least 1/n. Thus An is a discrete set, and hence it is countable (see Problem
3). Since A = ∪An, the set A is also countable.

10. If a is a strict maximum point of f , then there is a δa > 0 such that for
every y ∈ (a− δa, a + δa), y 
= a the inequality f(y) < f(a) holds. If An is the
set of all such a’s for which δa > 1/n, then clearly for a, b ∈ An we must have
|a − b| > 1/n. Hence An is countable by Problem 3, and so is ∪nAn, the set
of strict maximum points of f .

11. If f is continuous and non-constant, then, by the intermediate value the-
orem, its image covers a whole interval. Thus, in this case not every point in
the image can be a minimum or maximum value by Problem 9.

12. Let {Bj , j = 0, 1, . . .} be the collection of open balls in Rn of rational
center and rational radii (cf. Problem 2.17). Represent each Gγ , γ ∈ Γ as a
union some of the Bj ’s as in Problem 2.18: Gγ = ∪j∈∆γ Bj , where ∆γ is a
subset of the natural numbers. Then⋃

γ∈Γ

Gγ =
⋃

j∈∪γ∈Γ ∆γ

Bj ,

hence if for each j ∈ ∪γ∈Γ ∆γ we select a γj ∈ Γ such that j ∈ ∆γj , then
clearly ⋃

γ∈Γ

Gγ =
⋃

j∈∪γ∈Γ ∆γ

Gγj ,

so the subfamily Gγj
, j ∈ ∪γ∈Γ ∆γ covers whatever is covered by the family

Gγ , γ ∈ Γ .

13. There are two kinds of semi-open intervals, namely those of the form [a, b)
and of the form (a, b]. Let Gγ , γ ∈ Γ1 be the set of those intervals in {Gγ}γ∈Γ

that are of the first kind, and let Gγ , γ ∈ Γ2 be the set of those intervals
in {Gγ}γ∈Γ that are of the second kind. It is clearly enough to prove the
claim separately for the families Gγ , γ ∈ Γ1 and Gγ , γ ∈ Γ2 and for the sets
E1 = ∪γ∈Γ1Gγ and E2 = ∪γ∈Γ2Gγ , respectively. Thus, we may assume that
all the intervals Gγ are of the first kind.

Let Int(Γγ) be the interior of Gγ . On applying the previous problem (to
R), we can see that the union of these interiors can be covered by countably
many of them, thus we only have to show that the same is true of the set

F =

⎛
⎝⋃

γ∈Γ

Gγ

⎞
⎠ \

⎛
⎝⋃

γ∈Γ

Int(Gγ)

⎞
⎠ .
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It is clear that for every x ∈ F there is a δx > 0 such that (x, x+δx) is part of
the interior of a Gγ , hence in (x, x+δx) there is no point from F . By Problem
1 F is countable, and so if we select for each of its points a Gγ that covers it,
then we get a countable subcover of F .

14. This problem can be reduced to the preceding one. In fact, every nonde-
generated interval can be written as a union of two semi-open intervals. Thus,
we write Gγ = Gγ,1 ∪ Gγ,2 with sets Gγ,1 and Gγ,2 of semi-open intervals.
Now apply Problem 13 to each family Gγ,1, γ ∈ Γ and Gγ,2, γ ∈ Γ with E as
their union, and then unite the so obtained two countable subcovers.

15. Let Y be the set of those y for which f−1(y)∩H is uncountable. We have
to show that Y is of measure zero, and to this end it is enough to show that
if for M = 1, 2, . . . we denote by YM is the set of those points y for which
f−1(y) ∩ (H ∩ [−M,M ]) is uncountable, then YM is of measure zero.

Let us pick for each y ∈ YM a point ty ∈ f−1(y)∩(H∩ [−M,M ]) such that
ty is a limit point of the set f−1(y) ∩ (H ∩ [−M,M ]). By Problem 2 such a
ty exists. Since f is constant on f−1(y)∩ (H ∩ [−M,M ]), the differentiability
of f at ty implies that f ′(ty) = 0. If TM denotes the set of all these ty’s, then
YM = f [TM ].

Let ε > 0. For every x ∈ TM there is a 1 > δx > 0 such that if 0 < h < δx

then ∣∣∣∣f(x) − f(x ± h)
h

∣∣∣∣ ≤ ε.

The intervals Ix = (x − δx, x + δx), x ∈ TM cover TM , so, by Problem 12, we
can select a countable subcover U = ∪∞

i=0Ixi . Then U is open, YM ⊂ f [U ],
hence, as ε > 0 is arbitrary, it is enough to prove that the measure of f [U ] is
at most 4(M +1)ε. Since U is the union of an increasing sequence of compact
sets, it is sufficient to show that if K ⊂ U is compact, then the measure
of f [K] is at most 4(M + 1)ε. But for a compact K there is an N such that
K ⊂ ∪N

i=0Ixi , and without loss of generality we may assume that in this union
each point is covered at most twice (in fact, if three intervals intersect in a
point then one of them is included in the union of the other two). By the
definition of the numbers δxi , every point of the set f [Ixi

] is of distance at
most εδxi from f(xi), hence f [Ixi ] is of measure at most 2εδxi . But then f [U ]
is of measure at most 2ε

∑N
i=0 δxi , and since every point of ∪N

i=0Ixi is covered
at most twice, the sum

∑N
i=0 2δxi is at most twice the measure of U , i.e., at

most 2 · 2(M + 1). This shows that f [K] has measure at most 4(M + 1)ε as
claimed.

16. Let Gγ , γ ∈ Γ be a family of almost closed rectangles, and let Gγ , γ ∈ Γn

be the subfamily that consists of those elements in Gγ , γ ∈ Γ that have side
lengths bigger than 1/n. It is enough to verify the problem for each subfamily
Gγ , γ ∈ Γn, for then we can unite for n = 1, 2, . . . the so obtained countable
subcovers of ∪γ∈ΓnGγ to get a countable subcover of ∪γ∈Γ Gγ .
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Call a rectangle semi-closed if it is obtained from an open rectangle by
adding (without the endpoints) one of the sides of that rectangle, and accord-
ingly we can speak of left–, right–, down– and up semi-closed rectangles. Every
almost closed rectangle Gγ is the union of four semi-closed rectangles. Thus,
if we can prove the countable subcover property for semi-closed rectangles of
the same type (e.g., for left semi-closed rectangles), then the claim follows by
uniting these four countable subcovers.

Thus, in what follows we can assume that each Gγ , γ ∈ Γ is a left semi-
closed rectangle with sidelengths bigger than 1/n.

The set which is covered by the interiors of the left semi-open rectangles
Gγ , γ ∈ Γ can be covered by countably many of them (see Problem 12), hence
it is enough to show that the same is true of the set

F =

⎛
⎝⋃

γ∈Γ

Gγ

⎞
⎠ \

⎛
⎝⋃

γ∈Γ

Int(Gγ)

⎞
⎠ .

This will follow if we can prove that the set F lies on countably many vertical
lines. In fact, if l is a vertical line, then every Gγ intersects l in an open
interval. Thus, we can apply the Lindelöf property (Problem 12 for R) to l
and the family l ∩ Gγ , γ ∈ Γn of open intervals to conclude that l ∩ F can
be covered by countably many Gγ . Since this is true for every vertical line,
eventually we get a countable subcover of F .

The points of F are covered by the left-hand sides of some rectangles Gγ ,
and let Fk, k = 1, 2, . . . be the set of those points x in F that are covered by
the left-hand side of a rectangle Gγ with vertices of distance > 1/k from x.
Again it is enough to show that each set Fk lies on countably many vertical
lines. Let L be the set of those vertical lines that intersect Fk, and for every
l ∈ L select from l ∩Fk a point xl. From the definition of Fk it follows that if
we place a small disk Dl of radius 1/4kn and of center at xl to every point xl,
l ∈ L, then these disks are disjoint. In fact, if, say, Dl ∩ Ds 
= ∅ and l lies to
the left of s, then xs is covered by the rectangle Gγ that contains xl on its left
side and has vertices of distance > 1/k from xl, hence xs could not be in F .
Now by Problem 2.14 there are countably many Dl’s, so there are countably
many xl’s, and this is what we had to show.

The same result is not true for closed rectangles. In fact, if we cover each
point on the line y = x by the vertex of a closed rectangle with sides paral-
lel with the coordinate axes, then from this cover one cannot omit a single
rectangle to remain a cover of the whole line y = x.

17. If the claim was not true, then for every a ∈ A there would be a ball Ba

that intersects A only in a countable set. The set {Ba : a ∈ A} is an open
cover of A, hence by Problem 12 there is a countable subcover A ⊂ ∪∞

i=0Bai
.

But since A∩Bai
is countable for all i, this would mean that A can have only

countably many points.
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18. Let A∗∗ ⊆ A be the set of accumulation points of A lying in A. The set
A \ A∗∗ must be countable, for otherwise it would contain by Problem 17 an
accumulation point of itself, and that would belong to A∗∗, a contradiction.
The set B1 of those a ∈ A∗∗ for which there is a δ > 0 such that A∩(a−δ, a) is
countable clearly has the property that B1∩ (a, a−δ) = ∅, hence, by Problem
1, it is countable. In a similar fashion countable is the set B2 of those a ∈ A∗∗

for which there is a δ > 0 such that A ∩ (a, a + δ) is countable. These show
that A∗ = A∗∗ \ (B1 ∪ B2) has the property that A \ A∗ is countable.

If a, b ∈ A∗, then A ∩ (a, b) is uncountable, therefore, by what we have
just proven, it contains an element of (A ∩ (a, b))∗ = A∗ ∩ (a, b), hence A∗ is
densely ordered.

19. It is clear that the set X of accumulation points of any set A is closed.
We have to show that if it is not empty, then it is dense in itself, i.e., every
neighborhood U of any point x in X contains a point in X different from
x. This follows from the previous problem, for (U \ {x}) ∩ X is uncountable,
hence one of its points is an accumulation point of this set by Problem 17.

20. Let E be closed, and let X be the set of its accumulation points. Then
X ⊂ E and X is perfect by Problem 19. Thus, it is enough to show that E \X
is countable. If this was not the case, then, by Problem 17, the set E\X would
have an accumulation point x in E \ X. But that is not possible, for then x
would be an accumulation point of E, and so it would have to belong to X.

21. Let E ⊂ Rn be nonempty and perfect. Choose two disjoint nonempty
closed subsets E0 and E1 of E in the following way: select two points P0 and
P1 in E and two disjoint closed balls B0 and B1 around them of diameter
< 1/2, and set E0 = E∩B0 and E1 = E∩B1. Then choose disjoint nonempty
closed subsets E00, E01 ⊂ E0 and E10, E11 ⊂ E1 in the following way: select
two points P00 and P01 in E0 that lie inside B0 and two disjoint closed balls
B00 and B01 around them of diameter < 1/22 in such a way that both of them
lie in B0, and set E00 = E ∩ B00 and E01 = E ∩ B01 (and the choice of E10
and E11 is similarly done relative to E1 and B1). Continue this process. The
perfectness of the set E guarantees that this process does not terminate. Let Jn

be the union of all subsets at level n (e.g., J2 = E00∪E01∪E10∪E11), and set
E∗ = ∩nJn. This is a closed subset of E. Every 0–1 sequence ε = {ε0, ε1, . . .}
defines a point {xε} = ∩nEε0ε1...εn , and these points are different for different
0–1 sequences: if ε′ = {ε′

i}∞
i=0 is another sequence and we select m in such a

way that ε0 = ε′
0, . . ., εm−1 = ε′

m−1 but εm 
= ε′
m, say εm = 0 and ε′

m = 1,
then xε resp. xε′ lie in the disjoint sets Eε0ε1···εn−10 resp. Eε0ε1···εn−11. Thus,
E∗ has continuum many points by Problem 4.3, and so E has at least that
many points. But Rn is of cardinality continuum (Problem 4.14, a)), and we
are done because of the equivalence theorem.

22. Apply Problems 21 and 20.
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23. That d is a metric is easily established. It is also easy to see that if
{a(n)

j }∞
j=0, n = 0, 1, . . . is a sequence of elements of R∞, then this sequence

converges to an {aj}∞
j=0 ∈ R∞ if and only if for each j we have

lim
n→∞ a

(n)
j = aj ,

i.e., the metric describes the topology of pointwise convergence (recall that
R∞ is the set of mappings f : N → R, therefore the statement is that if
f, fn ∈ R∞, n = 0, 1, . . ., then d(fn, f) → 0 as n → ∞ if and only if for all
j the limit fn(j) → f(j) holds as n → ∞, which is pointwise convergence).
This, and the completeness of R, easily imply the completeness of R∞.

Finally, there is a countable dense subset of R∞, namely the set of se-
quences of rational numbers that contain only finitely many nonzero terms
(cf. Problem 2.4).

24. Let H be a countable dense subset of R∞ and let G be the set of open
balls of rational radius and with center in H. Exactly as in Problem 2.17, this
set is countable, and exactly as in Problem 2.18, any open subset of R∞ is a
union of countably many open balls from G. This is enough for the Lindelöf
property (cf. Problem 12) to hold in R∞, i.e., any open cover of any subset of
R∞ includes a countable subcover (see the solution to Problem 12). Now the
notion of accumulation point (see Problem 17) can be carried over to R∞,
and using this exactly as in the solutions of Problems 17–20 we get that any
closed set in R∞ is the union of a perfect and a countable set.

25. This follows from the preceding problem, since a nonempty perfect set
is of cardinality continuum (recall also Problem 4.14, b), according to which
R∞ is of power continuum).

26. First we prove the claim for open sets in Rn. For Rn this is clear, and
if O ⊆ Rn, O 
= Rn is an open set, then for x = (x0, x1, . . . , xn−1) ∈ O,
consider the point fx ∈ R∞ for which fx(m) = xm for m < n, fx(m) = 0
for m > n, and fx(n) = 1/dist(x, ∂O) (the reciprocal of the distance from x
to the boundary of O). It is easy to see that the set FO = {fx : x ∈ O} is
a closed subset of R∞, and fx �→ x is a continuous and one-to-one mapping
from FO onto of O.

Next we use that the family of Borel sets in Rn is the smallest family
of sets containing the open sets and closed under countable intersection and
countable disjoint union (see Problem 1.13 or 12.25). Therefore, it is sufficient
to show that the property of being the continuous and one-to-one image of
a closed subset of R∞ is preserved under countable intersection and disjoint
countable union.

Let A = ∩jAj , and suppose that each Aj ⊆ Rn is a continuous and
one-to-one image of a closed subset of R∞. Let N = ∪∞

i=0Ni be a disjoint
decomposition of N into some infinite sets Ni. Then NjR is homeomorphic
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to R∞, and let fj : Fj → Aj be a continuous and one-to-one mapping of a
closed subset Fj of NjR onto Aj . The set

F ∗ =
{

g ∈ R∞ : g Ni
∈ Fi, i = 0, 1, . . .

}
is a closed subset of R∞, and

F =
{

g ∈ F ∗ : fi(g Ni
) = fk(g Nk

) for all i, k = 0, 1, . . .
}

is a closed subset of F ∗, and hence of R∞. It is clear that g �→ f0

(
g N0

)
is a

continuous one-to-one mapping of F onto ∩jAj .
Next let A = ∪∞

j=0Aj , Aj ∩Ak = ∅ for j 
= k be a countable disjoint union,
and suppose that each Aj ⊆ Rn is a continuous one-to-one image of a closed
subset Fj of R∞. We may assume that g(0) = j for all g ∈ Fj (clearly, for fixed
j the set of points g ∈ R∞ with g(0) = j is isomorphic and homeomorphic
to Rn). But then the set F = ∪jFj is closed in R∞ (note that the distance
between different Fj ’s is at least 1/2), and if we define f : F → ∪jAj by
f(u) = fj(u) for u ∈ Fj , then we get a continuous one-to-one mapping of F
onto ∪jAj .

27. This is an immediate consequence of Problems 25 and 26.

28. Suppose to the contrary that no Ai is dense in any interval. Then for
every interval I and every i there is a closed subinterval J ⊂ I such that
J ∩ Ai = ∅. Now starting with J0 = [a, b] inductively select nondegenerated
closed intervals J1, J2 . . . such that Jn+1 ⊆ Jn and Jn+1 ∩ An = ∅. Then
∩nJn is nonempty, and if x ∈ ∩nJn, then x 
∈ ∪nAn, which contradicts the
assumption. This contradiction proves the claim.

29. See the proof of the more general result in Problem 31.

30. The proof of Problem 28 shows that if A = ∪∞
i=0Ai, then there are a ball

B and an i such Ai is dense in B. But then this Ai is not nowhere dense.

31. Let B∗ ⊆ A be a closed ball. Suppose to the contrary that for any ball
B ⊆ B∗ and for any i there is a ball B′ ⊂ B such that B′ ∩Ai is of power less
than continuum. Choose two disjoint closed balls B0 ⊆ B∗ and B1 ⊆ B∗ (say
two smaller balls from the B′ above for i = 0) of (positive) diameter < 1/2
such that (B0 ∪ B1) ∩ A0 is of power smaller than continuum. Then choose
disjoint closed balls B00, B01 ⊂ B0 and B10, B11 ⊂ B1 of radius < 1/22 so
that the set (B00 ∪B01 ∪B01 ∪B11)∩A1 is of power smaller than continuum.
Continue this process. As in the solution of Problem 21, for every sequence

ε = {ε0, ε1, . . .} ∈ N{0, 1}
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of zeros and ones the intersection
∞⋂

n=0

Bε0ε1···εn

contains a single point xε, and different sequences generate different points.
Thus, the set

X = {xε : ε ∈ N{0, 1}}

is of power continuum and for any n we have

X ⊆
⋃

εj=0,1 j=0,1,...,n

Bε0ε1···εn
.

But by the construction this latter set intersects An in a set of power smaller
than continuum, hence An ∩ X is of power smaller than continuum. Since
∪nAn includes X (recall that X ⊂ B∗ ⊂ A), it follows that X = ∪∞

n=0(X∩A),
i.e., a set of power continuum is represented as countable union of sets each
of power less than continuum. But this contradicts Problem 4.15, and this
contradiction proves the claim.

32. Instead of x ∈ R we shall index our sets by infinite 0–1 sequences (their
number is equally continuum; see Problem 4.3). For an infinite 0–1 sequence
ε = {εi}∞

i=0, let Aε be the set of real numbers that have decimal expansion of
the form

· · · ! . ! · · · ! 0004ε0β04ε1β14ε2β2 · · · ,

where ! stand for any digits and βi = 2 or 3. Since for each {εi}∞
i=0 we can

select the βi’s in continuum many ways (see Problem 4.3), it is clear that this
Aε is of cardinality continuum in every interval.

33. Consider the sets Ax, x ∈ R from the preceding problem. If we set f(u) = x
if u ∈ Ax, then this f takes any real value x continuum many times in every
interval I (namely in the points of the set I ∩ Ax).

We can also get a concrete f as follows. We define f(x) using the decimal
expansion x = · · · .x1x2 · · · of x (if x has two such representations, then fix
the one that has infinitely many zero digits). We shall only consider the digits
after the decimal point. Let f(0) = 0, and if in the expansion of x there are
infinitely many blocks of length ≥ 2 consisting of the digit 5 or if there is no
such block at all, then also let f(x) = 0. Otherwise let l ≥ 2 be the length of
the longest block of consecutive fives, m the number of 0’s following the last
one of the longest block of fives, β1, β2, . . . the digits in the expansion of x
after these zeros, and set

f(x) = (−1)l10m · 0.β3β6β9 . . . .

If I is any interval,
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a = (−1)s . . . a−1.a1a2 . . .

is its middle point, k ≥ 1 is a number such that 10−k < |I|/10, and if y =
(−1)p10q · 0.y1y2 . . . (p = 0, 1, q ≥ 1) is any nonzero real number, then let

x = (−1)s . . . a−1.a1a2 . . . ak4

p+2k︷ ︸︸ ︷
555 . . . 55

q︷ ︸︸ ︷
000 . . . 00 4β1y14β2y24β3y34 . . . ,

where βi = 2 or 3 independently of each other. It is clear that there are
continuum many such numbers (the βi’s can be selected in continuum many
ways by Problem 4.3), each of them lies in the interval I and each satisfies
f(x) = y.

34. Let f : [0, 1] → [0, 1]× [0, 1] be the mapping from the next problem. Then
f is of the form f(t) = (g(t), h(t)), with some continuous g, h : [0, 1] → [0, 1],
and it is clear that, e.g., g takes every value y ∈ [0, 1] continuum many times
(since all the points (y, u), u ∈ [0, 1] are in the range of f).

35. Recall that each point x in the Cantor set C has a triadic representation
x = 0.α1α2 . . . where each αi is 0 or 2. It is also easy to see that if y ∈ C is
another point with similar representation y = 0.β1β2 . . ., and |x − y| < 3−n,
then the first n digits in the expansions of x and y are the same, i.e., αi = βi for
all 1 ≤ i ≤ n (a warning is appropriate here: for x, y ∈ R two numbers can be
close without having many common digits, e.g., if we use decimal expansion
and x = 0.1000 · · · 00111 . . . and y = 0.0999 · · · 9900 . . . where · · · represent
sufficiently many identical digits, then x and y can be arbitrary close without
having a single common decimal digit). In fact, just take into account that
α1 = β1 exactly if x, y lie in the same subinterval of the Cantor construction
at the first level, then α2 = β2 exactly if x, y lie in the same subinterval of the
Cantor construction at the second level, etc. Thus, if for x ∈ C we set

g(x) = 0.(α1/2)(α3/2)(α5/2) . . . , h(x) = 0.(α2/2)(α4/2)(α6/2) . . . ,

where the numbers represent binary expansions, then we get that both g and
h are continuous functions on C. It is also clear that f(x) = (g(x), h(x))
maps C onto [0, 1] × [0, 1]. In fact, if P = (0.γ1γ2 . . . , 0.δ1δ2 . . .) is any point
in [0, 1] × [0, 1] (with binary expansion for the coordinates), then with x =
0.(2γ1)(2δ1)(2γ2)(2δ2) . . . we have f(x) = P .

Extend now both g and h to the contiguous intervals of C linearly, i.e., if
(a, b) is a subinterval of [0, 1]\C, then let g(t) = (g(b)−g(a))(t−a)/(b−a)+g(a)
for t ∈ (a, b). It is easy to see that these extended functions are continuous
on [0, 1]. This way we get a continuous extension of f , and this f has all the
desired properties.

36. Let f(t) = (g(t), h(t)) be the function from the preceding problem. We
claim that the functions
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f0(t) = g(t), f1(t) = g(h(t)), f2(t) = g(h(h(t))), . . .

are appropriate. To this end it is sufficient to verify that for every n and
arbitrary real numbers x0, x1, . . . , xn from [0, 1] there is a tn ∈ [0, 1] such that
fi(tn) = xi for all 0 ≤ i ≤ n. In fact, then if x0, x1, . . . is an arbitrary infinite
sequence, then we can select a convergent subsequence of the aforementioned
sequence t0, t1, . . . converging to some number t ∈ [0, 1], and then it is clear
that we have for all i the equality fi(t) = xi.

We show the existence of tn by induction. For i = 0 it clearly exists,
and let us suppose that we know the existence of tn−1 for all sequences
z0, z1, . . . , zn−1. Then, by this induction hypothesis, there is a t∗n−1 ∈ [0, 1]
with the property that

g(t∗n−1) = x1, g(h(t∗n−1)) = x2, . . . g(

n−1︷ ︸︸ ︷
h(h · · · (h( t∗n−1)) · · ·)) = xn,

where the last function is composed of g and n−1 copies of h. By the property
of the function f , there is a tn such that g(tn) = x0 and h(tn) = t∗n−1. Thus,
for this tn we get

g(tn) = x0, g(h(tn)) = x1, . . . g(

n︷ ︸︸ ︷
h(h · · ·h( tn) · · ·)) = xn,

where the last function is composed of g and n copies of h, and so the induction
step has been verified.

* * *

37. Set ε = 1/m with m = 1, 2, . . .. If ν = νm is the corresponding number in
the definition of convergence, then there is a countable ordinal τ larger than
any of the countably many countable ordinals νm. It follows that if A is the
limit, then for ξ > τ we have aξ = A, and this proves the claim.

38. Assume the sequence to be increasing. The statement is a consequence
of Problem 1, for there is no point of the set A = {aξ}ξ<α in the interval
(aγ , aγ+1) for any aγ ∈ A.

39. Consider α as an ordered set. Since it is countable, it is similar to a subset
of Q∩[0, 1] (see Problems 6.26 and 6.28), thus there is a mapping f : α → [0, 1]
that is monotone. If for ξ < α we set aξ = f(ξ), then {aξ}ξ<α is a strictly
increasing sequence, and it is easy to see that if A = supξ<α aξ, then this
sequence converges to A.
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Ordered sets

1. Let 〈A,≺〉 be an infinite ordered set, and let B = {a0, a1, . . .} be any
sequence in A consisting of different elements. We are going to show that in
B there is a monotone subsequence. Consider the set C of all elements aj ∈ B
for which there is no ak, k > j with aj ≺ ak. The elements in C form a
decreasing sequence; therefore, if C is infinite, then we are done. If C is finite,
then there is an N such that aj 
∈ C for j ≥ N . This means that for every
aj with j ≥ N there is an index k > j such that aj ≺ ak. But then starting
from aN we can select larger and larger elements, and we obtain an infinite
increasing sequence in B.

2. See the solution to Problem 3.10, a).

3. Consider the set {−1/n, 1/n, 1 − 1/n : n = 2, 3, . . .}.

4. Let [x] resp. {x} denote the integral resp. fractional part of x, and set x ≺ y
if {x} < {y} or if {x} = {y} and [x] < [y]. It is clear that in this ordering
x − 1 is the predecessor, and x + 1 is the successor of x.

5. The necessity is obvious. Now suppose that 〈A,≺〉 is such that for every
a ∈ A there are only finitely many elements b ∈ A with b ≺ a. To an a ∈ A
associate the number na of those b ∈ A with b ≺ a. By the assumption the
mapping a �→ na is a mapping from A into N, and it is immediate that it is a
monotone mapping. Let B be the set of all na’s. Since A is infinite, B is also
infinite (note that a monotone mapping is 1-to-1). If na ∈ N, and m < na,
then there is an element c ∈ A with m = nc. In fact, the set {b : b ≺ a}
is finite and has na elements, so if we select as c the (m + 1)st element of
{b : b ≺ a}, then for this nc = m as we claimed. Thus, the mapping a �→ na

is a similarity mapping from A onto N.

6. The answer is that 〈A,≺〉 is similar to N or to the set of the negative
integers, Z \N. The sufficiency of this condition is clear, so now suppose that



186 Chapter 6 : Ordered sets Solutions

〈A,≺〉 has the property that every infinite subset is similar to the whole set.
By Problem 1 in 〈A,≺〉 there is a monotone infinite sequence S. Thus, S is
either similar to N or to the set of the negative integers Z\N. The assumption
is that S is similar to A, thus A must be similar to either N or to Z \ N, as
we claimed.

7. The necessity of the condition is clear, so let us suppose that 〈A,≺〉 has no
smallest or largest element, and every interval {c : a ≺ c ≺ b}, a, b ∈ A is
finite. This implies that every element has a predecessor as well as a successor.
Thus, starting from any element of A and successively taking predecessors and
successors, we can define a two-way infinite sequence {aj}∞

j=−∞ in A with the
property that aj ≺ ak if j < k. Now if A had any additional element a, then
that would have to be either bigger than all aj or smaller than all aj , and in
both cases we would have infinitely many elements between a0 and a, which
is not possible. Thus, A = {aj}∞

j=−∞, and the proof is over.

8. It is clear that every set similar to Z, N or Z \N has this property, and we
show that this condition is also necessary. If A does not have a smallest and
largest element, then by the previous problem it is similar to Z. If A has a
smallest element, then it cannot have a largest element, for then there would
be only finitely many elements of A between them. Now as in the previous
proof, starting from the smallest element we can form an infinite increasing
sequence a0 ≺ a1 ≺ · · · by taking successors one after the other, and it is also
clear that there cannot be any additional element a of A, for then this a would
have to be larger than any aj , and there would be infinitely many elements
between a0 and a. Thus, in this case 〈A,≺〉 is similar to N. In an analogous
manner if A has a largest element, then it is similar to Z \ N.

9. The set Q has the continuum many different initial segments {r ∈ Q : r <
x}, x ∈ R.

10. See Problem 90.

11. Let Bm be the set Bm = {m − 1/k : k = 1, 2, 3, . . .}, which is similar to
N, and for n = 1, 2, . . . consider the set

An =

{
0⋃

m=−∞
Bm

}⋃
{0, 1, . . . , n − 1}.

It is clear that these are nonsimilar for different n′s (in fact, in An there are
exactly n elements a with the property that the set {b ∈ An : a < b} is finite,
and this property is preserved under similarity mapping). But it is also clear
that An is similar to the initial segment {a ∈ Am : a < −1/(n + 1)} of Am.
[W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa,
1965, XII.9/1]
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12. This follows from Problem 3.1. [S. Banach, Fund. Math., 39(1952), 236–
239.]

13. Let f : A → B be a similarity mapping from A onto an initial segment
of B and g : B → A be a similarity mapping from B onto an end segment
of A. If f or g is an onto mapping, then we are done, so let us assume that
they are not. Consider the set A′ of all elements a′ ∈ A such that there is an
a′ ≤ a ∈ A for which it is true that a < g(f(a)). It is clear that then this
a also belongs to A′, A′ is an initial segment of A, and it is not empty, for
any element outside of the range of g (which is the same as preceding every
element in the range) is in A′. Let B′ be the image of A′ under the mapping
f . Then B′ is an initial segment of B, and we claim that g maps B \B′ onto
A \ A′. With this the proof will be over, for then the mapping h(x) = f(x) if
x ∈ A′ and h(x) = g−1(x) if x ∈ A \ A′ is clearly a similarity mapping.

Let b ∈ B \ B′. Then for every a′ ∈ A′ there is an a ∈ A′ such that
a′ ≤ a < g(f(a)) < g(b), thus g(b) 
∈ A′, and so g maps B \ B′ into A \ A′. If
d ∈ A \ A′, then g(f(d)) ≤ d, furthermore f(d) ∈ B \ B′. Since g is mapping
B \ B′ onto an end segment of A \ A′, there is an element b ∈ B \ B′ with
g(b) = d. Since d was an arbitrary element of A \ A′, this proves that g is
mapping from B \ B′ onto A \ A′, and we are done. [A. Lindenbaum, see W.
Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965,
XII.9. Theorem 2]

14. Let f : A → B be a monotone mapping onto an initial segment of B,
g : A → B a monotone mapping onto an end segment B, and h : B → A a
monotone mapping of B onto an interval of A. We distinguish three cases.
Case I: there is a b ∈ B such that b  f ◦ h(b). Let

B1 = {c ∈ B : c  b for some b ∈ B with b  f ◦ h(b)}.

B1 is an initial segment of B, and we claim that f ◦h maps B1 into B1. In fact,
if c ∈ B1 and b ∈ B is as in the definition of B1, then f ◦ h(c)  f ◦ h(b), and
here f ◦h(b)  (f ◦h)(f ◦h(b)), so by the definition of B1 we have f ◦h(c) ∈ B1.
Let

A1 = {a ∈ A : a ≤ h(b) for some b ∈ B1}.
Then A1 is an initial segment of A, and f is mapping A1 onto B1. In fact, f
maps A1 into B1, since if a ≤ h(b) for some b ∈ B1, then f(a)  f ◦h(b) ∈ B1,
so f(a) ∈ B1. On the other hand, if c ∈ B1 is arbitrary, and b is as in the
definition of B1, then c  b  f ◦h(b) = f(h(b)). But f maps initial segments
into initial segments, so there is an a ∈ A1 such that c = f(a), which proves
that f maps A1 onto B1, and incidentally, that A1 and B1 are similar. It is
left to show that A \ A1 and B \ B1 are also similar. It is also clear that h
maps B1 onto an end segment of A1. Thus, f maps A \ A1 into an initial
segment of B \B1, and h maps B \B1 into an initial segment of A \A1. Now
if g maps A \A1 into B \B1, then it maps it into an end segment of it, so on
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applying the preceding problem to the ordered sets A \A1 and B \B1 and to
(the restrictions of) the mappings g, h we can conclude that A\A1 and B \B1
are similar. If, however, g does not map A \ A1 into B \ B1, then B \ B1 is
in the range of the restriction of g onto A \ A1, so g−1 is defined on B \ B1
and maps it into an end segment of A \A1. Now the similarity of A \A1 and
B \B1 follows again from the previous problem if we consider (the restrictions
of) the mappings f and g−1.
Case II: there is a b ∈ B such that g ◦ h(b)  b. This case can be verified
along the same lines as Case I, and actually follows from it if we consider the
reverse orderings.
Case III: for every b ∈ B we have f ◦ h(b) ≺ b ≺ g ◦ h(b). Take any b ∈ B,
and set

B1 = {c ∈ B : c  b}, A1 = {a ∈ A : a ≤ h(b) for some b ∈ B1}.

By our assumption, A1 is mapped by f into B1, and A \ A1 is mapped by g
into B \B1. Thus, A1 is similar to an initial segment of B1 under f , and B1 is
similar to an end segment of A1 under h, so A1 and B1 are similar (Problem
13). In a similar fashion, B \B1 is similar to an initial segment of A\A1 under
h and A \ A1 is similar to an end segment of B \ B1 under g, so A \ A1 and
B \B1 are also similar. Since A1 and B1 are initial segments, this proves that
A and B are similar.

15. For every n let A1
n be the set (Q∩[n+1/3, n+2/3])∪{n+1/4, n+1−1/4},

and let A0
n = {n+1/3, n+2/3}. For any 0–1 sequence ε = (ε0, ε1, . . .) consider

the set
Aε = ∪∞

n=0A
εn
n .

Note that if εn = 1 then the set Aε ∩ (n, n + 1) contains a point followed by a
countable densely ordered set with first and last elements which is followed by
one more point. Since a similarity mapping maps successors into successors
and densely ordered subset into densely ordered subsets, it is easy to see by
induction that if there are two 0–1 sequences ε and ε′ such that ε0 = ε′

0, . . .,
εm−1 = ε′

m−1, then a similarity mapping f between the sets Aε onto Aε′ must
map the set Aε∩[0, m] into the set Aε′ ∩[0, m]. Thus, if in addition, say εm = 0
but ε′

m = 1, then f cannot exist, for it would have to map the three-point set
{m + 1/3, m + 2/3, m + 1 + 1/4}, which is an initial segment of Aε ∩ (m,∞),
onto an initial segment of Aε′ ∩ (m,∞), which is not possible, for in this latter
set the point m + 1/4 is followed by the dense set Q ∩ [m + 1/3, m + 2/3].

Thus, the sets Aε are not similar for different 0–1 sequences, and so we
have found continuum many subsets of Q no two of which are similar. [W.
Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965,
XII.6/1]

16. See Problem 18.
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17. By Problem 34 it is enough to show that if 〈NN,≺〉 is the set of all
sequences of natural numbers with the lexicographic ordering, then there are
continuum many disjoint subsets of NN similar to 〈NN,≺〉 (recall also that
R and (0, 1) are similar). For a 0–1 sequence ε = (ε0, ε1, . . .) let Hε be the set
of all those sequences s = (n0, n1, . . .) from NN for which ni ≡ εi (mod 2).
For different ε’s these sets are disjoint, and it is obvious that each Hε is
similar to NN. In fact, if [x] denotes the integral part of x, then the mapping
f(s) = ([n0/2], [n1/2], . . .) establishes a monotone correspondence between Aε

and NN. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ.,
Warszawa, 1965, XI.10. Remark]

18. The mapping x �→ arctanx is monotone and maps A into a similar subset
A′ of the interval (−π/2, π/2). Hence for every a ∈ R the set A′ + a is a set
similar to A, and all these sets are different. This shows that there are at least
continuum many subsets of R similar to A.

Next let f : A → R be any similarity mapping from A onto a subset of R. f
can be extended to a nondecreasing real function F : select any point a0 ∈ A,
and set F (x) = infx≤a, a∈A f(a) if x ≤ a0 and F (x) = supx≥a, a∈A f(a) if
x > a0. Clearly, from different f ’s we get different F ’s, so there is at most
as many subsets of R similar to A as nondecreasing functions F on R, and
by Problem 4.14, d) there are at most continuum many such functions. [W.
Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965,
XII.6/2]

19. Consider the Cantor set C, list the bounded intervals in R\C as I1, I2, . . .,
and let Pn ⊂ In be a set consisting of n points. Let P be the set that consists of
the points of the sets Pn, of the endpoints of the intervals In and of the points
0, 1. For an arbitrary subset X ⊆ C \ P of cardinality continuum consider
the set X ∪ P . Since C is of cardinality continuum and P is countable, the
set C \ P is of cardinality continuum, therefore there are 2c such subsets. It
is enough to show that if X, Y ⊆ C \ P are different subsets of C \ P (of
cardinality c), then X ∪ P and Y ∪ P are not similar. Let us assume that f
is a similarity mapping from X ∪ P onto Y ∪ P . Note that for any n there is
exactly one pair a, b ∈ X ∪P such that there are exactly n points in X ∪P in
between a and b but for any a′, b′ ∈ X ∪ P with a′ < a and b < b′ both sets
(a′, b)∩ (X∪P ) and (a, b′)∩ (X∪P ) are infinite. In fact, this pair must be the
one for which a, b ∈ P and (a, b) = In, and then the portion of P in between
a and b is exactly Pn. Since the same is true of Y ∪ B, it follows that every
point of Pn is a fixed point of f and it also follows that the same is true of the
endpoints of the intervals In, i.e., every point of P is a fixed point of f . But
the set of the endpoints of the intervals In is dense in C, hence P is dense in
X ∪P and Y ∪P . Now if a monotone mapping fixes a dense set then it must
be the identity mapping (see, e.g., the proof of Problem 21), hence X = Y ,
and the proof is complete. [W. Sierpiński, Cardinal and Ordinal Numbers,
Polish Sci. Publ., Warszawa, 1965, XI.10/5]
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20. See the second part of Problem 22.

21. First observe, that the assumption implies that there can be only countably
many pairs a1, a2 in A such that a2 is a successor of a1. In fact, any element
from b can belong to at most two such sets {a1, a2}, and B is countable.
Thus, if we add all such pairs to B, then B remains countable, and with
this we achieve that for any two elements a1, a2 ∈ A with a1 ≺ a2 there are
b1, b2 ∈ B with a1  b1 ≺ b2  a2.

By Problem 26 there is a similarity mapping f from B onto a subset C
of Q ∩ (0, 1). Now for a ∈ A define F (a) = supb�a, b∈B f(b). This is well
defined since C ⊂ R is bounded, and we claim that it is monotone. In fact,
if a1 ≺ a2, then there are b1, b2 ∈ B with a1  b1 ≺ b2  a2 and with them
F (a1) ≤ f(b1) < f(b2) ≤ F (a2). Thus, F maps 〈A,≺〉 onto a subset of R in
a monotone fashion, and we are done. [W. Sierpiński, Cardinal and Ordinal
Numbers, Polish Sci. Publ., Warszawa, 1965, XI.10/5]

22. The set A = R is similar to B = (0, 1), but their complements are not
similar.

If, however, A and B are two countable dense subsets of R, then their
complements are similar. In fact, by Problem 27 A and B are similar, and
let f : A → B be a similarity mapping between them. If we set F (x) =
supa≤x, a∈A f(a), then F is a strictly increasing monotone real function the
range of which contains all points of the dense set B. Hence F cannot have
any point of discontinuity (jump), so F is a monotone mapping from R onto
R. The restriction of F to R \ A is mapping from R \ A onto R \ B, and so
these sets are similar.

23. Let us enumerate the open subintervals of R with rational endpoints into
a sequence I0, I1, . . . (cf. Problem 2.13), and for an arbitrary member G of M
set f(G) =

∑
Ij⊆G 10−j . Since every open subset of R is the union of some

Ij ’s, it follows that if G1, G2 ⊂ M and G1 ⊂ G2, then there is an Ij with
Ij ⊆ G2 but Ij 
⊆ G1. This shows that f(G1) < f(G2), and so f is a similarity
mapping from M into R.

24. Let {rn}∞
n=1 be an enumeration of the rational numbers, and for x ∈ R

let Fx = {0} ∪ {1/n : rn < x}. This is a closed set of measure zero, and it is
clear that if x < y then Fx ⊂ Fy.

25. This is a special case of Problem 90, since out of two initial segments one
of them includes the other one.

26. Let 〈A,≺〉 be any countable ordered set. We may assume A to be infinite,
and let A = {a0, a1, . . .} be an enumeration of the elements in A, and also
select an enumeration Q ∩ (0, 1) = {r0, r1, . . .} of the rationals in (0, 1). Now
let f(a0) = r0, and if f(ai) have already been selected for i < n, then let
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f(an) = rm, where m is the smallest index for which it is true that we have
f(aj) < rm for exactly those 0 ≤ j < n for which aj ≺ an holds. Since
Q ∩ (0, 1) is densely ordered, there is such an m, so this definition is sound.
It is clear from the definition that f is a monotone mapping from A onto a
subset of Q ∩ (0, 1).

27. Follow the preceding proof with the following modification (this is the
so-called back-and-forth argument). For each n we select subsets An ⊂ A and
Qn ⊂ Q and an fn : An → Qn monotone mapping in such a way that An+1
and Qn+1 are obtained by adding one element a′

n+1 ∈ A and r′
n+1 ∈ Q to An

and Qn, respectively, and fn+1 is the extension of fn by setting fn+1(a′
n+1) =

r′
n+1. Start from A0 = {a0}, Q0 = {r0}, f0(a0) = r0 as before, and if Ai, Qi, fi

have already been defined for i ≤ n, then for even n let a′
n+1 be the element

ak in A \An with smallest index k, and let fn+1(a′
n+1) = rm, where m is the

smallest index for which it is true that we have fn(a) < rm for exactly those
a ∈ An for which a ≺ a′

n+1 holds, and set r′
n+1 = rm. However, for odd n let

r′
n+1 be the element rk in Q \ Qn with smallest index k, and let m be the

smallest index for which it is true that we have a′
j ≺ am for exactly those

a′
j ∈ An, 0 ≤ j ≤ n for which f(a′

j) < r′
n+1 holds, and set a′

n+1 = am. By the
density of the sets A and Q and by the fact that neither of them has a smallest
or largest element, the selection of a′

n+1, r′
n+1 above is possible, and by the

construction ak ∈ An and rk ∈ Qk for n > 2k. Thus, ∪nAn = A, ∪nQn = Q.
Now if we set f(an) = f2n+1(an), then, in view of the fact that the functions
f0, f1, . . . extend each other, it follows that f is a monotone mapping from A
onto Q.[G. Cantor]

28. If the set 〈A,≺〉 is countable and densely ordered and does not have a
smallest and largest element, then by the preceding problem it is similar to
Q. The same is true of Q ∩ (0, 1), hence 〈A,≺〉 is similar to Q ∩ (0, 1). If in
〈A,≺〉 there is a smallest element a0 but there is no largest element, then
the set 〈A \ {a0},≺〉 is densely ordered and is without a smallest and largest
element, hence, as we have just seen, it is similar to Q ∩ (0, 1). But then
clearly 〈A,≺〉 is similar to Q ∩ [0, 1). In a similar fashion, if 〈A,≺〉 has a
largest element but no smallest one, then it is similar to Q ∩ (0, 1], and if it
has both, then it is similar to Q ∩ [0, 1].

29. Let B be the set of countable ordinals with the usual ordering on the ordi-
nals, and let A = Q × B with the antilexicographic ordering. Any nonempty
proper initial segment of 〈A,≺〉 is an initial segment of Q×C, where C ⊂ B
is a countable set. Now apply Problem 28.

30. Let 〈A,≺〉 be the set of the countable ordinals with the usual ordering on
the ordinals. Any uncountable subset B of 〈A,≺〉 is well ordered. By Problem
42 one of A or B is similar to an initial segment of the other one. But both
A and B have countable proper initial segments, hence the initial segment in
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question must be the whole set. Therefore, in either case we get that A and
B are similar.

31. It is clear that the elements follow one another in the order:

(0, 0, . . .),
(1, 0, 0 . . .),
(0, 1, 0, 0 . . .), (1, 1, 0, 0 . . .),
(0, 0, 1, 0, 0 . . .), (1, 0, 1, 0, 0 . . .), (0, 1, 1, 0, 0 . . .), (1, 1, 1, 0, 0 . . .),

...

and this is the same how the numbers 0, 1, 2, . . . follow one another. [W.
Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965,
XII.2/7]

32. Let 〈A,≺〉 be the lexicographically ordered set of infinite 0–1 sequences
that contain only a finite number of 1’s. By Problem 2.9, c), 〈A,≺〉 is count-
able, and it has a smallest element, namely the identically zero sequence.
It is also clear that 〈A,≺〉 has no largest element. Thus, by Problem 28
it is enough to show that 〈A,≺〉 is densely ordered. Let x = (x0, x1, . . .)
and y = (y0, y1, . . .) be two elements in A with x ≺ y. Then there is an
n such that xi = yi for i = 0, 1, . . . , n − 1, but xn = 0 and yn = 1. Set
z = (x0, x1, . . . , xn−1, 0, 1, 1, 1, . . . , 1, 1, 1, 0, 0, . . .), where the last 1 appears so
far out that there the numbers in the sequence x are already all zero. For this
z we clearly have x ≺ z ≺ y, which proves that 〈A,≺〉 is densely ordered.
[W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa,
1965, XII.2/7]

33. To a 0–1 sequence ε0, ε1, . . . associate the number 0.(2ε0)(2ε1) . . . in base
3 in the Cantor set. It is easy to see that this establishes a monotone corre-
spondence between the lexicographically ordered set of infinite 0–1 sequences
and the Cantor set.

34. To a sequence s = (n0, n1, . . .) of natural numbers associate the number

f(s) = 1 − 2−n0−1 − 2−n0−n1−2 − 2−n0−n1−n2−3 − · · · .

This is a monotone mapping: if s ≺ s′ in the lexicographic ordering, then
f(s) < f(s′). It is also clear that f(s) ∈ [0, 1). Furthermore, if y ∈ [0, 1), then
1 − y can be uniquely written in the form

1 − y = 2−m0 + 2−m1 · · · , with 1 ≤ m0 < m1 < m2 < · · · . (6.1)

In fact, select the integer m0 according to 2−m0 < y ≤ 2−m0+1, then 0 <
y−2−m0 ≤ 2−m0 , hence if m1 is chosen according to 2−m1 < y−2−m0 ≤ 2m1 ,
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then m1 > m0. Continuing this process we get the representation (6.1). But
then it is clear that for s = (m0 − 1, m1 − m0 − 1, m2 − m1 − 1, . . .) we have
f(s) = y, thus f is a mapping onto [0, 1).

35. Associate with a sequence s = (n0,−n1, n2,−n3, . . .) the value of the
continued fraction

f(s) = 1 − 1
n0 + 1 + 1

n1+1+ 1
...

.

On the right we have an infinite continued fraction, hence f(s) is irrational and
lies in (0, 1). Conversely, the continued fraction expansion of every irrational
number is of the preceding form, hence f is a mapping from A onto (0, 1)\Q. It
is also clear that if in two sequences s and s′ we have n0 < n′

0, or n0 = n′
0 and

n1 > n′
1 (sic!), or n0 = n′

0, n1 = n′
1 and n2 < n′

2 or n0 = n′
0, n1 = n′

1, n2 = n′
2

and n3 > n′
3 (sic!) etc., then f(s) < f(s′) (note that by increasing the bottom

denominator at a k-level continued fraction built up from positive numbers
increases the fraction if k is even and decreases it if k is odd, simply because by
increasing the denominator in a fraction of positive numbers we decrease the
fraction). Thus, f is a similarity mapping from 〈A,≺〉 onto (0, 1)\Q. But this
latter set is similar to the set of irrational numbers. Indeed, (0, 1) is similar to
R, say under a mapping f , hence (0, 1) \Q is similar to R \ f [Q] where f [Q]
is a countable dense subset of R. Now just apply the second part of Problem
22 to deduce that R \ Q and R \ f [Q] are similar. [F. Hausdorff, Grundzüge
der Mengenlehren, Leipzig, 1914; Set Theory, Second edition, Chelsea, New
York, 1962]

36. In a well-ordered set there cannot be a decreasing infinite sequence, for
then in the subset formed from the elements of the sequence there is no small-
est element.

Conversely, if the set 〈A,≺〉 is not well ordered, then there is a nonempty
subset B ⊂ A which does not have a smallest element, i.e., for any b ∈ B there
is a smaller element in B. But then we can select elements b0, b1, . . . from B
such that each one is smaller than the previous one, and this b0, b1, . . . is then
an infinite monotone decreasing subsequence of 〈A,≺〉.

37. Apply the previous problem along with Problem 5.2.

38. Apply the preceding problem and Problem 23. If U consists of closed sets,
then consider complements with respect to R.

39. If we had f(a) ≺ a for some a, then by monotonicity f(f(a)) ≺ f(a),
f(f(f(a))) ≺ f(f(a)), etc., i.e., a, f(a), f(f(a)), . . . would be a monotone de-
creasing sequence, which is not possible in view of Problem 36.

40. If 〈A,≺〉 and 〈B, <〉 are two well-ordered sets and f1 and f2 are similarity
mappings from 〈A,≺〉 onto 〈B, <〉, then f−1

2 ◦ f1 and f−1
1 ◦ f2 are mappings
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of 〈A,≺〉 into itself. Hence by the preceding problem for every a we have
a  f−1

2 ◦ f1(a) and a  f−1
1 ◦ f2(a), which, when applying f2 resp. f1 to

both sides, yields f2(a) ≤ f1(a) and f1(a) ≤ f2(a), i.e., f1(a) = f2(a), and
this shows that f1 and f2 are identical.

41. This is a consequence of Problem 39, for if the well-ordered set 〈A,≺〉 was
similar via a mapping f to a subset of a proper initial segment S of it, and
a 
∈ S is a point outside S, then f(a) belongs to S, hence it is smaller than a,
and by Problem 39 this is not possible.

42. Let 〈A,≺〉 and 〈B, <〉 be two well-ordered sets. Let A′ be the set of all
a ∈ A such that the initial segment Aa := {α ∈ A : α ≺ a} is similar to an
initial segment Ca of B. By the previous problem, this Ca is uniquely defined
by a. If for some a ∈ A we have Ca = B, then we are done, so let us assume
that this is not the case. Then B \ Ca has a smallest element that we denote
by f(a). It is easy to see that Ca = Bf(a) := {b ∈ B : b < f(a)}.

In a similar manner let B′ be the set of all b ∈ B for which the initial
segment Bb is similar to an initial segment Db of A. This Db is again uniquely
determined by b, and we can assume again that Db 
= A for any b ∈ B′. It is
clear that for b ∈ B′ we must have Db = Aa for some a ∈ A′, and f(a) = b.
Thus, f maps A′ onto B′. Since a similarity mapping maps an initial segment
into an initial segment, it follows that both A′ and B′ are initial segments of
A and B, respectively.

Let fa be the similarity mapping from Aa onto Bf(a) (cf. Problem 40).
Then for c ≺ a the restriction of fa maps Ac into Bfa(c), hence, by the unicity
of the Bc, we must have fa(c) = f(c). But this means that f(c) = fa(c) <
f(a), i.e., f is monotone.

Thus, we have obtained so far that f : A′ → B′ is a similarity mapping
and so the claim follows if we can show that A′ = A. If this is not the case,
then the set A \ A′ is not empty, and so it has a smallest element, say a′. As
above, we get again that A′ = Aa′ , hence Aa′ is similar (via f) to an initial
segment (B′) of B. But then we would have a′ ∈ A′, which is not the case,
and so this contradiction proves that, in fact, A′ = A.

43. If 〈A,≺〉 and 〈B, <〉 are the two well-ordered sets, then by the previous
problem, one of them is similar to an initial segment of the other one. Suppose,
for example, that 〈B, <〉 is similar to an initial segment S of 〈A,≺〉. But we
must have S = A, for otherwise 〈A,≺〉, being similar to a subset of 〈B, <〉,
would be similar to a subset of its proper initial segment S, which is not
possible by Problem 41. Thus S = A, which means that the two sets are
similar.

44. Let 〈A,≺〉 be an ordered set, and let < be a well-ordering of A. Let B be
the set of those elements b ∈ A which satisfy the property that b  α implies
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b ≤ α for every α ∈ A. Since on B the two ordering ≺ and < coincide, and <
is a well-ordering, it follows that 〈B,≺〉 is well ordered.

In order to show that B is cofinal, let a ∈ A be arbitrary, and let b be the
smallest element with respect to < of the nonempty set {α : a  α}. Then
a  b, so if b  α we also have a  α, hence, by the choice of b, we get that
b ≤ α. Since this is true for any α ∈ A, this b belongs to B, and since we also
have a  b, the proof is over.

To see that the order type of 〈B,≺〉 can be made to be at most |B|, just
take the well-ordering of A above so that the order type of 〈A, <〉 is |A|. The
order type of 〈B,≺〉 is the same as the order type of 〈B, <〉, and it is at most
the order type of 〈A, <〉, i.e., at most |A|.

45. Assume that 〈A,≺〉 is an ordered set with the property in the problem.
If A has a largest element a and A \ {a} is the union of countably many well
ordered sets, then obviously so is A as well. Assume, therefore, that A has no
largest element, and let B be a well-ordered, cofinal subset of A (see Problem
44). For every b ∈ B, let Ab consist of those elements x of A for which this
b is the least element y ∈ B with x ≺ y. Then A = ∪{Ab : b ∈ B} is a
partition and if b ≺ b′ then x ≺ x′ holds whenever x ∈ Ab, x′ ∈ Ab′

(i.e.,
〈A,≺〉 is the ordered union of the ordered set {〈Ab,≺〉 : b ∈ B}). As Ab is
a subset of the initial segment determined by b, it is the union of countably
many well-ordered sets: Ab = Ab

0 ∪ Ab
1 ∪ · · ·. If we set Ai = ∪{Ab

i : b ∈ B},
then on the one hand, A = A0 ∪ A1 ∪ · · ·, and on the other hand, Ai, as the
well-ordered union of well-ordered sets, is well ordered for every i = 0, 1, . . ..

46. Suppose first that A does not have a largest element. Let a0 be the smallest
element of A and for a ∈ A let a+ be the successor of a in A. By Problem
26 there is a monotone mapping h : A → Q ∩ (0, 1). The mapping f(a) =
supb<a h(b+) (a 
= a0), f(a0) = 0 is monotone from A into Q∩ [0, 1) with the
property that if a ∈ A, a 
= a0 does not have a predecessor, then supb<a f(b) =
f(a) (i.e., f is continuous in the order topologies). In particular, the union
of the intervals [f(a), f(a+)), a ∈ A is [0, b), where b = supa∈A f(a). Choose
for each a ∈ A a monotone mapping ga of {a} × [0, 1) onto [f(a)/b, f(a+)/b),
and for (a, x) ∈ A × [0, 1) define g(a, x) = ga(x). This is clearly a monotone
mapping of A × [0, 1) onto [0, 1).

If A has a largest element amax, then the only change in the above argument
we have to make is to define both b and f(a+

max) to be 1.

47. Let B be the set of countable ordinals with the usual ordering among
ordinals, and let A be the ordered union of (0, 1) with the set [0, 1) × B (the
latter with antilexicographic ordering). Every initial segment of 〈A,≺〉 is an
initial segment of (0, 1) ∪ [0, 1) × C with some countable set C ⊂ B, and this
latter set is similar to (−1, 0) ∪ [0, 1) by Problem 46. Thus, the nonempty
proper initial segments of 〈A,≺〉 are similar to nonempty initial segments of
(−1, 1), and hence they are similar either to (0, 1) or to (0, 1]. However, 〈A,≺〉
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is not similar to a subset of R, for it includes an uncountable well-ordered
subset: {0} × B (see Problem 37).

In the second part of the proof we show the unicity. Let 〈A,≺〉 be an
ordered set not similar to a subset of R, but for which all proper initial
segments are similar to (0, 1) or (0, 1]. If 〈A,≺〉 had a largest element, then
the proper initial segment determined by that element would be similar to
either (0, 1) or (0, 1]; therefore, the set 〈A,≺〉 would be similar to either (0, 1]
or (0, 1] ∪ {2}, which is not possible. Thus, there is no largest element. Select
a cofinal well-ordered set B = {bξ}ξ<α, bξ ≺ bη for ξ < η < α in 〈A,≺〉
as in Problem 44. Then B does not have a largest element, and for each
ξ < α the interval Iξ = {a ∈ A : bξ  a ≺ bξ+1} is similar to either
[0, 1) or to [0, 1]. But actually, the latter is not possible, for then the proper
initial segment {a : a  bξ+1} would have a largest element which has a
predecessor, therefore it would not be similar to either (0, 1) or to (0, 1]. In a
similar fashion, the interval J = {a : a ≺ b0} is similar to (0, 1). Now 〈A,≺〉
is the ordered union of the intervals J , Iξ, ξ < α, just the same type that we
gave in the beginning of the proof. The proof will be completed by showing
that α = ω1, i.e., 〈B,≺〉 is similar to the set of countable ordinals. α cannot
be countable, for then the just constructed ordered union would be similar
to (0, 1) (see Problem 46). But α ≥ ω1 + 1 is not possible, either, for then
the proper initial segment {a ∈ A : a ≺ bω1} would include an uncountable
well-ordered set ({bξ}ξ<ω1), and hence it could not be similar to either (0, 1)
or (0, 1] (see Problem 37). Thus, α = ω1, and the proof is over.

48. One direction is clear. Now suppose that there is a monotone mapping
f : 〈A,≺〉 → 〈A,≺〉 with f(x) 
= x, say x ≺ f(x). Define g : A → A as

g(y) =
{

y if y ≺ x,
f(y) if x  y.

It is clear that g is monotone, and its range omits x.

49. Assume that x ≺ y. x and y divide A \ {x, y} into three parts; let them be
in the order of ≺ the sets X, Y, Z. Thus, A = X ∪{x}∪Y ∪{y}∪Z. Suppose
to the contrary, that y is not a fixed point of A \ {x}. Then, by the previous
problem, there is an order-preserving mapping f : A \ {x} → A \ {x, y}.

We now consider three cases, and in each case we construct an order-
preserving mapping g from A into either A \ {x} or A \ {y}, so x or y is not
a fixed point for the set 〈A,≺〉, and this contradiction proves the claim.

If fn(y) ∈ Z for some n ≥ 1, then let

g(z) =
{

z if z ≺ y,
fn(z) if y  z.

This g maps A into A \ {y}.
If for some n we have fn(y) ∈ X, then set
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g(z) =

⎧⎨
⎩

fn(z) if z ≺ x,
fn(y) if z = x,

z if x ≺ z.

This g maps A into A \ {x}.
If, finally, for every n = 1, 2, . . ., fn(y) ∈ Y is true, then let

g(z) =
{

z if z ≺ fn(y) for every n,
f(z) if fn(y)  z for some n.

This g maps A into A \ {y}.

50. Assume to the contrary that x0, x1, . . . are different fixed points in 〈A,≺〉.
By the previous problem xn is a fixed point of An = A \ {x0, . . . , xn−1}, so
(see Problem 48) for i < j the set 〈Ai,≺〉 cannot be mapped by a monotone
mapping into 〈Aj ,≺〉. But this contradicts Problem 60. and this contradiction
proves the claim.

51. Let A = {1 − 1/j}∞
j=1 ∪ {1, 2, . . . , n}. A monotone mapping f : A → A

cannot map any of {1, 2, . . . , n} into the set {1 − 1/j}∞
j=1. Thus, f maps

{1, 2, . . . , n} into itself, and hence onto itself, and so the points 1, 2, . . . , n are
all fixed points.

52. If 〈A,≺〉 does not have a subset similar to Q, then we can apply the
reasoning from the Problem 50 referring to Laver’s theorem rather than to
Problem 60.

53. See Problem 1.20. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish
Sci. Publ., Warszawa, 1965, XI.2]

54. It is clear that ≺ is irreflexive. It is transitive, since if x ≺ y and y ≺ z,
then there are sets E,F ∈ M with x ∈ E, y 
∈ E, y ∈ F , z 
∈ F . Since one
of E and F includes the other one, we must have E ⊂ F , hence x ∈ F but
z 
∈ F , and so really we have x ≺ z. Finally, we show that ≺ is trichotomous.
Suppose to the contrary that x 
= y are not comparable with respect to ≺.
Then for every E ∈ M either both of them belong to E, or both of them
belong to its complement. Now let M be the union of all those sets E ∈ M
that omit x. If F ∈ M contains x, then it contains all sets in M that omit x,
so M ⊂ F . On the other hand, clearly all sets in M that omit x are subsets
of M . Hence M is comparable with respect to inclusion with every set in M,
hence, by the maximality of M, we have M ∈ M. Since x is not in M , we get
that, y 
∈ M . But then M ∪ {x} is also comparable with every member of M,
and as such, it would have to belong to M, which is not possible, for then it
would have to contain y, which is not the case. This contradiction proves that
any two elements are comparable.
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Thus, ≺ is an ordering on X. It easily follows from what we have done
above that the initial segments in 〈X,≺〉 are the sets E ∈ M. In fact, if y ∈ E
and x ≺ y, then we must have x ∈ E, so E is an initial segment. Conversely,
if S is an initial segment of 〈X,≺〉, then, since any two initial segments are
comparable via inclusion, S is comparable with any member of M. Hence by
the maximality of M it has to belong to M.

55. Let 〈A, <〉 be an ordered set, and let M be the set of its initials segments. It
is clear that the relation ≺ defined in the preceding problem and < coincide on
A, thus it is left to show that M is a maximal family with respect to inclusion.
Let M ⊂ A be any set that is comparable with every member of M, and let
S be the union of all initial segments of 〈A, <〉 that are inluded in M . Then S
is an initial segment such that S ⊂ M , and we claim that it is actually equal
to M , and this will prove that M ∈ M. If we had S 
= M , then we could
select an element m ∈ M \S. Consider now the initial segment {a : a ≤ m}.
Since this cannot be equal to M (otherwise m would belong to S), there is
a b < m such that b 
∈ M . But then the initial segment {a : a < m} is
incomparable with M , since it contains b but omits m. This contradiction
shows that actually we have S = M .

56. Take as 〈A∗,≺∗〉 the product of 〈A,≺〉 with itself with the lexicographic
ordering. Let A∗ = B ∪C be an arbitrary decomposition. If there is a b0 ∈ A
such that all (b0, a) with a ∈ A belong to B, then these elements form a subset
of A∗ similar to 〈A,≺〉. If, however, no such b0 exists, then for every b ∈ A
there is an a = ab such that (b, ab) ∈ C. But then the elements (b, ab), b ∈ A
form a subset similar to 〈A,≺〉.

57. Let 〈A,≺〉 be an infinite ordered set. By Problem 1 it includes an infinite
monotone sequence. If 〈A,≺〉 includes an infinite decreasing sequence, then let
us choose a well-ordered set 〈B, <〉 of cardinality bigger than the cardinality
of A. By Problem 36 the set 〈A,≺〉 cannot be similar to a subset of 〈B, <〉,
and it is also clear that 〈B, <〉 cannot be similar to a subset of 〈A,≺〉 because
it is of bigger cardinality than the latter.

If 〈A,≺〉 includes an infinite decreasing sequence, then just reverse the
order on B.

58. According to the previous proof, one of N and Z \ N is suitable.

59. For i = 1, 2, . . . , n consider the sets

Ai = {−i,−i + 1, . . . − 1} ∪ {−1 + 1/n, 1 − 1/n}∞
n=1 ∪ {1, 2, . . . n + 1 − i}.

No 〈Ai, <〉 is similar to a subset of any other 〈Aj , <〉. Indeed, if 1 ≤ j < i ≤ n,
then a monotone mapping f : Ai → Aj should map the first i elements of Ai

into the first j elements of Aj , which is not possible. For j < i work similarly
with the n + 1 − i largest elements.
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60. If 〈Ai,≺i〉, for some i = 1, 2, . . . includes a densely ordered subset, then
〈A0,≺0〉 is similar to a subset of 〈Ai,≺i〉 by Problems 26–28. If, however,
neither of 〈Ai,≺i〉, i = 1, 2, . . ., includes a densely ordered subset, then we
can apply Laver’s theorem to them.

61. Let 〈A,≺〉 be a countable set, and for a, b ∈ A set a ∼ b if there are
only finitely many elements between a and b. This is clearly an equivalence
relation. By Problem 8 an infinite equivalence class C is similar to either Z, N,
or Z\N. In each case we can omit an element c from C and the remaining set
will be still similar to C, and this similarity relation can be extended (defining
as the identity elsewhere) to a similarity from 〈A \ {c},≺〉 to 〈A,≺〉.

Thus, if there is an infinite equivalence class, then we are done. If all
equivalence classes are finite, then between any two equivalence classes there
must be at least one other equivalence class; in other words if a, b belong to
different equivalence classes, then there is an a ≺ c ≺ b that is not equivalent
to either a or b (otherwise a and b were equivalent since their classes are
finite). Thus, if we select one–one element from the equivalence classes, then
the set S so obtained is densely ordered. Omit now any element s ∈ S from
S. The remaining set is still densely ordered, and so by Problems 26 and 28
〈A,≺〉 is similar to a subset of 〈S \{s},≺〉, and the proof is over. [B. Dushnik
and E. W. Miller, Bull. Amer. Math. Soc., 46(1940), 322]

62. See Problem 88.

63. If the set is 〈A,≺〉, and it is well ordered, then we can just move the first
element of the set to be last element. Then the set 〈A,≺′〉 so obtained is not
similar to the original one. In fact, this is clear if 〈A,≺〉 does not have a largest
element. If, however, it has a largest element, then the number of elements
that are followed by finitely many elements is finite, say n (recall Problem 36,
according to which if we start from the largest element in a well-ordered set
and repeatedly take predecessors, then we get stuck in finitely many steps).
But then in 〈A,≺′〉 there are (n + 1) elements with this property, and this
proves that these two sets are not similar.

Now let us suppose that 〈A,≺〉 is not well ordered. The union of well-
ordered initial segments is clearly a well-ordered initial segment, so 〈A,≺〉 has
a largest well-ordered initial segment S (which may be empty). Then in A \S
there is no smallest element (otherwise we could add that smallest element to
S). Now move any element s in A \ S to lie between S and A \ (S ∪ {s}). We
claim that the set 〈A,≺′〉 so obtained is not similar to 〈A,≺〉. In fact, in a
similarity mapping well-ordered initial segments are mapped into well-ordered
initial segments, hence S would have to be mapped into S ∪{s}, which is not
possible as we have just seen it. [Z. Chajot, Fund. Math. 16(1930), 132–136;
W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa,
1965, XIV.4/14]

64. Just follow the preceding proof.
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For removing one element the claim is not true: if we remove any element
from N, the remaining set is still similar to N.

65. If 〈A,≺〉 is an ordered set, then 〈A,≺〉 × 〈Q, <〉 with the lexicographic
ordering is densely ordered, and it clearly includes a subset (say the set of
elements (a, 0) with a ∈ A) similar to 〈A,≺〉.

66. Let the ordered set be 〈A,≺〉. Consider the set S of all the initial seg-
ments of 〈A,≺〉 that do not have a largest element, and consider the inclu-
sion ordering on S. To every a ∈ A we can associate the initial segment
Sa := {x : x < a}, and this mapping a �→ Sa is clearly monotone. Thus, it is
sufficient to show that 〈S,⊂〉 is continuously ordered and that {Sa : a ∈ A}
is a dense subset of it. Let S = S1 ∪ S2 be a disjoint decomposition of S in
such a way that each initial segment in S1 is a subset of any initial segment
in S2, and let S be the union of all initial segments in S1. S is again an initial
segment of 〈A,≺〉 without largest element, hence it belongs either to S1 or to
S2. In the first case it is clear that S is the largest element in S1, and in the
second case it is the smallest element in S2. It is not possible that simultane-
ously S1 has a largest element S1 and S2 has a smallest element S2. In fact,
then there would be a point a ∈ S2 \ S1, and since S2 does not have a largest
element, there would also be another point b ∈ S2 with a ≺ b. But then the
initial segment Sb would lie strictly between S1 and S2, which is not possible.
This proves that 〈S,⊂〉 is continuously ordered.

Now let S1 ⊂ S2 be two initial segments in S, and let b ∈ S2 \ S1. Since
S2 does not have a largest element, there is a point a ∈ S2 with b ≺ a.
Now the initial segment Sa lies strictly between S1 and S2 (b ∈ Sa \ S1 and
a ∈ S2 \ Sa), which proves that {Sa : a ∈ A} forms a dense subset of 〈S,⊂〉.
[W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa,
1965, XI.9. Theorem 1]

67. Let 〈A, <〉 and 〈B,≺〉 be two continuously ordered sets such that some
dense subsets A′ ⊂ A and B′ ⊂ B are similar. Let f : A′ → B′ be a similarity
transformation between these two sets, and for any a ∈ A let

B1 = {y ∈ B : y ≺ f(x) for some x ∈ A′, x < a}.

Then B1 is a proper initial segment in B, hence either in B1 there is a largest
element, or B \ B1 contains a smallest element. For any x < a there are
elements from A′ between x and a, hence no y can be a largest element in B1
(for if y ∈ B1 and y ≺ f(x) with x ∈ A′, x < a, then f(x) also belongs to B1
by what we have just said). Thus, B \ B1 must contain a smallest element,
which we denote by F (a). It is easy to prove that F is a monotone mapping
from A into B and extends f . It is left to prove that it is a mapping onto B.

Now do the same reversing the role of A and B and with the mapping
f−1 : B′ → A′. We get that f−1 has a monotone extension G : B → A. Now
G◦F is a monotone mapping of A into itself that extends f−1 ◦f , i.e., it fixes
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the dense set A′. Hence G ◦F is the identity on A. In a similar fashion, F ◦G
is the identity mapping on B, hence G is the inverse of F . As a consequence,
〈A,≺〉 and 〈B, <〉 are similar. [W. Sierpiński, Cardinal and Ordinal Numbers,
Polish Sci. Publ., Warszawa, 1965, XI.9. Theorem 2]

68. Let 〈B,≺〉 be continuously ordered such that it contains at least two
points. Selecting the terms in the sequence B′ = {a0, a1, . . .} one by one, we
can easily construct a countable densely ordered subset B′ of 〈A,≺〉. Now
repeat the procedure in the solution of Problem 67 with the role A = R and
A′ = Q. The mapping F constructed there will be a monotone mapping from
R into 〈B, <〉 (now we cannot claim that it is onto, since we do not repeat
the process starting from B). [W. Sierpiński, Cardinal and Ordinal Numbers,
Polish Sci. Publ., Warszawa, 1965, XI.10/6]

69. The nested property of the intervals implies that a0  a1  · · · and
b0 � b1 � · · · and each bj is bigger than any ak. Now let S = {c ∈ A : c 
an for some n ∈ N}. Then either in S there is largest element a or in A \ S
there is a smallest element a. In either case a is a common points of all the
closed intervals An. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish
Sci. Publ., Warszawa, 1965, XI.5/3]

70. Let 〈B, <〉 be the set of the countable ordinals with the standard ordering
on the ordinals and let 〈B∗, <∗〉 be an ordered set that is similar to the
ordered set that we obtain when we reverse the ordering on B, and also for
which B∗ ∩B = ∅. We choose 〈A,≺〉 as the ordered union of the sets (in this
order) B × [0, 1) and B∗ × [0, 1) (which are equipped with the lexicographic
ordering). It is clear that 〈A,≺〉 is not continuously ordered, since A = (B ×
[0, 1)) ∪ (B∗ × [0, 1)), every element of B × [0, 1) precedes every element of
B∗× [0, 1), but there is no largest element in B× [0, 1), nor a smallest element
in B∗ × [0, 1).

It is easy to see that every subset C 
= ∅ of B × [0, 1) has a greatest lower
bound. In fact, if ζ is the smallest ordinal with the property that there is an
y ∈ [0, 1) with (ζ, y) ∈ C, and if x = inf{y : (ζ, y) ∈ C}, then clearly (ζ, x)
is the greatest lower bound of C. Furthermore, every sequence

{(ζn, xn) : ζn ∈ B, xn ∈ [0, 1), n = 0, 1, . . .}

has a smallest upper bound. In fact, since there is a countable ordinal bigger
than every ζn, the sequence {(ζn, xn)}∞

n=0 is bounded from above in B× [0, 1).
But then the smallest upper bound is just the greatest lower bound of all the
upper bounds.

In a similar manner, every sequence in B∗ × [0, 1) has a smallest upper
bound and a greatest lower bound, and it immediately follows that 〈A,≺〉 also
has this property. Thus, if An = {c : an  c  bn} is a sequence of closed
intervals in A, and a is the smallest upper bound of the sequence {an}∞

n=0, then
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a belongs to all the sets An. [W. Sierpiński, Cardinal and Ordinal Numbers,
Polish Sci. Publ., Warszawa, 1965, XV.1]

71. Suppose that B and C are subsets of an ordered set, B∪C is not scattered,
but B is. Then B ∪C includes a densely ordered subset D. But D ∩B is not
densely ordered, so there are two elements b, d in it such that there are no
further elements from D ∩B between b and d. However, in a densely ordered
set the elements lying in between two given elements form a densely ordered
set, hence the elements from C that lie between b and d form a densely ordered
set, and so C is not scattered.

72. First suppose that the closure A of A ⊆ R is not countable. Then by
Problem 2.11 there is a point a ∈ A such that each of the sets A ∩ (−∞, a)
and A ∩ (a,∞) is uncountable. Since a ∈ A is the limit of points in A, the
solution to Problem 2.11 also gives that we can actually select a from A.

Thus, if A is such that its closure A is uncountable, then there is a point
a0 ∈ A such that the closure of both A ∩ (−∞, a0) and of A ∩ (a0,∞) are
uncountable. Apply this separately to the sets A∩ (−∞, a0) and A∩ (a0,∞);
we obtain points a1, a2 ∈ A such that a1 < a0 < a2 and the closure of
each of the sets A ∩ (−∞, a1), A ∩ (a1, a0), A ∩ (a0, a2), and A ∩ (a2,∞) is
uncountable. Now apply the same reasoning separately to these sets, then we
get a3, a4, a5, a6 ∈ A such that a3 < a1 < a4 < a0 < a5 < a2 < a6, etc. It
is clear that this way we get a densely ordered subset of A, hence A is not
scattered.

Conversely, suppose that A is not scattered, i.e., it has a densely ordered
subset, which we can continue to denote by A. Let a0 < b0 < b1 < a1 be
points from A, then select points a0 < a00 < b00 < b01 < a01 < b0 and points
b1 < a10 < b10 < b11 < a11 < a1 from A, then for each i, j = 0, 1 with aij < bij

select four points aij < aij0 < bij0 < bij1 < aij1 < bij from A, and for each
i, j = 0, 1 with bij < aij select four points bij < aij0 < bij0 < bij1 < aij1 <
aij from A, etc. This process can be continued indefinitely due to the dense
ordering on A. Now if ε = (ε0, ε1, . . .) is an arbitrary infinite 0–1 sequence,
then consider the number

xε = lim inf
n→∞ aε1ε2...εn .

If ε′ = (ε′
0ε

′
1 . . .) is a different sequence, for example, ε0 = ε′

0, . . . , εn = ε′
n but

εn+1 = 0 and ε′
n+1 = 1, then

xε ≤ bε0...εn0 < bε′
0...ε′

n1 ≤ xε′ .

Thus, the numbers xε are all different. Since they all belong to the closure of
A, we obtain that this closure is of cardinality continuum (see Problem 4.2),
and this proves the sufficiency of the condition.

73. The necessity of the condition is clear from the preceding problem: if
ε0, ε1, . . . are given, then, since the closure A of A is countable, we can enu-
merate its points in a sequence, and by covering the ith point with an open
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interval Ii of length εi we get a cover of A. But this set is compact, so we can
select a finite subcover ∪N

j=0Ij , and this proves the necessity.
Conversely, suppose that A is not scattered, and consider points a0 < b0 <

b1 < a1, a0 < a00 < b00 < b01 < a01 < b0, b1 < a10 < b10 < b11 < a11 < a1,
etc. selected in the preceding proof. Let εj be smaller than all the distances
between all the points aα0...αjm

, bα0...αjm
, where α0, . . . , αjm run through all

possible choices of 0’s and 1’s (in other words, εj is smaller than the short-
est distance between points at the (j + 1)th level). We claim that then there
is no natural number N such that A can be covered with some intervals
I0, I1, . . . , IN of length |Ii| = εi. In fact, suppose that I0, I1, . . . are inter-
vals with |Ij | = εj . In what follows [a, b] denotes the interval [a, b] if a ≤ b
and the interval [b, a] if b < a. By the choice of ε0, if I0 ∩ [a0, b0] 
= ∅, then
I0 ∩ [a1, b1] = ∅, and conversely, if I0 ∩ [a1, b1] 
= ∅, then I0 ∩ [a0, b0] = ∅.
In other words, I0 does not intersect one of the intervals [a0, b0] and [a1, b1],
say I0 does not intersect [aα0 , bα0 ]. In a similar fashion, I1 does not intersect
one of the intervals [aα0,0, bα0,0] and [aα0,1, bα0,1], say I1 does not intersect
[aα0α1 , bα0α1 ]. Note that [aα0α1 , bα0α1 ] is part of [aα0bα0 ], so I0 does not in-
tersect this interval, either. We can continue this process and find that for
each n there is a subinterval [aα0...αn , bα0...αn ] such that neither of I0, . . . In

intersects this interval. Since this process can be carried out indefinitely, there
cannot be an N such that the intervals I0, I1, . . . , IN cover A.

74. Assume to the contrary that q �→ fq is an order-preserving injection of
Q into 〈H(α),≺〉. Let β0 < α be the least ordinal that occurs as the largest
ordinal where some fq0 , fq′

0
with q0 < q′

0 differ. Now choose rational numbers
q0 < q1 < q′

1 < q′
0. Then all the functions fq0 , fq′

0
, fq1 , fq′

1
agree above β0 and

some two at β0, too. Hence for these two functions the largest difference would
have to occur before β0, but this contradicts the choice of β0. [P. Komjáth
and S. Shelah]

75. The product of 〈A,≺〉 and 〈B, <〉 is similar to the ordered union with
respect to 〈B, <〉 of disjoint copies of 〈A,≺〉, hence this statement follows
from the next problem.

76. Suppose 〈A,≺〉 is the ordered union of the scattered sets 〈Ab,≺b〉 with
respect to the scattered set 〈B, <〉, and suppose that there is a densely ordered
subset C ⊂ A of A. Consider the set

BC = {b : ab ∈ C for some ab ∈ Ab}.

This cannot have a densely ordered subset, so there are two elements b1, b2 ∈
BC such that there are no further elements from BC between them. The
elements a ∈ C with ab1 ≺ a ≺ ab2 form a densely ordered set, but all such
elements are from the sets Ab1 and Ab2 , and by Problem 71, Ab1 ∪ Ab2 does
not have a densely ordered subset. This contradiction proves that a densely
ordered subset C cannot exist.
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77. Let 〈A,≺〉 be any ordered set, and for x, y ∈ A let x ∼ y if the interval
determined by x and y is scattered (i.e., for example, for y ≺ x the interval
{a ∈ A : y ≺ a ≺ x} is scattered). It easily follows from Problem 71 that
this is an equivalence relation. It is also clear that every equivalence class is
scattered, and if C and D are two different equivalence classes, then either all
elements in C precede all elements in D or vice versa. Thus, there is a natural
ordering ≺∗ on the set A∗ of equivalence classes coming from the ordering ≺.
Furthermore, if C and D are two equivalence classes then there must be an
equivalence class between them, for otherwise C ∪ D would be scattered by
Problem 71, and so it would be part of a single equivalence class. This means
that the set of equivalence classes is a densely ordered set. But it is clear that
〈A,≺〉 is the ordered union of the equivalence classes (with the ordering ≺
restricted to them) with respect to the densely ordered set 〈A∗,≺∗〉, and this
proves the claim.

78. Let 〈A,≺〉 be an ordered set. Follow the preceding proof, just replace
“scattered” everywhere by “belongs to F”. The proof remains valid if we
show that every equivalence class belongs to F . Let E be an equivalence
class, a ∈ E, E+ = {b ∈ E : a ≺ b} and E− = {b ∈ E : b ≺ a}.
It is sufficient to show that E± belong to F , for then E, as the ordered
union of E−, {a}, E+, also belongs to F . If E+ has a largest element b, then
b ∼ a, so the definition of ∼ shows that E+ ∈ F . Suppose now that E+
has no largest element. Let {aξ}ξ<α be a well-ordered cofinal subset of E+
(see Problem 44). Since any two aξ, aζ (ξ, ζ < α) are equivalent, the interval
[aξ, aξ+1) = {b ∈ A : aξ  b ≺ aξ+1} belongs to F . But E+ is a well-ordered
union of the sets (a, a0),[a0, a1), . . ., [aξ, aξ+1), . . ., ξ < α, hence it belongs to
F .

The proof that E− belongs to F is similar if we use a reversely well-ordered
coinitial subset of it.

79. First of all, by Problem 76 every set in O is scattered, hence it is enough
to prove that every scattered set is in O.

It is clear that the family F = O satisfies the hypothesis in the preceding
problem (prove by induction that O is closed for forming subsets, as well).
Thus, if 〈A,≺〉 is scattered, then either it belongs to O, or it is similar to an
ordered union of nonempty sets in O with respect to a densely ordered set. But
the latter would mean that 〈A,≺〉 includes a densely ordered set (just select
one–one point from each summand), which is impossible. Hence 〈A,≺〉 ∈ O,
as was claimed. [F. Hausdorff, Grundzüge der Theorie der Geordnete Mengen,
Math. Ann., 65(1908), 435–505]

80. Let F be the family of ordered sets that can be embedded into one of the
〈H(α),≺〉. By Problem 74 all these sets are scattered, hence it is left to show
that every scattered set is in F . Note that F is closed for well-ordered and
reversely well-ordered union. In fact, suppose that each 〈Aξ, <ξ〉, ξ < γ, can be
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embedded into some 〈H(αξ),≺〉. Selecting an α bigger than all αξ, ξ < γ, we
may assume αξ = α for all ξ, and then the ordered sum of the sets 〈H(α), <ξ〉,
ξ < γ, is similar to the product H(α)×γ with the antilexicographic ordering.
Thus, it is enough to prove that this product can be embedded into H(α+γ).
But that is easy: map a pair (f, β) with f ∈ H(α) and β < γ into the function
g ∈ H(α + γ) that agrees with f on the set α, and in the interval [α, α + γ)
it is everywhere zero except at α + β where it is 1 (and this one is the last
nonzero element of g). It is easy to see that this is an embedding of H(α)× γ
into H(α + γ).

The proof that F is closed for reversely well-ordered unions is the same,
just use the value −1 instead of 1 as a last nonzero element in the embedding.

Thus, the family F satisfies the hypothesis in Problem 78, and hence if
〈A, <〉 is a scattered set, then either it belongs to F , or it is similar to an
ordered union of nonempty sets in F with respect to a densely ordered set.
This latter one is impossible (cf. the end of the solution to the preceding
problem), hence 〈A, <〉 ∈ F as was claimed. [P. Komjáth and S. Shelah]

81. We are going to show that there is an ordered set 〈A,≺〉 with countable
intervals and smallest element such that every ordered set with countable
intervals and smallest element is similar to a subset of 〈A,≺〉. This will already
solve the problem. In fact, let 〈A∗,≺∗〉 be the ordered set that we obtain by
replacing every element a in A by an element a∗ from a disjoint set A∗ and
let a∗ ≺∗ b∗ be precisely if b ≺ a (in other words, we take the reverse ordering
of 〈A,≺〉). It is clear that every ordered set with countable intervals and
a largest element is similar to a subset of 〈A∗,≺∗〉. Now let 〈A,�〉 be the
ordered union of 〈A∗,≺∗〉 and 〈A,≺〉, in which every element of A∗ precedes
every element of A. We claim that every ordered set 〈B, <〉 with countable
intervals is similar to a subset of 〈A,�〉. Choose an element b0 ∈ B, and
consider the sets B1 = {b ∈ B : b ≤ b0} and B2 = {b ∈ B : b0 ≤ b}. Then
B2 has a smallest element and countable intervals, so it is similar to a subset
of 〈A,≺〉. In a similar fashion, B1 is similar to a subset of 〈A∗,≺∗〉, and since
the elements in B1 \ {b0} precede the elements in B2, these two facts show
that 〈B, <〉 is similar to a subset of 〈A,�〉.

Thus, it is enough to construct 〈A,≺〉. Let ω1 be the set of countable
ordinals with the standard ordering on the ordinals, and let 〈A,≺〉 be the
product ω1 × (Q∩ [0, 1)) with the lexicographic ordering. Clearly (0, 0) is the
smallest element in 〈A,≺〉. If (ξ, r) ∈ A is any element, then, since there are
only countably many smaller ordinals than ξ, we have that the set of those
elements in A that are smaller than (ξ, r) is countable (cf. Problem 2.2). This
shows that 〈A,≺〉 has countable intervals.

Now let 〈C, <〉 be any set with smallest element c0 and countable intervals.
If C has a largest element, then it is countable by the countable interval
property, and on applying Problem 26 we can immediately see that then
〈C, <〉 is similar to a subset of {0}× (Q∩ [0, 1)). Thus, in what follows we are
going to assume that C does not have a largest element.
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By Hausdorff’s theorem (Problem 44) there is a well-ordered cofinal subset
B of C. Let B = {bα : α < γ} be the increasing enumeration of B. Clearly
we must have γ ≤ ω1. Decompose C as C = ∪{Cα : α < γ}, where x ∈ Cα if
and only if bα is the least element of B that is grater than x. Then each Cα is
a countable set and C is the ordered union of them. By Problem 26 〈Cα, <〉
can be monotonically embedded into {α} × (Q ∩ [0, 1)), and these together
give a monotone embedding of 〈C, <〉 into γ × (Q ∩ [0, 1)), which is a subset
of ω1 × (Q ∩ [0, 1)).

82. Let k be the largest exponent of 2 in the expansion of n1 in base 2. Then in
the expansion of any ni in the appropriate base bi (it is [i/2] + 2) the highest
exponent of bi is at most k. Thus, if the coefficient of (bi)j in this expansion
is c

(i)
j , then

c(i) =
(
c
(i)
k , c

(i)
k−1, . . . , c

(i)
1 , c

(i)
0

)
is an element of the set Nk+1, which we order by the lexicographic ordering
≺. It is clear that if n2i−1 > 0, then c(2i) = c(2i−1), and it is easy to see that
c(2i+1) ≺ c(2i). Thus, {c(2i)}i is a decreasing sequence in Nk+1, and since the
latter set is well ordered, it cannot be infinite, i.e., there must be an i with
ni = 0.

The proof of part (b) is identical.

* * *

83. Let 〈A,≺〉 be densely ordered. It is sufficient to show a coloring of A by
red and blue in such a way that elements of either colors form a dense subset
of A. Let {aα}α<κ be an enumeration of the elements of A into a transfinite
sequence of type κ = |A|. The coloring is done by transfinite recursion on this
enumeration: if {αβ : β < α} is already colored, then let aα be red if in the
ordered set 〈{αβ : β ≤ α},≺〉 the element aα has both a successor and a
predecessor and both of them are blue, otherwise let the color of aα be blue.
We claim that this is an appropriate coloring. Let a ≺ b be two elements in
A and let us show that there is a red element in between them. Let aγ , aδ,
γ < δ be the two elements with smallest index lying in between a and b, and
then let aα be the element with smallest index α lying in between aγ and aδ.
If either aγ or aδ is red, then we are ready. Otherwise in 〈{αβ : β ≤ α},≺〉
the element aα has a predecessor and a successor (these are aγ and aδ) and
both are blue, hence aα is red.

In a similar fashion, if either aγ or aδ is red, then necessarily aα is blue,
hence there is a blue element in between a and b. [I. Juhász]

84. Let 〈A, <〉 be the ordered set, and set a ∼ b if there are only finitely
many elements in between a and b. This is clearly an equivalence relation,
and every equivalence class C is either finite or similar to either Z, N, or
Z \ N. Hence we can color alternately the elements of any equivalence class
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C consisting of at least two elements by red and blue so that in between any
two elements of the same color there is an element with a different color.
Between equivalence classes let ≺′ be the natural ordering inherited from <
(i.e., C1 ≺′ C2 if for some—and then for all—c1 ∈ C1 and c2 ∈ C2 we have
c1 < c2), and let B be the union of all the equivalence classes consisting of
more than one point. This set is already colored. Color the set A \ B by the
method of the preceding problem: if {aα}α<κ is an enumeration of A\B, and
if we have already colored the subset {aβ : β < α}, then let the color of aα

be red if it has a blue predecessor and successor in {aβ : β ≤ α}, otherwise
color it blue. We claim that this is a good coloring.

Let a, b be two elements belonging to the equivalence classes Ca and Cb.
If Ca does not have a largest element or Cb does not have a smallest element,
then there are points of both colors in between a and b. The same is true
if there is an equivalence class of size ≥ 2 in between Ca and Cb. In the
remaining case there are only one-element equivalence classes in between Ca

and Cb, and the elements of these form a densely ordered set. Hence, by the
proof of the preceding problem, both colors occur among these elements, and
we are done. [I. Juhász]

85. Let 〈A,≺〉 be an ordered set of the following structure: there is a largest
element a0 and a decreasing sequence . . . ≺ a1 ≺ a0 such that the interval
{a ∈ A : an+1  a ≺ an) has order type ωn, and these intervals together
with {a0} cover the whole set. Assume that B, C ⊆ A are different nonempty
initial segments and f : B → C an isomorphism. There is an n < ω with
an ∈ B ∩ C. In A, and therefore also in B and C, an is the largest element,
which is the supremum of a subset of type ωn and this implies that f(an) = an.
But then f is an isomorphism between the parts of B and C consisting of the
elements that are larger than an, which is impossible, as they are distinct
initial segments of the same well-ordered set.

86. Let A be the set of all limit ordinals smaller than ω1, and for all α ∈ A
fix a strictly increasing sequence α0 < α1 < · · · of ordinals with supremum α.
Let us also agree that in this proof αn, βn, etc., mean the corresponding terms
in the sequence associated with α, β, etc. For α 
= β let α ≺ β if αn < βn for
the smallest natural number n for which αn 
= βn. This is clearly an ordering
on A. We claim that this ordered set cannot be represented as a countable
union of its well-ordered subsets, but every uncountable subset includes an
uncountable well-ordered subset.

Since A is stationary in ω1, and a countable union of nonstationary subsets
of ω1 is nonstationary, the fact that A cannot be represented as a countable
union of its well ordered subsets follows if we show that no stationary subset
X of A is well ordered under ≺. Let Y−1 = X, and suppose that we have
already defined Yn−1, and it is stationary in ω1. The mapping fn(α) = αn is
regressive on Yn−1, hence by Problem 20.16 there is a δ < ω1, such that the set
of those α ∈ Yn−1 for which fn(α) = δ is a stationary set in ω1. Let δn be the
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smallest such ordinal, and set Yn = {α ∈ Yn−1 : αn = δn}. This completes
the definition of the sequences Y0 ⊇ Y1 ⊇ · · · and the ordinals δ0 < δ1 < · · ·.
By definition, the set of those α ∈ Yn−1 for which αn < δn is nonstationary,
so if we omit all these elements from X for all n, then the remaining set X ′

is still stationary. Let δ be the supremum of the δn’s. Then δ is a countable
ordinal, so there is a γ ∈ X ′ bigger than δ. Note that for α, β ∈ Yn we have
α0 = β0 = δ0, α1 = β1 = δ1, . . . ,αn = βn = δn, and since supn δn < γ, there
is a smallest n = n0, such that δn0 
= γn0 . Thus, γ ∈ Yn0−1, and since in
forming X ′ we have omitted all elements α from Yn0−1 for which αn0 < δn0 ,
we must have δn0 < γn0 . All these imply that γ is bigger than all elements of
Yn0 with respect to ≺.

What we have proved is that if X ⊆ A is stationary then there is an
element γ0 ∈ X such that there is a stationary subset X1 = Yn0 of X the
elements of which are smaller than γ0 with respect to ≺. Now repeat this
process with X1 = Yn0 . Then we get a stationary set X2 ⊆ X1 and an ordinal
γ1 ∈ X1 such that γ1 is strictly larger (with respect to ≺) than any element
in X1. Clearly γ1 ≺ γ0, and if we continue this process indefinitely, then we
obtain an infinite monotone decreasing sequence . . . ≺ γ1 ≺ γ0 in X, so X is
not well ordered.

Next we show that every uncountable subset X of A has an uncountable
well-ordered subset. Consider the sets

Hm = {(α0, α1, . . . , αm) : α ∈ X}.

All these sets cannot be countable, for then there was a countable ordinal ν
with the property that αn < ν for all α ∈ X and all n, but then this would
imply by the definition of the sequences {αn} that all ordinals in X would be
at most ν, and this is not the case. Thus, there is an m = m0 such that the set
Hm0 is uncountable. For every s = (s0, s1. . . . , sm0) ∈ Hm0 choose an αs ∈ X

with (αs)0 = s0, . . ., (αs)m0 = sm0 . The Hm0 is part of
m0+1︷ ︸︸ ︷

ω1 × ω1 × · · · × ω1
and this latter set is well ordered with respect to lexicographic ordering, hence
Hm0 is also well ordered with respect to lexicographic ordering. But this then
means that the elements {αs}s∈Hm0

are also well ordered with respect to the
ordering ≺, so we have found an uncountable well-ordered subset of X.

87. We shall construct the sets A and B so that they will be dense in R. The
key to the construction of A and B is the observation that any monotone
mapping of A or B into R can be extended to a (strictly) monotone real
function (see the solution to Problem 18 and observe that if the domain of f
is a dense set and f is strictly increasing on its domain, then the extension of
f will be strictly increasing) and that the number of increasing real functions
is continuum (see Problem 4.14, d)). Thus, let fα, α < c be an enumeration
of the strictly increasing real functions. By transfinite recursion we define
increasing sets Aα, Bα of cardinality at most (|α|+ℵ0) as follows. Set A0 = Q,
B0 = Q. Suppose we already know Aγ and Bγ for γ < α. If α is a limit ordinal,



Solutions Chapter 6 : Ordered sets 209

then let Aα and Bα be the union of these Aγ and Bγ sets, respectively. If α is
a successor ordinal, say α = β + 1, then consider the functions fξ, ξ < α and
the set

Hα = Aβ

⋃⎛
⎝⋃

ξ<α

f−1
ξ [Bβ ]

⎞
⎠ .

Since Aβ and Bβ are of cardinality at most |α| + ℵ0, this Hα is also of car-
dinality at most |α| + ℵ0. Thus, there is a number aβ ∈ R \ Hα, and let
Aα = Aβ ∪{aβ} and Bα = Bβ ∪{bβ}, where bβ is any number outside the set

Bβ ∪
(
∪ξ<αfξ[Aα]

)
.

Finally, set A = ∪α<cAα and B = ∪α<cBα. It is clear that if f : A → R
is monotone, then f is the restriction of some fξ, ξ < c to A, and then for
α > ξ we have

f(aα) = fξ(aα) 
∈ B;

thus, f can map only a subset of A of cardinality smaller than continuum into
B.

88. We shall construct a set X of cardinality continuum with the desired prop-
erty. Similarly as in the preceding proof we use that any monotone mapping
of X into itself can be extended to a nondecreasing real function (see Problem
18), and the number of nondecreasing real functions is of power continuum
(see Problem 4.14, d)). We can actually discard all those nondecreasing func-
tions that have a range of cardinality smaller than continuum, since they
cannot establish a monotone mapping of X into itself. Thus, let fα, α < c be
an enumeration of those nondecreasing real functions that assume continuum
many different values, and that are not the identity. By transfinite recursion
we define disjoint sets Xα, Yα of cardinality at most |α| as follows. Set X0 = ∅,
Y0 = ∅. Suppose we already know Xγ and Yγ for γ < α. If α is a limit ordinal,
then let Xα and Yα be the union of these Xγ and Yγ sets, respectively. If
α is a successor ordinal, say α = β + 1, then consider the function fβ . The
range of it is of power continuum, thus there is an xβ 
∈ Xβ ∪ Yβ such that
fβ(xβ) 
∈ Xβ (note that there are c values satisfying the second property, and
all but < c of them satisfy the first one, as well). Set Xα = Xβ ∪ {xβ} and
Yα = Yβ ∪ {fβ(xβ)}.

Finally, set X = ∪α<cXα. It is clear that if f : X → R is monotone and
not the identity function, then f is the restriction to X of some fα, α < c,
and then f(xα) = fα(xα) ∈ Yα+1 ⊂ R \ X, thus f is not mapping X into X.

89. Exactly as in the proof of Problems 57 and 58, either κ with the usual
ordering on the ordinals, or κ with the reverse ordering is suitable (according
to whether the ordered set includes an infinite decreasing sequence or not).

90. It is enough to show an ordered set 〈B,≺〉 of cardinality bigger than κ and
a dense subset A ⊂ B in it of cardinality κ. In fact, then every element b ∈ B



210 Chapter 6 : Ordered sets Solutions

determines the initial segment Sb = {a ∈ A : a ≺ b} of 〈A,≺〉, hence 〈A,≺〉
has more than κ initial segments (note that for b1 
= b2 the initial segments
Sb1 and Sb2 are different by the density of A in B).

Let ρ be the smallest cardinal for which κρ > κ. We have ρ ≤ κ (see Prob-
lem 10.16). Let 〈B,≺〉 be the set ρκ of mappings f : ρ → κ with lexicographic
ordering and let A ⊂ B be the set of mappings f : ρ → κ for which only less
than ρ elements are mapped into a nonzero element. The cardinality of B is
κρ > κ, while the cardinality of A is at most

∑
α<ρ κ|α| =

∑
α<ρ κ = κρ = κ,

and it is clearly at least κ, so |A| = κ. Finally, it is easy to prove that A is
dense in B, and we are done.

91. For finite κ the statement is clear, and for an infinite one consider the
ordered set from the previous problem and the initial segments discussed
there.

92. Let {Hα}α<ν be a family of subsets of a set X of cardinality κ well
ordered with respect to inclusion: Hα ⊂ Hβ if α < β < ν. Then for every
α < ν, except perhaps for the ordinal immediately preceding ν, there is an
element xα ∈ Hα+1\Hα, and it is clear that for α < β the elements xα and xβ

are different (xα ∈ Hβ , but xβ 
∈ Hβ). Thus, the mapping α �→ xα is a 1-to-1
mapping of ν into X (if ν has a largest element µ then a 1-to-1 mapping of
ν \ {µ} into X), hence ν is of cardinality at most κ.

93. Suppose to the contrary that a family {fα : α < κ+} of more than κ
elements of κκ are well ordered: fα ≺ fγ for α < γ < κ+, where ≺ denotes the
lexicographic ordering. The sequence {fα(0) : α < κ+} is a weakly (i.e., not
strictly) increasing sequence of ordinals smaller than κ, so it stabilizes from
some point onward: fξ(0) = g(0) for all κ+ > ξ ≥ ξ0 with some g(0) < κ and
ξ0 < κ+ (recall that κ2 = κ, therefore there must be a value γ < κ and a
set A ⊂ κ+ of cardinality κ+ such that fξ(0) = γ for all ξ ∈ A, but then the
weak monotonicity gives for the smallest element ξ0 of A that fξ(0) = γ for all
ξ ≥ ξ0). Restricting to these functions, the sequence {fα(1) : ξ0 ≤ α < κ+} is
a weakly increasing sequence of ordinals smaller than κ, so again fξ(1) = g(1)
for κ+ > ξ ≥ ξ1 with some g(1) < κ and ξ1 < κ+. Proceeding by induction, we
get the values g(α) < κ and ξα < κ+ for all α < κ such that fξ(α) = g(α) for
ξ ≥ ξα (note also that the supremum of at most κ ordinals each smaller than
κ+ is smaller than κ+, so we never get stuck). But then ξ∗ = sup{ξα : α < κ}
is an ordinal smaller than κ+ and the functions {fξ : ξ∗ < ξ < κ+} are all
equal to g, which is absurd. This contradiction proves the claim.

94. Let A ⊂ T . By transfinite recursion we define an element g : κ → {0, 1}
of T which will be the least upper bound of the elements in A. Let g(0) = 1
if there is an element f ∈ A with f(0) = 1, otherwise let g(0) = 0. If g(ξ)
has already been defined for ξ < η, and there is an element f ∈ A such that
f(ξ) = g(ξ) for all ξ < η and f(η) = 1, then let g(η) = 1, otherwise set
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g(η) = 0. It is easy to see that the g we obtain this way is an upper bound
for the set A, and it is smaller than any other upper bound.

The proof of the existence of a greatest lower bound follows the same lines
or apply that the greatest lower bound is the smallest upper bound of all the
lower bounds.

By Problem 44, part b) follows from part c), which in turn is a direct
consequence of the preceding problem.

95. Let the ordered set be 〈A,≺〉. Without loss of generality, we may assume
that A = κ, and then for a, b ∈ A let fa(b) = 1 if b ≺ a and let fa(b) = 0
otherwise. This fa belongs to κ{0, 1}, and all we have to show is that the
mapping a �→ fa is monotone. But that is clear: if a ≺ a′, and if for a b we
have fa′(b) = 0, then we also have fa(b) = 0, hence fa must precede fa′ in the
lexicographic ordering. [W. Sierpiński, Pontificia Acad. Sc., 4(1940), 207–208,
N. Cuesta, Revista Mat. Hisp.-Amer., 4(1947), 130–131]

96. Let 〈A,≺〉 be an ordered set of cardinality κ, A = {aα}α<κ an enumeration
of the elements of A into a transfinite sequence of length κ, and let <κ be the
lexicographic ordering on Fκ. For α < κ set

fα(γ) =
{

1 if γ ≤ α and aγ  aα,
0 otherwise.

It is clear that fα ∈ Fκ. We claim that aα �→ fα is an embedding of 〈A,≺〉
into Fκ. It is clear that this mapping is one-to-one.

Let β < α, and set K = {γ ≤ β : aγ  aβ}, L = {γ ≤ β : aγ  aα}.
If K = L then β ∈ K implies aβ ≺ aα, and it is clear that fβ ≤κ fα, hence
fβ <κ fα.

If K 
= L, then let γ be the first difference between K and L. If γ ∈ K \L,
then aα ≺ aγ  aβ and because of fα(γ) = 0, fβ(γ) = 1, we have fα <κ fβ .
On the other hand, if γ ∈ L\K, then aβ ≺ aγ  aα, and because of fβ(γ) = 0,
fα(γ) = 1, we have fβ <κ fα.

Thus, in all cases aα ≺ aβ ⇔ fα <κ fβ , hence α �→ fα is a monotone
embedding.

97. For every ξ < κ let 〈Aξ,≺ξ〉 be an ordered set similar to 〈A,≺〉, and let
〈B, <〉 be the lexicographically ordered product of them (i.e., B =

∏
ξ<κ Aξ,

and the ordering < on B is the lexicographic one). Let B = ∪ξ<κBξ be any
decomposition. If for each a ∈ A0 there is an f0,a ∈ B0 such that f0,a(0) = a,
then these f0,a’s form a subset of B0 similar to 〈A,≺〉, and we are done.
Suppose therefore that this is not the case, and let a0 be an element of A0
such that for no f ∈ B0 is it true that f(0) = a0. Thus, all the elements f ∈ B
with f(0) = a0 belong to ∪ξ>0Bξ. We continue this process. Suppose that the
elements aγ have already been selected for all γ < α where α < κ is an ordinal,
and they have the property that there is no f ∈ Bγ with f(ξ) = aξ for all
ξ ≤ γ. Consider the set Cα of elements f ∈ B such that f(γ) = aγ for all
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γ < α. Then Cα ⊆ ∪ξ≥αBξ, and if for each a ∈ Aα there is an fα,a ∈ Cα ∩Bα

such that fα,a(α) = a, then these fα,a’s form a subset of Bα similar to 〈A,≺〉,
and we are done. If this is not the case, then let aα be an element of Aα such
that for no f ∈ Cα ∩ Bα is it true that f(α) = aα. Thus, then the elements
f ∈ Cα with f(α) = aα all belong to ∪ξ>αBξ.

To finish the proof all we have to mention is that for some α < κ the first
possibility will happen. In fact, in the opposite case the elements aα would be
defined for all α < κ. Consider now the function f for which f(α) = aα for
all α < κ, and the smallest α < κ for which f ∈ Bα. Then, by the definition
of the set Cα, we have f ∈ Cα, and therefore f(α) = aα is not possible, since
f ∈ Cα ∩ Bα.
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Order types

1. The nonempty initial segments of the set of rational numbers are densely
ordered sets with or without largest element, so their order is η or η + 1 (see
Problem 6.28 and its proof).

2. The order types in a)–c) are the order types of a densely ordered countable
sets without smallest and largest element, so they are η (see Problem 6.27).
d) is the order type of Q∩ ((0, 1)∪ {2, 3} ∪ (4, 5)), and this set is not densely
ordered. e) is the order type of (0, 1)∪{1}∪(1, 2) = (0, 2) so it is λ by Problem
6.2. f) is the order type of (−∞, 0)∪(0,∞), and here there is no largest element
in (−∞, 0) and there is no smallest element in (0,∞), i.e., this set is not
continuously ordered, thus the type in f) is not λ. g) is the order type of the
lexicographically ordered set R×R. But R×R = R× (−∞, 0)∪R× [0,∞),
and here there is no largest element in R × (−∞, 0) and there is no smallest
element in R× [0,∞), i.e., this set is not continuously ordered, thus the type
in g) is not λ. Finally, in h) in an ordered set of type η · λ there are points
such that there are only countably many points lying between them, but in a
set of type λ · η there are continuum many points between any two points.

3. We shall just consider the nontrivial solutions. By Problem 1 if θ1 +θ2 = η,
then θ1 is either η or η + 1, and similarly θ2 is either η or 1 + η. Thus, the
solution is that θ1 is either η or η + 1 and θ2 is either η or 1 + η, except that
θ1 = η + 1 and θ2 = 1 + η cannot hold simultaneously.

In a similar way, the equation θ1 + θ2 = λ holds if and only if θ1 = λ + 1,
θ2 = λ or if θ1 = λ and θ2 = 1 + λ.

4. Since

(1 + η) · (η + 1) = (1 + η) · η + (1 + η) = η + 1 + η = η

(see Problem 2), this is an appropriate representation, for 1 + η 
= η and
η + 1 
= η.
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5. Since R = ∪∞
−∞[i, i + 1), and this is an ordered union, one possibility is

λ = (1 + λ) · (ω∗ + ω).

6. Let 〈A,≺〉 have order type θ. If 〈A,≺〉 has smallest element a, and τ is
the type of 〈A \ {a},≺〉, then θ = 1 + τ is an appropriate representation.
If, however, 〈A,≺〉 does not have a smallest element, then let a ∈ A be any
element, and τ1 resp. τ2 be the types of the sets {x ∈ A : x ≺ a} and
{x ∈ A : a  x}. Then θ = τ1 + τ2 is an appropriate representation (note
that τ1 
= τ2, for in the second set there is a smallest element (= a), but in the
first one there is no smallest element). [W. Sierpiński, Cardinal and Ordinal
Numbers, Polish Sci. Publ., Warszawa, 1965, XII.9/5]

7. ω + 1 is an example. In fact, if S1 and S2 are ordered sets and the product
S1 × S2 has order type ω + 1, then S2 must have a largest element s, and
one of S1 or S2 must be infinite. If S1 is infinite, then S2 can have only one
element, since in a set of type ω +1 there is just one element that is preceded
by infinitely many elements. For the same reason, if S2 is infinite, then S1
can consist of at most one element (for otherwise there would be at least two
elements that follow the infinite set S1 × (S2 \ {s}).

8. The statement for η follows from the solution of Problem 3. As for ω, one
can check easily that the only nontrivial solutions of the equation θ1 + θ2 = ω
are θ1 = n, θ2 = ω where n is a natural number.

9. If a product S1 × S2 of ordered sets is of type ω, then one of the sets is
infinite. If S1 is infinite, then S2 can have only one element, for in a set of
type ω no element is preceded by infinitely many elements. If, however, S2 is
infinite, then for the same reason every element in it is preceded by at most
finitely many elements, hence we can apply Problem 6.5 to deduce that the
order type of S2 is ω.

If a product S1 × S2 of ordered sets is of type η + 1, then S1 and S2 are
countable, and if S1 has at least two elements, then it is densely ordered. If
its type is η, then S1 × S2 has type η. If its type is 1 + η, then depending on
if S2 has a smallest element or not, the type of S1 × S2 is 1 + η or η. Finally,
if S1 is of order type 1 + η + 1 and S2 is not densely ordered, then S1 × S2
is not densely ordered. However, if S2 is also densely ordered but not of type
η + 1, then the type of S1 × S2 is 1 + η, η, or 1 + η + 1 depending on if S2
is of type 1 + η, η, or 1 + η + 1. Thus, the only remaining possibility is that
either S1 or S2 is of type η + 1.

The order types 1+η and 1+η+1 can be similarly handled. [W. Sierpiński,
Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965, XII.10/5]

10. All infinite cardinals have this property (see Problem 10.3).

11. All infinite cardinals have this property (see Problem 10.3).
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12. By Problems 6.31 and 6.32 the answer is 1 + η if the ordering is lexico-
graphic and it is ω if the ordering is antilexicographic.

13. If the ordering is lexicographic, then the answer is still 1 + η, for we are
speaking of the order type of a densely ordered countable set with smallest
element. If the ordering is antilexicographic, then the answer is ω+ω2+ω3+· · ·.
In fact, first come the elements

(0, 0, . . .), (1, 0, 0, . . .), (2, 0, 0, . . .), . . . ,

then come the elements

(0, 1, 0, 0 . . .), (1, 1, 0, 0, . . .), (2, 1, 0, 0, . . .), . . . ,

(0, 2, 0, 0 . . .), (1, 2, 0, 0, . . .), (2, 2, 0, 0, . . .), . . . ,

...

etc..

14. See Problem 6.34.

15. We show by induction on n that the order type is (ωn)∗. It is easier to
work with the set

−An =
{
−
(

1
k1

+ · · · + 1
kn

)
: 1 ≤ k1, . . . , kn < ω

}
.

We shall show that this is well ordered, and the order type is ωn. The case
n = 1 is obvious. Also, if we have the result for n then there is, in the interval
(− 1

i ,−
1

i+1 ), a subset of −An+1 of type ωn (choose k1 = i + 1, k2, . . . , kn+1 =
i(i + 2)nj, j = 1, 2, . . .) so (pending that −An+1 is well ordered) the order
type of −An+1 is at least ωn+1.

To get an upper bound for the type of −An+1 we investigate the initial
segments. For any − 1

i < 0 if 1 ≤ k1 ≤ · · · ≤ kn+1 < ω and

−
(

1
k1

+ · · · + 1
kn+1

)
< −1

i
,

then k1 < ni, so by the induction hypothesis the initial segment of −An+1
determined by − 1

i is the union of finitely many well-ordered sets of order type
≤ ωn, therefore itself is a well-ordered set of order type < ωn+1. Then, −An+1
is well ordered of order type at most ωn+1.

16. The order type in question is clearly a product, where the second factor
is the order type of a densely ordered set without smallest or largest element,
and the first factor is ω. Thus, the answer is ω · η. [W. Sierpiński, Cardinal
and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965, XII.3/8]
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17. Let τ be an order type and let it be the type of 〈A,≺〉. Consider in A the
set B of those elements b for which the initial segment {a : a  b} is well
ordered. It is easy to see that B is an initial segment, it is well ordered, and
A \B cannot have a smallest element, for then it could be added to B. Thus,
τ = α + θ, where α is the order type of B and θ is the order type of A \ B.
[W. Sierpieński, Fund. Math., 35(1948), 1–12]

18. This is the same as Problem 6.13.

19. This is the same as Problem 6.14.

20. Let 〈A1, <1〉 and 〈A2, <2〉 be ordered sets of type θ1 and θ2, and let A∗
i =

{0, 1, . . . , n−1}×Ai the cross product of the ground sets with {0, 1, . . . , n−1}.
Then A∗

i with the antilexicographic ordering has order type n ·θi, so if n ·θ1 =
n · θ2, then there is a similarity mapping f : A∗

1 → A∗
2. For every a ∈ A1

there is a unique c ∈ A2 such that f((0, a)) ∈ {0, 1, . . . , n − 1} × {c}, and
let us denote this c by F (a). If a <1 b are two elements of A1, then (0, a) is
smaller in the antilexicographic ordering on A∗

1 than (0, b), so F (a) ≤2 F (b).
But F (a) = F (b) is not possible, since there are at least n − 1 elements
(namely (1, a), . . . , (n− 1, a)) in A∗

1 lying between (0, a) and (0, b), and in any
set {0, 1, . . . , n − 1} × {c} there are at most n − 2 elements between any two
elements. Thus, F is a monotone mapping from A1 into A2. We show that it
actually maps A1 onto A2 by which θ1 = θ2 follows.

Let c ∈ A2 be any element of A2. There is an a ∈ A1 such that for some
0 ≤ j < n we have f((j, a)) = (0, c). If here j = 0, then F (a) = c, and we are
done. If, however, j > 0, then the image of {0, 1, . . . , n−1}×{a} under f does
not contain (n − 1, c), and so there is an element a∗ ∈ A1 such that a <1 a∗,
and with some 0 ≤ i < n we have f(i, a∗) = (n− 1, c). Then clearly f((0, a∗))
must belong to {0, 1, . . . , n − 1} × {c}, i.e., F (a∗) = c. [W. Sierpiński, Fund.
Math., 35(1948), 1–12]

21. For i = 1, . . . , n let 〈Ai,≺i〉 resp. 〈Bi, <i〉 be pairwise disjoint ordered sets
of type θ1 resp. θ2, and let 〈A,≺〉 resp. 〈B, <〉 be their ordered unions. Then
〈A,≺〉 has type θ1 · n and 〈B, <〉 has type θ2 · n, so if these order types are
the same, then there is a similarity mapping f : A → B. We have to show
that θ1 = θ2, i.e., one of the sets 〈Ai,≺i〉 is similar to 〈Bi, <i〉.

If f [A1] = B1, then we are done, so we may assume that f [A1] ⊂ B1 (if
B1 ⊂ f [A1] then we consider f−1 and reverse the role of Ai and Bi). Thus,
〈A1,≺1〉 is similar to an initial segment of 〈B1, <1〉, i.e., θ2 = θ1 + ρ with
some order type ρ. If Bn ⊆ f [An], then 〈Bn, <n〉 is similar to an end segment
of 〈An,≺n〉 (under f−1), hence θ1 = τ + θ2 with some order type τ . Thus, in
this case θ1 = θ2 by Problem 18.

If, however, Bn 
⊆ f [An], then f [An] ⊂ Bn, and so 〈An,≺n〉 is similar to
an end segment of 〈Bn, <n〉, i.e., θ2 = τ + θ1 with some order type τ . Since
f maps an interval of 〈A,≺〉 into an interval of 〈B, <〉, and f [A0] ⊂ B0 and
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f [An] ⊂ Bn, in this case there must be a 0 < j < n with Bj ⊆ f [Aj ]. Thus,
f−1 maps Bj into an interval of 〈Aj ,≺j〉, which means that with some order
types σ1 and σ2 we have θ1 = σ1 + θ2 + σ2. Now in this case θ1 = θ2 follows
from Problem 19.

22. Clearly ω∗ = 2 · ω∗ and ω∗ = 2 · ω∗ + 1. On the other hand, η cannot be
written in either form 2 · τ or 2 · τ + 1. [W. Sierpiński, Cardinal and Ordinal
Numbers, Polish Sci. Publ., Warszawa, 1965, XII.3/18]

23. Clearly
ω · 2 + 1 = (ω + 1) + (ω + 1) = (ω + 1) · 2

so θ = ω · 2 + 1 is suitable. On the other hand, ω cannot be written in either
form τ1 · 2 + 1 or τ2 · 2.

24. Since η · 2 = η, any order type τ · η where τ is an arbitrary order type
satisfies θ · 2 = θ. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci.
Publ., Warszawa, 1965, XII.3/13]

25. Since 2 · ω = ω, any order type ω · τ where τ is an arbitrary order type
satisfies 2 · θ = θ.

26. Notice that if θ and τ are order types such that 2 ·θ = θ and τ ·2 = τ , then
2 · (θ · τ) = (θ · τ) · 2 = θ · τ, hence products of order types from the preceding
two problems satisfy the requirements. E.g., ω ·n · η are all different and they
are of the required property.

27. The types n · η where n = 0, 1, . . . are all different (in an ordered set of
this type n is the largest number of consecutive elements) and they satisfy
(n · η) · (n · η) = n · (η · n) · η = n · (η · η) = n · η.

28. τ = θ · (ω + ω∗) clearly satisfies τ + θ = θ + τ = τ .

29. Let 〈A,≺〉 have order type θ, and order antilexicographically the product
· · · × A × A. If the order type of this set is τ1, which we can write as · · · θ · θ,
then clearly τ1 · θ = τ1.

Similarly, let τ2 be the order type of the lexicographically ordered A×A×
· · ·. Then θ · τ2 = τ2.

Now if we set τ = τ2 ·τ1, then θ ·τ2 = τ2 and τ1 ·θ = τ1 imply θ ·τ = τ ·θ = τ .
[W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa,
1965, XII.9/3]

30. The types ω2 · k, k = 1, . . . are all different and form an arithmetic pro-
gression. Furthermore

(ω · k) · (ω · k) = ω · (k · ω) · k = ω · ω · k = ω2 · k,
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so they are all squares. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish
Sci. Publ., Warszawa, 1965, XII.3/9]

31. The types θi = η+i+1, 1 ≤ i ≤ n are appropriate, since if θ =
∑

1≤i≤n θπ(i)
is their sum in any order and 〈A,≺〉 is an ordered set of type θ, then the
order can be recognized from 〈A,≺〉: π(1) + 1 is the length of the first (i.e.,
leftmost) maximal chain of consecutive elements in 〈A,≺〉, π(2) is the length of
the next maximal chain of consecutive elements, etc. [W. Sierpiński, Cardinal
and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965, XII.3/22]

32. The types θi = η + i + 1, 1 ≤ i ≤ n, are appropriate, since if θ =∏
1≤i≤n θπ(i) is their product in any order and 〈A,≺〉 is an ordered set of

type θ, then the order can be recognized from 〈A,≺〉. In fact, take any other
order with the same product θ =

∏
1≤i≤n θσ(i). Since π(1) + 1 and σ(1) + 1

are both the length of the longest chain of consecutive elements in 〈A,≺〉, we
have π(1) = σ(1), say π(1) = σ(1) = k1.

Now let B = (Q ∩ (0, 1)) ∪ {1, 2, . . . , k1 + 1} and 〈C1, <1〉 and 〈C2, <2〉
be two ordered sets of type

∏
2≤i≤n θπ(i) and

∏
2≤i≤n θσ(i), respectively. Then

B × C1 and B × C2 (with antilexicographic ordering) both have order types
θ, so there is a similarity mapping f : B × C1 → B × C2 between them. For
any c1 ∈ C1 there is a unique c2 ∈ C2, that we are going to denote by F (c1),
such that

f((2, c1)) ∈ {1, 2, . . . , k1 + 1} × {c2}.
Exactly as in the proof of Problem 20 it follows that this F is a monotone
map from C1 onto C2, thus besides π(1) = σ(1) we also have

∏
2≤i≤n θπ(i) =∏

2≤i≤n θσ(i).
Now repeating this argument (or using induction) we can conclude that

π(i) = σ(i) for all 1 ≤ i ≤ n, and the proof is over. [W. Sierpiński, Cardinal
and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965, XII.3/35]

33. See the next problem.

34. First of all, the order types θk, k = 1, 2, . . . are all different. In fact, if
〈A,≺〉 is an ordered set of type θk, then for a, b ∈ A let a ∼ b if there are only
finitely many elements between a and b. This is an equivalence relation, and
k is the number of equivalence classes with the property that there are only
finitely many equivalence classes that follow them (in the ordering given in
〈A,≺〉).

We claim that
θk · θk = (ω∗ + ω) · ω · η

and
((ω∗ + ω) · ω · η) · θk = (ω∗ + ω) · ω · η,

and these imply that for all k and all n ≥ 2 we have θn
k = (ω∗ + ω) · ω · η.

Since k + ω = ω and
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(1 + η) · (ω∗ + ω) = · · · + 1 + η + 1 + η + · · · = η,

we obtain

(ω + ω · η + k) · (ω∗ + ω)
= · · · + ω + ω · η + k + ω + ω · η + k + · · ·
= · · · + ω · (1 + η) + ω · (1 + η) + · · ·
= ω · (1 + η)(ω∗ + ω) = ω · η,

and hence

θk · θk = (ω∗ + ω) · (ω + ω · η + k) · (ω∗ + ω) · (ω + ω · η + k)
= (ω∗ + ω) · ω · η · (ω + ω · η + k)
= (ω∗ + ω) · ω · η.

In a similar fashion, since η · (ω∗ + ω) = η, we obtain

(ω∗ + ω) · ω · η · θk = (ω∗ + ω) · ω · η · (ω∗ + ω) · (ω + ω · η + k)
= (ω∗ + ω) · ω · η · (ω + ω · η + k)
= (ω∗ + ω) · ω · η.

[A. C. Davis, cf. W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci.
Publ., Warszawa, 1965, XII.3/10]

35. Since ηn = η and (1 + η)n = 1 + η, we have 1n + ηn = (1 + η)n.

36. Both the irreflexivity and the transitivity are clear. Since ω and ω∗ are
not comparable with respect to ≺, the trichotomy is not true.

37. If 〈A1, <1〉 is similar to a proper initial segment of 〈A2, <2〉, then, in view
of Problem 6.41, 〈A2, <2〉 cannot be similar to a subset of 〈A1, <1〉, hence
θ1 ≺ θ2. Conversely, suppose that θ1 ≺ θ2. Since either 〈A1, <1〉 or 〈A2, <2〉
is similar to an initial segment of the other one (Problem 6.42), the only
possibility is that 〈A1, <1〉 is similar to a proper initial segment of 〈A2, <2〉.

The trichotomy of ≺ among ordinals is an immediate consequence of Prob-
lems 6.42 and 6.43.

38. See Problem 6.26.

39. For different 0–1 sequences {εi} the countable types

(ω∗ + ω) + ε0 + (ω∗ + ω) + ε1 + · · ·

are all different, so there are at least continuum many order types θ with
θ ≺ η. But Q has only continuum many subsets, so their number is then
exactly continuum.



220 Chapter 7 : Order types Solutions

40. See Problem 6.57. [cf. W. Sierpiński, Cardinal and Ordinal Numbers, Pol-
ish Sci. Publ., Warszawa, 1965, XII.11/4]

41. See Problem 6.58.

42. The order types i + ω∗ + ω + (n + 1 − i), 1 ≤ i ≤ n are appropriate;
see Problem 6.59. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci.
Publ., Warszawa, 1965, XII.11.4]

43. See Problem 6.60.

44. Since 1+ω = ω, the sufficiency of the condition is clear. Now suppose that
1 + θ = θ, and let 〈A,≺〉 be an ordered set of type θ. Then A has a smallest
element a0 (since it is of type 1 + θ), and A is similar to A \ {a0}. Let f be
a similarity mapping from A onto A \ {a0}. It is clear, that since f(a0) is the
smallest element of A\{a0}, it is the successor of a0 in A. In a similar fashion,
f(f(a0)) is a successor of f(a0), f(f(f(a0))) is a successor of f(f(a0)), etc.
All these mean that {a0, f(a0), f(f(a0)), . . .} is an initial segment of 〈A,≺〉,
and if τ is the order type of A \ {a0, f(a0), f(f(a0)), . . .}, then it follows that
θ = ω + τ .

45. The proof is similar to the preceding one.

46. The sufficiency of the condition is clear since η + η = η.
Let 〈A,≺〉 be an ordered set of type θ. Then since η + θ = θ + η, 〈A,≺〉

has an initial segment A1 of type η and has an end segment A2 of type η.
If A1 ∩ A2 
= ∅, then 〈A,≺〉 is of type η, and in this case η = η + 0 + η. If,
however, A1 ∩ A2 = ∅ and if τ is the order type of A \ (A1 ∪ A2), then with
this τ we clearly have θ = η + τ + η. [W. Sierpiński, Cardinal and Ordinal
Numbers, Polish Sci. Publ., Warszawa, 1965, XII.3/23]

47. The sufficiency is clear, since 1 + ω = ω and ω∗ + 1 = ω∗; thus, we only
have to verify the necessity of the condition.

Suppose θ 
= 0, and θ + λ = λ + θ. Let 〈A,≺〉, 〈A1,≺1〉 be of type θ,
and 〈B, <〉, 〈B1, <1〉 of type λ such that these sets are pairwise disjoint. Since
λ+θ = θ+λ, it follows that there is a similarity mapping f : B∪A → A1∪B1
between these ordered unions. If we have A1 ⊆ f [B], then A1 is similar to an
initial segment of B, which implies that θ = λ or θ = λ+1. At the same time,
since then f maps A into B1, we get that A is similar to an end segment of
B1, and hence θ = λ or θ = 1 + λ. Thus, in this case θ = λ.

Now let f [B] ⊂ A1. If θ1 is the order type of A1 \ f [B], then we have
θ = λ+θ1 and also θ = θ1+λ (consider that (A1∪B1)\f [B] = (A1\f [B])∪B1
is similar to A).

Thus, we have proved that if θ 
= 0, then either θ = λ, or there is a θ1 
= ∅
such that θ = λ+ θ1 and θ = θ1 +λ. Thus, the same argument can be applied
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to θ1 and we get that either θ1 = λ, or there is a θ2 
= ∅ such that θ1 = λ + θ2
and θ1 = θ2 + λ. Repeat the same process as long as it is possible. It follows
that either there is an n such that θ = λ · n, or for all n the set 〈A,≺〉 has an
initial and an end segment of type λ · n. Since R is continuously ordered, it
follows that an initial segment Sn of type λ ·n has to be an initial segment of
Sn+1, so the segments S1, S2, . . . , Sn are strictly increasing, and their union
is an initial segment S of 〈A,≺〉 of type λ · ω. In a similar manner, there are
end segments En of 〈A,≺〉 of type λ · n for all n, and their union E is an
end segment of 〈A,≺〉 of type λ · ω∗. Note also that it is not possible that
Sn∩En 
= ∅, for then Em \En ⊆ Sn for all m > n and Sn would have intervals
of type λ · (m − n) for all m > n, and this is not the case. Thus, S ∩ E = ∅,
and if τ is the order type of A\ (S∪E), then we have θ = (λ ·ω)+ τ +(λ ·ω∗),
as was claimed. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci.
Publ., Warszawa, 1965, XII.3/24]

48. Since (τ∗)∗ = τ and (τ + σ)∗ = σ∗ + θ∗, the sufficiency of the condition
follows.

Suppose now that θ = θ∗. Let 〈A,≺〉 be of type θ, ≺∗ the reverse ordering
on A, and let f : A → A be a similarity mapping between 〈A,≺〉 and 〈A,≺∗〉.

If there is an element a ∈ A with f(a) = a, and A1 = {b ∈ A : b ≺ a},
then A1 is mapped by f onto A\ (A1∪{a}), so with τ equal to the order type
of 〈A1,≺〉 we have θ = τ + 1 + τ∗.

Suppose now that there is no element a ∈ A with a = f(a), and consider
the set A1 = {a ∈ A : a ≺ f(a)}. This is an initial segment of A1, for
if a ∈ A1 and b ≺ a, then b ≺ a ≺ f(a) ≺ f(b), so b ∈ A1 is also true.
Now f maps A1 into A \ A1. In fact, if a ≺ f(a), then f(a) ≺∗ f(f(a)), i.e.,
f(f(a)) ≺ f(a), and so f(a) ∈ A \A1. The same reasoning gives that f maps
A1 onto A \ A1. Thus, if τ is the order type of A1, then we have θ = τ + τ∗.

* * *

49. Let X be a set of cardinality κ. Then every order type of cardinality κ
is the order type of X with some ordering ≺⊆ X × X. Thus, there are at
most as many order types of cardinality κ as subsets of X × X, which is of
cardinality 2|X|2 = 2|X| = 2κ.

On the other hand, let τ0 = 2 and τ1 = η, and for a transfinite sequence
ε = {εξ}ξ<κ of type κ of the numbers 0 and 1 consider the order type θε =∑

ξ<κ τεξ
. Let ε and ε′ be two transfinite sequences and for each ξ let 〈Aξ,≺ξ〉

and 〈A′
ξ,≺′

ξ〉 be ordered sets of type τεξ
and τε′

ξ
, respectively, and let 〈A,≺〉,

resp. 〈A′,≺′〉, be their ordered union for ξ < κ. Then 〈A,≺〉 has order type
θε and 〈A′,≺′〉 has order type θε′ , respectively. Now if for some α < κ we
have εξ = ε′

ξ for all ξ < α and f : A → A′ is a similarity mapping between
these sets, then f maps each Aξ into A′

ξ. The proof of this is the same as the
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analogous statement in the proof of Problem 6.15 and can be easily carried
out by transfinite induction on α.

Thus, if in addition we have, say, εα = 0 and ε′
α = 1, then f cannot

exist, for f cannot map the two-element set Aα onto an initial segment of the
densely ordered set A′

α.
This proves that for different 0–1 transfinite sequences ε we get different

order types θε, and so there are exactly 2κ different order types of cardinality κ.
[W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa,
1965, XVII.5. Theorem 1]



8

Ordinals

1. (a) Let x be an N-set and y ∈ x. Then y ⊂ x. If z ∈ y, then z ∈ x and
z <∈ y. Now every element of z is smaller with respect to <∈ than z, and
hence than y, which gives that every such element must belong to y. This
proves that y is transitive. That it is well ordered by ∈ is a consequence of
the fact that it is a subset of a well-ordered set.

(b) It is clear that y is transitive and well ordered by ∈ (x is its largest
element). If x ∈ z where z is an N-set, then x ⊂ z, and hence y ⊂ z.

(c) This is clear from the definitions.
(d) If y ∈ Y and z ∈ y, then z <∈ y, hence by the initial segment

property z ∈ Y . This shows that Y is transitive. That it is well ordered by
∈ is clear, since Y ⊂ x. Thus, Y is an N-set. If Y 
= x, then Y is a proper
initial segment of x, hence it is the initial segment determined by an element
p. Thus, y ∈ Y ⇔ y <∈ p ⇔ y ∈ p, i.e., Y = p, which shows Y ∈ x.

(e) Consider z = x ∩ y. This is an initial segment of both x and y (cf.
(c)), hence by (d) it is an N-set and either z = x or z ∈ x and either z = y or
z ∈ y. Thus, for the conclusion we only have to show that it is impossible to
have simultaneously z ∈ x and z ∈ y. Indeed, if that was true, then we had
z ∈ x ∩ y = z, i.e., z was an element of the N-set x such that z ∈ z, which is
impossible by the irreflexivity of ∈ on x.

(f) Irreflexivity of < follows exactly as in part (e); transitivity of < is due
to the transitivity of N-sets, and trichotomy was proved in (e). Let B 
= ∅ be
a set of N-sets. Pick any x ∈ B. Then either x ∩ B = ∅, which means that
B does not have a smaller element than x, i.e., x is its smallest element, or
x ∩ B 
= ∅, and then the smallest element (with respect to ∈) of x ∩ B is the
smallest element of B (note that there is a smallest element in x∩B because
x is well ordered).

(g) If, say, y ∈ x, then y is a proper initial segment of x, hence it cannot
be similar to x (see Problem 6.41).

(h) We follow the ideas from the solution of Problem 6.42. Let 〈A,≺〉 be
a well-ordered set, and let B be the collection of all N-sets that are similar to
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a proper initial segment of 〈A,≺〉. For x ∈ B let ax be the unique element of
A such that the initial segment determined by ax is similar to x, and let gx be
the appropriate similarity mapping. Then any y ∈ x is similar to the initial
segment of 〈A,≺〉 determined by gx(y), hence y ∈ B, i.e., B is transitive.
The mapping x → ax is monotone, hence B is similar to a subset of A, in
particular B is a set. ∈ is a well order on B by (f), hence B is an N-set. The
mapping f(x) = ax maps B monotonically onto an initial segment of A, hence
either A = f [B], in which case 〈A,≺〉 ∼ 〈B,∈〉, or B is similar to a proper
initial segment of A. But the latter would imply B ∈ B, which is impossible
(see (f)).

Unicity is a consequence of (g).

2. Each ordinal is well ordered. Thus, α0 > α1 > · · · is not possible, for
otherwise we would have an infinite decreasing sequence in α0 (see Problem
6.36).

3. This follows from the previous problem and from Problem 6.1.

4. 1 + ω = ω is clear, ω + 1 
= ω because in ω there is no largest element, but
in ω + 1 there is a largest element.

2 ·ω = ω is true because 2 ·ω is the order type of the product 2×ω ordered
antilexicographically, so the order of the elements is

(0, 0) < (1, 0) < (0, 1) < (1, 1) < (0, 2) < . . . ,

Finally, ω · 2 
= ω because in a set of type ω · 2 there are elements preceded by
infinitely many elements, but in a set of type ω this is not possible.

5. Since
(ω + a) · (ω + b) = (ω + a) · ω + (ω + a) · b,

and a + ω = ω, it easily follows that (ω + a) · (ω + b) = ω2 + ω · b + a if b ≥ 1
and (ω + a) · ω = ω2 if b = 0.

6. One can easily see that

(a) ω + ξ = ω ⇐⇒ ξ = 0,
(b) ξ + ω = ω ⇐⇒ ξ is finite,
(c) ξ · ω = ω ⇐⇒ ξ is finite and not 0,
(d) ω · ξ = ω ⇐⇒ ξ = 1,
(e) ξ + ζ = ω ⇐⇒ ξ < ω, ζ = ω or ξ = ω, ζ = 0,
(f) ξ · ζ = ω ⇐⇒ 1 ≤ ξ < ω, ζ = ω or ξ = ω, ζ = 1.
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7. The proper initial segments of ω2 +1 are ω2 and the proper initial segments
of ω2, which are of the form ω ·n+m with some n, m natural numbers. Thus,
either ξ = ω2 + 1, ζ = 0, or ξ = ω2, in which case ζ is 1, or else ξ = ω · n + m
with some natural numbers n, m, in which case ζ has to be ω2 + 1.

8. a) ω + k > k + ω since k + ω = ω, and this is a proper initial segment of
ω + k.

b) k ·ω < ω · k since k ·ω = ω, and this is a proper initial segment of ω · k.
c) ω + ω1 < ω1 + ω since ω + ω1 = ω1, and this is a proper initial segment

of ω1 + ω.
d) If P (ω) = ωn · an + ωn−1 · an−1 + · · · + ω · a1 + a0, then on applying

that a0 < ω implies

ω · a1 + a0 < ω · a1 + ω = ω · (a1 + 1) < ω2,

which implies

ω2 · a2 + ωa1 + a0 < ω2 · a2 + ω2 = ω2 · (a2 + 1) < ω3,

etc., we can see that P (ω) < ωn+1.
e) Similarly as in part d), P (ω) is larger than Q(ω) if and only if n > m,

or n = m, and ai > a′
i for the smallest index i with ai 
= a′

i.

9. If α1 ≤ α2, then a set of type α1 + β is similar to a subset of type α2 + β,
so by Problem 7.37 we have α1 + β ≤ α2 + β.

The proof that β + α1 ≤ β + α2 is similar. Finally, if α1 < α2, then α1
is an initial segment of α2, hence a set of type β + α1 is similar to a proper
initial segment of β + α2, and so we have β + α1 < β + α2.

The proofs of the claims for multiplication are the same.

10. If γ +α = γ +β, then α = β by the preceding problem. If α+γ = β +γ we
do not need to have α = β, an example is 0 + ω = 1 + ω. In a similar fashion,
if γ · α = γ · β and γ 
= 0, then α = β by the preceding problem. However,
α · γ = β · γ does not imply α = β, an example is 1 · ω = 2 · ω.

If γ > 0 finite, then α + γ = β + γ clearly implies α = β, and α · γ = β · γ
also implies α = β by Problem 7.21.

11. Suppose that γ = δ + 1 and, say, α < β. Then α · δ ≤ β · δ, hence by
Problem 9 we have α · δ + α < β · δ + β, so in this case α · γ = β · γ cannot
hold.

12. If α < β, then from Problem 9 we get by induction on k that αk < βk.
Thus, αk = βk implies α = β.

13. a) It is clear that supη<ξ(α + η) ≤ α + ξ. However, if γ < α + ξ, then
either γ ≤ α or there is a δ < ξ such that γ < α + δ, hence this γ cannot be
an upper bound for the ordinals α + η, η < ξ. This proves part a). Since
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sup
n<ω

(n + ω) = ω 
= ω + ω = (sup
n<ω

n) + ω,

the analogous statement for the reversed order is not true.
b) It is again clear that supη<ξ(α · η) ≤ α · ξ. If γ < α · ξ, then there is a

δ < ξ such that γ < α · δ, so then γ cannot be an upper bound of the ordinals
α · η, η < ξ. Since

sup
n<ω

(n · ω) = ω 
= ω · ω = (sup
n<ω

n) · ω,

the analogous statement for the reversed order is not true.

14. Since α is an initial segment of β, we can write β as an ordered union
α∪C, and so if ξ is the order type of C, then we have β = α + ξ. The unicity
of ξ follows from the strict monotonicity of addition in the second argument
(Problem 9).

For the equation ξ + α = β neither the solvability nor the unicity can be
guaranteed. In fact, ξ + 1 = ω is not solvable, and ξ + ω = ω has infinitely
many solutions, namely ξ < ω.

15. Let ζ be the supremum of all ordinals τ with the property α · τ ≤ β. We
claim that α · ζ ≤ β. For the case when ζ is a successor ordinal this is clear,
for then ζ has to agree with one of the τ ’s, and for limit ζ the statement
follows from Problem 13, a). Thus, by Problem 14 the equation β = α · ζ + ξ
is uniquely solvable for ξ. Here we cannot have α ≤ ξ, for then we could write
ξ = α + σ with some σ, and then α · (ζ + 1) = α · ζ + α ≤ α · ζ + ξ = β would
hold, which is not possible by the choice of ζ. Thus, ξ < α, and the existence
of the representation has been proved.

To show unicity, suppose that ζ1 < ζ2 and ξ1, ξ2 < α. Then

α · ζ1 + ξ1 < α · ζ1 + α = α · (ζ1 + 1) ≤ α · ζ2 ≤ α · ζ2 + ξ2.

Thus, if α · ζ1 + ξ1 = α · ζ2 + ξ2, then we must have ζ1 = ζ2, and then ξ1 = ξ2
follows from Problem 14.

16. If α ·ω ≤ β, then β = α ·ω + γ with some ordinal γ (see Problem 14), and
hence

α + β = (α + α · ω) + γ = α(1 + ω) + γ = α · ω + γ = β.

17. Choose a large ordinal β with α + β = β (see the preceding problem).
Then the assumption implies that β = β + α, so α = 0 because of Problem 9.

18. Let α be an ordinal and let β be the supremum of all limit ordinals not
bigger than α. Then β is zero or a limit ordinal, and by Problem 14 we can
write α = β + γ. Here we cannot have ω ≤ γ, for then γ = ω + δ, and as
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α = (β + ω) + δ, the ordinal β + ω > β would be a larger limit ordinal ≤ α.
Thus, γ < ω, and we are done.

19. It is clear that if γ < ω · β, then γ + 1 < ω · β, so ω · β is a limit ordinal
for β ≥ 1. Conversely, let α be a limit ordinal. By Problem 15 we can write
α = ω ·β +n with some natural number n. Now here we must have n = 0, for
otherwise α would be a successor ordinal (the successor of ω · β + (n − 1)).

20. If α is a limit ordinal, then using the representation in the preceding
problem and n · ω = ω we get that n · α = n · ω · β = ω · β = α. Conversely,
suppose that n · α = α for all n. Exactly as in the preceding solution we can
write α = ω · β + m with some ordinal β and some natural number n (see
Problem 14). But then 2 · α = 2 · ω · β + 2m = ω · β + 2m, and this can be at
most α only if m = 0 (see Problem 9).

21. Write β in the form β = ω ·γ+m with some ordinal γ and natural number
m (see Problem 15). If m 
= 0, then using that (α + n) · ω = α · ω, it follows
that

(α + n) · β = (α + n) · ω · γ +

m︷ ︸︸ ︷
(α + n) + · · · + (α + n)

= α · ω · γ + α · m + n = α · β + n.

If, however, m = 0, then the same computation shows that

(α + n) · β = (α + n) · ω · γ = α · ω · γ = α · β.

22. We write α in the form ω · β and use that n · ω = ω if n ≥ 1 to conclude

(α · n)k = α

k−1︷ ︸︸ ︷
·(n · α) · · · (n · α) ·n = αk · n.

23. Write α = δ + k, where k is a natural number and δ is 0 or a limit ordinal
(see Problem 18). We also write β as ω · γ + m with some ordinal γ and some
natural number m (see Problem 15). Then n·β = n·(ω·γ)+n·m = ω·γ+nm, so
if this is α, then k = mn. Conversely, if k = mn, n > 0, then α = n ·(δ+m/n).
Thus, the answer to the problem is that n is a divisor of k.

24. a) If α is infinite then 1 + α = α, but α + 1 > α, so α has to be finite.
b) If α > 0 and α + ω = ω + α, then α is a limit ordinal, so it is of the

form ω · β. But then α + ω = ω · (β + 1) and ω + α = ω · (1 + β), and exactly
as in case a) here 1 + β < β + 1 if β is infinite, so by Problem 9 in this case
ω + α < α + ω. Thus, the answer is that α = ω · n with some finite n (which
is clearly sufficient).
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c) α · ω = ω · α if and only if α is a power of ω (see Problem 9.11). The
sufficiency is obvious, the necessity immediately follows from the normal form
of α (see Problem 9.16).

d) If α + (ω + 1) = (ω + 1) + α and α is finite, then it must clearly be
zero. If α is infinite, then α is a successor ordinal, actually the successor of a
limit ordinal. Thus, α = ω ·β +1. But then α +(ω +1) = ω · (β +1)+1 while
(ω + 1) + α = ω · (1 + β) + 1, and from these we get ω · (β + 1) = ω · (1 + β),
which implies as in part b) that β is finite. Thus, the answer is that α is 0 or
it is of the form ω · n + 1 with some natural number n ≥ 1.

e) Clearly, α = 0 and α = (ω + 1)n = ωn + ωn−1 + · · ·+ ω + 1 with n < ω
are solutions, and we show that there are no other solutions.

Suppose the contrary, and let α be the smallest solution not listed above.
This α can be written as α = (ω + 1) · β + γ with γ ≤ ω. If β = 0 and
0 < γ < ω, then the equation becomes ω + γ = ω · γ +1, so in this case γ = 1.
If β = 0 and γ = ω, then we have ω2 + ω = ω2, an impossibility. Finally, if
β > 0, then we get

(ω + 1) · (β · ω + β) + γ = (ω + 1) · [(ω + 1) · β + γ]. (8.1)

Here we must have β · ω + β ≤ (ω + 1) · β + γ, hence (see Problem 14)
(ω+1)·β+γ = β·ω+β+ζ with some ζ. Writing this back into (8.1), Problem 14
gives that we must have γ = (ω+1)·ζ, which, in view of γ ≤ ω, is possible only
if γ = ζ = 0. Thus, in this case β·(ω+1) = (ω+1)·β. Here we must have β < α,
for in the case β = α we would have α · (ω +1) > α = (ω +1) ·β = (ω +1) ·α,
i.e., α would not be a solution. Therefore, this β < α is again a solution, and
by the minimality of α it must of the form β = (ω + 1)n for some n < ω. But
then α = (ω + 1)n+1, which is a contradiction, and this contradiction proves
that the only solutions are the ones listed above.

25. The statement is true for n = 1:
∑

ξ<ω ξ = ω = ω2·1−1, and we proceed by
induction. Thus, suppose the validity of

∑
ξ<ωn ξ = ω2n−1 has been verified

for some n. An ordinal ωn ≤ ξ < ωn+1 can be written in the form ξ = ωn·m+η
with some natural number m and with η < ωn. The latter implies that η is
less than a number ωn−1 · k, k = 1, 2, . . . from which we obtain η + ωn ≤
ωn−1 · k + ωn = ωn, hence

Sm :=
∑

η<ωn

(ωn · m + η) =
∑

η<ωn

ωn = ω2n.

Now these sums follow each other in
∑

ξ<ωn+1 in the order of m; thus,

∑
ωn≤ξ<ωn+1

ξ =
∞∑

m=1

Sm =
∞∑

n=1

ω2n = ω2n+1.

This and the induction hypothesis gives
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ξ<ωn+1

ξ =
∑

ξ<ωn

ξ +
∑

ωn≤ξ<ωn+1

ξ = ω2n−1 + ω2n+1 = ω2n+1,

and this verifies the induction step.

26. Suppose α = ξn + γn, n = 1, 2, . . . where the γn’s are different. We can
assume that the numbers γn are increasing (see Problem 3). But then Problem
9 shows that {ξn}∞

n=1 has to be a strictly decreasing sequence, and this is not
possible (Problem 2). So there are only finitely many different γ’s in question.

Since n + ω = ω, the same is not true for the representation α = γ + ξ.

27. The proof is identical with the preceding one, and again n · ω = ω, 1 ≤
n < ω, furnishes a counterexample for the representation α = γ · ξ.

28. The proof goes by induction on m, and suppose that the claim has already
been verified for m − 1 factors. It is clear that if one of the factors in a finite
product is a limit ordinal, then the product itself is a limit ordinal. Thus, in
the representation in question all the factors must be successor ordinals. Now
in a representation into m factors there can only be finitely many last factors
by the preceding problem, and if in two representations the last factors are
the same, then the product of the first m−1 factors must also be the same by
Problem 11. Now, by the induction hypothesis, the number of representations
is finite.

29. Suppose that ξ2 + ω = ζ2. Then ζ2 > ξ2, so ζ > ξ. Clearly, ξ must be
infinite (otherwise ω would be a square), and so ξ2 + ω = ζ2 ≥ (ξ + 1)2 ≥
ξ · (ξ + 1) = ξ2 + ξ, which implies ξ ≤ ω. Thus, ξ = ω and ζ ≥ ω + 1, but then

ζ2 ≥ (ω + 1)2 = ω2 + ω + 1 > ω2 + ω = ξ2 + ω,

and hence the equation cannot hold. [W. Sierpiński, Cardinal and Ordinal
Numbers, Polish Sci. Publ., Warszawa, 1965, XIV.8/7]

30. Note that

(ω · n)2 + ω2 = ω2 · n + ω2 = ω2 · (n + 1) = (ω · (n + 1))2,

and here the ordinals ω · n are all different. [W. Sierpiński, Cardinal and
Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965, XIV.8/8]

31. It is well known that the only finite solution is α = β = 0, so from now
on we assume that both α and β are infinite.

Write α = ω · γ + n and β = ω · δ + m. Then

α2 · 2 = (ω · γ · ω · γ + ω · γ · n + n) · 2 = ω · γ · ω · γ · 2 + ω · γ · n + n

and
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β2 = ω · δ · ω · δ + ω · δ · m + m;

thus, we must have m = n, for the ordinals before them on the right-hand
sides are limit ordinals. Therefore,

ω · γ · ω · γ · 2 + ω · γ · n = ω · δ · ω · δ + ω · δ · n,

which implies (see Problem 10)

γ · ω · γ · 2 + γ · n = δ · ω · δ + δ · n. (8.2)

It is clear that we must have δ ≥ γ. If δ < γ · 2, then δ = γ + τ with some
τ < γ, and

δ · ω · δ + δ · n ≤ γ · 2 · ω · (γ + τ) + (γ + τ) · n
≤ γ · ω · γ + γ · ω · τ + γ · (2n)
< γ · ω · γ + γ · ω · τ + γ · ω
≤ γ · ω · γ + γ · ω · γ = γ · ω · γ · 2,

so in this case (8.2) cannot hold. Thus, we must have δ ≥ γ · 2, and then

δ · ω · δ + δ · n ≥ γ · 2 · ω · γ · 2 + γ · 2 · n,

which, compared with (8.2), yields n = 0. The same computation shows that
δ > γ · 2 is not possible, either, so we must have δ = γ · 2.

So far we have shown that if α2 · 2 = β2, then both α and β are limit
ordinals and β = α · 2. It is easy to see that conversely, if α and β are limit
ordinals and β = α · 2, then β2 = α · (2 · α) · 2 = α2 · 2, so these pairs are all
solutions.

32. Since n · ω = ω for all positive integer n, we can set ωk · n = (ω · n)k for
n = 1, 2, . . ..

33. Consider α = 2 and β = ω + 1. Since

(ω + 1)n = ωn + ωn−1 + · · · + ω + 1,

we have
αn · βn = ωn + ωn−1 + · · · + ω + 2n, (8.3)

and this cannot be the nth power of a limit ordinal. If, however, γ = ω · δ +m
is a successor ordinal, then

γn = (ω · δ)n + (ω · δ)n−1 · m + (ω · δ)n−2 · m + · · · + ·(ω · δ) · m + m, (8.4)

so we would have to have m = 2n, but then the ordinal in (8.4) is clearly
bigger than the ordinal in (8.3).

In a similar manner,
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βn · αn = ωn · 2n + ωn−1 + ωn−2 + · · · + ω + 1,

and if this is equal to the ordinal in (8.4), then we must have m = 1. If δ > 2n,
then

(ω · δ)n + (ω · δ)n−1 + (ω · δ)n−2 + · · · + (ω · δ) + 1
> ωn · 2n + ωn−1 + ωn−2 + · · · + ω + 1,

and actually this inequality is also true for δ = 2n. In a similar fashion, if
δ < 2n then we have the reverse inequality. Thus, βn ·αn is not the nth power
of ω · δ +m. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ.,
Warszawa, 1965, XIV.8/12]

34. The sum in question is ω + ω, and since n + ω = ω, the sum clearly does
not change if we change the order of finitely many terms in it.

35. Clearly, all the sums 1+2+3+ · · · (n−1)+(n+1)+ · · ·+ω+n = ω+ω+n
are different.

36. Consider the sum ω2 +
n−1︷ ︸︸ ︷

ω + ω + · · · + ω +1 + 1 + · · ·. If we move exactly
k of the ω’s in front of ω2, then the value of the sum is ω2 + (n − k)ω, and
these are n different ordinals for k = 0, 1, . . . , n− 1 (moving any ω after some
of the 1’s makes no effect). [W. Sierpiński, Cardinal and Ordinal Numbers,
Polish Sci. Publ., Warszawa, 1965, XIV.8/4]

37. It is clear that if the terms that follow ω in the sum are 2i1 , . . . , 2ik , then
the value of the sum is ω + (2i1 + · · ·+ 2ik), and all numbers from 0 to 2n − 1
have one and only one form of the type 2i1 + · · · + 2ik with ik ≤ n − 1. [W.
Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965,
XIV.3/8]

38. This is an immediate consequence of Problem 9.55(d), which implies
g(n) ≤ C( 5

√
81)n with some constant C.

A direct proof can run as follows. Let α1 ≥ α2 ≥ . . . ≥ αn be arbitrary
ordinals, and let ωβ · a1 be the largest ordinal in this form that is ≤ α1 (in
other words, ωβ ·a1 is the leading term in the normal form of α1 (see Problem
9.16). Take a permutation of the αi’s and take the sum απ(1) + · · · + απ(n).
If in this sum α1 is the kth term (i.e., if π(k) = 1), then the sum does not
change if we permute the preceding first k − 1 terms. In fact, if ωβ · ai is the
largest multiple of ωβ that ≤ αi (i.e., ai is the coefficient of ωβ in the normal
expansion of αi), then 0 ≤ ai < ω, and due to the fact that ωγ + ωβ = ωβ for
γ < β, we have

απ(1) + · · · + απ(k) = ωβ · (
∑

π(i)<k

ai) + αk
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(cf. Problem 9.18). Therefore, out of the (n− 1)! permutations with π(k) = 1
at most (n−1)!/(k−1)! will give different sums, hence the number of different
sums is at most

g(n) = (n − 1)!
n∑

k=1

1
(k − 1)!

< e(n − 1)!,

from which g(n)/n! < e/n → 0 as n → ∞, follows.

39. Set αi = ω + i, i = 1, . . . , n. Easy computation shows that if i1, . . . , in is
any permutation of the numbers 1, 2, . . . , n, then

αi1 · · ·αin = ωn + ωn−1 · in + · · · + ω · i2 + i1,

and all these ordinals are different. [E. Spanier, see P. Erdős, Some remarks
on set theory, Proc. Amer. Math. Soc., 23(1950), 127–141]

40. Suppose that the least upper bound of any increasing transfinite subse-
quence of A is in A or is equal to α, and let β ∈ α\A be an element outside A.
If β = γ + 1, then the interval {ξ : γ < ξ < β + 1} = {β} is a neighborhood
of β disjoint from A, and a small modification gives the same in case β = 0.
If, however, β is a limit ordinal, then there is a γ < β for which there is no
element of A between γ and β (otherwise we could construct an infinite trans-
finite sequence the supremum of which would be β, and hence β would have
to belong to A). But then the interval {ξ : γ < ξ < β +1} is a neighborhood
of β that is disjoint from A. Thus, the complement of A is open in the interval
topology, so A is closed in that topology.

Conversely, suppose that A ⊂ α is a closed subset of α in the interval
topology, and let {αξ}ξ<δ be an increasing sequence from A, with supremum
β < α. If β is a successor ordinal, then the sequence has a largest element
that equals β, and so β ∈ A. If, however, β is a limit ordinal, then no matter
how we choose γ < β, there is an aξ, ξ < δ, such that γ < aξ ≤ γ. Thus, any
interval {ξ : γ < ξ < σ} that contains β contains an aξ, so β is in the closure
of A. But then β ∈ A since A was assumed to be closed, and this proves the
equivalence of the two statements.

The proof that A is closed in α in the interval topology if and only if the
supremum of every subset B ⊂ A is in A, or is equal to α, is the same.

41. The statement is an immediate consequence of the preceding problem and
of the definition of continuity (namely that the inverse image of any open set
is open).

42. Let A be the closure of A. The statement is clear if A \ A is a finite set.
So let A \ A be infinite, and enumerate A \ A into the increasing transfinite
sequence {αξ}ξ<γ with γ ≥ ω. For each ξ < γ with ξ+1 < γ there must be an
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element aξ of A lying in the interval (αξ, αξ+1), and these aξ’s are different.
Hence, |γ| ≤ |A|, which shows that |A| = |γ| + |A| = |A|.

43. The statement is clear if σ is a successor ordinal, since in that case {ξ}
is an open neighborhood of σ. If, σ is a limit ordinal, then the cofinality
of σ is ω, so there is a sequence {βn}∞

n=0 the supremum of which is σ. For
each βn there is a γn such that for γn < ξ < ω1 the ordinals aξ lie in the
neighborhood {η : βn < η < σ + 1} of σ. Thus, if ν is the supremum of
the ordinals γn, n = 0, 1, . . ., then ν < ω1, and for ν < ξ < ω1 we have
σ = supn βn ≤ aξ < σ + 1, i.e., aξ = σ, as we claimed.

44. As
Zf (α, n) =

⋃{
Zf (β, n) : f(β, α) ≤ n

}
,

induction on α proves the claim.

45. If α < ω1 is enumerated as α = {γn(α) : n < ω}, then let g(γn(α), α) = n.
Clearly, this has the property mentioned in Problem 44 for f . We know that
Zg(α, m) is always finite. Now for β = γm(α) < α let

f(β, α) = max
{

m, g(β, α),
∣∣Zg(α, m)

∣∣}.

We claim that this satisfies the requirements. It is clear that every {β : β <
α, f(β, α) ≤ n} is finite. To show the second property, assume to the contrary
that α0 < α1 < · · · and for some n it is always the case that f(αk, αk+1) ≤ n.
Then g(αk, αk+1) ≤ n, hence αi ∈ Zg(αj , n) for i < j < ω, and also this latter
set has at most n elements, which is a contradiction if j > n.

46. (a) For every α < ω1 fix an enumeration α = {γn(α) : n < ω}. If
α0 ≤ α1 ≤ · · · are the numbers selected by I then for the ith one, let II
respond by the set

Si =
{
γj(αk) : j, k ≤ i

}
.

This is clearly a winning strategy for player II.
(b) Let f : ω1 × ω1 → ω be a function as in Problem 45. Our strategy σ

is the following. If αi−1 = αi then let

σ(i, αi, αi) =
{
β < αi : f(β, αi) ≤ i

}
.

If, however, αi−1 < αi, say f(αi−1, αi) = m, then set σ(i, αi−1, αi) =
Zf (αi, m). We show that ∪iSi = supi αi, so this strategy is a win for II.
This is clearly the case if αi = αi+1 = · · · for some i. Assume now the con-
trary. Then there are αi0 < αi1 < · · · such that αj = αik

for ik ≤ j < ik+1.
Let ξ < αir , say n = f(ξ, αir ). Let k ≥ r be least number with the prop-
erty n ≤ f

(
αik−1 , αik

)
(such a k exists by the selection of f), and set
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m = f(αik−1 , αik
) = f(αik−1, αik

). Then ξ ∈ Zf (αik
, m) ⊆ σ(k, αik−1, αik

),
and we are done.

47. (a) For every α < ω1 fix an enumeration α + 1 = {γn(α) : n < ω}.
Let {α0, α1, . . .} be the sequence of the ordinals selected by I. In her 2i(2n +
1)th step, let II choose γn(αi). Then II selects exactly the numbers below
supn(αn + 1) and since I’s selections are also there, II wins.

(b) Now a strategy is a function f : [ω1]<ω → ω1 from the finite subsets of
ω1 into ω1. Let I select first an α < ω1, and then always 0. Set A0 = ω1. There
are two possibilities: either there are a τ0 < ω1 and uncountably many α ∈ A0
such that with γ0

α := f({α}) we have γ0
α = τ0, or else γ0

α → ω1 as α → ω1
(which means that for every γ < ω1 there is a θ < ω1 such that we have
γ0

α > γ if α > θ). In the first case let A1 be the set of those α with γ0
α = τ0,

while in the second case set A1 = A0 and τ0 = −1. Consider now the values
γ1

α = f({α, γ0
α, 0}) for α ∈ A1, for which there are again two possibilities:

either there are a τ1 < ω1 and uncountably many α ∈ A1 such that γ1
α = τ1,

or else γ1
α → ω1 as α → ω1, α ∈ A1. In the first case let A2 be the set of

those α with γ1
α = τ1, while in the second case set A2 = A1 and τ1 = −1. We

proceed the same way with the values γ2
α = f({α, γ0

α, γ1
α, 0}), α ∈ A2, etc.,

indefinitely.
Let γ < ω1 be bigger than all the values τn, n < ω. For this γ for every n

there is a θn such that if τn = −1 (i.e., when γn
α → ω1 as α → ω1, α ∈ An) and

α > θn, then γn
α > γ. Now if α > γ is bigger than all the θn, then the selected

set {α, 0, γ0
α, γ1

α, γ2
α, . . .} is not an initial segment since α is, but γ < α is not

there (each γj
α is either τj < γ or bigger than γ).

(c) If II can select finitely many ordinals at any step, then she can do the
following. At some step she sees a set H consisting of, say, n ordinals. Then she
pretends that she plays the game in part (a) with the slight modification that
she never selects already selected ordinals. Then she is at step at least n/2
and at most n + 1, and there are only finitely many ways/orders how the set
H could have been created in that many steps by the two players in game (a).
For each such order let II select her choice from game (a), and her response
for H be the set of all these finitely many elements. Since the strategy in part
(a) produces an initial segment, eventually the set of the selected ordinals will
be the union of initial segments, hence itself is an initial segment.

An alternative formalized strategy is as follows. For every α < ω1 fix an
enumeration α + 1 = {γn(α) : n < ω}, and if II sees H = {α0, . . . , αn−1}
then let her response be (n + 1)∪{γm(αi) : i, m ≤ n}. Now if I or II chooses
α in the kth step and β = γm(α) < α then II will choose β in her max(k, m)th
step (at the latest) so eventually α will be filled up.

* * *
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48. Without loss of generality, let K0 = κ, and for each n let {ξ(n)
α }α<κ be

an increasing enumeration of the elements of Kn. Now the strategy of the
second player be that given Kn (n even) he keeps only the elements ξ

(n)
α with

a successor ordinal α, i.e., he selects

Kn+1 = {ξ(n)
α : α < κ is a successor ordinal}.

Note that then the index of an element in Kn+1 is decremented by at least
one, i.e., if ξ ∈ Kn∩Kn+1 is a common element, ξ = ξ

(n)
α and ξ = ξ

(n+1)
β , then

α > β. Furthermore, no matter how the first player selects Kn+2 in the next
step, the index of an element is never incremented (see Problem 6.39). Now
it is clear that ∩nKn is empty, for if ξ ∈ ∩Kn was for all n, then we would
have ξ = ξ

(2n)
α2n for some ordinals α2n < κ, and then these ordinals would form

a strictly decreasing sequence, which is not possible by Problem 2.



9

Ordinal arithmetic

1. First we show the claim for two ordinals α and β. We shall repeatedly use
the fact that if α = γ + δ, and α and γ are divisible from the left by τ , then δ
is also divisible from the left by τ (the fact that if γ and δ are divisible from
the left by τ , then α is also divisible from the left by τ is clear). If fact, write
α = τ · α1, γ = τ · γ1, and δ = τ · δ1 + δ2 with some δ2 < τ . Then

τ · α1 = α = γ + δ = τ · γ1 + τ · δ1 + δ2 = τ · (γ1 + δ1) + δ2,

which, in view of the unicity of the representation in Problem 8.15, yields
δ2 = 0 as we claimed.

Now let β < α and let δ be a common left divisor of these two ordinals.
Based on Problem 8.15 we can carry out the Euclidean algorithm: we write
α = β · γ1 + β1, β1 < β. By what we have proven above, here β1 is divisible
from the left by δ. Now write β = β1 · γ2 + β2, β2 < β1, and again here
β2 is divisible from the left by δ. Continuing this process, we have to arrive
to a βn+1 which is zero (recall that there is no infinite decreasing sequence
of ordinals), and then the process terminates. Then δ is a left divisor of βn.
Conversely, since βn−1 = βn · γn, we get that βn is a left divisor of βn−1.
Then, since βn−2 = βn−1 ·γn +βn, we get that βn is a left divisor of βn−2, etc.
Eventually we obtain that βn is a common left divisor of α and β. All these
mean that βn is the greatest common left divisors of α and β, and since any
common left divisor δ of α and β divides βn, the claim has been verified for
two ordinals.

After this, let A be an arbitrary set of nonzero ordinals. Let α0, α1 be two
ordinals from A, and let δ1 be their greatest common left divisor. If δ1 divides
every element of A, then we are done, δ1 is the greatest common left divisor of
the elements of A. If this is not the case, then there is an element in A, which
we denote by α2, which is not divisible from the left by δ1. Thus, if δ2 is the
greatest common left divisor of δ1 and α2, then δ2 < δ1, and clearly it is the
greatest common left divisor of the ordinals α0, α1, α2. If this δ2 divides every
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element of A from the left, then we are done, otherwise let α3 be an element
of A not divisible from the left by δ2, etc. Continuing this, the process has to
terminate since {δk} is a decreasing sequence of ordinals, and if it terminates
with δn, then δn is the greatest common left divisor of the elements of A.

2. See Problem 8.19.

3. It is clear that (ω + 2) · ω = (ω + 3) · ω = ω2, so the condition is sufficient.
Conversely, suppose that α is not divisible by ω2 from the left. Then it is of
the form α = ω2 · α1 + ω · k1 + k2 with k1 
= 0 or k2 
= 0 (see Problem 8.15).
Thus, ω · k1 + k2 is divisible from the left by ω + 2 and by ω + 3, therefore
k1 ≥ 1. Since ω · k1 + k2 = (ω + 2) · (k1 − 1) + ω + k2, it follows that ω + k2 is
divisible by ω+2, which is the case only if k2 = 2. In a similar fashion from the
divisibility by (ω + 3) it would follow that k2 = 3, and this is a contradiction.
[W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa,
1965, XIV.12/4]

4. See Problem 7. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci.
Publ., Warszawa, 1965, XIV.12/6]

5. See Problem 7. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci.
Publ., Warszawa, 1965, XIV.12/2]

6. See Problem 8.27. If α is a successor ordinal then it has only finitely many
left divisors by 8.28. [cf. W. Sierpiński, Cardinal and Ordinal Numbers, Polish
Sci. Publ., Warszawa, 1965, XIV.11. Theorem 2]

7. We shall repeatedly use Problem 8.21.
Suppose that α and β are right divisors of γ ≥ 1, say ξ0 · α = η0 · β. In

this equation we can divide through with the greatest common left divisors
of ξ0 and η0, so we may assume that they do not have a common left divisor
bigger than 1. Hence, if we write ξ0 = ω · ξ1 + m0 and η0 = ω · η1 + n0, then
one of m0 or n0 is not zero.

First we show that if ξ1 
= 0 and η1 
= 0, then ξ1 ·α = η1 ·β also holds, and
here either ξ1 < ξ0 or η1 < η0. In fact, if m0 
= 0 and α is a successor ordinal,
then we must have n0 
= 0 and β must also be a successor ordinal. Hence by
Problem 8.21 we have

ω · ξ1 · α + m0 = ξ0 · α = η0 · β = ω · η1 · β + n0,

and this implies first m0 = n0, then ω ·ξ1 ·α = ω ·η1 ·β, and then ξ1 ·α = η1 ·β.
If, however, m0 
= 0 and α is a limit ordinal, then either n0 = 0 or β must be
a limit ordinal, and in each case

ω · ξ1 · α = ξ0 · α = η0 · β = ω · η1 · β,
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which gives again ξ1 · α = η1 · β. The same argument works if n0 
= 0. Since
ξ0 = ω · ξ1 + m0 and η0 = ω · η1 + n0, we get ξ1 < ξ0 if m0 
= 0 and η1 < η0 if
n0 
= 0.

Continuing this process we get ordinals ξk, ηk such that ξk ·α = ηk ·β, and
either ξk < ξk−1 or ηk < ηk−1, and this process terminates only if one of ξk or
ηk is finite (in the italicized assertion above the assumption was that ξ1 
= 0
and η1 
= 0). But there is no infinite decreasing sequence of ordinals, so the
process must terminate, and we get to a first stage when one of ξk or ηk is
finite; suppose, for example, that ξk = m > 0. Thus, we have m · α = ρ · β
with some ordinal ρ. We write α = ω · α1 + p and ρ = ω · ρ1 + k.

Thus, we have ω ·α1 +pm = (ω ·ρ1 +k) ·β. First we consider the case when
ρ1 
= 0. If p = 0, then α = m · α = ρ · β, so β is a right divisor of α. If p 
= 0,
then β must be a successor ordinal, and so we have ω ·α1 +pm = ω ·ρ1 ·β +k,
which implies k = pm, ρ = ω · ρ1 + k = ω · ρ1 + pm = m · (ω · ρ1 + p), and
hence m · α = m · (ω · ρ1 + p) · β, which, upon dividing by m from the left,
yields again that β is a right divisor of α.

It has only left to consider the case when ρ1 = 0. In this case m ·α = k ·β,
and we can divide again from the left by the greatest common divisor of m and
k, so we may assume that m and k are relative primes. If we write β = ω·β1+q,
then the equation m · α = k · β takes the form ω · α1 + pm = ω · β1 + qk,
so pm = qk, and α1 = β1. Thus, in this case α = ξ + p, β = ξ + q, where
ξ = ω · α1 is a limit ordinal or 0. If p = 0, then we must have q = 0, i.e.,
β = α. If, however, p 
= 0, then q 
= 0, and pm = qk is a common multiple of p
and q. Thus, if [p, q] denotes their least common multiple, then ξ + [p, q] also
divides m · α = ξ + pm from the right: m · α = (pm/[p, q]) · (ξ + [p, q]). Thus,
ξk · α is divisible from the right by ξ + [p, q], say ξk · α = θk · (ξ + [p, q]). Now

ξk−1 ·α = ω·ξk ·α+mk−1 = ω·θk ·(ξ+[p, q])+mk−1 = (ω·θk+mk−1)·(ξ+[p, q]),

i.e., ξk−1 · α is also divisible from the right by ξ + [p, q]. Now going back in
a similar fashion on the sequence ξs, s = k, k − 1, . . . , 0 we can see that each
ξs ·α is divisible from the right by ξ + [p, q], and for s = 0 this gives that γ is
divisible from the right by ξ + [p, q].

8. Let A be a set of positive ordinals and let α ∈ A be any element of A. α
has finitely many right divisors (Problem 6), so there is a largest one δ among
them that divides all ordinals in A. By Problem 7 any common right divisor
of the ordinals in A divides this δ from the right.

9. If α > 1 is any ordinal and κ is an infinite cardinal bigger than the car-
dinality of α, then α · κ = κ. Thus, if A is any set of ordinals and κ is an
infinite cardinal bigger than all the elements in A, then this κ is a common
right multiple of the ordinals in A. Thus, the ordinals in A have a smallest
common right multiple σ. Suppose that γ > σ is any common right multiple,
and let us write γ in the form γ = σ · ξ + η with η < σ. Then any element of
A divides both γ and σ from the left, hence, by the beginning of the proof of
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Problem 1, it also divides η. Since η < σ, this can only happen if η = 0, so σ
divides γ from the left.

10. By Problem 7 the ordinals 2 and ω+1 do not have a common left multiple
(note that 2 does not divide ω + 1 from the right).

11. (i) γα · γβ = γα+β is true for β = 0, and from here one can proceed by
transfinite induction on β. Thus, suppose that γα · γδ = γα+δ is true for all
δ < β. If β is a successor ordinal, say β = δ + 1, then

γα · γβ = γα · γδ+1 = γα · γδ · γ = γα+δ · γ = γα+δ+1 = γα+β .

If, however, β is a limit ordinal, then we can apply Problem 8.13 to write

γα · γβ = γα · sup
δ<β

γδ = sup
δ<β

(γα · γδ) = sup
δ<β

γα+δ = sup
θ<α+β

γθ = γα+β ,

where at the last but one equality we used the monotonicity of ordinal expo-
nentiation to be proven in part (iii) below.

(ii) (γα)β = γα·β is true for β = 0, and for general β one can use transfinite
induction just as in case (i), during which one uses part (i), as well.

(iii) The definition shows that if α ≤ β then γα ≤ γβ . Thus, if α < β,
then (cf. Problem 8.9) γα < γα+1 ≤ γβ .

(iv) Using (iii), the inequality α ≤ γα can again be easily proven by
transfinite induction.

12. We prove by transfinite induction on α that Φα,γ is well ordered and is
of order type γα . Since Φ0,γ = {∅}, the statement is true for α = 0. Now
suppose we know that Φβ,γ is well ordered and its order type is γβ for all
β < α, and first let us consider the case when α = β +1 is a successor ordinal.
For ξ < γ let Hξ = {f ∈ Φα,γ : f(β) = ξ}. This Hξ is clearly similar to Φβ,γ ,
and Φα,γ is the ordered union of the Hξ’s with respect to ξ < γ, thus in this
case we get that the type of Φα,γ equals the type of Φβ,γ times γ, i.e., by the
induction hypothesis the type is γβ · γ = γβ+1 = γα.

For β < α we can think an f : β → γ to be extended to an f : α → γ by
setting f(ξ) = 0 for ξ ∈ α \ β. In this sense if α is a limit ordinal, then Φα,γ

is the increasing union of the family {Φβ,γ}β<α, each Φβ,γ being an initial
segment of Φα,γ , which also implies that each proper initial segment of Φα,γ

is a subset of one of the Φβ,γ , β < γ (this is where we use the finiteness
of the supports of the functions in Φα,β). Thus, by the induction hypothesis
Φα,β is well ordered, and its order type is the supremum of the order types
of Φβ,γ , β < α, i.e., it is supβ<α γβ = γα, and this is what we had to prove.
[W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa,
1965, XIV.15]

13. a) Since nω = ω, we have nωk

= (nω)ωk−1
= ωωk−1

, the equality nωω

=
ωωω

follows by taking the supremum of both sides for k = 1, 2, . . ..
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b) Since

(ω + n)m = ωm + ωm−1 · n + · · · + ω · n + n,

we have ωm ≤ (ω +n)m < ωm+1. Now taking here supremum for m = 1, 2, . . .
we obtain (ω + n)ω = ωω.

14. 1α = 1, and if α = ω · β, then 2α = (2ω)β = ωβ and similarly 3α = ωβ .
Whence 1 + ωβ = ωβ .

15. a) 2ω = supn<o 2n = ω.
b) if α is countable, then so is 2α by the definition of ordinal exponentiation

and by the fact that the supremum of countably many countable ordinals is
countable.

c) By part d) and part (iv) of Problem 11 we have κ ≤ 2κ ≤ κ, so 2κ = κ.
d) Using that 2ω = ω, it can be easily verified by transfinite induction on

the infinite ordinal α that 2α has cardinality at most |α|. Now this together
with part (iv) of Problem 11 shows that, in fact, 2α has cardinality equal to
|α|.

e) Let α be an arbitrary ordinal, and let 2ζ0 be the largest power of 2 that
is not bigger than α. Then α < 2ζ0+1 = 2ζ0 ·2, hence if we write α = 2ζ0 +α1,
then α1 < 2ζ0 ≤ α. Now repeat this process with α1 to get a ζ1 and an α2
such that α1 = 2ζ1 + α2, and α2 < 2ζ1 ≤ α1, then repeat again and again.
Since the αn’s are decreasing, this process has to terminate in finitely many
steps, in which case we must have arrived at 0. Thus, α = 2ζ0 + · · ·+2ζk with
some k, and here ζ0 > ζ1 . . . > ζk, and this is just the form as in part e).

To establish the unicity, downward induction on l = k, k − 1, . . . , 1 shows
that if ζ0 > ζ1 > · · · > ζk, then

2ζl + · · · + 2ζk < 2ζl−1 ,

the induction step being

2ζl + · · · + 2ζk < 2ζl + 2ζl = 2ζl+1 ≤ 2ζl−1 .

The case l = k gives 2ζ0 ≤ α < 2ζ0 + 2ζ0 = 2ζ0+1, and so 2ζ0 is the largest
power of 2 that is not bigger than α. So if we have two representations, this
largest power has to be the same in both. Now cancel this highest power, and
repeat the same process to prove that actually, all powers have to coincide in
the two representations.

The form (9.1) of the ordinal ω4 · 6 + ω2 · 7 + ω + 9 is

2ω·4+2 + 2ω·4+1 + 2ω·2+2 + 2ω·2+1 + 2ω·2 + 2ω + 23 + 20.

16. We proceed as in the preceding solution. Let α be any ordinal, and let γζ0

be the largest power of γ that is not bigger than α. Then α < γζ0+1 = γζ0 · γ,
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hence if we write α = γζ0 · θ0 + α1 with α1 < γζ0 , then we must have θ0 < γ.
Now repeat this process with α1 to get a ζ1, θ1 and an α2 such that α1 =
γζ1 · θ1 + α2, and α2 < γζ1 ≤ α1, θ1 < γ, etc. Since the αn’s are decreasing,
this process has to terminate in finitely many steps, in which case we must
have arrived at 0. Thus, α = γζ0 · θ0 + · · · + γζk · θk with some k, and here
ζ0 > ζ1 > · · · > ζk, so the existence of the representation in base γ has been
established.

To verify the unicity, let α = γζ0 · θ0 + · · · + γζk · θk with ζ0 > ζ1 . . . > ζk

and θi < γ. Then γζk · θk < γζk · γ ≤ γζk−1 , and so

γζk−1 · θk−1 + γζk · θk < γζk−1 · (θk−1 + 1) ≤ γζk−2 ,

and continuing this process we can see that α < γζ0 · (θ0 + 1) ≤ γζ0+1. On
the other hand, α ≥ γζ0 , thus γζ0 is the largest power of γ that is not bigger
than α, and then θ0 is the largest ordinal such that γζ0 · θ0 ≤ α. Thus, in
any two representations in base γ the main terms are the same, and then we
can cancel these main terms from both representations. Continuing the same
process with the next-highest term, we get eventually that all terms in the
two representations are the same.

17. Let (9.2) be the normal form of α. The inequality α < ωξn+1 has been
proven in the preceding proof. Now if ωξn+1 ≤ β, then we can write β =
ωξn+1 + η, and since we have

ωξk · ak + ωξn+1 ≤ ωξn · ak + ωξn · ω = ωξn(ak + ω) = ωξn+1,

for all k, we obtain

α + β = α + ωξn+1 + η = ωξn+1 + η = β,

as was claimed.

18. We shall repeatedly use Problem 17.
Let α have normal form (9.2) and let β have normal form

β = ωζm · bm + · · · + ωζ0 · b0. (9.1)

If ζm > ξn, then α + β = β. If this is not the case, and there is a k such that
ξk = ζm, then

α + β = ωξn · an + · · · + ωξk · (ak + bm) + ωζm−1bm−1 + · · · + ωζ0 · b0. (9.2)

The representation is similar if there is no ξk that equals ζm, namely just add
then ωζm · 0 to the representation of α (i.e., consider as if the term ωζm was
there with 0 coefficient).

Since α · ω = ωξn+1, it follows that if ζ0 > 0, then

α · β = ωξn · β = ωξn+ζm · bm + · · · + ωξn+ζ0 · b0. (9.3)



Solutions Chapter 9 : Ordinal arithmetic 243

If, however, ζ0 = 0, and we write β = β′ + b0, then α · β = α · β′ + α · b0, and
hence according to what we have just said

α · β = ωξn · β + α · b0 = ωξn+ζm · bm + · · · + ωξn+ζ1 · b1

+ωξn · (anb0) + ωξn−1 · an−1 + ωξn−2 · an−2 · · · + ωξ0 · a0. (9.4)

[W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa,
1965, XIV.19/4]

19. The limit case is an immediate consequence of the representation (9.3).
In a similar manner, one can obtain the claim for successor ordinals from
repeated application of (9.4).

20. By considering the terms in the normal form of α separately, it suffices to
show that if γ < ωξ, then γ is a left divisor of ωξ. If the highest power in the
normal form of γ is ωδ, then δ < ξ, i.e., ξ = δ + 1 + ζ with some ordinal ζ.
But then γ · ω · ωζ = ωδ+1 · ωζ = ωξ, i.e., γ is, indeed, a left divisor of ωξ.

Conversely, if α = γ · β, β has normal form (9.1) and β is a limit ordinal,
then, by (9.3), γ < ωξ0 . On the other hand, if β is a successor ordinal, then
β = β∗ + 1 with some ordinal β∗. Then α = γ · β∗ + γ, and we know that for
each α there are only finitely many ordinals σ such that with some ρ we have
α = ρ + σ (Problem 8.26). Thus, there are only finitely many possibilities for
γ.

21. It easily follows from the normal form for the sums of ordinals that if α =
β ·k and the highest power of ω in the normal form of β is ωζm with coefficient
bm, then α has the same normal form as β, except that the coefficient of ωζm

in its normal form is bmk. Thus, the answer to the problem is that k is a
divisor of the coefficient of the highest power in the normal form of α (with
the notation (9.2) this amounts the same as k is a divisor of an).

22. The finite case has been considered in Problem 8.25, i.e., for finite α the
sum in question is ω2α−1. Since the sum

∑
ξ<ωα ξ is the order type of a set

〈A,≺〉 that is the ordered union of ordered sets of type ξ, ξ < ωα, it follows
that for limit ordinal α this sum is the same as the supremum of the sums∑

ξ<ωβ ξ for all β < α (since 〈A,≺〉 is the union for all β < α of its initial
segments that are the ordered unions of sets of type ξ, ξ < ωβ). Thus, we
have

∑
ξ<ωω ξ = ωω.

Next let α > ω be a successor ordinal. Then it can be written in the form
λ + (k + 1) with some limit ordinal λ and with some natural number k. It is
clear that ∑

ξ<ωα

ξ ≤
∑

ξ<ωα

ωα = ωα · ωα = ωα·2.

On the other hand, the set {ξ : ωλ < ξ < ωα} has order type ωα, hence



244 Chapter 9 : Ordinal arithmetic Solutions∑
ξ<ωα

ξ ≥
∑

ωλ<ξ<ωα

ωλ = ωλ · ωα = ωλ+α = ωα·2.

Thus, if α is a successor ordinal, then the sum in question is ωα·2.
Next, if α > ω is a limit ordinal, then according to what we have said

before,
∑

ξ<ωα ξ = supβ<α

∑
ξ<ωβ ξ, and here in the supremum we can take

the supremum for successor ordinals β smaller than α. Thus, according to
what we have just proved, in this case∑

ξ<ωα

ξ = sup
β<α

ωβ·2 = ωσ,

where σ = supβ<α β · 2. Here if α equals one of the powers of ω, say α = ωτ ,
then

ωτ = sup
β<α

β ≤ sup
β<α

β · 2 ≤ sup
β<α

β · ω = ωτ ,

i.e., then σ = α. If, however, α is not a power of ω, then there are at least
two-terms in its normal representation (9.2), and since α is a limit ordinal,
we have ξ0 > 0. Thus, then α is the supremum of the ordinals

β = ωξn · an + · · · + ωξ0 · (a0 − 1) + δ,

where δ < ωξ0 , and here

β · 2 = ωξn · (2an) + ωξn−1 · an−1 + · · · + ωξ0 · (a0 − 1) + δ,

thus
σ = sup

β<α
β · 2 = ωξn · (2an) + · · · + ωξ0 · a0 = α · 2.

In summary, the sum in question is equal to ω2α−1 if α is finite, it equals
ωα if α is a power of ω, and in all other cases it equals ωα·2.

23. We prove the statement by transfinite induction on α, the case α = 0
being trivial. Thus, suppose that the claim is true for all ordinals less than α;
and we have to show that it is also true for α.

If α is a successor ordinal, α = β + 1, then ωα is the order type of the an-
tilexicographically ordered set ωβ ×ω, and suppose that we have decomposed
ωβ × ω as A ∪ B. For each n ∈ ω let An be the set {ξ ∈ ωβ : (ξ, n) ∈ A},
and similarly define Bn. Then An ∪ Bn = ωβ , so by the induction hypothesis
either An or Bn has type ωβ . If for infinitely many n the set An has type
ωβ , then ∪nAn has type ωβ · ω = ωα and then so does ∪nAn ⊆ A ⊆ ωα. If
this is not the case, then for infinitely many n the set Bn has type ωβ , and
then ∪nBn has type ωβ · ω = ωα, and together with it the same is true for
∪nBn ⊆ B ⊆ ωα.

Now suppose that α is a limit ordinal, and for each β < α let Aβ = A∩ωβ ,
Bβ = B ∩ ωβ . By the induction assumption either Aβ or Bβ has order type
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ωβ , and let C be the set of those β < α for which Aβ is of type ωβ . If C is
cofinal with α, then clearly the type of A is supβ∈C ωβ = ωα. If, however, C
is not cofinal with α, then α \C is cofinal with α, and then exactly as before,
B has order type ωα.

24. For α = ωδ the statement follows from the previous problem. For other α
we prove the result by induction on α, so suppose that it has been verified for
all ordinals smaller than α. Let the normal form of α be (9.2), and consider
the ordinal

β = ωξn · (an − 1) + · · · + ωξ0 · a0.

This is smaller than α, and α = ωξn ∪ B, where in this ordered union B has
type β < α. Thus, by the induction hypothesis, there is an N such that if
we decompose B into N sets, then one of the sets can be omitted, and the
union of the remaining ones still has order type β. We claim that then the
same is true if we decompose α into 2N parts. Thus, let α = A1 ∪ · · · ∪ A2N .
We have sets B = ∪N

i=1B ∩ (A2i−1 ∪ A2i), hence there is an i0 such that the
order type of B∗ = ∪1≤i≤N, i �=i0B ∩ (A2i−1 ∪ A2i) is β. If the order type of
ωξn ∩ (A2i0−1 ∪ A2i0) is smaller than ωξn , then, by the preceding problem,
the order type of ∪1≤i≤N, i �=i0ω

ξn ∩ (A2i−1 ∪A2i) is ωξn , and we are done. If,
however, the order type of ωξn ∩ (A2i0−1 ∪ A2i0) is ωξn , then, again by the
preceding problem, either the order type of ωξn ∩ A2i0−1 is ωξn , or the order
type of ωξn ∩A2i0 is ωξn . In the first case the order type of ∪1≤i≤2N, i �=2i0Ai,
while in the second case the order type of ∪1≤i≤2N, i �=2i0−1Ai is ωξn + β = α,
and the induction step has been verified.

25. We show by transfinite induction on α the stronger claim that every infinite
ordinal α of cardinality at most κ can be decomposed as α = A0 ∪ A1 ∪ · · ·
such that the order type of An is at most κn. For α = ω = 1 + 2 + · · · this is
clear, and suppose now that this claim has been verified for all infinite ordinals
β < α. If α = β +1 is a successor ordinal and the assumed decomposition of β
is B0∪B1∪· · ·, then α = A0∪A1∪· · · with A0 = {β}, Ai+1 = Bi, i = 0, 1, . . .
is clearly an appropriate decomposition of α.

Assume now that α > 0 is a limit ordinal, and let {βξ}ξ<cf (α) be an
increasing sequence of type cf (α) of ordinals smaller than α converging to α.
Then α splits into the disjoint union of the sets Bξ = [βξ, βξ+1), ξ < cf (α).
By the induction hypothesis for each ξ < cf (α) there is a decomposition
Bξ = Bξ

0 ∪Bξ
1 ∪ · · ·, where the order type of Bξ

n is at most κn for each n. Now
set A0 = ∅ and An = ∪ξ<cf (α)B

ξ
n−1 for n = 1, 2, . . .. Then α = A0 ∪ A1 ∪ · · ·

is a partition, and since cf (α) ≤ κ the order type of An is ≤ κn−1 · κ = κn,
which proves the induction step.

26. ω, ω2, and ω3 are the first three infinite indecomposable ordinals (cf.
Problem 23).

27. See Problem 34.
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28. This is clear from the definition of indecomposability and from the defi-
nition of γ. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ.,
Warszawa, 1965, XIV.5. Theorem 2]

29. If α = γ · (β + 1) and here β > 0, then γ · β < α and γ < α, hence
α = γ · β + γ is decomposable. Conversely, if α is decomposable, then it is
not a power of ω (see Problem 23), hence in its normal form representation
(9.2) there are at least two-terms. Thus, if ωξ0 is the largest power of ω that
divides α, then α = ωξ0 · β, and here β is a successor ordinal bigger than 1.

30. For a ξ < α the equality ξ + α = α holds if and only if for all η < α we
have ξ + η < α (see, e.g., Problems 8.9 and 8.13). Thus α is indecomposable
if and only if for all ξ < α the equality ξ + α = α is true.

31. This is a consequence of Problems 30 and 8.13. [W. Sierpiński, Cardinal
and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965, XIV.6. Theorem 3]

32. If ξ < β · α, then ξ < β · η for some η < α, hence by Problem 30
ξ + β · α ≤ β · η + β · α = β · (η + α) = β · α. Therefore, again by Problem 30,
β · α is indecomposable.

33. If we write α = β · γ + δ with some δ < β (see Problem 8.15), then by the
indecomposability of α we must have δ = 0.

34. By Problem 32 the ordinal α · ω is indecomposable because ω is. But if
α < β < α · ω and we write β = α · m + δ with some δ < α and m = 1, 2, . . .,
then β = α + (α · (m − 1) + δ) is a decomposition of β into a sum of smaller
ordinals, hence it is not indecomposable.

35. This is an immediate consequence of Problem 37 below and of the normal
form of (9.2) of α. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci.
Publ., Warszawa, 1965, XIV.6. Theorem 2]

36. This is a consequence of Problem 37 below and of the normal form of the
sum of two ordinals found in (9.2).

37. This is immediate from the normal form representation (9.2) and from
Problem 23. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ.,
Warszawa, 1965, XIV.19. Theorem 1]

38. The first three infinite primes are ω, ω + 1, and ω2 + 1. This follows from
the fact that any ordinal ω ·m + n with m > 1 can be written as (ω + n) ·m,
and every ω + n with n > 1 can be written as n · (ω + 1).

39. If α > 1 is prime and α = β · γ with some γ > 1, then β < α, hence we
must have γ = α. The converse is trivial.
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40. Suppose that α is indecomposable, and α+1 is the product of two positive
ordinals. Then both of them have to be a successor ordinals, say α + 1 =
(β + 1) · (γ + 1) = (β + 1) · γ + β + 1. Hence α = (β + 1) · γ + β, and by the
indecomposability of α here either β = α, in which case β + 1 = α + 1, or
(β + 1) · γ = α, when α = (β + 1) · γ + β implies β = 0.

41. Let α be an infinite successor ordinal and consider its normal form (9.2).
Then ξ0 = 0, a0 > 0, and if we write ξk = ξ1 + ζk for k = 1, . . . , n, then

α = (ωξ1 + a0) · (ωζn · an + · · · + ωζ2 · a2 + a1),

and the last factor is smaller than α. If α is prime, then this can only happen
if α = ωζ1 + a0, and then since α = ωζ1 + a0 = a0 · (ωζ1 + 1), only if a0 = 1.

That each of ωξ + 1 is a prime ordinal follows from Problems 37 and 40.

42. If α is a limit ordinal, then in its normal form (9.2) ξ0 > 0, and α is divisible
from the left by ωξ0 and from the right by ωζn · an + · · ·+ ωζ1 · a1 + a0, where
the ζk are the ordinals, for which ξk = ξ0 + ζk. If this last sum consists of
more than one term, then

ωζn · an + · · · + ωζ2 · a1 + a0 ≤ ωξn · an + · · · + ωξ1 · a1 + a0

< ωξn · an + · · · + ωξ1 · a1 + ωξ0 · a0 = α,

and clearly in this case ωξ0 < ωξn ≤ α also holds, so α cannot be a prime.
Thus, α can have only one term in its normal form, and then obviously it
has to be of the form α = ωβ . Now here β must be indecomposable, for if
β = γ + δ with γ, δ < β, then we would have α = ωγ · ωδ with ωγ , ωδ < α, so
α could not be a prime. Thus, β is indecomposable, and hence by Problem 37
we have α = ωωξ

with some ξ.

43. Since for limit ordinal ξ the ordinals ξ + k, k = 2, 3, . . . are non-primes
(ξ + k = k · (ξ + 1)), the statement follows from Problem 7. [W. Sierpiński,
Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965, XIV.22.
Theorem 4]

44. Suppose that α + 1 = β · γ = δ · η, where β and δ are infinite primes.
Then β, γ, δ, η have to be successor ordinals, hence by Problem 41 we have
β = ωξ + 1, δ = ωζ + 1, and if we also write γ = ω · γ1 + k and η = ω · η1 + l
with some positive natural numbers l and k, then β ·γ = ωξ+1 ·γ1 +ωξ ·k +1,
δ · η = ωζ+1 · η1 + ωζ · l + 1, which shows that in the normal representation
of β · γ the last two-terms are ωξ · k + 1, while in the normal representation
of δ · η the last two-terms are ωζ · l + 1. Since the normal representation is
unique, we must have ξ = ζ, hence β = δ.

To show that the statement is not necessarily true for limit ordinals, con-
sider ωω, which has the infinitely many primes ωn + 1, n = 1, 2, . . . as its left
divisors: (ωn + 1) · ωω = ωω.
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45. The proof is by transfinite induction on α. If α is prime, then there is
nothing to do. If it is not, then it is the product of two smaller ordinals for
which we can apply the induction hypothesis to conclude that α is the product
of finitely many prime ordinals.

Since ω2 = ω · ω = (ω + 1) · ω, the representation is not unique. [W.
Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965,
XIV.23. Theorem 1]

46. By the normal form representation every ordinal α can be written in a
unique way as the product α = ωβ · γ of a power of ω and of a successor
ordinal γ. Thus, if we write α as a product of primes in such a way that limit
prime factors precede successor prime factors, then the product of the limit
prime factors (which are powers of ω) must be ωβ , and the product of the
successor prime factors must be γ.

Thus, it is enough to prove the existence and unicity of the prime repre-
sentation in question in the two cases when α is a power of ω and when α is
a successor ordinal.

Suppose first that α = ωβ . If α is the product of prime factors ωωζm ≥
ωωζm−1 ≥ · · · ≥ ωωζ0 , then β = ωζm + ωζm−1 + · · · + ωζ0 must be the normal
form of β (some terms may be repeated), and both the existence and the
unicity of the representation follow from the existence and unicity of normal
form representation.

Next we prove the unicity of the representation when α is a successor
ordinal. Let α = γm · · · · · γ0 with γm ≥ γm−1 ≥ . . . ≥ γ0, where γi are prime
ordinals, so they are either prime natural numbers or ordinals of the form
ωξ + 1. Let γs, γs−1, . . . , γ0 be all finite, but γs+1 infinite. Since the largest
term in the normal form of the product γn · · · γs+1 has coefficient 1, it follows
that γs · · · γ0 must be equal to an, the largest coefficient (the coefficient of the
highest power) in the normal expansion of α. Thus, the finite prime factors on
the right are uniquely determined by α, therefore we can cancel them (Problem
8.10), and we may assume that α does not have a right prime divisor, which is
finite. But then by Problem 43 in two representations of α of the kind we are
discussing the last (rightmost) prime factor is uniquely determined. Thus, we
can factor out this common rightmost prime factor from both representations
(see Problem 8.11), and we get the unicity by induction.

Finally, we prove the existence of the prime representation in question for
successor ordinals. Since for ξ < ζ0 we have(

ωζm · bm + · · · + ωζ0 · b0
)
· (ωξ + 1) = ωζm+ξ + ωζm · bm + · · · + ωζ0 · b0,

we can successively change the normal form of α into such a representation:
first note that

α = ωξn · an + · · · + ωξ0 · a0

= (ωξn−1 · an−1 + ωξn−2an−2 + · + ωξ1 · a1 + a0) · (ωδn + 1) · an,
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where δn is the ordinal for which ξn = ξn−1 + δn. Here an can be uniquely
written as a nonincreasing sequence of finite prime factors. Now repeat this
with the factor

ωξn−1 · an−1 + ωξn−2an−2 + · + ωξ1 · a1 + a0,

etc., to obtain the required form.
Actually, the method we used for the existence can be easily extended

to yield both the existence and unicity of the representation. In fact, if the
normal form of α is α = ωξn · an + · · ·+ωξ0 · a0 and set δ0 = ξ0 and choose δi,
1 ≤ i ≤ n, so that ξi = ξi−1 + δi, then δ0 ≥ 0 and δi > 0 for 1 ≤ i ≤ n. Now

α = ωδ0 · a0 · (ωδ1 + 1) · a1 · · · an−1 · (ωδn + 1) · an,

and if δ0 = ωγm + · · · + ωγ0 with γm ≥ · · · ≥ γ0, then

α = ωωγm · · ·ωωγ0 · a0 · (ωδ1 + 1) · a1 · · · an−1 · (ωδn + 1) · an

is the required decomposition. Unicity is also clear since in order that this
formula should hold, the choice of δi must be what was given above. [W.
Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965,
XIV.23]

47. This follows from Problem 53.

48. See Problem 53. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish
Sci. Publ., Warszawa, 1965, XIV.25. Corollary 1]

49. See Problem 53.

50. See Problem 53. [N. Aronszajn, Fund. Math., 39(1952), 65–96]

51. See Problem 53. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish
Sci. Publ., Warszawa, 1965, XIV.25, Theorem 1]

52. See Problem 53. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish
Sci. Publ., Warszawa, 1965, XIV.25. Theorem 2]

53. This is an immediate consequence of the normal form of the sum of two
ordinals given in the solution to Problem 18. In fact, if α has normal form (9.2)
and β has normal form (9.1), then, e.g., for β < α we cannot have ζm < ξn,
for then β + α = α, and α = β + α = α + β gives β = 0. Thus, ζm = ξn, and
then

α + β = ωξn · (an + bm) + ωζm−1 · bn−1 + · · · + ωζ0 · b0

while
β + α = ωξn · (an + bm) + ωξn−1 · an−1 + · · · + ωξ0 · a0
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and these are the same exactly when m = n, ξi = ζi for all i ≤ n and ai = bi

for i < n.

54. The sum of n nonzero ordinals α1, . . . , αn is independent of their order if
and only if each two are additively commutative. Now apply Problems 53 and
18.

55. (a) Let αi, i = 1, . . . , n be n ordinals, and let us write each αi as αi =
ωγi · ai + βi, where ai = 1, 2, . . . and βi < ωγi . Such a decomposition follows
from the normal representation of αi. Let γ = mini γi, and let k be the number
of those αi for which γi = γ. Without loss of generality, we may assume
γ1 = . . . = γk = γ and γi > γ for i > k. If i1, . . . , in is any permutation of
the numbers 1, . . . , n and in > k, then each of α1, . . . , αk gets absorbed in the
following summands in αi1 + · · ·+αin

, hence those sums are as if the numbers
α1, . . . , αk were all missing. Hence there are exactly g(n − k) such sums. If,
however, in ≤ k and r is chosen so that in−1 ≤ k, . . . , in−r+1 ≤ k but in−r > k,
then again all α1, . . . , αn but the r ones at the end (i.e., αin−r+1 , . . . , αin

) get
absorbed in the following summands in αi1 + · · · + αin

. Thus, in this case we
obtain that

αi1 + · · · + αin
= δ + ωγ · (ain−r+1 + · · · + an) + βin

,

where δ ≥ ωγ+1. Here there are at most
(
k
r

)
possibilities for the selection of

the indices in−r+1, . . . , in and hence for the sum ain−r+1 + · · ·+ ain , and for a
given selection of these indices there are at most r possibilities for in. As we
have just seen δ can be obtained in at most g(n− k) ways, hence the number
of possibilities for the sum αi1 + · · · + αin is at most[

1 +
k∑

r=1

r

(
k

r

)]
g(n − k) = (k2k−1 + 1)g(n − k).

This gives the upper bound

g(n) ≤ max
k

(k2k−1 + 1)g(n − k).

It is clear from the given consideration that if for a particular k we set

αi = ω · 2i + i, i = 1, . . . , k,

and
αk+j = ω2 · α′

j , j = 1, . . . , n − k,

where α′
j , j = 1, 2, . . . , n−k, is a system of ordinals for which we get g(n−k)

possible sums, then the γ above is 1 and all possible choices listed above are
different, so in this case the bound (k2k−1 +1)g(n−k) is achieved. This gives

g(n) ≥ max
k

(k2k−1 + 1)g(n − k),
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and part (a) is proved.

(b) can be obtained by direct computations from the formula in part (a).

(c) is a consequence of (a), (b), and part (d).

(d) Consider the ratios g(n)/81n/5. Part (a) implies that

g(n)
81n/5 = max

1≤k≤n−1

k2k−1 + 1
81k/5 · g(n − k)

81(n−k)/5 .

Since the fraction
k2k−1 + 1

81k/5

increases as k increases for k ≤ 4 and decreases as k increases for k ≥ 5 and
for k = 5 it takes its maximum value 1, it follows that if for some m we have

g(m − i)
81(m−i)/5 =

g(m − i − 5)
81(m−i−5)/5 for i = 0, 1, . . . , 8, (9.5)

then

g(m + 1)
81(m+1)/5 = max

1≤k≤m+1

k2k−1 + 1
81k/5 · g(m + 1 − k)

81(m+1−k)/5

≤ max
{

max
1≤k≤9

k2k−1 + 1
81k/5 · g(m + 1 − k − 5)

81(m+1−k)/5 ,

max
10≤k≤m

(k − 5)2(k−5)−1 + 1
81(k−5)/5 · g(m + 1 − k)

81(m+1−k)/5

}

=
g(m + 1 − 5)
81(m+1−5)/5 .

Since here the term on the right-hand side appears as the 5th term in the first
maximum, we obtain

g(m + 1)
81(m+1)/5 =

g(m + 1 − 5)
81(m+1−5)/5 .

Thus, the property (9.5) is inherited from m to m + 1 and we obtain that for
all n ≥ m − 8

g(n)
81n/5 =

g(n − 5)
81(n−5)/5 .

But based on the values in part (b) and on similar computations (resulting
from part (a)) for the values g(16)—g(27)) it is easy to check that (9.5) is
true for m = 27, hence the preceding formula proves part (d). [P. Erdős,
Some remarks on set theory, Proc. Amer. Math. Soc., 23(1950), 127–141]

56. This follows from Problem 60.
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57. Let α > 1 be a successor ordinal. If α is finite, say α = a, but β is infinite,
say β is of the form β = ω ·γ+k, then α ·β = ω ·γ+ak, while β ·α = ω ·γ ·a+k,
and this latter ordinal is clearly bigger than the former one.

Thus, let α and β be infinite, α a successor and β a limit ordinal. By
Problem 18 if the normal expansion of α has k terms and the normal expansion
of β has l terms, then the normal expansion of α · β has l terms, while the
normal expansion of β · α has l + (k − 1) terms. Thus, if α · β = β · α, then
we must have k = 1, which means that α is finite (α was assumed to be
a successor ordinal), but this is not the case. [W. Sierpiński, Cardinal and
Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965, XIV.26]

58. See Problems 60 and 8.12. [W. Sierpiński, Cardinal and Ordinal Numbers,
Polish Sci. Publ., Warszawa, 1965, XIV.26. Corollary 1]

59. This follows from the next problem, Problem 60. [W. Sierpiński, Cardinal
and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965, XIV.10/3]

60. First let us consider the case when α and β are successor ordinals. If α
and β are multiplicatively commutative, then by Problem 63 there is a ξ such
that α = ξm and β = ξn with some natural numbers n, m. Thus, in this case
αn = βm.

Conversely, suppose that for some n, m we have αn = βm, and let ξ be
the smallest ordinal bigger than 1 that is multiplicatively commutative with
αn = βm. Since α is multiplicatively commutative with αn, by Problem 62
we must have α = ξk for some k, and for similar reasons β = ξl for some l,
and this shows that α and β are multiplicatively commutative.

Now let α < β be limit ordinals. If they are multiplicatively commuta-
tive, then, according to Problem 61, there is a θ and positive integers p, r
such that β = ωθ·rα, and the highest power of ω in the normal represen-
tation of α is ωθ·p. The latter property implies by the solution of Problem
18 that αs = ωθ·(p(s−1))α for s = 1, 2, . . ., hence αp+r = ωθ·(p+r−1)pα =
ωθ·(p+r)(p−1))ωθ·rα = βp.

Conversely, suppose that for some positive natural numbers n, m we have
αn = βm, and let ωτ and ωσ be the highest powers of ω in the normal
representation of α and β, respectively. Then the highest power of ω in the
normal form of αn is ωτ ·n and in the normal form of βm it is ωσ·m. Thus,
τ · n = σ · m, and hence, by Problems 51, 50 there is a θ and some positive
integers k, l such that τ = θ · k and σ = θ · l. We also have αn = ωτ ·(n−1) ·
α and βm = ωσ·(m−1) · β, thus ωθ·k(n−1) · α = ωθ·l(m−1) · β. Here α < β
implies θ · l(m− 1) ≤ θ · k(n− 1), so by Problem 8.10 we can cancel with the
common factor ωθ·l(m−1) from the left to obtain β = ωθ·(k(n−1)−l(m−1)) · α.
This and Problem 61 show that α and β are multiplicatively commutative.
[W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa,
1965, XIV.26. Theorem 1]

61. Let α < β be two limit ordinals with the respective normal forms
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α = ωξn · an + · · · + ωξ0 · a0

and
β = ωζm · bm + · · · + ωζ0 · b0.

Then (see Problem 18)

β · α = ωζm+ξn · an + · · · + ωζm+ξ0 · a0

and
α · β = ωξn+ζm · bm + · · · + ωξn+ζ0 · b0,

and these are normal forms. Thus, these two numbers are the same if and only
if n = m, ai = bi for all i, and ζm + ξi = ξn + ζi. For i = n this means that ζn

and ξn are additively commutative, and hence (see Problem 51) there is a θ
and natural numbers k, l such that ξn = θ · k and ζm = θ · l. Since α < β, we
must have l > k, and so ζm = ξn+θ·(l−k). But then ξn+θ·(l−k)+ξi = ξn+ζi,
which means that θ · (l − k) + ξi = ζi for all i, i.e., ωθ·(l−k)α = β, and this
proves the necessity of the condition.

It is also clear that if ξn = θ ·k, ζm = θ · l and ωθ·(l−k)α = β, then ζn +ξi =
ξn + ζi, hence, as we have mentioned above, α and β are multiplicatively
commutative, i.e., the condition is also sufficient.

62. According to Problem 57, ξ is a successor ordinal.
First we prove that α is a finite power of ξ.
We have seen in Problem 46 that α can be uniquely written in the form

α = am+1 ·βm · am ·βm−1 · · · a1 ·β0 · a0 where ai ≥ 1 are natural numbers and
βm ≥ βm−1 ≥ . . . ≥ β0 are infinite prime ordinals of the form ωτ + 1. Now let
ξ = cn+1 · γn · cn · γn−1 · · · c1 · γ0 · c0 be the corresponding representation of ξ.
Then ξ · α = α · ξ implies that both a0 and c0 are coefficients of the largest
power of ω in the normal form representation of ξ ·α = α ·ξ, therefore a0 = c0.
We can cancel this common right factor from the equation (see Problem 8.11)
to obtain

an+1 · βm · an−1 · βn−1 · · · a1 · β0 · (a0cn+1) · γn · cn · γn−1 · · · c1 · γ0

= cn+1 · γn · cn · γn−1 · · · c1γ0 · (c0am+1) · βm · am · βm−1 · · · a1 · β0.

Now γ0 and β0 are infinite prime right divisors of the same ordinal, so they
must be the same by Problem 43. Cancelling them (see Problem 8.11) and
continuing this process we can see that the numbers ai and ci are equal and
so are the prime ordinals βi and γi for i = 0, 1, . . .. This process terminates
only when i reaches m or n. If n 
= m, then this implies that either ξ or α is
a right divisor of the other one. If, however, m = n, then we obtain from this
procedure that α = ξ (recall that a0 = c0 has been verified above). Thus, in
any case one of α and ξ is a right divisor of the other one, and since ξ ≤ α, it
must be ξ: α = α1 ·ξ with some ordinal α1. Here α1 ·ξ ·ξ = α·ξ = ξ ·α = ξ ·α1 ·ξ,
and so α1 ·ξ = ξ ·α1, i.e., ξ and α1 are also multiplicatively commutative. Now



254 Chapter 9 : Ordinal arithmetic Solutions

continue this process with α1 and ξ. It follows that either α1 < ξ or α1 = α2 ·ξ,
and α2 and ξ are multiplicatively commutative. Repeat this process again and
again. Since the sequence {αi} is strictly decreasing, there will be a smallest
index i0 such that αi0 < ξ. Since αi0 is multiplicatively commutative with
ξ, and αi0−1 = αi0 · ξ, it follows that αi0 and αi0−1 are also multiplicatively
commutative. Going back this way, we get that αi0 and α are multiplicatively
commutative. But in view of the choice of ξ, this can only happen for αi0 < ξ
if αi0 = 1. Hence αi0−1 = ξ, αi0−2 = ξ2, . . ., α = ξi0 , and this proves the
claim.

Now we prove by induction on β that if β is multiplicatively commutative
with α then it is a finite power of ξ. ξ and β are right divisors of the the same
ordinal (namely α · β = β ·α), and we apply Problem 7. By the minimality of
ξ if β is a right divisor of ξ then β = ξ, and we are done. If ξ is a right divisor
of β, say β = γ · ξ, then γ < β and

α · γ · ξ = α · β = β · α = γ · ξ · α = γ · α · ξ,

and since ξ is a successor ordinal we can cancel the ξ on the right of the two
extreme sides, and we get that γ is multiplicatively commutative with α. So
in this case the induction hypothesis gives that γ is a finite power of ξ, and
hence so is β = γ · ξ. The only remaining possibility in Problem 7 is that
β = ζ + p, ξ = ζ + q with some limit ordinal ζ and 0 < q < p integers. Since
α = (ζ + q)m for some m, an application of Problem 8.21 yields

α · β = (ζ + q)m · (ζ + p) = ζ · (ζ + q)m−1 · (ζ + p) + q = a limit ordinal + q

while

β · α = (ζ + p) · (ζ + q)m = ζ · (ζ + q)m + p = a limit ordinal + p

and these are different when q < p. Thus, this possibility cannot occur, and
the proof is complete.

63. This follows from Problem 62.

64. Since

(ω2 + ω) · (ω3 + ω2) = ω5 + ω4 = (ω3 + ω2) · (ω2 + ω),

these ordinals are multiplicatively commutative. But there is no ordinal ξ for
which ω2 + ω = ξn was true with some n ≥ 2. In fact, then it would have
to be of the form ω · k + l and n would have to be 2. Furthermore ω2 + ω
is a limit ordinal, which means l = 0, but then (ω · k)2 = ω2 · k 
= ω2 + ω.
Thus, if ω2 + ω = ξn, then n = 1, ξ = ω2 + ω, in which case ξm = ω3 + ω2 is
an impossibility. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci.
Publ., Warszawa, 1965, XIV.26. (26.4)]
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65. The product of n ordinals α1, . . . , αn, αi ≥ 2 is independent of their order
if and only if each two are multiplicatively commutative. Now the statement
follows from Problem 60.

66. αi = ω + i, i = 1, . . . , n will do; see Problem 8.39.

67. Suppose that α and β are different infinite ordinals that are additively
commutative. Then (see Problem 51) there is a ξ and n 
= m such that α = ξ ·n
and β = ξ · m. If ξ is a limit ordinal, then α · β = ξ2 · m, while β · α = ξ2 · n,
and these are different. If, however, ξ is a successor ordinal, say ξ = ω · γ + k
with k > 0, then

β · α = (ω · γ + k) · m · (ω · γ + k) · n = ω · γ · ω · γ · n + ω · γ · mk + k,

while

α · β = (ω · γ + k) · n · (ω · γ + k) · m = ω · γ · ω · γ · m + ω · γ · nk + k,

and these are different: e.g., if n > m, then

ω · γ · ω · γ · m + ω · γ · nk < ω · γ · ω · γ · m + ω · γ · ω
= ω · γ · ω · (γ · m + 1) ≤ ω · γ · ω · γ · n
< ω · γ · ω · γ · n + ω · γ · mk.

Thus, α and β are not multiplicatively commutative. [W. Sierpiński, Car-
dinal and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965, XIV.26/12]

68. b) clearly implies a) (cf. Problem 8.13). Furthermore, if α = ωωβ

, β > 0,
and 1 ≤ ξ < α, then in the normal expansion of ξ the highest power is ωγ with
some γ < ωβ . Thus, then ξ · α ≤ ωγ+1 · ωωβ

= ωγ+1+ωβ

= ωωβ

= α ≤ ξ · α,
and this is b). Thus, c) implies b) (the case β = 0 is trivial).

Finally, suppose that a) holds, and let α = ωξn · an + · · · + ωξ0 · a0 be the
normal form of α. If this has more than one term, then selecting ξ = θ = ωξn ,
we get two ordinals that are smaller than α such that their product ωξn·2 is
bigger than α, thus α must be of the form ωγ · a, and for the same reason as
before, here we must have a = 1, γ > 0. Finally, selecting ξ = ωρ and ζ = ωσ

with ρ, σ < γ the condition in part a) implies that ρ + σ has to be smaller
than γ, i.e., γ has to be an indecomposable ordinal. Thus, by Problem 37 γ is
of the form ωβ for some β, and this proves that a) implies c). [G. Hessenberg,
Grundbegriffe der Mengenlehre, Göttingen 1906, W. Sierpiński, Cardinal and
Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965, XIV.20]

69. Let µ be any infinite ordinal. Inductively define µ0 = µ, µn+1 = ωµn ,
n = 0, 1, . . ., and let ν be supremum of all the ordinals µn. If ζ is any epsilon-
ordinal such that µ ≤ ζ, then by induction we find that µn+1 = ωµn ≤ ωζ = ζ,
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thus all µn are at most ζ, and so ν ≤ ζ. But it is clear that ζ is an epsilon-
ordinal, since ωζ = supn ωµn = supn µn+1 = ζ. This proves that ν is the
smallest epsilon-ordinal that is at least as large as µ.

If we start from µ = ω, then we get that the smallest epsilon-ordinal is the
limit of the sequence ω, ωω, ωωω

, . . ., which can also be written as the sum

ω + ωω + ωωω

+ . . . .

70. See the preceding proof, and notice that if µ is countable, then so are
µ1, µ2, . . ., and also supn µn.

71. (i) If ξ < α = ωα, then there is an ordinal β < α such that ξ < ωβ , and
hence (see Problem 17) ξ + α ≤ ωβ + ωα = ωα = α.

(ii) In the same fashion as before, ξ ·α ≤ ωβ ·ωα = ωβ+α = ωα = α, where
we used part (i).

(iii) With the notation before, α ≤ ξα ≤
(
ωβ
)α = ωβ·α = ωα = α, where

we used part (ii). [W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci.
Publ., Warszawa, 1965, XIV.21. Theorem 2]

72. This is clear, for ωα ≤ βα = α ≤ ωα (see Problem 11(iv)), hence ωα = α.

73. If α is an epsilon-ordinal and β, γ < α, then βγ < βα = α where we used
Problem 71(iii).

Conversely, if α > ω is a limit ordinal but not an epsilon-ordinal, then
α < ωα (cf. Problem 11(iv)) and so there is a β < α such that α < ωβ ,
and here both ω and β are smaller than α. If, however, α > ω is a successor
ordinal, α = β + 1, then clearly α < β · 2 ≤ β2 ≤ βω, and here again both ω
and β are smaller than α.

74. If α is a limit ordinal and β = γ · α, where γ > α is an epsilon-ordinal,
then (use Problem 71(iii)) αβ = αγ·α = (αγ)α = γα, while βα = (γ ·α)α. Now
γα ≤ (γ · α)α ≤ (γ2)α = γ2·α = γα gives that αβ = βα holds.

Now suppose that αβ = βα. First we prove that α and β cannot be simul-
taneously successor ordinals. Suppose, to the contrary, that they are successor
ordinals. If α = ωξn ·an + · · ·+ωξ0 ·a0 and β = ωζm · bm + · · ·+ωζ0 · b0 is their
normal form, then ξ0 = ζ0 = 0, a0, b0 > 0. If α = α′ +a0 and β = β′ +b0, then
it easily follows that αβ = ωξn·β′ · αb0 and βα = ωζm·α′ · βa0 , and since the
last factors are successor ordinals, the smallest power of ω in the normal form
of αβ resp. βα is ωξn·β′

, resp. ωζm·α′
. Hence we must have ξn · β′ = ζm · α′.

Together with this it also follows that αb0 = βa0 , hence, by Problem 60, α
and β are multiplicatively commutative. But then (see Problem 63) there is a
ξ such that α = ξp and β = ξq with some natural numbers p and q. Therefore,
ξp·ξq

= ξq·ξp

, which implies p · ξq = q · ξp. Now ξ must be a successor ordinal
since α and β are, so it is of the form ξ = γ + k, where γ is a limit ordinal
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and k ≥ 1 is a natural number. Since then ξs = γs + γs−1 · k + · · ·+ γ · k + k,
the equation p · ξq = q · ξp means that

γq + γq−1 · k + · · · + γ · k + kp = γp + γp−1 · k + · · · + γ · k + kq,

which immediately implies p = q, and hence α = β.
Next we show that it is not possible that, say, α is a limit ordinal and β is

a successor ordinal (in this part of the proof we will not use the assumption
α < β, so this proof also proves that it is equally impossible that β is a
limit ordinal and α is a successor ordinal). In fact, then using the preceding
notation we have ξ0 > 0 but ζ0 = 0. αβ is still ωξn·β′ · αb0 , and βα is ωζm·α,
and these imply first of all that ξn · β′ < ζm · α, and then, since the equation
ξn · β′ + σ = ζm · α is solvable for σ, that αβ0 = ωσ is a power of ω, i.e.,
its normal form has only one component. Now apply Problem 19 to conclude
that the normal form of α also has only one component, say α = ωξ · a. Thus,
then αβ = ωξ·β · a and βα = ωζm·α, from which we obtain first that a = 1,
and then that ξ · β = ζm · α. Thus, β and α are right divisors of the same
ordinal, and it follows from Problem 7 that one of them divides the other one
from the right (the third possibility from Problem 7 cannot hold here, since
α is a limit ordinal). If α = γ · β, then, since the normal form of α consists of
a single term, the same must be true of β. But then β cannot be a successor
ordinal. Thus, we must have β = γ ·α, which is not possible either, since then
β again would be a limit ordinal.

Thus, the only possibility that is left is that both α and β are limit ordinals.
In this case ξ0 > 0 and ζ0 > 0, and ωξn·β = αβ = βα = ωζm·α, so we get
again ξn · β = ζm · α, i.e., again α and β are the right divisors of the same
ordinal. Thus, exactly as before we can conclude that α is a right divisor of
β (recall that we have assumed α < β), say β = γ · α. With this we also have
ξn · γ · α = ζm · α.

Let ωδ be the highest power in the normal expansion of γ. Then ζm =
δ + ξn, and the preceding equation takes the form

(δ + ξn) · α = ξn · γ · α.

Here we cannot have δ ≤ ξn, for then

(δ + ξn) · α ≤ ξn · 2 · α < ξn · γ · α

because 2 · α = α < β = γ · α. Thus, δ ≥ ξn, and

ξn · ωδ · α ≤ ξn · γ · α = (δ + ξn) · α ≤ δ · 2 · α = δ · α ≤ ωδ · α ≤ ξn · ωδ · α,

which shows that we must have equality everywhere. In particular, ξn ·ωδ ·α =
ξn · γ · α, which implies that ωδ · α = γ · α = β, i.e., we may assume without
loss of generality that γ = ωδ.

Our aim is to show that δ is an epsilon-ordinal (which, in view of γ = ωδ

amounts the same as γ being an epsilon-ordinal), and at the end of the proof
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we shall also verify that it is bigger than α. If δ = γ = ωδ, then we are done.
In the opposite case γ ≥ δ + 1, and hence

ξn · γ · α = (δ + ξn) · α ≤ ξn · (δ + 1) · α ≤ ξn · γ · α,

which shows that γ · α = (δ + 1) · α = δ · α (recall that α is a limit ordinal).
Thus, we have arrived at the equation δ ·α = ωδ ·α. If ωσ is the largest power
of ω in the normal form of δ, then the preceding equation yields

ωσ · α ≤ ωωσ · α ≤ ωδ · α = δ · α = ωσ · α,

giving ωδ · α = ωωσ · α, i.e., in β = γ · α = ωδ · α = ωωσ · α we may assume
δ = ωσ (and γ = ωωσ

). Now looking at the largest exponent in the normal
form of δ · α = ωδ · α we obtain

σ + ξn = δ + ξn. (9.6)

Let us go back to the equation (γ ·α)α = αγ·α. It is not possible that here
γ ≤ αm for some natural number m, for then

βα = (γ · α)α ≤ (αm+1)α = α(m+1)·α = αα < αβ .

Therefore, γ ≥ αm for all m = 1, 2, . . ., and so γ ≥ αω = ωξn·ω is also
satisfied. This gives for δ that δ ≥ ξn · ω. Now σ ≤ ξn · m is not possible for
some m = 1, 2, . . ., because then σ + ξn ≤ ξn · (m + 1) < ξn · ω ≤ δ + ξn holds
contradicting (9.6). Thus, σ ≥ ξn · ω. Therefore, if ωτ is the largest power
of ω in the normal form of σ, then on the left-hand side of (9.6) the highest
exponent is τ , while on the right-hand side it is σ ≥ ωτ , which gives ωτ ≤ τ .
Since τ ≤ ωτ always holds, we obtain τ = ωτ , i.e., τ is an epsilon-ordinal.
Using the inequality ξn ≤ σ we can see that if σ > τ then

σ + ξn ≤ σ · 2 < σ · ω = ωτ · ω = ωτ+1 ≤ ωσ = δ < δ + ξn,

which contradicts (9.6). Thus, we must have σ = τ , and so δ = ωσ = ωτ = τ
and γ = ωδ = ωτ = τ .

Thus, so far we have verified that β = γ ·α, where γ is an epsilon-ordinal.
We have also seen that γ ≥ αm for all finite m, which yields γ ≥ α2 > α. This
proves the claim. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci.
Publ., Warszawa, 1965, XIV.27]

75. The product
∏

ξ<θ αξ can be defined by transfinite induction in the same
way as ordinal exponentiation was defined in Problem 11. Transfinite mul-
tiplication is associative but not commutative or distributive. Ordinal expo-
nentiation is just repeated multiplication, i.e., γθ =

∏
ξ<θ γ. More generally,

if β =
∑

ξ<θ αξ, then γβ =
∏

ξ<θ γαξ .

76. The case when there are only finitely many nonzero terms is obvious, so
we may assume the opposite. With no harm we may also discard all the zero
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terms, as well, i.e., we may assume αi > 0 for all i. We replace every αi with a
finite sum of powers of ω. Then we get a sum β0 +β1 + · · · of powers of ω such
that every permuted sum of α0 + α1 + · · · is a permuted sum of β0 + β1 + · · ·
(but not vice versa). If βi = ωγi , then let δ be the minimal ordinal for which
the set {i : γi ≥ δ} is finite. Call βi of the first (second) type if γi ≥ δ
(γi < δ). The finitely many βi of the first type can produce only finitely many
permuted sums. Every permuted sum of β0 + β1 + · · · can be written as x + y
where x is a finite sum ending with a βi of the first type, and all terms in y
are of the second type. If some βi = ωγi of the second type is a term in x,
then there is a later βj = ωγj with γj > γi, so we can discard this term, as
well. Therefore, there are only finitely many possibilities for x. We show that
y = ωδ, and this will conclude the proof. Indeed, on the one hand every term
in y is smaller than ωδ, so y ≤ ωδ. On the other hand, if τ < δ, then there are
infinitely many βi with γi ≥ τ , so y is at least ωτ + ωτ + · · · = ωτ+1. As this
holds for every τ < δ, y ≥ supτ<δ ωτ+1 = ωδ. [W. Sierpiński, Sur les séries
infinies de nombres ordinaux. (French) Fund. Math. 36(1949), 248–253]

77. We use the notations from the preceding proof. Deleting finitely many αi

means deleting finitely many βi, so we may work with the series β0 +β1 + · · ·.
Let us delete finitely many terms, and let the remaining terms be β′

0, β
′
1, . . .. If

we do not delete all βi of the first type, then every permuted sum of β′
0+β′

1+· · ·
can be written as x′ + y′, where x′ is a finite sum ending with a βi of the first
type, and all terms in y′ are of the second type, and just as before, there are
only finitely many possibilities for x′. The preceding proof also gives y′ = ωδ,
and this concludes the proof in the case when there are non-deleted terms βi

of the first type.
If, however, all terms of the first kind are deleted, then x′ is the empty

sum, and β′
0 + β′

1 + · · · in any order is ωδ.

78. Consider the sum ω4 +

n−1︷ ︸︸ ︷
ω3 + ω3 + · · · + ω3 +ω+ω+ · · ·. If we move exactly

k of the ω3’s in front of ω4, then the value of the sum is ω4+ω3 ·(n−1−k)+ω2,
and these are n different ordinals for k = 0, 1, . . . , n − 1. (See also Problem
8.36.)

79. See the next proof.

80. We may assume αi > 0 for all i, otherwise the product is 0, unless all zero
terms are deleted.

Let ωξi be the highest power of ω in the normal form of αi, and let
η = supi ξi. We shall prove the statement by transfinite induction on η. The
statement is clearly true if η = 0 (in which case all αi are positive natural
numbers, and their product is ω unless only finitely many αi’s are different
from 1). Thus, suppose that the claim has been verified for all ordinals (in
place of η) that are smaller than η.
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Now we distinguish three cases. First suppose that no ξi equals η. Then
no matter in what order we take the product and which finitely many terms
we delete, we always get ωη. Next, if infinitely many of the ξi’s agree with
η, then, just as before, no matter in what order we take the product and
which finitely many terms we delete, the product is always ωη+1. Thus, we
only have to consider the case when there are only finitely many terms in the
product, say α0, α1, . . . , αk, for which the corresponding ξ’s are equal to η.
Then η0 = supi>k ξi is less than η, so we can apply the induction hypothesis
for the ordinals αk+1, αk+2, . . .. Let us now take any permutation π of the
natural numbers, consider the product απ(0) · απ(1) · · ·, and let us delete the
elements απ(i), i ∈ I, from this product, where I ⊂ N is an arbitrary finite
set. If all the αi, i ≤ k, are deleted, then, by the induction hypothesis, we
can only get finitely many different values for such a product. If l of the αi’s,
i ≤ k, are still in the product, and the one with the largest index π(σ) of them
is αiπ,I

(iπ,I ∈ {1, 2, . . . , k}), then
∏

π(j)≤π(iπ,I), i �∈I απ(j) = ωη·(l−1)αiπ,I
, and

the rest of the product, namely
∏

π(j)>π(iπ,I), i �∈I απ(j), can take only finitely
many different values by the induction hypothesis. Since there are only finitely
many choices for l ≤ k and iπ,I ∈ 0, 1, . . . , k, we can conclude that there are
only finitely many different values for the product.

81. Let
∑∞

i=0 βi, βi > 0, be a sum from which one can get exactly n different
sums by taking permutations of the terms (see Problem 78). Then clearly
ωβ0 ·ωβ1 · · · = ω

∑
i
βi is a product, from which one can get exactly n different

values by permuting the terms in the product.

82. Consider the sum ω+ω2 +ω3 + · · ·+0. If we switch the position of ωk and
0, then the sum becomes ωω + ωk, and these are different for different k’s.

83. We show by transfinite induction on γ < ω1 that if A is a countable set
of ordinals, then the set Sγ(A) of sums

∑
β<γ yβ of type γ with yβ ∈ A, is

countable. This is obvious for finite γ. Let S<γ(A) = ∪δ<γSδ(A). The finite
sums in A form the countable set S<ω(A), and the infinite sums of type ω are
limits of finite sums, hence the claim for γ = ω is true, since then Sω(A) is in
the closure of S<ω(A), which is a countable set by Problem 8.42.

Assume now that the claim is known for all ordinals smaller than γ < ω1.
Then S<γ(A) is countable. γ can be written as a finite or ω type sum of
smaller ordinals, so Sγ(A) ⊆ Sω(S<γ(A)), and the last set is a countable
set by the induction hypothesis. [J. L. Hickman, J. London Math. Soc. (2),
9(1974), 239–244]

84. Consider the product ω ·ω2 ·ω3 · · · · 1. If we switch the position of ωk and
1, then the product becomes ωω+k, and these are different for different k’s.

85. The proof is identical with the proof of Problem 83, just say “product”
instead of “sum” everywhere.



Solutions Chapter 9 : Ordinal arithmetic 261

86. We have Γ (ω) = 1 · 2 · 3· = ω and Γ (ω + 1) = Γ (ω) · ω = ω2. To calculate
Γ (ω · 2) consider that ωk ≤ (ω + 1) · · · (ω + k) ≤ ωk+1 for each k = 1, 2, . . .
and so Γ (ω · 2) = Γ (ω + 1) · (ω + 1) · (ω + 2) · · · = ω2 · limk ωk = ω2 ·ωω = ωω.
In a similar fashion as before one can see that

∏∞
l=0(ω · k + l) = ωω for

all k = 1, 2, . . ., and hence Γ (ω2) = Γ (ω) · ωω · ωω· = ω · (ωω)ω = ωω2
. [W.

Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965,
XIV.17]

87. Since F(0) = F(0) + F(0), we have F(0) = 0. If we set F(1) = γ, then
for all α the equality F(α + 1) = F(α) + γ is true, and for limit α we have by
continuity F(α) = supβ<α F(β). Thus, we get by transfinite induction that
F(α) = γ · α for all α. Conversely, all these operations satisfy the functional
equation F(α + β) = F(α) + F(β) and they are continuous in the inter-
val topology (see Problems 8.13 and 8.41). [cf. W. Sierpiński, Cardinal and
Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965, XIV.18. Theorem 1]

88. For such an operation the equation ωF(α+β) = ωF(β) · ωF(α) would be
true, and by Problem 90 there is no such operation.

89. We have F(0) = F(0) · F(0), so either F(0) = 0 or F(0) = 1. In the
former case F(α) = F(α+0) = F(α) · F(0) = 0, i.e., F is identically 0. Thus,
suppose that F(0) = 1, and set F(1) = γ. Then F(α + 1) = F(α) · γ, so one
can easily get by transfinite induction that F(α) = γα for all α. Thus, F must
be such an exponential operation, and clearly all these satisfy the equation
F(α + β) = F(α) · F(β) and are continuous in the interval topology.

90. We show that there is no such operation. In fact, from the functional
equation F(α+β) = F(β) ·F(α) it follows just as in the preceding proof that
if F is not identically zero, then F(0) = 1, and if we set γ = F(1), then for all
finite ordinals k we have F(k) = γk. Thus, by continuity we get F(ω) = γω.
Then F(ω+1) = F(1)·F(ω) = γ ·γω = γω, and proceeding this way we obtain
that F(ω + k) = γω for all k < ω, and so F(ω + ω) = supk F(ω + k) = γω.
But then γω = F(ω + ω) = F(ω) · F(ω) = γω · γω = γω+ω, which is possible
only if γ = 1. In this case transfinite induction shows that F is the identically
one operation.

91. (a) is straightforward from the definition of ⊕.
(b) If α and β are as in (9.3) and

γ = ωδn · cn + · · · + ωδ0 · c0,

then β < γ implies bm < cm for the largest m with bm 
= cm. But then
the coefficients of ωδn , · · · , ωδm+1 in α ⊕ β and in α ⊕ γ are the same, while
am + bm < am + cm, hence α ⊕ β < α ⊕ γ.

(c) If α = 0, then x = y = 0. If, however,
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α = ωδn · an + · · · + ωδ0 · a0

with nonzero ai, then the solutions are

x = ωδn · pn + · · · + ωδ0 · p0, y = ωδn · (an − pn) + · · · + ωδ0 · (a0 − p0),

where 0 ≤ pi ≤ ai are integers, and the number of solutions is (a0+1) · · · (an+
1).

(d) The answer is NO: set α = 1 and xn = n for n < ω. Then limn xn =
supn xn = ω, while

lim
n

(1 ⊕ xn) = lim
n

(n + 1) = ω 
= ω + 1 = 1 ⊕ lim
n

xn.

(e) α1 + · · ·αn is some sum of some powers of ω, while α1⊕· · ·⊕αn is the
sum of the same powers of ω but in nonincreasing order. As ωγ + ωδ = ωδ for
γ < δ, it easily follows that α1+· · ·+αn can only be smaller than α1⊕· · ·⊕αn

if they differ.
Equality holds if and only if for all 1 ≤ i < n the smallest exponent in the

normal form of αi is at least as large as the largest exponent in the normal
form of αi+1.

(f) Assume that
α = ωδn · an + · · · + ωδ0 · a0

is the largest of α1, . . . , αn. Using (a) and (b) we get

α1 ⊕ · · · ⊕ αn ≤ α1 ⊕ · · · ⊕ α1 = ωδn · (ann) + · · · + ωδ0(a0n).

The last ordinal is at most

ωδn ·(an(n+1))+ωδn−1 ·an−1+ · · ·+ωδ0(a0) = (ωδn ·an+ · · ·+ωδ0 ·a0) ·(n+1).

[G. Hessenberg, Grundbegriffe der Mengenlehre, Abh. der Friesschen Schule,
N. S. 1(1906), 220]

92. To get α1 ⊕ · · · ⊕ αn we split every αi into the ordered union of subsets
of order type of the form ωγ and then consider the nonincreasing sum of all
these components. This shows that α1 ⊕· · ·⊕αn does occur as the order type
of some set described in the problem.

For the other direction suppose to the contrary that α = α1 ⊕ · · · ⊕ αn,
and the order type of some S = A1 ∪ · · · ∪An is bigger than α (where Ai is of
order type αi), and assume that α is minimal with this property. Let x ∈ S
be the element such that the initial segment T of S determined by x has order
type α. We have T = B1 ∪ · · · ∪ Bn with Bi = Ai ∩ T . If βi is the order type
of Bi, then βi ≤ αi for every i, and βi < αi for at least one i (namely for the
one with x ∈ Ai). But then this decomposition witnesses a decomposition of a
set of order type α into parts of order types β1, . . . , βn, and here, by Problem
91(a),(b) we have β := β1 ⊕ · · · ⊕ βn < α1 ⊕ · · · ⊕ αn = α. However, this
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contradicts the minimality of α, and this contradiction proves the claim. [P.
W. Carruth: Arithmetic of ordinals with applications to the theory of ordered
Abelian groups, Bull. Amer. Math. Soc., 48(1942), 262–271]

93. Monotonicity gives by transfinite induction on ξ the inequality F(α, β +
ξ) ≥ F(α, β) + ξ for any α, β, ξ, and hence commutativity shows that F(α +
ξ, β) ≥ F(α, β) + ξ is also true. If

α = ωδn · an + · · · + ωδ0 · a0, β = ωδn · bn + · · · + ωδ0 · b0,

we prove F(α, β) ≥ α ⊕ β by induction on n. For n = 0 we can write

F(ωδ · a, ωδ · b) ≥ F(ωδ · a, 0) + ωδ · b ≥ F(0, 0) + ωδ · b + ωδ · a
≥ ωδ · (a + b) = ωδ · a ⊕ ωδ · b.

If we have the statement for n terms, then set

α = ωδn · an + · · · + ωδ1 · a1, β = ωδn · bn + · · · + ωδ1 · b1.

Now using the induction hypothesis for α and β, we can write

F(α, β) ≥ F(α, β) + ωδ0 · b0 ≥ F(α, β) + ωδ0 · (a0 + b0)
≥ (α ⊕ β) + ωδ0 · (a0 + b0) = α ⊕ β.

94. (a) In each step exchange in the actual “superbase” form of ni written in
base bi the base bi by ω. This gives an ordinal ζi. For example, if n1 = 23 =
222

+22+2+1 then ζ1 = ωωω

+ωω+ω+1. If n2i−1 > 0, then clearly ζ2i = ζ2i−1,
and it is easy to see that because n2i+1 = n2i − 1, we have ζ2i+1 < ζ2i (see
Problem 8.8(e)). Thus, {ζ2i}i is a decreasing sequence of ordinals, so it cannot
be infinite, i.e., there must be an i with ni = 0.

The proof of part (b) is identical. [Goodstein, R. L., J. Symbolic Logic 9,
(1944). 33–41]



10

Cardinals

1. If only finitely many ai’s are different from 1, then the product is equal to
their product. If, however, there are infinitely many ai’s with a2 ≥ 2, then the
product is at least 2ℵ0 = c. On the other hand, it is clearly not bigger than

cℵ0 = (2ℵ0)ℵ0 = 2ℵ2
0 = 2ℵ0 = c,

and we find that then the product in question is c.

2. Since κ ≤ κ · κ is clear, it is enough to show that for all infinite cardinal
κ we have κ · κ ≤ κ. This is true for κ = ℵ0, and from here we shall prove
the claim by transfinite induction. Thus, suppose that we already know for all
infinite cardinals σ < κ that σ2 = σ. It is enough to give a well-ordering ≺ on
κ × κ such that every proper initial segment has order type smaller than κ.
In fact, then the order type of 〈κ×κ,≺〉 is at most κ, and so κ×κ is similar,
and hence equivalent to a subset of κ.

Let ≺ be defined as follows: (τ1, η1) ≺ (τ2, η2) if and only if with ζ1 =
max{τ1, η1}, ζ2 = max{τ2, η2} we have ζ1 < ζ2 or ζ1 = ζ2 and η1 < η2, or
ζ1 = ζ2 and η1 = η2 and τ1 < τ2. For ξ < κ let Aξ = {(τ, η) : max{τ, η} = ξ}.
On Aξ the ordering given by ≺ is the following:

(ξ, 0) ≺ (ξ, 1) ≺ · · · ≺ (0, ξ) ≺ (1, ξ) ≺ · · · ≺ (ξ, ξ),

and this is well ordered and of order type ξ+ξ+1. It is clear that 〈κ×κ,≺〉 is
the ordered union of the sets 〈Aξ,≺〉, ξ < κ, and hence it is well ordered. Any
proper initial segment is included in a union ∪ξ<αAξ for some ω ≤ α < κ,
and hence it is of cardinality at most∑

ξ≤α

(|ξ| + |ξ| + 1) ≤
∑
ξ≤α

(|α| + |α| + 1) = (|α| + |α| + 1)|α| ≤ (3|α|)|α|

= 3|α|2 = 3|α| ≤ |α|2 = |α| < κ,
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where we have also used that |α| ≤ α < κ, and hence by the induction
hypothesis we have |α|2 = |α|.

This verifies the induction step, and together with it the claim, as well.

3. Let, e.g., κ ≥ λ. Then using the fundamental theorem of cardinal arithmetic,
we can write

κ ≤ κ + λ ≤ 2κ ≤ 2κλ ≤ 2κ2 = 2κ ≤ κ2 = κ.

4. a) The set of sequences of elements of X of length k = 1, 2, . . . is of car-
dinality |X|k = κk = κ, and so the set of finite sequences is of cardinality
ω · κ = κ.

b) The set of those functions that map a given finite subset S of X into
X is of cardinality |X||S| = |X| = κ, and since by part a) there are κ possible
choices for S, the cardinality in question is κκ = κ.

5. Let X = A ∪ B be a decomposition of X into two disjoint subsets of
cardinality κ, and further let us decompose both A and B into κ disjoint
subsets of cardinality κ: A = ∪ξ<κAξ, B = ∪ξ<κBξ. If f : κ → A and g :
B → κ are 1-to-1 mappings, then the decompositions X = ∪ξ<κ(Bξ ∪{f(ξ)})
and X = ∪ξ<κ(Aξ ∪ {g(ξ)}) show that both A and B are “small”. (cf. [W.
Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965,
IV.8. Exercise])

6. An ordinal α is a cardinal if and only if no ξ < α is equivalent to α. Now
if A is any set of cardinals and α is its supremum, then for ξ < α there is a
β ∈ A such that ξ < β. Therefore, the cardinality of ξ is smaller than that of
β, and hence it is smaller than that of α.

7. The statement is clear for finite ρ1 and ρ2, so suppose that ρ1 ≤ ρ2 and ρ2
is infinite. We can also suppose that each λξ is at least 1.

Let I ⊂ α be the set of those ξ for which λξ is infinite. If ρ2 =
∑

ξ∈I λξ,
then using the fact that λξ = λξ+λξ, we get ρ2 =

∑
ξ<α λξ, and ρ1 ≤

∑
ξ∈I λξ.

This last inequality means that there is a set A of cardinality ρ1 which is a
subset of a union ∪ξ<αBξ where the Bξ’s are disjoint and the cardinality
of Bξ is λξ. But then by looking at the sets A ∩ Bξ it is immediate that
ρ1 =

∑
ξ∈I λ′

ξ with some λ′
ξ ≤ λξ. Thus, in this way we can set λ

(2)
ξ = λξ for

all ξ and λ
(1)
ξ = λ′

ξ if ξ ∈ I and λ
(1)
ξ = 0 if ξ 
∈ I.

If, however, ρ2 >
∑

ξ∈I λξ (the third possibility
∑

ξ∈I λξ > ρ2 is not
possible, for it would imply ρ1 + ρ2 = ρ2 <

∑
ξ∈I λξ), then ρ2 =

∑
ξ �∈I λξ =∑

ξ �∈I 1 = |α \ I|. Now select an I1 ⊂ α \ I of cardinality ρ1 such that the set

(α \ I) \ I1 is still of cardinality ρ2. If we set λ
(2)
ξ = λξ, λ

(1)
ξ = 0 for all ξ 
∈ I1

and λ
(2)
ξ = λξ − 1, λ

(1)
ξ = 1 for ξ ∈ I1, then these cardinals are appropriate.
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8. Let 〈A,≺〉 be an ordered set with cofinality α and let B ⊂ A be a cofinal
subset of order type α. It is clear that if C ⊂ B is cofinal with B, then it is
cofinal with A, hence the order type of C is not smaller than α. This gives
cf (α) ≥ α, and since α ≥ cf (α) is always true, we get cf (α) = α. Since
cf (α) ≤ |α| ≤ α always holds, it follows that cf (α) = |α| = α, i.e., α is a
regular cardinal.

9. Let α = cf (κ), and let γ be the smallest ordinal α for which there is a
transfinite sequence {κξ}ξ<γ of cardinals smaller than κ with the property
κ =

∑
ξ<γ κξ.

Choose in κ a sequence {βξ}ξ<α that is cofinal with κ. Then κ = ∪ξ<αβξ,
and so κ ≤

∑
ξ<α |βξ|, and all cardinals |βξ| are smaller than κ. This shows

that γ ≤ α. Thus, if γ = κ, then κ = γ ≤ α ≤ κ, and so we must have equality.
If, however, γ < κ, then the sequence {κξ}ξ<γ for which

∑
ξ<γ κξ = κ,

κξ < κ, is cofinal with κ. In fact, in the opposite case there was an ordinal
ζ < γ such that κξ < ζ for all ξ < γ. But then

∑
ξ<γ κξ ≤

∑
ξ<γ |ζ| = |γ||ζ| =

max{|γ|, |ζ|} < κ, which contradicts the choice of γ and of the cardinals κξ.
Thus, {κξ}ξ<γ is cofinal with κ, and so α ≤ γ.

All these prove that, indeed, α = γ.

10. See the preceding problem, and note that if κ = λ+, then λλ < κ.

11. If κ = λ+, then the sum of fewer than κ (i.e., at most λ) cardinals all of
which are smaller than κ (i.e., at most λ) is at most λλ = λ.

12. ω = ℵ0 is regular, and so are each ℵn, n = 1, 2, . . ., since they are successor
cardinals. But ℵω is not regular, since its cofinality is ω, hence this is the
smallest infinite singular cardinal. In a similar fashion, the next two ones are
ℵω+ω and ℵω+ω+ω.

13. If α = β+1 is a successor ordinal, then ℵα = (ℵβ)+ is a successor cardinal,
and so by Problem 11 it is regular, hence cf(ℵα) = ℵα. If α is a limit ordinal,
then {ℵβ}β<α is a cofinal sequence in ℵα, hence it has the same cofinality as
ℵα (see the proof of Problem 8), and this gives cf (ℵα) = cf (α).

14. First we prove the necessity of the condition, i.e., assume that the cardi-
nality of H is at most ℵn. Without loss of generality, we may assume H = ℵn.
The n = 0 case was the content of Problem 2.25, and from here we proceed
by induction. Thus, suppose that if the cardinality of a set K is at most
ℵn−1, then Kn+1 can be represented in the form A1 ∪ · · · ∪An+1, where Ak is
finite in the direction of the kth coordinate. Consider Hn+2. It can be writ-
ten as the union of the sets Sj and Ri,j , i, j = 1, . . . n + 2, where Sj is the
set of those (n + 2)-tuples (ξ1, . . . ξn+2), ξi < ℵn for which all ξi, i 
= j are
smaller than ξj , and Ri,j is the set of those (n + 2)-tuples in which ξj = ξi

and all other ξk ≤ ξi. It is enough to represent each Sj and each Ri,j in the
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form A1 ∪ · · · ∪ An+2, where Ak is finite in the direction of the kth coor-
dinate. For Ri,j this follows from the induction hypothesis, for Ri,j can be
identified with a subset of Hn+1, since the ith and jth coordinates are the
same. The set Sj is the disjoint union of the sets Sj,ξ, ξ < ℵn, where Sj,ξ

is the set of those (n + 2)-tuples in Sj for which ξj = ξ (and recall that
this was the largest component). Since the jth component is fixed in the el-
ements of Sj,ξ, each Sj,ξ can be identified with a subset of Hn+1, and so
by the induction hypotheses Sj,ξ = ∪1≤k≤n+2, k �=jAk,ξ, where Ak,ξ is finite
in the direction of the kth coordinate. Now set Ak = ∪ξ<ℵnAk,ξ (for k = j
this gives Aj = ∅). It is clear that Sj = ∪n+2

k=1Ak. Now Aj is actually the
empty set, and if k 
= j and ξ1, . . . , ξk−1, ξk+1, . . . ξn+2 < ℵn are fixed, then
(ξ1, . . . , ξk−1, ξ, ξk+1, . . . ξn+2) ∈ Ak exactly when this (n + 2)-tuple belongs
to Ak,ξj

. Hence by the selection of the sets Ak,ξj
, there are only finitely many

such ξ’s. This proves the induction step, and the necessity is proved.
The sufficiency is also proved by induction. The n = 0 case was done in

Problem 2.25. Now we verify the induction step, so suppose the sufficiency
has already been verified for (n − 1) instead of n. Let Hn+2 be represented
in the form A1 ∪ · · · ∪ An+2, where Ak is finite in the direction of the kth
coordinate, and suppose to the contrary that H has cardinality at least ℵn+1.

Select a subset K of H of cardinality ℵn. Then
(
H × (

n+1︷ ︸︸ ︷
K × · · · × K)

)
∩ A1

is of cardinality at most ℵn, since for each x1, . . . , xn+1 ∈ K the number of
y’s with (y, x1, . . . xn+1) ∈ A1 is finite. Thus, there is a y0 ∈ H for which
there are no x1, . . . xn+1 ∈ K such that (y0, x1, . . . xn+1) ∈ A1. But then
{y} × Kn+1 = ∪n+2

k=2Ak, and here each Ak is finite in the direction of the kth
coordinate. Thus, by the induction hypothesis, K must be of cardinality at
most ℵn−1, and this contradiction proves the claim.

15. This problem can be solved along the same lines as the previous one. Since
the induction steps are the same, we only have to verify the n = 0 case, from
where the induction starts, but actually that was the content of Problem 2.40.

16. Since 2κ is the cardinality of the set of subsets of κ (see Problem 3.10, c)),
the statement is equivalent to what was proved in Problem 3.13.

17. Let Ai be disjoint sets of cardinality ρi and Bi be sets of cardinality κi.
We have to show that if F : ∪i∈IAi →

∏
i∈I Bi is any mapping, then F is

not onto. For each i ∈ I the set {F (a)(i) : a ∈ Ai} is of cardinality at
most ρi; thus, there is a point ai ∈ Bi \ {F (a)(i) : a ∈ Ai}. Now for the
choice function f(i) = ai belonging to

∏
i∈I Bi there is no b ∈ ∪i∈IAi such

that F (b) = f . In fact, if b ∈ ∪i∈IAi, then b ∈ Ai0 for some i0 ∈ I, and then
f(i0) = ai0 
= F (b)(i0) by the choice of ai0 . This proves the claim.

18. Clearly θ is a limit ordinal. We may assume that {κξ}ξ<θ, is an increasing
sequence. Then κξ < κξ+1, and so by the preceding problem κ = supξ<ρ κξ ≤∑

ξ<θ κξ <
∏

ξ<θ κξ+1 =
∏

ξ<θ κξ.
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19. If κ is regular, then∏
ξ<κ

κξ ≤ κκ ≤ (2κ)κ = 2κ2
= 2κ ≤

∏
ξ<κ

κξ.

Let us now assume κ to be singular. Then the supremum of the cardinals
κξ must be κ, therefore we may assume that {κξ}ξ<κ is an increasing transfi-
nite sequence. Using the fundamental theorem of cardinal arithmetic we can
write cf (κ) = ∪α<cf (κ)Iα, where the Iα’s are disjoint and each of them is of
cardinality cf (κ). Thus,

κcf (κ) =
∏

α<cf (κ)

κ =
∏

α<cf (κ)

(
sup
ξ∈Iα

κξ

)
≤

∏
α<cf (κ)

⎛
⎝∏

ξ∈Iα

κξ

⎞
⎠

=
∏
ξ<κ

κξ ≤
∏
ξ<κ

κ = κcf (κ).

20. If κ is regular, then κcf (κ) = κκ ≥ 2κ > κ (see Problem 16). If, however,
κ > ω is singular, then κ is the supremum of all the infinite cardinals smaller
than κ, hence by Problems 18 and 19 we have κcf (κ) > κ.

21. If we had cf(λκ) ≤ κ, then we would have (λκ)cf (λκ) ≤ (λκ)κ = λκ2
= λκ,

and this would contradict the preceding problem.

22. κλ is the cardinality of λκ; the set of functions f : λ → κ. But since
λ < cf (κ), the range of such a function cannot be cofinal with κ, so such an
f actually maps λ into some ordinal ξ < κ. Thus,

κλ =
∣∣λκ

∣∣ =
∣∣∪ξ<κ

λξ
∣∣ ≤ ∑

ρ<κ

∑
|ξ|=ρ

∣∣λξ
∣∣

=
∑
ρ<κ

∑
|ξ|=ρ

ρλ ≤
(∑

ρ<κ

ρλ

)
κ ≤

(∑
ρ<κ

κλ

)
κ ≤ κλκκ = κλ.

23. It easily follows that cf (κ) = cf (α); therefore, we can apply the preceding
problem. Now ∑

ξ<α

κλ
ξ ≤

∑
ρ<κ

ρλ ≤ κ
∑
ξ<α

κλ
ξ =

∑
ξ<α

κλ
ξ ,

hence by the formula in Problem 22

κλ = κ
∑
ξ<α

κλ
ξ =

∑
ξ<α

κλ
ξ .
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24. Clearly, 2λ ≥ κ (by monotonicity of exponentation). As λ is singular, it can
be written as λ =

∑
{λα : α < cf(λ)} with λα < λ. Then 2λ =

∏
α<cf(λ) 2λα ≤

κcf(λ) = κ since the assumption gives that κτ = κ for every τ < λ: if µ < τ < λ
then κτ = (2τ )τ = 2τ = κ.

25. Assume that γ ≥ ω. Let δ be the minimal ordinal such that δ + γ > γ.
Clearly, ω ≤ δ ≤ γ and δ is a limit ordinal. Pick a cardinal ℵα > δ and let λ =
ℵα+δ, a singular cardinal (note that cf (ℵα+δ) = cf (δ) ≤ |δ| < ℵα < ℵα+δ).
Then for any τ < δ

2ℵα+τ = ℵα+τ+γ = ℵα+γ .

As λ = ℵα+δ is singular, we get from Problem 24 that 2λ = ℵα+γ , and at the
same time

2λ = ℵα+δ+γ > ℵα+γ ,

because δ + γ > γ, hence α + δ + γ > α + γ. This contradiction shows that δ
has to be finite.

26. (a) We show how to calculate, by transfinite recursion, 2κ. If κ is regular,
then 2κ = κκ = κcf(κ). Assume that κ is a singular cardinal and we know
2τ for τ < κ. Set κ =

∑
ξ<cf(κ) κξ with κξ < κ. If the sequence {2κξ} is

eventually constant then this eventual constant value will be 2κ by Problem
24. Otherwise, if λ =

∑
ξ<cf(κ) 2κξ , then λ is a singular cardinal with cofinality

cf(κ) and

2κ =
∏

ξ<cf(κ)

2κξ ≤ λcf(λ) ≤ (2κ)cf(λ) ≤ (2κ)κ = 2κκ = 2κ

so 2κ = λcf(λ).
(b) We determine κλ by transfinite recursion on κ, and inside that, by trans-
finite recursion on λ. κn = κ for 1 ≤ n < ℵ0. If λ < cf(κ), we use Problem 22.
If λ = cf(κ), then κcf(κ) is given. If λ ≥ κ, then κλ = 2λ an already calculated
value (see part (a)). If cf(κ) < λ < κ, then κ is singular. In this case if there
is some τ < κ with τλ > κ, then κλ = τλ. If, on the other hand, τλ < κ holds
for every τ < κ then let {κξ : ξ < cf(κ)} be cofinal in κ, and then

κλ ≤

⎛
⎝ ∏

ξ<cf(κ)

κξ

⎞
⎠λ

=
∏

ξ<cf(κ)

κλ
ξ ≤

∏
ξ<cf(κ)

κ = κcf(κ) ≤ κλ.

27. (a) For n = 0 the statement is clear, and we use induction on n. Thus,
suppose that (a) has been proven for some n. If λ ≥ ℵα+n+1, then

2λ ≤ ℵλ
α+n+1 ≤

(
2ℵα+n+1

)λ
= 2λℵα+n+1 = 2λ,
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and a similar computation show that the right-hand side in (a) is also 2λ.
Thus, in this case the claim is true.

If, however, λ < ℵα+n+1, then λ is smaller than the cofinality of ℵα+n+1
(see Problem 13), and so we obtain from Problem 22 and the induction hy-
pothesis that

ℵλ
α+n+1 =

⎛
⎝ ∑

ρ≤ℵα+n

ρλ

⎞
⎠ℵα+n+1 ≤ ℵλ

α+nℵα+nℵα+n+1

= ℵλ
αℵ2

α+nℵα+n+1 = ℵλ
αℵα+n+1.

(b) If λ is finite, then (b) is clear. On the other hand, for infinite λ it follows
from the α = 0 special case of part (a), since then, as we have seen in the
solution of part (a) above, ℵλ

0 = 2λ. [F. Hausdorff, Jahresb. deutschen Math.
Ver., 13(1940), 569–571, F. Bernstein, Math. Annalen, 61(1905), 117–155]

28. If
∏

n<ω ℵn = 2ℵ0 , then 2ℵ0 must be larger than every ℵn, i.e., 2ℵ0 ≥ ℵω.
But by Problem 21 we must have cf(2ℵ0) > ω0 = cf(ℵω), hence 2ℵ0 > ℵω. On
the other hand, if 2ℵ0 > ℵω holds, then 2ℵ0 ≤

∏
n ℵn ≤

(
2ℵ0

)ℵ0 = 2ℵ0 . Thus,
we have

∏
n<ω ℵn = 2ℵ0 if and only if c > ℵω.

29. Monotonicity gives
∏

n ℵn ≤ ℵℵ0
ω . For the other inequality notice that

ℵℵ0
ω = (

∑
n<ω ℵn)ℵ0 , when multiplied out, is the sum of c many terms, each

the product of infinitely many of the ℵn’s. We have, therefore,

ℵℵ0
ω ≤ 2ℵ0

∏
n<ω

ℵn.

As the first term of the right-hand side is clearly less than or equal to the
second, we have the desired inequality ℵℵ0

ω ≤
∏

n ℵn.

30. If 2ℵk = ℵn(k) then 2ℵω =
∏

k<ω 2ℵk =
∏

k<ω ℵn(k), and this is equal to∏
k<ω ℵk as it is the product of infinitely many ℵk’s (we can cut out repeti-

tions). Now apply Problem 29.

31. Clearly, for all cardinal κ of the form λρ we have κρ = (λρ)ρ = λρ2
= λρ =

λ. On the other hand, if ρ ≥ cf (κ), then by Problem 20 we have κρ > κ.

32. Let κ be an arbitrary cardinal. We find some λ > κ with λℵ0 < λℵ1 . For
α ≤ ω1 construct the following sequence: λ0 = κ, λα+1 = 2λα , and if α is a
limit ordinal, then let λα = sup{λβ : β < α}. If λ = λω1 then µℵ0 < λ holds
for µ < λ, therefore λℵ0 = λ by Problem 22. On the other hand, cf(λ) = ℵ1,
so λℵ1 = λcf(λ) > λ by Problem 20.

33. Assume that κ is the least counterexample to the statement: there are
τ0 < τ1 < · · · that 2τn < κ and κτ0 < κτ1 < · · ·. Assume first that for some n
we have ρτn < κ for every ρ < κ. If τn < cf(κ), then
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κτn =
(∑
ρ<κ

ρτn
)
κ = κ

by Problem 22. If, however, τn ≥ cf(κ), then κ is singular, κ =
∑

ξ<cf (κ) κξ,
κξ < κ, and then by Problem 19

κcf(κ) ≤ κτn = κτncf(κ) =
∏

κτn

ξ ≤ κcf(κ).

Taking into account that {κτn}n<ω is an increasing sequence, it follows that
for all but 2 of the τn’s there is some ρ < κ that ρτn ≥ κ, so for n ≥ N we have
a minimal ρn with ρτn

n ≥ κ. As ρN ≥ ρN+1 ≥ · · ·, this sequence is constant
from some point, so there is some ρ < κ such that ρτn ≥ κ for n ≥ M . Now
2τn ≥ ρ is impossible, for then we would have 2τn = 2τnτn ≥ ρτn ≥ κ. Hence
2τn < ρ and clearly ρτn = κτn also hold, so ρ is a smaller counterexample, a
contradiction. [A. Hajnal]

34. By Problems 2 and 20 we have ℵ0 ≤ ρ ≤ cf (κ). If ρ was singular, then we
could write ρ =

∑
ξ<λ ρξ, where λ := cf (ρ) < ρ and each ρξ is smaller than

ρ. Thus, by the definition of ρ we would have

κρ =
∏
ξ<λ

κρξ =
∏
ξ<λ

κ = κλ = κ,

which contradicts the definition of ρ. Thus, ρ must be regular.
Clearly, ρω = ρωω

= ℵ0 because the cofinality of these cardinals is ω.

35. Assume that κ is singular with cofinality µ. Then κ =
∑

ξ<µ κξ for some
infinite cardinals κξ < κ. By assumption, 2κξ = c for every ξ < µ, and 2µ = c.
This gives 2κ =

∏
ξ<µ 2κξ =

∏
ξ<µ c = cµ = (2µ)µ = 2µ = c, a contradiction.

36. Clearly, ℵκ = supn ℵκn = supn ℵn+1 = κ. On the other hand, if λ = ℵλ,
then λ ≥ ω = κ0, and by induction λ = ℵλ ≥ ℵκn = κn+1, i.e., λ ≥ supn κn.
Thus, this supremum is indeed the smallest cardinal with the stated property.

37. Given any cardinal λ construct as in the preceding problem κ0 = λ,
κn+1 = ℵκn and κ = supn κn. Then exactly as there, κ = ℵκ, so for any
cardinal λ there is a “large” cardinal κ ≥ λ. Now if we enumerate the large
cardinals as λ0 < λ1 < · · · < λα < · · ·, and starting with κ = λ0 we define
κn+1 = λκn

, then λ = supn κn will be a cardinal with index ≥ supn κn = λ,
so it is a “large” cardinal, and there are supn κn = λ “large” cardinals that
are smaller than λ.

38. Assume GCH. If 2 ≤ κ ≤ ℵ1 then κℵ0 = ℵ1, κℵ1 = ℵ2, κℵ2 = ℵ3. If,
however, κ ≥ ℵ2, then κ ≤ κℵ0 ≤ κℵ1 ≤ κℵ2 ≤ κκ ≤ (2κ)κ = 2κ = κ+, so each
one of the values of κℵ0 , κℵ1 , κℵ2 is either κ or κ+; therefore, there cannot be
three different values of them. Thus, the answer is 2 ≤ κ ≤ ℵ1.
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39. Assume first that α is a limit ordinal. Then, as

ℵα =
∑
β<α

ℵβ <
∏
β<α

ℵβ

(see Problem 17), we find that the product is at least ℵα+1. On the other
hand, it is at most ℵℵα

α+1 =
(
2ℵα

)ℵα = 2ℵα = ℵα+1 by GCH; therefore, in this
case

∏
β<α ℵβ = ℵα+1.

Assume next that α = γ + 1, γ is a limit ordinal. Then, using the already
proved limit case, we get∏

β<γ+1

ℵβ =
(∏
β<γ

ℵβ

)
· ℵγ = ℵγ+1ℵγ = ℵγ+1 = ℵα.

Assume now that α = γ + 2, γ is arbitrary. Then the product is at least
ℵγ+1 as this is a factor. On the other hand,∏

β<γ+2

ℵβ ≤ ℵ|γ+2|
γ+1 ≤ ℵℵγ

γ+1 =
(
2ℵγ

)ℵγ = 2ℵγ = ℵγ+1.

The uncovered cases are α = 0, 1 when the result is immediate.

40. Assume κ is infinite. If λ = 0, then κλ = 1.
If 1 ≤ λ < cf(κ), then κλ = κ as (see Problem 22)

κλ = κ
(∑
τ<κ

τλ
)
≤ κ

(∑
τ<κ

2max(τ,λ)) = κ
(∑
τ<κ

max(τ+, λ+)
)
≤ κ2 = κ

(the inequality κλ ≥ κ is trivial).
If cf(κ) ≤ λ ≤ κ, then κλ = κ+ as (see Problem 20)

κ < κcf(κ) ≤ κλ ≤ κκ ≤ (2κ)κ = 2κ = κ+.

If κ < λ, then κλ = λ+ as

λ+ = 2λ ≤ κλ ≤ λλ ≤ (2λ)λ = 2λλ = 2λ = λ+.



11

Partially ordered sets

1. Suppose that 〈A,≺〉 is partially ordered and it does not include an infinite
antichain. For a ∈ A let BA

a = {x ∈ A : a ≺ x} and SA
a = {x ∈ A : x ≺ a}

be the set of elements that are bigger or smaller than a, respectively. Let C0
be a maximal antichain (see Zorn’s lemma in Chapter 14). Then every element
of A \ C0 is either bigger or smaller than an element of C0; thus, there is an
element x0 ∈ C0 such that either BA

x0
or SA

x0
is infinite. In the former case set

A0 = BA
x0

, in the latter case set A0 = SA
x0

. Now repeat this process with A0
to get an element x1 ∈ A0 and an infinite set A1 ⊂ A0 such that A1 = BA0

x1

or A1 = SA0
x1

. Repeat again the same thing with A1 instead of A0, etc. It is
clear that the process never terminates, and we get a set {x0, x1, . . .} that
is ordered. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ.,
Warszawa, 1965, XI.2/2]

For an alternative proof, see Problem 24.3.

2. The statement immediately follows from the next problem.

3. Let 〈A,≺〉 be the partially ordered set in question. For a ∈ A let ρ(a) be
the length of the longest increasing chain having a as its smallest element.
By the assumption 1 ≤ ρ(a) ≤ k for all a ∈ A, and the statement follows if
we show that the elements that have the same ρ value are incomparable. But
that is clear: if a ≺ b, then the definition of ρ shows that ρ(a) ≥ ρ(b) + 1.

4. First we prove the claim for finite sets.
Let 〈A,≺〉 be a partially ordered set of n elements with at most k pairwise

incomparable elements. The statement is clear if n = 1, and from here the
proof goes on by induction of n. Thus, suppose we know the statement for all
sets with at most n − 1 elements, and let C be a maximal chain in 〈A,≺〉. If
A\C has at most k−1 pairwise incomparable elements, then by the induction
hypothesis A \ C = ∪k−1

j=1Cj with some chains Cj , and we are done. In the
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opposite case let X = {x1, . . . , xk} be a maximal antichain of k elements in
A \ C, and set

A1 = {x ∈ A : x  xj for some j}, A2 = {x ∈ A : xj  x for some j}.

By the maximality of X we have A = A1 ∪ A2, and by the maximality of C
the largest element of C is not in A1, and the smallest element of C is not in
A2. Thus, |A1|, |A2| < n, and we can use the induction hypothesis to write
A1 = ∪k

j=1B
(1)
j and A2 = ∪k

j=1B
(2)
j with some chains B

(1)
j and B

(2)
j . Note that

each xl belongs to exactly one of the B
(1)
j ’s and to exactly one of the B

(2)
j ’s,

so we may assume that xj ∈ B
(1)
j and xj ∈ B

(2)
j . But then Cj = B

(1)
j ∪ B

(2)
j

is a chain, and since A = ∪k
j=1Cj , the induction step is complete.

Now we turn to the general case where we allow 〈A,≺〉 to be infinite. We
use induction on k, the case k = 1 being trivial. Thus, suppose that the claim
has already been verified for k − 1, and we are going to prove it for k. Let
M be the set of all subsets H of A for which it is true that if S ⊂ A is any
finite subset, then there is a decomposition of S into k chains such that H ∩S
is included in one of them. By the finite case of the problem that we have
already verified above, each one element subset is in M, and clearly every
element of M is a chain. It is easy to see that the union of any subset of M
that is ordered by inclusion is again in M, hence by Zorn’s lemma (Chapter
14) there is a maximal (with respect to inclusion) set H∗ in M. We claim
that every antichain in A \ H∗ has at most k − 1 elements. Since then the
induction hypothesis says that then A \ H∗ can be represented as the union
of at most k − 1 chains, and these chains with H∗ form a family of at most k
chains that cover A, the proof will be over.

Let us suppose to the contrary that A \ H∗ has a k-element antichain
K = {a1, . . . , ak}. By the maximality of H∗, for each aj ∈ K there is a finite
subset Sj of A such that Sj does not have a representation as the union of
k chains such that one of them includes Sj ∩ (H∗ ∪ {aj}. Since on the other
hand, H∗ does have this property, it follows that necessarily we have aj ∈ Sj .
Apply again the same property of H∗ for the finite set S = S1 ∪ · · · ∪ Sk,
to conclude that there is a representation S = C1 ∪ · · · ∪ Ck of S as a union
of k chains such that for some j0 we have H∗ ∩ S ⊆ Cj0 . Note that each
Cj contains exactly one of the points a1, a2, . . . , ak (the Cj ’s are chains and
C1, . . . , Ck cover S), and we may number them in such a way that aj ∈ Cj

for all j = 1, 2, . . . , k.
But then

Sj0 = (C1 ∩ Sj0) ∪ · · · ∪ (Ck ∩ Sj0)

is a representation of Sj0 into the union of k chains such that H∗ ∩ Sj0 ⊆
Cj0 ∩ Sj0 , which implies

(H∗ ∪ {aj0}) ∩ Sj0 ⊆ Cj0 ∩ Sj0 ,
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which is not possible in view of the definition of aj0 . This contradiction proves
that there are at most k−1 pairwise incomparable elements in A\H∗, as was
claimed.

The reduction of the general case to the finite one can be also done via
the de Bruijn–Erdős theorem (Problem 23.8). In fact, consider the graph with
vertex set A where two points are connected if they are incomparable. In a
coloring a set of points with the same color forms a chain, hence a subgraph
is colorable with k colors if and only if it is the union of k chains. Now the
de Bruijn–Erdős theorem asserts that if every subset of A is the union of k
chains then so is the set itself. [R. P. Dilworth, A decomposition theorem for
partially ordered sets, Ann. Math. 51(1950), 161–165]

5. The counterexample will be built on the Cartesian product ω1 × ω1. We
make (α, β) ≺ (α′, β′) if and only if α < α′ and β > β′. In a supposed in-
finite decreasing/increasing sequence the first/second coordinates would give
an infinite decreasing sequence of ordinals, which is impossible. For a contra-
diction assume that ω1 × ω1 = A0 ∪ A1 ∪ A2 ∪ · · · is a decomposition into
countable many antichains. For every α < ω1 there is some natural number
i(α) such that for uncountably many β we have 〈α, β〉 ∈ Ai(α). By the pi-
geon hole principle there are ordinals α < α′ and some number i such that
i = i(α) = i(α′) holds. Pick an 〈α′, β′〉 ∈ Ai. As there are arbitrarily large β
with 〈α, β〉 ∈ Ai we can select with β > β′ and then we get 〈α, β〉, 〈α′, β′〉 ∈ Ai

that is 〈α, β〉 < 〈α′, β′〉, a contradiction.

6. Consider the partially ordered set 〈ω1×ω1,≺〉 from Problem 5. Set (α, β) �
(α′, β′) if and only if α ≤ α′ and β ≤ β′ with equality at most in one place.
This is a partially ordered set, and two different pairs (α, β) and (α′, β′)
are comparable with respect to � if and only if they are incomparable with
respect to ≺. Thus, the chains of 〈ω1 × ω1,�〉 are precisely the antichains of
〈ω1 × ω1,≺〉, and the antichains of 〈ω1 × ω1,�〉 are precisely the chains of
〈ω1 × ω1,≺〉. Now the statement follows from Problem 5.

7. Suppose that in the partially ordered set 〈A,≺〉 all antichains are countable,
but the set is not countable. We are going to show that 〈A,≺〉 includes an
infinite chain. We use the notation of the solution to Problem 1, and follow
the argument given there. Let C0 be a maximal antichain (see Zorn’s lemma
in Chapter 14). Then every element of A \C0 is either bigger or smaller than
an element of C0, thus there is an element x0 ∈ C0 such that either BA

x0
is

uncountable, or SA
x0

is uncountable. In the first case set A0 = BA
x0

and in the
second case set A0 = SA

x0
. Now repeat this process with A0 to get an element

x1 ∈ A0 and an uncountable set A1 ⊂ A0 such that A1 = BA0
x1

or A1 = SA0
x1

.
Repeat again the same thing with A1 instead of A0, etc. It is clear that the
process never terminates, and we get an infinite set {x0, x1, . . .} ⊂ A, which
is ordered.
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8. The proof is similar to what we have done in the preceding problem. Suppose
that in the partially ordered set 〈A,≺〉 all chains are countable, but the set is
not countable. We are going to show that 〈A,≺〉 includes an infinite antichain.
Let C0 be a maximal chain (see Zorn’s lemma in Chapter 14). Then every
element of A \ C0 is incomparable to an element of C0, thus there is an
element x0 ∈ C0 such that the set Bx0 of elements that are incomparable
with x0 is uncountable. Now repeat this process with B0 (select a maximal
chain, etc.) to get an element x1 ∈ B0 and an uncountable set B1 ⊂ B0 such
that all elements of B1 are incomparable to x1. Repeat the same thing with
B1 instead of B0, etc. It is clear that the process never terminates, and we
get an infinite set {x0, x1, . . .} of pairwise incomparable elements.

9. Consider R with its usual ordering < and also let ≺ be a well-ordering on
R (see Problems 14.1 and 14.3). For x, y ∈ R put x � y if x < y and x ≺ y. In
the partially ordered set 〈R,�〉 every chain is a well-ordered subset of 〈R, <〉
(since on a chain < and ≺ are the same), and every antichain is a well-ordered
subset of 〈R, <∗〉 with the reverse ordering on R. But R has only countable
well-ordered subsets (see Problem 6.37), so in 〈R,�〉 every chain and every
antichain is countable.

10. The case when κ is finite follows from Problem 2, thus we may suppose
that κ is infinite. We show that if 〈A,≺〉 is a partially ordered set of cardinality
bigger than 2κ, then it includes either a chain or an antichain of cardinality
bigger than κ. Consider the graph G with vertex set A where two points are
connected if they are comparable in 〈A,≺〉. By Problem 24.19 either G or its
complement includes a complete subgraphs of cardinality bigger than κ. But
it is clear that a complete subgraph of G is a chain, and a complete subgraph
of its complement is an antichain in 〈A,≺〉.

11. We can copy the argument that was used in the proof of Problem 9 (which
is the κ = ℵ0 case) if we can construct an ordered set of cardinality 2κ such
that all of its well-ordered subsets as well as its reversely well-ordered subsets
are of cardinality at most κ. But such a set was given in Problem 6.94.

12. Without loss of generality, κ is infinite. We will use the notation L(x) =
{y : y  x}. We call a subset A ⊆ P good if |A| ≤ κ, and L(x)∩L(y) = ∅ holds
for distinct x, y ∈ A. We construct 〈P,≺〉 as follows. P =

⋃
{Pα : α < κ+}, an

increasing, continuous union. P0 is a set of 2κ incomparable elements. Pα+1
is obtained from Pα by adding for every good A ⊆ Pα an element uα(A) with
uα(A) % x for x ∈ A, incomparable with the other elements of Pα+1 \Pα and
comparable with only those elements of Pα with which it must be, i.e., with
the elements in

⋃
{L(x) : x ∈ A}. Notice that for x, y ∈ Pα, L(x) ∩ L(y) = ∅

holds in P if and only if it holds in Pα.
We claim that 〈P,≺〉 is as required.
For the first property assume that x ≺ y. There is a unique α < κ+ such

that x ∈ Pα and y ∈ Pα+1 \ Pα. We show that [x, y] is finite by transfinite
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induction on α. Indeed, if x, y are as above, then y = u(A) for some good
A ⊆ Pα, so there is a unique z ∈ A with x ∈ L(z). Now obviously [x, y] =
[x, z]∪ {y} and [x, z] is finite by the induction hypothesis since z ∈ Pβ+1 \Pβ

for some β < α, and if x 
= z, then x ∈ Pβ .
For the other property assume on the contrary that f : P → κ is a coloring

in which every color class is an antichain. If A ⊆ P is a good set, call it ξ-good
for some ξ < κ if for every x /∈ A, if A ∪ {x} is good, then f(x) 
= ξ. Notice
that if A ⊆ B are good sets and A is ξ-good, then so is B.

We claim that there is a good set A ⊆ P such that for every ξ < κ if
there is a ξ-good B ⊇ A, then A is already ξ-good. For this, construct the
increasing, continuous union A =

⋃
{Aξ : ξ < κ} with A0 = ∅, and if Aξ is

given we let Aξ+1 ⊇ Aξ be ξ-good, if there is a ξ-good set extending Aξ, and
Aξ+1 = Aξ, otherwise. Now A clearly has the required property.

Let U ⊆ κ be the set of those ξ’s for which A is ξ-good, and let V =
κ\U = {vξ : ξ < κ}. By transfinite recursion on ξ < κ we choose xξ such that
A ∪ {xη : η ≤ ξ} is good and f(xξ) = vξ. This is possible, as A ∪ {xη : η < ξ}
is good (by induction) and by our conditions it is not vξ-good. There is some
α < κ+ such that A ∪ {xξ : ξ < κ} ⊆ Pα. Finally, set B = {xξ : ξ < κ}, a
good set, and y = uα(B). Note that y ∈ Pα+1 \Pα, hence y 
∈ A, and actually
A ∪ {y} is good, because L(y) = ∪x∈BL(x), and A ∪ B was good. The color
f(y) cannot be in U , for if u ∈ U , then, as A is u-good, f(y) 
= u. And f(y)
cannot be in V , either, for if f(y) = vξ ∈ V , then f(xξ) = vξ = f(y), and so
the comparable xξ ∈ B and y = vα(B) get the same color, a contradiction.

13. (a) The statement is obvious if c(P,≺) is a successor cardinal. Assume that
κ = c(P,≺) is a singular cardinal and there is no strong antichain with size
κ. For x ∈ P let c(x) be the supremum of the size of those strong antichains
that consist of elements that are smaller than x. First we claim that for every
x there is some y ≺ x with c(y) < κ. If this was not the case, then we
could choose below x a strong antichain of size at least cf (κ), and below its
elements larger and larger strong antichains with sizes converging to κ. Their
union would then be a strong antichain of cardinality κ (note that if x, y are
strongly incompatible the so are any x′, y′ with x′  x and y′  y), which is
not possible.

Choose a nonextendable set A of incompatible elements with c(x) < κ
(possible by Zorn’s lemma, see Chapter 14). Notice that A is a maximal strong
antichain. Indeed, if x /∈ A, then if y ≺ x is such that c(y) < κ, then y is
strongly compatible with some element z of A, but then x and z are also
strongly compatible, so we cannot add x to A. By our indirect hypothesis
|A| < κ. If κ =

∑
{c(x) : x ∈ A}, then the argument from the preceding

paragraph shows that there is a strong antichain of size κ (below the elements
of A). Therefore,

∑
{c(x) : x ∈ A} < κ, and there is a strong antichain

B with |B| >
∑

{c(x) : x ∈ A}. For every y ∈ B \ A, as A is a maximal
strong antichain, there is some x ∈ A such that for some element, denote it
by f(x, y), we have f(x, y)  x, y. For some x ∈ A there is a B′ ⊆ B such
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that x is selected for y ∈ B′ and |B′| > c(x). But this is a contradiction as
{f(x, y) : y ∈ B′} is a strong antichain (for B′ is a strong antichain) below x
of cardinality > c(x). This contradiction proves part (a).

(b) Let P consist of those regressive functions which are defined on a
finite subset of κ. Set f ≺ g if f properly extends g. Notice that f , g are
incompatible in 〈P,≺〉 exactly if they are incompatible as functions, that is,
they assume distinct values at a certain point. For every cardinal λ < κ there
is a strong antichain of cardinality λ: {fα : α < λ} where the domain of fα is
{λ} (α < λ) and fα(λ) = α.

It is left to show that there is no strong antichain of cardinality κ. Assume,
in order to get a contradiction, that {fα : α < κ} is a strong antichain.
Applying Problem 25.3 to the finite sets formed by the domains of these
functions, we get a set Z ⊆ κ of cardinality κ such that for α ∈ Z the domain
is of the form s ∪ sα where the sets {s} ∪ {sα : α ∈ Z} are disjoint. As the
functions are required to be regressive, the number of possibilities for fα s is
less than κ (namely, the product of the cardinalities of the elements of s). But
then, if α, β ∈ Z and fα s = fβ s, the functions fα, fβ are compatible, which
is a contradiction. [P. Erdős, A. Tarski]

14. By the well-ordering theorem we can enumerate A as A = {pα : α < ϕ} for
some ordinal ϕ. Put pα into B if and only if there is no β < α with pα ≺ pβ .

We show that B ⊆ A is as required. 〈B,≺〉 is well founded: if there is a
decreasing chain · · · ≺ q1 ≺ q0 in B, that is, · · · ≺ pα1 ≺ pα0 then, by the
well-ordering property of ordinals we have αn < αn+1 for some n, that is, pαn

is greater than the later pαn+1 , a contradiction.
B is cofinal: assume that p ∈ A. Choose pα ≥ p with α minimal. Then

pα ∈ B, indeed, otherwise, there is some p  pα ≺ pβ with β < α, but that
contradicts the minimal choice of α.

15. For x ∈ P set U(x) = {y : y % x}. Notice that U(x) is infinite for
every x ∈ P . Call x ∈ P good, if |U(y)| = |U(x)| holds for every y % x. By
Zorn’s lemma (see Chapter 14) we can find a set A of good elements such
that U(x) ∩ U(y) = ∅ holds and A cannot be extended with this property
preserved. We claim that B =

⋃
{U(y) : y ∈ A} is cofinal. Indeed, if x ∈ P is

arbitrary, choose y � x with |U(y)| least possible. Clearly, y is good. As A is
nonextendable, there is some z ∈ A with U(z)∩U(y) 
= ∅, say, t ∈ U(z)∩U(y).
Then t ∈ B and t � x, so we showed that B is cofinal.

As cofinal subsets of cofinal subsets are cofinal, it suffices to find disjoint
cofinal subsets in B. This again reduces to finding two disjoint cofinal subsets
Yx, Zx in U(x), then Y =

⋃
{Yx : x ∈ A}, Z =

⋃
{Zx : x ∈ A} will be

two disjoint cofinal subsets in P . Given x ∈ A, enumerate U(x) as U(x) =
{xα : α < κ} with some cardinal κ. By transfinite recursion on α < κ choose
yα, zα % xα such that they differ from each other and from all earlier yβ , zβ .
This is possible, as 2|α| < κ elements have been selected so far, and |U(xα)| =
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κ as x is good. Finally, both Yx = {yα : α < κ} and Zx = {zα : α < κ} are
cofinal in U(x), and they are disjoint, so we are done.

16. Let G be the set those open sets on R that can be written as the union of
finitely many intervals with rational endpoints. Clearly, |G| = ℵ0. We define
〈P,≺〉 as follows. 〈s, G〉 ∈ P if s is a finite set of reals, G ∈ G with Lebesgue-
measure λ(G) less than 1/|s|, and s ⊆ G. We make 〈s′, G′〉  〈s, G〉 if and
only if s′ ⊇ s, G′ ⊆ G.

We show that 〈P,≺〉 is the union of countably many centered sets. For
this, we put the elements with identical second coordinate into one class. We
have to show that every 〈s1, G〉, . . . , 〈sn, G〉 has a common lower bound. Set
s = s1 ∪ · · · ∪ sn and choose a G′ ∈ G with s ⊆ G′ ⊆ G and measure less than
1/|s|. This 〈s, G′〉 is clearly a common lower bound.

Assume that F ⊆ P is a filter. Set X =
⋃{

s : 〈s, G〉 ∈ F
}
. We claim that

X has Lebesgue-measure zero. This is obvious if X is finite. If not, let x1, x2, . . .
be distinct elements of X. There is 〈sn, Gn〉 ∈ F with sn ⊇ {x1, . . . xn}
and λ(Gn) < 1/n. If now 〈s, G〉 ∈ F is arbitrary, there is in F an element
〈s′, G′〉  〈s, G〉, 〈sn, Gn〉, s ⊆ G′ ⊆ Gn; therefore, X ⊆

⋂∞
n=1 Gn, which is of

measure zero.
This concludes the proof: indeed, if F0, F1, . . . ⊆ P are filters, then their

first coordinates, the union of countably many sets of measure zero, cannot
cover the reals, therefore

⋃
Fn 
= P . [I. Juhász, K. Kunen: On σ-centred

posets, in: A Tribute to Paul Erdős, (eds. A. Baker, B. Bollobás, A. Hajnal),
Cambridge University Press, 1990, 307–311]

17. Consider the sets from Problem 6.25. Their characteristic functions form
an ordered subset (with respect to ≺) of cardinality bigger than continuum
of the partially ordered set of real functions.

Now suppose that F is a well-ordered set of real functions with respect to
≺. For every f ∈ F , except for the largest element in F if there is one, there
is a successor f̃ . But then there is a real number xf such that f(xf ) < f̃(xf ).
If xf = xg = x, then the intervals (f(x), f̃(x)) and (g(x), g̃(x)) are disjoint
because, e.g., g ≺ f , and then g̃(x) ≤ f(x). Thus, by Problem 2.14, the set of
those f ∈ F for which xf = x is countable. Hence there are at most continuum
times countably infinite many elements in F , so it is of cardinality at most
continuum (see Problem 4.12).

18. The identity mapping is an order-preserving mapping from 〈ωω,≺〉 into
〈ωω,�〉, and if for an f ∈ ωω we set F (n) = (f(n) + n)2, then f → F is an
order-preserving mapping from 〈ωω,�〉 into 〈ωω,≺〉.

It is clear that there is no element in 〈ωω,�〉 is lying in between f0(n) ≡ 0
and f1(n) ≡ 1, while it is easy to see that if f ≺ g, then there are infinitely
many elements in between them in 〈ωω,≺〉 (in fact, uncountably many ele-
ments as is shown by hx(n) = f(n) + [x|g(n)− f(n)|], x ∈ (0, 1)). Thus, these
two sets are not isomorphic.
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19. See Problem 2.28.

20. Based on the preceding problem, by transfinite induction build a family
fα ∈ ωω, α < ω1 such that each fα is bigger than any fβ with β < α. Then
this family has order type ω1 in 〈ωω,≺〉.

21. For k = 1, 2, . . . and x ∈ (0, 1) we set fk,x(n) = [xn1/k], where [·] denotes
the integral part. It is clear that for x < y we have fk,x ≺ fk,y, and for k < l
we have fk,x ≺ fl,y for all x, y ∈ (0, 1). Consider now for x = (x1, . . . , xm) ∈
(0, 1)m the function Fx =

∑m
k=1 fk,xk

. Based on what was said it is easy to
see that they form a subset of 〈ωω,≺〉 of order type λm.

22. Consider a representation of θ in 〈ωω,≺〉, i.e., an 〈A,≺〉 with order type θ.
For f ∈ A replacing f(n) by F (n) = maxk≤n f(k)+n we get a representation
of θ consisting of strictly monotone functions, and then replacing f(n) by 2f(n)

we get a representation by functions with f(n) ≥ 2n. We define Invf (k) =
min{n : f(n) ≥ k}. Then this ≤ [log2 k] + 1, and if f ≺ g, then for k large
Invg(k) ≤ Invf (k) with strict inequality if k = g(s) and s is large. Therefore,
Hf (m) =

∑[
√

m]
k=0 Invf (k) is less than m (for large m it is less than C

√
m log m),

and for f ≺ g we have Hg ≺ Hf . Thus, the functions Gf (m) = m − Hf (m),
f ∈ A are smaller than the identity and they form a subset of 〈ωω,≺〉 similar
to 〈A,≺〉.

This proof actually shows that there is an order-preserving mapping of
〈ωω,≺〉 into its subset lying below the identity function.

23. For θ∗ see the functions Hf , f ∈ A in the preceding proof.
Let the type of 〈Ai,≺〉 be θi for i = 1, 2. A1 can be chosen to lie below the

identity function, and similarly A2 can be chosen to lie above it (Problem 22).
Then clearly 〈A1 ∪A2,≺〉 has order type θ1 + θ2. Next consider the functions
of the form Hf,g(n) = 2g(n) + f(n), where f ∈ A1 and g ∈ A2. Clearly, if
g1 ≺ g2, g1, g2 ∈ A2, then irrespective of f1, f2 ∈ A1 we have Hf1,g1 ≺ Hf2,g2 ,
and if f1 ≺ f2, then Hf1,g ≺ Hf2,g. Thus, with respect to ≺ these functions
Hf,g form a subset of ωω of order type θ1 · θ2.

24. By now it is clear what we have to do (see the previous solution). Represent
θi by 〈Ai,≺〉 where Ai lies below the identity function, and let {fi : i ∈ I}
be a set lying above the identity function such that the ordered set 〈I, <, 〉
is similar to 〈{fi : i ∈ I},≺〉 under the mapping i → fi. Consider the set
of functions of the form hi,g(n) = 2fi(n) + g(n), where g ∈ Ai. Exactly as
in the preceding solution it follows that if i < j, g1 ∈ Ai and g2 ∈ Aj , then
hi,g1 ≺ hi,g2 , and for g1, g2 ∈ Ai we have hi,g1 ≺ hi,g2 . Thus, these functions
form a set of order type

∑
i∈I(<) θi.

The last statement is proved by transfinite induction on α < ω2. Each
such α can be written as a sum α =

∑
β<ϕ αi of ordinals αi smaller than α
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with some ϕ ≤ ω1. Now the induction is easy to carry out based on the first
part of the problem (recall also Problem 20 for the representability of ω1).

25. By selecting a cofinal sequence {αk}∞
k=0 in ϕ and considering {fαk

}∞
k=0

and {gαk
}∞

k=0, it is sufficient to work with the case ϕ = ω. Let Nk be an
increasing sequence such that fi+1(n) − fi(n) > k, gi(n) − gi+1(n) > k and
gi(n) − fi(n) > k for all 0 ≤ i ≤ k and n ≥ Nk, and set F (n) = fk(n) if
Nk ≤ n < Nk+1. This function F clearly lies strictly in between the fα’s and
gα’s.

26. We construct the functions with the following extra properties:

1. For α < β < ω1 we have fβ ≺ fα ≺ gα ≺ gβ ;
2. for α < ω1, n < ω the set

A(n, α) =
{
β < α : x ≥ n −→ fβ(x) < gα(x)

}
is finite.

To show that this suffices, assume that fα ≺ f ≺ gα holds for every α < ω1.
Then there are some n < ω and ℵ1 ordinals α such that for x ≥ n we have
fα(x) < f(x) < gα(x). Select, among those, one that is preceded by at least
ω many. Then A(n, α) is infinite, which is a contradiction.

We construct the functions by transfinite recursion on α. Set f0(n) = 0,
g0(n) = n. The successor case is easy, given fα and gα, for x large enough
we have fα(x) < gα(x) and the interval

(
fα(x), gα(x)

)
gets wider and wider.

Therefore, we can split this intervals into larger and larger intervals with
values fα+1(x) and gα+1(x) in such a way that gα+1(x) ≤ gα(x) always holds.
A moment’s reflection shows that for every n the set A(n, α + 1) can contain
at most one more element (namely: α) than A(n, α).

Assume that α < ω1 is a limit ordinal, and assume that we have al-
ready constructed fβ , gβ for β < α. We first determine gα. Let the increasing
sequence α0 < α1 < · · · converge to α. We select inductively the natural
numbers k0 < k1 < · · · in such a way that

fαi(x) + i < fαi+1(x) < fαi+1(x) + i < gαi+1(x) < gαi(x),

holds for x ≥ ki moreover if β ∈ A(ki, αi+1), αi ≤ β < αi+1, then there is an
x with ki ≤ x < ki+1, for which fαi(x) ≤ fβ(x) holds. (This can obviously be
done.) Define gα as follows: below k0 it is arbitrary, and for ki ≤ x < ki+1 we
set gα(x) = fαi

(x).
For the gα so defined we quickly get the first property required as for

x ≥ ki the values gα(x) − fαi(x) and gαi(x) − gα(x) are at least i.
To check the other property assume that β ∈ A(ki, α). If now β < αi then,

as for x ≥ ki we have gα(x) < gαi
(x), we will also have β ∈ A(ki, αi) which

is satisfied by only finitely many β. On the other hand, we show that β ≥ αi
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is not possible. Assume, toward a contradiction, that β is such an ordinal.
Then there is a j ≥ i, such that if αj ≤ β < αj+1, then for x ≥ kj we have
fβ(x) < gαj+1(x), that is, β ∈ A(kj , αj+1). But we selected kj+1 in such a way
that there is a kj ≤ x < kj+1 for which fαj

(x) ≤ fβ(x) and the first value is
gα(x). We get, therefore, that no β of the above type exists.

And finally with a diagonal process (or use Problem 25) construct fα in
such a way that that for every i the inequalities fαi ≺ fα ≺ gα hold.



12

Transfinite enumeration

1. Let I = {iξ}ξ<α be an enumeration of the elements of I, and for ξ < α
recursively set

Biξ
= Aiξ

\
(
∪ζ<ξBiζ

)
.

It is clear that these Bi’s are pairwise disjoint and ∪i∈IBi ⊆ ∪i∈IAi. But
if a ∈ ∪i∈IAi and ξ < α is the first index for which a ∈ Aiξ

, then clearly
a ∈ Biξ

, so the union of the Bi’s is equal to the union of the Ai’s.

2. First consider the case κ > ℵ0. Let the sets be Xξ, ξ < κ. Choose, by
recursion on α < κ, and within this recursion by recursion on ξ < α distinct
elements aξ,α ∈ Xξ. This is possible, since aξ,α can be any element of

Xξ \ ({aη,β : η < β < α} ∪ {aη,α : η < ξ}) ,

which is not empty, since it is the difference of a set of cardinality κ and of a
set of cardinality

≤ |α|2 + |α| ≤ |α| + ℵ0 < κ. (12.1)

If we set Zξ = {aξ,α : ξ < α < κ}, then |Zξ| = κ and the sets Zξ are
pairwise disjoint. As 2κ = κ, we can split Zξ into two disjoint parts Yξ and
Y ′

ξ each of cardinality κ. Now the system {Yξ : ξ < κ} is as required:
|Xξ \ Yξ| ≥ |Y ′

ξ | = κ.
For κ = ℵ0 the above argument works, only the calculation in (12.1) reads

as
≤ |α|2 + |α| < ℵ0 = κ,

since in this case every α is finite.

3. Select pairwise disjoint sets Zξ ⊆ Xξ, ξ < κ of cardinality κ as in the
preceding problem, and let Zξ = ∪α<κZξ,α be a decomposition of Zξ into κ
pairwise disjoint sets (since κ2 = κ, this is possible). Now it is clear that the
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sets Yα = ∪ξ<κZξ,α, α < κ are pairwise disjoint and they intersect all Xξ in
a set of power continuum.

4. Let {xξ}ξ<κ be an enumeration of the elements of X in a sequence of type κ,
and let {fξ}ξ<κ be a similar enumeration of those functions g in F which have
the property that the intersection of the range of g with X is of cardinality κ.

First of all we remark that if Y ⊂ X is of cardinality smaller than κ, and
the function g with domain X is such that its range intersects X in κ points,
then there is an element z ∈ X \ Y with g(z) ∈ X \ Y . This immediately
implies that if Y ⊂ X is of cardinality smaller than κ, and G is a family of
cardinality smaller than κ of functions g such that each g ∈ G has domain
X and a range intersecting X in κ points, then there is a set Z ⊆ X \ Y
of cardinality at most 2|G| such that for every g ∈ G there is a z ∈ Z with
g(z) ∈ Z. In fact, all we have to do is to select for each g ∈ G an element
zg ∈ X \Y with g(zg) ∈ X \Y , and then take the union of all pairs {zg, g(zg)}
for all g ∈ G. It is obvious that this Z has cardinality at most 2|G|.

After this we define by transfinite recursion pairwise disjoint sets A0
ξ , A

1
ξ ,

ξ < κ of cardinality at most max(|ξ|,ℵ0) as follows. Let A0
0 = A1

0 = ∅, and
suppose that for all α < ξ the sets A0

α, A1
α have already been defined for

α < ξ, where ξ < κ, and let Yξ = ∪α<ξ(A0
α ∪ A1

α). Select a set A0
ξ ⊂ X \ Yξ

of cardinality at most 2|ξ| such that for all α < ξ there is a z ∈ A0
ξ such that

fα(z) ∈ A0
ξ , and then select a set A1

ξ ⊂ X \ (Yξ ∪ A0
ξ) of cardinality at most

2|ξ| such that for all α < ξ there is a z ∈ A1
ξ such that fα(z) ∈ A1

ξ . Since the
cardinality of A0

ξ , A
1
ξ is at most 2|ξ|, the set Yξ has cardinality smaller then

κ, and the induction can be carried out.
Let E be a family of cardinality 2κ of transfinite 0–1 sequences ε = {εξ}ξ<κ

such that for ε, ε′ ∈ E there are κ indices ξ with εξ 
= ε′
ξ. By Problem 18.3

there is such a family (apply Problem 18.2 to the set κ and identify a subset
by a 0–1 sequence in the standard manner). For each ε ∈ E consider the
set Hε = ∪ξ<κA

εξ

ξ . Let ε, ε′ ∈ E be two different sequences in E , and let
f ∈ F be arbitrary. If the range of f intersects X in a set of cardinality
smaller than κ, then clearly f [Hε] = Hε′ cannot hold, for each Hε′ is of
cardinality κ. On the other hand, if the range of f intersects X in a set of
cardinality κ, then f = fα for some α < κ. There are κ indices ξ with εξ 
= ε′

ξ;
therefore, there is such an index with ξ > α. Let, e.g., εξ = 0, ε′

ξ = 1. By the
construction of the sets Hε and Aξ, there is an element z ∈ A0

ξ ⊂ Hε such
that fα(z) ∈ A0

ξ ⊂ X \ Hε′ , and this shows that f [Hε] 
= Hε′ . Thus, the 2κ

sets Hε, ε ∈ E satisfy the requirements. [W. Sierpiński, Cardinal and Ordinal
Numbers, Polish Sci. Publ., Warszawa, 1965, XII.4]

5. Since X is equivalent to X ×X, it is sufficient to construct a similar family
on X × X. We obtain H by taking the graphs of some functions fξ : X →
X, ξ < κ+, i.e., taking the sets G(fξ) := {(x, fξ(x)) : x ∈ X}, ξ < κ+

(technically speaking, this G(fξ) is fξ itself, but it is instructive to consider
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it as a graph). Suppose fη is known for all η < ξ where ξ < κ+. Then there
is an fξ such that its graph Gξ is almost disjoint from all G(fη), η < ξ. In
fact, to this end it is enough to show that if gτ , τ < κ are κ functions from
X into X, then there is a function f : X → X such that its graph G(f) is
almost disjoint from all the graphs G(gτ ). Let xα, α < κ be an enumeration
of the points in X. We can define by transfinite recursion the values f(xα) so
that f(xα) 
= gτ (xα) for τ < α. This is possible, for we can always select a
value for f(xα) from the nonempty set X \ {gτ (xα) : τ < α}. Then clearly,
G(f) ∩ G(gτ ) ⊆ {(xα, gτ (xα)) : α ≤ τ}, so the graphs G(f) and G(gτ ) are
almost disjoint. [P. Erdős]

6. We define Nξ with the additional property that the intersection of finitely
many Nξ’s is infinite. Then Nξ can be easily defined by transfinite recursion
if we can show that if M0, M1, . . . are subsets of N such that for all m the
intersection M0∩· · ·∩Mm is infinite, then there is a subset M ⊂ N such that
M∩M0∩· · ·∩Mm is infinite for all m, and M\Mk is finite but Mk\M is infinite
for all k. But that is easy, namely if we select numbers xm ∈ M0 ∩ · · · ∩ Mm

such that xm 
= x0, x1, . . . xm−1, then clearly the set M = {x0, x2, x4, . . .}
satisfies all the requirements.

7. Let �ξ, ξ < c be an enumeration of the lines of the plane into a transfinite
sequence of type c. We shall set A = ∪α<cAα, where the Aα’s are increasing
sets (by this we mean that Aα ⊆ Aβ for α < β) in such a way that Aα has
at most two points on every line of the plane, and for ξ ≤ α the set Aα has
exactly two points on �ξ. Then clearly A will have exactly two points on every
line.

The construction of the Aα’s is given by transfinite recursion on α, and it
will be done in such a way that |Aα| ≤ 2(|α|+1) is satisfied for all α. Suppose
that Aβ , β < α, have already been constructed with the above properties.
Then the set Bα = ∪β<αAβ also has at most two points on every line and
it has cardinality at most 2|α|. Let Lα be the set of lines connecting any
two points of Bα. Then Lα has cardinality at most 4|α|2. If Bα has exactly
two points on �α, then we set Aα = Bα. If Bα has one point on �α, then let
Aα = Bα∪{xα}, where xα ∈ �α\(∪�∈Lα�). Since two different lines in the plane
intersect in at most one point the set �α ∩ (∪�∈Lα�) has cardinality at most
4|α|2 < c, thus �α \ (∪�∈Lα�) is not empty, and the selection of xα is possible.
In a similar way, if Bα has no point on �α, then let Aα = Bα∪{xα, yα}, where
xα, yα ∈ �α \ (∪�∈Lα�) are two different points. This completes the definition,
and by the choice of the set Aα we can see that |Aα ∩ �| ≤ 2 for every line
�, and |Aα ∩ �α| = 2. Since the sets Aα are increasing, these also prove that
|Aα ∩ �ξ| = 2 for all ξ ≤ α. It is also clear that |Aα| ≤ |Bα| + 2 ≤ 2|α| + 2,
so the induction runs through. [S. Mazurkiewicz, C. R. Soc. Sc. et Lettres de
Varsovie 7(1914), 382–383]

8. We extend the argument of the previous proof. Let �ξ, ξ < c be a listing
of the lines on the plane so that each line is repeated continuum many times,
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i.e., Cξ = {ζ < c : �ζ = �ξ} is of cardinality c. A will be the increasing union
of sets Aα, α < c, where the Aα’s are of cardinality at most |α + 1| < c. The
inductive conditions are: |�ξ ∩Aα| ≤ m�ξ

for all ξ < c, |�α ∩Aα| ≥ min(|Cα ∩
α|, m�α

), and Aα has at most 2 points on every line �ξ with Cξ ∩ α = ∅.
As in Problem 7 we let Bα = ∪β<αAβ but now let Lα be the set of lines

� except �α such that |� ∩ Bα| ≥ 2. At step α, if |Bα ∩ �α| = m�α , then we
set Aα = Bα. If, however, |Bα ∩ �α| < m�α , then we add one more point to
Bα∩�α doing as little harm as possible. As |Lα| ≤ |α+1|2 < c, the lines in Lα

hit the line �α in less than c points, and we can select a point P ∈ �α different
from them and not lying in Bα∩�α. This point P can be added to Bα to form
Aα. Clearly, with this step all the induction properties are preserved, and the
construction runs through all α < c.

Since each line is listed continuum many times, eventually we will have
|� ∩ A| = m� for all lines �.

9. Let L1 = {aξ}ξ<α1 , α1 ≤ c and L2 = {bη}η<α2 , α2 ≤ c be the enumeration
of the sets L1 and L2 into two transfinite sequences of length at most c. For
a point P on the plane let ξ(P ) resp. η(P ) be the smallest ξ < α resp. η < β
such that P ∈ aξ resp. P ∈ bη, and if there is no such ξ or η then let ξ(P )
resp. η(P ) be equal to c. Finally, let A1 be the set of points P for which
η(P ) ≤ ξ(P ), and A2 its complement in R2. If aξ ∈ L1 and P ∈ A1 ∩ aξ,
then by the definition of A1, there is an η ≤ ξ such that P ∈ bη, i.e., P is
the common point of aξ and bη. But this means that there can be at most
|ξ|+1 < c points on aξ from A1. In the same fashion, there can be at most |η|
points on any bη from A2. [P. Erdős, cf. W. Sierpiński, Cardinal and Ordinal
Numbers, Polish Sci. Publ., Warszawa, 1965, XVII.4/5]

10. A nonempty perfect set is of cardinality continuum and there are contin-
uum many perfect subsets of R. Therefore, this problem is a consequence of
Problem 3.

A direct construction runs as follows. The number of nonempty perfect
subsets of R is of power continuum; therefore, we can list them into a trans-
finite sequence of type c:

A0, A1, . . . , Aξ, . . . , ξ < c,

in such a manner that each nonempty perfect subset of R is repeated con-
tinuum many times in this sequence. We also know that each Aξ is of power
continuum (see Problem 5.21). Now for fixed α and for β < α < c select
different points Pα,β ∈ Aα by transfinite recursion in such a manner that the
Pα,β are different from all Pα′,β′ with β′ < α′ < α. Since the number of points
Pα′,β′ with β′ < α′ < α is at most |α|2 < c, such a selection is possible. It is
clear that if for β < c we set Hβ = {Pα,β}β<α<c, then each Hβ is of cardinal-
ity continuum and each Hβ intersects every Aξ. To get a decomposition of R
just add the points outside ∪β<cHβ to, say, H0.
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11. The sets in the decomposition R = ∪β<cHβ in the preceding solution
are nonmeasurable. In fact, a measurable set of positive measure includes a
compact set K of positive measure. Now by Problem 5.20 we have K = A∪B,
where A is perfect and B is countable. Thus, A must have positive measure,
and this shows that a measurable set of positive measure includes a nonempty
perfect set. The nonmeasurability of Hβ follows, since neither Hβ nor its
complement includes a nonempty perfect set.

12. A set of the first category is included in the countable union of closed sets
with empty interior. Now a construction similar to the one in the solution of
Problem 5.21 shows that if F0, F1, . . . are closed sets with empty interior, then
R\

(
∪∞

i=0Fi

)
includes a nonempty perfect set. In fact, all we have to make sure

is that when selecting the nth-level intervals (in the notation of the solution
of Problem 5.21 the sets Ei1...in

) we select them from the complement R \Fn

of Fn. Thus, the complement of a set of first category includes a nonempty
perfect set. Therefore, the sets Hβ from the solution of Problem 10 must be
of second category.

13. First of all we note that if a set on the plane intersects every compact
set of positive (planar) measure, then it cannot be of measure zero. In fact,
in a set of positive measure (in particular in the complement of a set of zero
measure) there is a compact set of positive measure.

Next we note that a compact set of positive (planar) measure cannot be
covered by less than continuum many lines. In fact, let L = {�} be a set of
less than continuum many lines, and let us choose a line l that is not parallel
with any line in L. If K is a compact set of positive measure, then, by Fubini’s
theorem, there is a line l0 parallel with l that intersects K in a set of positive
measure, and hence in a set of power continuum (cf. the solution of Problem
11). But since each � ∈ L intersects l0 in at most one point, the set K ∩ l0 is
not covered by the lines in L.

After these let Kξ, ξ < c be an enumeration of the compact sets of positive
measure on R2 into a transfinite sequence of type c. We shall construct by
transfinite recursion increasing sets Aξ, ξ < c in such a way that each Aξ is of
cardinality at most |ξ|+1, each Aξ intersects every line in at most two points
and Aξ ∩Kξ 
= ∅. Then clearly A = ∪ξ<cAξ will be a set that has at most two
points on every line and that intersects every Kξ, hence it is not of measure
zero.

Let A0 be a one-point set containing a point from K0, and suppose that all
Aα are already known with the above property for all α < ξ < c. Then the set
∪α<ξAα is of cardinality at most |ξ|, hence if L is the set of lines determined
by the points in ∪α<ξAα, then L is of cardinality smaller than continuum.
Therefore, according to what we have said before, L cannot cover the set Kξ,
so there is a point Pξ ∈ Kξ that is not on any of the lines in L. But then the
set Aξ = (∪α<ξAα)∪{Pξ} intersects Kξ and has at most two points on every
line, and this completes the construction.
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14. Let H be the collection of those subsets of R2 that are a countable union
of closed sets without interior points. Every set of first category is included
in a set in H, and H is of cardinality continuum (see Problems 4.6 and 4.7).
Thus, if a set intersects the complement of every set in H then it is not of the
first category.

We can copy the preceding proof provided we can show that the comple-
ment of any H ∈ H cannot be covered by less than continuum many lines,
and this follows exactly as before if we can show that with any line l there
is a parallel line l0 that intersects the complement of H in continuum many
points. Let H = ∪∞

n=0Fn, where each Fn is a closed set with empty interior.
Without loss of generality, we may assume that l is horizontal, and for each
interval I with rational endpoints let YI,n be the set of those y ∈ R for which
I×{y} ⊂ Fn. Since Fn is closed, we can infer that YI,n must be nowhere dense
(for otherwise Fn would include a rectangle I ×J); therefore, Y = ∪I,nYI,n is
of the first category. Thus, there is a horizontal line l0 such that its intersec-
tion with every Fn is a closed set that does not include a segment. But then
l0 \ ∪∞

n=0Fn includes a nonempty perfect set (cf. the solution of Problem 12),
hence it is of power continuum.

15. Let xξ, ξ < c be an enumeration of the real numbers. By transfinite
recursion we define increasing sets Aα, α < c in such a way that |Aα| ≤
2(|α|+1) and every real number can be represented in at most one way in the
form a + b, a, b ∈ Aα, and xα has such a representation. Then clearly the set
A = ∪α<cAα will satisfy the requirements. Let A0 = {a, b} where a + b = x0,
and suppose that the sets Aβ , β < α < c have already been defined and satisfy
the above properties. Then ∪β<αAβ is of cardinality smaller than continuum,
hence the set of numbers of the form a + b − c, (a + b)/2, (xα + a − c)/2,
(a + xα)/3, (2xα − c)/3 with a, b, c ∈ ∪β<αAβ is also of cardinality smaller
than continuum. Therefore, there is a real number yα such that neither yα,
nor xα − yα is of the aforementioned form. Now if xα can be represented
as a + b with a, b ∈ ∪β<αAβ , then let Aα = ∪β<αAβ , and otherwise let
Aα = (∪β<αAβ) ∪ {yα, xα − yα}. Since each Aβ had cardinality at most
2(|β|+1) and these sets are increasing, Aα has cardinality at most 2(|α|+1).
Furthermore, it is impossible to have two different representations a + b and
c + d with a, b, c, d ∈ Aα for any number x. In fact, since ∪β<αAβ possessed
this property, we may have a+ b = c+d only if at least one of these numbers,
say d, is yα or xα − yα. But then by the choice of yα either a or b also has to
be yα, resp. xα − yα, i.e., the two representations are the same. In fact, the
excluded numbers were exactly those for which we would have two different
representations; e.g., yα = a + b − c was excluded to avoid a + b = c + yα, or
(2xα − c)/3 was excluded to avoid (xα − yα) + (xα − yα) = c + yα, etc.

16. First of all we mention that if A ∩ (a, x) has the same cardinality, say
κ ≥ ℵ0, for all x ∈ (a, b), then there is a 1-to-1 map g : (a, b] ∩ A → (a, b] ∩ A
such that g(x) < x for all x ∈ (a, b] ∩ A. In fact, enumerate the elements of
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(a, b]∩A into a transfinite sequence xα, α < κ. Then it is easy to define g(xα)
by transfinite recursion in such a way that g(xα) < xα and g(xα) 
= g(xβ) for
β < α.

Now for x ∈ A let κ(x) = |{y ∈ A : y < x}|. This is a mapping from
A with cardinal values such that κ(x1) < κ(x2) implies x1 < x2, hence by
Problem 6.37 its range is countable. Let Y be the subset of the range that
consists of infinite cardinals. For κ ∈ Y let Aκ = {x ∈ A : κ(x) = κ}. This
set is of the form I∩A with an interval I (I can be closed, open, or semi-open).
It is clear that if I has endpoints aκ, bκ, then (aκ, x)∩A has cardinality κ for
all x ∈ (aκ, bκ), hence there is a 1-to-1 mapping gκ from (aκ, bκ] ∩ Aκ into
itself that maps every element into a smaller one. Now let A′ be the one-point
set consisting of the smallest element of A if A has a smallest element, and
otherwise let A′ be a countable subset of A that is coinitial with A. Let f
agree with gκ on each (aκ, bκ] ∩ Aκ, and all other elements of A be mapped
by f into A′ in such a way that f(x) < x for all x, except perhaps for the
smallest element of A. Since A \ ∪κ∈Y

(
(aκ, bκ] ∩ Aκ

)
consists of the smallest

elements of Aκ (if there are such) and of those elements x of A for which
{y ∈ A : y < x} is finite, this set is countable, and hence the claim follows
with this f .

17. Let xα, α < c, be an enumeration of the reals. If f is a real function,
then define by transfinite recursion two functions g, h in such a way that
g(xα)+h(xα) = f(xα) for all α, and the values g(xα) resp. h(xα) are different
from every g(xβ) resp. h(xβ), β < α. Then g, h will be 1-to-1 functions and
f = g + h. [A. Lindenbaum, Ann. Soc. Pol. Math., 15(1936), 185]

18. There are continuum many monotone real functions (Problem 4.14, d)),
therefore we can enumerate them into a transfinite sequence fξ, ξ < c. Let
us also enumerate the reals into a transfinite sequence xξ, ξ < c, and by
transfinite recursion define the real function f in such a way that f(xξ) is
different from every fα(xξ) with α < ξ. Then f agrees with any fα only on a
set of cardinality smaller then continuum, hence it can be monotone only on
a set of cardinality smaller than continuum, for any function that is defined
and monotone on a subset of the reals can be extended to a monotone real
function (see the solution to Problem 6.18).

19. There are continuum many triplets (I, f, y) consisting of a nondegenerate
interval I ⊆ R, a continuous real function f , and a real number y (cf. Problems
4.11 and 4.12), hence we can enumerate them into a transfinite sequence
(Iξ, fξ, yξ), ξ < c. Now define by transfinite recursion a sequence xξ, ξ < c,
in such a way that the xξ’s are different, and xξ ∈ Iξ. Now set F (xξ) =
yξ − fξ(xξ), ξ < c, and define F arbitrarily for other values. Clearly, if f is a
real continuous function, I ⊆ R is an interval and y ∈ R is a number, then
there is an x ∈ I with (F + f)(x) = y, namely x = xξ for the index ξ for
which (I, f, y) = (Iξ, fξ, yξ).
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20. Consider the pairs of real sequences ({xn}∞
n=0, {yn}∞

n=0) where the num-
bers xn are different and the numbers yn are arbitrary. Their number is con-
tinuum (see Problems 4.3 and 4.12), therefore we can enumerate them into a
transfinite sequence

(
{xξ

n}∞
n=0, {yξ

n}∞
n=0

)
, ξ < c. By transfinite recursion we

define increasing sets Xξ ⊂ R of cardinality at most |ξ|+ℵ0 and real numbers
xξ in the following way: let X0 = {x0

n}∞
n=0, x0 = 0 and if Xη, xη, η < ξ

have already been defined, then let xξ be a real number for which xξ + xξ
n,

n = 0, 1, . . . all lie outside the set ∪η<ξXη, and set

Xξ = {xξ + xξ
n}∞

n=0

⋃
(∪η<ξXη) .

It is clear that the property |Xξ| ≤ |ξ| + ℵ0 is preserved, hence the induction
can be carried out and the numbers xξ + xξ

n, ξ < c, n ∈ N are all different.
Now all we have to do is to define f(xξ + xξ

n) = yξ
n for all ξ and n, and set

f(x) = 0 otherwise. The definition of the numbers xξ guarantee that f is
uniquely defined, and if {xn}∞

n=0, {yn}∞
n=0 are arbitrary with xn 
= xm for

n 
= m, then there is an x with f(x + xn) = yn, namely x = xξ is appropriate
where ξ is the index for which

(
{xξ

n}∞
n=0, {yξ

n}∞
n=0

)
= ({xn}∞

n=0, {yn}∞
n=0).

21. The sets X1, X2, . . . , Xξ, . . . ξ < ω1 are closed and form a nonincreasing
transfinite sequence, hence by Problem 6.38 there must be a 0 < θ < ω1 with
Xθ+1 = Xθ. But then Xθ+2 = XL

θ+1 = XL
θ = Xθ+1 = Xθ, and in a similar

fashion we obtain by transfinite induction Xθ+α = Xθ for all α. It is also
clear that Xθ is either empty or perfect, for it is closed and coincides with
the set of its limit points. Since Xβ+1 \ Xβ consists of the isolated points
of Xβ , it is a discrete set, hence it is countable (Problem 5.3). Furthermore,
X \Xθ ⊆ ∪β<θ(Xβ \Xβ+1). In fact, if x ∈ X \Xθ, and α is the smallest index
with x 
∈ Xα, then by the definition of the set Xα, the ordinal α ≤ θ is not a
limit ordinal, i.e., α = β + 1, and then x ∈ Xβ \ Xβ+1. All these prove that
X \ Xθ is countable. [G. Cantor]

22. If X ⊆ Rn is closed, then all the sets Xα in the preceding problem are
included in X, in particular Xθ ⊆ X. Now the claim follows from the repre-
sentation X = Xθ ∪ (X \ Xθ).

23. It is clear that the Hα’s form an increasing family.
Let S be the σ-algebra generated by H. Then each Hα is included in

S, hence it is enough to show that Hω1 is a σ-algebra, i.e., it is closed for
countable union and complementation. If A ∈ Hω1 , then A ∈ Hα for some
α < ω1, and then its complement X \ A is contained in Hα+1 ⊆ Hω1 . In a
similar manner, if Ai ∈ Hω1 for i = 0, 1, . . ., say Ai ∈ Hαi

, αi < ω1, and
α = supi αi, then α < ω1 and ∪iAi ∈ Hα+1 ⊆ Hω1 . These prove that Hω1 is
indeed a σ-algebra.

24. Let H be a family of sets of cardinality at most continuum. Consider
the families Hα from the preceding solution. Since a set of power continuum
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includes at most continuum many countable subsets (Problem 4.6) and since
the union of continuum many sets of cardinality at most continuum is of
cardinality at most continuum, we obtain by transfinite induction that each
Hα, α ≤ ω1, is of cardinality at most continuum. For α = ω1 this is the
statement of the problem.

25. Let H be the set of open subsets of Rn, and consider the following hierarchy
Hα, α < ω1: let H0 = H and for every ordinal 0 < α < ω1 let Hα be the family
of sets that can be obtained as a countable intersection or a countable disjoint
union of sets in ∪β<αHβ . Exactly as in Problem 23 one can easily show that
H = ∪α<ω1Hα is the smallest family of sets containing the open sets and closed
under countable intersection and countable disjoint union. All we have to show
is that H is closed under taking complement with respect to Rn, for then it
is closed under countable union (recall that ∪jAj = Rn \ (∩j(Rn \ Aj))).

We prove by transfinite induction that if A ∈ Hα, then (Rn \A) ∈ H, and
this will complete the proof. For α = 0 this is clear, for the complement of an
A ∈ H0 is a closed set, and it can be represented as a countable intersection of
open sets. Suppose now that we know this property for all β < α. Let A ∈ Hα.
If A is obtained from Aj ∈ ∪β<αHβ , j = 0, 1, . . . by disjoint union, then

Rn \ A =
⋂
j

(Rn \ Aj) ∈ H

by the induction hypothesis. If, however, A is obtained from Aj ∈ ∪β<αHβ ,
j = 0, 1, . . . by intersection, then

Rn\A =
⋃
j

(Rn\Aj) = (Rn\A0)∪
(
A0∩(Rn\A1)

)
∪
(
A0∩A1∩(Rn\A2)

)
∪· · · ,

and here on the right-hand side we have a disjoint union. Therefore, we get
from the induction hypothesis that (Rn \ A) ∈ H, and the proof is over.

For an alternative proof see the solution to Problem 1.13.

26. It is clear that the Bα’s form an increasing family of functions, and that if
B is the smallest set of functions that is closed for pointwise limits and that
includes C[0, 1], then Bα ⊆ B for all α. Thus, it is enough to show that Bω1

is closed for pointwise limit. Let fi ∈ Bω1 for i = 0, 1, . . ., and let f be the
pointwise limit of the functions fi. We have, say, fi ∈ Bαi , αi < ω1. But then,
if α = supi αi, then α < ω1 and f ∈ Bα+1 ⊆ Bω1 , and this proves that Bω1 is
closed for pointwise limit.

27. Let F be the set of all the operations in the algebra 〈A, · · ·〉, and let B ⊂ A
be a subset of cardinality at most κ ≥ ℵ0. Then the set of finite subsets of B is
again of cardinality at most κ, hence if B∗ is the set that we obtain by adding
to B all elements of the form g(b1, . . . , bm) with bi ∈ B and g ∈ F , then
B∗ is of cardinality at most κ · ρ ≤ max(κ, ρ,ℵ0). Now starting from B0 = B
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construct the sets Bk as Bk+1 = (Bk)∗, k = 0, 1, 2, . . ., and let B∞ = ∪∞
k=0Bk.

As we have just mentioned, each Bk is of cardinality at most max(κ, ρ,ℵ0),
hence B∞ is of cardinality at most max(κ, ρ,ℵ0) · ℵ0 = max(κ, ρ,ℵ0). It is
clear that each Bk is contained in the subalgebra generated by B, hence the
same is true of B∞, and what is left to prove is that B∞ is a subalgebra, since
then it must be the subalgebra generated by B. Let g ∈ F be an operation
of arity m, and let b1, . . . , bm ∈ B∞ be arbitrary elements. Then bi ∈ Bki for
some ki ∈ N, hence with k = maxi ki we have bi ∈ Bk for all i = 1, . . . , m,
and then g(b1, . . . , bn) ∈ Bk+1 ⊂ B∞, verifying that B∞ is closed for all the
operations.

28. First of all we note that if F is any field of cardinality at most κ ≥ ℵ0
and p(x) = an · xn + · · · + a1 · x + a0 is any polynomial with coefficients in
F , then there is a field F ⊆ F1 of cardinality at most κ such that p has
a zero in F1. This is well known, but a sketch of the construction runs as
follows. We may assume that p is irreducible over F (if not, just work with
an irreducible factor of it). Let ξ be a symbol, and consider the set F1 of
all formal expressions b0 + b1 · ξ + · · · + bn−1 · ξn−1, bi ∈ F , with termwise
addition and multiplications except that in multiplication we simplify with
an · ξn + · · · a1 · ξ + a0 = 0. It is easy to see that with these operations F1 is
a field. For example, the existence of the multiplicative inverse of an element
b0 + b1 · ξ + · · · + bn−1 · ξn−1 with not all bi = 0 runs as follows. Since p(x) is
irreducible, p(x) and b0 +b1 ·x+ · · ·+bn−1 ·xn−1 have only constant (elements
of F) common divisors. Hence by carrying out the Euclidean algorithm, we
get that there are polynomials r(x) and s(x) such that

r(x)p(x) + s(x)(b0 + b1 · x + · · · + bn−1 · xn−1) = 1.

Substituting here x = ξ we obtain

r(ξ)(b0 + b1 · ξ + · · · + bn−1 · ξn−1) = 1,

i.e., r(ξ) is the multiplicative inverse of b0 + b1 · ξ + · · ·+ bn−1 · ξn−1. It is also
clear that F can be considered to be part of F1, and that F1 has cardinality
at most κ.

The set of polynomials with coefficients in F is of cardinality at most κ (see
Problem 10.4(a)), and let us enumerate them into a sequence pξ, ξ < κ (with
possible repetition). Starting from F0 = F we recursively define increasing
fields Fξ, ξ < κ, where Fξ is a field of cardinality at most κ that is an
extension of the field ∪α<ξFα in such a way that pξ has a zero in Fξ. Based
on what we have said in the beginning of this solution, this Fξ can be easily
defined by transfinite recursion for all ξ < κ, and it has cardinality at most
κ. Now let F∗

1 = ∪ξ<κFξ. Then F∗
1 is a field of cardinality at most κ, and

every polynomial with coefficients in F has a zero in F∗
1 . Now repeat the same

process starting from F∗
1 rather than F , to obtain a field F∗

1 ⊆ F∗
2 such that

every polynomial with coefficients in F∗
1 has a zero in F∗

2 . In a similar manner
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we get fields F∗
k ⊆ F∗

k+1 for all k = 1, 2, . . . such that every polynomial with
coefficients in F∗

k has a zero in F∗
k+1. Now it is clear that if F∗ = ∪∞

k=0F∗
k ,

then F∗ is a field of cardinality at most κ that includes F . Furthermore it
is algebraically closed. In fact, every polynomial with coefficients in F∗ has
coefficients in F∗

k for some k ∈ N, and so it has a zero in F∗
k+1 ⊆ F∗.

29. Let 〈A,≺〉 be an infinite ordered set, κ = |A|, and let T = κ{0, 1} be the
set of transfinite 0–1 sequences of type κ with lexicographic ordering ≺∗. Let
A = {aξ}ξ<κ be an enumeration of the elements of A in type κ. By transfinite
recursion we define a monotone mapping F from A into T .

Actually we shall show more, namely let T ∗ be the set of those elements
f of T that contain a largest 1, i.e., for which there is a ν < κ such that
f(ν) = 1 but f(ξ) = 0 for all ν < ξ < κ. We are going to construct F so that
it maps A monotonically into T ∗.

First we consider the case when κ is regular. Before the actual construction
we establish a few facts about T ∗ for regular κ.

a) If B ⊂ T ∗ is of cardinality smaller than κ, then there is an h ∈ T ∗ that
is smaller than any element of B. In fact, let us select ν < κ in such a way
that f(ξ) = 0 for all f ∈ B and ξ ≥ ν, and set h(ν) = 1 and h(ξ) = 0 for
ξ 
= ν. This h is clearly smaller than any element of B.

b) If B ⊂ T ∗ is of cardinality smaller than κ, then there is an h ∈ T ∗ that
is bigger than any element of B. In fact, again let ν < κ be such that f(ξ) = 0
for all f ∈ B and ξ ≥ ν, and let h(ξ) = 1 for ξ ≤ ν and h(ξ) = 0 for ξ < ν.
This h is bigger than any element of B.

c) If B, C ⊂ T ∗ are of cardinality smaller than κ such that every element
of B is smaller than any element of C, then there is an h∗ ∈ T ∗ that is bigger
than any element of B and smaller than any element of C. First we construct
a function h ∈ T . We define h(α), α < κ, by transfinite recursion. Let h(0) = 1
if there is an f ∈ B with f(0) = 1, and otherwise let h(0) = 0. Suppose now
that α < κ and h(β) is already defined for all β < α. Then let h(α) = 1 if there
is an f ∈ B such that f α = h α and f(α) = 1, and otherwise let h(α) = 0.
By transfinite induction we prove that for all f ∈ B and α < κ the inequality
f α ∗ h α holds, where ∗ denotes again lexicographic ordering (ordering
with respect to first difference). This is clear for α = 0, and if it is true that
f β ∗ h β for all β < α and α is a limit ordinal, then clearly f α ∗ h α. If,
however, α = β + 1, then h α ≺∗ f α together with f β ∗ h β would imply
f β = h β and h(β) = 0, f(β) = 1, but this contradicts the choice of h(β).
Thus, f α ∗ h α in all cases. In a similar manner, by transfinite induction
we verify that h α ∗ g α for all α < κ and g ∈ C. This is clear for α = 0,
and if it is true that h β ∗ g β for all β < α and α is a limit ordinal, then
clearly h α ∗ g α. If, however, α = β + 1, then g α ≺∗ h α together with
h β ∗ g β implies that h β = g β and g(β) = 0, h(β) = 1. This latter one
means that there is an f ∈ B such that f β = h β and f(β) = 1. But this is
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impossible, for then we would have g ≺∗ f , contradicting the assumption on
the sets B and C. Thus, h α ∗ g α in all cases.

What we have verified so far implies that f ∗ h ∗ g for all f ∈ B and
g ∈ C. Next note that h = g is impossible for g ∈ C. In fact, in the opposite
case if ν is such that g(ν) = 1 but g(ξ) = 0 for ξ > ν, then h(ν) = 1 would
imply an f ∈ B with f ν = h ν and f(ν) = 1, but then we would have g ∗ f
contradicting the assumption on the sets B and C. Thus, h ≺∗ g for all g ∈ C.
Now let ν < κ be an ordinal such that f(ξ) = 0 and g(ξ) = 0 for all ξ ≥ ν
and f ∈ B, g ∈ C. Then clearly h(ξ) = 0 for ξ ≥ ν; therefore, if we set
h∗(ξ) = h(ξ) if ξ 
= ν and h∗(ν) = 1, then this h∗ will be strictly bigger than
any element in B and smaller than any element in C.

After these preparations let us return to the construction of the mapping
F for regular κ. As in the beginning of the proof, let A = {aξ}ξ<κ be an
enumeration of the different elements of A in type κ. We are going to define
F (aα) by transfinite recursion on α. Let F (a0) be any element in T ∗, and
suppose that for some α < κ all the values F (aξ), ξ < α have already been
defined, and F is monotone on its domain. This domain is divided into two
parts by aα: H0 = {aξ : ξ < α, aξ ≺ aα} and H1 = {aξ : ξ < α, aα ≺ aξ}.
We set B = {F (aξ) : ξ ∈ H0} and C = {F (aξ) : ξ ∈ H1}. Then B and
C are subsets of T ∗ of cardinality smaller than κ, and every element of B is
smaller than any element of C. Now let F (aα) = h∗, where h∗ ∈ T ∗ is the
element constructed in part c) above for this B and C. If one of the sets, say
B, happens to be empty, then just select an element h ∈ T ∗ as F (aα) that
is smaller than any element of C (see property a) above), and in a similar
manner if C = ∅, then let F (aα) be an element of T ∗ that is bigger than any
element of B (see property b)).

This recursion runs through α < κ, and this proves the existence of F
for regular κ. Note that for regular κ we have also shown the following: if
|A| = κ and A′ ⊂ A is of cardinality smaller than κ, and G : A′ → T ∗ is a
monotone mapping, then this can be extended to a monotone mapping of A
into T ∗. Now let κ be singular, and let κ0 < κ1 < · · · < κα · · · < κ, α < cf (κ)
be infinite cardinals with sum equal to κ. By considering κ+

α instead of κα if
necessary, we may assume that each κα is a regular cardinal, and by similar
method one can achieve that for each α we have κα >

∑
β<α κβ . Also let

A = ∪α<cf (κ)Aα be an appropriate representation of A as a disjoint union
of some sets Aα of cardinality κα. We shall define by transfinite recursion
on α a monotone mapping Fα from ∪β≤αAα into T ∗

α, where T ∗
α is the set of

those elements of f ∈ T ∗ for which f(ξ) = 0 for all ξ ≥ κα (note that T ∗
α is

isomorphic with T ∗ constructed for the cardinal κα). We shall define Fα in
such a way, that for β < α the mapping Fα is an extension of Fβ . In fact,
the mapping F0 has just been constructed above. Suppose we know Fβ for all
β < α. If α is a limit ordinal, then the mappings Fβ , β < α, have a common
extension Gα defined on ∪β<αAβ : just set Gα(ξ) = Fβ(ξ) for ξ ∈ Aβ , β < α.
Now | ∪β<α Aβ | =

∑
β<α κβ < κα, hence, as we have seen above, this Gα
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can be extended to a monotone mapping of ∪β≤αAβ = (∪β<αAβ) ∪ Aα into
T ∗

α. If, however, α is a successor ordinal, α = β + 1, then again, the mapping
Fβ : ∪γ≤βAγ → T ∗

β can be extended to a monotone mapping Fα from ∪γ≤αAγ

to T ∗
α.
Finally, we set F (ξ) = Fα(ξ) if ξ ∈ Aα. This is clearly a monotone mapping

from 〈A,≺〉 into T ∗.

30. Let 〈A,≺〉 be an ordered set, and let {xξ}ξ<κ be an enumeration of the
elements of A. Since every ordered set is a subset of a densely ordered set
(Problem 6.65), without loss of generality we may assume 〈A,≺〉 to be densely
ordered. Let 〈Aξ, <ξ〉 be an ordered set of type ωξ, and let 〈B, <〉 be the
ordered union of the ordered sets 〈Aξ, <ξ〉, ξ < κ, with respect to 〈A,≺〉, i.e.,
the element xξ in 〈A,≺〉 is replaced by Aξ with the order <ξ on it, and these
well-ordered sets 〈Aξ, <ξ〉 follow each other exactly as the elements xξ follow
one another in 〈A,≺〉. It is clear that 〈A,≺〉 can be considered as part of
〈B, <〉 (in 〈B, <〉 the smallest elements of the sets Aξ form a subset similar
to 〈A,≺〉). It is also clear that for each ξ < κ there is a unique maximal
well-ordered subinterval of 〈B, <〉 with order type ωξ, namely Aξ (use that
〈A,≺〉 is densely ordered).

We claim that no two different initial segments of 〈B, <〉 are similar. In
fact, let S1 and S2 be two similar initial segments of 〈B, <〉, and let f : S1 →
S2 be a similarity mapping. The initial segment S1 has the following structure:
it is the ordered union of two sets S1

1 and S2
1 , where S1

1 is the ordered union of
some of the sets 〈Aξ, <ξ〉 with respect to ξ’s lying in an initial segment A1 of
〈A,≺〉, and S2

1 is an initial segment of one of the sets 〈Aξ1 , <ξ1〉. Also, since
〈A,≺〉 is densely ordered, there is no end segment of S1

1 that is well ordered.
Thus, S2

1 can be recognized as the (possibly empty) largest end segment of S1
that is well ordered. Now let S2 = S1

2 ∪ S2
2 be the analogous representation

of S2. Since a similarity mapping maps a well-ordered interval/end segment
into a well-ordered interval/end segment, it follows that f maps S2

1 into S2
2 ,

and hence it also maps S1
1 into S1

2 . If Aξ ⊆ S1
1 , i.e., ξ ∈ A1, then Aξ is a

maximal interval in S1
1 that is well ordered (recall that 〈A,≺〉 was assumed

to be densely ordered). Thus, its image is also a maximal interval in S1
2 of

type ωξ, which is possible only if ξ ∈ A2. The argument can be reversed with
ξ ∈ A2, and it follows that the two initial segments A1 and A2 of 〈A,≺〉 are
the same. Thus, S1

1 = S1
2 , and then S2

1 and S2
2 are similar initial segments of

the well-ordered set 〈Aξ1 , <ξ1〉, which is possible only if they are the same:
S2

1 = S2
2 . Thus, S1 = S2, which means that different initial segments of 〈B, <〉

are nonsimilar.



13

Euclidean spaces

1. Let f : R → Rn be a continuous mapping from R onto Rn. Based on
Problems 5.35 and 5.36 it is easy to see that there is such a mapping. Now
the family of sets {f−1[U ] : U ∈ U} is a family of open subsets of R that is
well ordered with respect to inclusion. Thus, the claim follows from Problem
6.38.

2. In the proof we need the following simple fact: for different t1, . . . , tM > 0
and different α1, . . . , αM a determinant of the form |tαj

i |Mi,j=1 is nonzero. One
can prove this by induction, the case M = 1 being trivial. Now suppose
that the claim is true for M − 1. Replace tM by a free variable t. Then
the determinant becomes a generalized polynomial S(t) =

∑M
i=1 ait

αi , which,
by the induction hypothesis, has nonzero coefficients. This S(t) vanishes for
t = t1, . . . , tM−1, and so it is sufficient to show that a nontrivial S of the
above form cannot have M positive zeros. This is proved again by induction
on M . If S had M positive zeros, then so would S(t)/tαM =

∑M
i=1 ait

αi−αM ,
and hence by Rolle’s theorem its derivative

S1(t) =
M−1∑
i=1

ai(αi − αM )tαi−αM −1

would have M − 1 positive zeros. This S1 is of the same form as S just M is
replaced by M − 1, so we can apply induction to conclude that S can have
only at most M − 1 zeros, by which we have proved the claim.

After this let us choose rationally independent positive real numbers
α1, α2, . . . , αn, and consider the set

B = {(tα1 , . . . , tαn) : t ∈ [0, 1]}.

We claim that every algebraic variety A intersects B in at most finitely many
points. In fact, let
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P (x1, . . . , xn) =
N∑

i1,...,in=0

ai1,...,inxi1
1 · · ·xin

n

be a nontrivial polynomial with zero set A. For t ∈ [0, 1] we have

P (tα1 , . . . , tαn) =
N∑

i1,...,in=0

ai1,...,inti1α1+···+inαn ,

and since the numbers αi are rationally independent, all the exponents on the
right are different. Thus, if there are (N +1)n different points t1, . . . , t(N+1)n ∈
[0, 1] that lie in A, then at these points we have

N∑
i1,...,in=0

ai1,...,inti1α1+···+inαn
j = 0, j = 1, 2, . . . , (N + 1)n.

But, according to what we proved above, the determinant of this (N + 1)n ×
(N +1)n linear system of equations is nonzero, which implies that all ai1,...,in

are zero, i.e., the polynomial P is identically zero. This contradiction proves
that B ∩ A can have at most (N + 1)n − 1 points.

Now it is clear that Rn cannot be covered by less than continuum many
algebraic varieties, for less than continuum many algebraic varieties can cover
less than continuum many points of the set B, and B is of power continuum.

3. Consider the set H of all subsets A of R3 which have the property that if
we connect the different points of A by a segment then all these segments are
disjoint. It is easy to see that if F is a subset of H ordered with respect to
inclusion, then the union of the sets in F also belong to H. Thus, by Zorn’s
lemma (see Chapter 14) there is a maximal (with respect to inclusion) set A
in H. All we have to show is that A is of cardinality continuum.

Suppose that to the contrary that A is of cardinality less than continuum.
If we consider all three points of A and the planes that they span, then we get
less than continuum many planes (more precisely, |A|3 = |A| many planes).
By Problem 2 the space R3 cannot be covered by less than continuum many
planes. Thus, there is a point P in R3 that does not lie on any plane spanned
by any three points of A. But then it is easy to see that P can be added to
A, because the lines through P and through points of A do not intersect lines
that connect two other points of A. This contradicts the maximality of A, and
this contradiction verifies the claim.

There are also easy constructions for the set in question. For example
A = {(t, t2, t3) : t ∈ [0, 1]} is appropriate, for no plane intersects A in
more than 3 points. [W. Sierpiński, Cardinal and Ordinal Numbers, Polish
Sci. Publ., Warszawa, 1965, IV.7/6]

4. Let H be an uncountable set in Rn, and first suppose that each sphere in
Rn contains only countably many points from H. We select points Pξ, ξ < ω1
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by transfinite induction in such a way that all the distances between them
are different. Suppose Pξ, ξ < η, have already been selected for some η < ω1.
Let Dη be the set of all distances between the points in the set {Pξ}ξ<η, and
let Sη be the union of all the spheres with center at some Pξ, ξ < η and
with radius d ∈ Dη. Then Sη is the union of countably many spheres, so our
assumption implies that in Sη there are only countably many points from the
set H, hence we can select a point ξη ∈ H \Sη. This procedure can be carried
out for all η < ω1, and it is clear that all the distances between the selected
points are different.

Now suppose that there is a sphere S such that S∩H is uncountable. Then
work on S with the set S∩H instead of H in the same fashion as we have done
above. It is still possible that for this set there is a sphere S′ different from
S such that on S′ the set S ∩ H has uncountably many points, but then on
the lower-dimensional sphere S ∩ S′ the set H has uncountably many points,
Thus, if we choose a sphere S with the smallest possible dimension on which
H has uncountably points, then the previous procedure can be carried out on
S with the set S ∩ H instead of H.

5. Let M be the set of all finite 0–1 sequences, and let f : M → N be a 1-to-1
and onto mapping; furthermore, let bj = (0, . . . , 0, 1, 0, . . .) be the element of
�2 which has zero coordinates except for the jth coordinate, which is 1. With
an =

√
3/2·2−n for an infinite 0–1 sequence ε = (ε1, ε2, . . .) define the element

hε ∈ �2 as

hε =
∞∑

n=1

anbf((ε1,ε2,...,εn)).

This way we define continuum many elements of �2, and we claim that if
ε′ = (ε′

1, ε
′
2, . . .) is another 0–1 sequence, then the distance between hε and hε′

is rational. In fact, if m is the smallest index with εm 
= ε′
m, then the distance

between hε and hε′ is( ∞∑
n=m

2a2
n

)1/2

=

( ∞∑
n=m

2
3
2
2−2n

)1/2

= 2−m+1.

6. This is an immediate consequence of the separability of �2, i.e., that there
is a countable dense set (e.g., the set of those elements that have rational
coefficients of which only finitely many are nonzero). In fact, if all the distances
between points of a set H are the same, say ρ, then the balls about points of
H of radius ρ/3 are disjoint, and each such ball contains at least one point
from our countable dense subset.

7. Assume that �2 = A0 ∪ A1 ∪ · · · is a decomposition. Let {bs : s} be an
orthonormal basis where we index with all finite strings of natural numbers.
If f : ω → ω is an infinite sequence of natural numbers we let
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af =
∞∑

n=0

1
2n

bf |n,

where f |n denotes the string of the first n elements of f . It is easy to see that
if f , g are infinite sequences of natural numbers, then the square distance
between af and ag is 2(4−n + 4−(n+1) + · · ·) = 2/(3 · 4n−1), where f and g
first differ at the nth place.

We are done if we can find some i < ω and some finite string s such that
for every extension s′ = sk (k = 0, 1, . . .) of s there is some fk : ω → ω such
that fk|(n + 1) = sk and afk

∈ Ai. Indeed, then these afk
’s will all have the

same distance from one another. Assume therefore that on the contrary, this
latter statement fails. Then the choice i = 0, s = ∅ is not good, i.e., there is
some k0 such that af /∈ A0 for any f with f(0) = k0. Next, the choice i = 1,
s = k0 is not good either, hence there is some k1 such that af /∈ A1 for any f
with f(0)f(1) = k0k1. Continuing this way, we get a sequence k0, k1, · · · such
that if f(i) = ki, i = 0, 1, . . ., then af is not in any of the sets Ai, which is a
contradiction, and this contradiction proves the claim.

8. There is a family H of cardinality continuum of subsets of N such that
the intersection of any two members of H is infinite, but the intersection of
any three members is finite (see Problem 4.35). For H ∈ H consider the point
bH = (±1,±1/2,±1/4, . . .) ∈ �2, where the nth coordinate in bH is 1/2n if
n ∈ H, and otherwise it is −1/2n. If bH and bK are two such points, then in
bH − bK the nth coordinate is 0,±2/2n, and it can be 2/2n only if the nth
coordinate in bK is −1/2n, and it can be −2/2n only if the nth coordinate
in bK is 1/2n. It follows that if bH ,bK ,bS are three different points of the
above type, then it is not possible to have simultaneously 2/2n for the nth
coordinate in bH − bK and at the same time to have −2/2n for the nth
coordinate in bS − bK . But this means that the inner product of bH − bK

and bS −bK is nonnegative. It is actually positive, since H ∩S is infinite but
H ∩ S ∩ K is finite, so there is an n ∈ (H ∩ S) \ K, and for this n the nth
coordinate both in bH − bK and bS − bK is 2/2n.

Thus, the inner product (bH −bK ,bS −bK) of bH −bK and of bS −bK

is positive, which means that the angle at bK in the triangle (bH ,bK ,bS) is
acute (recall that if ϕ is this angle, then

cos ϕ = (bH − bK ,bS − bK)/‖bH − bK‖‖bS − bK‖).

9. We show that there is a well ordering ≺ of R2 such that for every point
x ∈ R2 the set {

y ≺ x : d(y, x) ∈ Q
}

is finite. (Here d(x, y) is the Euclidean distance.) This suffices, as then we
can color R2 by a simple transfinite recursion along ≺ with countably many
colors, since at every point x we can extend the previously defined coloring on



Solutions Chapter 13 : Euclidean spaces 303

{y : y ≺ x} to the point x by omitting that finitely many colors that appear
at rational distances from x.

In order to prove the existence of ≺ we show that for every X ⊆ R2 there
is such a well-ordering, and this we do by transfinite induction on κ = |X|.

For κ ≤ ω any well order into type ≤ ω will do, and now assume that κ > ω
and that the claim has already been verified for sets of cardinality smaller than
κ. Call a set S ⊂ R2 ‘closed’ if x1, x2 ∈ S and d(x1, y) ∈ Q, d(x2, y) ∈ Q imply
y ∈ S. If S is any subset of R2, its ‘closure’ is ∪∞

i=0Si, where S0 = S, and each
Si is obtained from Si−1 by adding all points that are of rational distance
from some two points of Si−1. As for any pair (x1, x2) of points the set{

y ∈ R2 : d(x1, y) ∈ Q, d(x2, y) ∈ Q
}

is countable, it follows from Problem 10.4 that each Si is of cardinality
max(|S|,ℵ0), and hence the cardinality of the ‘closure’ of S is also at most
max(|S|,ℵ0).

Now we can decompose X as the union X = ∪α<κXα of increasing sets
Xα, α < κ, of cardinality less than κ such that each Xα is ‘closed’ and for
limit ordinal α we have Xα = ∪β<αXβ . This is easily achieved by transfinite
induction from any enumeration of X into a transfinite sequence of type κ
if we apply the ‘closure’ procedure and for limit ordinals α we set Xα =
∪β<αXβ (note that the union of increasing ‘closed’ sets is again ‘closed’). By
the inductive hypothesis, each Xα+1 \ Xα possesses a well-ordering ≺α as
needed. We can now define ≺ on X as follows: let x ≺ y if either x ∈ Xα,
y /∈ Xα for some α < κ or if x, y ∈ Xα+1 − Xα and x ≺α y for some α < κ.
This is a well-ordering (in fact, 〈X,≺〉 is the ordered union of well-ordered
sets with respect to α < κ). Furthermore if x ∈ Xα+1 \Xα, then, since Xα is
‘closed’, there is at most one point y ∈ Xα of rational distance from x, and,
by the choice of ≺α, there are only finitely many points y ∈ Xα+1 \Xα, y ≺ x
of rational distance from x.

10. Similarly as in the preceding solution, we show that there is a well-ordering
≺ of Rn such that for every x ∈ Rn the value

δ(x) = inf
{
d(y, x) : y ≺ x, d(y, x) ∈ Q

}
(13.1)

is positive. This done, we can color the points as follows. The color of x ∈ Rn

be an ordered pair (ε,q) where 0 < ε < δ(x) is a rational number and q ∈ Qn

is a rational point with d(x,q) < ε/2. This is indeed a good coloring. In fact, if
d(x, y) is rational and x and y would have the same color (ε,q), then we would
have d(x,q), d(y,q) < ε/2, and (say) x ≺ y, which give d(x, y) < ε < δ(y),
which is a contradiction.

We prove the existence of the well-ordering ≺ for every X ⊆ Rn by trans-
finite induction on κ = |X|. For κ ≤ ω any well-ordering into type ≤ ω will
do.

Given X of cardinality κ = |X| > ω we first decompose X into the union
X = ∪α<κXα of increasing subsets Xα, α < κ of cardinality less then κ such
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that for limit α we also have Xα = ∪β<αXβ . We shall also need one additional
property.

First of all we mention that if a0, . . . , ad (d ≤ n) are points in Rn in
general position (which means that there is no (d−1)-dimensional hyperplane
containing them), H is the d-dimensional hyperplane spanned by these points
and r0, . . . , rd are any rational numbers, then there can be at most one x ∈ H
with d(x, a0) = r0, . . . , d(x, ad) = rd. Indeed, if x, y ∈ H are both good then
y−x is orthogonal to a1−a0, . . . , ad −a0, therefore to every vector in H −a0.
In particular, it is orthogonal to itself, hence x = y. We can therefore require
(see the preceding proof), that each Xα is ‘closed’ in the following sense:
if a0, . . . , ad ∈ Xα (d ≤ n) are points in Xα in general position, H is the
d dimensional hyperplane spanned by them and r0, . . . , rd are any rational
numbers, and if there is an x ∈ H with d(x, a0) = r0, . . . , d(x, ad) = rd, then
this x belongs to Xα.

By the inductive hypothesis, each Xα+1 \ Xα has a well ordering ≺α as
required. We show that we can take ≺ as follows. If x ∈ Xα, y /∈ Xα for some
α, then set x ≺ y. If, however, x, y ∈ Xα+1 \ Xα for some α, then set x ≺ y
if and only if x ≺α y. This is clearly a well-ordering, and we have to show
that this ≺ satisfies the property that δ(x) from (13.1) is positive for all x,
and this boils down to proving that if x /∈ Xα, then there cannot be points
in Xα in rational distance from x and arbitrarily close to x. Assume to the
contrary, that this is not true, and that ai → x, as i → ∞, where ai ∈ Xα and
d(ai, x) ∈ Q. We can assume that a0, . . . , ad is a maximal subsystem of the
points ai in general position. Let H be the hyperplane spanned by a0, . . . , ad.
For i > d we have ai ∈ H, and, as ai → x, we get x ∈ H. But then we would
have x ∈ Xα by the construction, and the proof is over.

11. Identify the plane with C, and note that x, y, z ∈ C are the nodes of
an equilateral triangle if and only if z = ωx + ωy or z = ωy + ωx, where
ω = (1 +

√
3i)/2 and ω = (1−

√
3i)/2. Thus, our task is to decompose C into

countably many classes in such a way that the equation z = ωx + ωy has no
solution in any of the classes.

Let Q(
√

3) be the set of numbers of the form a+b
√

3 where a, b ∈ Q. This
is easily seen to be a subfield of C, and C is a vector space over Q(

√
3). Let

B be a basis of this vector space, and let ≺ be an ordering on B. Then every
nonzero x ∈ C has a unique representation

x = λi0bi0 + · · · + λinbin , (13.2)

where the coefficients λi0 , . . . , λin ∈ Q(
√

3) are nonzero numbers and bi0 ≺
· · · ≺ bin are from the basis B. Notice that there are countably many possible
ordered 〈λi0 , . . . , λin〉, n = 1, 2, . . . sequences from Q(

√
3), so we can decom-

pose C into countably many classes in such a way that numbers in the same
class have the same ordered coefficient sequence, and let 0 alone form a class.
We show that this decomposition of C is as required.
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Assume that the elements x, y, z of some class, say the one associated
with 〈λi0 , . . . , λin〉, satisfy z = ωx + ωy. Although the sequence 〈λi0 , . . . , λin〉
is the same for x, y, z, the associated sequences of basis vectors 〈bx

i0
, . . . , bx

in
〉,

〈by
i0

, . . . , by
in
〉, 〈bz

i0
, . . . , bz

in
〉, can be different. Let b be the smallest (with respect

to the ordering ≺ on B) of all the occurring basis elements, that is the minimal
element of

{bx
i0 , . . . , b

x
in

, by
i0

, . . . , by
in

, bz
i0 , . . . , b

z
in
}.

Let the coefficient of b in x, y, and z be respectively α, β, and γ. Each of α, β, γ
is either 0 or one of the numbers λi0 , . . . , λin

, and since b is the smallest of the
basis vectors appearing in the representation of x, y, z we can conclude that
of α, β, γ is either 0 or λi0 (recall that the bij ’s in the representation (13.2)
are in increasing order). Also, since the representation (13.2) is unique, we
must have γ = ωα+ωβ. But these imply that either α = β = γ = 0 (which is
impossible) or α = β = γ = λi0 . We have, therefore, bx

i0
= by

i0
= bz

i0
, and this

common term can be cancelled from x, y, and z. We can continue in the same
fashion, and get bx

i1
= by

i1
= bz

i1
, etc., finally all the components of x, y, z are

equal, that is, x = y = z. This proves the claim.

12. We call a set C ⊂ R2 a partial circle if there is a point P , called the center
of that partial “circle”, such that every half-line emanating from P intersects
C in at most one point. It is enough to cover the plane by countably many
partial “circles”.

Since the real line is part of a partial “circle”, it is enough to cover the
complement R2 \ R. We shall prove that for any countably infinite set K =
{P1, P2, . . .} on the real line and for any set H ⊂ R2 \ R there are partial
“circles” with different centers in K that cover H, and we shall do that by
induction on the cardinality of H. The case |H| ≤ ℵ0 being trivial, let us
assume that |H| = κ > ℵ0 and that the claim has been verified for all sets of
cardinality smaller than κ.

Let us call H ‘closed’ if it contains every point that is the intersection of
two lines determined by one–one points of H and K (i.e., the lines go through
at least one points of H and K). Exactly as in the proof of Problem 9 one
can easily show that H is included in a ‘closed’ set of cardinality κ, hence
without loss of generality we may assume H to be ‘closed’. Represent H as
H = ∪α<κHα, where the sets Hα are of cardinality smaller than κ, they are
‘closed’ and increasing, and for limit α we have Hα = ∪β<αHβ (see the proof
of Problem 9). We shall define by transfinite recursion on α an allocation of
the points of Hα into partial “circles” Ci,α with center in Pi ∈ K in such a way
that we keep previously defined allocations (i.e., Ci,β ⊆ Ci,α for β < α), and
the partial “circles” Ci,α themselves are also defined during the process. There
is nothing to prove if α is a limit ordinal; therefore, suppose that α = γ + 1,
and let Hγ = C1,γ ∪· · ·∪Cj,γ ∪· · ·, where Ci,γ is a partial “circle” with center
at Pi ∈ K. The induction hypothesis gives that the set Hγ+1 \ Hγ , which
has cardinality smaller than κ, can be covered by “circles” D1, D3, D5, . . .
with center at P1, P3, P5, . . ., and also by “circles” E2, E4, E6, . . . with center
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at P2, P4, P6, . . .. Thus, an arbitrary point P ∈ Hγ+1 \ Hγ is contained in
a “circle” D2j+1 and also in a “circle” E2k. Let the corresponding half-lines
emanating from P2j+1 resp. from P2k and containing P be l1 and l2. It is not
possible that both l1 and l2 intersect Hγ , for then we would have P ∈ Hγ

because Hγ is ‘closed’. But if, say, l1 ∩ Hγ = ∅, then P can be added to the
partial “circle” C2j+1,γ , i.e., we can put P ∈ C2j+1,α. This gives the allocation
of the points in Hγ+1\Hγ into the partial circles Cj , and the proof is complete.

13. Let Pα, α < c be an enumeration of the points of R3 into a sequence of
type c. By transfinite recursion we define sets Cα, α < c where either Cα = ∅
or Cα is a circle of radius 1 disjoint from every Cβ , β < α, and in any case
Pα ∈ ∪β≤αCβ . Clearly, then ∪α<cCα is an appropriate decomposition of R3.
The induction step is clear: for α < c if Pα ∈ ∪β<αCβ , then set Cα = ∅,
otherwise select as Cα a circle of radius 1 through Pα that is disjoint from
∪β<αCβ . That this is possible can be seen as follows. The nonempty circles
Cβ , β < α lie in less than continuum many planes, therefore there is a plane S
through Pα different from all of them. Thus, S intersects every Cβ , β < α, in

at most 2 points, so S ∩
(
∪β<αCβ

)
is of cardinality smaller than continuum.

Therefore, there is a circle C of radius 1 that lies in S, goes through Pα but
does not go through any of the points belonging to the set S ∩

(
∪β<αCβ

)
.

Then, clearly, C ∩ Cβ = ∅ for all β < α, and so we can select Cα = C.

14. The proof is along the same lines as in the previous problem. Let Pα,
α < c, be an enumeration of the points of R3 into a sequence of type c and
by transfinite recursion we define sets lα, α < c, where either lα = ∅ or lα
is a line not parallel with any line lβ , β < α, and in any case Pα ∈ ∪β≤αlβ .
Again, for α < c if Pα ∈ ∪β<αlβ , then set lα = ∅, otherwise select as lα a line
through Pα that is not parallel with any of the lines lβ , β < α. This selection
is possible, just select lα so that Pα ∈ lα and lα is different from the fewer
than continuum many lines l′β that go through Pα and are parallel with the
corresponding lβ ’s.

15. The proof below shows that it is indifferent if the intervals in question are
open, closed, or semiclosed, hence without loss of generality we may assume
A = [0, 1], B = [0, b], b > 1. It is enough to prove that there are a disjoint
decomposition B = ∪∞

i=0Bi and a 1-to-1 mapping F : B → A such that the
restriction F Bi

of F to any Bi is a translation. In fact, let G : A → B

be the identity mapping. By Problem 3.1 there are disjoint decompositions
A = A′ ∪A′′ and B = B′ ∪B′′ such that F maps B′ onto A′ and G maps A′′

onto B′′. Let B′
i = Bi ∩ B′, B′′

i = Bi ∩ B′′, A′
i = F [B′

i], and A′′
i = G−1[B′′

i ].
Since F is translation on Bi and G is the identity, we obtain that A′

i is a
translated copy of B′

i and A′′
i is a translated copy of B′′

i , which, together with
the disjoint representations

A =
(
∪∞

i=0A
′
i

)⋃(
∪∞

i=0A
′′
i

)
, B =

(
∪∞

i=0B
′
i

)⋃(
∪∞

i=0B
′′
i

)
,
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verifies the claim in the problem.
To get the representation B = ∪∞

i=0Bi and the 1-to-1 mapping F : B → A,
consider on R the equivalence relation x ∼ y ↔ x − y ∈ Q. Clearly, each
equivalence class intersects the interval [0, 1/2]; therefore, we get from the
axiom of choice that there is a set H ⊂ [0, 1/2] such that H intersects every
equivalence class in exactly one point. Since the sets H + r with different
r ∈ Q are disjoint and every real number belongs to exactly one of these sets,
it follows that ⋃

r∈Q∩[0,1/2]

(H + r) ⊆ [0, 1],

while ⋃
r∈Q∩[−1/2,b]

(H + r) ⊇ [0, b],

and this latter shows that

B =
⋃

r∈Q∩[−1/2,b]

(
(H + r) ∩ [0, b]

)

is a disjoint representation. Now let g : Q ∩ [−1/2, b] → Q ∩ [0, 1/2] be a
1-to-1 mapping, and define F as F (x) = x + (g(r) − r) if x ∈ (H + r) ∩ [0, b],
r ∈ Q ∩ [−1/2, b]. This F is a translation on (H + r) ∩ [0, b], and maps this
set into H + g(r) ⊂ [0, 1]. Thus, F maps [0, b] into [0, 1] and it is left to show
that it is 1-to-1. In fact, g is an injection, hence if F (x) = F (y), then x and
y both belong to the same (H + r) ∩ [0, b], and since F is a translation on
(H + r) ∩ [0, b], it follows that x = y.



14

Zorn’s lemma

1. Let (P, <) be a partially ordered set satisfying the condition on chains. By
the well-ordering theorem it can be well ordered as P = {pα : α < ϕ} for some
ordinal ϕ. We construct a chain L by determining with transfinite recursion
if pα ∈ L holds. First, put p0 into L. For α > 0, add pα to L if and only if
pα is greater than any pβ selected into L, with β < α. This obviously gives
a chain L. By condition, there is an upper bound pγ to L. We claim that pγ

is a maximal element. Assume not. Then some pδ > pγ . When we considered
pδ, we observed that it was bigger than every pβ selected into L with β < δ,
so we must have chosen it into L, that is, pδ ≤ pγ , which is a contradiction.

2. Let {Ai : i ∈ I} be a system of nonempty sets. Define the partially ordered
set (P, <) as follows. f ∈ P if and only if f is a function with Dom(f) ⊆ I and
f(i) ∈ Ai holds for every i ∈ Dom(f). Set f < f ′ if f ′ is a proper extension
of f , i.e., Dom(f ′) is a proper superset of Dom(f) and f(i) = f ′(i) holds for
every i ∈ Dom(f). Notice that P is nonempty as the empty function is in it.

Let L ⊆ P be a chain in (P, <). That is, if f, f ′ are two elements of L, then
either f < f ′ or f ′ < f holds. In either case, if f(i), f ′(i) are both defined,
then they are equal. With this in mind, we can define a function F as follows.
Dom(F ) =

⋃
{Dom(f) : f ∈ L}, and for an i in this set we let F (i) be the

unique value f(i) assume by all f ∈ L which are defined at i. Clearly, F ∈ P
and f ≤ F holds for every f ∈ L.

We can now apply Zorn’s lemma and get a maximal element F of (P, <).
We claim that Dom(F ) = I (and that finishes the argument). If not, then
there is some i ∈ I \ Dom(F ). Pick an element x ∈ Ai and extend F to F ′

as follows. Dom(F ′) = Dom(F ) ∪ {i} and F ′(i) = x. Then F ′ > F and that
contradicts the maximality of F .

3. Let A be a set for which we show, with the help of Zorn’s lemma, that it has
a well-ordering. We first define a partially ordered set 〈P, <〉. The elements
of P will be the ordered sets of the form 〈B, <B〉, where B ⊆ A, <B is a
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well order on B. P is a set as it is a subset of P(A) × P(A × A). Partially
order P the following way: 〈B1, <B1〉 ≤ 〈B2, <B2〉 if and only if B1 ⊆ B2 and
〈B2, <B2〉 end-extends 〈B1, <B1〉, that is, the ordering <B2 extends <B1 and
for x ∈ B1, y ∈ B2 \ B1, we have x <B2 y. Let L ⊆ P be a chain, we show
that it has an upper bound. Indeed, set C =

⋃
{B : 〈B, <B〉 ∈ L}, and for

x, y ∈ C, set x ≺ y if and only if x < y holds for some/all 〈B, <B〉 ∈ L with
x, y ∈ B.

We show that 〈C,≺〉 is a well-ordered set. Pick some x ∈ C (if the set is
empty, it is obviously well ordered). There is some 〈B, <B〉 ∈ L with x ∈ B.
As every 〈B′, <B′〉 ∈ L with 〈B, <B〉 ≤ 〈B′, <B′〉 end extends 〈B, <〉, we
have 〈C|x,≺〉 = 〈B|x, <〉, so every initial segment of 〈C,≺〉 determined by an
element is well ordered. Hence by Problem 6.36 〈C,≺〉 is well ordered.

Next we show that 〈B, <B〉 ≤ 〈C,≺〉 holds for every 〈B, <B〉 ∈ L. For
every 〈B′, <B′〉 ∈ L with 〈B, <B〉 ≤ 〈B′, <B′〉 we have that 〈B′, <B′〉 end
extends 〈B, <B〉, so 〈C,≺〉 end extends 〈B, <B〉, as well.

We now apply Zorn’s lemma and get some maximal 〈B, <B〉 ∈ P. We
claim that B = A, and so we are done. Assume otherwise, so B 
= A. Pick an
element a ∈ A\B. Define 〈B′, <B′〉 as follows. B′ = B∪{a} and let 〈B′, <B′〉
extend 〈B, <B〉 with making a greater than every element of B. Then clearly
〈B, <B〉 < 〈B′, <B′〉, so 〈B, <B〉 is not maximal, a contradiction.

4. Assume that (P,≤) is a counterexample. By the axiom of choice there are
functions F and G such that if L ⊆ P is a chain, then F (L) is an upper bound
for L and if p ∈ P, then G(p) > p (we use the axiom of choice to choose an
element from the nonempty set of elements bigger than p and similarly for
the chains). Using transfinite recursion, define for every ordinal α the element
pα ∈ P as follows. Let p0 ∈ P be arbitrary. For α limit then {pβ : β < α} is
a chain and then let pα = F ({pβ : β < α}). Further, let pα+1 = G(pα). It is
easy to see that α �→ pα is a strictly increasing operation, and so it is defined
for every α. But it is impossible to inject a proper class into a set; see the
argument in Problem 3.

5. From the previous problems.

6. (a) Consider the partially ordered set (P, <) of the disjoint pairs (A, B)
where A, B ⊆ R+, neither A nor B is empty, both are closed under addition
and multiplication by a positive rational number. There are such pairs, for
example, we can take A = Q ∩ R+ and B = Q

√
2 ∩ R+. Order P as follows.

(A, B) ≤ (A′, B′) if and only if A ⊆ A′ and B ⊆ B′. It is easy to see that the
condition on chains holds, so Zorn’s lemma applies, and there is a maximal
(A, B) ∈ P. We claim that A ∪ B = R+. Assume not, say, a /∈ A ∪ B, a > 0.
We cannot extend A by a, so there is a rational number 0 < q ∈ Q and x ∈ A
such that qa + x ∈ B. Similarly, we get a 0 < q′ ∈ Q, and a y ∈ B such
that q′a + y ∈ A. But then qq′a + q′x ∈ B, and qq′a + qy ∈ A. As A, B are
closed under addition and multiplication by positive rational numbers we get
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that qq′a + q′x + qy is both in A and B, so (A, B) is not an element of P, a
contradiction. [Zsigmond Nagy]

(b) Assume that R is a ring with a unity and I0 is a proper ideal. Consider the
following partially ordered set (P,≤). I ∈ P if I is an ideal of R, I0 ⊆ I and
1 /∈ I. Clearly, I0 ∈ P, so P is nonempty. We show that the condition on chains
holds. Assume that L = {Ia : a ∈ A} is a chain. Then I =

⋃
{Ia : a ∈ A} is an

upper bound. Indeed, it is a proper ideal, as 1 /∈ I holds. Let I be a maximal
element of (P,≤). Then clearly I is a maximal ideal in R.

(c) Let A be some set, F ⊆ P(A) a filter on A. Then F has the finite inter-
section property (f.i.p.), that is, if X1, . . . , Xn ∈ F , then X1 ∩ · · · ∩ Xn 
= ∅.
Set p ∈ Q if and only if F ⊆ p ⊆ P(A) and p has the f.i.p. Partially order
Q by putting p ≤ q if and only if p ⊆ q. Then clearly, 〈Q,≤〉 is a nonempty
partially ordered set.

We show the condition on chains. Let L ⊆ Q be a nonempty chain. We
show that q =

⋃
L is an element of Q (then obviously it will be an upper bound

for L). Assume that X1, . . . , Xn ∈ q. Then for appropriate p1, . . . , pn ∈ L we
have Xi ∈ pi (1 ≤ i ≤ n). We can as well assume that p1 ≤ · · · ≤ pn. Then
X1, . . . , Xn ∈ pn so X1 ∩ · · · ∩ Xn 
= ∅, and we are done.

We can, therefore, apply Zorn’s lemma, and get a maximal p ∈ Q. We show
that it is an ultrafilter. First, assume that X ∈ p, X ⊆ Y ⊆ A but Y /∈ p.
Then, p ∪ {Y } has the f.i.p., as if X1, . . . , Xn ∈ p, then X1 ∩ · · · ∩ Xn ∩ Y ⊇
X1 ∩ · · · ∩Xn ∩X 
= ∅, so p ∪ {Y } was a proper extension of p, contradicting
maximality. Next, assume that X, Y ∈ p but X ∩ Y /∈ p. Again, p ∪ {X ∩ Y }
has the f.i.p., so it was a proper extension of p. Finally, assume that X ⊆ A
yet neither X nor A\X is an element of p. Then, both p∪{X} and p∪{A\X}
fail to have the f.i.p., so there are Y1, . . . , Yn ∈ p and Z1, . . . , Zm ∈ p such
that Y1 ∩ · · · ∩ Yn ∩ X = ∅ and Z1 ∩ · · · ∩ Zm ∩ (A \ X) = ∅. But then

Y1 ∩ · · · ∩ Yn ∩ Z1 ∩ · · · ∩ Zm = ∅

and so p fails to have the f.i.p.

(d) Assume that V is a vector space, I0 a set of linearly independent vectors.
Let P be the partially ordered set of all linearly independent sets I0 ⊆ I. We
show the condition on chains. Indeed, if L ⊆ P is a chain, then the union of
the elements of L is also a set of linearly independent vectors as any finite
subset is in some I ∈ L, therefore a supposed counterexample to independence
would appear in some I ∈ L. Applying Zorn’s lemma, we get a nonextendable
I ∈ P. It is a basis, as should it not generate some x ∈ V then I ∪ {x} would
extend I.

(e) Let G be a generating system of the vector space V . We cannot work
with the reversely ordered generating subsets of G and seek for a minimal
element (the intersection of decreasing sequence G0 ⊇ G1 ⊇ · · · of generating
sets may be empty). Instead we let P be the partially ordered set of linearly
independent subsets I ⊆ G. We can now repeat the previous argument. If a
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maximal element I ∈ P is not a basis then it does not generate some x ∈ G
(recall that if every element of G is generated then so is the whole space) so
we can extend it to I ∪ {x}.
(f) Let P be the set of those isomorphisms ϕ that map some B1 onto some B2
where A ≤ B1 ≤ D1 and A ≤ B2 ≤ D2 and ϕ is the identity on A. Set ϕ ≤ ψ if
and only if ψ extends ϕ. P is nonempty as it contains, for example, the identity
on A. The condition on chains holds: if L is a chain, then

⋃
L (the union of

all elements of L) is an isomorphism extending every element of L. Let ϕ be
a maximal element of 〈P,≤〉. We show, and that suffices, that ϕ is defined on
D1. Assume not, and a /∈ B1 for some element a ∈ D1. Let n > 0 be the least
natural number with na ∈ B1. Then b = ϕ(na) ∈ B2; therefore, there is some
a′ ∈ D2, such that na′ = b. We can extend ϕ to the generated subgroup 〈B1, a〉
as follows: ψ(x + ka) = ϕ(x) + ka′ for x ∈ B1, 0 ≤ k < n. We claim that this
is sum preserving, i.e., ψ ((x + ka) + (y + k′a)) = ψ(x+ka)+ψ(y+k′a). This
is immediate if k + k′ < n. However, if k + k′ = n + � for some 0 ≤ � < n then
ka+k′a = na+�a and this indeed is mapped to b+�a′ = na′+�a′ = ka′+k′a′.

(g) Assume that (F, 0,+, ·) is a field. To get some elbow space let S ⊇ F be a
set of cardinality greater than that of F if F is infinite, and of cardinality ℵ1
if F is finite. Let P be the set of those fields (K, 0,+, ·) where F ⊆ K ⊆ S and
(K, 0,+, ·) is an algebraic extension of (F, 0,+, ·). Set (K, 0,+, ·) ≤ (K ′, 0,+, ·)
if (K ′, 0,+, ·) is indeed an extension of (K, 0,+, ·). Notice that by the condition
on algebraicity over (F, 0,+, ·), the inequality |K| < |S| always holds. It is
easy to see that the condition on chain holds (i.e., if {(Ki, 0,+, ·) : i ∈ I} are
algebraic extensions of (F, 0,+, ·) then so is their union). Now let (K, 0,+, ·)
be a maximal element in (P ,≤). If it is not algebraically closed, then there is
some irreducible p(x) such that p(x) = 0 is not solvable in K. As |K| < |S| we
can extend K in the usual way to some (K ′, 0,+, ·) in which there is a solution
to p(x) = 0. So this would be a proper algebraic extension of (K, 0,+, ·), a
contradiction.

(h) Let F be an algebraically closed field. Let P be the set of all subsets X ⊆
F that are algebraically independent, i.e., if a1, . . . , an are distinct elements
of X and p(x1, . . . , xn) is a nonzero polynomial over the prime field, then
p(a1, . . . , an) 
= 0. Partially order P by making X0 ≤ X1 if and only if X0 ⊆
X1. P is nonempty as ∅ ∈ P.

We show that 〈P,≤〉 satisfies the condition on chains. Let L ⊆ P be a
chain. Set Y =

⋃
L. If we show that Y ∈ P, then it will be obvious that Y is

an upper bound for L, and so we have our claim. Indeed, if a1, . . . , an ∈ Y , then
a1 ∈ X1, . . . , an ∈ Xn for some elements X1, . . . , Xn of L, and as L is ordered,
one of them, say Xn is the largest among them. So we have a1, . . . , an ∈ Xn,
and therefore they are algebraically independent.

Applying Zorn’s lemma we get a nonextendable B ∈ P. B is a transcen-
dence basis. Indeed, if a /∈ B, then B∪{a} cannot be in P, so p(a1, . . . , an, a) =
0 holds for some nonzero polynomial p(x1, . . . , xn, y) and elements a1, . . . , an ∈
B. Therefore, a is the root of a nonzero polynomial over B.
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(i) We first argue that it suffices to find a subset P ⊆ F which is closed under
addition, multiplication, and division, 0 /∈ P , and for every 0 
= a ∈ F either
a ∈ P or −a ∈ P . Indeed, given such a P ⊆ F we can define x < y exactly
when y − x ∈ P . Easy arguments show that < gives an ordered field on F .

In order to find such a set P ⊆ F , let P be the collection of those sets
P0 ⊆ P ⊆ F for which 0 /∈ P , x, y ∈ P implies x + y, xy, x/y ∈ P , and P0 is
the set of nonzero elements that can be written as the sum of finitely many
squares. Observe that P0 has the above closure properties: addition is trivial,
multiplication follows from the identity (

∑
a2

i )(
∑

b2
j ) =

∑
(aibj)2, and for

x/y we argue that x/y = (xy)/y2 so if xy =
∑

a2
i then x/y =

∑
(ai/y)2. P is,

therefore, nonempty, and if we order it by P ≤ P ′ if P ⊆ P ′, then it obviously
satisfies the condition on chains. We must show that if P is maximal, then
F = P ∪ {0} ∪ (−P ). Assume indirectly that a 
= 0 is such that a /∈ P and
−a /∈ P . We show that −a /∈ P implies that P can be extended with a, and
that, with the maximality of P , implies a ∈ P .

Let P ′ = {x + ya : x, y ∈ P}. We have to show that P ′ ∈ P. Indeed, if
0 = x + ya, then −a = x/y ∈ P , a contradiction to our assumption. P ′ is
manifestly closed under addition. If x + ya, x′ + y′a ∈ P ′, then (x + ya)(x′ +
y′a) = (xx′ +yy′a2)+(x′y +xy′)a ∈ P ′, and finally for division we argue that
(x + ya)−1 = (x + ya)(x + ya)−2 ∈ P ′.

(k) Let B be a subgroup of G maximal with respect to the property that
A∩B = 0 (the trivial subgroup). Such a B exists by Zorn’s lemma. We claim
that A+B = G and therefore G is the direct sum of A and B. Assume that this
is not the case, and x /∈ A+B for some element x. Then (B, x), the subgroup
generated by B∪{x}, properly extends B, therefore by the maximality of the
latter group we have A ∩ (B, x) 
= 0. That is, for some a ∈ A, a 
= 0, we have
a = b + nx with b ∈ B and n a nonzero integer. We found that there is some
element x /∈ A + B such that nx ∈ A + B holds for some positive integer.

Let p be the least positive number that occurs as such an n. Necessarily p
is prime. Let x be such that x /∈ A + B yet px = a + b for some a ∈ A, b ∈ B.
As A is divisible, there is some a′ ∈ A such that pa′ = a. Then py = b holds for
y = x−a′. Notice that y /∈ A+B as otherwise we had that x = a′+y ∈ A+B.
Once again, A ∩ (B, y) 
= 0, so a′′ = b′′ + ky for some 0 
= a′′ ∈ A, b′′ ∈ B.
k is not divisible by p, as otherwise b′′ + ky and therefore a′′ would be in B,
which is not the case. As p is prime, mk +p� = 1 holds for some integers m, �.
But then y = (mk + p�)y = m(a′′ − b′′) + � · b ∈ A + B, a contradiction.

(l) Let X be (the edge set of) a connected graph. Consider the partially
ordered set P of circuitless subgraphs Y of X with Y0 ≤ Y1 if and only if Y0
is a subgraph of Y1. The condition on chains holds for this partially ordered
set. Indeed, if {Yi : i ∈ I} is a chain, then Y =

⋃
{Yi : i ∈ I} is in P (every

purported circuit of Y would be in some Yi). Let Y be a maximal element of
(P,≤). Y has no circuits. If it is not a spanning tree, then, as X is connected,
there is some edge e such that Y ∪ {e} is still curcuitless, so properly extends
Y , a contradiction.
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(m) Let P be the partially ordered set of partitions of V that are good colorings
(that is, vertices in the same class are not joined). Define P ≤ Q in P if P is
finer than Q, i.e., every class of P is a subset of some class of Q. Redefine P as
those good colorings that are above a certain P which is a κ-coloring. (This
will ensure that every element of P is a κ-coloring.) We show that (P,≤)
satisfies the condition on chains. Indeed, assume, that L = {Pi : i ∈ I} is
a chain. Define x ∼ y in the graph if there is some Pi in which they are in
the same class. Clearly, ∼ is an equivalence relation. It is equally clear that if
x ∼ y, then x and y are not joined in X. ∼ therefore defines a partition in P
which is an upper bound for every element of L. By Zorn’s lemma, there is a
maximal P in P. Clearly, P is a partition, as required.

(n) Let (P,≤) be the partially ordered set of all closed, nonempty subsets
F ⊆ X with F + F ⊆ F with the reverse inclusion as partial ordering. P
is nonempty, as X ∈ P. We show that the condition on chains holds for
(P,≤). Indeed, if {Fi : i ∈ I} is a chain of nonempty closed subsets of X
with the above property, then, by compactness, F =

⋂
{Fi : i ∈ I} is closed

and nonempty, and for every i ∈ I we have F + F ⊆ Fi + Fi ⊆ Fi, so
F + F ⊆ F indeed holds. Applying Zorn’s lemma, there is some minimal,
nonempty F with F + F ⊆ F . Pick p ∈ F . Clearly, p + F 
= ∅ and by right
continuity p+F is closed. Furthermore, (p+F )+ (p+F ) ⊆ p+F +F +F ⊆
p + F , and p + F ⊆ F + F ⊆ F and so by minimality p + F = F . Hence
there is some q ∈ F with p + q = p. Set F ′ = {q ∈ F : p + q = p}. F ′ is
nonempty, by the right continuity of +, it is a closed set in X, and obviously
F ′ + F ′ ⊆ F ′, so again by the minimality of F we have F ′ = F , therefore
p + p = p. [S. Glazer, see: W. W. Comfort: Ultrafilters—some old and new
results, Bull. Amer. Math. Soc., 83(1977), 417–455]

7. Define the partially ordered set (P,≤) as follows. G ∈ P if and only if
G ⊆ F and for every finite X ⊆ S there is a subfamily of G which is an exact
cover of X. P is nonempty, as F ∈ P. Set G ≤ G′ if and only if G′ ⊆ G, that
is, we consider the reverse of the natural order.

We show that the condition for chains holds. Assume that some {Gi : i ∈ I}
is a chain in (P,≤). We have to find a G ∈ P such that Gi ≤ G holds for every
i ∈ I, that is, G ⊆ Gi holds for every i ∈ I. Therefore, we have to show
that G =

⋂
{Gi : i ∈ I} is an element of P. Let X be a finite subset of S.

Consider some x ∈ X. Let i = i(x) ∈ I be such that {F : x ∈ F ∈ Gi} has
the least possible number of elements. Then, if i ≥ i(x) and x ∈ F ∈ Gi(x),
then necessarily F ∈ Gi holds as well. Set i∗ = max{ix : x ∈ X} (exists, as
we consider the maximum of finitely many elements of an ordered set). By
condition, Gi∗ includes a subfamily F1, . . . , Ft which is an exact cover of X. By
the above arguments each Fj is in every Gi, so each Fj is in G =

⋂
{Gi : i ∈ I},

so G itself includes a subfamily which is an exact cover for X, therefore we
proved that G ∈ P.

We can therefore apply Zorn’s lemma and let G ∈ P be a maximal element.
We argue that G is an exact cover of S. It is clearly a cover (that is, S =

⋃
G).
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Assume that some x ∈ S is covered twice: x ∈ F1 ∈ G, x ∈ F2 ∈ G. Then by
the maximality of G, neither G \{F1} nor G \{F2} is an element of P, that is,
there are finite X1, X2 ⊆ S that G \ {F1}, resp. G \ {F2} does not include an
exact cover of. But, by condition, some G′ ⊆ G is an exact cover of X1 ∪ X2
and G′ surely misses either F1 or F2, and we reached a contradiction.

8. (a) Let P be the set of partial orders on P that extend <. That is, R ∈ P
if R ⊆ P ×P , 〈x, x〉 /∈ R (x ∈ P ), 〈x, y〉 ∈ R, 〈y, z〉 ∈ R imply 〈x, z〉 ∈ R, and
if x < y, then 〈x, y〉 ∈ R. Set R1 ≤ R2 if and only if R1 ⊆ R2. The condition
on chains holds for (P,≤): indeed, if L ⊆ P is a chain, then

⋃
L (the union

of the elements of L) is an upper bound for L. By Zorn’s lemma, there is a
maximal element R ∈ P. In order to show that R is an order on P , assume
that x 
= y are elements of P with 〈x, y〉, 〈y, x〉 /∈ R. Let R′ be the partial
order “generated” by 〈x, y〉, that is,

R′ = R ∪ {〈u, v〉 : 〈u, x〉 ∈ R or u = x, 〈y, v〉 ∈ R or v = y} .

Inspection shows that R′ ∈ P and it is strictly larger than R. As this is
impossible, R is indeed an order of P .

(b) If x, y ∈ P are incomparable, by the closing argument in part (a) there is
a partial ordering <′ on P extending < and with x <′ y, and another one <′′

for which y <′′ x. As <′ and <′′ can both be extended to an order, we are
done.

(c) Let (P, <) be a well-founded partially ordered set. Let r be a rank function
on P , i.e., an order-preserving map from P to the ordinals (see Problem 31.5).
Let <w be any well-ordering of the set P . Define x <′ y if and only if either
r(x) < r(y) or else r(x) = r(y) and x <w y. As the well-ordered union of
well-ordered sets is well ordered, this will give a well-ordering of P . Also, if
x < y, then r(x) < r(y) and so certainly x <′ y.

(d) It doesn’t. If (P, <) consists of incomparable elements and P happens to
be an unorderable set, then (a) is false for (P, <) yet (b) holds vacuously.

9. Assume that X is not compact. There is a base B such that every element
of B is the intersection of finitely many members of S and by our indirect
assumption there is some U0 ⊆ B that covers X but includes no finite subcover.
Let P be the partially ordered set of those covers U0 ⊆ U ⊆ B, which do not
include finite subcovers. Set U ≤ U ′ if U ⊆ U ′. The partially ordered set (P,≤)
satisfies the condition on chains: indeed, if {Ui : i ∈ I} is a chain in (P,≤) and
we set U =

⋃
{Ui : i ∈ I}, then U ∈ P as any possible finite subcover would

be included in some Ui. By Zorn’s lemma there is a maximal element U in P.
Pick some G ∈ U . G can be written as G = S1 ∩ · · · ∩Sn with S1, . . . , Sn ∈ S.
We claim that one of S1, . . . , Sn must be in U . Otherwise, by maximality of
U , for every 1 ≤ i ≤ n there would be a finite subfamily Ui of U such that
Ui ∪ {Si} is a cover of X. But then U1 ∪ · · · ∪ Un is a finite cover of X \ G,
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so U1 ∪ · · · ∪ Un ∪ {G}, a finite subfamily of U covering X, a contradiction.
We have that for every G ∈ U there is some G ⊆ S ∈ S ∩ U , so S ∩ U
covers X, but no finite subfamily covers X, which is in contradiction with the
assumption. [J. W. Alexander: Ordered sets, complexes, and the problem of
compactification, Proc. Nat. Acad. Sci. USA, 25(1939), 296–298]

10. Assume that X is the topological product of the spaces {Xi : i ∈ I} so
the elements of X are the choice functions f(i) ∈ Xi (for i ∈ I). By the
previous problem it suffices to find a subbase which has the property that
every cover includes a finite subcover. We show that S =

⋃
{Si : i ∈ I} is

such a subbase where G ∈ Si if there is a nonempty open set U in Xi such
that G = Gi(U) = {f ∈ X : f(i) ∈ U}. Notice that if {Uj : j ∈ J} cover Xi,
then {Gi(Uj) : j ∈ J} cover X. Assume that some S ′ ⊆ S covers X. Clearly,
S ′ =

⋃
{S ′

i : i ∈ I}, where S ′
i ⊆ Si. Let S ′

i = {Gi(U) : U ∈ Ci}.
If for some i ∈ I Ci is a cover of Xi, then we can choose a finite subcover

C′
i of Ci, (as Xi is compact) and then {Gi(U) : U ∈ C′

i} is a finite subcover
of X. Otherwise, for every i ∈ I there is some f(i) ∈ Xi uncovered by Ci, so
f ∈ X is not covered by S ′, a contradiction. [A. N. Tychonoff: Über einen
Funktionenraum, Math. Ann., 111(1935), 5]
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Hamel bases

1 See Problem 14.6(d).

2 See Problem 14.6(e)

3. Let the cardinality of some Hamel basis be κ. We can easily calculate the
cardinality of the generated vector space: it is ℵ0(κ+κ2 + · · ·) = ℵ0κ = κ and
since this must be equal to c, we obtain κ = c

4. Assume {bi : i ∈ I} is a Hamel basis. From the previous problem we know
that I is of cardinality c. Observe that if X ⊆ I then

{2bi : i ∈ X} ∪ {bi : i ∈ I \ X}

is also a Hamel basis. As we have produced one Hamel basis per every subset
of I, there are at least 2c Hamel bases. On the other hand, the total number
of subsets of R is 2c, so there cannot be more than 2c Hamel bases.

5. Let B be a Hamel basis and separate some infinitely many elements {bi}
so that as B = {b0, b1, . . .} ∪ B′ be a Hamel basis. Enumerate the intervals
with rational endpoints as I0, I1, . . .. Choose the rational numbers λ0, λ1, . . .
in such a way that λibi ∈ Ii holds for i = 0, . . .. Then {λ0b0, λ1b1, . . .} ∪ B′ is
an everywhere-dense Hamel basis.

6. Let C be the Cantor middle-third set. It is well known that C is nowhere
dense and of measure zero. It is also known that C + C contains every real in
[0, 1] so C is a generating set in R. By Problem 2 it includes a Hamel basis,
which then must be of measure zero.

7. B is a Hamel basis with full outer measure if B intersects every perfect
set of positive measure. As the number of perfect sets of positive measure
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is continuum, we can enumerate them in a well-ordered sequence of length
continuum: {Pα : α < c}. In a transfinite recursion of length c we select the
elements bα the following way. If Y = {bβ : β < α} have already been selected,
let X be the linear hull of Y . As |Y | < c, we have |X| < c, as well, so we
can pick bα ∈ Pα \ X. This will give a linearly independent set {bα : α < c}
intersecting every perfect set of positive measure. Extend it to a Hamel basis
(see Problem 1). [W. Sierpiński]

8. Assume that B is a measurable Hamel basis with positive measure. Pick b0 ∈
B. B′ = B \ {b0} is still measurable with the same measure. By Steinhaus’s
theorem, if h > 0 is small enough, then h is the difference of two elements of
B′. But then this is true for some qb0 with q 
= 0 rational, so B is not linearly
independent.

9. Assume that B ⊆ R is a Hamel basis that is an analytic set. Let b0 ∈ B be
an arbitrary element, and A the set linearly generated by B′ = B \ {b0} over
Q. We claim that A is also analytic. In fact, B′ is analytic. Now if H, K are
analytic sets, then H+K, being the projection of the plane analytic set H×K
onto the line y = x, is also analytic. By induction, if H1, H2, . . . are analytic,
then so is H1 + · · · + Hn for finite n. Finally, A =

⋃
{λ1B

′ + · · · + λnB′ :
λ1, . . . , λn ∈ Q}, hence it is analytic. Every analytic set is measurable, in
particular A is measurable. Since A − A = A 
= R, A must be of measure
zero (recall Steinhaus’ theorem that the difference set of any set of positive
measure includes an interval). But then R =

⋃
{qb0 + A : q ∈ Q} would

be the union of countably many sets of measure zero, a contradiction. [The
results of the last three problems are from W. Sierpiński: Sur la question de
la the mesurabilité de la base de M. Hamel, Fund. Math., 1(1920), 105–111;
see also F. B. Jones: Measure and other properties of a Hamel basis, Bull.
Amer. Math. Soc. 48(1942), 472–481. A. Miller proved that if the axiom of
constructibility is assumed, then there is a coanalytic Hamel basis. A. Miller:
Infinite combinatorics and definability, Annals of Pure and Appl. Logic 41
(1989), 179- 203]

10. By CH, there is a Hamel basis of the form {bα : α < ω1}. Every nonzero
real x can be written as

x = λ1(x)bα1(x) + · · · + λn(x)bαn(x)

with nonzero rational numbers λ1(x), . . . , λn(x) and ordinals α1(x) < · · · <
αn(x) for some natural number n. Denote αn(x) by β(x). We define the de-
composition R\{0} = A0∪A1∪· · · as follows. For every ordinal α < ω1 there
are exactly ℵ0 reals with β(x) = α. We distribute them such that every Ai

gets one and only one of them.
We claim that each Ai is a Hamel basis. Indeed, let µ1, . . . , µn be nonzero

rationals and x1, . . . , xn ∈ Ai different elements. The ordinals β(x1), . . . ,β(xn)
are different, and if β(xn) is the largest of them, then the coefficient of bβ(xn)
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is µnλ 
= 0 with some λ 
= 0 in the linear combination µ1x1+ · · ·+µnxn, hence
this linear combination cannot be zero. Thus, Ai is a rationally independent
set.

To show that Ai is a generating set, it suffices to verify that it generates
every bα. This we prove by induction on α. Assume we have reached bα, and
we have already proved the statement for all earlier basis elements. There is
one x ∈ Ai with β(x) = α. x can be written as x = y+λbα with y generated by
earlier elements, hence, in view of the induction hypothesis, by Ai. Therefore,
bα = (1/λ)(x − y) is also generated by Ai. [P. Erdős, S. Kakutani: On non-
denumerable graphs, Bull. Amer. Math. Soc., 49(1943), 457–461]

11. Assume indirectly that c ≥ ℵ2 yet R \ {0} = B0 ∪B1 ∪ · · · is the union of
countably many Hamel bases. As ℵ1 +ℵ2 = ℵ2 ≤ c we can find sets X, Y ⊆ R
such that |X| = ℵ1, |Y | = ℵ2, and even X ∪ Y is independent. Color the
complete bipartite graph on classes X, Y as follows. For x ∈ X, y ∈ Y let the
color of {x, y} be that n < ω for which x + y ∈ Bn. By Problem 24.27 there
are x1, x2 ∈ X, y1, y2 ∈ Y , and some n < ω such that xi + yj ∈ Bn holds for
i, j = 1, 2. But then, as (x1 + y1) + (x2 + y2) − (x1 + y2) − (x2 + y1) = 0, Bn

is not independent, a contradiction.

12. We are going to construct a Hamel basis B such that B+ is a Lusin set, i.e.,
it is of power continuum but intersects every set of first category in a countable
set. This suffices, as every Lusin set is of measure zero (see Problem 16.20(b)).
Let D = {dα : α < ω1} be an arbitrary Hamel basis and enumerate the first-
category Fσ sets as {Hα : α < ω1}. Recall that every first-category set is
included in a first-category Fσ set; therefore, it is sufficient to consider the
sets Hα. Suppose that at step α < ω1 we have already constructed a countable
part B0 of B, and we have countably many sets {Hβ : β < α} to worry about
in the sense that in the continuation of the construction we should not select
any point from these sets. That is, we have to ensure that no element of B+

with positive coefficients in B \ B0 will be in H =
⋃
{Hβ : β < α}. Let d

be the first element of D, not generated by B0. The idea is that we add two
elements to B0, namely x and x+d for some x ∈ R. This way, B will generate
every element of D, so it will be a Hamel basis. Of course, we need to make
sure that x, x + d are not linear combinations of elements of B0, moreover,
no element of the form u + px + q(x + d) is in H where u ∈ B+

0 , p, q ∈ Q,
p, q ≥ 0, p+ q > 0. The first condition excludes countably many real numbers
x. The second can be rewritten as x /∈ K, where K is a first-category set.
Hence x can be chosen to satisfy all conditions above, and then we can set
Bα+1 = Bα ∪{x, x+ d}. This completes the construction (for limit α’s let Bα

be the union of all Bβ with β < α). [P. Erdős and S. Kakutani, Bull. Amer.
Math. Soc., 49(1943), 457–461, P. Erdős, Coll. Math. X(1963), 267–269]

13. (a) Let B = {bi : i ∈ I} be a Hamel basis, {ci : i ∈ I} arbitrary reals,
indexed with the same index set I. We claim that there is one and only
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one additive function f with f(bi) = ci. As the mapping
∑

λibi �→
∑

λici

is additive, one direction is clear. For the other direction we have to show
that if f is additive and the coefficients λi are rational, then f (

∑
λibi) =∑

λif(bi), which boils down to showing that f(λx) = λf(x) if λ is rational.
From additivity, we get f(nx) = nf(x) for n = 1, 2, . . ., and f(0) = 0 is also
clear. As f(−x) = −x, the equality f(nx) = nf(x) also holds for negative
integers. Finally, if p

q is a rational number, x ∈ R, then f(1
q x) = 1

q f(x) and
f(p

q x) = p
q f(x) by the previous remarks.

(b) If there is some x with f(x) = 0, then f is identically 0. Otherwise, as
f(x) = f

(
x
2

)2, f is everywhere positive. Then f(x) = eg(x), where g : R → R
is additive, and so is described in (a).

(c) f(0) is either 0 or 1 and its value is independent of the other values of f .
If for some x 
= 0 we have f(x) = 0, then f is identically 0 on all nonzero
reals. As for x > 0 we have f(x) = f (

√
x)2, we may assume that f(x) > 0

for x > 0. f(−1) = ±1 so either f(−x) = f(x) or f(−x) = −f(x) holds.
Therefore, we can restrict to the calculation of f on positive reals. There, if
we set f(x) = eg(log x) then g(log x + log y) = g(log x) + g(log y), that is, g is
additive, and is described in (a).

(d) If g(x) = f(x) − f(0) then we find that g(x+y
2 ) = g(x)+g(y)

2 holds, and
g(0) = 0. Substituting y = 0 we obtain g(x/2) = g(x)/2 and that transforms
the identity into g(x + y) = g(x) + g(y). So the general solution is f(x) =
g(x) + c, where g is an additive function, described in part (a).

(e) For F (x) = f(x) + c the functional equation takes the form F (x + y) =
F (x) + F (y), hence part (a) can be applied. Thus, the solutions are the ones
from part (a) with some constant c added to them.

(f) f(0) = g(0) + h(0), hence

f(x) − f(0) = f(x + 0) − f(0) = g(x) + h(0) − (g(0) + h(0)) = g(x) − g(0),

and similar computation gives f(x)−f(0) = h(x)−h(0). Thus, for the function
F (x) = f(x) − f(0) we have F (x + y) = F (x) + F (y), hence part (a) can be
applied. Thus, the solutions are as follows: take any solution F from part (a)
and let f(x) = F (x)+a, g(x) = F (x)+b and h(x) = F (x)+c, where a = b+c
are constants.

(g) We have f(0) = (a + b)f(0); thus, if a + b 
= 1, then f(0) = 0, and
we get from the equation (by setting y = 0) f(x) = af(x), and similarly
f(x) = bf(x). Thus either f(x) ≡ 0 or a = b = 1 and f is an arbitrary solution
from part (a). On the other hand, if a + b = 1, then for F (x) = f(x) − f(0)
we get the equation F (x + y) = aF (x) + bF (y), and as here already F (0) = 0
we obtain F (x) ≡ 0 as before (in this case a = b = 1 is not possible). In
summary: if a + b = 1, then f is constant; if a = b = 1, then f is a solution
from part (a); and for all other a, b, the function f is identically zero.
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14. α, β are not commeasurable exactly when they are rationally independent,
hence by Problem 1 they can be embedded into a Hamel basis, and by Problem
13(a), we can arbitrarily prescribe f on that basis.

15. Let a, b be two noncommensurable reals. By Problem 1 there is a Hamel
basis B with a, b ∈ B. Every real x can uniquely be written as x = λ0bi0 +
· · · + λnbin where B = {bi : i ∈ I}, λi ∈ Q. Separate the term containing a;
x = λa + (the remaining terms) = f(x) + g(x). As the first term of x + b is
λa = f(x), the first term of x + a is (λ + 1)a, and the remaining terms are
unchanged, we get that f(x) is periodic with period b and g(x) is periodic
with period a

16. Let a, b, c be 3 reals, linearly independent over Q. By Problem 1 there is
a Hamel basis containing them. Every real can be written in this Hamel basis
as

x = λ1a + λ2b + (some other terms) = f(x) + g(x) + h(x)

and here (see the preceding proof) f(x) is periodic with period b and c, g(x)
is periodic with period a and c and h(x) is periodic with period a and b. So
x2 can be written as the sum of nine terms (like f(x)g(x), g(x)h(x), etc.),
each periodic by either a, or b, or c (e.g., f(x)h(x) is periodic with period b).
Grouping this representation of x2 so that the functions with the same period
get into a single group, we get the desired representation as the sum of three
periodic functions.

To prove that F (x) = x2 is not the sum of two periodic functions, assume
that F (x) = f(x) + g(x), where f(x) is periodic with period a > 0 and g(x)
is periodic with period b > 0. We claim that for every real x,

F (x + a + b) − F (x + a) − F (x + b) + F (x) = 0

holds. Indeed, by rearranging, we get

F (x + a + b) − F (x + a) − F (x + b) + F (x)
= (f(x + a + b) − f(x + b) − f(x + a) + f(x))
+ (g(x + a + b) − g(x + a) − g(x + b) + g(x)) = 0.

But the left-hand side is

(x + a + b)2 − (x + a)2 − (x + b)2 + x2 = 2ab 
= 0,

which is a contradiction, and this contradiction proves the claim.

17. The proof is similar to the previous one. As in the preceding proof let
a1, a2, . . . , ak+1 be k + 1 reals linearly independent over Q. By Problem 1
there is a Hamel basis containing them. Every real can be written in this
Hamel basis as
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x = λ1a1 + λ2a2 + · · · + λkak + (some other terms)
= f1(x) + f2(x) + · · · + fk(x) + (fk+1(x))

and here (see the preceding proof) fi(x) is periodic with period aj , j =
1, 2, . . . , k + 1 for every j 
= i. Now raising this expression to the kth power
we find that xk can be written as the sum of (k + 1)k terms each periodic by
either a1, a2, . . . ak or ak+1 (the point is that when we multiply out x · · · ·x,
no product can contain all of the fi’s, and if fi is missing from a particular
product then this product is periodic with period ai). As we have seen in the
preceding proof, that is enough if we collect the terms with the same period.

To prove that F (x) = xk is not the sum of k periodic functions, let
∆af(x) = f(x + a) − f(x). Note that for a 
= 0 if f is a polynomial of
degree m with leading term cxm then ∆af(x) is a polynomial of degree m−1
with leading coefficient cma. It is also clear that if f is periodic with period
b, then ∆af is also periodic with period b, while if f is periodic with period
a then ∆af(x) ≡ 0. These imply that if xk = f1(x) + · · ·+ fk(x), where fi(x)
is periodic with period ai 
= 0, then on the one hand

∆a1∆a2 · · ·∆ak
xk = k!a1a2 · · · ak 
= 0,

and on the other hand,

∆a1∆a2 · · ·∆ak
xk = ∆a1∆a2 · · ·∆ak

(f1(x) + · · · + fk(x)) ≡ 0.

This contradiction completes the proof.

18. Let B be a Hamel basis, b ∈ B, and let A be the linear span of B \{b} over
Q. Then R = ∪λ∈Q(A + λb) is a disjoint decomposition and A + λb, λ ∈ Q
are the only subsets of R that are congruent to A (note that −A = A). [W.
Sierpiński, Fund. Math., 35(1948), 159–164]

19. Let B be a Hamel basis, and let A be the linear span of B over Z, i.e.,
A consists of those elements y ∈ R such that if y = γ1b1 + · · · + γmbm is the
representation of x in terms of the basis B with rational coefficients, then all
γi are integers. Clearly, if b ∈ B, then b/2 
∈ A, so A 
= R. Now let x ∈ R
be arbitrary, and let x = λ1b

′
1 + · · · + λnb′

n be a representation of x in terms
of elements from B with nonzero rational coefficients λi. If N denotes the
common denominator of λ1, . . . , λn, then Nx ∈ A, and since A is closed for
addition it follows that A + Nx = A, hence A + (k + N)x = A + kx for all
k ∈ Z. Thus, only A, A + x, A + 2x, . . . , A + (n − 1)x can be different in the
sequence A, A + x, A + 2x, A + 3x, . . .. [E. Cech, see W. Sierpiński, Cardinal
and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965, XVII.1]

20. Let B = {bi : i ∈ I} be a Hamel basis and assume that ≺ is an ordering
of I. If x ∈ R, x 
= 0, write it as x = λ0bi0 + · · · + λnbin

, where i0 ≺ · · · ≺ in
and none of the rational coefficients λ0, . . . , λn is zero. Set x ∈ A if and only if
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λ0 > 0. Assume that a ∈ R\{0}. If the least (by ≺) coefficient of a is positive
then A + a ⊆ A, if it is negative, then A + (−x) ⊆ A, so A ⊆ A + a, and it is
easy to see that A and R \ A are both everywhere dense.

21. Let B = {bi : i ∈ I} be a Hamel basis with bj = 1. Let ≺ be an
ordering of I in such a way that j is the maximal element (but otherwise ≺ is
arbitrary). If x ∈ R\Q, write it as x = λ0bi0 + · · ·+λnbin where i0 ≺ · · · ≺ in
and none of the rational coefficients λ0, . . . , λn is zero. Set x ∈ A if and only
if x 
∈ Q and λ0 > 0, and let B = (R\Q)\A (that is, when λ0 < 0). A and B
are both closed under addition, as if λ0 and λ′

0 are the leftmost coefficients of
x and y, respectively, and they are both positive/negative, then the leftmost
coefficient of x + y is either λ0, λ′

0, or λ0 + λ′
0.

22. Let B = {bi : i ∈ I} be a Hamel basis that contains positive as well
as negative elements. If x ∈ R+, write it as x = λ0bi0 + · · · + λnbin where
bi0 < bi1 < · · · < bin and none of the rational coefficients λ0, . . . , λn is zero.
Set x ∈ A if and only if x > 0 and λ0 > 0, and let C = R+ \A. Both A and C
are closed under addition. Indeed, if λ0, λ

′
0 are the leftmost coefficients of x, y,

respectively, and they are both positive/negative then the leftmost coefficient
of x+ y is either λ0, λ′

0, or λ0 +λ′
0. If a is a positive element of B then a ∈ A,

while if c is a negative element of B then −c ∈ C. Thus, A and C are not
empty.

23. We remark first of all that if {a1, . . . , a17} satisfy the property in the
problem, then so do the systems {a1−b, . . . , a17−b} and {ca1, . . . , ca17}, where
b, c are real numbers. Assume first that the numbers {a1, . . . , a17} are integers.
By adding the same integer to them, we can achieve that they are natural
numbers and one of them is zero. The decomposition property implies that
upon removal any of them the remaining 16 numbers have an even sum, so all
numbers have the same parity, in this case, they are even. Dividing by 2, we get
a family of 17 numbers with exactly the same properties, i.e., they are natural
numbers, one of them is zero, and they have the decomposition property.
Again, they are even, we can divide by 2, etc. Division by 2 unboundedly
many times is only possible if all the initial numbers are equal to zero, so we
have the result for integers.

Assume now that the numbers a1, . . . , a17 are rational. By multiplying
them with an appropriate natural number we get a system of 17 integers that
must be equal by the preceding argument so our original system also consists
of equal numbers.

Assume finally that we have a system a1, . . . , a17 of real numbers. If B =
{bi : i ∈ I} is a Hamel basis, then our numbers can be written as

aj =
∑
i∈I

λj
i bi
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and now for each i ∈ I the system {λj
i : 1 ≤ j ≤ 17} is a system of 17 rational

numbers with the original property. We get, therefore, that λj
i = λi, that is,

our original numbers are equal.

24. Let B = {bi : i ∈ I} be a Hamel basis. Every nonzero real number x can
be uniquely written as

x = λi0bi0 + · · · + λinbin ,

where λi0 , . . . , λin are nonzero rational numbers and bi0 < · · · < bin . Notice
that there are countably many possible ordered 〈λi0 , . . . , λin〉 sequences, so
we can decompose R into countably many classes in such a way that reals in
the same class have the same ordered sequence of rational numbers (and let
0 alone form a class). We show that this decomposition of R is as required.

Assume that the distinct elements x, y, z of some class, say the one as-
sociated with 〈λi0 , . . . , λin〉 form a 3-element arithmetic progression, i.e.,
2y = x + z. Although the sequence 〈λi0 , . . . , λin〉 is the same for x, y, z, the
associated sequences of reals 〈bx

i0
, . . . , bx

in
〉, 〈by

i0
, . . . , by

in
〉, 〈bz

i0
, . . . , bz

in
〉, can be

different.
Let b be the least of all the occurring elements, that is the minimal element

of {bx
i0

, . . . , bx
in

, by
i0

, . . . , by
in

, bz
i0

, . . . , bz
in
}. Let the coordinate of b in x, y, and z

be α, β, and γ. Each of α, β, γ is either 0 or λi0 . Also, 2β = α + γ. But these
two latter properties imply that either α = β = γ = 0 (which is impossible) or
α = β = γ = λi0 . We have, therefore, that bx

i0
= by

i0
= bz

i0
. We can continue,

and get bx
i1

= by
i1

= bz
i1

, etc.; finally, all the coordinates of x, y, z are equal,
that is, x = y = z. [R. Rado]

25. In this solution we only consider rectangles with sides parallel to the xy-
axes. First we remark that every rectangle with commensurable sides can be
decomposed into the union of squares so what the problem states is to show
that if a rectangle can be split into squares then it has commensurable sides.
Let f and g be two additive functions on the reals, cf. Problem 13(a).

We associate with a rectangle R the value t(R) = f(a)g(b), where a, b are
the lengths of the sides of R parallel to the x-, resp. y-axis. We claim that
this function is additive on the rectangles, that is, if some rectangle R is split
into R1, . . . , Rn, then t(R) = t(R1) + · · · + t(Rn). In fact, draw all the lines
that include one of the sides of one of the rectangles Ri. These lines divide the
rectangle R into smaller rectangles, say Q1, . . . , Qm, and each Rj is the union
of some of the Qi’s. Actually, these representations in terms of the Qi’s are
regular in the sense that if Ri = [a, b]× [c, d] then Ri is the union of rectangles
of the form [p, q]× [c, d] (i.e., they have their [c, d] side equal to the [c, d] side
of Ri), and each such rectangle [p, q]× [c, d] is the union of rectangles Qi of the
form [p, q]× [r, s] (i.e., the [p, q] side of Qi equals the [p, q] side of [p, q]× [c, d]).
Since the same is true of R, the additivity can be reduced to the case when
a rectangle R is split with side-to-side cuts to smaller rectangles (i.e., with m
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horizontal and n vertical cuts into the union of mn rectangles) and that can
further be reduced to the case when a rectangle is split with either horizontal
or vertical cuts. Then the statement follows from the additivity of f and g.

If an a × b rectangle is divided into the union of squares S1, . . . , Sn, then
these squares can be rearranged to form a b × a rectangle (just make a 90-
degree rotation of the whole picture). With our previous statement this implies
that f(a)g(b) = f(b)g(a). In particular, with the choice g(x) = x it follows
that

f(a) =
a

b
f(b)

must be true. At this point f is still an arbitrary additive function. By Problem
14 if a and b are not commensurable, then we can choose the additive function
f so that this relation does not hold, and this proves that, indeed, a and b are
commensurable. [Max Dehn: Über die Zerlegung von Rechtecken in Rechtecke
Math. Ann., 57(1903), 314–332]

26. We first show that for every natural number n ≥ 1 the set {1, 2, . . . , n}
carries such an ordering. This we do by induction. It is clear for n = 1, 2.
We assume that {1, 2, . . . , n} has such an ordering ≺ and define one ≺′ for
{1, 2, . . . , 2n}. The idea is to put first the even numbers and then the odd
numbers, that is, if i ≺ j, set 2i ≺′ 2j and 2i − 1 ≺′ 2j − 1, and for any i, j,
make 2i ≺′ 2j − 1. If x, y, z form a 3-element arithmetic progression, and all
three of them have the same parity, then x ≺′ y ≺′ z is not possible because
of the induction hypothesis (on the even and odd numbers ≺′ is a transform
of ≺). If not, then x + z = 2y shows that only y can have a different parity
from the other two, and in this case x ≺′ y ≺′ z is again not possible, for any
number lying (with respect to ≺′) in between two numbers of the same parity
has the same parity.

From this case we immediately get the statement for every finite subset of
Q, and from that, using König’s lemma on infinity (Problem 27.1), for Q.

Assume now that B = {bi : i ∈ I} is a Hamel basis. Fix ≺, an ordering
with the required property for Q. If x, y are real numbers, write them in the
form x = λ1b1 + · · · + λnbn, x = λ′

1b1 + · · · + λ′
nbn with b1 < · · · < bn and

rational λi, λ
′
i (notice that for each i one of λi, λ

′
i may be zero). Put x ≺′ y if

λi ≺ λ′
i for the first i with λi 
= λ′

i. It is easy to see that this is an ordering.
Assume that x, y, z form a 3-element arithmetic progression, and x ≺′ y ≺′ z.
Write them as x = λ1b1+· · ·+λnbn, y = λ′

1b1+· · ·+λ′
nbn, z = λ′′

1b1+· · ·+λ′′
nbn

and let i be the first coordinate with some two of λi, λ
′
i, λ

′′
i different. Then,

as x, y, z form a 3-element arithmetic progression, the values λi, λ
′
i, λ

′′
i are

different, only one of them can be zero, and this is the coordinate which is
decisive in the comparison of x, y, and z, i.e., we must have λi ≺ λ′

i ≺ λ′′
i .

Furthermore, 2λ′
i = λi + λ′′

i and such a λi, λ
′
i, λ

′′
i triplet is impossible by the

choice of ≺. This contradiction proves the claim. [Géza Kós, Gyula Károlyi]

27. Let B be a Hamel basis in R and C a similar basis in C, i.e., C is a
basis of the vector space C over the field Q. Both B and C are of cardinality
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continuum (see Problem 3); therefore, there is a one-to-one correspondence
f : B → C between them. Now it is clear that the mapping

F (λ1b1 + · · · + λnbn) = λ1f(b1) + · · · + λnf(bn)

(λ1, . . . , λn ∈ Q) is an addition-preserving bijection between R and C.



16

The continuum hypothesis

1. If CH holds we can enumerate R as R = {rα : α < ω1}. If we are given
(x, y) ∈ R × R, then x = rα, y = rβ for some countable ordinals α and
β. Set (x, y) ∈ A if and only if α < β. Assume that L is a horizontal line,
L = {(x, c) : x ∈ R} for some c ∈ R. If β < ω1 is the ordinal such that
rβ = c, then (x, c) ∈ A if and only if x = rα for some α < β and there
are countably many ordinals like that. Assume now that L is a vertical line,
L = {(c, x) : x ∈ R} for some c ∈ R. If α < ω1 is that ordinal for which
rα = c, then (c, x) ∈ B if and only if x = rβ for some β ≤ α and there are
countably many ordinals like that.

For the other direction assume that c ≥ ℵ2 and there is a decomposition
R2 = A ∪ B as above. Pick a subset U ⊆ R of cardinality ℵ1. By condition
on A, for every y ∈ R there is some u = u(y) ∈ U such that (u, y) /∈ A,
so (u, y) ∈ B. As |R| > |U |, there is some u ∈ U that occurs uncountably
many times as u(y), so in this case the vertical line L = {(u, y) : y ∈ R} has
uncountably many points in B, a contradiction. [W. Sierpiński]

2. If CH holds, there is a Sierpiński decomposition, R2 = A ∪ B (see the
previous problem). By adding points to the sets A and B we may assume
that A intersects every horizontal line and B intersects every vertical line in
ℵ0 points. For every y ∈ R the countably infinite set {x : (x, y) ∈ A} can
be counted as {g0(y), g1(y), . . .} and similarly, for every x ∈ R the countably
infinite set {y : (x, y) ∈ B} can be counted as {f0(x), f1(x), . . .}. Now R2 =
A ∪ B is the union of the graphs of the partial functions x �→ fn(x) and
y �→ gn(y).

For the other direction, if R2 is the union of countably many x �→ y and
y �→ x functions, then letting A be the union of the graphs in the second
class, B that of in the first class, we get a Sierpiński decomposition, and we
conclude with the second part of the previous problem.

3. Assume first that CH holds and R = {rα : α < ω1}. Fix, for every α < ω1,
an injection ϕα : α + 1 → ω. Assume we are given (x1, x2, x3) ∈ R3 we
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determine where to put it. Assume x1, x2, x3 are rα, rβ , rγ in some order with
α, β ≤ γ. Compare ϕγ(α) and ϕγ(β). Assume that ϕγ(α) ≤ ϕγ(β) (say). If
now rα = xi then put (x1, x2, x3) into Ai. We show that Ai ∩ L is finite if
L is a line in the direction of the xi-axis. For definiteness’ sake assume that
i = 1. The elements of L are triples of the form (x, b, c) with some fixed
b, c ∈ R. If (x, b, c) = (rα, rβ , rγ), then it is added to A1 if either α, β ≤ γ and
ϕγ(α) ≤ ϕγ(β) or else α, γ ≤ β and ϕβ(α) ≤ ϕβ(γ). Given β, γ there are only
finitely many α that satisfy either one of the requirements.

For the other direction assume that c ≥ ℵ2 and R3 = A1 ∪ A2 ∪ A3
is a decomposition as claimed. Pick U, V, W ⊆ R of cardinality ℵ0,ℵ1,ℵ2,
respectively. For any given (u, v) ∈ U ×V there are finitely many z ∈ W with
(u, v, z) ∈ A3 so, as |U × V | = ℵ0ℵ1 < ℵ2 = |W |, we can find some c ∈ W
that (u, v, c) /∈ A3 for u ∈ A1, v ∈ A2. For any given u ∈ U there are only
finitely many y ∈ V that (u, y, c) ∈ A2, so, as |V | = ℵ1 > ℵ0 = |U |, we can
choose some b ∈ V that (u, b, c) /∈ A2 holds for every u ∈ U . Finally, the set
{u ∈ U : (u, b, c) ∈ A1} is finite, so we can choose some a ∈ U not in it,
and then, (a, b, c) is not in any of A1, A2, A3. But this contradicts the choice
of the sets Ai and this contradiction shows that we must have c = ℵ1. [W.
Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa, 1965,
XIV.9. Theorem 1]

4. Assume that there is such a decomposition R3 = A1∪A2∪A3. Pick U ⊆ R
with |U | = 3m + 1. Then |U × U × U | = (3m + 1)3 but for i = 1, 2, 3 we
have that |Ai ∩ (U × U × U)| ≤ m(3m + 1)2, i.e., (3m + 1)3 ≤ 3m(3m + 1)2,
a contradiction.

5. The proof is similar to that of Problem 3. For an alternative proof utilizing
induction, see the solution to Problem 10.15.

Let us assume first that c ≤ ωn. For each U ⊆ R let <U be a well-
ordering of U in order type |U |. For (x0, . . . , xn+1) ∈ Rn+2 let i0 be such
that xi0 is the maximal element of {x0, . . . , xn+1} in the ordering <R, and
set U0 = {x ∈ R : x ≤ xi0}. Note that |U0| < ωn and {xj : j 
= i0} is a
subset of this set. Let us suppose that for some 0 ≤ k ≤ n − 1 the numbers
i0, . . . , ik and the sets U0, . . . , Uk have already been selected, |Uk| < ωn−k,
and the set {xj : j 
= i0, . . . , ik} is part of Uk. Let ik+1 be such that xik+1

is the maximal element of {xj : j 
= i0, . . . , ik} in the ordering <Uk
, and set

Uk+1 = {x ∈ R : x ≤Uk
xik+1}. Since the index of xik+1 with respect to <Uk

is necessarily smaller than |Uk| < ωn−k, we get |Uk+1| < ωn−k−1, and the
induction runs through. It follows that Un is finite, and if 0 ≤ in+1 ≤ n + 1 is
the index that differs from every ij , j ≤ n, then xjn+1 is an element of Un. Note
that everything (ij , Uj , j = 0, . . . , n) depends on the point X = (x0, . . . , xn),
and to show this dependence we write iXj , UX

j .
This way we get an ordering iX0 , . . . , iXn+1 of the set 0, 1, . . . , n + 1, and let

us put the point X = (x0, . . . , xn+1) into the class Ain+1 . We show that each
Ai is finite in the xi-direction. For simpler notation let i = 0, and l be a line in
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the direction of the x0- axis. The points on l are of the form X = (x, c1, . . . , cn)
where c1, · · · , cn are fixed reals. Such a point belongs to A0 if and only if iXj ≥ 1
for all j ≤ n and iXn+1 = 0, which implies x ∈ UX

n . There are only finitely many
permutations of the form i0, i1, . . . , in, 0 of the numbers 0, 1, . . . , n + 1, and
if for another point X ′ = (x′, c1, . . . , cn) on l we have the same permutation,
i.e., iX0 = iX

′
0 , . . ., iXn = iX

′
n , then for these two points the sets Uj are the

same for all j ≤ n, in particular UX
n = UX′

n . Then we have x′ ∈ UX′
n = UX

n ,
and since UX

n is finite, there are only finitely many such points X ′ in A0.
Since this is true for all permutations i0, i1, . . . , in, 0, altogether there are
only finitely many points of A0 on the line l. This completes the existence of
the decomposition.

Suppose now that Rn+2 = A0 ∪ · · · ∪ An+1 and each Ai is finite in the
xi-direction. On the contrary to the claim let us suppose that c > ℵn, and
for i ≤ n let Xi ⊂ R be a set of cardinality ℵi. Every line of the form
(x0, . . . , xn, y), xi ∈ Xi, y ∈ R intersects An+1 in finitely many points, and
since there are only ℵ0ℵ1 · · · ℵn = ℵn < c such lines, there is a cn+1 ∈ R
such that all points (x0, . . . , xn, cn+1), xi ∈ Xi, i ≤ n, lie outside An+1.
In a completely analogous manner there is a point cn ∈ Xn such that all
points (x0, . . . , xn−1, cn, cn+1), xi ∈ Xi, i ≤ n − 1, lie outside An, etc.. This
way we get numbers c1, . . . , cn+1 such that all points (x0, c1, . . . , cn+1), x0 ∈
X0, lie outside A1, . . . , An+1. Hence all these points should lie in A0, which
is impossible since A0 intersects the line (x, c1, . . . , cn+1), x ∈ R in only
finitely many points. This contradiction proves that we must have c ≤ ℵn.
[W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ., Warszawa,
1965, XV.9]

6. Let us assume first CH, and let A, B be the sets from Problem 1. We
may assume that A has countably infinitely many points xr

0, x
r
1, . . . on every

horizontal line y = r and B has countably infinitely many points ys
0, y

s
1, . . .

on every vertical line x = s. We set f1(t) = t sin t for t ∈ (−∞, 1) and
f2(t) = t sin t for t ∈ (−1,∞). Then whatever the definition of these functions
are on the rest of the real line, one of them is always differentiable. The idea
of the proof is to choose f1(t) on [1,∞) in such a way that (f1(t), f2(t)),
t ∈ [1,∞), cover the points of the set A, while to choose f2(t) on (−∞,−1] in
such a way that (f1(t), f2(t)), t ∈ (−∞,−1], cover the points of the set B. For
example, the first one can be done as follows: the function f2(t) = t sin t takes
every value r infinitely many times on the interval [1,∞), let us list them as
tr,0, tr,1, . . .. Now let f1(tr,j) = xr

j , i.e., if f2(t) takes a particular value r jth
time, then we choose f1(t) in such a way that (f1(t), f2(t)) be the jth point
(xr

j , r) from A on the line y = r. With this choice of f1 we clearly cover the set
A by the points (f1(t), f2(t)), t ∈ [1,∞). The selection of f2 for t ∈ (−∞,−1]
is similar: if the points t ∈ (−∞,−1] with f1(t) = t sin t = s are listed as
t∗s,0, t

∗
s,1, . . ., then let f2(t∗j,s) = ys

j . With this choice of f2 we cover the set B
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by the points (f1(t), f2(t)), t ∈ (−∞,−1], and the first part of the problem
has been verified.

Now let us assume that there is a surjection t → (f1(t), f2(t)) of R onto the
plane in such a way that for all t one of the functions f1 or f2 is differentiable
at t. Let Hi, i = 1, 2 be the set of points where fi is differentiable. Then
R = H1∪H2. By Problem 5.15 the set Yi of those y for which the intersection
f−1

i (y) ∩Hi is uncountable is of measure zero. Let R∗ = R \ (Y1 ∪ Y2). Then
R∗, as the complement of a set of measure zero, is of cardinality continuum,
and if

A∗ = {(f1(t), f2(t)) : t ∈ H2}, B∗ = {(f1(t), f2(t)) : t ∈ H1},

then for every horizontal line � the set R∗ × R∗ ∩ A∗ ∩ � is countable: if
� has the form y = r, r ∈ R∗, then there are only countably many t ∈
H2 with f2(t) = r by the choice of the set R∗ ⊆ R \ Y2. In an analogous
manner, for every vertical line � the set R∗ ×R∗ ∩B∗ ∩ � is countable. Thus,
R∗ × R∗ = (R∗ × R∗ ∩ A∗) ∪ (R∗ × R∗ ∩ B∗) is a decomposition of the
“plane” R∗ × R∗ as in Problem 1, hence CH must hold (if we want to apply
1 directly to R2 then let g : R∗ → R be a bijection between R∗ and R
and consider the sets A = {(g(x), g(y)), : (x, y) ∈ R∗ × R∗ ∩ A∗} and
B = {(g(x), g(y)), : (x, y) ∈ R∗×R∗∩B∗}) [M. Morayne: On differentiability
of Peano type functions I, Colloq. Math., 53 (1988), 129–132]

7. If CH holds, then R = {rα : α < ω1}. If we set Aα = {rβ : β < α}, then
{Aα : α < ω1} is an increasing chain of countable sets with R as the union.

Assume now that {Ai : i ∈ I} is an increasing chain (i.e., there is an
ordering ≺ on I and if i ≺ j then Ai ⊆ Aj) of countable sets, and

⋃
{Ai :

i ∈ I} = R. Let B ⊆ R be a set of cardinality ℵ1. For x ∈ B there is
some i(x) ∈ I such that x ∈ Ai(x). Should there be an index j ∈ I such
that i(x)  j held for every x ∈ B we would get B ⊆ Aj , a contradiction.
We have, therefore, that for every j ∈ I there is some x ∈ B that j ≺ i(x),
so R =

⋃
{Ai : i ∈ I} ⊆

⋃
{Ai(x) : x ∈ B}, a set of cardinality at most

ℵ1ℵ0 = ℵ1.

8. For the forward direction if CH holds and R = {rα : α < ω1}, then we can
set f(rα) = {rβ : β < α}. If X ⊆ R is uncountable, then for every rα ∈ R
there is some β > α, rβ ∈ X, and so rα ∈ f(rβ) ⊆ f [X].

For the other direction, if f is as required, choose some X ⊆ R of cardi-
nality ℵ1 then, as f [X] = R, we get c = |R| ≤ |X|ℵ0 = ℵ1ℵ0 = ℵ1.

9. Suppose CH, and let {xα}α<ω1 be an enumeration of the reals, {yα}α<ω1

another enumeration of them in which each number is listed infinitely often
and for each α < ω1 let {ξα

k }∞
k=0 be an enumeration of the set {β : β ≤ α}.

Define fk(xα) as fk(xα) = yξα
k
. If a is a real number then there are β0, β1, . . .

such that yβi = a for all i = 0, 1, 2, . . ., and for every α > supi βi there are
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kα
0 , kα

1 , . . . such that ξα
kα

i
= βi. For each such k = kα

i we have fk(xα) = yξα
k

=
yβi

= a, hence for all such α the set Axα,a = {n < ω : fn(x) = a} is infinite.
Conversely, let us suppose that the sequence f0, f1, . . . with the stated

properties exists, but c > ℵ1. Let K ⊂ R be a set of cardinality ℵ1, and
for each a ∈ K let Ha be the set of those x ∈ R for which Ax,a is finite.
By the properties of the functions fi then each Ha is countable, so ∪a∈KHa

is of cardinality at most ℵ1, hence, by the assumption c > ℵ1, there is an
x∗ ∈ R \ (∪a∈KHa). Now each Ax∗,a, a ∈ K is infinite, which is impossible
since these are disjoint subsets of ω. This contradiction proves the claim that
c ≤ ℵ1.

10. Suppose CH, let {xα}α<ω1 be an enumeration of the reals, and let {yα
k }∞

k=0,
α < ω1 be an enumeration of all real sequences in such a way that every
real sequence is listed infinitely often. For each α < ω1 let {ξα

k }∞
k=0 be an

enumeration of the set {β : β ≤ α}. Define fk(xα) as fk(xα) = y
ξα

k

k . If
{ak}∞

k=0 is a real sequence then there are β0, β1, . . . such that {yβi

k }∞
k=0 =

{ak}∞
k=0 for all i = 0, 1, 2, . . ., and for every α > supi βi there are kα

0 , kα
1 , . . .

such that ξα
kα

i
= βi. For each such k = kα

i we have

fk(xα) = y
ξα

k

k = yβi

k = ak,

hence for all such α the set Axα,a = {k < ω : fk(x) = ak} is infinite.
The converse follows from the preceding problem if we just consider con-

stant sequences.

11. If CH holds then with the functions fk from the preceding problem the
family F = {{fk(x)}∞

k=0 : x ∈ R} is clearly appropriate. Conversely, suppose
that F with the stated properties exists. Then F must be of cardinality con-
tinuum (otherwise we can define a sequence {an} such that an is different from
the nth element in the sequences in F). Thus, we can index the sequences in F
by the elements of R, say F = {{ax

n}∞
n=0 : x ∈ R}. Now if we set fn(x) = ax

n

for x ∈ R and n = 0, 1, . . ., then this sequence {fn} of functions satisfies the
properties set forth in Problem 10. Now we can conclude CH from Problem
10.

12. Suppose CH, and let {xα}α<ω1 be an enumeration of the reals, and
({yα

k }∞
k=0, {nα

k}∞
k=0), α < ω1, enumeration of all the pairs consisting of a real

sequence and a subsequence of ω. For each α < ω1 let {ξα
k }∞

k=0 be an enu-
meration of the set {β : β ≤ α} in such a way that ξα

0 = 0. We define the
values fi(xα) as follows. For each k = 0, 1, 2, . . . we define a natural number
mα

k and together with it the function value fmα
k
(xα): let mα

0 = 0, f0(xα) = 0,
and suppose that mα

0 , mα
1 , . . . , mα

k−1 are already defined. Let mα
k be any ele-

ment in the sequence {nξα
k

j }∞
j=0 different from every mα

i , i < k, say mα
k = n

ξα
k

j ,

in which case we define fmα
k
(xα) = y

ξα
k

j (note that by the choice of mα
k the
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value of fmα
k
(xα) has not been defined before). If m is not of the form mk,

k = 0, 1, . . ., then let fm(xα) be arbitrary.
We claim that this system of functions satisfies the requirements. Suppose

to the contrary that X ⊂ R is an uncountable set such that fnk
[X] 
= R for

k = 0, 1, . . ., and for each j let yj ∈ R \ fnj
[X]. The pair ({yk}∞

k=0, {nk}∞
k=0)

is listed above, say it is
(
{yβ

k }∞
k=0, {n

β
k}∞

k=0

)
. Let xα ∈ X be a number with

α > β. Then β is one of the numbers ξα
k , say β = ξα

k0
. Now mα

k0
is one

of the numbers nβ
j = nj , say mα

k0
= nj0 . But then fnj0

(xα) = yβ
j0

= yj0 ,
which is impossible since yj0 
∈ fnj0

[X]. This contradiction proves the necessity
direction in the problem.

Conversely, suppose that the fn’s with the stated property exist. If X is
any subset of R of cardinality ℵ1, then there is an n (actually all but finitely
many n are such) with fn[X] = R, hence c = |R| ≤ |X| = ℵ1.

13. One direction is clear, for if CH holds then there are only ω1 infinite subsets
of ω, so we can list all of them in {Aα : α < ω1}. Conversely, suppose that
there is a family {Aα : α < ω1} of infinite subsets of ω such that if X ⊆ ω
is infinite then there is some αX < ω1 with AαX

\ X finite. If X and Y are
infinite subsets such that X ∩ Y is finite, then we must have αX 
= αY , for
X and Y contain all but finitely many points of AαX

and AαY
, respectively.

But there is a family F of cardinality c of almost disjoint subsets of ω (see
Problem 4.29), and since then the mapping X → αX , X ∈ F is an injection
of F into ω1, we must have c ≤ ω1. [F. Rothberger, Fund. Math., 35(1948),
29–46]

14. If CH holds and xα, α < ω1 is an enumeration of the reals, then Aα =
{xβ : β < α}, α < ω1 = c is clearly appropriate. Conversely, if c > ω1
and J ⊂ I is a subset of cardinality ℵ1 of the index set I, then ∪i∈JAi is of
cardinality at most ℵ1, hence B = R \ (∪i∈JAi) is infinite but it does not
intersect any of the Ai, i ∈ J , and the number of these latter sets is not
countable.

15. Assume CH. Let {bα : α < ω1} be a Hamel basis (see Problem 15.3). If
x 
= 0, it can be written as x = λ1bα1 + · · · + λnbαn

where the coefficients
λ1, . . . , λn are nonzero rational numbers and α1 < · · · < αn. Denote by µ(x)
the largest index αn. Put x ∈ A if and only if µ(x) is an even ordinal (i.e., of
the form α + 2k where k < ω and α is a limit ordinal). To show the property
required one has to notice that if a ∈ R is given, then µ(x + a) = µ(x) holds
if µ(x) > µ(a), which in turn holds for all but countably many x ∈ R. Thus,
if x ∈ A (x ∈ B), then x+ a ∈ A (x+ a ∈ B) for all but countably many x. It
is clear that both A and B are of cardinality continuum, so these sets satisfy
the requirements.

For the other direction assume that c ≥ ℵ2 and R = A∪B is a decomposi-
tion as claimed. Select A′ ⊆ A and B′ ⊆ B of cardinality ℵ1. Let {rα : α < ω2}
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be distinct reals. By the assumption on the sets A and B for every α < ω2
there are aα ∈ A′ and bα ∈ B′ such that aα + rα ∈ A, bα + rα ∈ B. There are
a ∈ A′, b ∈ B′ such that for ℵ2 many α we have aα = a, bα = b. Then, for these
α, b + rα ∈ (A + (b − a)) ∩ B so the latter set is uncountable. But this con-
tradicts the hypotheses on A and B, and this contradiction proves the claim.
[St. Banach: Sur les transformations biunivoques, Fund. Math. 19(1932), 10–
16. L. Trzeciakiewicz: Remarque sur les translations des ensembles linéaires,
Comptes Rendus de la Société des Sciences et des Lettres de Varsovie Cl. III.,
25(1932), 63–65]

16. Assume CH, and let xα, α < ω1 be an enumeration of the reals. For a set
A ⊆ R2 let D(A) denote the set of distances between points of A. Let us call
a set C ⊂ R2 “closed” if the following is true: if y is a point such that there
are two points u, v ∈ A with dist(y, u), dist(y, v) ∈ D(A), then y ∈ A. First of
all let us remark that for any countable set B there is a “closed” countable set
B∗ including B (the smallest of which may be called the “closed” hull of B).
In fact, starting from B0 = B, for each k = 0, 1, 2, . . . let Bk+1 be obtained
by adding to Bk all points y for which there are two points u, v ∈ Bk with
dist(y, u), dist(y, v) ∈ D(Bk). Clearly each Bk is countable, and it is easy to
see that B∗ = ∪∞

k=0Bk is the smallest “closed” set including B, and clearly
B∗ is countable.

Now we define an increasing sequence of “closed” and countable subsets
Cα, α < ω1 of R2: let C0 = ∅, for limit ordinal α let Cα = ∪β<αCβ and other-
wise for α = β + 1 let Cα be the “closed” hull generated by Cβ and the point
xα. Induction shows that each Cα is countable. Using these “closed” sets we
can define the decomposition R2 = A0 ∪A1 ∪ · · · by defining a decomposition
Cα = Aα

0 ∪ Aα
1 ∪ · · · in such a way that each Aα

i , α < ω1 is increasing in α,
and neither of these sets contains 4 distinct points a, b, c, and d such that
dist(a, b) = dist(c, d). Clearly, if we can do that, then Ai = ∪α<ω1A

α
i will be

an appropriate decomposition of R2.
Suppose that Aβ

i have already been defined for all i = 0, 1, . . . and all β < α

with the property above. If α is a limit ordinal, then set Aα
i = ∪β<αAβ

i . Since
Ca = ∪β<αCβ , these give an appropriate decomposition of Cα. Now consider
α = β + 1. The set Cα \ Cβ is countable. Furthermore, for each y ∈ Cα \ Cβ

there can be only one j = jy such that in Aβ
j there is a point u such that

dist(y, u) = d for some d ∈ D(Aβ
j ) ⊆ D(Cβ) (a second j∗ 
= j and v ∈ Aβ

j∗

would imply y ∈ Cβ since Cβ is “closed”). So y cannot be put to the set
Aβ

jy
, but it can be put to any other set Aβ

i since Aβ
i ∪ {y} will not have 4

distinct points a, b, c, and d such that dist(a, b) = dist(c, d). Thus, we can
put the points y ∈ Cα \ Cβ into different sets Aβ

ky
with ky 
= jy, ky 
= kz if

y, z ∈ Aα \ Aβ , y 
= z, and setting Aα
ky

= Aβ
ky

∪ {y} completes the definition
of the sets Aα

i .
To prove the other direction let us assume that c ≥ ℵ2 and let R2 =

∪∞
n=0An be a decomposition of R2 into countably many classes. Consider the
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complete bipartite graph G with vertex sets {x : x ∈ (0, 1)} and {y : y ∈
(1, 2)}, and let us color an edge (x, y) by the color i if the point (x, y) belongs
to Ai. By Problem 24.27 there are x1, x2 ∈ (0, 1) and y1, y2 ∈ (1, 2) and an
i such that all the edges (xj , yk), j, k = 1, 2, are of color i. But the points
a = (x1, y1), b = (x1, y2), c = (x2, y1), and d = (x2, y2) form a rectangle and
all belong to Ai. This shows that if CH is not true then there is no partition
of R2 with the properties in the problem.

17. Assume CH. Then R is the union of an increasing family of countable
sets Aα, α < ω1 (Problem 16). By enlarging each Aα if necessary, we may
assume that each Aα is closed for addition and subtraction. Furthermore, we
may assume that if α is a limit ordinal, then Aα = ∪β<αAβ (if this is not the
case, then rename each Aα as Aα+1, and for limit α set Aα = ∪β<αAβ). We
define by transfinite recursion a coloring fα : Aα → ω in such a way that fα

extends fβ if β < α, and there is no monochromatic solution of x + y = u + v
in Aα. For α = 0 color the elements of A0 with different colors. If α is a limit
ordinal, just take fα = ∪β<αfβ . Finally, if α = β + 1, then under fα color
the elements of Aα \ Aβ by different colors arbitrarily (and on Aβ keep the
coloring fβ). This satisfies the requirement, for if x + y = u + v with different
x, y, u, v ∈ Aα, then three of these numbers cannot belong to Aβ for then the
fourth would also belong to Aβ . Hence at least two of them belong to Aα \Aβ

and then these get different colors. Now ∪α<ω1fα is a coloring of R without
monochromatic solutions to the equation x + y = u + v.

If CH is not true, then under any coloring of R there is a monochromatic
solution by Problem 24.37.

18. Call a subset H ⊆ R “closed” if x, y ∈ H implies (x + y)/2 ∈ H and
2y − x ∈ H, i.e., if two of the points x, x ± δ are in H, then the third one is
also in H. It is clear that any countable set is included in a countable “closed”
set; therefore, if we assume CH then, starting from H0 = {0}, we can represent
R as a strictly increasing union of countable “closed” sets: R = ∪α<ω1Hα. We
may also assume that for limit α we have Hα = ∪β<αHβ (otherwise redefine
Hα to this union). Let f0(0) = 1, and by induction we define functions fα on
Hα in such a way that for β < α the function fα is an extension of fβ , and
for each α and x ∈ Hα

lim
hn→0, x±hn∈Hα

max (fα(x − hn), fα(x + hn)) = ∞. (16.1)

First let α = β + 1, and let us assume that fβ with this property has already
been defined. Let us enumerate Hα as x0, x1, . . ., where the x2i’s are the
elements of Hβ and the x2i+1’s are the elements of Hα \ Hβ (for which we
have to define the value fα(x2i+1), since fα(x2i) = fβ(x2i) are given). Define

fα(x2i+1) =
(

min
j<2i+1

|xj − x2i+1|
)−1

.
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Note that if x = xm, and either x + hn = xs ∈ Hα \ Hβ , s > m, or x − hn =
xs ∈ Hα \ Hβ , s > m, then

max{fα(x + hn), fα(x − hn)} ≥ 1/2hn. (16.2)

Furthermore, this is also true (regardless if s > m or not) provided both x+hn

and x − hn belong to Hα \ Hβ (consider the maximum of the indices s, l for
which x+hn = xs and x−hn = xl). Now let x ∈ Hα and let hn → 0 in such a
way that x±hn ∈ Hα. By selecting a subsequence we may assume that either
x±hn ∈ Hβ for all n, or for all n one of the points x+hn and x−hn belongs
to Hα \Hβ . In the former case x ∈ Hβ (recall that Hβ is “closed”), so by the
induction hypothesis (16.1) is true. In the latter case (16.2) is true for all but
finitely many n, hence (16.1) holds again.

Next let α be a limit ordinal. To verify (16.1) it is enough to show that
from any h′

m → 0 with x ± h′
m ∈ Hα we can select a subsequence {hn}

for which (16.1) is true. Now for each h′
m let βm be the smallest index with

x ± h′
m ∈ Hβm

. Then βm < α, and there are two possibilities: supm βm < α
or supm βm = α. In the former case for β = supm βm the point x as well as
all the points x ± h′

m lie in Hβ , hence (16.1) is true for the whole sequence
hn = h′

n by the induction assumption. In the second case there is an increasing
sequence m0 < m1 < m2 < . . . such that βmn+1 > βmn

and supn βmn
= α,

and then we set hn = h′
mn

. Since in this case both x+hn and x−hn belong to
Hβmn

\ ∪γ<βmn
Hγ , the inequality (16.2) is true for all n ≥ 1, and this proves

(16.1).
This completes the definition of the functions fα. Set f(x) = fα(x) for

some α for which fα(x) is defined. The proof that this satisfies

lim
hn→0, x±hn∈Hα

max (f(x − hn), f(x + hn)) = ∞

is completely analogous to what we have just done.

19. Assume first that c > ℵ1 and F is an uncountable family of entire func-
tions. Select F ′ ⊆ F of cardinality ℵ1. If f, g are distinct entire functions
then the set {x ∈ C : f(x) = g(x)} is countable so there are at most ℵ1 < c
points in which two members of F ′ may agree. If a is outside this set, then
{f(a) : f ∈ F ′} is uncountable (since all the values f(a), f ∈ F ′ are different).

For the other direction assume the continuum hypothesis and enumerate
C as {cα : α < ω1}. Let Q∗ = Q + Qi be the set of complex numbers with
rational real and imaginary parts. Our goal is to define the distinct entire
functions {fα : α < ω1} such that for any β < ω1{

fα(cβ) : α < ω1
}
⊆ Q∗ ∪

{
fγ(cβ) : γ ≤ β}.

As this set is countable, we will be finished. Assume we have arrived at the αth
step. Reorder {cβ : β < α} as {dn : n < ω} and {fβ : β < α} as {gn : n < ω}.
Our function fα will have the form
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fα(z) = ε0(z − d0) + ε1(z − d0)(z − d1) + · · ·

for some numbers ε0, ε1, . . . selected inductively. If ε0, . . . , εn−1 are selected,
we choose εn in such a way that for

fα(dn+1) = ε0(dn+1 − d0) + · · · + εn(dn+1 − d0)(dn+1 − d1) · · · (dn+1 − dn)

we have gn(dn+1) 
= fα(dn+1) and fα(dn+1) ∈ Q∗, and besides these also let
|εn| small enough to ensure that the series for fα(z) converges for all z. For
example, if we have

|εn|(2n)n
(
1 + |d0|

)
· · ·

(
1 + |dn|

)
< 1,

then we have convergence: if n > |z|, then∣∣εn(z − d0) · · · (z − dn)| ≤ |εn|
(
n + |d0|

)
· · ·

(
n + |dn|

)
≤ |εn|n(1 + |d0|) · · ·n(1 + |dn|)

= |εn|nn
(
1 + |d0|

)
· · ·

(
1 + |dn|

)
<

1
2n

so the series uniformly converges on every disc. [P. Erdős: An interpolation
problem associated with the continuum hypothesis, Michigan Math. Journ.
11(1964), 9–10]

20. (a) Every first category set is included in a first-category Fσ set. The num-
ber of the latter sets is c = ℵ1. Let {Aα : α < ω1} be a list of first-category
Fσ sets. Notice that for every α < ω1 the set

⋃
{Aβ : β < α} is of first cat-

egory. If we pick xα ∈ R \ (
⋃
{Aβ : β < α}), then A = {xα : α < ω1} is a

Lusin set for A∩Aα is included in the countable set {xβ : β ≤ α}. [P. Mahlo:
Über Teilmengen des Kontinuums von dessen Machtigkeit, Sitzungberichte
der Sachsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-
Naturwissenschaftliche Klasse, 65(1913), 283–315. N. Lusin: Sur un probléme
de M. Baire, Comptes Rendus Hebdomadaires Siences Acad. Sci. Paris,
158(1914), 1258–1261]
(b) There is a decomposition R = X ∪Y where X is of the first category and
Y is of measure zero. Indeed, for every n we can cover the rational numbers by
open intervals of total length < 1/2n, and the intersection of all these covering
sets is of measure 0, while its complement is of the first category (since it is
the union of countably many nowhere dense sets).

Now if A is a Lusin set, then A ∩ X is countable, so all but countably
many elements of A are in Y , so A is of measure zero.

21. One direction is clear by Problem 20 and by the fact that if CH holds then
every set of cardinality < c is countable.

Conversely, suppose that A is a Lusin set and every subset of R of cardi-
nality < c is of first category. Let us enumerate the reals into a sequence rα,
α < c, and consider the sets
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Aα = A
⋂

{rβ : β < α}, α < c.

By the assumption the set in the bracket is of first category, and hence by the
Lusin property of A each set Aα is countable. But ∪α<cAα = A, hence we
have a representation of a set of power continuum as the union of an increasing
chain of countable sets. Now apply Problem 7.

22. Every set of measure zero is included in a Gδ set of measure zero. The
number of the latter sets is c = ℵ1. Let {Aα : α < ω1} be a list of the Gδ sets
of measure zero. Notice that for every α < ω1 the set

⋃
{Aβ : β < α} is of

measure zero. If we pick xα ∈ R \ (
⋃
{Aβ : β < α}), then A = {xα : α < ω1}

is a Sierpiński set for A ∩ Aα is included in the countable {xβ : β ≤ α}.
[W. Sierpiński: Sur l’hypothèse du continu (2ℵ0 = ℵ1), Fund. Math., 5(1924),
177–187]
(b) There is a decomposition R = X ∪ Y where X is of first category and Y
is of measure zero (see the solution to 20(b)). If A is a Sierpiński set, then
A ∩ Y is countable, so all but countably many elements of A are in X, so A
is of first category.

23. The proof is similar to that of Problem 21. One direction is clear by
Problem 22 and by the fact that if CH holds, then every set of cardinality < c
is countable.

Conversely, suppose that A is a Sierpiński set and every subset of R of
cardinality < c is of zero measure. Let us enumerate the reals into a sequence
rα, α < c, and consider the sets

Aα = A
⋂

{rβ : β < α}, α < c.

By the assumption the set in the bracket is of measure zero, and hence by
the Sierpiński property of A, each set Aα is countable. But ∪α<cAα = A,
hence we have a representation of a set of power continuum as the union of
an increasing chain of countable sets. Again apply Problem 7.

24. A set B ⊆ [0, 1] is of outer measure 1 if it intersects every compact set
K ⊆ [0, 1] of positive measure. Let us assume CH and let Kα, α < ω1, be an
enumeration of the compact subsets of [0, 1] of positive measure. We define
by induction the increasing sequence of sets Bα, Cα, α < ω1, in such a way
that for all α both Bα and Cα are countable, Bα ∩ Kβ 
= ∅, Cα ∩ Kβ 
= ∅ for
β < α and Bα × Cα ⊂ A. Then clearly B = ∪α<ω1Bα and C = ∪α<ω1Cα are
suitable. In order that the induction run through we also require that for any
b ∈ Bα the set {y : (b, y) ∈ A} is of linear measure 1 and for any c ∈ Cα the
set {x : (x, c) ∈ A} is of linear measure 1.

For limit ordinal α < ω1 just set Bα = ∪β<αBβ , Cα = ∪β<αCβ . Now
let Bα and Cα be defined and we define the next sets Bα+1 and Cα+1 by
adding one–one points to Bα and Cα. By the hypothesis for each b ∈ Bα



338 Chapter 16 : The continuum hypothesis Solutions

the set {y : (b, y) ∈ A} is of linear measure 1, therefore the same is true
of ∩b∈Bα{y : (b, y) ∈ A}. Thus, this set intersects Kα in a set of positive
measure, and for almost all points c of the intersection Kα ∩ (∩b∈Bα{y :
(b, y) ∈ A}) the set {x : (x, c) ∈ A} is of linear measure 1. Pick such a c = cα

and let Cα+1 = Cα ∪{cα}. By the choice of cα we have Bα ×{cα} ⊂ A, hence
Bα ×Cα+1 ⊂ A. Select in an analogous way a point bα in Kα ∩ (∩c∈Cα+1{x :
(x, c) ∈ A}) and let Bα+1 = Bα ∪{bα}. The construction gives that these sets
satisfy all the requirements.

25. Enumerate the rationals as Q = {qi : i < ω}. By CH we can enumerate
the sequences of positive reals as {(εα

i : i < ω) : α < ω1}. The set

Gα =
⋃
i<ω

(qi − εα
i , qi + εα

i )

is dense and open. By the Baire category theorem the set Xα =
⋂
{Gβ : β <

α} is a dense Gδ set of cardinality continuum. We can therefore inductively
select aα ∈ Xα different from every aβ , β < α. Now the set A = {aα : α < ω1}
is as required. [A. S. Besicovitch: Concentrated and rarified sets, Annals of
Mathematics, 62(1934), 289–300]

26. A Lusin set (Problem 20) A has this property: if B ⊂ A is not dense in any
interval, then it is nowhere dense in R, hence B = A ∩ B must be countable.

27. If L is a Lusin set (Problem 20) then A = L ∪ Q has this property: if
B ⊂ A is nowhere dense in the interval topology, then it is nowhere dense in
R, hence B = A ∩ B must be countable.

28. Let A be a set as constructed in Problem 20. Assume that we are given
the positive reals ε0, ε1, . . .. There are intervals I0, I2, I4, . . . (one around each
rational point) of length ε0, ε2, ε4, . . . such that A\(I0∪I2∪I4∪· · ·) is countable
. This countable set can be covered by some intervals of the respective lengths
ε1, ε3, . . ..

29. Assume CH, and enumerate the first-category Fσ sets in R into a sequence
Iα, α < ω1, and the Gδ sets of measure zero into a sequence Oα, α < ω1.
We may also assume that I0 = O0 = ∅ and that these sequences of sets
are increasing. It is easy to verify that the complement of a first-category
set includes a first-category set of cardinality continuum, and likewise the
complement of a set of measure zero includes a set of measure zero and of
cardinality continuum. Thus, for every α > 0 there is an index γα such that
both sets Iγα \ Iα and Oγα \Oα are of cardinality continuum. Define now the
sequence τα, α < ω1, as τ0 = 0, τα = supβ<α τα if α is a limit ordinal, and
τα+1 = γτα otherwise. Then⋃

α<ω1

(Iτα+1 \ Iτα) =
⋃

α<ω1

Iτα+1 =
⋃

α<ω1

Iα = R



Solutions Chapter 16 : The continuum hypothesis 339

and ⋃
α<ω1

(Oτα+1 \ Oτα) =
⋃

α<ω1

Oτα+1 =
⋃

α<ω1

Oα = R

are decompositions of R into disjoint subsets of power continuum. Thus, any
one-to-one correspondences between the sets Iτα+1 \Iτα and Oτα+1 \Oτα induce
a permutation π of R. If A is of first category, then A ⊂ Iα for some α, hence,
as π[A] ⊂ Oα, the set π[A] is of measure zero. Similarly, it follows that if B is
of measure zero, then π−1[B] is of first category.



17

Ultrafilters on ω

1. Let F be a maximal filter and A ⊆ ω, A 
∈ F . If the intersection of A with
any member of F is nonempty, then F ∪ {A} generates a filter that is larger
than F , but this is not possible. Thus, there is an F ∈ F with A ∩ F , but
then F ⊆ ω \ A, hence ω \ A ∈ F .

Conversely, if for every A ⊆ ω either A ∈ F or ω \ A ∈ F , then for every
A 
∈ F there is an F ∈ F , namely F = ω \ A, with A ∩ F = ∅. Thus, there
cannot be a filter that would include F as its proper subset, hence F is an
ultrafilter.

2. See Problem 14.6(c).

3. By Problem 4.43 there is an independent family F of cardinality continuum
of subsets of ω i.e., F is such that if F1, . . . , Fn ∈ F are different elements of
F and F ∗

i = Fi or ω \ Fi independently of each other, then ∩n
i=1F

∗
i 
= ∅. This

means that if g : F → {0, 1} is an arbitrary mapping and Fg is the family
that contains F ∈ F if g(F ) = 1 and contains ω \ F if g(F ) = 0, then Fg

has the property that any finite subset of Fg has nonempty intersection. But
then Fg generates a filter which is included in a Ug ultrafilter, and it is clear
that if g 
= h then Ug 
= Uh because there is an F ∈ F with g(F ) 
= h(F ), and
then F is contained in one of Ug and Uh and ω \ F is contained in the other
one. Since there are 2c possibilities for g, this shows that there are at least
2c ultrafilters on ω. But the total number of systems of subsets of ω is 2c, so
there cannot be more than 2c ultrafilters either.

4. Partition ω into n+1 infinite sets: ω = A0∪· · ·∪An. For each 1 ≤ i ≤ n there
is some 0 ≤ ki ≤ n that Aki ∈ Ui. The union of these sets is in every Ui, and is
coinfinite, as is disjoint from the Aj for which j 
∈ {0, 1, . . . , n} \ {k1, . . . , kn}.

5. Note that of the two sets A = ∪i[n2i, n2i+1) and B = ∪i[n2i+1, n2i+2)
exactly one of them is in U . If, say, A ∈ U , then is appropriate for A ∩
[n2i+1, n2i+2) = ∅ for all i.
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6. This follows from the preceding problem if ni+1/ni → ∞ as i → ∞.

7. The set F of all subsets of ω of density 1 is a filter. Let U be an ultrafilter
including F . Then no A ∈ U can have zero density, for then ω \ A would be
of density 1, hence it would also belong to U .

8. There is no translation-invariant ultrafilter on ω as exactly one of the sets
of the odd, resp. even numbers is in any ultrafilter.

Assume now that U is a translation-invariant ultrafilter on Q. Then exactly
one of Q ∩ (−∞, 0), Q ∩ [0,∞) is in U , say the latter. Now exactly one of

Q ∩
(
[0, 1) ∪ [2, 3) ∪ · · ·

)
and

Q ∩
(
[1, 2) ∪ [3, 4) ∪ · · ·

)
is in U and that contradicts translation invariance. So there is no translation-
invariant ultrafilter on Q.

9. Let us suppose that the second player II has a winning strategy σ. Let
player I select first n0 = 1, for which player II responds with some number n1.
Now from this point on if until the kth step the game proceeds as n0 < n1 <
n2 < · · · < n2k−1, then let player I respond with the number n2k, which would
be the second player’s response (under σ) for the play n1 < n2 < . . . < n2k−1
(in other words, I plays the strategy σ as if n0 has not been played). Since σ is
a winning strategy for player II, and player I is playing the σ strategy, the set
[0, n1)∪ [n2, n3)∪· · · does not belong to U , hence the set [0, n0)∪ [n1, n2)∪· · ·
must belong to U . Thus, with this strategy of player I he/she wins, so σ cannot
be a winning strategy for player II.

The same consideration shows that player I cannot have a winning strategy.

10. By recursion on α < ω1 we build the increasing, continuous sequence
{Gα : α < ω1} of countable centered subfamilies of P(ω) (i.e., each G has the
property that any finite subset of G has infinite intersection, and the continuity
means that if α is a limit ordinal then Gα = ∪β<αGβ). At every step we perform
one of two possibilities. Either regard some A ⊆ ω and add A or ω −A to Gα

to get Gα+1 or make sure that for a given sequence A0 ⊇ A1 ⊇ A2 ⊇ · · · from
Gα there is a B ∈ Gα+1 with B \An finite for all n < ω. This will clearly work,
as by CH there are ℵ1 many such “tasks” so it suffices to treat one at a time.

There is no problem with the first type, given A ⊆ ω and the centered
Gα, either A or its complement can be added to Gα and still keep it centered.
Assume, therefore, that we are given Gα and the decreasing sequence A0 ⊇
A1 ⊇ A2 ⊇ · · · from Gα. Enumerate Gα as Gα = {C0, C1, . . .}. Pick

an ∈ An ∩
(
C0 ∩ C1 ∩ · · · ∩ Cn

)
and set B = {a0, a1, . . .}. Now Gα+1 = Gα ∪ {B} will be fine.
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Finally,
⋃
{Gα : α < ω1} is clearly appropriate.

11. Enumerate the triplets 〈r, n, f〉 where 1 ≤ r < ω, f : [ω]r → {1, . . . , n} as
{〈rα, nα, fα〉 : α < ω1} (this is possible since the number of such triplets is c
and we have assumed CH, i.e., c = ω1). We construct by transfinite recursion
infinite sets Aα ⊂ ω, α < ω1 such that each Aα is monochromatic with respect
to fα and {Aα : α < ω1} is centered, i.e., any finite subset of it has infinite
intersection. In fact, we choose Aα so that Aα \ Aβ is finite for β < α, which
clearly implies that {Aα : α < ω1} is centered. Assuming that at step α < ω1
we have the set {Aβ : β < α} with this property. Select an infinite set B
such that B \ Aβ is finite for all β < α (enumerate the sets {Aβ : β < α}
into a sequence A∗

0, A
∗
1, . . ., and select one–one different points from the sets

A∗
0 ∩A∗

1 ∩ · · · ∩A∗
n, n = 0, 1, . . .). By Ramsey’s theorem (Problem 24.1) there

is an infinite B′ ⊂ B on which fα is monochromatic, and let Aα = B′.
Since {Aα : α < ∞} is centered, it can be extended to an ultrafilter U .

Now if f : [ω]r → {1, 2, . . . , n} is a coloring of all r-element subsets of ω with
finitely many colors, then 〈r, n, f〉 = 〈rα, nα, fα〉 for some α < ω1, and then
Aα ∈ U is monochromatic with respect to f .

12. Let f : A → ω be a bijection. This induces an ordering ≺f on A: x ≺f y
if and only if f(x) < f(y). Color pairs of A by 2 colors as follows. For x ≺ y
in A let g(x, y) = 0 if and only if x ≺f y, otherwise set g(x, y) = 1. As U is
a Ramsey ultrafilter, there is a monochromatic B ∈ U with respect to g. If
the pairs in B have color 0, then on B the two orderings ≺ and ≺f coincide,
hence 〈B,≺〉 is of type ω (note that with respect to ≺f the type of A is ω).
If, however, the pairs in B have color 1, then on B the two orderings ≺ and
≺f are each other’s reverses, so in this case 〈B,≺〉 has type ω∗.

13. Color [ω]2 as follows: let g(x, y) = 0 if f(x) = f(y), and otherwise set
g(x, y) = 1. Let A ∈ U be a monochromatic subset with respect to g. If the
pairs in A have color 0, then f is constant on A, and if they have color 1, then
f is one-to-one on A.

14. Color [ω]2 by two colors: let g(x, y) = 0 if x and y belong to the same
interval [ni, ni+1), i = 1, 2, . . ., and otherwise let g(x, y) = 1. A monochromatic
infinite set B ⊂ ω can only be of color 1, in which case it intersects every
interval of the above type in at most one element. Add to B elements so that
every intersection has exactly one element.

15. Apply the previous problem by making n0 = 0 and with ni so large that
aj ≤ ε/2i+1 is true for j ≥ ni. If B ∈ U is such that it intersects every interval
[ni, ni+1) in exactly one element, then for A = B \ [0, n0) ∈ U we clearly have∑

i∈A ai <
∑

i ε/2i+1 = ε.

16. First solution. Instead of ω, work with S =
⋃
{Sn : n < ω} as the

underlying set, where the Sn’s are disjoint, finite sets, |Sn| = n2. For X ⊆ S,
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set X ∈ F if and only if |X ∩ Sn| ≥ n2 − cn for some constant c > 0 and all
n. Then F is a filter. Extend it to an ultrafilter U . Now define ai = 1/n for
i ∈ Sn. Then, if X ∈ U , |X ∩ Sn| ≥ n holds for infinitely many n (otherwise
the complement of X would belong to F), so∑

i∈X

ai = ∞.

[I. Juhász]

Second solution. Let ai = 1/(i + 1) for i = 0, 1, . . ., and consider the family
I of those subsets H ⊂ ω for which∑

i∈H

ai < ∞.

This I is clearly an ideal, so the family

F = {K ⊂ ω : ω \ K ∈ I}

is a filter, which can be extended to an ultrafilter U . Since no H ∈ I can
belong to F , we are done.

17. Let H = {Hα : α < c} be an independent family of subsets of ω (cf. the
solution to Problem 3 above). For S ∈ [H]ω set

X(S) = ω \ (∩S) = ω \ (∩H∈SH).

We claim that the set

F = H
⋃

{X(S) : S ∈ [H]ω}

is centered, i.e. if α1, . . . , αn < c and S1, . . . , Sm ∈ [H]ω, then

Z = Hα1 ∩ · · · ∩ Hαn ∩ X(S1) ∩ · · · ∩ X(Sm)

is infinite. Indeed, if Hβi ∈ Si \ {Hα1 , . . . , Hαn} for i = 1, . . . , m, then every
element of the infinite set

Hα1 ∩ · · · ∩ Hαn ∩ (ω \ Hβ1) ∩ · · · ∩ (ω \ Hβm)

is in Z. Extend F to an ultrafilter U . If U was generated by U ′ ⊆ U , |U ′| < c,
then U ′ would generate every member of H as well. So, as |U ′| < |H|, there
would be α1, α2, . . . such that Hα1 , Hα2 , . . . are generated by the same element
T of U ′, i.e., T ⊂ Hα1 ∩ Hα2 ∩ · · ·. But this is impossible as

T ∩ X({Hα1 , Hα2 , . . .}} = ∅,

though these are two elements of U .



Solutions Chapter 17 : Ultrafilters on ω 345

18. Suppose to the contrary that XU is Lebesgue measurable. If x ∈ (0, 1) is
not diadically rational, then it has a unique binary expansion, thus if x = xA

then 1 − x = xω\A and these are the only representations for the numbers x
and 1 − x as an xB , B ⊂ ω. Since exactly one of A and ω \ A belongs to U ,
we get that exactly one of x and 1 − x belongs to XU . Thus, the mapping
x → 1 − x maps XU into [0, 1] \ XU with the exception of countably many
points, so XU must have measure 1/2.

Note also that the nonprincipality of U implies that adding to or deleting
from A finitely many elements does not change the fact if A ∈ U or not. This
means that XU is periodic (mod 1) with period a for any diadically rational
a. Now let x ∈ XU ∩ (0, 1) and y ∈ (0, 1) \ XU be two points of density 1 for
the sets XU and (0, 1) \ XU , respectively, and let δ > 0 be so small that

|(x− δ, x + δ)∩XU | > 3δ/2 and |(y − δ, y + δ)∩ ((0, 1) \XU )| > 3δ/2.

If a is a diadically rational number such that |y − (x + a)| < δ/8, then

|(XU + a) ∩ (y − δ, y + δ)| ≥ 3δ/2 − 2δ/8 > δ,

hence
(XU + a) ∩ ([0, 1] \ XU ) 
= ∅,

which is impossible, since XU + a = XU (mod 1) and XU and [0, 1] \ XU are
disjoint.

19. (a) Let K be so large that −K < xn < K is true for every n. Set x ∈ A
if {n : x ≤ xn} ∈ D, and y ∈ B if {n : xn < y} ∈ D. Then A ∪ B = R,
−K ∈ A, K ∈ B and if x ∈ A, z < x, then z ∈ A while if y ∈ B and
z > y then z ∈ B. There is therefore a unique real number −K ≤ r ≤ K
such that r − ε ∈ A while r + ε ∈ B for all ε > 0. This means that the set
{n : r − ε ≤ xn < r + ε}, being the intersection of two elements in D, lies in
D, and so limD xn = r. This shows the existence of the D-limit.

Since any two real numbers can be separated by disjoint neighborhoods,
the unicity of the D-limit is clear.

(b) This immediately follows from the definition of ordinary and D-limits.

(c) For c > 0 we have p < xn < q if and only if cp < cxn < cq. For c < 0
we have p < xn < q if and only if cq < cxn < cp, and finally {cxn} is the
constant sequence for c = 0. Now just apply the definition of D-limit.

(d) Let a = limD xn, b = limD yn and c = a + b. For ε > 0 the sets {n :
a− ε/2 < xn < a + ε/2} and {n : b− ε/2 < yn < b + ε/2} are in D, hence so
is their intersection, which is included in the set {n : c−ε < xn +yn < c+ε}.
Thus, this latter set is in D for any ε > 0, which means that limD(xn+yn) = c.

(e) This is immediate from the definition of D-limit.
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(f) This is a consequence of parts (b) and (d) (but also immediately follows
from the definition of D-limit).

(g) Let a = limD xn and ε > 0. There is a δε > 0 such that for x ∈ (a−δε, a+δε)
we have f(x) ∈ (f(a) − ε, f(a) + ε). Thus,

{n : a − δε < xn < a + δε} ⊆ {n : f(a) − ε < f(xn) < f(a) + ε}.

Since here the set on the left-hand side belongs to D for all ε > 0, the set on
the right-hand side also has to belong to D, which proves part (d).

(h) Let A ⊂ ω be an infinite set such that the sequence {xn}n∈A converges to
r. Now for any nonprincipal ultrafilter D with A ∈ D we have limD xn = A.

(i) For a sequence {xn} let yn = arctan(xn) and let us also set arctan(±∞) =
±π/2. If we copy the proof of part (g) with the monotone and continuous
functions f(x) = arctanx, x ∈ [−∞,∞] and f−1(x), x ∈ [−π/2, π/2] we can
easily see that limD xn = r exists if and only if limD yn = arctan(r) exists.
But {yn} is already a bounded sequence, hence we can apply part (a).

20. Let D be a nonprincipal ultrafilter on ω and let f(A) = limD(xn), where

xn =
|A ∩ n|

n

for n > 0. The properties (b) and (d) from the previous problem show that
this f is suitable.

21. Formally, we consider functions f : ω → {0, 1, 2} and an operator Φ
assigning to every such f a value in {0, 1, 2}. The property is that if f0, f1
differ everywhere, then Φ(f0) 
= Φ(f1). We have also assumed that if gi is the
identically constant function gi(j) = i, j = 0, 1, 2, . . ., then Φ(gi) = i.

First, assume that A ⊆ ω, B = ω \A. If f : A → {0, 1, 2}, g : B → {0, 1, 2}
we simply write fg for the union of the functions f and g, and we also
use the notation (c)A for the function that is identically c on A. Then
Φ((0)A(0)B) = 0, Φ((1)A(1)B) = 1, hence we must have Φ((0)A(0)B) 
=
Φ((1)A(0)B) or Φ((1)A(0)B) 
= Φ((1)A(1)B). By interchanging the sets A, B
we may assume that the first of these holds, i.e., Φ((1)A(0)B) 
= 0. Also,
Φ((1)A(0)B) 
= Φ((2)A(2)B) = 2, so we must have Φ((1)A(0)B) = 1. If
g : B → {1, 2}, then (2)Ag is pointwise different from both (0)A(0)B and
(1)A(0)B so necessarily Φ((2)Ag) = 2. This we denote by Φ((2)A(1−2)B) = 2.
If now g : B → {1, 2} and g(i) = 3 − g(i) for every i ∈ B, then the func-
tions (0)A(0)B , (1)Ag, (2)Ag assume 3 different values everywhere, so we get
Φ((1)A(1 − 2)B) = 1. Similarly, Φ((0)A(1 − 2)B) = 0.

From this we get that Φ((0 − 1)Ag) is either 0 or 1, and similarly for 0, 2
and 1, 2. The first of these gives Φ((2)Ag) = 2, and similarly we get from the
other ones that Φ((i)Ag) = i for all i ∈ {0, 1, 2}.
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Assume finally that for some functions f : A → {0, 1, 2} and g0, g1 : B →
{0, 1, 2} we have Φ(fg0) 
= Φ(fg1), say, Φ(fg0) = i0, Φ(fg1) = i1. Then there
is a function f : A → {i0, i1} which is everywhere different from f , and a
function h : B → {0, 1, 2} which is everywhere different from g0, g1, then
Φ(fh) 
= i0, i1 but must be in {i0, i1} by the above, a contradiction.

What we showed is that if ω = A ∪ B is a decomposition, then one and
just one of A, B has the property that Φ(f) depends on f |A (say). Let U be
the system of those sets with this property. We get that exactly one of A, B
is in U . Clearly, ∅ /∈ U , moreover if A ∈ U and A ⊂ B, then B ∈ U . It is
also immediate that U is closed under intersection. This implies that U is an
ultrafilter. To conclude the proof let Ci(f) = {j : f(j) = i}, i = 0, 1, 2.
These are disjoint sets with union ω, hence exactly one of them, say Ci0 ,
belongs to U . Since on Ci0 the function f coincides with the constant function
gi0(j) = i0, and Φ(f) depends only on f C0

, we have Φ(f) = Φ(gi0) = i0 as
was claimed. [D. Greenwell–L. Lovász: Applications of product colouring,
Acta Math. Acad. Sci. Hung, 25 (1974), 335–340]

22. First let us consider the case when there are only finitely many voters (I
is finite). We call a voter dominant if the outcome of the vote is always her
list.

First we show that if there are two voters A and B, then one of them
is dominant. Let us agree in the following notation: the fact that candidates
a, b, c are listed in A’s list in some order like . . . , a, . . . , c, . . . , b, . . . and in B’s
list in another order like . . . , c, . . . , a, . . . , b, . . ., and then in the outcome their
order is like . . . , b, . . . , c, . . . , a, . . . will be denoted by

A : acb
B : cab

—
outcome : bca

Suppose now that A is not dominant. Then there are some candidates ab
on his list in this order such that in the outcome their order is ba. Then
necessarily on B’s list their order is ba (otherwise a and b would be listed in
both lists in the order ab, which should be the outcome as well). We show that
B is dominant. Since the order in the outcome is the result of the order of the
pairs of the candidates, it is sufficient to show that B is dominant for each
pair of candidates. Let c be a third candidate. Each column in the following
table implies the next one:

A : ab acb ac abc bc bac ba
B : ba cba ca cab cb acb ab

— — — — — — —
outcome : ba cba ca cab cb acb ab

This proves that B is dominant for the pair a, b. But applying what we have
obtained to column 3 resp. 5 we can see that B is also dominant for the pairs
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a, c resp. b, c. Thus, the dominance of B for the pair a, b has been established,
and here a and b can be replaced by any other c 
= a, b. By at most two such
replacements we can get to any pair of candidates, and the dominance of B
has been established.

Next we show that if there are 4 voters A,B,C,D, then one of them is
dominant. In fact, suppose first that A and B form a block, i.e., they always
vote the same way and C and D also form a block. Then we have two block
voters, hence one of them is dominant, say the AB block. We claim that if A
and B vote the same way, then they are dominant. If this is not the case, then
there are candidates p, q such that A and B vote them in the order pq, but
in the outcome the order is qp. In the following table p′q′ and p′′q′′ denote
permutations of p, q, and again each column implies the next one:

A : pq paq aq
B : pq paq aq
C : p′q′ p′q′a qa
D : p′′q′′ p′′q′′a qa

— — —
outcome : qp qpa qa

(17.1)

contradicting the dominance of the block AB over CD. Now fix the votes of CD
in some order π(c1), . . . , π(cn) (for both of them), where π : {c1, . . . , cn} →
{c1, . . . , cn} is some permutation, but A and B vote as they wish. Then we
get a two-member voting scheme, hence either A or B is dominant, say A.
We claim that A is dominant in the original 4 voter scheme. Suppose this is
not the case. Then there are some candidates p, q such that A votes them in
the order pq, but their order in the outcome is qp. Since the block AB was
dominant, this is possible only if B votes in the order qp. Then, if the last
element of the fixed order is b, each column in the following table implies the
next one:

A : pq pbq bq
B : qp qpb qb
C : p′q′ p′q′b qb
D : p′′q′′ p′′q′′b qb

— — —
outcome : qp qpb qb

contradicting the dominance of A when C and D vote in the fixed order
π(c1), . . . , π(cn) (if one of p, q is the largest element b, then work symmetrically
with the smallest element in the fixed order, and if p and q agree with the
largest and smallest elements, then first replace one of them in the indicated
manner by a third element and then we are back to the previously considered
cases). With this the claim that in a four-member voting scheme there is
always a dominant voter has been verified.

The same argument shows the same claim if there are three voters.
Now let I be an arbitrary set of voters. We call a subset F ⊆ I dominant

if it is true that if all members of F vote the same way then this is always
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the outcome. An argument similar to that in Table (17.1) shows that if F
is dominant in the two-block voting scheme consisting of the blocks F and
I \ F , then F is dominant. Let F be the set of dominant subsets of I. We
show that it is an ultrafilter on I. It is clear that ∅ 
∈ F (that would mean a
fixed outcome irrespective of the votes) if F ∈ F , F ⊂ F ′, then F ′ ∈ F , and
out of F and I \F only one can belong to F . That one of them is actually in
F follows from the dominance in the two-member voting schemes. Thus, to
show that F is an ultrafilter, it is sufficient to show that if F1, F2 ∈ F then
F1∩F2 ∈ F . Consider the 4-member block voting scheme when the blocks are
F1∩F2, I \(F1∪F2), F1\F2, and F2\F1 (i.e., the voters in each block vote the
same way, and if one of these sets is empty then the appropriate block voter is
missing). We know that one of them is dominant (we have verified dominancy
if there are at most four voters). Since both F1 and F2 are dominant, this
dominant block cannot be any of the last three ones, so it must be F1 ∩ F2,
hence F1 ∩ F2 ∈ F .

Now let us consider an arbitrary voting, and for a permutation π of the
candidates consider the set Fπ of those voters i ∈ I who voted in the order
given by π. Since I = ∪πFπ is a disjoint decomposition, exactly one of the Fπ

belongs to F , say Fπ0 ∈ F . Then Fπ0 is dominant, so the outcome must be
π0. [K. J. Arrow]



18

Families of sets

1. For each α < κ+ let fα : κ → α + 1 be a surjection, and let

Aξ,η = {α : fα(ξ) = η}.

Since fα is single-valued, the elements in each row are disjoint. If for η < κ+

and α < κ+ there is no ξ < κ with fα(ξ) = η, then α < η; therefore, the
union of the sets in the ηth column is κ+ \ η, and we are done.

2. First solution. We replace the ground set κ with κ × κ. Our sets will
be κ → κ functions, so it is enough to construct a sequence {fα : α < κ+}
of κ → κ functions, such that any two differ from a certain point onward.
We construct the functions by transfinite recursion on α. If {fβ : β < α} are
already given, enumerate α as α = {γξ(α) : ξ < κ}. Then select the value of
fα(ξ) to be different from every fγζ(α)(ξ), ζ < ξ (“the first ξ values”). Having
defined the functions, if we have β < α < κ+, then β = γζ(α) for some ζ < κ
and then fβ(ξ) 
= fα(ξ) for ξ > ζ. [Erdős, 1934]

This is a condensed form of the solution for Problem 12.5.

Second solution. Let λ be the smallest cardinal with the property κλ > κ.
By Cantor’s theorem (Problem 10.16) λ ≤ κ. Let X be the set of all transfinite
sequences of length < λ of ordinals ξ < κ. For each ρ < λ there are at most
κρ = κ such sequences of length ρ, hence X is of cardinality κ. Furthermore,
let H∗ be the set of all transfinite sequences {αξ}ξ<λ of type λ of ordinals
ξ < κ. Then, by the definition of λ, H∗ is of cardinality bigger than κ. For
every s = {αξ}ξ<λ ∈ H∗ let Hs be the set of initial segment subsequences of
s, i.e., the set {{αξ}ξ<η}η<λ. Then Hs ⊆ X, and if s′ = {α′

ξ}ξ<λ ∈ H is a
different sequence in H∗, then there is a τ < λ such that ατ 
= α′

τ , hence the
elements in the subsequences {αξ}ξ<η and {α′

ξ}ξ<η are different for all τ < η.
This shows that Hs ∩ Hs′ is of cardinality smaller than λ ≤ κ, hence the set
H = {Hs}s∈H∗ satisfies all the requirements. [W. Sierpiński, Mathematica,
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14(1938), p. 15, Tarski, Func. Math., 12(1928), 188–205 and 14(1949), 205–
215]

3. Let us decompose X as a disjoint union of the sets X0, X1, and X2 each
of cardinality κ, let f : X1 → X2 be a 1-to-1 correspondence between the
elements of X1 and X2, and let us also decompose X1 into a disjoint family
of sets X1,α, α < κ of cardinality κ. Now for any subset A of κ consider the
set

HA = X0

⋃
(∪α∈AX1,α)

⋃
(X2 \ (∪α∈Af [X1,α])) .

It is clear that if A and B are different subsets of κ, say α ∈ A \ B, then
X1,α ⊂ HA \ HB , and f [X1,α] ⊂ HB \ HA, and since X0 is part of every HA,
the family of the 2κ sets HA, A ⊆ κ satisfies the properties set forth in the
problem. [cf. W. Sierpiński, Cardinal and Ordinal Numbers, Polish Sci. Publ.,
Warszawa, 1965, XVII.4. Theorem 1]

4. This is a special case of Problem 6.90, since out of two initial segments one
of them includes the other one.

5. The statement follows from Problem 3.

6. We show by transfinite induction on α that there is a mapping ϕα : [α]κ →
2κ such that for every ξ < 2κ the set ϕ−1(ξ) is an antichain. For α = κ
we can take a bijection. Assume that cf (α) > κ and ϕβ exists for every
β < α. For X ∈ [α]κ set ϕ∗

α(X) =
(
tp (X), ϕβ(X)(X)

)
where tp (X) is the

order type of X and β(X) = sup(X). If X ⊆ Y and ϕ∗
α(X) = ϕ∗

α(Y ), then
specifically tp (X) = tp (Y ) so by X ⊆ Y we have β(X) = β(Y ) and then the
inductive assumption on ϕβ(X) gives X = Y . Thus, X ⊂ Y , X 
= Y implies
ϕ∗

α(X) 
= ϕ∗
α(Y ), i.e., the inverse image under ϕ∗

α of any set is an antichain.
This ϕ∗

α is a mapping to κ+ × 2κ, which can easily be transformed into a
mapping ϕα to 2κ.

If cf (α) ≤ κ, then α can be decomposed into the union of at most κ disjoint
intervals {Ij : j ∈ J} where the order type of each Ij is smaller than α (this
covers both the successor and the limit cases). By the inductive assumption
for each j ∈ J there is a ψj : [Ij ]κ → 2κ such that ψ−1

j (ξ) is always an
antichain. Define ψ : [α]κ →

(
2κ
)κ by ψ(X) =

〈
ψj(X ∩ Ij) : j ∈ J

〉
. We

show that ψ is a mapping with the required property (as it maps into a set of
cardinality

(
2κ
)κ = 2κ we are done). Assume that X ⊆ Y and ψ(X) = ψ(Y ).

Then X ∩ Ij ⊆ Y ∩ Ij and ψj(X ∩ Ij) = ψj(Y ∩ Ij) hold for every j ∈ J , so by
hypothesis X ∩Ij = Y ∩Ij for all j ∈ J , and therefore X = Y . [Erdős–Milner]

7. Let H = κ × {0, 1}, and for an f : κ → {0, 1} set Af = {(α, f(α))}α<κ,
Bf = H \Af . There are 2κ such pairs of sets, and if f 
= g then for some α < κ
we have f(α) 
= g(α), say, f(α) = 0 and g(α) = 1, and then (α, 0) ∈ Af ∩Bg,
i.e., Af ∩ Bg 
= ∅.
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8. See Problem 24.31.

9. Let us enumerate the infinite subsets of N into a transfinite sequence Aξ,
ξ < c. By transfinite induction we define different infinite subsets Bξ, Cξ ⊂ Aξ,
ξ < c such that Bξ and Cξ are different from every Bη, Cη, η < ξ. Since Aξ

has c infinite subsets, at each step ξ < c we can select Bξ 
= Cξ with this
property. Now if F is the set of the Bξ’s and G is the set of the Cξ’s, then
these are clearly suitable, since every infinite subset of N is one of the Aξ’s,
and this includes Bξ and Cξ.

10. Let H be a maximal set of almost disjoint countably infinite subsets of X,
i.e., if H1, H2 ∈ H, then |H1| = |H2| = ℵ0 but H1 ∩ H2 is finite, and there
is no family with this property that properly includes H (the existence of H
follows from Zorn’s lemma; see Chapter 14). Thus, if A ⊂ X is countably
infinite, then A ∩ H is infinite for some H ∈ H.

For each H ∈ H fix families FH ,GH ⊂ P(H) with the properties from the
preceding problem, and let F be the union of all the FH ’s and G the union
of all the GH ’s for all H ∈ H. These are disjoint families. In fact, if we had
S ∈ F ∩ G, then S would belong to some FH1 and also to some GH2 . Here
H1 = H2 is not possible since FH1 and GH1 are disjoint. If, however, H1 
= H2,
then S would be a common subset of both H1 and of H2, which cannot be
the case because H1 ∩ H2 is finite.

Finally, if A ⊆ X is infinite, then A has a countably infinite subset A1
which intersects one of the H’s in an infinite set. By the choice of FH there is
an F ∈ FH such that F ⊆ A1 ∩H, i.e., this F ∈ F is a subset of A. A similar
argument shows that A contains an element of G, and the proof is over. [A.
Hajnal]

11. First solution. Obviously, the existence of an appropriate family depends
only on the cardinality of the ground set. Rather than working on κ we work
on the set X =

{
(s, h) : s ∈ [κ]<ω, h ⊆ P(s)

}
. As there are κ finite subsets of

κ each carrying finitely many families of subsets, we have |X| = κ. If A ⊆ κ,
then we associate the set Y (A) =

{
(s, h) : s ∈ [κ]<ω, A ∩ s ∈ h

}
⊆ X with A.

This way we have created the family F =
{
Y (A) : A ⊆ κ

}
. If we show that it

is independent, then, in particular, we find that the elements of F are distinct
and so |F| = 2κ. Toward showing independence, assume that we are given the
different sets A1, . . . , An ⊆ κ and ε1, . . . , εn < 2. To any two sets there is a
point which is in one but not in the other, so there is a finite set s ⊆ κ such that
the intersections Ai ∩ s are different. Now set h = {Ai ∩ s : 1 ≤ i ≤ n, εi = 1}.
Clearly, (s, h) ∈ Y (A1)ε1 ∩ · · · ∩ Y (An)εn .

Second solution. For every ξ < κ and natural number l let us choose l sets
Aξ,l,j , j < l that form an independent family over a finite set Aξ,l (e.g., if
Aj ⊂ l{0, 1}, j < l is the set of those 0–1 sequences of length l which have
1 at the jth position, then Aj , j < l is an independent family of sets over
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l{0, 1}). Let us also assume that these sets are selected in such a way that
the ground sets Aξ,l are disjoint for different (ξ, l)’s. Now with the functions
f from Problem 13 consider the sets

Hf =
⋃

ξ<κ, l∈N

Aξ,l,min(l−1,f(ξ)), f ∈ F .

If f1, . . . , fn are different, then there is a ξ∗ < κ such that all the values fi(ξ∗)
are different, and let us choose l∗ so large that all these values are less than
l∗. Now for εi = 0 or 1 the intersection

Hε1
f1

∩ . . . ∩ Hεn

fn

includes the nonempty set

Aε1
ξ∗,l∗,f1(ξ∗) ∩ · · · ∩ Aεn

ξ∗,l∗,fn(ξ∗)

(where in the latter case complements are taken with respect to the set
Aξ∗,l∗). [F. Hausdorff, Studia Math., 6(1936), 18–19, A. Tarski, Fund. Math.,
32(1939), 45–63]

12. (See also the solution to Problem 17.3.) By Problem 11 there is an in-
dependent family F of cardinality 2κ of subsets of κ. This means that if
g : F → {0, 1} is an arbitrary mapping and Fg is the family that contains
F ∈ F if g(F ) = 1 and contains κ \ F if g(F ) = 0, then Fg has the property
that any finite subset of Fg has nonempty intersection. But then Fg generates
a filter which is included in a Ug ultrafilter, and if g 
= h, then Ug 
= Uh, so
we get this way 2|F| = 22κ

different ultrafilters. In fact, if g 
= h, then there is
an F ∈ F with g(F ) 
= h(F ), and then this F is contained in one of Ug and
Uh and κ \ F is contained in the other one.

13. Without loss of generality, we may assume that A is the set of the
nonempty finite subsets of κ, and for a function g : {ξ0, ξ1, . . . , ξm} → {0, 1},
ξ0 < ξ1 < ξ2 < . . . < ξm let

t(g) = g(ξ0) + 2g(ξ1) + · · · + 2ng(ξm).

Note that if g′ : {ξ0, ξ1, . . . , ξm} → {0, 1} is another function and t(g) = t(g′),
then we must have g(ξi) = g′(ξi) for all i = 0, . . . , m.

Now if f : κ → {0, 1} is arbitrary, then associate with it that function
F on A for which F (I) = t(f I) for every I ∈ A, and let F be the set of
all these functions F . If F1, . . . , Fn are different functions that correspond to
f1, . . . , fn, then these are also pairwise different, hence for each 1 ≤ i < j ≤ n
there is a ξi,j < κ with fi(ξi,j) 
= fj(ξi,j). Thus, for the set I consisting of all
these ξi,j we have t(fi I) 
= t(fj I) for all 1 ≤ i < j ≤ n, which means that
the values Fi(I) are all different.
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14. We may assume that A = κ{0, 1} is the set of infinite 0–1 sequences of
length κ, and for a finite subset I of κ let AI be the set of all functions
h : I → {0, 1} that map the given finite set I into {0, 1}. Any mapping
g : AI → κ generates a mapping fg : A → κ defined as

fg(h) = g(h I).

Now there are κ many ways to map AI into κ, and the set of finite subsets
I of κ is also of cardinality κ, so if F is the set of all fg’s with all possible
g : AI → κ and all possible I ⊂ κ, |I| < ω, then F is of cardinality κ. If
F : A → κ is any given function and h1, . . . , hn are different elements of A,
then there is a finite subset I of κ such that hi I are all different. Now if we
define the function g as g(hi I) = F (hi) for i = 1, . . . , n and g(h) is arbitrary
for other h : I → {0, 1}, then F (hi) = fg(hi) for all 1 ≤ i ≤ n, so F satisfies
the requirements. (See also the solution to Problem 4.27.)

15. See the solution to Problem 4.28, and apply Problem 14 instead of 4.27.

16. Set F = {A0, A1, . . .}. By induction on n < ω we build the finite sets
X0 ⊆ X1 ⊆ · · · with the property that 1 ≤ |Xn ∩ Ai| ≤ 2 holds for i ≤ n and
|Xn ∩ Ai| ≤ 2 holds for i > n. If we can do this, then X =

⋃
{Xn : n < ω}

will be good. Assume therefore that we have reached step number n and we
have the finite set Xn. The choice Xn+1 = Xn is good unless Xn ∩ An = ∅.
In this latter case we have to choose some x ∈ An so that Xn+1 = Xn ∪ {x}
is good. This requires that |

(
Xn ∪ {x}

)
∩Ai| ≤ 2 should hold for every i 
= n,

that is, x /∈ Ai for every i < ω for which |Xn ∩ Ai| = 2 holds. We argue that
only finitely many elements x ∈ An are disqualified by this requirement (and
this concludes the proof). Indeed, for any pair Y ⊆ Xn there can be only one
Ai with Y ⊆ Ai (by our intersection condition on the family) and for that i
there is only one x ∈ Ai ∩ An (again by the intersection condition).

17. Let F = {A0, A1, . . .}. For each k ≥ 3 we construct some finite disjoint
sets Ek and Fk so that

for i ≤ k either |Ai ∩ Ek| = 1 or |Ai ∩ Fk| = 1 (18.1)

and
for i > k either |Ai ∩ Ek| ≤ 1 or |Ai ∩ Fk| ≤ 1 (18.2)

is true. It will also be true that Ek ⊆ Ek+1 and Fk ⊆ Fk+1 and so the sets
X = ∪kEk Y = ∪kFk will have the desired property.

For k = 3 it is easy to construct such sets E3, F3. Let us suppose that
Ek, Fk have already been constructed with the above properties. First let us
assume that Ak+1 intersects both Ek and Fk. In view of (18.2) this is possible
if, say, |Ak+1 ∩ Ek| = 1, in which case Ek+1 = Ek and Fk+1 = Fk is suitable
for k + 1.
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Now suppose that Ak+1 does not intersect one of the sets Ek, Fk, say
Ak+1 ∩ Ek = ∅. Consider all the sets Ai that intersect Ek ∪ Fk in at least
three elements. Since three given elements can be only in one Ai (recall that
|Ai ∩ Aj | ≤ 2 for i 
= j), and Ek ∪ Fk is finite, there are only finitely many
such i, let these be i0, i1, . . . , im. Let ek+1 be an arbitrary element of the set

Ak+1 \
{

(
m⋃

r=0

Air )
⋃

(
k⋃

i=0

Ai) ∪ Fk

}
,

and let Ek+1 = Ek ∪ {ek+1}, Fk+1 = Fk. These sets obviously satisfy (18.1)
with k replaced by k +1, and if i > k+1 and ek+1 
∈ Ai then (18.2) is true, as
well. Finally, if ek+1 ∈ Ai, then Ai differs from the sets Ai0 , . . . , Aim

by the
choice of ek+1, and so |Ai∩(Ek∪Fk)| ≤ 2. Now this yields that if |Ai∩Fk| = 2
then |Ai ∩Ek+1| = |{ek+1}| = 1, while if |Ai ∩Fk| ≤ 1 then |Ai ∩Fk+1| ≤ 1 is
true because Fk+1 = Fk. Thus, in any case we have (18.2) for k + 1, and this
completes the proof.

18. We prove by induction on ℵ1 ≤ κ < ℵω the result for κ. For κ = ℵ1 we
can take the set {β : ω ≤ β < α}, α < ω1, of all countably infinite initial
segments of ω1. Assume we have the result for some κ. As the existence of
such a system is a property of the cardinality of the ground set, there is
an appropriate system Fα on every set α for κ ≤ α < κ+. We claim that
F =

⋃
{Fα : κ ≤ α < κ+} is a good system for κ+. The cardinality of F is

κκ+ = κ+. Assume that X ⊆ κ+ is countable. Then, as κ+ > ℵ0 is regular,
X ⊆ α for some κ ≤ α < κ+. Then some Y ∈ Fα covers X, as required.

To show that the same is not true for ℵω, let A be a set of cardinality ℵω,
and let F be an arbitrary system of cardinality ℵω of countable subsets of A.
We represent it as F = F0 ∪F1 ∪ · · · ∪ Fn ∪ · · · where the Fn’s are increasing
subsets of F of cardinality ℵn. For each n the set Fn is of cardinality ℵn, hence
there is an element an+1 ∈ A outside this set. Consider B = {an}∞

n=1 ⊂ A. If
F ∈ F , then F ∈ Fn for some n, hence an+1 ∈ B \ F , i.e., B is not covered
by any one of the sets in F . This shows that for ℵω there is no system F with
the prescribed properties.

19. We can assume that κ ≥ µ. Let V be an enumeration of all functions
f : α → κ, α < κ+, say V = {v(f) : f : α → κ, α < κ+}. Clearly, |V | = 2κ.
Let f : α → κ, α < κ+ be one of these functions. If cf (α) = cf (µ), and there
is some cofinal set in α of order type µ which is monocolored by f , then let
B ⊆ α be one such set, and define H(f) = {v(f β) : β ∈ B}. If no such set
exists, then leave H(f) undefined. Let H be the collection of all these sets
H(f).

We claim that H is as required. Assume first that |H(f) ∩ H(f ′)| = µ,
with f : α → κ, f ′ : α′ → κ. If v(f β) = v(f ′

β′) is a common element, then
β = β′ and f β = f ′

β
′. As the common elements are necessarily cofinal in
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α, α′, we get that α = α′ and f = f ′. This shows that H is an almost disjoint
family.

Assume now that F : V → κ is a coloring. By transfinite recursion on
α < κ+ we construct the increasing sequence of functions {fα : α < κ+} with
fα : α → κ. f0 = ∅. If α is a limit ordinal, then let fα =

⋃
{fβ : β < α}. Finally,

set fα+1(α) = F (v(fα)). There is some f : κ+ → κ such that fα = f α holds
for every α < κ+.

By the pigeon hole principle there is a value ξ assumed by f on a set
of cardinality κ+. Let α be the supremum of the first µ elements of f−1(ξ).
Then for this α it is true that there is a cofinal set B ⊆ α of order type µ
that is monocolored by f α = fα. Therefore, H(fα) is defined, using some set
B′ (possibly different from B) on which the color of fα is some ξ′. But then
H(fα) is monocolored by F :

F
(
v(fα β)

)
= F (v(fβ)) = fβ+1(β) = fα(β) = ξ′

for every β ∈ B′. [G. Elekes, G. Hoffmann: On the chromatic number of almost
disjoint families of countable sets, Coll. Math. Soc. J. Bolyai, 10 Infinite and
Finite Sets, Keszthely (Hungary), 1973, 397–402]



19

The Banach–Tarski paradox

1. A ∼ A is obvious using the identity. If A ∼ B then there are partitions
A = A1 ∪ · · · ∪ At and B = B1 ∪ · · · ∪ Bt with Bi = fi[Ai] for some fi ∈ Φ.
Then B ∼ A holds using the same partitions as Ai = f−1

i [Bi]. What remains
to be proved is that A ∼ B and B ∼ C imply A ∼ C. As A ∼ B, there
are decompositions A = A1 ∪ · · · ∪ An and B = B1 ∪ · · · ∪ Bn such that
Bi = fi[Ai] for some fi ∈ Φ. Similarly, by B ∼ C there are decompositions
B = B1 ∪ · · · ∪ Bm and C = C1 ∪ · · · ∪ Cm such that Cj = gj [Bj ] for some
gj ∈ Φ. Set Bij = Bi ∩ Bj for 1 ≤ i ≤ n, 1 ≤ j ≤ m. If now Aij = f−1

i [Bij ],
Cij = gj [Bij ], then

A =
⋃

{Aij : 1 ≤ i ≤ n, 1 ≤ j ≤ m},

C =
⋃

{Cij : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

are decompositions of A and C, respectively, and Cij = hij [Aij ] where hij =
gj ◦ fi ∈ Φ (some of the pieces may be empty but that does not invalidate the
argument).

2. As A is equidecomposable to a subset of B, there is a decomposition A =
A1 ∪ · · · ∪ An, and there are functions f1, . . . , fn ∈ Φ such that f1[A1] ∪
· · · ∪ fn[An] is a disjoint decomposition of a subset of B. Similarly, there
are a decomposition B = B1 ∪ · · · ∪ Bm and functions g1, . . . , gm ∈ Φ such
that g1[B1] ∪ · · · ∪ gm[Bm] is a disjoint decomposition of a subset of A. Now
define f : A → B, as well as g : B → A the following way. f(x) = fi(x)
for x ∈ Ai and g(x) = gj(x) for x ∈ Bj . As f and g are both injective,
by Problem 3.1 there are decompositions A = A′ ∪ A′′, B = B′ ∪ B′′ such
that B′ = f [A′], A′′ = g[B′′]. As A′ = (A′ ∩ A1) ∪ · · · ∪ (A′ ∩ An), B′ =
(B′ ∩ f1[A1]) ∪ · · · ∪ (B′ ∩ fn[An]) are decomposition of A′, B′, respectively,
we get that A′ ∼ B′. Likewise, A′′ ∼ B′′ and these two together give A ∼ B.
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3. As pA  qB there is a p-cover A1∪· · ·∪An of A such that f1[A1]∪· · ·∪fn[An]
is a ≤ q cover of B for some elements f1, . . . , fn ∈ Φ. Similarly, qB  rC is
witnessed by a q-cover B1 ∪ · · · ∪Bm of B such that g1[B1]∪ · · · ∪ gm[Bm] is a
≤ r-cover of C with some elements g1, . . . , gm ∈ Φ. For 1 ≤ i ≤ n, 1 ≤ j ≤ m,
1 ≤ s ≤ q we define the set Aijs ⊆ A as follows. x ∈ Aijs if and only if x ∈ Ai,
y = fi(x) ∈ Bj and {1 ≤ u ≤ i : y ∈ fu[Au]} and {1 ≤ v ≤ j : y ∈ Bv} both
have exactly s elements. Set hijs = gj ◦ fi. We claim that⋃

{Aijs : 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ s ≤ q}

is a p-cover of A and⋃
{hijs[Aijs] : 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ s ≤ q}

is a ≤ r-cover of C (and so they witness pA  rC). Pick some x ∈ A. For
every i with x ∈ Ai set y = fi(x) and s = |{1 ≤ u ≤ i : y ∈ fu[Au]}|. For these
y, s there is a unique j such that y ∈ Bj and {1 ≤ v ≤ j : y ∈ Bv} has exactly
s elements. That is, x ∈ Aijs, and this shows that the system of Aijs’s is a
p-covering of A (as so is the system of Ai’s). In a similar manner, if z ∈ C, for
every j with z ∈ gj [Bj ] (and there are ≤ r of them) there are unique s and
i such that z ∈ hijs[Aijs], and so the system of hijs[Aijs]’s is a ≤ r-cover, as
claimed.

4. Assume that A = A1 ∪ · · · ∪ An is a p-cover, f1[A1] ∪ · · · ∪ fn[An] is a
≤ q-cover of B, B = B1 ∪ · · ·∪Bm is a q-cover, g1[B1]∪ · · ·∪ gm[Bm] is a ≤ p-
cover of A. Refining the decomposition, if needed, we can assume that every
x ∈ Ai is in the same number of sets among A1, . . . , Ai, say, in a(i) of them,
for every x ∈ Ai, fi(x) is in the same number of sets among f1[A1], . . . , fi[Ai],
say, in b(i) of them, and similarly, we assume that every x ∈ Bj is in the same
number of sets among B1, . . . , Bj , say, in c(j) of them, and, finally, for every
x ∈ Bj , gj(x) is in the same number of sets among g1[B1], . . . , gj [Bj ], say, in
d(j) of them.

Set A∗ = A×{1, . . . , p}, B∗ = B×{1, . . . , q}. Notice that for every x ∈ A,
r ∈ {1, . . . , p} there is a unique i such that x ∈ Ai, r = a(i). Define, for
〈x, r〉 ∈ A∗, F (〈x, r〉) = 〈y, s〉, y = fi(x), s = b(i) where i is such that x ∈ Ai,
r = a(i). Likewise, for 〈y, s〉 ∈ A∗, define G (〈y, s〉) = 〈x, r〉 where y ∈ Bj ,
s = c(j), x = gj(y), r = d(j).

Notice that F : A∗ → B∗, G : B∗ → A∗ are injective. In fact, let x, r, y, s,
and i be as above, and suppose that F (〈x′, r′〉) = 〈y, s〉 is also true. Then
y = fj(x) for some j. Here i < j is not possible, for then b(j) ≥ b(i) + 1 and
hence b(j) = s = b(i) cannot hold. For the same reason neither is j < i, hence
i = j and then the bijective character of fi gives x = x′. By Problem 3.1 there
exist decompositions A∗ = A∗

0 ∪ A∗
1, B∗ = B∗

0 ∪ B∗
1 , such that F is bijective

between A∗
0 and B∗

0 and G is bijective between B∗
1 and A∗

1.
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Now define

A′
i = {x ∈ Ai : 〈x, a(i)〉 ∈ A∗

0} (1 ≤ i ≤ n),

A′′
j = {gj(y) : 〈y, c(j)〉 ∈ B∗

1} (1 ≤ j ≤ m).

If we now apply fi on A′
i and g−1

j on A′′
j then we get pA ∼ qB. In fact, for

any x ∈ A each of the points 〈x, r〉, r = 1, . . . , p lie either in A∗
0 or in A∗

1, so
{A′

1, . . . , A
′
n, A′′

1 , . . . , A′′
m} forms a p-cover of A. In a similar way we find that

their images form a q-cover of B.

5. This is an immediate consequence of the preceding two problems.

6. Assume that kpA  kqB holds. There are, therefore, subsets A1, . . . , At ⊆ A
such that every x ∈ A is in exactly kp of them, fi ∈ Φ, Bi = fi[Ai] ⊆ B, and
every y ∈ B is in at most kq of the Bi’s. We construct a bipartite graph with
the bipartition classes A, B, as follows. We join every x ∈ A with an edge
to each fi(x) (in case fi(x) = y for say s ≥ 1 of the i’s, we keep only one
edge between x and y; but the number s appears below as f(x, y)). This way,
we defined a locally finite graph (that is, every vertex has finite degree). By
hypothesis, there is a function f from the edge set into the natural numbers
(namely the one that associates with an edge e = (x, y) the number of i for
which y = fi(x)) such that∑

x∈e

f(e) = kp (x ∈ A)

and ∑
y∈e

f(e) ≤ kq (y ∈ B).

This implies, by simple counting, that for every finite A′ ⊆ A the set Γ [A′] of
points in B joined into A′ has

|Γ [A′]| ≥ kp

kq
|A′| =

p

q
|A′|

elements. Using Problem 23.15 we find that there is a function g from the
edge set into the natural numbers such that∑

x∈e

g(e) = p (x ∈ A)

and ∑
y∈e

g(e) ≤ q (y ∈ B).

We define the sets A∗
1, . . . , A

∗
t as follows. x ∈ A∗

i if and only if x ∈ Ai and
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|{1 ≤ j ≤ i : fj(x) = fi(x)}| ≤ g (x, fi(x)) .

If x ∈ A, then for every y ∈ B, x is contained in exactly g(x, y) of the A∗
i ’s

(namely, in the first g(x, y) of those A∗
i ’s for which fi(x) = y), so altogether

it is in p of them. Similarly, if y ∈ B, the number of i’s for which y ∈ fi[A∗
i ]

holds, is
∑

{g(x, y) : x ∈ A}, which is at most q by condition.

7. (d) → (c) → (b) → (a) and (e) → (b) are obvious.
(b) → (c) Assume that A ∼ 2A, i.e., there is a partition A = A1 ∪ · · · ∪An

and there are f1, . . . , fn ∈ Φ such that f1[A1], . . . , fn[An] ⊆ A and every point
in A is covered exactly twice. Set

A′
i = {x ∈ Ai : fi(x) /∈ f1[A1] ∪ · · · ∪ fi−1[Ai−1]} ,

A′′
i = {x ∈ Ai : fi(x) ∈ f1[A1] ∪ · · · ∪ fi−1[Ai−1]} .

Consider A′ = A′
1 ∪ · · · ∪A′

n, A′′ = A′′
1 ∪ · · · ∪A′′

n. Then, A′′ = A \A′, and as

A = f1[A′
1] ∪ · · · ∪ fn[A′

n] = f1[A′′
1 ] ∪ · · · ∪ fn[A′′

n],

we have A′ ∼ A ∼ A′′.
(c) → (d) By induction on k. The case k = 2 is just (c). To proceed from

k to k + 1 let A = A1 ∪ · · · ∪ Ak be a partition appropriate for k. As Ak ∼ A
there are partitions {B1, . . . , Bt} and {C1, . . . , Ct} of Ak, A respectively such
that Ci = fi[Bi] hold for appropriate fi ∈ Φ. By (c) there is a decomposition
A = A′∪A′′ with A′ ∼ A′′ ∼ A. Set C ′

i = Ci∩A′, C ′′
i = Ci∩A′′, B′

i = f−1
i [C ′

i],
B′′

i = f−1
i [C ′′

i ]. If we put A′
k = B′

1 ∪ · · · ∪B′
t, A′′

k = B′′
1 ∪ · · · ∪B′′

t , then we get
A′

k ∼ A′ ∼ A and A′′
k ∼ A′′ ∼ A. Hence A = A1 ∪ · · · ∪ Ak−1 ∪ A′

k ∪ A′′
k is a

partition appropriate for k + 1.
(a) → (e) Assume that (n + 1)A  nA. Then by Problem 4 we have

nA ∼ (n + 1)A. If we add one–one copy of A to the covers on the two sides
we can see that this implies (n + 1)A ∼ (n + 2)A, and iteration gives

nA ∼ (n + 1)A ∼ (n + 2)A ∼ · · · ∼ npA,

and by Problem 5 we find that pA ∼ A ∼ qA for any p, q ≥ 1.

8. Using Problem 7 we find that

2B  2nA  A  B

and that suffices again by Problem 7.

9. (a) We consider the complex plane. Let c ∈ C be a transcendental number
with |c| = 1. Let A ⊆ C be the set of all complex numbers of the form
ancn + · · ·+a0 with an, . . . , a0 nonnegative integer. Notice that A is countable
and every element in A has a unique representation of the above form. Now
the congruences z �→ z + 1, z �→ cz (a rotation, as |c| = 1) map A onto
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disjoint subsets of itself so 2A ∼ A. [S. Mazurkiewicz, W. Sierpiński: Sur un
ensemble superposable avec chacune des ses deux parties, Comptes Rendus
Acad. Sci. Paris 158(1914) 618–619]

(b) Let D = {z ∈ C : |z| ≤ 1} be the unit disc, ε = (−1 + i
√

3)/2, c ∈ C
again some transcendental with |c| = 1. For every z ∈ D one of z+1, z+ε, z+ε2

is in D so there is a function f : D → D such that f(z) ∈ {z +1, z + ε, z + ε2}
holds for z ∈ D. Let A be the smallest set containing 0 and having the property
that if z ∈ A then cz, f(cz) ∈ A. Again, A is countable and each element can
uniquely be represented as a polynomial of c with coefficients 0, 1, ε, or ε2. As
A ⊆ D, it is bounded. Set A1 = cA,

A2 = {z ∈ cA : f(z) = z + 1}, A3 = {z ∈ cA : f(z) = z + ε},

A4 = {z ∈ cA : f(z) = z + ε2}.
Now A = A1 ∪ (A2 + 1) ∪ (A3 + ε) ∪ (A4 + ε2) is a partition, A1 = cA ∼ A
and A2 ∪ A3 ∪ A4 = cA so 2A ∼ A. [W. Just: A bounded paradoxical subset
of the plane, Bull. Polish Acad. Sci. Math 36(1988), 1–3]

10. Let ϕ be some rotation with an angle incommensurable to 2π, such that
no x ∈ A is a fixed point of ϕ, and ϕn(x) 
= x′ holds for x, x′ ∈ A, n = 1, 2, . . ..
Such a ϕ exists as the second and the third conditions disqualify only < c
rotations, once we fix the angle of it. Now define B = {ϕn(x) : x ∈ A, n < ω}.
Notice that every y ∈ B can uniquely be written in the form ϕn(x) with
x ∈ A, n < ω. ϕ now transforms B into B \A. As S2 = (S2 \B)∪B, applying
the identity on the first set and ϕ on the second we find that S2 ∼ S2 \ A.

11. Let 0 < α < 1 be an irrational number. Let xn be the fractional part of
αn. Notice that x0 = 0 and xn 
= xm holds for n 
= m. Also,

xn+1 =
{

xn + α if 0 ≤ xn < 1 − α,
xn + α − 1 if 1 − α ≤ xn < 1.

Set X = {xn : n = 0, 1, . . .}, Y = [0, 1] \ X, X ′ = X ∩ [0, 1 − α), X ′′ =
X ∩ [1 − α, 1].

Then, by according to what was said above the set X \ {0} decom-
poses as (X ′ + α) ∪ (X ′′ − (1 − α)) so [0, 1] = X ′ ∪ X ′′ ∪ Y and (0, 1] =
(X ′ + α) ∪ (X ′′ − (1 − α)) ∪ Y . [W. Sierpiński: On the congruence of sets
and their equivalence by finite decomposition. Lucknow, 1954. Reprinted by
Chelsea, 1967]

12. Notice that Q = [0, 1] × [0, 1]. We know from Problem 10 that there are
a decomposition [0, 1] = A1 ∪ · · · ∪ At and real numbers α1, . . . , αt that the
translates (A1+α1), . . . , (At+αt) give a decomposition of (0, 1]. If we multiply
these sets by [0, 1] we get the decomposition

[0, 1] × [0, 1] = (A1 × [0, 1]) ∪ · · · ∪ (At × [0, 1]) ,
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which can be transformed by translations in the direction of the x-axis into

((A1 + α1) × [0, 1]) ∪ · · · ∪ ((At + αt) × [0, 1]) ,

a decomposition of (0, 1] × [0, 1].

13. We notice that a proof virtually identical to the one given to Problem 12
shows that if S is a parallelogram that contains arbitrarily the points of its
boundary, A is a subset of one of the sides of S, then S ∼ S \ A.

Given P , a planar polygon, decompose its boundary as A1 ∪ · · · ∪ A2n

where each Ai is a half of one of the sides. Then use the above argument to
show that

P ∼ P \ A1 ∼ P \ (A1 ∪ A2) ∼ · · · ∼ P \ (A1 ∪ · · · ∪ A2n)

(for every j we can find a small enough parallelogram in P \ (A1 ∪ · · · ∪ Aj)
that includes Aj+1 on its boundary).

14. What we suppose is that P , Q can geometrically be decomposed into
the subpolygons P1, . . . , Pt, and Q1, . . . , Qt such that Qi is the fi-map of Pi

via some congruences fi. The problem is with the boundary points. Each and
every one of them can be multiply covered or not covered at all. First we assign
the boundary points arbitrarily to one of the sets, so we have the partitions
P = P1 ∪ · · · ∪ Pt and Q = Q1 ∪ · · · ∪ Qt. (Notice that Qi = fi[Pi] does not
necessarily hold.) Using Problem 13 we can equidecompose each Pi into its
interior, Pi ∼ int(Pi) and similarly treat each Qi. Now we are done as clearly
each fi maps the interior of Pi onto the interior of Qi.

15. We show that E ∼ Z if and only if E = Z \ A for some finite A. For one
direction, let A be finite. If A = {a1, . . . , an} is its increasing enumeration,
then Z \ A = (−∞, a1 − 1] ∪ [a1 + 1, a2 − 1] ∪ · · · ∪ [an + 1,∞). To get a
decomposition of Z it suffices to shift the second interval by 1 to the left, the
next, by 2, etc., the last interval, [an + 1,∞), will be shifted by n to the left.

For the other direction, we show that if Z ∼ Z\A then A is finite. Assume,
therefore, that Z = B1∪· · ·∪Bk is a decomposition of Z and Z\A = f1[B1]∪
· · · ∪ fk[Bk] where fi(x) = x + ci for i = 1, . . . , k. Put c = max (|c1|, . . . , |ck|).
Let N be a large natural number. Notice that fi[Bi] ∩ [−N, N ] must include
(Bi ∩ [−N + c, N − c]) + ci so it has at least |Bi ∩ [−N, N ]| − 2c elements.
Adding up, we get that (Z \ A) ∩ [−N, N ] has at least

|(B1 ∪ · · · ∪ Bk) ∩ [−N, N ]| − 2kc = 2N + 1 − 2kc

elements. As N can be arbitrarily large, |A| ≤ 2kc follows.

16. (a) Assume that some nonempty H ⊆ Zn is paradoxical. By translating
H we can assume that 0 ∈ H holds. By assumption, there is a decomposition
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H = H1 ∪ · · · ∪Ht and there are vectors c1, . . . , ct ∈ Zn such that (H1 +c1)∪
· · · ∪ (Ht + ct) covers every point of H twice and no other points. If we set
f(x) = x + ci for x ∈ Hi, then f : H → H, f(x) − x ∈ {c1, . . . , ct} for every
x ∈ H, and every element of H is assumed twice by f . If g(N) = |HN | where
HN = H ∩ [−N, N ]n for N = 0, 1, . . . then 1 = g(0) ≤ g(1) ≤ · · ·. Let the
natural number c be larger than all the coordinates of all the vectors c1, . . . , ct.
As f−1[HN ] ⊆ HN+c we get g(N + c) ≥ 2g(N), which, by induction, gives
g(Nc) ≥ 2N . But that contradicts the obvious inequality g(Nc) ≤ (2Nc+1)n

for N large.
(b) Assume that the nonempty subset H of the Abelian group G is para-

doxical. This means, that there is a partition H = H1 ∪ · · · ∪Ht and there are
elements g1, . . . , gt ∈ G that the sets (H1 + g1), . . . , (Ht + gt) cover every ele-
ment in H exactly twice (and no other element). Set f(x) = x+gi for x ∈ Hi.
Then f : H → H, f(x)− x ∈ {g1, . . . , gt} for every x ∈ H, and every element
of H is assumed exactly twice by f . We can assume that 0 ∈ H. Let A be
the subgroup of G generated by g1, . . . , gt. Then f maps H ∩A to H ∩A and
has exactly the same properties as f ; therefore, the nonempty H ∩A is para-
doxical, as well. We reduced, therefore, the problem to the finitely generated
case.

By the fundamental theorem of finitely generated Abelian groups, A is the
direct product of finitely many cyclic groups, that is, isomorphic to B × Zn

where n is a natural number and B is a finite Abelian group. n ≥ 1 as a finite
set obviously cannot be paradoxical.

Set g(N) = |HN | where HN = H ∩ (B × [−N, N ]n) for N = 0, 1, . . ..
Again, 1 = g(0) ≤ g(1) ≤ · · ·. Let the natural number c be larger than all the
coordinates in the Zn part of all the vectors g1, . . . , gt. As f−1[HN ] ⊆ HN+c we
get g(N + c) ≥ 2g(N), which as above gives g(Nc) ≥ 2N and that contradicts
the obvious inequality g(Nc) ≤ |B|(2Nc + 1)n for N large.

(c) Assume that the nonempty H ⊆ R is paradoxical with congruences.
This means that there is a decomposition H = H1 ∪ · · · ∪ Ht and there exist
functions fi : Hi → H of the form fi(x) = x + ci or fi(x) = −x + ci such that
f1[H1], . . . , ft[Ht] cover every element of H exactly twice. Pick a ∈ H. Let A
be the additive subgroup of R generated by a, c1, . . . , ct. A is isomorphic to Zn

for some n ≥ 1 and as A is closed under the functions fi, A∩H is a similarly
paradoxical set in Zn where now in Zn we consider the bijections generated
by translations and the reflection x �→ −x. Now, as above, if the coordinates
of the elements c1, . . . , ct in Zn are bounded by c, and g(N) = |H ∩ [−N, N ]n|
then g(N) > 0 for N ≥ N0, and g(N + c) ≥ 2g(N), which gives rise to an
exponential growth of g, an impossibility.

17. (a) Let the generators of F2 be x and y and let A ⊆ F2 consist of those
words that start with a power (positive or negative) of x. Then, the words in
yA, y2A, . . . start with y, y2, . . . respectively, so they are disjoint, ℵ0A  F2.
On the other hand, xA contains 1 and every word that starts with a power of
y, so A ∪ xA = F2.
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(b) Consider ϕ, the rotation around axis z with angle cos−1 1
3 and ψ, the

rotation around axis x with angle cos−1 1
3 . That is,

ϕ±1 =
1
3

⎡
⎣ 1 ∓2

√
2 0

±2
√

2 1 0
0 0 3

⎤
⎦ and ψ±1 =

1
3

⎡
⎣3 0 0

0 1 ∓2
√

2
0 ±2

√
2 1

⎤
⎦ .

We show that no nontrivial product of powers of ϕ and ψ is the identity.
Assume that w = gngn−1 · · · g1 is such a product. Suppose first that only ψ
occurs in it. We can assume that w = ψn with n > 0. By induction on n we
get that ψn(0, 0, 1) = 1

3n (0, bn

√
2, cn) where bn, cn are integers, in fact b0 = 0,

c0 = 1, bn+1 = bn − 2cn, and cn+1 = 4bn + cn. Again, induction shows that if
n > 0 is odd, then bn ≡ cn ≡ 1 (mod 3), if n > 0 is even, then bn ≡ cn ≡ 2
(mod 3), so whenever n > 0 then ψn(0, 0, 1) 
= (0, 0, 1) holds.

We can assume, therefore, that ϕ±1 properly occurs in w. We show that
w(1, 0, 0) 
= (1, 0, 0). As ψ(1, 0, 0) = (1, 0, 0) we can assume that g1 = ϕ±1.
Set v0 = (1, 0, 0) and vi+1 = gi+1(vi) for 0 ≤ i < n. Induction gives that
vi = (ai, bi

√
2, ci)/3i where ai, bi, ci are integers, and in fact, if vi+1 = ϕ±1(vi),

then
ai+1 = ai ∓ 4bi,
bi+1 = ±2ai + bi,
ci+1 = 3ci,

If, however, vi+1 = ψ±1(vi), then
ai+1 = 3ai,
bi+1 = bi ∓ 2ci,
ci+1 = ci ± 4bi.
We prove that bi is not divisible by 3 for i > 0 (and therefore it cannot be

0). As g1 = ϕ±1, (a1, b1, c1) = (1,±2, 0), we have this for i = 1. We complete
the induction by considering cases.

• if gi = ϕ±1, gi−1 = ψ±1, then bi+1 = ±2ai + bi = ±2 · 3ai−1 + bi ≡ bi

(mod 3),
• if gi = ψ±1, gi−1 = ϕ±1, then bi+1 = bi ∓ 2ci = bi ∓ 6ci−1 ≡ bi (mod 3),
• if gi = gi−1 = ϕ±1, then bi+1 = ±2ai + bi = ±2(ai−1 ∓ 4bi−1) + bi =

−8bi−1 ± 2ai−1 + bi ≡ (bi−1 ± 2ai−1) + bi = 2bi (mod 3),
• if gi = gi−1 = ψ±1, then bi+1 = bi ∓ 2ci = bi ∓ 2(ci−1 ± 4bi−1) = bi ∓

2ci−1 − 8bi−1 ≡ bi ∓ 2ci−1 + bi−1 = 2bi (mod 3).

(c) Let ϕ, ψ be two independent rotations around the center of S2 as
in part (b). Let x, y be the generators of F2. If w = xn0ym0 · · ·xntymt is
some element of F2, set g(w) = ϕn0ψm0 · · ·ϕntψmt , this gives an isomorphic
embedding of F2 into the group of rotations of S2. Notice that A = {x ∈
S2 : g(w)(x) = x, some 1 
= w ∈ F2} is countable, therefore S2 ∼ S2 \ A by
Problem 10. Set B = S2 \A. It suffices to prove that B is paradoxical. Define
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the following equivalence relation on B: x ∈ B is equivalent to y ∈ B if and
only if g(w)(x) = y for some w ∈ F2. Then B decomposes into (countable)
equivalence classes; B =

⋃
{Bj : j ∈ J}, and pick an element bj ∈ Bj from

every class (this is the point where we use the axiom of choice).
As F2 is paradoxical by part (a) and Problem 8, there are a decompo-

sition F2 = A1 ∪ · · · ∪ At and elements w1, . . . , wt ∈ F2 such that the sets
w1A1, . . . , wtAt cover every element of F2 exactly twice.

Set
Bi =

⋃
{g(w)(bj) : w ∈ Ai, j ∈ J}

for i = 1, . . . , t. Then B = B1 ∪ · · · ∪ Bt is such a decomposition that the
rotated sets g(w1)[B1], . . . , g(wt)[Bt] cover every point of B exactly twice,
i.e., B ∼ 2B.

(d) It suffices to show that A ∼ S2. As A has inner points, it includes
a small open set, so finitely many, say n rotated copies of it cover S2. Thus
S2  nA. As S2 is paradoxical, nS2  S2, so we get nS2  nA. By Problem
6 this gives S2  A and as obviously A  S2, we get, using Problem 4, that
S2 ∼ A.

(e) First we show that the centerless unit ball,

B′ =
{
(x, y, z) : 0 < x2 + y2 + z2 ≤ 1

}
,

is paradoxical. By part (c), if A =
{
(x, y, z) : x2 + y2 + z2 = 1

}
, then A can

be partitioned as A = A1∪· · ·∪An and there are rotations (around the origin)
ϕ1, . . . , ϕn such that in ϕ1[A1]∪· · ·∪ϕ1[An] every point of A is covered exactly
twice. We set

B′
i = {(rx, ry, rz) : 0 < r ≤ 1, (x, y, z) ∈ Ai} .

Then B′ is partitioned as B′ = B′
1 ∪ · · · ∪ B′

n and in ϕ1[B′
1] ∪ · · · ∪ ϕn[B′

n]
every point of B′ is covered exactly twice, that is, B′ ∼ 2B′.

Finally, as clearly B′  B3  2B′ we get that B3 is paradoxical, by Prob-
lem 8. (Alternatively, we can get B′ ∼ B3, by considering a segment inside
B3 one of whose endpoints is (0, 0, 0), and applying Problem 11.) [S. Banach,
A. Tarski: Sur la decomposition des ensembles de points en parties respective-
ment congruents, Fund. Math, 6(1924), 244–277]

(f) Let D be a ball small enough such that both A and B include a trans-
lated copy of D. Let n be a natural number large enough that both A and B
can be covered by n copies of D. Then D  A  nD and, as D is paradoxical
by part (d), nD ∼ D, so A ∼ D holds by Problems 2 and 3. Similarly B ∼ D,
so by Problem 1, A ∼ B.

18. We can assume that ε < 1
2 . Let A, B be subsets of the {〈x, y, z〉 : z = 0}

plane. Let r > 0 be large enough that the disc D = {〈x, y〉 : x2 + y2 ≤ r2}
covers both A and B. Let E be the upper half-sphere above D, that is,
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E =
{
〈x, y, z〉 : x2 + y2 + z2 = r2, z ≥ 0

}
.

Notice that the projection π (x, y, z) = 〈x, y〉 is a bijection between E and D.
Let δ > 0 be a small number (δ = ε

10 suffices). The mapping gδ(x, y) = 〈δx, δy〉
is a δ-contraction from D to Dδ = {〈x, y〉 : x2 + y2 ≤ δ2r2}, the disc of radius
δr around the origin. Set F = π−1[Dδ], a small set around 〈0, 0, r〉, the North
Pole of E. The connecting line of any two points of F has angle < π

4 with
our original plane. Therefore, π−1 on Dδ can multiply distances by at most
cos−1(π

4 ) =
√

2. This implies that the composed mapping π−1 ◦ gδ is still an
ε-contract on A.

The sets A∗ = π−1 ◦ gδ[A] and B∗ = π−1[B] are subsets of E with inner
points. Therefore, by Problem 17 part (d) A∗ ∼ B∗, that is, there are de-
compositions A∗ = A∗

1 ∪ · · · ∪ A∗
n and B∗ = B∗

1 ∪ · · · ∪ B∗
n and congruences

fi : A∗
i → B∗

i . If we set Ai = g−1
δ ◦ π[A∗

i ] and Bi = π[B∗
i ], then hi : Ai → Bi

is a bijection, where hi = π ◦fi ◦π−1 ◦gδ. Also, hi is an ε-contract, as π−1 ◦gδ

is an ε-contract, fi and π are 1-contracts. [W. Sierpiński: Sur un paradoxe de
M. J. von Neumann, Fundamenta Mathematicae, 35(1948), 203–207]
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Stationary sets in ω1

1. If A ⊆ ω1 is finite then ω1 \A is a club if and only if A contains only 0 and
successor ordinals. Indeed, as the limit of any sequence (of distinct elements)
is a limit ordinal, if A excludes limits then ω1 \A is closed. On the other hand,
if α ∈ A is limit, then every sequence αn → α has a tail in ω1 \A so ω1 \A is
not closed.

2.

(a) Yes. Indeed, if A ∩ C 
= ∅ holds for every club set C, then it holds for B
as well.

(b) No. Set A = (ω, ω1) and B = [0, ω) ∪ (ω, ω1). A is a club, but B is not
even closed.

(c) Yes. This is just the contrapositive form of (a).

3. Assume that C0, C1, . . . are club sets, we are to show that C = C0∩C1∩· · ·
is a club set, too.

Closure is immediate: if αn → α, αn ∈ C, then α ∈ Ci holds for i = 0, 1, . . .,
so α ∈ C, too.

For unboundedness assume that β < ω1. Recursively choose β < α1 <
α2 < · · · such that if n = 2i(2j + 1) then αn ∈ Ci. This is possible as
each Ci is unbounded. Set α = limn αn. For every i < ω there is an infinite
subsequence of {α1, α2, . . .} from Ci, so as αn → α, we get α ∈ Ci, that is,
α ∈ C.

4. Assume that N0, N1, . . . are nonstationary sets. By definition, there exist
club sets C0, C1, . . . such that Ni ∩ Ci = ∅ (i < ω). Set N = N0 ∪ N1 ∪ · · ·,
C = C0 ∩ C1 ∩ · · ·. By Problem 3, C is a club, clearly C ∩ N = ∅, so N is
nonstationary, as claimed.
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5. One has to show that (S ∩ C) ∩ D 
= ∅ if D is a club. Indeed, C ∩ D is a
club, so S ∩ (C ∩ D) 
= ∅.

6. Closure is easy: assume that αn → α and αn ∈ C = �{Cα : α < ω1}. For
every β < α an end segment of {α0, α1, . . .} is in Cβ (namely all terms that
are greater than β) so their limit, α is in Cβ , as well. As this holds for every
β < α, we get α ∈ C.

For unboundedness let β < ω1 be given. Select, by recursion, the elements
β = α0 < α1 < · · · such that αn+1 ∈

⋂
{Cγ : γ < αn} (possible as by

Problem 3 the intersection of countably many club sets is unbounded again).
Let α = limn αn. We claim that α ∈ C. Indeed, if γ < α then, for some n,
γ < αn < αn+1 < · · · < α holds, so αn+1, αn+2, . . . are all in Cγ , therefore
α ∈ Cγ . As this holds for all γ < α, α ∈ C holds.

7. For closure, assume that α0 < α1 < · · · are from C(f) and α = limn αn.
in order to show that α ∈ C(f) assume that β1, . . . , βk < α. There is some n
that β1, . . . , βk < αn holds, so f(β1, . . . , βk) < αn < α and we are done.

For unboundedness, let β < ω1 be given. Select β = α0 < α1 < · · · in such
a fashion that αk+1 is a strict upper bound for the countable set{

f(β1, . . . , βn) : β1, . . . , βn < αk

}
.

If α = limk αk then whenever β1, . . . , βn < α then for some k < ω we will
have β1, . . . , βn < αk so f(β1, . . . , βn) < αk+1 < α, so α ∈ C(f) holds.

8. For α < ω1 let f(α) be the least element of C, strictly above α (and define
f(α1, . . . , αn) arbitrarily for n ≥ 2). We show that C(f) \ {0} ⊆ C. Assume
that γ ∈ C(f) \ {0}. γ cannot be successor, as if γ = β + 1 then β < γ,
so f(β) < γ, an impossibility. So γ is limit, and select a sequence γ0, γ1, . . .,
converging to γ. For every n < ω, γn < f(γn) < γ, that is, γ is the limit of
f(γ0), f(γ1), . . ., and, as these ordinals are elements of C, so is γ.

9. Assume that f : ω1 → ω1 is strictly increasing and C is its range. As
f(α) ≥ α for every α < ω1, C is unbounded. Assume that α0 < α1 < . . . are
from C and α = limn αn. Then αn = f(βn) for some βn, and β0 < β1 < · · · as
f is strictly increasing. Set β = limn βn. Then f(β) = α holds by continuity,
and we are done.

For the other direction let C ⊆ ω1 be a club set. Define f : ω1 → ω1 the
following way: f(α) = the αth element of C. Clearly, C is the range of f and f
is strictly increasing. For continuity, assume that β0 < β1 < · · · and βn → β.
Set αn = f(βn). Then α0 < α1 < · · · and if αn → α, then α ∈ C, so it is the
βth element of C, therefore α = f(β).

10. The continuity of f and g guarantees that {α : f(α) = g(α)} is closed
(if αn → α then f(α) = limn f(αn) = limn g(αn) = g(α)). Toward showing
unboundedness let β < ω1 be given. Define the sequence α0 < α1 < · · ·



Solutions Chapter 20 : Stationary sets in ω1 371

the following way. α0 = β and for n < ω, αn+1 is greater than f(αn) and
g(αn). Set α = limn αn. Then, by monotonicity, α ≤ f(α), g(α), and also
f(α) = limn f(αn) ≤ α, g(α) = limn g(αn) ≤ α hold. Therefore, β < α and
f(α) = g(α).

11. Assume that α0 < α1 < · · · are epsilon numbers, α = limn αn. Then

α = lim
n

αn = lim
n

ωαn = ωα,

and this gives closure.
Toward proving unboundedness assume that β < ω1. Define the sequence

β = α0 ≤ α1 ≤ · · · by taking αn+1 = ωαn . Unless β is an epsilon number (in
which case we are done), this sequence is strictly increasing. Therefore, for
α = limn αn we have

ωα = lim
n

ωαn = lim
n

αn+1 = α.

12. Assume the statement is false. Then for every ordinal α < ω1 there is a
bound g(α) < ω1 such that if ξ is greater than g(α) then f(ξ) 
= α. Define
the sequence 0 = α0 < α1 < · · · as follows. For every n < ω, the ordinal αn+1
is greater than g(β) for every β < αn. This is possible, as every countable
set of countable ordinals is bounded below ω1. Set α = limn αn. Now we are
in trouble with f(α): if β = f(α), then β < α by condition, so β < αn for
some n, but then α, an element of f−1(β), must be smaller than αn+1 < α, a
contradiction.

13. If, on the contrary, every value is assumed only countably many times,
then there is a function g such that for α < ω1, g(α) is an upper bound for
the countably many elements of f−1(α). By Problem 7 there is a club set
C(g) such that if α < β ∈ C(g) then g(α) < β holds. Pick α ∈ S ∩ C(g),
α > 0, and let β = f(α). Then β < α (as f is regressive) and α ≤ g(β) but
that contradicts α ∈ C(g). [W. Neumer: Verallgemeinerung eines Satzes von
Alexandrov und Urysohn, Math. Z., 54(1951), 254–261]

14. As N is nonstationary, there is a club set C, disjoint from N . For α ∈ N ,
α > 0 let f(α) = sup(C∩α). Clearly, f is regressive. Notice that f(α) = 0 if α
is smaller than the least element of C. To show the property required assume
that β < ω1. Choose some element γ ∈ C, with γ > β. Then f(α) ≥ γ > β
holds for α ∈ N , α > γ, that is, all elements of f−1(β) are below γ, and so
f−1(β) is countable.

15. We first show that for every α < ω1 there is a regressive function gα :
(0, α] → [0, α) that assumes every value at most twice. In order to prove this
by transfinite induction, we will only consider ordinals of the form α = ω · β,
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indeed, if α < ω · β, then the restriction of gω·β to (0, α] is appropriate. Also,
we require that infinitely many values in [0, α) be taken at most once (this
will be our inductive side condition).

For β = 1 we can take fω(n + 1) = n, fω(ω) = 0.
To proceed from β to β + 1, if gω·β is given, we define

gω·β+ω(ξ) =

⎧⎨
⎩

gω·β(ξ), for ξ ≤ ω · β;
ω · β + n, for ξ = ω · β + n + 1;
ω · β, for ξ = ω · β + ω.

If β is limit, we can present it as a sum β = β0+β1+ · · · of nonzero smaller
ordinals. Now set, for ξ ≤ ω · βi,

gω·β
(
ω · (β0 + · · · + βi−1) + ξ

)
= ω · (β0 + · · · + βi−1) + gω·βi(ξ),

and let gω·β(ω · β) be any of the infinitely many values < ω · β that are taken
at most once.

Turning to the solution of the problem, let N be a nonstationary set. We
can as well assume that 0 /∈ N , and so 0 ∈ C, where C is a closed, unbounded
set, disjoint from N . Let C = {γξ : ξ < ω1} be the increasing enumeration of
C. For every ξ < ω1 let δξ be the unique ordinal such that γξ+1 = γξ + δξ. If
we now define

f(γξ + α) = γξ + gδξ
(α)

for α < δξ, then f is a regressive function on ω1 \C, and as it maps (γξ, γξ+1)
into [γξ, γξ+1), and these intervals are disjoint, it will have the property that
every value is assumed at most twice. [G. Fodor, A. Máté: Some results con-
cerning regressive functions, Acta Sci. Math., 30(1969), 247–254]

16. First solution. Let f be a putative counterexample on the stationary set
S. Then for every α < ω1 there is a club set Cα such that f−1(α) ∩ Cα = ∅.
Set C = �{Cα : α < ω1}, the diagonal intersection. By Problem 6 this C is
a club set. Pick α ∈ C ∩ S, α > 0. Let β = f(α). This gives a contradiction:
β < α, α /∈ Cβ , so α /∈ C, either.

Second solution. We use the characterization of stationary sets given in
Problems 13 and 14: a set A ⊆ ω1 is stationary if and only if every regressive
function on A assumes some value on an uncountable set. For a proof by
contradiction let S ⊆ ω1 be a stationary set and f : S → ω1 a regressive
function, such that every f−1(α) is nonstationary, so let fα : f−1(α) → ω1 be
a regressive function that assumes every value countably many times. Then
g(ξ) = max

(
f(ξ), ff(ξ)(ξ)

)
is a regressive function on S, so there is a value,

say γ, which is assumed on an uncountable set X. For ξ ∈ X, f(ξ) ≤ γ holds,
so by the pigeon hole principle there is an uncountable Y ⊆ X, such that
f(ξ) = δ for ξ ∈ Y . For ξ ∈ Y we have fδ(ξ) ≤ γ, so fδ(ξ) = ε for ξ ∈ Z, with
Z uncountable, a contradiction.
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17. First solution. Decompose S as

S = S0 ∪ S1 ∪ · · · with Sn = {α ∈ S : |F (α)| = n} .

As the union of countably many nonstationary sets is nonstationary, we
can consider an Sn that is stationary. For every α ∈ Sn, let F (α) =
{f1(α), . . . , fn(α)} be the increasing enumeration. With n successive appli-
cations of Fodor’s theorem (Problem 16) we get a stationary set S∗ ⊆ Sn and
ordinals γ1 < · · · < γn such that for α ∈ S∗, f1(α) = γ1, . . . , fn(α) = γn hold.
That is, F (α) = s for α ∈ S∗, where s = {γ1, . . . , γn}.

Second solution. Let g be a function that codes, in a one-to-one fashion, the
finite sets in ω1 into countable ordinals (identifying finite sets with increasing
sequences). For example, g(0) = 0, g(γ1, . . . , γn) = ωγn + · · · + ωγ1 is one
possibility. By Problem 7 there is a club set C that is closed under g, that
is, if γ1 < · · · < γn < α ∈ C then g(γ1, . . . , γn) < α holds. S′ = S ∩ C is
stationary, and on S′ we consider the regressive f(α) = g

(
F (α)

)
. By Fodor’s

theorem f(α) = γ on a stationary subset S∗ of S′, and clearly F assumes the
finite set g−1(γ) on S∗.

18. Suppose the player can play through ω1 steps. The coin that she inserts at
step 0 < α < ω1 must have been obtained at some step f(α) < α. By Problem
13 there are a value τ and uncountably many α such that f(α) = τ . But that
means that at step τ the machine returned uncountably many quarters, a
contradiction.

19. First solution. If not, then every subset of ω1 is either nonstationary or
includes a closed, unbounded subset. If α < ω1, let fn(α) → α be a sequence
converging to α. By Fodor’s theorem (Problem 16) for every n < ω there
is a γn such that Xn = f−1

n (γn) is stationary. By our hypothesis, every Xn

includes a club subset, hence so does X =
⋂
{Xn : n < ω} (Problem 3). But

then the elements of X are all the limits of the same convergent sequence
(γn)n<ω, an impossibility.

Second solution. If not, then every subset of ω1 is either nonstationary
or includes a closed, unbounded subset. Let α �→ f(α) =

〈
f0(α), f1(α), . . .

〉
be an injection of ω1 into ω{0, 1}. For every i < ω there is, by our indirect
assumption, a unique εi = 0 or 1, such that Ai = {α : fi(α) = εi} includes
a club subset. But then, as the intersection of countably many club sets is
closed, unbounded again, for club many α we have f(α) = 〈ε0, ε1, . . .〉 which
is impossible, as there is at most one ordinal α with f(α) assuming this fixed
value.

20. We can assume that f maps into (0, 1) (by composing the original function
with a monotonic R → (0, 1) mapping). For every limit α < ω1, 1 ≤ n < ω,
there is a gn(α) < α such that the oscillation of f in (gn(α), α) is at most
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1
n . By Problem 12 there are γn and uncountable Xn such that gn(α) = γn

for α ∈ Xn. As Xn is unbounded, f oscillates at most 1
n in (γn, ω1), and if

γ = supn γn then the oscillation of f in (γ, ω1) is 0, i.e., it is constant there.

21. See the previous proof. See also Problem 8.43.

22. Assume that d is a metric on the ordered ω1. For 1 ≤ n < ω, if α < ω1
is limit, there is some fn(α) < α, such that d

(
fn(α), α

)
≤ 1

n . By Problem 12
there exist γn and uncountable sets Xn such that fn(α) = γn for α ∈ Xn. Let
Cn be the closure of Xn. Cn is closed and as Xn ⊆ Cn it is uncountable, so it
is closed, unbounded. As d(γn, α) ≤ 1

n for α ∈ Xn, the diameter of Xn, and
therefore of Cn, is at most 2

n . So the diameter of C = C1 ∩ C2 ∩ · · · is 0, and
this contradicts that C, a club set, has more than one point.

23. (a) We start by noticing that α × β is normal for α, β countable (it can
be embedded into R × R). Assume that F0, F1 ⊆ α × ω1 are disjoint, closed
sets. For β < α, i < 2 set Ki(β) =

{
γ < ω1 : 〈β, γ〉 ∈ Fi

}
, and set β ∈ Hi

if Ki(β) is uncountable. Notice that Ki(β) is always closed and so if β ∈ Hi

then Ki(β) is a club subset of ω1. As F0, F1 are disjoint, so are K0(β), K1(β)
for β < α, therefore H0 ∩ H1 = ∅. We further claim that H0, H1 are closed.
Indeed, let xn → x, xn ∈ Hi (n < ω). If γ ∈ Ki(x0) ∩ Ki(x1) ∩ · · ·, then
〈xn, γ〉 ∈ Fi for all n, and since Fi is closed, it follows that 〈x, γ〉 ∈ Fi. Thus,
C ⊆ Ki(x) where C is the closed, unbounded, therefore uncountable set of the
limit points of Ki(x0) ∩ Ki(x1) ∩ · · ·, so x ∈ Hi. Let γ < ω1 be large enough
to bound every bounded Ki(β) (i < 2, β < α). Now α × ω1 splits into the
open components α × (γ + 1) and α × [γ + 1, ω1). It suffices to separate F0,
F1 in both of them, separately. The first space is normal, as we have seen.

Let π denote the projection to the first coordinate in α × [γ + 1, ω1):
π
(
〈x, y〉

)
= x. Then H0 = π[F0], H1 = π[F1] are disjoint, closed subsets of α.

They can, therefore, be separated by disjoint open sets: F0 ⊆ G0, F1 ⊆ G1,
G0 ∩ G1 = ∅, and then the disjoint, open π−1[G0], π−1[G1] will separate F0,
F1.

(b) Let F0, F1 be disjoint closed sets in ω1×ω1. Assume first that for every
α < ω1, both sets have points in [α, ω1)×[α, ω1). Then, we can select by induc-
tion the points 〈x0, y0〉, 〈x1, y1〉, . . . such that max(xn, yn) < min(xn+1, yn+1)
for n = 0, 1, . . ., 〈x2n, y2n〉 ∈ F0 and 〈x2n+1, y2n+1〉 ∈ F1 (n = 0, 1, . . .). Then
the two increasing sequences x0, x1, . . . and y0, y1, . . . converge to the same
ordinal α and 〈α, α〉 ∈ F0 ∩ F1 a contradiction. We have, therefore, that for
some α < ω1, either F0 or F1 has no elements in [α, ω1) × [α, ω1). Then we
have to separate F0, F1 in the disjoint components [α + 1, ω1) × [α + 1, ω1),
(α + 1) × ω1, [α + 1, ω1) × (α + 1). In the first set this is trivial (one of them
is the empty set), the other two are treated in part (a).

24. Set
F0 = {ω1} × ω1 =

{
〈ω1, α〉 : α < ω1

}
,
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F1 = {〈α, α〉 : α < ω1} .

We show that they are disjoint, closed sets that cannot be separated. It is
obvious that F0 ∩ F1 = ∅. F0 is closed as its complement is the union of the
open sets of the form α × ω1 (α < ω1). F1 is closed as its complement is the
union of the open sets of the forms α × (α, ω1) or (α, ω1] × α (α < ω1).

Assume that G0 ⊇ F0, G1 ⊇ F1 are disjoint open sets. For every limit
α < ω1 there is some f(α) < α such that(

f(α), α
]
×
(
f(α), α

]
⊆ G1.

By Problem 13 there are γ and an uncountable X such that f(α) = γ holds for
α ∈ X. Then, G1 includes (γ, ω1)× (γ, ω1), the union of the sets (γ, α]× (γ, α]
for α ∈ X. But every point in {ω1}× (γ, ω1) is a limit point of this latter set,
so G0 ⊇ F0 cannot be disjoint from G1. This contradiction proves the claim.

25. Enumerate the sets as {Aα : α < ω1} with min(Aα) strictly increasing.
Clearly, min(Aα) ≥ α. We claim that the union

A =
⋃{

Aα+1 : α < ω1
}

is nonstationary. If it was stationary, then the regressive function f(x) = α
for x ∈ Aα+1 would assume a value on a stationary set by Problem 16, but
this contradicts the assumption that every Aα+1 is nonstationary. [G. Elekes]

26. Fix, prior to the game, the distinct reals {rα : α < ω1} ⊆ [0, 1]. What
II has to do in her nth step is to force {rα : α ∈ A2n+1} into an interval
of length 1/2n+1. We show by induction that this can be done. Assume that
{rα : α ∈ A2n} is in some interval [x, y] of length 1/2n. Then one of

{
α ∈

A2n : rα ∈ [x, x+y
2 ]

}
and

{
α ∈ A2n : rα ∈ [x+y

2 , y]
}

is stationary so can be
chosen as A2n+1. Now A0 ∩ A1 ∩ · · · can only contain one point.

27. Assume that the stationary sets {Aα : α < ω2} have pairwise nonstation-
ary intersections. For a given α < ω2 enumerate α as α = {γξ(α) : ξ < ω1}.
Define

Bα = Aα ∩
⋃{

Aγξ(α) \ (ξ + 1) : ξ < ω1
}
.

This set is nonstationary for the following reason. If it was not, then for every
x ∈ Bα there was a ξ < x such that x ∈ Aγξ(α). The regressive function x �→ ξ
assumes—by Fodor’s theorem—a constant value ξ on some stationary set, but
then that stationary set would be a subset of the nonstationary Aα ∩ Aγξ(α),
a contradiction.

We can now consider the system {Aα \Bα : α < ω2} of stationary sets. We
show that the pairwise intersections are countable: if β < α, say β = γξ(α),
then

(Aβ \ Bβ) ∩ (Aα \ Bα) ⊆ Aβ ∩ (Aα \ Bα) ⊆ ξ + 1.
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28. Assume that {Cα : α < ω2} are closed, unbounded sets in ω1. First, we
claim that there is some α < ω2 such that for every ξ < ω1 there are ℵ2 indices
β that Cβ ∩ ξ = Cα ∩ ξ holds. Indeed, otherwise, for every α there is some
ξ < ω1 such that only for at most ℵ1 values of β does Cβ ∩ ξ = Cα ∩ ξ hold.
By the pigeon hole principle, for ℵ2 many α < ω2 the same ξ < ω1 applies.
As CH holds, for ℵ2 many α < ω2 the sets Cα ∩ ξ are identical (there are only
ℵ1 subsets of ξ). But this is a contradiction to the stated property of ξ.

Let α < ω2 have the above property. Choose, by transfinite recursion,
distinct ordinals {βξ : ξ < ω1} as follows. If {βζ : ζ < ξ} are already chosen,
then let βξ /∈ {βζ : ζ < ξ} be such that Cβξ

∩ (ξ + 1) = Cα ∩ (ξ + 1). Set A =⋂
{Cβξ

: ξ < ω1}. As it is the intersection of closed sets, A is closed. In order to
show that A is also unbounded, we prove that Cα\A is nonstationary. Indeed,
if x ∈ Cα, but x /∈ A then there is some ξ that x /∈ Cβξ

. Here we cannot have
x ≤ ξ for then x ∈ Cα∩(ξ+1) = Cβξ

∩(ξ+1) ⊆ Cβξ
would hold, so ξ < x. That

is, the mapping x �→ ξ is regressive, and as clearly it assumes every value on a
nonstationary set (ξ on a subset of ω1\Cβξ

), its domain must be nonstationary,
as well by Problem 16. [F. Galvin, cf. J. E. Baumgartner, A. Hajnal, A. Máté:
Weak saturation properties of ideals, Coll. Math. Soc. J. Bolyai 10, Infinite
and Finite Sets, Keszthely, 1973, 137–158]

29. Assume that {fα : α < ω2} are ω1 → ω functions such that fβ and fα

differ on the closed, unbounded Dβα for β < α < ω2. By taking diagonal
intersection (see Problem 6) of the sets {Dβα : β < α} we can get a closed,
unbounded Cα such that for β < α fβ(ξ) 
= fα(ξ) on an end segment of Cα.
Assume that for ν < ω1 the function hν : ν ∪ {ν} → ω is an injection. For
α < ω2, ξ < ω1 let δ = sup(Cα ∩ ξ) (with sup(∅) = 0), gα(ξ) =

〈
hξ(δ), fα(δ)

〉
.

That is, gα : ω1 → ω × ω. We show that if β < α < ω2 then gα, gβ are
eventually different. Assume that gβ(ξ) = gα(ξ). Then, the corresponding δ
values are the same and also fβ(δ) = fα(δ) holds for this common value δ.
We get, therefore, that ξ < δ′, where δ′ ∈ Cα is so large that fβ(γ) 
= fα(γ)
holds for γ ∈ Cα, γ ≥ δ′. [R. Jensen]

30. Define f with the following property: if γ < ω1 is 0 or a limit ordinal,
then let f restricted to [γ, γ + ω) assume every value below γ + ω (and of
course, we must make f regressive). To show that f is, indeed, as required,
assume that α < ω1 is a limit ordinal. Then it is of the form α = ω · β,
and if here β is a successor ordinal, say β = γ + 1, then α = (ω · γ) + ω
where ω · γ is 0 or a limit ordinal. In this case simply select α0 = ω · γ, then
inductively find αnαn+1 < ω · γ + ω with the property that f(αn+1) = αn.
Clearly, this sequence converges to α. If β is not a successor ordinal then it
is a limit ordinal, and then first select an increasing sequence βn → β. Then
ω · βn converges to ω · β. Set α0 = ω · β0, and inductively let αn+1 be the
unique ordinal in [ω ·βn, ω ·βn +ω) for which f(αn+1) = αn holds. This can be
done, and the sequence {αn} must clearly converge to α. [J. E. Baumgartner]
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Stationary sets in larger cardinals

1. Assume that µ < κ and {Cξ : ξ < µ} are club sets, we are to show that
C =

⋂
{Cξ : ξ < µ} is a club set, too.

Closure is immediate, in fact, the intersection of an arbitrary number of
closed sets is closed as well.

In order to show unboundedness, assume that β < κ. Recursively define
β = α0 < α1 < · · · such that every Cξ has a point in each interval [αi, αi+1).
This is possible as the Cξ’s are unbounded and every set of at most µ points
is bounded. Set α = sup{αi : i < ω}. Then, for each ξ < µ, α is the limit of
points in Cξ, therefore α ∈ Cξ, so α ∈ C as well.

2. Let B be the set of ordinals specified in the problem. It is immediate that
B is closed. For unboundedness, let α < κ be arbitrary, we are going to find
β ∈ B, β ≥ α. If α ∈ B, we are done. Otherwise, select inductively the ordinals
α = α0 < α1 < · · · in such a way that the order type of C ∩ αn+1 is exactly
αn. As the order type of C is κ, this is possible, and induction gives that this
sequence is strictly increasing, and so C ∩ (αn+1 \ αn) 
= ∅ for all n. Hence, if
β is the limit of the sequence, then C ∩ β is cofinal in β, and the order type
of C ∩ β is the limit of the order types of C ∩ αn, i.e., it is β. That is, β ∈ B,
and we are done.

3. For the forward direction, assume that f : [κ]<ω → [κ]<κ. To show
that C(f) is closed, assume that ατ ∈ C(f) for τ < µ, ατ → α < κ. If
β1, . . . , βn < α, then β1, . . . , βn < ατ holds for some τ < µ, and as ατ ∈ C(f),
f(β1, . . . , βn) ⊆ ατ ⊆ α holds.

To show that C(f) is unbounded, let β < κ be given. We define the
increasing sequence β = α0 < α1 < · · · where αi+1 > αi is a bound for every
f(s), s ∈ [αi]<ω: f(s) ⊆ αi+1. Such an αi+1 exists as the union of < κ sets
each of cardinality < κ is bounded below κ. If we set α = lim{αi : i < ω} then
α ∈ C(f), as every finite set s ⊆ α is in some αi, therefore f(s) ⊆ αi+1 ⊆ α.
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For the other direction, let C ⊆ κ be a club. Set f(α) = min (C \ (α + 1)),
that is, the least element of C which is strictly larger than α. In order to show
that C(f) \ {0} ⊆ C, pick γ ∈ C(f), γ > 0. Clearly, γ ≥ f(0). If γ /∈ C,
then γ > f(0) ∈ C, so δ = sup(C ∩ γ) exists and clearly is in C. But then
δ < γ < f(δ), and so γ /∈ C(f), a contradiction. Thus, we must have γ ∈ C.

4. By Problems 1 and 3 for almost all α the set {aγ : γ < α} is closed under
all operations of A hence it is a substructure.

5. Set C = {α < κ : β < α −→ α ∈ Cβ}. For closure, assume that ατ → α for
τ < µ, ατ ∈ C. If β < α, then there is an η < µ such that β < ατ < α holds
for η < τ < µ, therefore ατ ∈ Cβ , so (as Cβ is closed) α ∈ Cβ .

For unboundedness, let β < κ. Define, by induction, the sequence β =
α0 < α1 < · · · where αi+1 > αi is in

⋂
{Cξ : ξ < αi} (possible, by Problem

1). Set α = sup{αi : i < ω}. Then, if γ < α, there is some i < ω such that
γ < αi. Now, αi+1, αi+2, . . . ∈ Cγ by construction, so α ∈ Cγ .

6. Assume that {Nα : α < µ} are nonstationary sets in κ (µ < κ). By
definition, there exist club sets Cα such that Nα ∩ Cα = ∅ (α < µ). Set
N =

⋃
{Nα : α < µ}, C =

⋂
{Cα : α < µ}. By Problem 1, C is a club, clearly

C ∩ N = ∅, so N is nonstationary, as claimed.

7. One has to show that (S ∩ C) ∩ D 
= ∅ if D is a club. Indeed, C ∩ D is a
club, so S ∩ (C ∩ D) 
= ∅.

8. We have to show that every club set C ⊆ κ contains an element with
cofinality µ. Indeed, choose a strictly increasing sequence {ατ : τ < µ} of
elements of C (possible, as C is unbounded in κ), then α = sup{ατ : τ < µ}
is in C by closure, and obviously cf (α) = µ. The set in question will be a club
set if and only if µ is the only regular cardinal below κ, that is, if µ = ω and
κ = ω1.

The set
{
α < κ : cf (α) ≤ µ

}
is a club set exactly when µ is the largest

regular cardinal that is less than κ, i.e., when κ = µ+. Finally,
{
α < κ :

cf (α) ≥ µ
}

is a club set exactly when µ is the least (infinite) regular cardinal
below κ, that is, when µ = ω and κ > ω is arbitrary.

9. Assume the stationary S ⊆ κ and the regressive f : S → κ contradict
the statement. Then, for every α < κ there is a club Cα ⊆ κ such that
Cα ∩ f−1(α) = ∅. Set C = �{Cα : α < κ}, the diagonal intersection of the
Cα’s. As C is a club set (Problem 5), there is an ordinal α > 0, α ∈ S ∩C. If
β = f(α), then β < α (as f is regressive), and α ∈ C implies α ∈ Cβ which
in turn implies that α /∈ f−1(β), a contradiction. [G. Fodor: Eine Bemerkung
zur Theorie der regressiven Funktionen, Acta Sci. Math. (Szeged), 17(1956),
139–142]
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10. Set g(α) = sup (f(α)) for α ∈ S. Then, g(α) < α, as cf (α) = µ+ and
|f(α)| ≤ µ. By Fodor’s theorem, there is a stationary set S′ ⊆ S, such that
g(α) = γ for α ∈ S′. There are |γ|µ < κ distinct subsets of γ with cardinality
at most µ, this splits S′ into |γ|µ subsets, if we consider those α ∈ S′ which
have a given image under f . One of them must be stationary (Problem 6),
and so f is constant on that set.

11. For each α < κ there is a club set Cα disjoint from Aα. Let C be their
diagonal intersection (Problem 5). If ξ ∈ B =

⋃{
Aα \ (α + 1) : α < κ

}
, then

ξ ∈ Aα for some ξ > α. Hence ξ /∈ Cα and therefore ξ /∈ C. Thus, C is disjoint
from B and so B is nonstationary.

12. Clearly, if B is stationary then so is A ⊇ B.
Assume A is stationary. Set f(x) = min(Aα) where x ∈ Aα. Plainly,

f(x) ≤ x for x ∈ A. If f(x) = x on a stationary set, then the range of f , that
is, B, must be stationary. In the other case, f(x) < x on a stationary set, so
by Fodor’s theorem, f(x) = α on a stationary set, but this is impossible, as
Aα is nonstationary.

13. Immediate from the preceding problem.

14. Assume first that there are κ sets; Aα ⊆ κ for α < κ. Set

A = {α < κ : there is β < α, α ∈ Aβ}

(the diagonal union). We claim that A is the least upper bound for {Aα : α <
κ}. First, for every α < κ, Aα \A ⊆ α+1, a bounded, therefore nonstationary
set. Next, assume that B < A. Then A \ B is stationary, and for α ∈ A \ B
let f(α) be the least β < α such that α ∈ Aβ . By the Fodor theorem, for a
stationary A′ ⊆ A \ B, f(α) = β holds, that is, A′ ⊆ Aβ \ B, so Aβ 
≤ B.

The case when there are less than κ sets is easier, and in fact it is covered
by the above case if we repeat one of the sets κ times.

15. (a) As it must intersect every end segment.

(b) Set κ = cf (α), a regular cardinal. By the definition of cofinality, no un-
bounded subset of α may have order type or cardinality less than κ. For the
other direction, let X ⊆ α be an arbitrary cofinal set or order type κ. Let
C be its closure in α. C is a closed, unbounded subset of α and its order
type is still κ as the following mapping f : C → X is order preserving. For
y ∈ C, f(y) is the least x ∈ X, x > y. Indeed, if y0 < y1 are in C, then
y0 < f(y0) ≤ y1 < f(y1).

(c) Let α0 < α1 < · · · be a sequence converging to α. Then C0 = {α0, α2, . . .}
and C1 = {α1, α3, . . .} are disjoint closed, unbounded sets.

(d) Identical with the classical case (Problem 1).
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(e) See (c).

16. (a) As C is unbounded, every subset unbounded in C is unbounded in α.
As C is closed, every subset closed in C is closed in α.

(b) Set E = {γ : cγ ∈ D}. As C ∩ D is unbounded (Problem 15(d)), E is
unbounded in κ. Let µ < cf (κ) be a limit ordinal, and assume that γτ ∈ E
(τ < µ), and lim{γτ : τ < µ} = γ. As C is closed, lim{cγτ : τ < µ} = cγ

holds. As D is closed, cγτ ∈ D for τ < µ implies cγ ∈ D, so γ ∈ E.

(c) If S ⊆ α is stationary then, by part (a), it intersects the closed, unbounded
{cγ : γ ∈ D} for every closed, unbounded D ⊆ κ, so Y = {γ : cγ ∈ S} is
stationary. Conversely, if Y ⊆ κ is stationary, then, by part (b), S = {cγ :
γ ∈ Y } meets every closed, unbounded subset of C, so it meets every closed,
unbounded subset, therefore it is stationary.

17 (a) Let C ⊆ α be a closed, unbounded set of order type cf (α). We can as
well assume that the first two elements of C are 0 and cf (α). Let g : C \{0} →
cf (α) \ {0} be a bijection. Define the regressive function f : α \ {0} → α
as follows. If γ ∈ C, then let f(γ) = g(γ). If, however, γ /∈ C, then set
f(γ) = max(C ∩ γ). It is easy to see, that f is well defined and regressive. If
γ < α, then either 0 < γ < cf (α) and f−1(γ) consists of one point, or γ ∈ C
and then f−1(γ) is the open interval (γ, γ′) where γ′ is the next element of
C, or else f−1(γ) is the empty set. In all three cases, f−1(γ) is bounded.

(b) Recall that if cf (α) = ω then there are no stationary subsets of α. Set κ =
cf (α), an uncountable regular cardinal. Let C ⊆ α be a closed, unbounded set
of order type κ, let C = {cγ : γ < κ} be its increasing enumeration. As S ⊆ α
is stationary, then so is {γ < κ : cγ ∈ S}. Even T = {γ < κ : cγ ∈ S, γ limit}
is stationary, as we only remove the successor elements, a nonstationary set.
For γ ∈ T , let g(γ) be the least β such that f(γ) < cβ . As cγ is the supremum
of {cξ : ξ < γ}, we have g(γ) < γ by the regressivity of f . That is, we have
a regressive function (g) on a stationary set (T ), so we can invoke Fodor’s
theorem, and get a stationary T ′ ⊆ T such that g(γ) = β holds for γ ∈ T ′,
for some β < κ. Then, S′ = {cγ : γ ∈ T ′} is stationary by Problem 16, and f
is bounded by cβ on S′.

18 let B be the set of those limit ordinals α < κ for which C∩α is a club set in
α. Since C is closed, B is just the set of limit ordinals α < κ for which C ∩ α
is cofinal in α. It is immediate that B is closed, and that it is unbounded,
follows from Problem 2.

19. (a) Assume that S < S. Then, there is a closed, unbounded set C such
that if α ∈ C∩S, then S∩α is stationary in α. Let C ′ be the set of limit points
of C. Set γ = min(C ′ ∩ S). Then, in γ, S ∩ γ is stationary, so, in particular,
cf (γ) > ω. As γ ∈ C ′, γ is a limit point of C, and by cf (γ) > ω it is also a
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limit point of C ′. So C ′ is closed, unbounded in γ, and also S∩γ is stationary,
therefore C ′ ∩ S ∩ γ is nonempty, but this contradicts the minimality of γ.

(b) Assume that S < T < U . There is, therefore, a closed, unbounded set C,
such that if α ∈ C∩T then S∩α is stationary in α and if α ∈ C∩U then T ∩α
is stationary in α (and so cf (α) > ω). Let C ′ be the closed, unbounded set
of the limit points of C. We show that if α ∈ C ′ ∩ U then S ∩ α is stationary
in α and this will prove that S < U . Assume that for some α ∈ C′ ∩ U ,
S ∩ α is nonstationary in α. There is, therefore, a club set D ⊆ α such that
D∩S = ∅. As cf (α) > ω, the set C ′ ∩D′ is a club set in α (here D′ is the set
of limit points of D), and as T ∩α is stationary in α, there is β ∈ C ′ ∩D′ ∩T .
Then, on the one hand S ∩ β is stationary in β, on the other hand, D is
closed, unbounded in β, and disjoint from S, so S ∩ β is nonstationary in β,
a contradiction.

(c) Assume that Sn+1 < Sn for n = 0, 1, . . . and this is witnessed by the
closed, unbounded sets Cn, that is, for α ∈ Cn ∩ Sn, Sn+1 ∩ α is station-
ary in α. Set C =

⋂
{Cn : n < ω}, a closed, unbounded set. For every n,

let γn = min(C ′ ∩ Sn) where C ′ is the set of limit points of C. By defini-
tion, Sn+1 is stationary in γn, so in particular, cf (γn) > ω and therefore
C ′ ∩ γn is closed and unbounded in γn. So C ′ ∩ Sn+1 ∩ γn 
= ∅, that is,
γn+1 < γn, so γ0 > γ1 > · · · is a decreasing sequence of ordinals, a contradic-
tion. [T. Jech: Stationary subsets of inaccessible cardinals, in: Axiomatic Set
Theory (J. E. Baumgartner, D. A. Martin, S. Shelah, eds), Boulder, Co. 1983,
Contemporary Math., 31, Amer. Math. Soc., Providence, R.I., 1984, 115–142]

20. (a) If some stationary S′ ⊆ S is the union of κ disjoint stationary sets
then so is S, by adding the difference S \ S′ to any of the components.

(b) Let the regressive f : S → κ be a counterexample. Then, for any γ < κ,
the set {α ∈ S : γ < f(α)} is stationary. We now construct by transfinite
recursion on ξ < κ an increasing sequence {γξ : ξ < κ} of ordinals. If γζ is
defined for ζ < ξ, then by the above property the set

Sξ = {α ∈ S : f(α) > sup{γζ : ζ < ξ}}

is stationary. As f is regressive on Sξ, by Fodor’s theorem (Problem 9) there
are a γξ and a stationary S′

ξ ⊆ Sξ such that f(α) = γξ holds for α ∈ S′
ξ.

As obviously γξ > γζ holds for ζ < ξ, the stationary sets {S′
ξ : ξ < κ} are

pairwise disjoint, contrary to our hypothesis.

(c) Assume indirectly that S′ = {α ∈ S : cf (α) < α} is stationary. Then, as
the function cf is regressive on S′, using parts (a) and (b) we get that there
is some µ < κ such that cf (α) ≤ µ holds for the elements of a stationary
S′′ ⊆ S′. For α ∈ S′′ let {fξ(α) : ξ < cf (α)} be a set cofinal in α. Again
by (b), there are club sets Cξ and values γξ < κ such that if α ∈ Cξ ∩ S′′

then fξ(α) ≤ γξ (ξ < µ). Define C =
⋂
{Cξ : ξ < µ}, a club set. Notice that

S∗ = C ∩ S′′ is stationary. But if α ∈ S∗, then
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α ≤ sup{fξ(α) : ξ < µ} ≤ sup{γξ : ξ < µ},

that is, S∗ is bounded in κ, a contradiction.

(d) Assume indirectly that there is a stationary S′ ⊆ S consisting of regular
cardinals such that for α ∈ S′ there is a closed, unbounded Cα ⊆ α, such that
Cα ∩S = ∅. Set, for ξ < κ, fξ(α) = min(Cα \ ξ) (the least element of Cα that
≥ ξ). This is a regressive function for α ∈ S′, α > ξ, so by part (b), there
are a closed, unbounded Dξ ⊆ κ, and a γξ < κ such that fξ(α) < γξ holds
for α ∈ Dξ ∩ S′. Set D = �{Dξ : ξ < κ}, the diagonal intersection (Problem
5). Let E ⊆ κ be a closed, unbounded set, consisting of limit ordinals, that
are closed under γξ, that is, if ξ < δ ∈ D, then γξ < δ (cf. Problem 3). Pick
α ∈ S′ ∩ D. If δ ∈ α ∩ E, then for ξ < δ we have fξ(α) < γξ < δ, therefore
Cα has an element in the interval [ξ, δ). As this holds for every ξ < δ, δ is a
limit point of Cα, so δ ∈ Cα. That is, if α ∈ S′ ∩ D, then E ∩ α ⊆ Cα, so
(E∩S)∩α = ∅. As S′∩D has arbitrarily large elements below κ, we conclude
that E ∩ S = ∅, a contradiction, as E is a closed, unbounded set.

(e) Assume that there is a club D ⊆ κ as in (d). Let D′ be the club set of
limit points of D. Set α = min(D′ ∩ S). Then, α is a regular, uncountable
cardinal and S ∩ α is stationary in α. D ∩ α is a club set in α, but then so is
D′ ∩ α. But then, (D′ ∩ α) ∩ (S ∩ α) 
= ∅, so D′ ∩ S has an element smaller
than α, a contradiction. [R. M. Solovay: Real-valued measurable cardinals,
in: Axiomatic Set Theory, Proc. Symp. Pure Math. XIII, Amer. Math. Soc.,
Providence, R.I., 1971, 397–428]

21. By Problem 20 there are pairwise disjoint stationary sets {Sα : α < κ}.
By increasing S0, if needed, we can assume that

⋃
{Sα : α < κ} = κ. Set

f(ξ) = α if and only if ξ ∈ Sα. Assume now that X ⊆ κ includes a club subset
C. Then for every α < κ there is some x ∈ X such that f(x) = α, namely,
any element of (the nonempty) C ∩ Sα.

22. By the previous problem S can be decomposed into the disjoint union
of κ stationary sets, S =

⋃
{Sα : α < κ}. Let H be a family of 2κ subsets

of κ, none being a subset of any other (see Problem 18.5). Set, for A ∈ H,
X(A) =

⋃
{Sα : α ∈ A}. Then {X(A) : A ∈ H} is as required. Indeed, if

A 
= B are in H, then α ∈ A\B for some α < κ and then Sα ⊆ X(A)\X(B).

23. Fix an arbitrary closed, unbounded subset Cα ⊆ α of order type µ, for
every α < κ, cf (α) = µ. For any closed, unbounded E ⊆ κ consider the
system C(E) = {Cα ∩ E : α < κ, cf (α) = µ}. We claim that for some closed,
unbounded E∗ the system C(E∗) is as required in the sense that for every
closed, unbounded E ⊆ κ there is some α < κ such that Cα ∩ E∗ ⊆ E and
Cα ∩ E∗ is of order type µ. Assume that it is not the case. Then for every
closed, unbounded set E∗ there is a closed, unbounded E such that for every
α (α < κ, cf (α) = µ) either |Cα ∩ E∗| < µ or Cα ∩ E∗ 
⊆ E. By replacing E
by E∗ ∩ E if needed, we can assume that E ⊆ E∗ holds.
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Define the decreasing sequence {Eγ : γ < µ+} of closed, unbounded sets
in κ as follows. Set E0 = κ. If γ < µ+ is limit, set Eγ =

⋂
{Eξ : ξ < γ}.

Finally, let Eγ+1 ⊆ Eγ be a set, as above which shows that C(Eγ) is not good.
Let α be the µth element of the closed, unbounded set E =

⋂
{Eξ :

ξ < µ+}. For every γ < µ+ the intersection Cα ∩ Eγ is of order type µ
(this holds even for E). Thus, necessarily Cα ∩ Eγ 
⊆ Eγ+1 holds, but then
{Cα∩Eγ : γ < µ+} is a properly descending sequence of sets, with the first set
of cardinality µ, and this is impossible. [S. Shelah: Cardinal Arithmetic, Oxford
Logic Guides 34, Oxford Science Publications, Clarendon Press, Oxford, 1994]

24. Fix, for every ordinal α < κ with cf (α) = ω a sequence 0 = xα
0 < xα

1 < · · ·
converging to it. If E ⊆ κ is closed, unbounded, α is as above, then set
n ∈ T (E,α) if and only if E ∩ (xα

n, xα
n+1] is nonempty, and then let yα

n(E) =
max(E ∩

(
xα

n, xα
n+1

]
). If we set Xα(E) = {yα

n(E) : n ∈ T (E,α)} then our
claim is that for some E the system

H(E) =
{
Xα(E) : |T (E,α)| = ω

}
is as required. Suppose to the contrary that this is not true. If the closed,
unbounded set D witnesses that H(E) is not good, i.e., Xα(E) ⊆ D never
holds, then E ∩ D also witnesses this, so we can assume that D ⊆ E.

Construct the closed unbounded sets {Eγ : γ < ω1} as follows. E0 is
arbitrary. If γ < ω1 is limit, then let Eγ =

⋂
{Eβ : β < γ}. And finally,

if Eγ is given, let Eγ+1 ⊆ Eγ be a closed unbounded set witnessing that
H(Eγ) is not good, that is, there is no α such that T (Eγ , α) is infinite and
Xα(Eγ) ⊆ Eγ+1 holds. Let α be the ωth element of (the closed unbounded)⋂
{Eγ : γ < ω1}. In α every Eγ is unbounded, so every T (Eγ , α) is infinite.

Moreover, T (Eγ , α) ⊇ T (Eγ′ , α) holds for γ < γ′, so there is some γ∗ that
T (Eγ , α) = T holds for γ ≥ γ∗. We have

{yα
n(Eγ) : n ∈ T} 
⊆ Eγ+1 (γ ≥ γ∗)

so for some n ∈ T we have yα
n(Eγ) /∈ Eγ+1 and hence yα

n(Eγ) > yα
n(Eγ+1).

By the pigeon hole principle for infinitely many γ, say for γ0 < γ1 < · · · the
same n applies here, which is impossible, as then yα

n(Eγ0) > yα
n(Eγ1) > · · ·, a

decreasing sequence of ordinals. [S. Shelah:Cardinal Arithmetic, Oxford Logic
Guides 34, Oxford Science Publications, Clarendon Press, Oxford, 1994]
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Canonical functions

1. Induction gives that hα(γ) = α for α < κ. Next we get that hκ(γ) = γ for
almost every γ, namely for all γ with the property γ = supτ<γ ατ . Further, if
0 < α < κ then hκ+α(γ) = γ + α holds for a.e. γ, and hκ·2(γ) = γ · 2 again on
a closed, unbounded set of γ.

2. This can be proved by induction on α. For α = β + 1 clearly hα(γ) =
hβ(γ) + 1 > hβ(γ) holds for all γ. If α = α′ + 1 with α′ > β, then hα(γ) =
hα′(γ)+1 > hα′(γ), and by the inductive hypothesis, the last term > hβ(γ) for
a.e. γ. If α is limit with µ = cf (α) < κ, α = sup{ατ : τ < µ}, then β < ατ for
some τ < µ, and so by the induction hypothesis hβ(γ) < hατ (γ) ≤ hα(γ) holds
for almost every γ. If, finally, α is limit with cf (α) = κ, α = sup{ατ : τ < κ},
then again, β < ατ for some τ < κ, and in this case if γ > τ and if γ is in a
closed, unbounded set, then hβ(γ) < hατ

(γ) ≤ hα(γ) holds.

3. By induction on α. The step α �→ α+1 is obvious: if fα+1(γ) > fα(γ), then

fα+1(γ) ≥ fα(γ) + 1 ≥ hα(γ) + 1 = hα+1(γ)

and these are true for a.e. γ. Assume that α is limit, µ = cf (α) < κ, α =
sup{ατ : τ < µ}. By condition, there is a closed, unbounded set Cτ ⊆ κ,
such that for γ ∈ Cτ fα(γ) > fατ (γ) holds. Also, by the inductive hypothesis,
there is a closed, unbounded set Dτ ⊆ κ, such that fατ (γ) ≥ hατ (γ) holds for
γ ∈ Dτ . If C is the intersection of all the Cτ ’s and Dτ ’s, then for γ ∈ C we
have fα(γ) > fατ (γ) ≥ hατ (γ) for every τ , that is,

fα(γ) ≥ sup {hατ
(γ) : τ < µ} = hα(γ).

Assume finally, that cf (α) = κ, α = sup{ατ : τ < κ}. Let Cτ ⊆ κ be
a closed, unbounded set such that if γ ∈ Cτ then fα(γ) > fατ (γ) ≥ hατ (γ)
holds. Set C = �{Cτ : τ < κ}, their diagonal intersection (see Problem 21.5).
Then for γ ∈ C, if τ < γ, then fα(γ) > fατ (γ) ≥ hατ (γ), that is,
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fα(γ) ≥ sup {hατ (γ) : τ < γ} = hα(γ)

holds.

4. The statement is obvious if α is 0 or successor. Assume that it is a limit
ordinal. If µ = cf (α) < κ, α = sup{ατ : τ < µ}, then, as f(γ) < hα(γ) for
γ ∈ S (S a stationary set), for every γ ∈ S, we have f(γ) ≤ hατ(γ)(γ) for some
τ(γ) < µ. For a stationary set S′ ⊆ S, τ(γ) = τ for some τ < µ (see Problem
21.6) and we are done.

If, however, cf (α) = κ, α = sup{ατ : τ < κ}, and for γ ∈ S (S a stationary
set), we have

f(γ) < hα(γ) = sup
{
hατ (γ) : τ < γ

}
,

then for every γ ∈ S, there is τ(γ) < γ that f(γ) ≤ hατ(γ)(γ), and then by
Fodor’s theorem (Problem 21.9) τ(γ) = τ with some τ and stationary many
γ and we are done again.

5. Let β < α be the least ordinal such that f(γ) ≤ hβ(γ) holds on a stationary
set (say, for γ ∈ S). By Problem 4, {γ ∈ S : f(γ) < hβ(γ)} is nonstationary,
so f and hβ indeed agree on a stationary set, namely, at a.e. point of S.

6. By Problem 3, fα(γ) ≥ hα(γ) holds for a.e. γ. If the conclusion is not true
then there is a least ordinal α such that fα(γ) > hα(γ) holds for γ ∈ S, where
S is some stationary set. Set

f(γ) =
{

hα(γ), for γ ∈ S;
fα(γ), for γ /∈ S.

Then f : κ → κ contradicts property (c) of the Problem. In fact, if β < α then
fβ(γ) < fα(γ) holds on a club set D1 (by property (b)), fβ(γ) ≤ hβ(γ) holds
on a club set D2 (by the minimality of α) and hβ(γ) < hα(γ) holds for γ ∈ D3
by Problem 2. Thus, fβ(γ) < min

(
fα(γ), hα(γ)

)
≤ f(γ) for γ ∈ D1∩D2∩D3,

hence f(γ) ≤ fβ(γ) cannot hold for stationarily many γ.

7. Suppose that the conclusion is false. Let α be the least ordinal, such that
hα(γ) ≥ |γ|+ holds on a stationary set, say, for γ ∈ S. Clearly, α is limit.
Assume first that µ = cf (α) < κ, and α = sup{ατ : τ < µ}. If γ ∈ S, γ > µ,
then there is some τ(γ) < µ such that hατ(γ)(γ) ≥ γ+. For a stationary subset
S′ ⊆ S, τ(γ) = τ holds for some τ (Problem 21.9), hence hατ (γ) ≥ |γ|+ for
γ ∈ S′, a contradiction to the minimality of hα.

Assume finally that cf (α) = κ, α = sup{ατ : τ < κ}, and for a stationary
set S, if γ ∈ S, then

|γ|+ ≤ hα(γ) = sup {hατ
(γ) : τ < γ}

holds. As |γ|+ is regular, it is not the supremum of a γ-sequence of smaller
ordinals, so for every γ ∈ S there is some τ(γ) < γ such that hατ(γ)(γ) ≥ |γ|+.
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By Fodor’s theorem (Problem 21.9) τ(γ) = τ holds for the elements of a
stationary subset S′ ⊆ S, and then again we get that hατ (γ) ≥ |γ|+ for γ ∈ S
and here ατ < α, a contradiction.

8. For every δ < κ there are δ′, δ′′ such that g′
α(δ′) = gα(δ), gα(δ′′) = g′

α(δ).
By Problem 21.3, there is a closed, unbounded set C, such that if γ ∈ C, δ < γ,
then the corresponding δ′ and δ′′ are also below γ. For γ ∈ C, gα[γ] = g′

α[γ],
so fα(γ) = f ′

α(γ) holds as well.

9. For every δ < κ there are δ′, δ′′ such that gα(δ′) = gβ(δ) and if gα(δ) < β
then gβ(δ′′) = gα(δ). By Problem 21.3, there is a closed, unbounded set C,
such that if γ ∈ C, δ < γ, then the corresponding δ′ and δ′′ are also below γ.
If, now, γ ∈ C, then gβ [γ] = gα[γ] ∩ β holds.

10. We can assume β > 0. Let C be a closed, unbounded set such that for
γ ∈ C, gβ [γ] = gα[γ] ∩ β holds (see the previous problem). If δ < κ is such
that gα(δ) = β, then for the closed, unbounded set C∗ = C \ (δ + 1) we have
gα[γ] ⊇ gβ [γ] ∪ {β}, so surely fα(γ) ≥ fβ(γ) + 1.

11. Assume that f(γ) < fα(γ) for γ ∈ S, S stationary. For γ ∈ S, there is
τ(γ) < γ such that gα (τ(γ)) is the f(γ)th element of gα[γ] (which has type
fα(γ)). By Fodor’s theorem (Problem 21.9) there are a stationary S∗ ⊆ S
and a τ such that τ(γ) = τ holds for every γ ∈ S∗. Set β = gα(τ) < α. By
Problem 9, there is a closed, unbounded set C, such that gβ [γ] = gα[γ] ∩ β
holds for γ ∈ C. If now γ is in the stationary set S∗ ∩ C, then f(γ) equals to
the order type of

gα[γ] ∩ gα (τ(γ)) = gα[γ] ∩ β = gβ [γ],

i.e., f(γ) = fβ(γ).

12. By induction on α. The statement is obvious for α = 0. Assume that α > 0
and the statement holds for every β < α. Then, F = hα has the property that
F (γ) > hβ(γ) for almost every γ (β < α), and if F ∗(γ) < F (γ) holds for
stationarily many γ, then F ∗(γ) = hβ(γ) for stationarily many γ, for some
β < α. The same properties apply to fα, by Problems 7 and 8 and by the
induction hypothesis. But if F1, F2 have the above properties, then F1 = F2
almost everywhere. Indeed, should, e.g., F1(γ) < F2(γ) hold for γ ∈ S, where
S is a stationary set, we could define the function F ∗ equal to F1 on S, and to
F2 otherwise, we would get a contradiction: F ∗(γ) = hβ(γ) for some β < α and
γ ∈ S′ (S′ is some stationary set), but hβ(γ) < min

(
F1(γ), F2(γ)

)
≤ F ∗(γ)

a.e.

13. fα(γ) is the order type of a well-ordered set of cardinality |γ|, so it is
< |γ|+.
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Infinite graphs

1. Let V be the vertex set. We consider cases.

First Case. Whenever W ⊆ V is infinite then there is a vertex v ∈ W that is
joined to infinitely many vertices in W . Choose v0 ∈ V , which is joined to the
infinite set V0 of elements. Then, applying the condition to V0, pick v1 ∈ V0,
which is joined to the infinite set V1 ⊆ V0. Continuing the induction we get
the vertices v0, v1, . . . and infinite subsets V0 ⊇ V1 ⊇ · · · and as any two of
those vertices are joined, we are done.

Second Case. There is an infinite W ⊆ V such that every v ∈ W is joined
to finitely many vertices in W .

In this case inductively choose the vertices v0, v1 . . . ∈ W such that they
form an independent set. This can be carried out, as when v0, . . . , vn−1 are
already given, each of them is joined to finitely many elements of W , therefore
all but finitely many elements of W are not joined to any of them.

2. Assume that f : [ω]2 → k. Let U be a nonprincipal ultrafilter on ω. For
x < ω set g(x) = i if and only if {y : f(x, y) = i} ∈ U . Clearly, g : ω → k is
well defined.

We are going to construct the vertex disjoint paths step by step. At step
j we will have the vertex disjoint finite sets Aj

0, . . . , A
j
k−1 covering at least

{0, . . . , j − 1} such that Aj
i is the vertex set of a path in color i, and if it is

nonempty, we specify an end-vertex yj
i with g(yj

i ) = i.
To proceed from step j to step j + 1 assume that j /∈ Aj

0 ∪ · · · ∪ Aj
k−1

(otherwise we do nothing). Set i = g(j). If Aj
i = ∅ simply make Aj+1

i = {j},
yj+1

i = j, and Aj+1
l = Aj

l for all other l. Otherwise, pick z /∈ Aj
0 ∪ · · · ∪ Aj

k−1
with

z ∈
{
t : f(j, t) = f(yj

i , t) = i
}

(remark that this latter set is in U , so it is infinite). We can now extend
the path Aj

i at its end at yj
i with the vertices z and j and make yj+1

i = j.
[R. Rado]
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3. Let X be a graph on V with |V | = κ. Let U be a uniform ultrafilter on V ,
i.e., with |A| = κ for every A ∈ U . [Such a U can be obtained by applying
Problem 14.6,(c) to the filter F =

{
V \X : X ∈ [V ]<κ

}
.] Either for Y = X or

for Y = X (the complement of X) the following holds. There is a set A ∈ U
such that for every x ∈ A the Γ (x) =

{
y : {x, y} ∈ Y

}
is in U . We show that

Y includes a topological Kκ. Notice that by uniformity |A| = κ and |Γ (x)| = κ
holds for every x ∈ A. We recursively choose the nodes {v(α) : α < κ} ⊆ A of
the topological Kκ and the vertices {w(β, α) : β < α < κ} such that w(β, α)
is joined to v(α) and v(β) (and so there are disjoint paths of length 2 between
the v(α)’s). We need to maintain, of course, that the vertices of the form v(α)
and w(β, α) be all distinct. At step α we first choose v(α) ∈ A which is not
in {v(β) : β < α} ∪ {w(γ, β) : γ < β < α} (possible, as the first set is of
cardinality κ, the second is smaller), then similarly by recursion on β < α we
choose an element of Γ (v(α)) ∩ Γ (v(β)) (a κ-sized set) which differs from all
earlier elements. [P. Erdős, A. Hajnal]

4. Well-order the vertex set of the graph as V = {vα : α < ϕ} for some ordinal
ϕ. Define by transfinite recursion the coloring f : V → {0, 1, . . . , n} so that
each vα gets a color different from any of its already colored neighbors vβ ,
β < α. Since there are at most n such neighbors, this is possible.

5. For vertices u and v set u ∼ v if u = v or they are connected by a path. This
is clearly an equivalence relation, its classes are the connected components.
The number of vertices reachable from a specified vertex by paths is at most
1 + κ + κ2 + · · · = κ. Therefore, each class has cardinality at most κ and so it
can be colored by κ colors. As there are no edges between classes, this suffices.

6. The proof is the same as that of Problem 4.

7. If, for every vertex v, f(v) is the set of smaller vertices joined to v, then
f is a set mapping with |f(v)| < κ for every v. By Problem 26.10 the vertex
set is the union of κ free sets and a free set is obviously an independent set
in the graph.

8. First solution. The vertex set of the graph can be enumerated as V =
{vα : α < ϕ} for some ordinal ϕ. Using transfinite recursion we construct fα :
{vβ : β < α} → {1, . . . , n} such that fα is a good n-coloring of {vβ : β < α},
and if β < α then fα extends fβ . If we succeed with this then fϕ will witness
that X is n-colorable. Our inductive hypothesis is somewhat stronger; we will
require not just that fα : α → {1, . . . , n} is a good coloring but that it can be
extended to a good coloring on every finite subset of {vγ : α ≤ γ < ϕ}.

For α = 0, f0 can (and must) be chosen to be the empty function. This
function is good—this is exactly the assumption of the theorem.

Assume that α is limit, and fβ exists for every β < α. We show that
fα =

⋃
{fβ : β < α} is good for our purposes. If A ⊆ {vγ : α ≤ γ < ϕ} is a



Solutions Chapter 23 : Infinite graphs 391

finite subset, by hypothesis, for every β < α there is some g : A → {1, . . . , n}
such that fβ ∪g is a good coloring. As there are only finitely many n-colorings
of A, there is a g that occurs for a cofinal set of the β’s. Then this g gives a
good extension of fα to A.

Finally, assume we have fα, and let us show the existence of fα+1. For
every 1 ≤ i ≤ n we try to define the function f i

α+1 by extending fα to vα with
f i

α+1(vα) = i. Assume indirectly that f i
α+1 is not good. Then, there is some

finite Ai ⊆ {vγ : α < γ < ϕ} such that f i
α+1 cannot be extended to a good

coloring of Ai. Take A = {vα} ∪
⋃
{Ai : 1 ≤ i ≤ n}. Then there is no good

extension of fα to the finite set A, a contradiction. [P. Erdős, N. G. de Bruijn:
A color problem for infinite graphs and a problem in the theory of relations,
Proceedings of the American Mathematical Society 54(1951), 371–373]

Second solution. Assume that X is a graph on the vertex set V such that
every finite subgraph of X is n-colorable. We consider the following partially
ordered set 〈P,≤〉. Y ∈ P if Y is a graph on V with X ⊆ Y and every finite
subgraph of Y is n-colorable. Order P the obvious way: Y0 ≤ Y1 if Y0 ⊆ Y1,
that is, Y0 is a subgraph of Y1. As X ∈ P, our set is nonempty.

We show that 〈P,≤〉 satisfies the condition of Zorn’s lemma. Indeed, as-
sume that {Yi : i ∈ I} is an ordered family of elements of P. We have to show
that every finite subgraph of Y =

⋃
{Yi : i ∈ I} is n-colorable. If Z is such a

subgraph, then every edge of Z appears in some Yi, so, among those finitely
many indices i there is a largest one, and the corresponding Yi shows that Z
is n-colorable.

We can, therefore, apply Zorn’s lemma (Chapter 14), and get a maximal
element Y ∈ P. That is, we extended X to Y , a graph saturated to our
condition. We show that the relation “not joined in Y ” is an equivalence
relation on V . Of the three properties of equivalence only transitivity is not
obvious. Assume that x is not joined to y, y is not joined to z. As Y is maximal
and x and y are not joined there is a finite set A that will not be n-colorable,
once we join x and y. Phrased differently, in every n-coloration of the graph Y
on A the vertices x and y get the same color. Similarly, as we cannot extend
Y by the edge {y, z}, there is a finite set B such that in every n-coloration of
the graph Y on B the vertices y and z get the same color. But then, in every
n-coloration of the of the graph Y on A∪B (and by assumption, there is such
a coloring) the vertices x and z get the same color, so, x and z can not be
joined.

So, we proved that there is some decomposition V =
⋃
{Vi : i ∈ I} such

that two points are joined if and only if they are in distinct classes. But there
cannot be more than n classes, as that would mean a subgraph of type Kn+1.
That is, we have at most n classes, therefore Y can be colored by n colors,
and so can be X. [G. Dirac, L. Pósa]

9. In order to show the nontrivial direction let X be a graph which is not
finitely chromatic. Then, by Problem 8, for every k < ω there is a finite sub-
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graph Gk which cannot be colored with k colors. The union of these subgraphs
is a countable subgraph that is not finitely chromatic.

10. Let X be an infinitely chromatic graph on the well-ordered set 〈V,<〉.
We can assume that for every a ∈ V the graph on Va = {x ∈ V : x < a} is
finitely chromatic (otherwise replace X by X restricted to Va where a ∈ V is
the least element such that X on Va is infinitely chromatic). Clearly, X on
V a = {x ∈ V : a < x} is then infinitely chromatic. Now choose by math-
ematical induction the increasing sequence of elements a0 < a1 < · · · from
V and (using the de Bruijn–Erdős theorem, Problem 8) the finite subgraphs
Fn with elements between an and an+1 such that X restricted to Fn is at
least n-chromatic. Then, the union of the sets F0, F1, . . . will give an ω-type
subset that is infinitely chromatic. [L. Babai: Végtelen gráfok sźınezéséről,
Matematikai Lapok, 20(1969), 141–143.]

11. Replace the ground set with A =
⋃
{Aα : α < ω1} where Aα = [ω1 · α +

α, ω1 · (α + 1)) (ordinal interval). The order type of A is still ω2
1 so it suffices

to construct the graph on A. Join ω1 · α + β and ω1 · α′ + β′ if and only if
α < α′ and β > β′ (notice that then α < α′ ≤ β′ < β). If B ⊆ A is some
subset of order type ω1 then either all but countably many elements of B are
in one Aα or else it has a countable intersection with every Aα. In the former
case it is a countable set plus an independent set. In the latter case every
vertex has countable degree: ω1 · α + β ∈ B is certainly not joined to vertices
in
⋃
{Aξ : ξ > β}. These and Problem 5 show that X on B is countably

chromatic.
In order to show that X is uncountably chromatic assume that A = B0 ∪

B1 ∪ · · · is a decomposition into independent sets (note that points with the
same color form an independent set). Observe that if for some α < ω1 and
i < ω the intersection Aα ∩Bi is uncountable then Bi has no elements in any
Aα′ , α′ > α. As for every Aα (α < ω1) there is some i < ω such that Aα ∩Bi

is uncountable, and to different α’s we get different i’s, we get the desired
contradiction. [P. Erdős–A. Hajnal]

12. The chromatic number of X × Y is at most k. Indeed, if f : V →
{1, 2, . . . , k} is a good coloring of X, then F (〈x, y〉) = f(x) will be a good
coloring of X × Y .

For the other direction, in order to get a contradiction, assume that F :
V × W → {1, 2, . . . , k − 1} is a good coloring of X × Y . On W , let F be the
family of those subsets A of W for which W \A is independent (in Y ). As W is
not the union of finitely many independent sets, F has the finite intersection
property, that is, the intersection of finitely many elements of F is always
nonempty. We can therefore extend F to an ultrafilter U on W (see Problem
14.6(c)). The ultrafilter property gives that for every x ∈ V there is a unique
i(x) such that {y ∈ W : F (〈x, y〉) = i(x)} ∈ U . The mapping x �→ i(x) cannot
be a good coloring of X, so there are x, x′ ∈ V with i = i(x) = i(x′) and



Solutions Chapter 23 : Infinite graphs 393

{x, x′} ∈ X. The set A = {y : F (〈x, y〉) = F (〈x′, y〉) = i} is in U , therefore it
is not independent. Now if y, y′ ∈ A are joined in Y , then 〈x, y〉 and 〈x′, y′〉
are joined in X × Y , and they get the same color, viz. i, a contradiction.
[A.Hajnal: The chromatic number of the product of two ℵ1-chromatic graphs
can be countable, Combinatorica, 5(1985), 137–139]

13.

(a) If fi : Vi → Ci is a good coloring of (Vi, Xi), and the color sets {Ci : i ∈ I}
are disjoint, then the union of the colorings is a good coloring to the union
of the Ci’s.

(b) Let fi : V → Chr(Xi) be a good coloring of (V,Xi). Then f is a good
coloring, where f(x) =

〈
fi(x) : i ∈ I

〉
.

14. The condition is obviously necessary. It is known that for finite graphs it
is also sufficient (Hall’s theorem). We get, therefore, that every finite subset
of A has a matching into B. Let A = {xα : α < ϕ} be a well-ordering of
the elements of A. We define, by transfinite recursion on α ≤ ϕ a function
fα : {xβ : β < α} → B which is an extendable partial matching, that is,
it is injective, {xβ , fα(xβ)} is always an edge of X and every finite subset
of A \ Dom(fα) is matchable into B \ Ran(fα). Further, if β < α then fα

extends fβ . If we can reach fϕ then we will be done. f0 clearly exists, the
empty function is good for our purposes. If α is a limit ordinal and fβ exists
for β < α then fα =

⋃
{fβ : β < α} is as required: if A′ is a finite subset of

A \ Dom(fα) then by the condition of the finiteness of the elements of A it
has finitely many matchings into B, and for every fβ some of them are good.
Therefore, there must be one that is good for unboundedly many β < α. Then
it is good for α.

To cover the successor case, suppose to the contrary that we succeeded in
selecting fα but we cannot extend it to fα+1. This means that every finite
subset of A′ = A \ Dom(fα) can be matched into B′ = B \ Ran(fα) but for
every y ∈ Γ (xα) there is a finite set Ay ⊆ A′ \ {xα} such that Ay has no
matching into B′ \ {y}. Let A∗ be the union of all these sets Ay plus {xα}.
By the condition on fα, the finite A∗ has a matching into B′ but if now xα is
matched into y then we reach a contradiction by observing that this matching
gives a matching of Ay into B′ \ {y}. [M. Hall, Jr.: Distinct representatives of
subsets, Bull. Amer. Math. Soc. 54(1948), 922–926]

15. We reduce the statement to the previous problem. Given p, q and the
graph X on A and B, replace every vertex in A by p copies and every vertex
in B by q copies with the copies joined if and only if the original vertices are
joined. Call the so obtained graph X ′ with its corresponding sides A′ and B′.
It is clear that in X ′ side A′ has a matching if and only if the original graph
X has a function as described. We have to show that the condition in the
problem holds if and only if the Hall condition holds for X ′. One direction is



394 Chapter 23 : Infinite graphs Solutions

obvious: if we pick k vertices of A in X that are joined to m vertices in B
then we get pk vertices of A′ that are joined to qm vertices in B′, so the Hall
condition means that qm ≥ pk, which is indeed m ≥ pk/q. Assume now that
the above condition holds for X and try to establish the Hall condition for X ′.
Assume that we are given a finite subset F of A′. F splits as F = F1∪· · ·∪Fp

where Fi is obtained by replacing every vertex in some set Ti ⊆ A by i copies.
Notice that |F | = |T1|+2|T2|+· · ·+p|Tp|. In X the vertices of T = T1∪· · ·∪Tp

are joined, by condition, to at least p
q |T | vertices of B. These give in X ′ at

least q · p
q |T | = p|T | ≥ |T1| + 2|T2| + · · · + p|Tp| vertices and we are done.

16. It is obvious that (c) is necessary. (a) is also necessary by (the easy direction
of) Kuratowski’s theorem on planar graphs. To show the necessity of (b)
assume that some graph X is planar yet it contains uncountably many vertices
pi with degree ≥ 3. Let pi be joined to the distinct vertices ai, bi, ci. Let Ai,
Bi, Ci be rational discs, that is, whose radii are rational and centers have
rational coordinates, such that ai ∈ Ai, bi ∈ Bi, ci ∈ Ci, they are disjoint and
exclude pi. As there are just countably many choices for Ai, Bi, Ci, there are
i0, i1, i2 such that Ai0 = Ai1 = Ai2 = A, and similarly Bi0 = Bi1 = Bi2 = B,
Ci0 = Ci1 = Ci2 = C. Let a, b, c be the centers of A, B, C. pi0 is joined with
an edge in X to ai0 , which is in fact a curve K between them. Consider k, the
first point of K common with A, and replace the part of K after k with the
radius between k and a. Perform the same operation with all the other edges
(= curves) between the pi’s and ai’s, bi’s, ci’s, then we get a K3,3 drawn on
the plane, an impossibility.

For the other direction we first notice that if X is a finite graph not
including a topological K5 or K3,3, then it is planar by Kuratowski’s theorem.
We first extend this to countable graphs.

Let X be a graph on the vertices v0, v1, . . . that has no topological K5 or
K3,3 subgraphs. By Kuratowski’s theorem, for every n, there is a drawing ϕn

of Xn, X restricted to {v0, . . . , vn} on the plane. It is easy to see that there
are just finitely many nonhomeomorphic ways of drawing Xn on the plane.
In fact, an easy induction on n shows that there are just finitely many non-
homeomorphic n-vertex graphs drawn on the plane. Using the König infinity
lemma (Problem 27.1), we get that there is a sequence ϕ0, ϕ1, . . . such that
every ϕn is homeomorphic to ϕn+1’s restriction to Xn. We can modify ϕn+1
such that it actually extends ϕn, and then the union of them draws X on the
plane. Actually, this process can be carried out in such a way that each edge e
is represented by a C∞ curve le and to each edge e = {x, y} we can associate
a neighborhood Ue of le such that the closures of any two Ue and Ue′ are dis-
joint except possibly for common endpoints of le and le′ . This latter property
can easily be preserved in the previous induction of creating the ϕn’s.

Assume finally that X is a graph satisfying (a), (b), and (c). Then X has
a countable part X ′, spanned by the vertices with degree at least 3, and it has
additionally at most continuum many paths, circuits, and isolated vertices.
Let X∗ be X ′ augmented with a simple path σ(p, q) of length 2 for every pair
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of nodes p, q in X ′ (p = q is possible) that are connected in X by at least one
path of length ≥ 2. Then we can reconstruct X from X∗ by replacing each
σ(p, q) by (at most countably many) appropriate paths by adding circuits,
finite or infinite paths, unconnected to X∗ and to each other, and by adding
finite or infinite paths emanating from some points of X∗.

By the previous step, X∗ can be drawn on the plane in a manner specified
above. We can easily add to this representation the required objects to get a
planar representation of X.

17. It suffices to show that there are continuum many points in the 3-space
such that the connecting segments are pairwise disjoint (except, possibly, at
their extremities). For this, see Problem 13.3.

18. First we show that Kκ+ has a decomposition into κ forests. Without loss
of generality, we can assume that the graph is the complete graph on κ+.
Decompose the edges into κ classes in such a way that for every α < κ the
edges going down from α, i.e., those of the form {β, α} with β < α are put into
distinct classes. This is possible as the number of those edges is |α| ≤ κ. No
circuit occurs with edges in the same class; indeed, if the vertices of a putative
circuit are v1, . . . , vn, then if vi is the largest of them under the ordering of
the ordinals, then it is joined to two vertices (namely, to vi−1 and vi+1) with
edges going down, a contradiction.

For the other direction it suffices to note that if the edges of the complete
graph on (κ+)+ vertices, and even if the edges of the complete bipartite graph
on classes of cardinalities κ+ and (κ+)+ are colored with κ colors, then there is
a monochromatic circuit of length 4, by Problem 24.27. [P. Erdős, S. Kakutani:
On non-denumerable graphs, Bull. Amer. Math. Soc., 49(1943), 457–461]

19. One direction is a special case of Problem 13(b): if some graph is the
edge-union of countably many bipartite graphs, then its chromatic number is
at most 2ℵ0 = c.

For the other direction, assume that the chromatic number of some graph
(V,X) is at most continuum. There is, therefore, a good coloring f : V → R
with the reals as the colors. Fix an enumeration q0, q1, . . . of the rational
numbers. If {x, y} ∈ X is an edge, put it into Yi if and only if i is the least
number such that qi is strictly between f(x) and f(y). This works: all edges
of Yi go between Ai = {x ∈ V : f(x) < qi} and Bi = {x ∈ V : f(x) ≥ qi}.

20. Fix, for every n < ω, an enumeration {Hn(i) : 1 ≤ i ≤ 2n} of the subsets
of {0, . . . , n − 1}. The vertex set of our strongly universal graph will be the
union of the disjoint finite sets V0, V1, . . . where Vn consists of the vertices
v(i0, . . . , in) indexed with the natural numbers i0, . . . , in on the condition
1 ≤ ik ≤ 2k for 0 ≤ k ≤ n, so

|Vn| = 20 · 21 · · · · · 2n = 2
n(n+1)

2 .
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If v = v(i0, . . . , in) then we join v for every j ∈ Hn(in) to v(i0, . . . , ij) and to
no other vertices in V0 ∪ · · · ∪ Vn. This defines a graph X on V and we show
that it is strongly universal, i.e., if (W, Y ) is a countable graph then (W, Y )
is isomorphic to an induced subgraph of (V,X).

Enumerate W as w0, w1, . . .. We find f(wn) ∈ Vn by induction on n. Set
f(w0) = v(1), the only element of V0. If we have already found f(wn−1) =
v(i0, . . . , in−1) then set f(wn) = v(i0, . . . , in−1, in) where 1 ≤ in ≤ 2n is the
only number that

Hn(in) = {0 ≤ j < n : {wj , wn} ∈ Y }

holds. These steps can be executed and it is clear that for 0 ≤ j < n
{wj , wn} ∈ Y holds if and only if {f(wj), f(wn)} ∈ X holds, that is, f isomor-
phically embeds (W, Y ) into (V,X). [R. Rado: Universal graphs and universal
functions, Acta Arithmetica 9 (1964), 331–340]

21. Assume indirectly that the graph X on the countable vertex set V is
universal for the countable Kω-free graphs. Let v /∈ V be a further vertex
and join v to every element of V . The graph X ′ so obtained is still Kω-free,
so by hypothesis there is f : V ∪ {v} → V , an embedding of X ′ into X. Set
v0 = f(v), and inductively vn+1 = f(vn). As v is joined (in X ′) to every
element of V , v0 will be joined in X to v1, v2, . . .. As f preserves adjacency,
v1 is joined to v2, . . .. Carrying out the induction we get that v0, v1, . . . are
pairwise joined in X, and therefore they are distinct, so they form a Kω, a
contradiction.

22. Let (V,X) be a putative universal, countable, locally finite graph. For
v ∈ V , 1 ≤ i < ω, let fX

i (v) be the number of vertices reachable from v in X in
at most i steps. As (V,X) is locally finite, fX

i (v) is a natural number for every
v ∈ V , 1 ≤ i < ω. Enumerate V as V = {v1, v2, . . .}. Construct a countable,
locally finite graph (W, Y ) with a vertex w ∈ W such that fY

i (w) > fX
i (vi)

holds for i = 1, 2, . . ., where fY
i is the analogous function for (W, Y ). This can

be done easily; for example, we can take as (W, Y ) a tree with large enough
successive levels. Now it is impossible to isomorphically embed (W, Y ) into
(V,X): for every 1 ≤ i < ω the condition fY

i (w) > fX
i (vi) excludes that w be

mapped into vn. [N. G. de Bruijn]

23. Suppose that (V,X) is a Kℵ1-free graph of cardinality ≤ c. Let W be the
set of functions f : α → V injecting a countable ordinal α into V in such a
way that its range spans a complete subgraph in X. Join two such functions
if one extends the other. This way we get a graph (W, Y ), and we are going
to show that |W | ≤ c, (W, Y ) is Kℵ1-free, and it cannot be embedded into
(V,X). This proves that (V,X) is not universal.

As for any α < ω1 there are at most cℵ0 = c functions from α into V , we
have |W | ≤ ℵ1 · c = c. Next, assume that {fα : α < ω1} spans a complete
subgraph in (W, Y ). Then, they are defined on different ordinals, and the one
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on larger ordinal extends the one on smaller ordinal. But this gives a complete
Kℵ1 in (V,X), a contradiction.

Finally, assume to the contrary that F : W → V embeds (W, Y ) into
(V,X). By transfinite recursion on α < ω1 we define functions fα : α → V ,
fα ∈ W and vertices vα = F (fα) ∈ V in such a way that fα extends fβ

for β < α. To start, set f0 = ∅, v0 = F (f0). Assume that α > 0 and fβ is
determined for β < α with the above properties. Then the {fβ : β < α} forms
a complete subgraph in (W, Y ); therefore, {vβ : β < α} forms a complete
subgraph in (V,X). This implies that if fα(β) = vβ for β < α then fα ∈ W .
If all fβ were defined analogously, then fα extends every fβ (β < α). Thus,
we can construct fα, vα as required for α < ω1, but then {vα : α < ω1} forms
a complete subgraph in (V,X), a contradiction. [R. Laver]

24. First we remark that it suffices to prove the result for κ a successor car-
dinal. Indeed, if κ is a limit cardinal, and for every successor τ < κ there is
a triangle-free graph with chromatic number τ then the vertex disjoint union
of them will be a triangle-free graph with chromatic number κ (this does not
work for κ = ℵ0, but this case follows along the same lines if we notice that
the κ = ℵ1 case and the de Bruijn–Erdős theorem (Problem 8) easily imply
the statement in the problem for all finite cardinals).

Given a successor cardinal κ = µ+ we define the graph as follows. The ver-
tex set is [µ+]3, the set of 3-element subsets of κ. Join {x, y, z} and {x′, y′, z′}
if and only if x < y < x′ < z < y′ < z′ holds (or vice versa). It is immediate
that there is no triangle.

In order to show that the chromatic number is µ+ assume to the contrary
that f : [µ+]3 → µ is a good coloring. For x < y < µ+ we define the set
A(x, y) ⊆ µ of colors as follows. Set α ∈ A(x, y) if and only if there are
arbitrarily large z < µ+ such that f(x, y, z) = α. We argue that A(x, y) 
= ∅
for every x < y < µ+. Indeed, if α /∈ A(x, y) then there is γα < µ+ such that
f(x, y, z) 
= α holds for γα < z < µ+. But then, if z < µ+ is larger than the
supremum of the γα’s, then {x, y, z} can get no color at all. Next, we define,
for every x < µ+ the set B(x) ⊆ µ as follows. α ∈ B(x) if and only if there
are arbitrarily large y < µ+ with α ∈ A(x, y). An argument similar to the
above one gives B(x) 
= ∅ for every x < µ+. Finally, set α ∈ C if and only if
α occurs in B(x) for cofinally many x. Again, we get that C 
= ∅.

Pick α ∈ C. Choose an x < µ+ with α ∈ B(x), then select y > x with α ∈
A(x, y). Then choose y < x′ < µ+ such that α ∈ B(x′) (possible, as α ∈ C).
Next choose x′ < z < µ+ such that f(x, y, z) = α (again, such a z exists, as
α ∈ A(x, y)). Then choose y′ < µ+ such that y′ > z and α ∈ A(x′, y′) (this is
possible, as α ∈ B(x′). Finally, as α ∈ A(x′, y′), we can select y′ < z′ such that
f(x′, y′, z′) = α. Now we are done: {x, y, z} and {x′, y′, z′} are joined, and they
get the same color (α), a contradiction. [P. Erdős, R. Rado: A construction
of graphs without triangles having preassigned order and chromatic number,
Journal London Math. Soc., 35(1960), 445–448]
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25. We can disregard all triples (α, β, γ) with not α < β < γ since these are
isolated points in the graph. Note also that A ⊂ ω3

1 is of order type ω3
1 if

and only if for uncountably many α there are uncountably many β with the
property that for uncountably many γ we have (α, β, γ) ∈ A.

The same graph appeared for µ = ω in Problem 24, and the proof given
there shows that if A ⊂ ω3

1 is of type ω3
1 , then it spans an uncountable chro-

matic subgraph.
Suppose now that A is of type < ω3

1 . Then only for countably many α can
the set {(β, γ) : (α, β, γ) ∈ A} be of order type ω2

1 , and for all such α we can
color any (α, β, γ) ∈ A by α (note that two triples with the same α are not
connected). Let the rest of the points in A form the set A1, and we have to show
that A1 is also countable chromatic. For every α there is an f(α) < ω1 such
that if β > f(α), then there are only countably many (α, β, γ) ∈ A1, i.e., there
is an f(α, β) < ω1 such that (α, β, γ) 
∈ A1 if γ > f(α, β). By Problem 20.7
there is an increasing sequence δξ, ξ < ω1 such that δ0 = 0, δξ = supη<ξ δη

if ξ is a limit ordinal, and for any α < δξ we have f(α) < δξ and for any
α < β < δξ we have f(α, β) < δξ. Then Dξ = {α : δξ ≤ α < δξ+1}, ξ < ω1
is a partition of ω1 into disjoint sets, and for (α, β, γ) ∈ A1 the ordinals α,
β and γ cannot belong to three different Dξ: if α ∈ Dξ, β ∈ Dη and γ ∈ Dθ

with ξ < η < θ, then β > f(α) and γ > f(α, β), hence (α, β, γ) 
∈ A1.
Thus, A1 = A2 ∪ A3 ∪ A4, where

• in A2 we have α, β, γ ∈ Dξ for some ξ,
• in A3 we have α ∈ Dξ and β, γ ∈ Dη for some ξ < η, while
• in A4 we have α, β ∈ Dξ and γ ∈ Dη for some ξ < η,

and it is enough to color each of these sets by countably many colors.
Every A2 ∩Dξ, ξ < ω1 is countable, and we can simply color the elements

of this set by different colors 0, 1, . . . (note that no vertex from A2 ∩ Dξ is
connected to any vertex in A2 ∩ Dη if ξ 
= η).

Let F : ω2
1 → ω be a function such that F (ξ, η) 
= F (η, ξ′) for any ξ < η <

ξ′. Such a function/coloring was constructed in Problem 24.8. If (α, β, γ) ∈ A3
and α ∈ Dξ, β, γ ∈ Dη, then let the color of (α, β, γ) be F (ξ, η). This is clearly
a good coloring on A3: if (α, β, γ) ∈ A3 with α ∈ Dξ, β, γ ∈ Dη is connected to
(α′, β′, γ′) ∈ A3 with α′ ∈ Dξ′ , β′, γ′ ∈ Dη′ , then, because of, say, β < α′ < γ,
we have η = ξ′, hence F (ξ, η) 
= F (ξ′, η′).

Finally, one can similarly define a good coloring of A4 with the aid of F : if
(α, β, γ) ∈ A4 and α, β ∈ Dξ, γ ∈ Dη, then let the color of (α, β, γ) be F (ξ, η).

26. (a) For one direction, if f : V ′ → κ is a good coloring of (V ′, X ′) then we
can set

F (x) =
{
f
(
{y, x}

)
: {y, x} ∈ X, y < x

}
for x ∈ V , that is, we color x ∈ V with the set of colors of the edges going down
from x. This is a good coloring, as otherwise there are y < x with {y, x} ∈ X
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and F (y) = F (x) but then there is a z < y < x with f
(
{z, y}

)
= f

(
{y, x}

)
and this contradicts to the hypothesis that f is a good coloring of (V ′, X ′).

For the other direction, assume that Chr(V,X) ≤ 2κ. Let F : V → κ2 be
a good coloring (i.e., we color with the κ → {0, 1} functions). If {y, x} ∈ X,
y < x, then there is a least α < κ with F (y)(α) 
= F (x)(α). We let f ({y, x}) =
〈α, 0〉 if F (y)(α) = 0, F (x)(α) = 1, and, dually, let f ({y, x}) = 〈α, 1〉 if
F (y)(α) = 1, F (x)(α) = 0. We cannot have f ({z, y}) = f ({y, x}) for some
values z < y < x, for, if the common value is say, 〈α, 0〉 then 0 = F (y)(α) = 1
and we get a similar contradiction in the other case, too. [F. Galvin: Chromatic
numbers of subgraphs, Periodica Mathematica Hungarica, 4(1973), 117–119]

(b) Assume that there is a circuit C in (V ′, X ′) of some odd length 2t + 1 ≤
2n + 1. The vertices of C are edges of (V,X), e1, . . . , e2t+1, and there are
vertices v1, . . . , v2t+1 such that vi is the larger vertex of ei and the smaller
vertex of ei+1 or vice versa (and e2t+2 = e1). So C forms a cycle in (V,X)
(circuit with possibly repeated vertices). Choose 1 ≤ i ≤ 2t + 1 such that
vi−1 
= vi (with v0 = v2t+1) and there is no value vj > vi (this is possible as
the vi’s cannot be all equal). Then vi is the larger endpoint of ei, the smaller
of ei+1, and again the larger endpoint of ei+2, so vi+1 = vi. We can, therefore,
remove ei from C, and likewise we can remove one edge corresponding to
the smallest element among the vi’s. This way, we get an odd cycle of length
2t − 1 ≤ 2n − 1 in (V,X) and that includes an odd circuit.

(c) By repeated applications of (a), (b) and for n = 1 by starting from some
large enough complete graph. [P. Erdős, A. Hajnal: Some remarks on set
theory, IX, Michigan Math. Journal, 11(1964), 107–127]

27. Let (V, X) be the complete graph on c+, and let (V ′, X ′) be the graph
defined in Problem 26. Using (a) of that problem, as Chr(X) > c, Chr(X ′) >
ℵ0 holds. Every subgraph of X ′ of cardinality at most c is the subgraph of
Y ′ for some induced subgraph Y of X with |Y | ≤ c. As then Chr(Y ) ≤ c, we
must have Chr(Y ′) ≤ ℵ0 again by Problem 26.

28. Let (V,X) be the complete graph on ω3, and let (V ′, X ′) be the graph
derived from it in Problem 26. As 2ℵ1 < 2ℵ2 = ℵ3, Chr(X ′) = ℵ2. Every
induced subgraph of X ′ is of the form Y ′ for some (not necessarily induced)
subgraph Y of X. Now, if Chr(Y ) = ℵ3 then Chr(Y ′) = ℵ2, and if Chr(Y ) ≤
ℵ2 then Chr(Y ′) ≤ ℵ0, by Problem 26(a), and by the cardinal arithmetic
hypothesis. That is, Chr(Y ′) 
= ℵ1 for every such graph. [F. Galvin: Chromatic
numbers of subgraphs, Periodica Mathematica Hungarica, 4(1973), 117–119]

29. Assume the contrary and let X be an uncountably chromatic graph which
does not include Kn,ℵ1 as a subgraph. By passing to a subgraph, if needed,
we can assume that its vertex set V has cardinality κ and every subgraph of
cardinality less than κ is countably chromatic. Obviously, κ > ℵ0.

We first show that every vertex set U ⊆ V has a “closure”, a unique
minimal set F (U) ⊇ U with the property that if x ∈ V is joined to at least n
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elements of F (U) then x ∈ F (U). For this, set F0(U) = U and for k = 0, 1, . . .
let Fk+1(U) consist of the elements of Fk(U) plus all the vertices which are
joined to at least n vertices in Fk(U). Then take F (U) = F0(U)∪F1(U)∪ · · ·.

We further have, by the condition imposed on the graph, that if U is finite,
then F0(U), F1(U), . . . and so F (U) are countable, and if U is infinite, then
|F (U)| = |U |.

Enumerate V as {vα : α < κ}. For every α < κ set Vα = F ({vβ : β < α}).
Then V =

⋃
{Vα : α < κ}, an increasing, continuous union. Also, by our above

remark, each Vα is a set of cardinality < κ. If we now set Wα = Vα+1 \ Vα,
then {Wα : α < κ} is a partition of V into smaller sets.

Decompose X, the set of edges, as X = Y ∪Z where Y is the set of crossing
edges, that is, between points in different Wα’s, and Z is the set of edges going
between vertices in the same Wα. Z is the vertex disjoint union of—by the
selection of κ—countably chromatic graphs, so itself is countably chromatic.
Further, by Problem 6 Y is n + 1-colorable, so we get that X = Y ∪ Z is
countably chromatic, a contradiction. [P. Erdős, A. Hajnal: On chromatic
number of graphs and set-systems, Acta Math. Acad. Sci. Hung., 17(1966),
61–99]

30. Let X be an uncountably chromatic graph. Decompose X as X = Y ∪ Z
where an edge is put into Y if and only if for every n it is an edge of a com-
plete bipartite graph Kn,n. Then there is an n such that Z does not include
Kn,n so by Problem 29, Z is countably chromatic. Y is therefore uncountably
chromatic, so it includes an odd circuit C of length 2m + 1 for some m. We
claim that every odd number > 2m+1 occurs as the length of a circuit in X.
Let e be an edge of C. As e is in Y , for every n there is a Kn,n containing
e, so for every n there is a Kn,n containing e and meeting C only in the end
vertices of e. Now it is easy to choose a circuit of length 2(m+n)−1 by adding
to C a circuit of length 2n and by removing the edge e. [P. Erdős, A. Haj-
nal, S. Shelah: On some general properties of chromatic numbers, Topics in
topology (Proc. Colloq. Keszthely, 1972), Colloq. Math. Soc. J. Bolyai, Vol. 8.
North Holland, Amsterdam, 1974, 243–255, C. Thomassen: Cycles in graphs
of uncountable chromatic number, Combinatorica 3 (1983), 133–134.]

31. Let (V,X) be an uncountably chromatic graph. If there is a nonempty
subset W ⊆ V that induces a graph in which every vertex has infinite degree,
then we can easily choose by induction the vertices of an infinite path. We
can therefore assume that no such subset of V exists, that is, if W ⊆ V is
nonempty, then there is a vertex F (W ) ∈ W joined to only finitely many
vertices in W . Using this, determine recursively the elements {vα : α < ϕ}
for some ordinal ϕ by making vα = F

(
V \ {vβ : β < α}

)
. This process must

terminate for some ϕ < |V |+ and that can only happen when V = {vα : α <
ϕ}. If we now order V by vα < vβ if β > α, then Problem 7 gives that (V,X)
is countably chromatic, a contradiction.

32. We can assume that V = ω1.
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Recall that there exists an Ulam matrix, i.e., {Un,α : n < ω, α < ω1} with
Un,α ⊆ ω1, Un,α ∩ Un,β = ∅ for α 
= β, and for a fixed α,

⋃
{Un,α : n < ω} is

a co-countable subset of ω1 (see Problem 18.1). The latter condition implies
that for every α < ω1 there is n(α) < ω such that Un(α),α induces an ℵ1-
chromatic subgraph of X. For uncountably many α, n(α) = n for some n,
and then these Un,α’s give ℵ1 disjoint sets spanning ℵ1-chromatic subgraphs.

33. Assume that the (first) statement fails and X is some uncountably chro-
matic graph that does not split into two uncountably chromatic induced sub-
graphs. Let {Aα : α < λ} be a least family (with respect to the cardinality
λ) of disjoint subsets such that each Aα induces a countably chromatic graph
while A =

⋃
{Aα : α < λ} does not. For B ⊆ λ set B ∈ I if and only if X

on
⋃
{Aα : α ∈ B} is countably chromatic. I is a proper, σ-complete ideal

on λ, and by our minimal choice of λ, it contains every subset of cardinal-
ity less than λ. Furthermore, by our hypothesis, it is a prime ideal (i.e., for
every B ⊆ λ either B ∈ I or λ \ B ∈ I). Let fα :

⋃
{Aβ : β < α} → ω be

a good coloring. Define F : A → ω as follows. Let F (x) = i if and only if
{α < λ : fα(x) = i} /∈ I. As I is σ-complete and prime, this is well defined
and is a good coloring of X on A with countably many colors: if {x, y} ∈ X,
say x, y ∈

⋃
{Aβ : β < α0}, then fα(x) 
= fα(y) for all α ≥ α0, hence

{α : fα(x) 
= fα(y)} ∈ I and so F (x) 
= F (y). This contradiction proves the
claim.

The stronger statement follows by recursively splitting the vertex set into
more and more subsets inducing uncountably chromatic graphs. [A. Hajnal:
On some combinatorial problems involving large cardinals, Fundamenta Math-
ematicae, LXIX(1970), 39–53]

34. First Solution. Assume indirectly that F : V → ω is a good coloring.
Define by transfinite recursion on α < ω1 the following function f(α) =
F
(
f α

)
. It is clear that f is a function from ω1 to ω. We show that it is

injective and that gives the desired contradiction. Indeed, let α < ω1 be the
least ordinal such that f(α) = f(β) holds for some β < α. Then, f β and f α
are injective functions, so they are elements of V , and they are joined in X.
But as F is a good coloring of X, f(β) = F

(
f β

)
and f(α) = F

(
f α

)
are

distinct, a contradiction.

Second Solution. Assume indirectly that F : V → ω is a good coloring. Set
A0 = {0}, α0 = 0, f0 = ∅. Suppose that at step n we are given the finite set
An ⊆ ω, the ordinal αn < ω1, and the function fn : αn → ω. Set An+1 =
An∪{in} where in is the least element of ω\Ran(fn) above max(An). If there
exists some f ⊇ fn with ω\Ran(f) infinite, An+1∩Ran(f) = ∅, F (f) = n then
let fn+1 : αn+1 → ω be one such f . Otherwise let fn+1 be an arbitrary proper
extension of fn to a one–one function fn+1 : αn+1 → ω with co-infinite range
that is disjoint from An+1. This way we get a strictly increasing sequence
f0 ⊆ f1 ⊆ · · · of one–one functions. Their union fω =

⋃
{fn : n < ω} is
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also a one–one function that properly extends each. Assume that F (fω) = n.
Notice that ω \ Ran(fω) is infinite (it includes

⋃
{Ak : k < ω}) and Ran(fω)

is disjoint from An+1. Therefore, we had the first case in the definition of
fn+1 and selected fn+1 with F (fn+1) = n. But now fn+1 and fω are distinct
functions which are joined and get the same color, a contradiction. [F. Galvin,
R. Laver]

35. We can assume that the ground set of the set system is some cardinal κ.
We show by transfinite recursion that there is a good 2-coloring f of κ, and
to do that we define f α : α → {0, 1} inductively on α, where the inductive
hypothesis that f α : α → {0, 1} is a partial good coloring, i.e., there is no
monocolored H ∈ H, H ⊂ α. If f β is a partial good coloring for every β < α

and α is a limit ordinal, then (recall that the sets in H are finite) clearly so is
f α = ∪β<αf β. Suppose now that α = β + 1 is a successor ordinal, and f β
is already given. If there is no extension of it to α, then there is an A ∈ H
such that A ⊆ α, β ∈ A, and A \ {β} ⊆ f−1(0). Similarly, there is a B ∈ H
such that B ⊆ α, β ∈ B, and B \ {α} ⊆ f−1(1). But then A ∩ B = {β} and
exactly this configuration is excluded.

36. Let {Ai : i ∈ I} be a maximal subfamily of H of pairwise disjoint sets
(exists by Zorn’s lemma). Devise a function f :

⋃
{Ai : i ∈ I} → ω which is

one-to-one when restricted to any particular Ai. Extend f arbitrarily to the
remaining points. We show that f is a good ω-coloring of H. Pick H ∈ H.
By condition, there is some i ∈ I that Ai ∩ H 
= ∅ and also by condition,
|Ai ∩H| ≥ 2. But then f assumes at least two different values on H and this
is what we wanted to show.

For the other part, let H be a nontrivial ultrafilter on ω. It is not finitely
chromatic, as in any finite coloring one of the color classes is in the ultrafil-
ter, and no intersection is a singleton, actually, the intersection of any two
members is infinite. [R. Aharoni, P. Komjáth]

37. Let the underlying set of H be V . We first claim that for every U ⊆ V
there is a “closure” of U , a unique minimal set F (U) ⊇ U with the property
that if |H ∩ F (U)| ≥ 2 holds for some H ∈ H then H ⊆ F (U). Indeed, let
F (U) = F0(U) ∪ F1(U) ∪ · · · where F0(U) = U and for n = 0, 1, . . . we set

Fn+1(U) = Fn(U) ∪
⋃

{H ∈ H : |H ∩ Fn(U)| ≥ 2}.

Notice that as H satisfies the condition mentioned in the problem, F (U) is
countable whenever U is.

Enumerate V as {vα : α < ω1} and set Vα = F ({vβ : β < α}). Now
each Vα is countable and V =

⋃
{Vα : α < ω1} is an increasing, continuous

decomposition. Moreover, every Vα is “closed”, that is, no H ∈ H can intersect
it in exactly 2 points. This gives that for every H ∈ H there is an α < ω1
such that H has 2 or 3 points in Wα = Vα+1 \ Vα and at most one point in
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Vα. As {Wα : α < ω1} is a system of pairwise disjoint, countable sets, there is
an injection fα : Wα → ω and then the union of the fα’s will give a coloring
of V with ω such that no H ∈ H is monocolored. [P. Erdős, A. Hajnal: On
chromatic number of graphs and set-systems, Acta Math. Acad. Sci. Hung.,
17(1966), 61–99]

38. Assume that Sn is colored by n + 1 colors, and Vi is the set of points
of color i. With dist(x, y) = ‖x − y‖ the Euclidean distance on Rn+1, the
functions

gi(x) = inf
y∈Vi

dist(x, y)

are continuous functions of x ∈ Sn; therefore,

F (x) = (g1(x), . . . , gn(x))

is a continuous mapping of Sn into Rn. By Borsuk’s antipodal theorem there
is an x ∈ Sn with F (x) = F (−x). If for some 1 ≤ i ≤ n we have gi(x) = 0,
then gi(−x) = 0 as well, and so there are points arbitrarily close to x and −x
of color i. On the other hand, if for all 1 ≤ i ≤ n we have gi(x) = gi(−x) > 0,
then necessarily x and −x are of color n + 1. In any case, under any (n + 1)-
coloring we obtain points with distance arbitrarily close to 2 that have the
same color, hence the chromatic number of Gn,α must be at least n + 2.

To see that Gn,α can be colored by n+2 colors for α < 2 close to 2 do this:
take a regular (n + 1)-simplex with vertices on Sn, project from the origin
each face of the simplex onto Sn, and let the points of these projected sets
have the same color.

39. To show Chr(G) ≤ ℵ0, choose ε < α/2, and let the color set F be the
set of those F ⊂ [0, 1] which consist of finitely many intervals with rational
endpoints. This is a countable set. Let the color of a vertex E be F ∈ F if
meas(E∆F ) < ε. Since E contains compact subsets E′ with measure arbitrar-
ily close to meas(E), and for each such E′ there is an F ∈ F with E′ ⊂ F and
meas(F \ E′) < ε/2, each E gets at least one color from F (of course, each
E gets more than one colors, just keep one of them). Now if both E1 and E2
get the same color F , then E1 ∩E2 
= ∅, so they are not connected in G. This
shows that the above coloring is appropriate, and hence Chr(G) ≤ ℵ0.

In the other direction we have to show that Chr(G) > n for all n = 1, 2, . . ..
Let Sn be a sphere in Rn with surface measure equal to 1, and let rn be the
radius of Sn. It is known (see e.g., P. Halmos and J. v. Neumann, Ann. Math.,
43(1942), 332–350) that there is a measure-preserving bijective mapping Tn :
[0, 1] → Sn. For X ∈ Sn consider the (closed) spherical cap UX with center at
X and of surface measure equal to α, and let EX = T−1(UX) be the inverse
image of UX . Note that there is a βn,α < 2rn such that EX1 ∩ EX2 = ∅
(which is the same as UX1 ∩ UX2 = ∅) precisely if the distance of X1 and X2
is bigger than βα,n. Hence the chromatic number of the subgraph spanned by
{EX : X ∈ Sn} is at least n + 1 by the previous problem. [P. Erdős and A.
Hajnal, Matematikai Lapok, 18(1967), 1–4]
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Partition relations

1. For k = 2 this is just a reformulation of Problem 23.1. Suppose the state-
ment is known for some k, and let f : [ω]2 → {0, 1, . . . , k} be a coloring with
k + 1 colors. Unite color classes 0 and 1 into a new color class −1. This way
we obtain a coloring of the pairs of ω with k colors: −1, 2, . . . , k. By the in-
ductive hypothesis there is an infinite monochromatic subset V ′ for the latter
coloring. If its color is one of 2, . . . , k, we are done, V ′ is monochromatic in
the original coloring. In the remaining case, V ′ is colored by −1; therefore,
it was originally colored by 0 and 1. The case k = 2, applied to V ′, gives an
infinite monochromatic set of color 0 or 1, in the original coloring.

2. We prove the statement by induction on r. The case r = 1 is obvious: if
we decompose an infinite set into finitely many parts, then one of the parts is
infinite. Suppose the statement has been verified for r. Let f : [ω]r+1 → k be a
coloring. We argue that there is an infinite set A such that the following is true.
If a1 < · · · < ar < a < b are from A, then f(a1, . . . , ar, a) = f(a1, . . . , ar, b)
holds (that is, A is endhomogeneous). Accepting the existence of A we con-
clude the proof as follows. Color the r-tuples of A by putting g(a1, . . . , ar)
the common value of f(a1, . . . , ar, a) where a ∈ A, a > ar. By the induction
hypothesis there are an infinite B ⊆ A and a color i such that all r-tuples
from B get color i under g. But then clearly B is monochromatic in color i
for f as well.

To obtain A we inductively select the decreasing sequence of infinite
sets Y0 ⊇ Y1 ⊇ · · · and the elements x0 < x1 < · · · as follows. Set
Y0 = ω. If Yi is determined, let xi be its least element. After this, for ev-
ery z ∈ Yi \ {xi}, z determines a coloring gz of the r-tuples of {x0, . . . , xi} by
making gz

(
xj1 , . . . , xjr

)
= f

(
xj1 , . . . , xjr , z

)
. As

[
{x0, . . . , xi}

]r is finite (pos-
sibly empty), there are finitely many possibilities of coloring it with k colors.
There is, therefore, an infinite Yi+1 ⊆ Yi \ {xi} such that the gz functions
are identical for z ∈ Yi+1, and so the definition of Yi+1 is complete. We get,
therefore, an infinite set {x0, x1, . . .} such that the color of an (r + 1)-tuple
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does not depend on the last element. [F. P. Ramsey: On a problem of formal
logic, Proc. London Math. Soc. (2), 30(1930), 264–286]

3. Color the pairs of elements as follows. A pair gets color 0 if it consists of
comparable elements, and color 1 otherwise. By Problem 1 there is an infinite
monochromatic set and it can only be a chain or antichain, according to its
color.

4. Let a0, a1, . . . be infinitely many elements of the ordered set 〈A,≺〉. Color
{ai, aj} with i < j zero if ai ≺ aj and with one otherwise. By Problem 1
there is an infinite monochromatic set and it is an increasing or decreasing
sequence, according to its color.

5. First solution. An easy geometry argument gives that out of 5 planar
points some 4 form a convex quadruple. Color every 4-element subset of X
by 0 or 1 accordingly if they form a convex quadruple or not. By the above
remark there is no monochromatic 5-element subset of color 1, so, by Problem
2 there is an infinite monochromatic set of color 0, which is exactly a convex
set. [P. Erdős, G. Szekeres: A combinatorial problem in geometry, Compositio
Math., 2(1935), 463–470]

Second solution. Working on the plane with x-, y-axes we can assume that
the points of X are 〈a0, b0〉, 〈a1, b1〉, . . .. We can equally assume (by shrinking
X, and rotating the coordinate system, if needed) that ai 
= aj for i 
= j.
Given a triple {i, j, k} of natural numbers there can be two cases: of the
points (ai, bi), (aj , bj), and (ak, bk), the one whose x-coordinate is between
those of the other two, can be above or below the segment determined by the
other two points. If we color the point triple by 0 or 1 according to which case
holds, we get a coloring of [ω]3 by two colors. An application of Problem 2
gives a subset as required. [N. Tarsi, cf. M. Lewin: A new proof of a theorem
of Erdős and Szekeres, Math. Gaz., 60(1976), 136–138]

6. If we are given a tournament on ω, for u < v < ω color the edge {u, v}
green, if −→uv, and blue otherwise. By Ramsey’s theorem, there is an infinite
monochromatic set, and it is obviously a transitive subtournament.

Another possibility is to observe that a tournament is transitive if and
only if every triangle in it is transitive, and every tournament on 4 nodes
includes a transitive triangle. Then we can apply the relation ω → (ω, 4)3.
[P.Erdős–R.Rado]

7. As in the first solution of Problem 6, we assume that the graph is on ω,
and color the pair {u, v} (u < v < ω) with 0, if u and v are not joined in
X, with 1, if −→uv, and with 2, if ←−uv. By Ramsey’s theorem there is an infinite
monochromatic set. If its color is 0, then it is an independent set, if it is 1 or
2, it is a transitively directed subset.
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8. Let the vertices be the functions f : ω → {0, 1}, and if f, g are two such
functions and n is the smallest number with f(n) 
= g(n), then let the color
of (f, g) be (n, 0) if f(n) < g(n), and otherwise let it be (n, 1). It is easy to
see that this is an appropriate coloring.

9. The proof is identical with the corresponding part of the solution of Problem
2.

10. For a triple {x, y, z} ∈ [ω]3 with x < y < z there are 5 possibilities
if we consider which of f(x, y), f(x, z), f(y, z) are equal. Similarly, given a
quadruple {x, y, z, t} ∈ [ω]4, with x < y < z < t, there are a finite number,
say s possibilities, on equalities of the values of f on

[
{x, y, z, t}

]2. Accordingly,
we get colorings g : [ω]3 → 5 and h : [ω]4 → s, which give the types of the
triples and quadruples in the above sense. By Ramsey’s theorem (Problem 2)
there is an infinite set H ⊆ ω homogeneous to both g and h. We claim that H
is as required. Assume that there are s, t ∈ [H]2 with f(s) = f(t) (otherwise
we land in case (d)). As H is homogeneous for g, h, f(s′) = f(t′) holds every
time the relative (ordered) position of s′, t′ ∈ [H]2 is the same as that of s,
t. One can find s′, t′, t′′ ∈ [H]2 such that s′, t′ and s′, t′′ both are similar to
s, t (in the above sense) and either min(t′) = min(t′′) or max(t′) = max(t′′).
For simplicity, assume the former case. We get, therefore, one occurrence of
f(s) = f(t) in [H]2 with min(s) = min(t), and, as H is homogeneous for g, this
must always hold in this situation. We get (b), unless there are s, t ∈ [H]2 with
min(s) 
= min(t) yet f(s) = f(t). Then, using the properties of H again, we
get that to any x < y in H there are s, t ∈ [H]2 with min(s) = x, min(t) = y
and f(s) = f(t), and eventually we get that H is homogeneous. [P. Erdős,
R. Rado: A combinatorial theorem, Jour. Lond. Math. Soc., 25(1950), 249–
255]

11. Select the sequence 1 = r0 < r1 < · · · in such a way that if r ≥ rt then
f(r) ≥ 2t. Let A1 be an infinite subset of ω that is homogeneous for every
Hr, r < r1 (exists by Ramsey’s theorem, Problem 2). Choose x1 = min(A1).
By induction on t, if we have found {x1, . . . , xt} and At, choose an infinite
At+1 ⊆ At \ {xt} such that if rt ≤ r < rt+1, B ⊆ {x1, . . . , xt} and C ⊆ At+1,
|B| + |C| = r, then Hr(B ∪ C) depends only on B. Such a set can be found;
it only requires a(n enormous but) finite number of applications of Ramsey’s
theorem. Having finished the inductive construction, set X = {x1, . . .}. If
rt ≤ r < rt+1, then Hr assumes at most 2t ≤ f(r) values on X and we are
done.

For the other direction if s = {x1, . . . , xr} ⊆ ω make Hr(s) = i if there are
precisely i indices 1 ≤ j < r for which xj+1 − xj < r. We claim that if X ⊆ ω
is infinite and i is given then for r sufficiently large there is an s ∈ [X]r with
Hr(s) = i, thus the number of colors occurring in [X]r tends to infinity as
r → ∞. In fact, let y1 < y2 < · · · < yi+1 be the first i + 1 elements of X,
choose r > yi+1, further let xj = yj for 1 ≤ j ≤ i + 1 and inductively choose
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xi+2, . . . , xr ∈ X in such a way that xj+1−xj > r for j = i+1, . . . , r−1. Then
{x1, . . . , xr} has color i. [J. E. Baumgartner, P. Erdős, A. Hajnal, R. Rado]

12. From finite Ramsey theory we know that there is a natural number d such
that dn → (3n)23 holds for every n. Set c = d + 1. Assume that we are given
a coloring f : [ω]2 → 3. By induction we select the finite sets A0, A1, . . . as
follows. If A0, . . . , At have already been selected, set p = |A0| + · · · + |At|,
q = max(At). There is a number n = nt+1 > q so large that q + 3pdn < cn.
By the pigeon hole principle, there are at least dn elements in the interval
[q + 1, q + 3pdn] that are joined to A0 ∪ · · · ∪ At the same way, i.e., f(x, y)
depends only on x. Using the above-mentioned Ramsey property, there is a
3nt+1-element subset, which is homogeneous to f , this will be our At+1.

Applying Problem 9, we get an infinite subset X ⊆ ω such that for i < j
in X if x ∈ Ai, y ∈ Aj , then f(x, y) = g(x), that is, the color does not depend
on y or even on j. This g 3-colors Ai, so there is a Bi ⊆ Ai, |Bi| = ni, for
which g(x) only depends on i.

For an infinite Y ⊆ X this value is the same (say e0), and also the color
of pairs in Bi is the same (say e1).

The set
⋃
{Bi : i ∈ Y } uses only the colors {e0, e1}, the index of the largest

element of Bi is at least ni and its value is at most cni for i ∈ Y . [P. Erdős,
cf. P. Erdős, F. Galvin: Some Ramsey-type theorems, Discrete Mathematics,
87(1991), 261–269]

13. (a) Let f : [κ]2 → {0, 1}. Assume first that for every x < κ, the set
{y < κ : f(x, y) = 1} is of cardinality less than κ, that is, if we consider the
graph of those pairs {x, y} for which f(x, y) = 1, then every vertex has degree
< κ. Then, by transfinite recursion, we can choose the vertices {xα : α < κ}
such that f(xβ , xα) = 0 holds for β < α < κ. Indeed, if at step α, the vertices
{xβ : β < α} have already been selected, then each of them disqualifies (by
hypothesis) a set of cardinality < κ as possible xα, and as κ is regular, the
union of these < κ sets each with cardinality < κ is still a set of cardinality
< κ so it is possible to choose xα. Now observe that {xα : α < κ} is a set of
cardinality κ monochromatic in color 0.

We have proved that if there is no monochromatic set of size κ in color 0,
then there must be some vertex v0 such that if A0 = {y < κ : f(v0, y) = 1},
then A0 is of cardinality κ. Repeating the previous argument inside A0
we get that there must be some vertex v1 ∈ A0 such that the set A1 =
{y ∈ A0 : f(v1, y) = 1} if of cardinality κ. Continuing, we get the vertices
v0, v1, . . . and sets A0, A1, . . . and the set {v0, v1, . . .} is an infinite set mo-
nochromatic in color 1. [B. Dushnik, E. W. Miller: Partially ordered sets,
American Journal of Mathematics, 63(1941), 600–610]

(b) Using the argument in part (a) it suffices to show the following. If X is
a graph on κ with no infinite complete subgraph and in which every degree
is less than κ, then there is an independent set in X of cardinality κ. Let
{κα : α < µ} be a strictly increasing sequence of cardinals cofinal in κ where
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µ = cf (κ), with µ < κ0. Decompose κ into the union κ =
⋃
{Sα : α < µ}

with |Sα| = κ+
α . Using part (a) we can shrink each Sα to an independent set

S′
α ⊆ Sα, |S′

α| = κ+
α . For each x ∈ S′

α there is a least β = β(x) < µ such
that the degree of x is ≤ κβ(x). The mapping x �→ β(x) decomposes S′

α into
at most µ parts (taking the inverse images of the elements). As cf (κα) > µ,
some of them must have cardinality κ+

α , that is, there is S′′
α ⊆ S′

α, |S′′
α| = κ+

α

and there is g(α) < µ such that if x ∈ S′′
α then the degree of x is at most

κg(α).
Select, by transfinite recursion, an increasing sequence {αi : i < µ} of

ordinals smaller than µ such that sup{g(αj) : j < i} ≤ αi holds for every
i < µ. This is possible as µ is regular and at every step we must choose an
ordinal that is greater than the supremum of some < µ ordinals below µ. We
finally choose the sets {Ti : i < µ} by transfinite recursion on i < µ with
the properties |Ti| = κ+

αi
, Ti ⊆ S′′

αi
so that the set

⋃
{Ti : i < µ} will be

independent. Assume we are at step i and the sets {Tj : j < i} have already
been constructed. In order to get Ti we remove from S′′

αi
all vertices that are

joined to some element of T =
⋃
{Tj : j < i}. The number of these removed

elements can be estimated as∑
j<i

|Tj |κg(αj) ≤ καi

∑
j<i

κg(αj) ≤ καi · καi · i = καi .

As |S′′
αi
| = κ+

αi
, there remain κ+

αi
elements, so Ti can be chosen. As

⋃
{Ti : i <

µ} is an independent set of cardinality κ, we are done. [P. Erdős]

14. Assume that {fα : α < κ+} is a lexicographically decreasing sequence.
Then, {fα(0) : α < κ+} is a nonincreasing sequence of ordinals; therefore, it
stabilizes, that is, fα(0) = g(0) holds for α > α0 for some α0 < κ+. Restricting
to those values of α, {fα(1) : α < κ+} is a nonincreasing sequence of ordinals,
so again, fα(1) = g(1) holds for α > α1 for some α1 < κ+. Continuing, we
get the ordinals αi < κ+ for i < κ, and the values g(i) < λ that fα(i) = g(i)
holds for α > αi. But then, all functions fα with α > sup{αi : i < κ} are
identical, a contradiction.

Assume that {fα : α < µ+} is a lexicographically increasing sequence for
µ = max(κ, λ). {fα(0) : α < µ+} is a nondecreasing sequence of ordinals
< λ, only at λ places can they properly increase. So it stabilizes, that is,
fα(0) = g(0) holds for α > α0 for some α0 < µ+. Restricting to those values
of α, {fα(1) : α < µ+} is a nondecreasing sequence of ordinals, so again,
fα(1) = g(1) holds for α > α1 for some α1 < µ+. Continuing, we find the
ordinals αi < µ+ for i < κ, and the values g(i) < λ that fα(i) = g(i) holds
whenever α > αi. As before, all functions fα with α > sup{αi : i < κ} will be
identical, a contradiction. See also Problems 6.93–94.

15. As |A| ≤ 2κ we have an injection Φ : A → κ2. For x < y in A there is a
least α < κ that Φ(x)(α) 
= Φ(y)(α). Set f(x, y) = 〈α, 0〉 if Φ(x)(α) = 0 and
Φ(y)(α) = 1, and set f(x, y) = 〈α, 1〉 when Φ(x)(α) = 1 and Φ(y)(α) = 0. If,
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for x < y < z, f(x, y) = f(y, z) = 〈α, 0〉, say, then Φ(y)(α) would be 0 and 1
in the same time, a contradiction.

16. Let 〈A,≺〉 be an ordered set whose order type is a Specker type (see 27.15).
Enumerate A as A = {a(α) : α < ω1} and let {x(α) : α < ω1} be a set of
distinct reals in [0, 1]. We construct the tournament on ω1: if α < β < ω1, set−→
αβ, i.e., direct the edge {α, β} from α to β if and only if either x(α) < x(β)
and a(α) ≺ a(β) or x(β) < x(α) and a(β) ≺ a(α).

First we observe that if B ⊆ A is uncountable then there is an a(α) ∈ B
such that for uncountably many β > α the relations a(β) ∈ B and a(α) ≺ a(β)
hold. Indeed, otherwise, we could inductively select a sequence from B of order
type ω∗

1 , which contradicts the properties of 〈A,≺〉.
Assume that X ⊆ ω1 is uncountable. We claim that there is α ∈ X such

that the set {β ∈ X : a(α) ≺ a(β), x(α) < x(β)} is uncountable. In fact, for
α ∈ X let f(a(α)) be the least t ∈ [0, 1] such that x(β) < t holds for all but
countably many β ∈ X with a(α) ≺ a(β). Since f is a nonincreasing real-
valued function on a subset of A, it can only have countably many different
values; otherwise, there would be an uncountable subset of A similar to an
uncountable subset of the reals, an impossibility. Hence f is constant, say
t0 on an uncountable set. Set X0 = {α ∈ X : f(a(α)) = t0}. As we have
remarked above, there is an α0 ∈ X0 such that {β ∈ X0 : a(α0) ≺ a(β)} is
uncountable, and then in this set there is an α ∈ X0 such that a(α0) ≺ a(α)
and x(α) < t0 (by the choice of t0 = f(a(α0))). Since f(a(α)) = t0 also holds
and x(α) < t0, there are uncountably many β ∈ X such that a(α) ≺ a(β) and
x(α) < x(β), and the claim has been proved.

A similar argument shows (by reversing ≺ and <) that there is an α with
{β ∈ X : a(β) ≺ a(α), x(β) < x(α)} uncountable.

We next claim that there are uncountable X0, X1 ⊆ X such that if α ∈ X0,
β ∈ X1, then a(α) ≺ a(β) and x(α) < x(β). Toward proving this, let U be
the set of those α ∈ X such that {β ∈ X : a(α) ≺ a(β), x(α) < x(β)} is
countable, and let L be the set of those α ∈ X such that {β ∈ X : a(β) ≺
a(α), x(β) < x(α)} is countable. Both U and L are countable. Indeed, should,
say, U be uncountable, then, by our first claim, it would contain an α with
{β ∈ U : a(α) ≺ a(β), x(α) < x(β)} uncountable, but this is nonsense since
then α cannot belong to U . Thus U and L are countable, and so we can pick
an α ∈ X \ (U ∪ L). Then the sets

X0 = {β ∈ X : a(β) ≺ a(α) and x(β) < x(α)}

and
X1 = {β ∈ X : a(α) ≺ a(β) and x(α) < x(β)}

establish our second claim.
Fix now X0 and X1 as in the second claim. A further application of the

same claim to X0 and to the reversely ordered 〈A,%〉 we get uncountable
Y0, Y1 ⊆ X0 such that α ∈ Y0, γ ∈ Y1 satisfy a(α) ≺ a(γ) and x(α) > x(γ). As
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Y0, Y1, X1 are uncountable subsets of ω1, we can choose α < β < γ, α ∈ Y0,
β ∈ X1, and γ ∈ Y1. Then −→

αβ, −→βγ, −→γα are edges in our tournament, so it is not
transitive on X. [R. Laver, see F. Galvin, S. Shelah: Some counterexamples
in the partition calculus, Jour. Comb. Th., 15(1973), 167–174]

17. It suffices to give a function F : [ω1]2 → ω1 such that the range of F on any
uncountable X ⊆ ω1 includes a closed, unbounded set. Indeed, if f : ω1 → ω1
is a function as described in Problem 21.21, then their composition f ◦ F is
as required.

Select the distinct functions rα : ω → 2 for α < ω1. For α 
= β < ω1
let d(α, β) be the least n with rα(n) 
= rβ(n). Fix, for every 0 < α < ω1 a
(possibly repetitive) enumeration α = {xα

n : n < ω}. For α < β < ω1 set
A(α, β) =

{
xβ

n : n ≤ d(α, β)
}
, F (α, β) = min

(
A(α, β) \ α)

)
.

Assume that X ⊆ ω1 is uncountable. If g : n → 2 for some n < ω, set
T (g) = {α ∈ X : g ⊆ rα}. Set γ ∈ C if γ is a limit ordinal and the following is
true. For every g : n → 2, (n < ω), if T (g) is countable, then γ > sup

(
T (g)

)
,

if T (g) is uncountable, then T (g)∩γ is cofinal in γ. C is closed, unbounded in
ω1 by Problems 21.2 and 21.1. We claim, and that suffices, that every element
of C is in the range of F on [X]2.

Assume that γ ∈ C. Pick β ∈ X, β > γ (possible, as X is uncountable).
For n < ω set gn = rβ (n + 1). Notice that γ < β ∈ T (gn), therefore T (gn) is

uncountable for n < ω. For n < ω let g∗
n : (n+1) → 2 be the (unique) function

that agrees with gn at all but the last place: g∗
n n = gn n, g∗

n(n) 
= gn(n).
Clearly, T (gn) \ {β} = T (g∗

n+1) ∪ T (g∗
n+2) ∪ · · ·, so for every n < ω there is

N ≥ n with T (g∗
N ) uncountable.

As β > γ, γ = xβ
k holds for some k < ω. Choose N ≥ k with T (g∗

N )
uncountable. Notice that for α ∈ T (g∗

N ), d(α, β) = N , hence A = A(α, β) =
{xβ

n : n ≤ N} is the same finite set containing γ. Recalling the definition of
F , we get that for α ∈ T (g∗

N ) ∩ β, F (α, β) = min(A \ α). As A ∩ γ is finite
and T (g∗

N ) ∩ γ is cofinal in γ, we can choose an α ∈ T (g∗
N ) ∩ γ so large that

the least element of A which is ≥ α is γ. For this α, we have F (α, β) = γ, as
desired. [S. Todorcevic: Partitioning pairs of countable ordinals, Acta. Math.,
159(1987), 261–294]

18. Set S =
{

α < (2κ)+ : cf (α) = κ+
}

, a stationary set in (2κ)+ by Problem

21.8. For every α ∈ S start building the endhomogeneous set {xα
ξ : ξ < κ+} ⊆

α in the sense that we require that

f(xα
ξ1

, . . . , xα
ξr

, xα
η ) = f(xα

ξ1
, . . . , xα

ξr
, α)

hold for ξ1 < · · · < ξr < η < κ+. For every given α we can either continue for
κ+ steps or get stuck somewhere. If there is some α for which the first case
holds, lovely, we have the sought-for endhomogeneous set: X = {xα

ξ : ξ < κ+}.
We can therefore assume that for every α ∈ S there is a point where we get
stuck: for some ordinal γ(α) < κ+ we cannot extend the set {xα

ξ : ξ < γ(α)}.
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Notice that as cf (α) = κ+, {xα
ξ : ξ < γ(α)} is a bounded subset of α. Applying

Problem 21.10, we get that there is a stationary S′ ⊆ S such that these values
are constant: for α ∈ S′ we have γ(α) = γ and for ξ < γ, xα

ξ = xξ. The
number of h : [γ]r → κ functions is κκ = 2κ, and for each α ∈ S′

{ξ1, . . . , ξr} �→ f(xξ1 , . . . , xξr , α)

is such a function, so there must be α < β in S′ such that f(xξ1 , . . . , xξr
, α) =

f(xξ1 , . . . , xξr
, β) holds for ξ1 < · · · < ξr < γ. But then we reached a contra-

diction; α can be added to the set {xβ
ξ : ξ < γ(β)} and still keep it endhomo-

geneous.

19. Assume that f :
[
(2κ)+

]2
→ κ. Set S =

{
α < (2κ)+ : cf (α) = κ+

}
, a

stationary set in (2κ)+ (see Problem 21.8). For every α ∈ S and every color
i < κ we start building the increasing sequence Z(α, i) = {xα,i

ξ : ξ < κ+} ⊂ α
such that for ξ < ζ we have

f(xα,i
ξ , xα,i

ζ ) = f(xα,i
ξ , α) = i,

that is, Z(α, i) ∪ {α} is homogeneous in color i. If, for some α ∈ S and
some i < κ we can proceed through κ+ steps, we get a homogeneous set of
cardinality κ+ in color i. We can assume, therefore, that for every α ∈ S,
i < κ we have the nonextendable set Z(α, i) = {xα,i

ξ : ξ < γ(α, i)} with some
γ(α, i) < κ+. As the mapping α �→ 〈γ(α, i) : i < κ〉 has a range of cardinality
at most

(
κ+
)κ = 2κ, there is, by Problem 21.6 a stationary S′ ⊆ S such that

γ(α, i) = γ(i) with some γ(i) for every α ∈ S′. On S′ we have a system of κ
regressive functions, for every i < κ and ξ < γ(i), the mapping α �→ xα,i

ξ . By
Problem 21.10, there is a stationary set S′′ ⊆ S′ where they all are constant,
that is, on S′′ the sets Z(α, i) are identical, Z(α, i) = Z(i). Now pick α < β
in S′′, let i = f(α, β). Then, as sup (Z(i)) < α, and f(α, β) = i, α is a good
continuation of Z(i) = Z(β, i), and this contradicts the maximality of the
latter set. [P. Erdős: Some set-theoretical properties of graphs, Revista de la
Univ. Nac. de Tucumán, Ser. A. Mat. y Fis. Teór. 3(1942), 363–367. For an
alternative proof, see the solution to Problem 25.]

20. Assume that f :
[
(2κ)+

]2
→ κ. We repeat the argument in the previous

problem for the colors 0 < i < κ. That is, for every α < (2κ)+, cf (α) = κ+,
0 < i < κ, we build the set Z(α, i) ⊆ α such that Z(α, i)∪{α} is homogeneous
in color i. If there are some α and i such that we can proceed through κ+

steps, then we are finished; we have found a homogeneous set of cardinality κ+

in one of the colors 0 < i < κ. In the other case, for each α and each 0 < i < κ
there is a nonextendable Z(α, i) as above, of cardinality ≤ κ. By the above
argument, there is a stationary set S′′, such that we get a contradiction if
for some α < β in S′′, the color f(α, β) is any of the values 0 < i < κ. This
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exactly means that S′′ is a homogeneous set in color 0, and, as it is stationary,
it has cardinality (2κ)+.

21. Define the coloring F :
(
2κ
)+ → κ + 1 as follows. For α < β <

(
2κ
)+ set

F (α, β) = κ if fα(ξ) ≤ fβ(ξ) for every ξ < κ, otherwise let F (α, β) be the least
ξ such that fα(ξ) > fβ(ξ) holds. By Problem 20 either there is a homogeneous
subset in color κ of cardinality

(
2κ
)+, in which case we are done, or there is

a homogeneous subset of cardinality κ+ in color ξ for some ξ < κ. But in the
latter case, if Z is the homogeneous set, then {fα(ξ) : α ∈ Z} is a decreasing
sequence of ordinals of length κ+, an impossibility.

22. Suppose first that |X| > c and d : X×X → [0,∞) is a symmetric mapping
with d(x, y) = 0 if and only if x = y. Color the pair {x, y} with color k ∈ Z if
2k ≤ d(x, y) < 2k+1. By Problem 19 there is a homogeneous triangle, {x, y, z},
in some color, say, in color k. Now if {x′, y′, z′} is any permutation of {x, y, z},
then d(x′, z′) < 2k+1 = 2k +2k ≤ d(x′, y′)+d(y′, z′) so d is not an antimetric.

For the other direction notice that if X ⊆ R then d(x, y) = (x − y)2 is an
antimetric on X. [V. Totik]

23. Consider two orderings on the same set κ2, the set of all κ → {0, 1}
functions. One is the lexicographic ordering, denoted by <. The other is an
arbitrary well-ordering, denoted by <w. For f, g ∈ κ2 color the pair {f, g} by
0 if the orders agree on the pair, that is either f < g and f <w g hold, or else
g < f and g <w f hold. In the other case color the pair {f, g} by 1.

Assume that X is some homogeneous set in color 0 with |X| = κ+. Then
the orderings agree on X. As one of them is a well-ordering, so is the other;
therefore, X is a set on which < is a well order. But this is impossible as by
Problem 14 there is no subset of 〈κ2, <〉 of order type ≥ κ+.

A similar argument works for a homogeneous set in color 1. [W. Sierpiński:
Sur un problème de la théorie des relations, Ann. Scuola Norm. Sup. Pisa,
Sci. Fis. Matem., 2(1933), 285–287]

24. Consider the set of all κ → {0, 1} functions as S. Color a pair {g, h} ∈ [S]2

with color i < κ if and only if i is the least coordinate that g(i) 
= h(i)
holds. There is no monochromatic triangle as that would mean three func-
tions g0, g1, g2 with g0(i), g1(i), g2(i) being three distinct elements of {0, 1},
an impossibility. [K. Gödel]

25. By induction on r. The case r = 0 is trivial: if κ+ is colored with κ colors,
then (as κ+ is regular) there are κ+ points with the same color.

Assume the statement for r and let f :
[
expr+1(κ)+

]r+2 → κ. By Prob-
lem 18 there is an endhomogeneous set X with |X| = expr(κ)+, that is,
for x1 < · · · < xr+1 < y, f(x1, . . . , xr+1, y) does not depend on y, say
f(x1, . . . , xr+1, y) = g(x1, . . . , xr+1) holds on X. Applying the case for r to g
we get that there is a set of cardinality κ+ that is homogeneous for g and so
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it is homogeneous for f , as well. [P.Erdős, R. Rado: A partition calculus in
set theory, Bull. Amer. Math. Soc., 62(1956), 427–489]

26 We show the existence of the required function by induction on r. For
r = 0 the function f(x) = x (x < κ) is good. Assume that we have the
statement for r and want to prove it for r + 1. Given the infinite cardinal
κ, let F be a function on

[
expr(2κ)

]r+1 with the required properties. We
can assume that F maps into κ2, the set of all κ → {0, 1} functions. Define
f on the r + 2-tuples of expr(2κ) = expr+1(κ) as follows. If x0 < x1 <
· · · < xr+1 are given, then g = F (x0, · · · , xr) and h = F (x1, · · · , xr+1) are
two distinct κ → 2 functions. Let α < κ be the point of first difference. If
g(α) = 0, h(α) = 1, then set f(x0, x1, · · · , xr+1) = 〈α, 0〉, if it is the other
way around, set f(x0, x1, · · · , xr+1) = 〈α, 1〉. This f is a coloring as required:
if x0 < x1 < · · · < xr+2 and f(x0, · · · , xr+1) = f(x1, · · · , xr+1) = 〈α, 0〉, say,
then F (x1, · · · , xr+1) must be a function which assumes at place α the values
0 and 1 in the same time. [P. Erdős, A. Hajnal: On chromatic number of
infinite graphs, in: Theory of graphs, Proc. of the Coll. held at Tihany 1966,
Hungary (ed. P. Erdős, G. Katona), Akadémiai Kiadó, Budapest, Academic
Press, New York, 1968, 83–89]

27. Assume that f : A × B → κ is a counterexample. For S ∈ [A]k, i < κ, set

Ti(S) = {y ∈ B : f(x, y) = i for all x ∈ S}.

By our indirect assumptions, |Ti(S)| < k holds for all S ∈ [A]k, i < κ. Their
union, T =

⋃
{Ti(S) : i < κ, S ∈ [A]k} has cardinality at most κ · κ+ = κ+.

We can therefore pick some y ∈ B \ T . This y has the property that for every
i < κ, the set {x ∈ A : f(x, y) = i} has at most k − 1 elements, which is a
contradiction, as they must cover the set A of cardinality κ+.

28. Assume that A, B, k, and f are as in the problem. Let U be a nonprincipal
ultrafilter on B. For x ∈ A, i < k, set Bi

x =
{
y ∈ B : f(x, y) = i

}
. For every

x ∈ A, (B0
x, . . . , Bk−1

x ) is a partition of B into k parts, there is, therefore, a
unique i(x) < k such that B

i(x)
x ∈ U . By the pigeon hole principle there are

an i < k and an uncountable A′′ ⊆ A such that i(x) = i holds for x ∈ A′′. We
can now apply Problem 4.36 to the system {Bi

x : x ∈ A′′} to get A′ ⊂ A′′,
B′ = ∩{Bi

x : x ∈ A′} infinite. Hence f is homogeneous of color i on A′ ×B′.

29. Select the increasing sequence {λα : α < µ} of regular cardinals, cofinal in
λ, with λ0 > κµ and λα+1 ≥

(
2λα

)+. Thinning the sequence {Sα : α < µ} we
can achieve that |Sα| ≥ λα+1 holds for every α < µ. Next, by shrinking the
individual sets Sα we can assume that actually |Sα| =

(
2λα

)+ holds for α < µ.
For β < α, we have |Sβ | ≤ λβ+1 ≤ λα, so |

⋃
{Sβ : β < α}| ≤ λα. There are

at most 2λα different
⋃
{Sβ : β < α} → κ functions so there are sets S′

α with
|S′

α| =
(
2λα

)+ such that if β < α, x ∈ Sβ , y, y′ ∈ S′
α, then f(x, y) = f(x, y′).



Solutions Chapter 24 : Partition relations 415

This can be reformulated in the following way. For every x ∈ S′
α there is

some function gx : (α, µ) → κ such that f(x, y) = gx(β) holds for y ∈ S′
β ,

α < β < µ (here (α, µ) denotes the ordinal interval). As the number of
different such functions is at most κµ < λα, there is some S′′

α ⊆ S′
α with

|S′′
α| =

(
2λα

)+ that is homogeneous in this sense, that is, gx = gx′ holds for
x, x′ ∈ S′′

α. Another formulation of this is that there is some function h such
that for α < β < µ, if x ∈ S′′

α, y ∈ S′′
β , then f(x, y) = h(α, β).

We are almost finished, we only have to apply Problem 19 and shrink S′′
α

to a homogeneous S′′′
α with |S′′′

α | = λ+
a . Of course, the homogeneous color of

S′′′
α may depend on α. [P. Erdős]

30. Assume that f : [λ]2 → {1, 2, . . . , k}. Problem 29 gives that there are
disjoint sets S0, S1, . . . with |Sn| → λ and there are functions g : [ω]2 →
{1, 2, . . . , k}, h : ω → {1, . . . , k} such that if i < j, x ∈ Si, y ∈ Sj then
f(x, y) = g(i, j) and likewise if x, y ∈ Si then f(x, y) = h(i). Applying Ram-
sey’s theorem (Problem 1) and the pigeon hole principle we get an infinite set
A ⊆ ω such that if i, j ∈ A then g(i, j) = c for some c ∈ {1, 2, . . . , k} and if
i ∈ A then h(i) = d for some d ∈ {1, 2, . . . , k}. Now

⋃
{Si : i ∈ A} is a set of

cardinality λ in which the pairs only get colors c and d. [P. Erdős]

31. Enumerate every Ai as Ai = {ai
α : α < κ} and every Bi as Bi = {bi

α : α <
κ}. Let < order I. For i < j in I color the pair {i, j} with the ordered pair
〈α, β〉 where ai

α = bj
β is some element of the nonempty Ai ∩ Bj . If |I| > 2κ

then by Problem 19 there are i < j < k forming a monocolored triangle, and
if the color is 〈α, β〉, then

bj
β = ai

α = bk
β = aj

α

an element of Aj ∩ Bj , a contradiction. [R. Engelking, M. Karlowicz: Some
theorems of set theory and their topological consequences, Fundamenta Math-
ematicae 57 (1965), 275–285]

32. For every limit ordinal α < κ select the ordinals xα
0 < xα

1 < · · · < α, as
long as possible, with f(xα

n, xα
m) = f(xα

n, α) = 1. If, for some α, we can choose
infinitely many such ordinals, we are done: {xα

n : n < ω} ∪ {α} is a set of
type ω + 1, homogeneous in color 1. In the other case, for every limit α < κ
there is some nonextendable {xα

n : n ≤ N(α)}. The mapping α �→ N(α)
decomposes the stationary set of all limit ordinals below κ into countably
many parts, so by Problem 21.6 there is some N < ω that {α : N(α) = N}
is stationary. On this set, all functions α �→ xα

n are regressive (n ≤ N),
so repeated applications of Fodor’s lemma (Problem 21.9) give a stationary
subset S on which they are constant; xα

n = xn. Then, S is homogeneous in
color 0. Indeed, if f(β, α) = 1 held for some β < α in S then β would be a
good extension of the set {xα

0 , . . . , xα
N}, i.e., it would be a possible choice for

xα
N+1 contradicting nonextandability. [P. Erdős, R. Rado: A partition calculus

in set theory, Bull. Amer. Math. Soc. 62 (1956), 427–489]
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33. By induction on k. The case k = 2 follows from Problem 32. If the case for
k is established, and f : [ω1]2 → k +1 then, again by Problem 32, either there
is a monocolored set of order type ω +1 in color k, or there is an uncountable
set using only colors 0, 1, . . . , k − 1. In the former case we are done, in the
latter case we use the case for k.

34. Assume that f : [R]2 → k for some k < ω. Let X ⊆ R be a
nonempty, countable set which has the following property. For every choice
of x1, . . . xt ∈ X, j1, . . . , jt < k if the set Y = Y (x1, . . . xt; j1, . . . , jt) of those
y > max(x1, . . . xt) with f(x1, y) = j1, . . . , f(xt, y) = jt is nonempty, then
if min(Y ) exists, then min(Y ) ∈ X, if min(Y ) does not exist, then there
are yn ∈ X ∩ Y with yn → inf(Y ). [Such an X can be obtained by putting
X = X0 ∪ X1 ∪ · · · where X0 ⊆ R is an arbitrary countably infinite set, and

Xn+1 = Xn ∪
⋃

{Z(x1, . . . xt; j1, . . . , jt) : x1, . . . xt ∈ Xn, j1, . . . , jt < k}

where Z(x1, . . . xt; j1, . . . , jt) ⊆ Y (x1, . . . xt; j1, . . . , jt) is a countable, co-
initial subset.]

Pick some y ∈ R\X, bigger than inf(X). Let x0 ∈ X, x0 < y be arbitrary.
If x0, . . . , xn are already selected, let xn+1 ∈ X be chosen subject to the
conditions xn < xn+1 < y and f(xi, xn+1) = f(xi, y) (i ≤ n). This is possible
as Y

(
x0, . . . , xn; f(x0, y), . . . , f(xn, y)

)
is nonempty, y is not its least element

(note that y 
∈ X) and there is an element of X in it which is smaller than y.
Now the set {x0, x1, . . . , y} is endhomogeneous for f : for i < j < ω,

f(xi, xj) = f(xi, y) = γi, say. As k < ω, for an infinite set Z ⊆ ω and for
some γ < k we have γi = γ (i ∈ Z), and then {xi : i ∈ Z} ∪ {y} is a
homogeneous set in color γ of order type ω + 1. [P. Erdős–R. Rado]

35. (a) Suppose to the contrary that κ is singular. Define f : [κ]2 → {0, 1}
with no homogeneous set of cardinality κ as follows. Decompose κ as a disjoint
union κ =

⋃
{Sα : α < µ} where µ < κ and each Sα has cardinality less than

κ. Now set f(x, y) = 0 if x and y are in the same Sα, otherwise f(x, y) = 1.
Every homogeneous set of color one intersects every Sα in at most one point,
so it is of cardinality at most µ. Every homogeneous set of color zero is a
subset of some Sα so it is of cardinality < κ.

The problem also follows from Problems 27.44(c) and 27.42.

(b) If λ < κ and 2λ ≥ κ then, by Problem 23, 2λ 
→ (λ+)22 holds, so
certainly κ 
→ (κ)22.

(c) This is an immediate consequence of 27.44(c) and 27.43.

36. We prove the equivalent statement that for β0, . . . , βk−1 < ω1 there is
some G(β0, . . . , βk−1) < ω1 that if α = G(β0, . . . , βk−1) and f is a semi-
homogeneous coloring of the pairs of ωα then for some j < k there is a
homogeneous set of type βj in color j. Set 〈β′

0, . . . , β
′
k−1〉 ≺ 〈β0, . . . , βk−1〉
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if and only if β′
j ≤ βj holds for every j < k and there is strict inequality

at least once. This gives a well-founded partial ordering on the sequences of
countable ordinals of length k. Assume there is some 〈β0, . . . , βk−1〉 for which
the statement fails. Then there is a ≺-minimal such sequence, 〈β0, . . . , βk−1〉.
Notice that βj ≥ 2 holds for every j. As there are countably many ≺-
smaller sequences, there is some α < ω1 such that α ≥ G(β′

0, . . . , β
′
k−1) holds

for every 〈β′
0, . . . , β

′
k−1〉 ≺ 〈β0, . . . , βk−1〉. We claim that α + 1 is a good

choice for G(β0, . . . , βk−1) (and that concludes the indirect argument). As-
sume that f : [ωα+1]2 → {0, 1, . . . , k − 1} is semihomogeneous. The ground
set of type ωα+1 decomposes into the ordered union of the sets S0, S1, . . .
each of type ωα. Assume that the edges between different Si’s get color j.
Decompose βj into the ordered sum of smaller ordinals: βj = γ0 + γ1 + · · ·.
As G(β0, . . . , γi, . . . , βk−1) ≤ α holds for every i, we have that for every i < ω
either there is a homogeneous set of type βr for some r 
= j or there is one of
type γi in color j. If the first clause holds even for one i, then we are done,
we get a homogeneous set of the required type. If the second clause holds for
every i, then we have homogeneous sets of order types γ0, γ1, . . . in color j and
as the crossing edges all get color j as well, together they form a homogeneous
set of type γ0 + γ1 + · · · = βj in color j, as was required. [F. Galvin: On a
partition theorem of Baumgartner and Hajnal, Colloquia Mathematica Soci-
etatis János Bolyai, 10., Infinite and Finite Sets, Keszthely, Hungary, 1973,
711–729]

37. As ℵ1 + ℵ2 = ℵ2, there are linearly independent vectors {aα : α < ω1} ∪
{bβ : β < ω2} in V . If V is colored with countably many colors, specifically
all vectors of the form aα + bβ are colored, so we get a derived coloring of
ω1 × ω2. In this latter coloring, by Problem 27 there is a monochromatic
{α, α′}×{β, β′}, that is, x = aα +bβ , z = aα′ +bβ , u = aα +bβ′ , y = aα′ +bβ′

get the same color, and clearly x + y = z + u.

38. If {vα : α < c+} is a set of linearly independent vectors, a coloring of V
colors in particular the vectors of the form vα − vβ (α < β < c+). This gives
a derived coloring of the pairs {α, β} ∈ [c+]2, and so, by Problem 19, there
are α < β < γ such that {α, β}, {β, γ}, {α, γ} get the same color. That is, in
the original coloring, x = vα − vβ , y = vβ − vγ , z = vα − vγ have identical
colors, and obviously, x + y = z.

For the other direction, it suffices to color any vector space of cardinality c,
let our choice be R. Let the color classes be [1, 2), [2, 4), [4, 8), . . ., and down-
ward [12 , 1),[ 14 , 1

2 ), . . .. We define similar color classes on the negative numbers,
and let 0 form a color class alone. Now obviously, there is no nontrivial solution
of x + y = z in one color class.

39. Assume that S is dense with |S| = κ. For x ∈ X let f(x) be the set
of those sets G ∩ S where G is an open set containing x. We show that
f : X → P (P(S)) is injective, and so |X| ≤ 22κ

. Assume that x, y ∈ X,
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x 
= y. As the space is Hausdorff, there are disjoint open sets x ∈ U , y ∈ V .
Then S′ = S ∩ U ∈ f(x). But S′ /∈ f(y). Indeed, if y ∈ G is open, then
G ∩ S contains elements from G ∩ V ∩ S and this latter set is disjoint from
S′. [B. Posṕı̌sil: Sur la puissance d’un espace contenant une partie dense de
puissance donnée, Časopis Pro Pěstováńı Matematiky a Fysiky, 67(1937),
89–96]

40. Let for x 
= y ∈ X, x ∈ U(x, y), y ∈ V (x, y) be disjoint open sets.
Assume that

{
y(α) : α <

(
22κ)+}

are distinct points in X. Color the triplets
of this set in such a way that for α < β < γ the color of {α, β, γ} gives
the information if y(α) ∈ U (y(β), y(γ)), or y(α) ∈ V (y(β), y(γ)) or neither
holds, and similarly for the other combinations of α, β, γ. This can be done
with 33 = 27 colors. By the Erdős–Rado theorem (Problem 25) there is a
homogeneous set of cardinality κ+. Let {x(α) : α < κ+} be the corresponding
set of points. By homogeneity, either x(γ) /∈ U (x(α), x(β)) holds whenever
γ < α < β or x(γ) /∈ V (x(α), x(β)) holds whenever γ < α < β. A similar
statement holds for all α < γ < β and for all α < β < γ. This implies that if

Wα = U (x(α + 1), x(α + 2)) ∩ V (x(α), x(α + 1))

for α < κ+, then x(α + 1) ∈ Wα holds for every α and Wα does not contain
any other x(γ), that is, if γ < α or γ > α+2. Since x(α+1) can be separated
from x(α) and x(α + 2) by a neighborhood x(α + 1) ∈ W ′

α ⊆ Wα, it follows
that the subspace {x(α + 1) : α < κ+} is discrete. [A. Hajnal, I. Juhász: On
discrete subspaces of topological spaces, Indag. Math., 29(1967), 343–356]

41. As 〈X, T 〉 is a Hausdorff space, for x 
= y ∈ X there are disjoint open
sets x ∈ U(x, y), y ∈ V (x, y). Assume that every subspace is Lindelöf and
{y(α) : α < c+} is a set of c+ distinct points. For α < β < γ < c+ color the
triplet {α, β, γ} with 3 colors depending on if y(γ) ∈ U(y(α), y(β)) or y(γ) ∈
V (y(α), y(β)) or neither holds. By Problem 18 there is a set of cardinality ℵ1
which is endhomogeneous, that is, we have the set {x(α) : α < ω1} of distinct
elements such that for α < β < ω1 either x(γ) ∈ U(x(α), x(β)) holds for every
β < γ < ω1, or x(γ) ∈ V (x(α), x(β)) holds for every β < γ < ω1, or neither.
For a fixed α the open sets {V (x(α), x(β)) : α < β < ω1} surely cover {x(β) :
α < β < ω1}, so by Lindelöfness, countably many of them cover as well.
Therefore, there is some β(α) such that V (x(α), x(β(α))) covers uncountably
many x(γ), so by endhomogeneity it covers every x(γ) with γ > β(α). Now
consider the set U(x(α), x(β(α))). By disjointness, it does not contain any x(γ)
with γ > β(α). So the sets {U(x(α), x(β(α))) : α < ω1} cover the subspace
{x(α) : α < ω1}, but each of them only covers countably many elements, so
there is no countable subcover, a contradiction. [A. Hajnal–I. Juhász]

42. For x ∈ X let {Vn(x) : n < ω}, V0(x) ⊇ V1(x) ⊇ · · · be a neighborhood
base of x. As 〈X, T 〉 is a Hausdorff space, for x 
= y there is some n < ω such
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that Vn(x) ∩ Vn(y) = ∅ holds. This is a coloring of the pairs with countably
many colors, so if |X| > c then, by Problem 19, there is some n and there
are uncountably many points {xα : α < ω1} such that this n works for any
two points. But then {Vn(xα) : α < ω1} is an uncountable system of pairwise
disjoint nonempty open sets. [A. Hajnal, I. Juhász: On discrete subspaces of
topological spaces, Indag. Math. 29(1967) 343–356]

43. Assume indirectly that f : P(ω) → ω is a coloring with no distinct X, Y ,
Z such that Z = X ∪ Y and f(X) = f(Y ) = f(Z).

We claim that given i < ω, A, B with A ⊆ B, |B\A| = ω, there are A′, B′,
with A ⊆ A′ ⊆ B′ ⊆ B, |B′ \ A′| = ω, such that for no X with A′ ⊆ X ⊆ B′

does f(X) = i hold. Indeed, otherwise choose some C with A ⊆ C ⊆ B,
|C \ A| = ω, f(C) = i (if no such C exists the choice A′ = A ∪ S, B′ = B
works, where S ⊆ B \ A is such that |S| =

∣∣B \ (A ∪ S)
∣∣ = ω). Partition

the infinite C \ A into two infinite parts: C \ A = U ∪ V . It cannot happen
that there is an i-colored X between A ∪ U and C, and another i-colored Y
between A∪V and C, for then we would have the monocolored set X, Y and
C = X ∪ Y . If the first case fails then we can choose A′ = A ∪ U , B′ = C, if
the second case fails, A′ = A ∪ V , B′ = C,

Repeatedly using the claim we choose the sets ∅ = A0 ⊆ A1 ⊆ · · · and
ω = B0 ⊇ B1 ⊇ · · · with Bi ⊇ Ai, |Bi \ Ai| = ω and no X between Ai+1
and Bi+1 gets color i. But then X = A0 ∪ A1 ∪ · · · can get no color at all.
[G. Elekes: On a partition property of infinite subsets of a set, Periodica Math.
Hung. 5 (1974), 215–218]

44. Let S be any set of cardinality c+. Let < be any ordering on it. If f :
P(S) → ω, then let g : [S]2 → ω be the following coloring: if x < y then
g(x, y) = f ([x, y)) where [x, y) = {z ∈ S : x ≤ z < y}. By Problem 19 there
are x < y < z with g(x, y) = g(x, z) = g(y, z) and so [x, y) and [y, z) are
two disjoint sets such that they, as well as their union, get the same color.
[P. Komjáth]

45. The subsets of S with symmetric difference as addition form a vector
space over the two-element field. Notice that for disjoint subsets symmetric
difference is the same as union. Fix a basis B = {bi : i ∈ I} and color the
subsets of S according to the number of basis elements in their representation.
Notice that ∑

i∈J

bi +
∑
i∈J′

bi =
∑

i∈J�J ′
bi

as the characteristic is 2. The required property in this form reduces to showing
that there are no infinitely many n-element sets such that the symmetric
difference of any finitely many of them is still an n-element set. Indeed, there
is a 3-element ∆-subsystem of it, A0 = S ∪ B0, A1 = S ∪ B1, A2 = S ∪ B2
with S, B0, B1, B2 pairwise disjoint (see Problem 25.1). Clearly, |Bi| = |Bj |,
and since |Ai)Aj | = |Bi|+ |Bj |, it follows that |S| = |B0| = |B1| = |B2| = n

2
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but then |A0)A1)A2| = |S∪B0∪B1∪B2| = 2n, a contradiction. [G. Elekes,
A. Hajnal, P. Komjáth: Partition theorems for the power set, Coll. Math. Soc.
János Bolyai 60, Sets, graphs, and numbers, Budapest (Hungary), 1991, 211–
217]

46. We first treat the case S = ω. Enumerate [ω]ℵ0 as {Aα : α < c}. Choose,
by transfinite recursion, the sets Xα, Yα such that Xα, Yα ⊆ Aα and the sets
{Xα, Yα : α < c} are all different. This is possible, as at step α we have
2|α| < c sets already chosen and

∣∣[Aα]ℵ0
∣∣ = c possibilities to choose Xα, Yα.

If now f satisfies f(Xα) = 0, f(Yα) = 1 for every α < c, then f has no
homogeneous infinite subset.

Passing to the general case, let S be uncountable. Let H be a maximal
almost disjoint subfamily of [S]ℵ0 , that is, if A 
= B ∈ H, then |A ∩ B| < ω,
and no proper extension of H has this property. Such an H exists by Zorn’s
lemma. For H ∈ H let fH be a function on the infinite subsets of H, as
constructed in the previous paragraph. Let f : [S]ℵ0 → {0, 1} be an arbitrary
function that extends every fH . It is possible to find such an f , as the fH ’s
operate on disjoint domains. We claim that f is as required for S. Indeed,
if A ∈ [S]ℵ0 , then for some H ∈ H the intersection B = A ∩ H is infinite
(otherwise {A}∪H would properly extend H). By the construction, there are
X, Y ⊆ B ⊆ A such that f(X) = fH(X) = 0, f(Y ) = fH(Y ) = 1. [P. Erdős,
R. Rado: Combinatorial theorems on classifications of subsets of a given set,
Proc. London Math. Soc., 3(1952), 417–432]



25

∆-systems

1. We prove the claim by induction on n. The result is obvious for n = 1.
Assume we have it for n, and we have F , an infinite family of (n+1)-element
sets. If there is some element x that is contained in infinitely many members
of F , then we can consider the infinite family of n-element sets F ′ = {A\{x} :
x ∈ A ∈ F}. If the sets {A0 \ {x}, . . .} form a ∆-subfamily of F ′, then the
corresponding members {A0, . . .} of F will give a ∆-subfamily of F . We can
therefore assume that every point is contained in only finitely many members
of F . We select, by induction, infinitely many pairwise disjoint sets. If we have
A0, . . . , At then there are just finitely many sets in F containing elements from
A0∪· · ·∪At, so we can choose a further element of F , and that will be disjoint
from each of A0, . . . , At.

2. By the pigeon hole principle we can assume that every member of the family
F has n elements for some natural number n. We show, by induction on n,
that F has an uncountable ∆-subfamily. This is obvious for n = 1. For the
inductive step let F be an uncountable system of (n+1)-element sets. If some
element x is contained in uncountably many members of F then we apply the
statement for the system F ′ = {A \ {x} : x ∈ A ∈ F}. We get an uncountable
∆-subsystem of F ′ and by adding x to the common part of it, we arrive at a
∆-subsystem of F .

We can, therefore, assume, that every x ∈
⋃
F is contained in only count-

ably many members of F . In this case, we can select an uncountable disjoint
subsystem of F as follows. Let A0 ∈ F be arbitrary. If {Aβ : β < α} are
selected for some α < ω1, then, by hypothesis, only countably many A ∈ F
contain one or more elements of X =

⋃
{Aβ : β < α}, so we can choose

Aα ∈ F , disjoint from X (and so continue constructing the disjoint subsys-
tem).

3. If κ = |F| is a regular cardinal, then we can repeat the argument in the pre-
vious solution by replacing “uncountable” with “of cardinality κ” and “count-
able” with “of cardinality < κ”.
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If κ is singular then there is µ < κ and there are cardinals {κα : α < µ}
below κ that sum up to κ. Consider the distinct points {xα, yα,ξ : α < µ, ξ <
κα}. Let F consist of the pairs of the form {xα, yα,ξ}. Clearly, |F| = κ. As
no point is covered κ times (yα,ξ is in one set, xα is in κα sets) the only
possibility for a ∆-subsystem of cardinality κ if there is a disjoint subsystem
with κ members. But there are no more than µ pairwise disjoint elements in
F ; after all, every member meets the set {xα : α < µ} of cardinality µ.

4. No. Let S be a set of cardinality ℵ1. Our counterexample is [S]2, the
set of all pairs from S. Assume indirectly, that [S]2 = F0 ∪ F1 ∪ · · · where
F0,F2, . . . are systems of disjoint sets while F1,F3, . . . are ∆-systems with
kernels {x0}, {x1}, . . .. Pick y 
= x0, x1, . . . (possible, as S is uncountable).
There are z, t 
= x0, x1, . . . , y such that {y, z}, {y, t} are in the same F2i, but
this is a contradiction.

5. Assume that fα ∈ F (A, B) (α < ω1). By Problem 2 there is an uncount-
able subfamily {fα : α ∈ X} such that {Dom(fα) : α ∈ X} is a ∆-system;
Dom(fα) = s ∪ sα for α ∈ X where the sets {s, sα : α ∈ X} are pairwise
disjoint. As B is countable there are just countably many s → B functions,
so, with a further trim we get an uncountable subfamily {fα : α ∈ Y } such
that fα s = f for every α ∈ Y with some f : S → B. Now, any fα, fβ with
α, β ∈ Y have a common extension, namely g : s ∪ sα ∪ sβ → B where

g(x) =

⎧⎨
⎩

f(x) if x ∈ s,
fα(x) if x ∈ sα,
fβ(x) if x ∈ sβ .

6. Assume that {Gα : α < ω1} are disjoint, nonempty open sets in SR, for
some set S. Pick a basic open subset Iα of Gα, that is, for a finite set sα ⊆ S
there are open intervals Kα

x ⊆ R (x ∈ sα) such that f : S → R is in Iα

if and only if f(x) ∈ Kα
x holds for all x ∈ sα. Further shrinking Iα we can

arrange that every Kα
x be an interval with rational endpoints. By Problem 2

there is an uncountable ∆-subfamily of {sα : α < ω1}. That is, there is an
uncountable X ⊆ ω1, and there are pairwise disjoint {s, tα : α ∈ X} such that
sα = s ∪ tα holds for α ∈ X. As we restricted the Kα

x to rational intervals,
for each x ∈ s there are countably many possibilities for Kα

x . As s is finite,
there can be just countably many different systems 〈Kα

x : x ∈ s〉, so there are
α 
= β in X with Kα

x = Kβ
x for every x ∈ s. But then Iα ∩ Iβ is nonempty,

indeed, the following function f is in the intersection: f(x) ∈ Kα
x for x ∈ sα,

f(x) ∈ Kβ
x for x ∈ tβ , and f(x) ∈ R arbitrary for x ∈ S \ (sα ∪ sβ).

The same proof shows that in any product of topological spaces with a
countable base there is no uncountable system of pairwise disjoint open sets.

7. First solution. We prove the stronger statement that if S ⊆ ω1 is station-
ary, {Aα : α ∈ S} is a system of finite sets then {Aα : α ∈ S′} is a ∆-system
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for some stationary S′ ⊆ S. As the union of countably many nonstationary
sets is nonstationary (see Problem 20.4), we can, by shrinking S, assume that
|Aα| = n holds for every α ∈ S, for some natural number n. We prove the
statement, which now has parameter n, by induction on n. The case n = 0 is
obvious. If n > 0 and there is some point x which is contained in stationary
many Aα, that is, x ∈ Aα for α ∈ S′ ⊆ S stationary, then we consider the
system {A′

α : α ∈ S′} of (n − 1)-element sets, where A′
α = Aα \ {x} and so

we can apply the statement for n − 1. If {A′
α : α ∈ S′′} is a ∆-subsystem

of the latter system, then {A′
α : α ∈ S′′} is a ∆-subsystem of the original

system (just it contains one more element in the common core: x). We can
therefore assume that no element is contained in stationary many Aα. Split
S as S = S0 ∪ S1 where α ∈ S0 if and only if there is some β < α with
Aβ ∩ Aα 
= ∅. For α ∈ S0 we let f(α) = the least such β. This is a regressive
function, so if S0 is stationary, then by Fodor’s theorem (Problem 20.16) there
is some β that {α ∈ S0 : f(α) = β} is stationary. That is, stationary many
sets Aα intersect the same Aβ . Further refining we get stationary many Aα

such that they contain the same element x ∈ Aβ , and that is impossible, as
we have assumed that no element is contained in stationary many Aα.

We proved that S0 is nonstationary; therefore, S1 is stationary. But then
obviously {Aα : α ∈ S1} is a system of pairwise disjoint sets, so it is a ∆-
system.

Second solution. As the union of ℵ1 finite sets has cardinality at most ℵ1 we
can assume that each Aα is a subset of ω1. There is a closed, unbounded set
C ⊆ ω1 such that if β < α ∈ C then max(Aβ) < α. This easily follows from
Problem 20.6 but we can argue as follows. If the set of those α’s is stationary
for which there is some β < α with max(Aβ) ≥ α, then the function f that
selects such a β for every such α is regressive, so by Fodor’s theorem it assumes
some fixed value β on a stationary set which is impossible, as clearly f(α) 
= β
if α > max(Aβ).

As the union of countably many nonstationary sets is nonstationary, there
are a natural number n and a stationary set S ⊆ C such that |Aα ∩ α| = n
holds for every α ∈ S (n = 0 is possible). Let {xα

1 , . . . , xα
n} be the increasing

enumeration of Aα∩α (α ∈ S). As for every 1 ≤ i ≤ n the mapping α �→ xα
i is

a regressive function on S, with n successive applications of Fodor’s theorem
we get that there is a stationary set S′ ⊆ S such that xα

i = yi holds for α ∈ S′

for some y1 < · · · < yn. Then, {Aα : α ∈ S′} is a ∆-system with pairwise
intersection Y = {y1, . . . , yn}. Indeed, Y ⊆ Aα obviously holds for all α ∈ S′,
and if β < α are in S′, Aβ 
= Y , Aα 
= Y , then

max(Aβ \ Y ) = max(Aβ) < α ≤ min(Aα \ α) = min(Aα \ Y ).

8. (a) As
⋃
F has cardinality at most c+, we can assume that our system is

F = {Aα : α < c+} with Aα ⊆ c+ for α < c+. From Problem 21.5 it follows
that there is a closed, unbounded set C ⊆ c+ such that if α < β and β ∈ C



424 Chapter 25 : ∆-systems Solutions

then sup(Aα) < β. By Problem 21.8 the set S = {α ∈ C : cf (α) = ω1} is
stationary. As Aα is countable, Aα ∩ α is a bounded subset of α, therefore
f(α) = sup(Aα∩α) is a regressive function on S. By Fodor’s theorem (Problem
21.9) there is some γ < c+ such that S′ = {α ∈ S : f(α) = γ} is stationary.
For each α ∈ S′, Aα ∩ α is a countable subset of γ + 1. γ + 1, being a
set of cardinality ≤ c, has c countable subsets, or less. As the union of c
nonstationary sets (in c+) is nonstationary, there is some countable set B ⊆
c+ such that S′′ = {α ∈ S′ : Aα ∩ α = B} is stationary. Now F ′ = {Aα : α ∈
S′′} is a ∆-system. Indeed, if α < β are in S′′, then certainly B ⊆ Aα ∩ Aβ ,
and Aα \ B and Aβ \ B are disjoint, as every element of the first set < β ≤
every element of the second set.

(b) The proof is identical to the one given in part (a), just replace c+ by
λ, “countable” by “of cardinality ≤ µ”, and let S = {α < λ : cf (α) = µ+}.

9. For a set S of cardinality µ let T = (S × {0})∪(S × {1}), that is, we consider
“two copies” of S. For A ⊆ S set H(A) = (A × {0}) ∪ ((S \ A) × {1}). We
claim that F = {H(A) : A ⊆ S} is as required. Obviously, F is a system of
2µ sets, each of cardinality µ. To conclude, assume that H(A), H(B), H(C)
form a ∆-system. This means that {A, B, C} as well as {S \ A, S \ B, S \ C}
both are ∆-systems. The first assumption implies that if some x ∈ S is in two
of A, B, C then it is in the third one. The second assumption implies that if
some x ∈ S is in one of A, B, C then it is in another. Putting together, we get
that A = B = C.

10. Assume to the contrary that |I| ≥ (2µ)+. By Problem 8(b) we can shrink
I in two steps to a J ⊆ I with |J | = (2µ)+ such that {Ai : i ∈ J} and
{Bi : i ∈ J} are both ∆-systems, that is, Ai = A ∪ Ai, Bi = B ∪ Bi with
{A, Ai : i ∈ J} as well as {B, Bi : i ∈ J} systems of pairwise disjoint sets.
A∩B = ∅ as otherwise we had Ai ∩Bi 
= ∅ whenever i ∈ J . The set J0 = {i ∈
J : Ai∩B 
= ∅} has cardinality at most µ as the corresponding sets Ai∩B are
disjoint nonempty subsets of B, which is of cardinality ≤ µ. Fix i′ ∈ J \ J0.
As before, the set J1 = {i ∈ J : Bi ∩ Ai′ 
= ∅} has cardinality ≤ µ. Choose
i′′ ∈ J \ (J0 ∪ J1 ∪ {i′}). Then i′ 
= i′′ and A ∪ Ai′

and B ∪ Bi′′
, that is, Ai′

and Bi′′ are disjoint, contradiction.
For an alternative proof see Problem 24.31.

11. (a) We can assume that the members of F are indexed by the elements
of λ: F = {Aα : α < λ}. Also, without loss of generality, Aα ⊆ λ for every
α < λ. Assume first that κ is regular. Then if S is the set of ordinals smaller λ
with cofinality κ then for α ∈ S we have f(α) = sup(Aα ∩α) < α. By Fodor’s
theorem, for a stationary set S′ ⊆ S we have f(α) = γ (α ∈ S′). There is a
closed, unbounded set C ⊆ λ such that if α < β ∈ C then sup(Aα) < β holds
(cf. Problem 21.3). Now F ′ = {Aα : α ∈ S′ ∩ C} is as required; if α, β are in
S′ ∩ C, and α < β, then Aα ∩ Aβ ⊆ γ, namely Aα ∩ α, Aβ ∩ β are subsets of
γ and Aα \ α, Aβ \ β are subsets of the disjoint intervals [α, β), [β, λ).
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Assume now that κ is singular, cf(κ) = µ, κ = sup{κξ : ξ < µ} where
κξ < κ is regular. Then S =

⋃
{Sξ : ξ < µ} where Sξ = {α : |Aα| < κξ}. For

some ξ < µ the set Sξ must be stationary (as the union of µ nonstationary
sets is nonstationary) and then we can repeat the above argument for Sξ.

(b) By part (a) we can assume that λ is singular. Set λ = sup{λξ : ξ < µ},
where µ = cf(λ), and λξ > sup{λζ : ζ < ξ} is regular, with λ0 > κ+.
Accordingly, F is decomposed into the union of the subfamilies Fξ with |Fξ| =
λξ. Using Problem 8(b) we get a ∆-subsystem F ′

ξ ⊆ Fξ of the form (say) F ′
ξ =

{Aξ ∪Aξ,α : α < λξ} where the sets {Aξ, Aξ,α : α < λξ} are pairwise disjoint.
If we remove from F ′

ξ every set for which Aξ,α has a nonempty intersection
with some Aζ,β (ζ < ξ, β < λζ) then we remove at most sup{λζ : ζ < ξ} < λξ

sets, so the remaining system F ′′
ξ still has cardinality λξ. Now the system⋃

{F ′′
ξ : ξ < µ} is as required; the intersection of two elements is a subset of⋃

{Aξ : ξ < µ}, a set of cardinal at most µκ < λ. [G. Fodor: Some results
concerning a problem in set theory, Acta Sci. Math., 16(1955), 232–240.,
W. W. Stothers, M. J. Thomkinson: On infinite families of sets, Bull. of the
London Math. Soc., 11(1979), 23–26]
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Set mappings

1. For every real x there is an open interval I with rational endpoints such that
x ∈ I and f(x) ∩ I = ∅. If we consider the set of those x that are associated
with a given I, then we get a decomposition of R into countably many classes.
One of them, say A, associated with I, is of the second category, one of them,
say A′, associated with I ′, is of cardinality c (see Problem 4.15). A∩f [A] = ∅
as A and f [A] are separated by I, and likewise for A′.

2. Let n be the least natural number which is greater than |x|. Set f(x) =
(−n, n) \ {x}. If x 
= y are reals and |x| ≤ |y| then x ∈ f(y).

3. There is an enumeration R = {rα : α < c} of R. Set f(rα) = {rβ : β < α}.
Then |f(rα)| = |α| < c and whenever rα 
= rβ are reals then either rα ∈ f(rβ)
or rβ ∈ f(rα) holds (according to whether α < β or β < α holds).

4. Enumerate the intervals with rational endpoints as I0, I1, . . .. Our plan
is to select ai ∈ Ii such that the set {a0, a1, . . .} is free. The trick is that
we keep the side condition that the set Ai = {x : a0, . . . , ai−1 /∈ f(x)} is
everywhere (i.e., in every interval) of the second category. As A0 = R we can
start the inductive construction. Assume we have reached the ith stage. Set
A∗

i = Ai \ (f(a0) ∪ · · · ∪ f(an−1)); it is also a set everywhere of the second
category. If we choose ai ∈ A∗

i ∩ Ii, then the freeness of {a0, . . . , ai} is kept
so the only problem can be that for every b ∈ Ii ∩ A∗

i there is an interval J
such that Bb = {x ∈ A∗

i : b /∈ f(x)} is of the first category in J . We are going
to show that this is impossible. Indeed, if this is not the case, then there is
such a rational interval J and as there are countably many rational intervals
there is some J such that for a second-category set of b ∈ Ii ∩ A∗

i the above
Bb is of the first category in that same J . Select a set {b0, b1, . . .} ⊆ Ii ∩ A∗

i

that is dense in some subinterval K. For every n the set Bbn is of the first
category in J , hence there is an x ∈ A∗

i ∩ J \ (Bb0 ∪ Bb1 ∪ · · ·). For this x we
have {b0, b1, . . .} ⊆ f(x) so f(x) is dense in K, a contradiction. [F. Bagemihl:
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The existence of an everywhere dense independent set, Michigan Math. J.,
20(1973), 1–2]

5. Let {an : n < ω} be an everywhere-dense set. By Problem 4.15 (König’s
theorem) cf(c) > ω. Therefore, f(a0) ∪ f(a1) ∪ · · ·, the union of countably
many sets with cardinality less than continuum, is a set of cardinality less
than continuum, we can choose b ∈ R \ (f(a0) ∪ f(a1) ∪ · · ·). As f(b) is not
everywhere dense, there is some an /∈ f(b) and then {an, b} is a free set.

There is not necessarily a 3-element free set. To show this, let <w be a
well-ordering of R into order type c. For x > 0 set f(x) = {y > 0 : y <w x}
and similarly, for x ≤ 0 set f(x) = {y ≤ 0 : y <w x}. Then neither (0,∞) nor
(−∞, 0] includes a 2-element free set.

6. Let λ∗ denote the outer Lebesgue measure on R. Choose a set A1 ⊆ R
with λ∗(A1) > n − 1 such that for x ∈ A1 we have f(x) ⊆ [−k1, k1] for an
appropriate k1. Such a choice is possible, as

⋃
k{x : f(x) ⊆ [−k, k]} = R.

Next choose an A2 ⊆ (k1,∞) with λ∗(A2) > n − 2 such that for x ∈ A2 we
have f(x) ⊆ [−k2, k2] for an appropriate k2. Keep going. We finally select
some An−1 ⊆ (kn−2,∞) with λ∗(An−1) > 1 such that for x ∈ An−1 we have
f(x) ⊆ [−kn−1, kn−1] for an appropriate kn−1. Then inductively choose the
elements

xn > kn−1, xn−1 ∈ An−1 \ f(xn), . . . , x1 ∈ A1 \ (f(x2) ∪ · · · ∪ f(xn)) ,

the set {x1, . . . , xn} will be the required free set. [P. Erdős, A. Hajnal: Some
remarks onset theory, VIII, Michigan Math. J., 7(1960), 187–191]

7. As CH holds, we can enumerate R as R = {rα : α < ω1} and the collection
of the countable sets with uncountable closure as {Hα : α < ω1}. Define f(rα)
in such a way that it is a sequence converging to rα, and for every β < α if rα

is a limit point of Hβ , then f(rα) contains a point from Hβ . This is possible as
there are countably many such sets Hβ , so reordering them into an ω-sequence
we can select the appropriate points closer and closer to rα.

Assume now that X ⊆ R is an uncountable set. Let H ⊆ X be countable
and dense in X. Then H = Hα for some α < ω1. If rβ ∈ X \ Hα with β > α
(all but countably many elements of X satisfy this), then f(rβ) contains an
element of H ⊆ X, so X is not free. [S. Hechler]

8. (a) Assume to the contrary that there is no free set of cardinality κ. Using
Zorn’s lemma we can inductively select the maximal free sets A0 ⊆ κ, A1 ⊆
κ \ A0, A2 ⊆ κ \ (A0 ∪ A1), Aξ ⊆ κ \

⋃
η<ξ Aη, for ξ < µ. By our indirect

hypothesis each Aξ has cardinality < κ, so every set Aξ is nonempty, and
even A =

⋃
{Aξ : ξ < µ} has cardinality less than κ. Also, |f [A]| < κ. Select

x ∈ κ \ (A ∪ f [A]). For every ξ < µ the set Aξ ∪ {x} is not free, which, as x /∈
f [Aξ], can only mean that Aξ∩f(x) 
= ∅. As the sets Aξ are disjoint, this gives
|f(x)| ≥ µ, a contradiction. [Sophie Piccard: Sur un problème de M. Ruziewicz
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de la théorie des relations, Fundamenta Mathematicae, 29(1937), 5–9. This
proof was given by Dezső Lázár, see P. Erdős: Some remarks on set theory,
Proc Amer. Math. Soc, 1(1950), 127–141]
(b) Increasing µ if needed, we can assume that µ > cf(κ). Let {κξ : ξ < cf(κ)}
be a strictly increasing sequence of cardinals, cofinal in κ, with κ0 > µ+.

Decompose the ground set κ into the disjoint union of the sets {Sξ :
ξ < cf(κ)} where |Sξ| = κ+

ξ . Using the result of part (a) we can assume, by
shrinking it, if necessary, that every Sξ is free. As the cardinality of

⋃
{f [Sη] :

η < ξ} is at most κξ, by a further reduction we can achieve that if x ∈ Sη

and η < ξ then f(x) ∩ Sξ = ∅. We have to show, therefore, that we can
select subsets Aξ ⊆ Sξ with |Aξ| = κξ such that for no x ∈ Aξ, η < ξ does
f(x) ∩ Aη 
= ∅ hold.

Assume that this cannot be done. By transfinite recursion on α < µ+

define the ordinal η(α) < cf(κ) and construct the sets Aα
ξ again by transfinite

recursion on ξ < η(α) as follows: if {Aβ
ξ : ξ < η(β), β < α} are all constructed,

choose, as long as possible, a subset Aα
ξ ⊆ Sξ \

(⋃
{Aβ

ξ : β < α}
)

of cardinality
κξ such that the union of these sets is free. Our construction must stop at
some point η(α) < cf (κ), as otherwise we would get a free set of cardinality
κ and the proof was over.

As µ+ is a regular cardinal greater than cf(µ), there are µ+ many values
α, say α ∈ T such that η(α) = η, the same value. For these ordinals α we are
unable to select an appropriate Aα

η ⊆ Sη, that is, at the given point of the
construction only < κη many points in Sη \

(⋃
{Aβ

η : β < α}
)

were free from⋃
{Aα

ξ : ξ < η}. For α ∈ T let Bα be the set of those points, then |Bα| < κη.
Let Cα = Bα

⋃(⋃
{Aβ

ξ : ξ < η}
)
, α ∈ T . The union of the Cα’s has cardinality

at most µ+(κηcf (κ)+κη) = κη < |Sη|, so there is a point x ∈ Sη not in any of
the Cα’s. By our conditions, f(x) intersects every

⋃
{Aα

ξ : ξ < η}, α ∈ T , and
these µ+ sets are disjoint, so |f(x)| ≥ µ+, a contradiction. [A. Hajnal: Proof
of a conjecture of S. Ruziewicz, Fund. Math., 50(1961), 123–128. This proof
is from S. Shelah: Classification theory and the number of non-isomorphic
models, North-Holland, 1978]

9. Join two points x, y ∈ S if x ∈ f(y) or y ∈ f(x) holds. This gives a graph
and the claim in the problem is equivalent to the fact that this graph can be
colored by 2k + 1 colors, i.e., we have to show that the chromatic number is
at most 2k + 1. By the de Bruijn–Erdős theorem (Problem 23.8) it suffices
to show this for the finite subsets of S, in other words, it suffices to show
the statement for finite S. This we prove by induction on n = |S|. The result
is obvious for n ≤ 2k + 1 (we can color the vertices with different colors).
Assume that n > 2k + 1. The number e of edges is at most kn so the sum of
the degrees is 2e ≤ 2kn. There is, therefore, a vertex x with degree at most
2k. Remove x. By the inductive hypothesis S \ {x} has a good coloring with
2k + 1 colors. As the degree of x is at most 2k, this coloring can be extended
to x, and we are done.
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10. As in the previous problem, join two points x, y ∈ S if either x ∈ f(y) or
y ∈ f(x) holds and get graph X on S. Again we have to show that X can be
colored with µ colors. To this end we prove that S has a well-ordering ≺ such
that every point is joined to less than µ points that precede it. With this, we
can color X with a straightforward transfinite recursion along ≺ (see Problem
23.3).

Enumerate S as S = {sα : α < κ}. Set x ∈ Aα if there is a sequence
x0 = sα, . . . , xn = x with xi+1 ∈ f(xi) for i = 0, . . . , n − 1. Notice that
sα ∈ Aα and |Aα| ≤ ℵ0µ = µ. Set Bα = Aα \ (

⋃
{Aβ : β < α}) for α < κ.

Notice that S =
⋃
{Bα : α < κ} is a partition of S. Set x ≺ y if x ∈ Bα,

y ∈ Bβ for some α < β < κ, inside a Bα let ≺ be a well order into order type
≤ µ.

Fix an element x ∈ S. We show that it is joined into less than µ elements
that precede it. There is some α such that x ∈ Bα. The number of elements in
Bα that precede x is less than µ, anyway. And if y ∈ Bβ for some β < α and
x is joined to y, then x ∈ f(y) is impossible (as that would imply x ∈ Aβ so
x ∈ Bγ for some γ ≤ β), so y ∈ f(x) and there are less than µ elements like
this. [Géza Fodor: Proof of a conjecture of P. Erdős, Acta Sci. Math, 14(1952),
219–227]

11. If f(α) is uncountable for some α < ω1 then, when restricted to f(α), f
is a set mapping with finite images, and we have an uncountable free subset
by Problem 8(a). So, we can assume that f(α) is countable for every α < ω1.

By closing, we can get a closed, unbounded set C ⊆ ω1 such that if γ ∈ C,
and
(A) x < γ, then f(x) ⊆ γ;
(B) if s ⊆ z < γ, s is finite, and {x : f(x) ∩ s = ∅} is countable, then
sup

(
{x : f(x) ∩ s = ∅}

)
< γ;

(C) if s ⊆ z < γ, s is finite, and {x : f(x) ∩ s = ∅} is uncountable, then
there is a z < z′ < γ such that (z, z′) contains infinitely many elements of
{x : f(x) ∩ s = ∅};
(D) if s ⊆ w < z < γ, s is finite, and there is a finite t with min(t) > z, such
that for all x with w < x < z either f(x)∩ s 
= ∅ or x ∈ f [t] holds, then there
is such a t′ with |t′| = |t|, t′ ⊆ γ.

This can be achieved, as all conditions are of the form “if x1, . . . , xn < γ
then some countable ordinal depending on x1, . . . , xn is < γ” so we can apply
Problem 20.7.

Let α < ω1. We produce a free subset of order type α. Let γ0 < · · · < γα

be the first α+1 elements of C. Let y ≥ γα be arbitrary. Enumerate α as α =
{zi : i < ω}. By induction on i < ω we are going to choose γzi < xi < γzi+1
such that {y, x0, x1, . . .} is free. If we succeed, we are done, as this latter set
has order type α + 1. Assume that 0 ≤ i < ω and we have already selected
{x0, . . . , xi−1}. If we cannot choose xi, then setting s = {xj : j < i, zj < zi},
t = {xj : j < i, zj > zi} ∪ {y}, we get that there is no γzi < x < γzi+1
such that x /∈ f [t] and s ∩ f(x) = ∅. As y > γzi+1 has f(y) ∩ s = ∅, by
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(B) the set {x : f(x) ∩ s = ∅} is uncountable, therefore, by (C), there is a
z with γzi < z < γzi+1 such that X = {γzi < x < z : f(x) ∩ s = ∅} is
infinite. Our hypothesis gives that X ⊆ f [t] and so by (D) there is another
finite t′ ⊆ [z, γzi+1) with X ⊆ f [t′]. We obtained that t, t′ are disjoint finite
sets and f [t]∩ f [t′] is infinite, which is impossible, as it is the union of finitely
many sets of the form f(β) ∩ f(γ), and those sets are finite.

Virtually the same proof gives that, under GCH, if κ is regular, f is a set
mapping on κ+ with |f(x) ∩ f(y)| < κ for x 
= y, then there are free sets
of arbitrary large ordinal below κ+. [S. Shelah: Notes on combinatorial set
theory, Israel Journal of Mathematics, 14(1973), 262–277]

12. First we verify the last statement by induction on k. If k = 1 and |S| ≤ ℵ0,
enumerate S as S = {s0, s1, s2, . . .} and define F (sn) = {s0, s1, s2, . . . , sn−1}.
Clearly, there is no 2-element free set. Assume we have the result for k. Then
for every α < ωk there is a set mapping Fα : [α]k → [α]<ω with no free set of
cardinality k + 1. Define F : [ωk]k+1 → [ωk]<ω as follows: for x0 < · · · < xk

set F (x0, . . . , xk) = Fxk
(x0, . . . , xk−1). If now {y0, . . . , yk+1} was a free subset

with y0 < · · · < yk+1 then {y0, . . . , yk} would be free for Fyk+1 which is
impossible.

For the other direction assume that |S| ≥ ℵk and F : [S]k → [S]<ω is a set
mapping. Choose disjoint subsets A0, . . . , Ak with |A0| = ℵ0, . . . , |Ak| = ℵk.
The set A0 × · · · × Ak−1 and together with it the set F [A0 × · · · × Ak−1] has
cardinality ℵk−1; therefore, we can select yk ∈ Ak \ F [A0 × · · · × Ak−1]. As
|A0×· · ·×Ak−2| ≤ ℵk−2 we can select yk−1 ∈ Ak \F [A0×· · ·×Ak−2×{yk}].
Continuing this way we define yk−2 ∈ Ak−1\F [A0×· · ·×Ak−1×{yk−1}×{yk}],
etc., finally picking y0 ∈ A0 \ F (y1, . . . , yk), which is again possible as we
subtract a finite set from a set of cardinality ℵ0. The set {y0, . . . , yk} is a free
set of cardinality k + 1.

13. Fix the natural number n ≥ 3. Set S1 = S. By induction on 1 ≤ i ≤ n we
make the following construction. If already we have Si with |Si| = ℵ2 then
first choose an arbitrary countably infinite subset Ai ⊆ Si. Then define the
following set mapping F on Si \ Ai.

F (x) = {f(x, y) : y ∈ Ai} ∩ (Si \ Ai)

for x ∈ Si \Ai. By Problem 8(a) there is a free set of cardinal ℵ2; let Si+1 be
one of those free sets.

This way, we get the countably infinite sets A1, . . . , An with the property
that if 1 ≤ i < j < k ≤ n, then for x ∈ Ai, y ∈ Aj , z ∈ Ak neither y ∈ F (x, z)
nor z ∈ F (x, y) holds.

Now select xn ∈ An, xn−1 ∈ An−1 arbitrarily. Then by reverse induction
on 1 ≤ i ≤ n − 2 pick

xi ∈ Ai \
[⋃

{F (xj , xk) : i < j < k ≤ n}
]
.
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The set {x1, . . . , xn} will be free. [A. Hajnal–A. Máté: Set mappings, par-
titions, and chromatic numbers, in: Logic Colloquium ’73, Bristol, North-
Holland, 1975, 347–379]



27

Trees

1. Let 〈T,≺〉 be an ω-tree, that is, an infinite tree with levels T0, T1, . . ., which
are all finite. T =

⋃
{T≥x : x ∈ T0}; therefore, for one of them (at least), say

for x0, T≥x0 is infinite. x0 has finitely many immediate successors on level 1,
repeating the previous argument, for (at least) one of them, say for x1, T≥x1

is infinite. Repeating the argument we get an infinite branch, {x0, x1, . . .}.
Another possibility is to argue that, as |T | = ℵ0, there is a nonprincipal

ultrafilter, D, on T . For every n < ω, T≥n is partitioned into the finitely
many sets T≥x (x ∈ Tn). Exactly one of them, say T≥xn is in D. Clearly,
x0 ≺ x1 ≺ · · · as otherwise we would get disjoint sets in D.

2. Let T be the union of the disjoint branches bn (n = 1, 2, . . . ,) of height
n. Then T has no infinite branch and Ti consist of the (i + 1)th elements of
bi+1, . . ..

3. Pick a vertex v, let it be the sole element of T0. By induction on n = 0, 1, . . .
add x to Tn+1 if and only if it is joined to some y ∈ Tn and x /∈ T0 ∪ · · · ∪ Tn.
Choose one such y and make y ≺ x. This gives T , a spanning tree of the
graph. T is infinite, as by connectivity it contains all vertices, and by local
finiteness each Tn is finite. Therefore, König’s theorem applies, and there is
an infinite branch, which is an infinite path in the graph.

Another possibility is to fix again a vertex, and let T consist of the finite
paths from v, that is, t = 〈v0, . . . , vn〉 ∈ T if and only if v0 = v, each vi is
joined to vi+1 and v0, . . . , vn are different. t ≺ t′ if and only if t′ end-extends
t. An ω-branch in T gives rise to an infinite path in the graph.

4. Build a tree with vertex set H and let S ≺ R in H if and only if R properly
extends S. By König’s lemma there is an infinite branch, which is a collection
of finite strings, between any two of them one being an initial segment of the
other. Then their union is an infinite 0–1 sequence all whose initial segments
belong to the branch and therefore to H.
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5. Construct a tree T whose nth level consists of those functions F ∈
∏

i<n Ai

for which there is an fk with F = fk {0, . . . , n − 1}. Set F ≺ G if G ∈
∏

i<m Ai

with n < m and G extends F . By König’s lemma there is an infinite branch
F0 ≺ F1 ≺ · · ·, and if we let F be the union of the functions F0, F1, . . ., then
F ∈

∏
i<ω Ai is as required: if S ⊆ ω is finite, then S ⊆ {0, 1, . . . , n− 1} holds

for some n, and if fk is a function that extends Fn, then F S = fk S.

6. Assume that A ⊆ [0, 1] is infinite. Define an ω-tree 〈T,≺〉 as follows. I ∈ T
if and only if I is a dyadic interval of the form I = [ p

2n , p+1
2n ] for some natural

number p and I ∩ A is infinite. We make I ≺ I ′ if I ′ is a subinterval of I. It
is easy to check that if I = [ p

2n , p+1
2n ] ∈ T , then there are n intervals below

I, therefore I ∈ Tn. Clearly, |Tn| ≤ 2n, and, as A is infinite, Tn 
= ∅. By the
König lemma, there is an infinite branch, I0 ≺ I1 ≺ · · ·, and these intervals
shrink to a real number, which is a limit point of A.

7. Assume to the contrary that for some r, k, and s no number n as described
exists. That is, for every n < ω there is some coloring of the r-tuples of
{0, 1, . . . , n−1} with k colors with no homogeneous subset as indicated. Define
an ω-tree T as follows. Tn contains the above colorings of {0, 1, . . . , n − 1}.
s ≺ t if t extends s. By König’s lemma, there is an infinite branch t0 ≺ t1 ≺ · · ·
and the union of these colorings gives a coloring F of the k-tuples of ω with
no homogeneous subsets as described. By Ramsey’s theorem (Problem 24.1),
there is an infinite homogeneous set for F , say a1 < a2 < · · ·. Choose p such
that p ≥ s, p ≥ a1. Then for n ≥ ap, {a1, . . . , ap} is a homogeneous subset for
the restriction of F to {0, 1, . . . , n− 1} of the forbidden type, a contradiction.
[As we have just shown, the statement in the problem is true. The proof used
infinity, and this is inevitable, because Jeff Paris and Leo Harrington proved
that the statement is unprovable in the axiom system Peano Arithmetic, that
is, number theory. So this is a true but unprovable statement of arithmetic.
J. Paris, L. Harrington: A mathematical incompleteness in Peano Arithmetic,
in: Handbook of Mathematical Logic, (Jon Barwise, ed.), Studies in Logic,
90, North-Holland, 1977, 1133–1142]

8. (a) For n = 0, 1, . . . let Tn be the set of tilings of the {−n, . . . , n} ×
{−n, . . . , n} square. For p ∈ Tn, q ∈ Tm, n < m, set p ≺ q if and only if
q extends p. As there are finitely many different color types of the dominoes,
every Tn is finite. Also, they are nonempty by our condition. Applying König’s
lemma we get an ω-branch p0 ≺ p1 ≺ · · · the union of which is a tiling of the
plane.

(b) Using part (a), it suffices to show that for every n there is a tiling
of an n-by-n square using dominoes from D′. Indeed, consider a tiling of the
plane with D. In this tiling, all dominoes from D ⊆ D′ form a finite, therefore
bounded part of the plane. Beyond that part, one can find arbitrarily large
squares, necessarily using dominoes only from D′. [H. Wang: Proving theorems
by pattern recognition, Bell System Tech. Journal, 40(1961), 1–42]
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9. It suffices to show the statement for connected graphs, so we can assume
that X is either finite or countably infinite.

If X is finite, choose the decomposition V = A∪B of the vertex set V for
which the number e(A, B) of edges between A and B is maximal. If v ∈ A,
then for the choice A′ = A \ {v}, B′ = B ∪ {v} we have

e(A′, B′) = e(A, B) + dA(v) − dB(v) ≤ e(A, B),

so dA(v) ≤ dB(v). A similar argument applies if v ∈ B.
Assume now that X is countably infinite. Enumerate its vertices as

{v0, v1, . . .}. By the previous argument there is an appropriate decomposition
An ∪ Bn = {v0, . . . , vn} for the induced graph on {v0, . . . , vn}. By Problem
4 there is a decomposition A ∪ B of {v0, v1, . . .} such that for every m the
sets A∩{v0, . . . , vm}, B∩{v0, . . . , vm} are the restrictions of An, Bn for some
n ≥ m. If now v ∈ A then choose m so large that v as well as all vertices
neighboring v are among v0, . . . , vm (here we use local finiteness). Then, by
the above claim dA(v) ≤ dB(v) and similarly for v ∈ B.

10. (a) For an index sequence 0 = k(0) < k(1) < · · · < k(r) = n let Qi =
a2

k(i−1)+1 + · · · + a2
k(i). As there are finitely many index sequences as above,

we can consider one with the sum

Z = (S2
1 + · · · + S2

r ) + 2(Q1 + 2Q2 + · · · + rQr)

minimal. We claim that this sequence is as required. Let a = ak(i)+1 be the
first term of Si+1. If we remove it from Si+1 and add it to Si, then in Z, in
the first sum S2

i + S2
i+1 will be changed to (Si + a)2 + (Si+1 − a)2, while the

second sum will be decremented by 2a2, so

S2
i + S2

i+1 ≤ (Si + a)2 + (Si+1 − a)2 − 2a2,

and this implies Si ≥ Si+1.
In order to show the other property, let j be the unique index with

a1 + · · · + aj−1 <
S1

2
≤ a1 + · · · + aj .

Split S1 into the subsums S′
1 = a1 + · · · + aj and S′′

1 = aj+1 + · · · + ak(1).
There is some d ≥ 0 such that S′

1 = S1
2 +d and S′′

1 = S1
2 −d and clearly d < aj

holds. Again comparing the old and the new values of Z we get that

S2
1 ≤

(
S1

2
+ d

)2

+
(

S1

2
− d

)2

+ 2(a2
j+1 + · · · + a2

n)

and so
S2

1 ≤ 4(d2 + a2
j+1 + · · · + a2

n) < 4(a2
j + · · · + a2

n).
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(b) As the series diverges, there are natural numbers M1 < M2 < · · · such that∑Ms+1
Ms+1 aj > 2

√
a2
1 + a2

2 + · · ·. Let T be the following tree. 〈k(1), . . . , k(s)〉 ∈
T if there are n and 0 = k(0) < k(1) < · · · < k(r) = n, r ≥ s, as in part
(a). t ≺ t′ in T if and only if t′ is an end-extension of t. Obviously, t ∈ Ts if
and only if t is of length s. As by conditions k(i) ≤ Mi always holds, each Ts

is finite. It is also nonempty, so König’s lemma gives an infinite branch, and
that produces a decomposition as claimed. [M. Szegedy, G. Tardos: On the
decomposition of infinite series into monotone decreasing parts, Studia Sci.
Math. Hung., 23(1998), 81–83.]

11. In our construction of an Aronszajn tree T , every element of the tree will
be some increasing function f : α → Q (α < ω1) with f ≺ g if g extends f . As
all these functions are necessarily injective, in a putative ω1-branch the union
of the elements would give an injective function ω1 → Q, which is impossible.

We require that if f : α → Q is in T , β < α, then f β ∈ T and also that
for every f ∈ T , the supremum of the range of f , denoted by s(f), is finite.
Notice that, under these conditions, if f : α → Q is in T , then f ∈ Tα.

We construct Tα by transfinite recursion on α.
For β < α we add the following stipulation, which we call P (β, α):
if f ∈ Tβ, 1 ≤ k < ω, then there is f ≺ g ∈ Tα, s(g) < s(f) + 1

k .
Notice that P (β, α) and P (α, α + 1) imply P (β, α + 1).

For α = 0 we take f = ∅, the empty function as the sole element of T0,
and formally set s(∅) = 0.

If Tα is determined then for every f ∈ Tα and for every 1 ≤ k < ω we
define a one-point extension fk of f with s(fk) < s(f) + 1

k . For this we only
have to choose a rational number s(f) < qk < s(f) + 1

k and make fk(α) = qk.
This assures P (α, α + 1) and that suffices by the above remark.

Assume that α is limit and we are to construct Tα. For every choice of
f ∈ Tβ , (β < α), and 1 ≤ k < ω we are going to build an α-branch b through
f such that for g = ∪b we have that g : α → Q with s(g) < s(f) + 1

k . As
there are countably many choices for f , k, if all these functions g form Tα,
the latter set will be countable.

Given f , β, and k as above, select a sequence of ordinals β = α0 < α1 < · · ·
converging to α. Using P (β, α1),P (α1, α2), etc., get the elements f = f0 ≺
f1 ≺ · · · with fi ∈ Tαi

,

s (fi+1) < s (fi) +
1

k2i+1 .

Then g = f0∪f1∪· · · is as required. [N. Aronszajn, cf. DJ. Kurepa: Ensembles
ordonnés et ramifiés, Publ. Math. Univ. Belgrade, 4(1935), 1–138]

12. We slightly modify the construction of an Aronszajn tree in Problem 11
by requiring that s(f) ∈ Q for every f ∈ T . In this case, if Q = {q0, q1, . . .},
then T = A0 ∪ A1 ∪ · · · is a decomposition into antichains, where Ai = {f ∈



Solutions Chapter 27 : Trees 437

T : s(f) = qi}. The condition P (β, α) is now changed to the following: if
f ∈ Tβ , q > s(f) is rational, then there is some f ≺ g ∈ Tα, s(g) = q. If α is
limit (the only problematic case), proceed as follows. Given f ∈ Tβ , β < α,
p = s(f) < q, select the sequence of ordinals β = α0 < α1 < · · · converging to
α, and also the sequence p = p0 < p1 < · · · of rational numbers, converging to
q. Then inductively choose the elements f = f0 ≺ f1 ≺ · · · such that fi ∈ Tαi ,
s(fi) = pi, and then add g = f0 ∪ f1 ∪ · · · to Tα.

13. As an antichain can contain only one element of a branch, a special ω1-tree
may not have an uncountable branch.

14. Only the transitivity of <lex is not immediately clear. Assume therefore
that x <lex y <lex z and try to show that x <lex z. We consider cases.

If x ≺ y ≺ z, then x ≺ z and we are done.
Assume that x ≺ y and pα(y) <α pα(z) with α least. If now α > o(x),

then x ≺ z; otherwise pα(x) = pα(y) <α pα(z) and pβ(x) = pβ(y) = pβ(z) for
β < α so x <lex z.

Assume that pα(x) <α pα(y) for some least α and y ≺ z. Then pα(x) <α

pα(z) holds and so again x <lex z.
Finally, assume that there is a minimal α ≤ o(x), o(y) such that pα(x) <α

pα(y) and there is a minimal β ≤ o(y), o(z) such that pβ(y) <β pβ(z). If α < β,
then pα(x) <α pα(y) = pα(z). If α = β, then pα(x) <α pα(y) <α pα(z). If
α > β, then pβ(x) = pβ(y) <β pβ(z). In each case we are done, for α, resp. β
is minimal with the given property.

An alternative possibility for the proof is to add a new element, say �, to
every Tα, make it precede all elements of Tα by <α, and then identify x ∈ T
with the following function fx: for α ≤ o(x), set fx(α) = pα(x), while for
o(x) < α < h(T ), set fx(α) = �. The functions fx are now functions defined
on the same well-ordered set, so we can use the usual lexicographic ordering
and note that x <lex y if and only if fx <lex fy where <lex is the lexicographic
ordering on the set {fx : x ∈ T}.

15. Toward an indirect proof, assume first that {xξ : ξ < ω1} is increasing or
decreasing by <lex. The elements {p0(xξ) : ξ < ω1} form a weakly increasing
(or weakly decreasing) sequence by <0 and as T0 is countable, this sequence
eventually stabilizes: for γ0 < ξ < ω1 we have p0(xξ) = s0. Repeating the
argument we get ordinals γα < ω1 and elements sα ∈ Tα for every α < ω1
such that for ξ > γα we have o(xξ) ≥ α and pα(xξ) = sα. Now {sα : α < ω1}
is an ω1-branch of 〈T,≺〉.

Assume, finally, that X ⊆ T is uncountable and Y ⊆ T is countable.
There is some α < ω1 such that Y ⊆ T<α. As X is uncountable, there are
uncountable many elements of it with height > α, there are two of them,
say x and y, with pα(x) = pα(y). But then, no element with o(z) < α can
be between them. Thus, for X there is no countable Y that separates its
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elements, hence 〈X, <lex〉 cannot be similar to a subset of R. [E. Specker: Sur
un problème de Sikorski, Coll. Math., 2(1949), 9–12]

16. We construct eα by transfinite recursion on α < ω1 with the added as-
sumption that Aα = Ran(eα) is a coinfinite subset of ω. e0 is the empty
function. If eα is determined then we let eα+1 be a one point extension of fα

with eα+1(α) = x for some x ∈ ω \ Aα. Assume finally that α < ω1 is limit
and eβ is given for every β < α. Let α0 < α1 < · · · be a sequence converging
to α. By induction, we are going to determine eα αn

, a finite modification of
eαn

and we also pick an element xn < ω. To start, set eα α0
= eα0 , and let

x0 ∈ ω \Aα0 . Assume that eα αn
and x0, . . . , xn are determined. We need to

determine eα [αn, αn+1). As eαn+1 is injective and almost extends eαn
, there

are only finitely many points in the range of both eα αn
and eαn+1 [αn, αn+1).

By reassigning values from ω \ Aαn+1 we can achieve, by modifying eαn+1 at
finitely many places, that the range of eαn+1 [αn, αn+1) is disjoint from the

range of eα αn
and also from {x0, . . . , xn}. This modified function will be

eα [αn, αn+1) and finally we let xn+1 be any element of ω not in {x0, . . . , xn}
or the range of eα αn+1

.
This induction defines eα : α → ω. It is injective, as it is the union of

injective functions. Its range is disjoint from {x0, x1, . . .}. And finally, for
every n, the functions eα αn

and eαn differ only at finitely many places. Now,
if β < α, then there is some n such that β < αn < α, and eβ , eαn β, and
eα β also differ only at finitely many places. [K. Kunen: Combinatorics, in:
Handbook of Mathematical Logic, (Jon Barwise, ed.), Studies in Logic, 90,
North-Holland, 1977, 371–401]

17. 〈T,≺〉 is an ω1-tree and Tα is a set of α → ω injections. If g ∈ Tα then
g = eβ α for some β ≥ α, so g differs from eα at finitely many places. As this
is possible only countably many ways, Tα is countable. If b = {gα : α < ω1}
with gα ∈ Tα was an ω1-branch, then

⋃
b would be an injection ω1 → ω, an

impossibility.

18. It suffices to decompose the pairs 〈eβ , eα〉 (β < α) into countably many
chains (use symmetry and notice that {〈eα, eα〉 : α < ω1} is a chain). Given
such a pair 〈eβ , eα〉 let n < ω be so large that eα(β) ≤ n and, if eα(γ) 
=
eβ(γ) holds for some γ < β, then eα(γ), eβ(γ) ≤ n. This is possible by
the condition imposed on our functions. Set Γ = {γ < α : eα(γ) ≤ n}, a
finite set. Enumerate Γ increasingly as {γ1, . . . , γk}, let t be that number
with γt = β. Finally, let ai = eα(γi) (1 ≤ i ≤ k), bi = eβ(γi) (1 ≤ i <
t). Classify 〈eβ , eα〉 according to the corresponding ordered sequence s =
〈n, k, t, a1, . . . , ak, b1, . . . , bt−1〉.
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We show that if 〈eβ , eα〉, 〈eβ′ , eα′〉 get the same sequence then they are
comparable and this will conclude the proof. Let Γ ′ be the corresponding set
for 〈eβ′ , eα′〉.

Assume first that eα′ extends eα. Then Γ ′ ⊇ Γ , so Γ ′ = Γ , as both have
k elements, but then β = β′ and therefore 〈eβ , eα〉  〈eβ′ , eα′〉.

Assume now that the first difference between eα and eα′ occurs at δ < α:
eα(δ) < eα′(δ). Since n is the same for both pairs 〈eβ , eα〉 and 〈eβ′ , eα′〉, we
have Γ∩δ = Γ ′∩δ. Therefore, if β ≤ δ or β′ ≤ δ, then necessarily β = β′ (recall
also that eα(β) ≤ n, eα′(β′) ≤ n), in which case these pairs are comparable.
So assume from now on that β, β′ > δ. Since s is the same for both pairs, it
follows from Γ ∩ δ = Γ ′ ∩ δ that eβ δ = eβ′ δ.

If δ /∈ Γ , δ /∈ Γ ′, then eβ(δ) = eα(δ) < eα′(δ) = eβ′(δ), so 〈eβ , eα〉 
〈eβ′ , eα′〉.

The possibility δ /∈ Γ , δ ∈ Γ ′ is ruled out as then eα(δ) > n ≥ eα′(δ).
Finally, if δ ∈ Γ , δ /∈ Γ ′, then eα(δ), eβ(δ) ≤ n < eα′(δ) = eβ′(δ), so again

〈eβ , eα〉  〈eβ′ , eα′〉 holds. [S. Shelah: Decomposing uncountable squares to
countably many chains, J. Comb. Theory (A), 21(1976), 110–114. This proof
is due to S. Todorcevic]

19. In order to prove that a Countryman type may not include a subtype of
order type ω1, ω∗

1 , or the type of an uncountable subset of the reals it suffices
to show that neither ω1 × ω1 nor B × B (with B ⊆ R, uncountable) is the
union of countable many chains.

Assume first indirectly that ω1 × ω1 = A0 ∪ A1 ∪ · · · where every Ai is a
chain. By the pigeon hole principle, for every α < ω1 there is an i(α) < ω
such that {β : 〈α, β〉 ∈ Ai(α)} is uncountable. There must be α < α′ with
i(α) = i(α′) = i. Choose β′ such that 〈α′, β′〉 ∈ Ai, then choose β > β′ with
〈α, β〉 ∈ Ai. Now 〈α, β〉, 〈α′, β′〉 are incomparable, a contradiction.

If we assume that B is an uncountable set of reals and B×B = A0∪A1∪· · ·,
then for every x ∈ B there exist two elements of B, y′(x) < y′′(x), such that
〈x, y′(x)〉, 〈x, y′′(x)〉 ∈ Ai(x) with some i(x) < ω. There is a rational number
p(x) with y′(x) < p(x) < y′′(x). As there are only countably many possibilities
for 〈i(x), p(x)〉, there are x′ < x′′ in B such that i(x′) = i(x′′) = i, p(x′) =
p(x′′) = p. But then 〈x′, y′′(x′)〉, 〈x′′, y′(x′′)〉 ∈ Ai and they are incomparable:
x′ < x′′ and y′′(x′) > p > y′(x′′).

20. One direction is obvious: if f : 〈T,≺〉 → 〈Q, <〉 is order-preserving, then
T is the union of the countable many antichains of the form f−1(x) where
x ∈ Q.

For the other direction, assume that T = A0 ∪ A1 ∪ · · · where A0, A1, . . .
are antichains. If t ∈ An, set

f(t) =
∑
i<n

εi

2i
,
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where, for i < n, εi = 1, if there exists an s ≺ t with s ∈ Ai, εi = −1 if
there exists an s % t with s ∈ Ai, and εi = 0 if neither holds. Clearly, f is a
mapping from T into Q. For order preservation, assume that t ≺ t′, t′ ∈ Am,
and f(t′) =

∑
i<m ε′

i2
−i. Assume that n < m. Case analysis shows that for

i < n, ε′
i ≥ εi holds, moreover ε′

n = 1 while there is no corresponding εn.
No matter what the later terms of f(t′) are, this implies that f(t′) > f(t). A
similar argument works if n > m, just then εm = −1 and there is no ε′

m.

21. For every s ∈ T let gs : f−1(s) → ω be a decomposition of f−1(s) into
countably many antichains, i.e., u ∈ f−1(s) belongs to the ith antichain if
and only if gs(u) = i. Given t ∈ T construct the sequence t = t0 % t1 % with
ti+1 = f(ti). As there is no infinite decreasing sequence of ordinals, there is
some finite n such that tn ∈ T0. Set ξi = gti+1(ti) and decompose the elements
of T according to the string F (t) = 〈ξ0, . . . , ξn−1〉. This decomposition shows
that 〈T,≺〉 is special: assume that F (s) = F (t) and s ≺ t. Let s = s0 % s1 %
· · · % sn ∈ T0 and t = t0 % t1 % · · · % tn ∈ T0 be the corresponding sequences.
As s ≺ t, we have that sn = tn, and the elements s0, . . . , sn, t0, . . . , tn are all
comparable. But then, as ξn−1 = gtn

(tn−1) = gsn
(sn−1), tn−1 = sn−1 must

hold (as they are comparable elements of an antichain), and repeating this we
inductively get tn−1 = sn−1, . . . , t0 = s0, a contradiction.

22. We have to show that if the normal ω1-tree 〈T,≺〉 has an ω1-branch then
it includes an uncountable antichain. Let b = {tα : α < ω1} be an ω1-branch.
Let xα ∈ Tα+1 be an element such that tα ≺ xα, but xα 
= tα+1. xα exists
by normality. A = {xα : α < ω1} is an antichain, as for β < α we have
o(xβ) < o(xα) and xα’s predecessor on level β + 1 is tβ+1 
= xβ . Obviously, A
is uncountable.

23. Otherwise we can recursively select the elements A = {xα : α < ω1} with
T≥xα countable such that if β < α, then o(xα) is larger than the height of any
element above xβ . This is possible as every element excludes only countably
many elements. But then A is an antichain: if β < α then, considering height,
only xβ ≺ xα is possible, but that cannot happen by the construction.

24. If 〈T,≺〉 is a Suslin tree, then by Problem 23 the set A is countable where
x ∈ A if and only if T>x is countable. Let α be a countable ordinal with
A ⊆ T<α and remove T≤α from T . This way, we get a Suslin tree that satisfies
property (A) in normality.

Assume that the Suslin tree 〈T,≺〉 satisfies (A) of the definition of normal-
ity. For every x ∈ T the set T>x is uncountable. It cannot consist of pairwise
comparable elements, as that would give rise to an ω1-branch. There are, there-
fore, incomparable y, z % x. If we increase them they stay incomparable, so
there are incomparable elements with identical height, and actually, for every
α < ω1 there is β(α) > α such that any x ∈ Tα has incomparable successors
on Tβ(α). If we select the increasing sequence 0 = α0 < α1 < · · · < αξ < · · ·



Solutions Chapter 27 : Trees 441

(ξ < ω1) such that β(αη) < αξ holds for η < ξ, then the tree restricted to⋃
{Tαξ

: ξ < ω1} satisfies properties (A) and (B).
Assume finally that the Suslin tree 〈T,≺〉 satisfies (A)+(B) of normality.

Set b(x) = T≤x if o(x) = 0 or a successor ordinal, and b(x) = T<x if o(x) is
limit. Let U = {b(x) : x ∈ T}. Set b(x) ≺ b(y) if b(y) end-extends b(x). Notice
that if x ≺ y, then b(x) ≺ b(y) (but not the other way around) and in the tree
〈U,≺〉 b(x) has rank o(x). It is also clear that 〈U,≺〉 satisfies (A) and (B). As
for property (C), if α < ω1 is a limit ordinal and b(x) 
= b(y) are at level α of
〈U,≺〉 then there is a β < α such that if xβ resp. yβ are the elements of b(x)
resp. b(y) on Tβ then xβ 
= yβ . But then b(xβ+1) ≺ b(x), b(yβ+1) ≺ b(y), and
b(xβ+1) 
= b(yβ+1). Finally, if {b(xα) : α < ω1} was an uncountable antichain,
then {xα : α < ω1} would be an uncountable antichain in 〈T,≺〉 by the
above remark, so 〈U,≺〉 has no uncountable antichains. But in Problem 22
we showed that these properties imply that 〈U,≺〉 has no ω1-branch, either.
Therefore, 〈U,≺〉 is a normal Suslin tree.

25. For the forward direction, if there exists a Suslin tree, then by Problem
24 there is a normal Suslin tree 〈T,≺〉. Then

⋃
{Tα : α < ω1, α limit}

is again a normal Suslin tree such that every element has infinitely many
immediate successors, so we may assume that T has this property. Let <α+1
be an ordering of Tα+1 that orders the immediate successors of any element
of Tα into a dense set with no first or last element, then use these orderings
to define the ordered set 〈T, <lex〉. We claim that 〈T, <lex〉 is a Suslin line.

Assume that Iα = (aα, bα) (α < ω1) are intervals. Case analysis shows
that for every α there is some element xα such that T≥xα

⊆ (aα, bα). But
then some two xα’s are comparable (or identical) and then the corresponding
intervals intersect. This proves that 〈T, <lex〉 has property ccc.

Assume now that X ⊆ T is countable. There is some α < ω1 such that
X ⊆ T<α. But if x ∈ Tα, then the elements of T≥x (an uncountable set)
cannot be separated by X, i.e., if u, v ∈ T≥x, then no element of X lies in
between u and v. This proves that 〈T, <lex〉 has no countable dense subset.

For the other direction assume that 〈S, <〉 is a Suslin line. We call a subset
R ⊆ S separable if there is a countable set P ⊆ S such that if a < b are in R,
and there is at least one element between them then there is an element of P
between them.

We notice that if C ⊆ S is convex, i.e., if x, y ∈ C, x < z < y, then
z ∈ C, then C can be decomposed into the disjoint union of a countable set
and disjoint nonempty open intervals of the form (a, b) = {z ∈ S : a < z < b}.
Indeed, if C has no largest element, there is, by Hausdorff’s theorem (Problem
6.44), a cofinal sequence a0 < a1 < · · · of some length, which cannot be ≥ω1,
as 〈S, <〉 is ccc. As the length <ω1, we can select a subsequence, denoted again
by a0 < a1 < · · · of length ω. Similarly, unless there is a minimal element,
there is a decreasing, co-initial sequence a0 > a−1 > · · · and then C is split
into the intervals (ai, ai+1) and the countable set {ai : i ∈ Z}.
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We construct a Suslin tree 〈T,≺〉 consisting of open, nonempty intervals
of the form (a, b) of 〈S, <〉 in such a fashion that for α < ω1 the elements
of Tα will be pairwise disjoint intervals that cover S save a separable part.
Moreover, I ≺ I ′ holds if and only if I ′ is a proper subinterval of I, and if I,
I ′ are incomparable, then I ∩ I ′ = ∅. If we can construct the tree with these
requirements, then, as 〈S, <〉 is not separable, Tα 
= ∅ will hold, and by the
ccc property Tα is countable for every α < ω1 and there is no uncountable
antichain in 〈T,≺〉.

Let T0 be a decomposition, as described above, of S. If we have (a, b) =
I ∈ Tα and |I| ≥ 3, say d < c < e are in I, then split I into I0 = (a, c) and
I1 = (c, b), and make I0, I1 the immediate successors of I. If, however, |I| ≤ 2
then I will have no successors. Notice that by this construction, if some I ∈ T
has successors, then it has two immediate successors, therefore we can use the
argument of Problem 22 to show that if 〈T,≺〉 has an ω1-branch, then it has
an uncountable antichain, as well.

Let α < ω1 be a limit ordinal. If we consider the nonempty convex sets of
the form

⋂
b where b is an α-branch of T<α, then they constitute a partition

of S minus a separable set (the union of the countably many exceptional
separable sets on lower levels) into convex sets:

⋃
{Cj : j ∈ J}. Set J ′ =

{j ∈ J : |Cj | = 1}, J ′′ = J \ J ′. If, for j ∈ J ′, we have Cj = {xj}, then the
set {xj : j ∈ J ′} is separable. Indeed, if xi < xj for i, j ∈ J ′, then there is
some I ∈ T<α where the branches corresponding to i, j split, so xi and xj

are separated by one of the endpoints occurring. As there are countably many
endpoints in T<α, the statement is proved. As 〈S, <〉 is a Suslin line, J ′′ is
countable, so it suffices to apply the treatment described at the beginning of
the proof to every Cj (j ∈ J ′′), and we get the elements of Tα.

26. Let A ⊆ D be a maximal subset of pairwise incomparable elements. Such
a set exists by Zorn’s lemma. A is countable as T is Suslin. There is an
α < ω1 such that o(x) < α holds for every x ∈ A. We claim that T≥α ⊆ D
(and that suffices). For this, let x ∈ T≥α be arbitrary. As D is dense, there
is y ∈ D, y % x. The set A ∪ {y}, a proper extension of A, cannot consist
of incomparable elements, so there is some z ∈ A, such that y and z are
comparable. As o(z) < α ≤ o(y), the only possibility is that z ≺ y, and then
necessarily z ≺ x ≺ y. As D is open, this implies that x ∈ D, as claimed.

27. By Problem 26 for every Dn there is some αn < ω1 such that T≥αn ⊆ Dn.
If α = supn αn, then T≥α ⊆ D0 ∩ D1 ∩ · · · and T≥α is dense by normality. It
is also clear that the intersection of open sets is open and we are done.

28. Define the set D as follows. a ∈ D if and only if there is no element x of
A such that x � a. If the statement of the problem fails, then D is dense. As
D is clearly open, we get by Problem 26 that D is a co-countable subset of T ,
but this is a contradiction as then A ∩ D 
= ∅ and this is impossible.
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29. We can assume that f maps into [0, 1]. For n = 1, 2, . . . set x ∈ Dn if and
only if f(y) < f(x) + 1

n holds for every y � x.
We claim that every Dn is dense. Indeed, if x ∈ T and x /∈ Dn, then there

is an x1 % x such that f(x1) ≥ f(x) + 1
n . If x1 /∈ Dn then there is an x2 % x1

such that f(x2) ≥ f(x1) + 1
n ≥ f(x) + 2

n , etc. As this procedure must stop,
we end up with some y � x, y ∈ Dn.

By Problem 27 there is an α < ω1 such that T≥α ⊆ D1 ∩ D2 ∩ · · ·, but
then, if x ∈ Tα and y % x, then f(x) ≤ f(y) < f(x) + 1

n holds for every n,
that is, f(y) = f(x). This implies that all values of f are attained on T≤α, a
countable set, so f has countable range.

30. In this solution “dense” and “open” are used as in the introduction to
this chapter, but the continuity of f is meant in the topology on trees defined
before Problem 30.

If p < q are rational numbers, set t ∈ Dp,q if either f(y) ≥ p holds for
every y � t or f(y) ≤ q holds for every y � t. We show that each Dp,q is
dense.

Indeed, assume that some Dp,q has no elements above some a ∈ T . Passing
to T≥a we can assume that Dp,q = ∅. Set α0 = 0 and define α0 < α1 < · · ·,
a sequence of countable ordinals, and Ai, a maximal set of incomparable
elements x in T \T≤αi

and either with f(x) ≤ p (if i is even) or with f(x) ≥ q
(if i is odd). By Zorn’s lemma, such a set Ai exists, and it is countable,
as 〈T,≺〉 is Suslin. Choose αi+1 so that Ai ⊆ T≤αi+1 . Let α be the limit
of α0, α1, . . .. If x ∈ Tα, then by Dp,q = ∅ there are y0, y1 % x such that
f(y0) < p and f(y1) > q. By the maximality of A2i and A2i+1 there are some
x2i ∈ A2i comparable with y0 and x2i+1 ∈ A2i+1 comparable with y1. As
o(x2i), o(x2i+1) < α < o(y0), o(y1) we must have x2i ≺ y0, x2i+1 ≺ y1, and
then necessarily x2i, x2i+1 ≺ x. Hence x0 ≺ x1 ≺ · · · is a sequence converging
to x, with f(x2i) ≤ p, f(x2i+1) ≥ q, so f is not continuous.

Having proved that each Dp,q is dense, one can easily observe that they are
open. There is, therefore, by Problems 26 and 27 an α < ω1 such that T≥α is
in the intersection of all of them. If now x ∈ Tα, x ≺ y, and p < q < f(x) are
rationals, then we get that, as x ∈ Dp,q, f(y) ≥ p holds. Since p < q < f(x)
were arbitrary, f(y) ≥ f(x) follows. Selecting f(x) < p < q an identical
argument gives f(y) ≤ f(x), i.e., actually f(y) = f(x). Therefore, f attains
all its values on the countable set T≤α, so it has countable range.

31. We have to show that if F0, F1 are disjoint, closed sets then they can be
separated by disjoint open sets.

We first consider the case when F0, F1 are both countable. Enumerate
them as F0 = {u0, u1, . . .}, F1 = {v0, v1, . . .}. By induction on n = 0, 1, . . . we
construct the closed and open sets Un ⊇ {u0, . . . , un−1}, Vn ⊇ {v0, . . . , vn−1},
such that ∅ = U0 ⊆ U1 · · ·, ∅ = V0 ⊆ V1 · · ·, and Un∩Vn = Un∩F1 = Vn∩F0 =
∅. If we can do this, then the open sets U0 ∪U1 ∪ · · · and V0 ∪V1 ∪ · · · separate
F0 and F1. Assume that we have reached step n. If un is isolated (i.e., it is on
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T0 or a successor level) then we can let Un+1 = Un ∪ {un}. If o(un) is limit,
then we choose a closed and open neighborhood of un of the form [y, un] which
is disjoint from F1∪Vn. This is possible, as the latter is a closed set excluding
un, we only have to choose y ≺ un with a large enough successor o(y). Then
we set Un+1 = Un ∪ [y, un]. Argue similarly for Vn+1 by selecting it to be
disjoint from F0 ∪ Un+1.

We now consider the general case. Set a ∈ A if there are x ∈ F0, y ∈ F1,
such that a ≺ x, y. If A is uncountable, then by Problem 28 there is some
d ∈ T such that A is dense over d. As 〈T,≺〉 is normal, T≥d is uncountable,
and so is a Suslin tree. In T≥d both D0 and D1 are dense, open (in the sense
that is defined for trees in the introduction to this chapter), where a ∈ Di if
and only if there is d ≺ x ≺ a, x ∈ Fi. There is, by Problem 26 some α0 such
that the α0th level of T≥d is in D0 ∩D1, that is, if x ∈ Tα0 , x % d, then there
are y0 ∈ F0, z0 ∈ F1 such that d ≺ y0, z0 ≺ x. Repeating this argument we
get ordinals α0 < α1 < · · · such that if x % d, x ∈ Tαi , then there exist yi, zi

with yi, zi ≺ x, yi ∈ F0, zi ∈ F1, αi−1 < o(yi), o(zi). If now α is the limit of
the sequence α0, α1, . . ., x ∈ Tα, x % d, then x is an element of F0, as well as
of F1, a contradiction.

We proved, therefore, that A is countable, so there is some α < ω1 such
that A ⊆ T<α. Our space splits into the disjoint union of the closed and
open sets T≤α, T>α. It suffices to separate F0 and F1 in these components,
separately. In the former we can separate F0 and F1 by the argument at the
beginning of the proof. The closed and open set T>α splits into the disjoint
union of the closed and open sets of the form T>x (x ∈ Tα), and, as A ⊆ T<α,
none of them contains points from both F0 and F1. In this situation it is easy
to separate F0 ∩ T>α and F1 ∩ T>α; include F0 ∩ T>α into the union of those
sets T>x which intersect it, and similarly for F1.

32. (a) Let σ be a putative winning strategy for I. By closure (see Problem
20.7), there is a limit ordinal α < ω1 with the property, that if t0, . . . , t2n−1
are in T<α then so is t2n, I’s response according to σ. Let α0 < α1 < · · ·
converge to α. Enumerate Tα as Tα = {p0, p1, . . .}. We make II play as follows.
Given t2n, she chooses an, an immediate successor of t2n such that an 
≺ pn.
Then let her response be some t2n+1 % an, with αn < o(t2n+1) < α. This is
possible, as 〈T,≺〉 is normal. This way, a play t0, t1, . . . is determined, with
o(tn) converging to α, but no element of Tα can extend the sequence, so I loses,
although he played according to his winning strategy σ. This contradiction
shows that σ does not exist.

(b) If 〈T,≺〉 is special, then T = A0∪A1∪· · · with An an antichain. II can
have the following strategy. Given t2n, if there is some t % t2n with t ∈ An,
then let t2n+1 be such an element, otherwise let t2n+1 % t2n be arbitrary. This
way, if t0 ≺ t1 ≺ · · · ≺ t, then t can be in no An, so such a t cannot exist.

(c) Assume to the contrary that σ is a winning strategy for II. We exhibit
a play in which II responds by σ yet she loses. For every a0 ∈ T , if a0 is the
opening move by I, II answers by σ(a0) % a0. Set t ∈ D0 if there is some a0
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with σ(a0) ≺ t. D0 is obviously open, and it is dense, as for every a0 ∈ T there
is an element of D0 above a0, namely any element of T>σ(a0). By Problem 26,
there is some α0 < ω1 such that Tα0 ⊆ D0.

We notice that for every x ∈ Tα0 there is a partial play P0(x) (consisting
of one round of moves), ax

0 , σ(ax
0), which can be continued by I by saying x or

any element of T≥x.
We repeat the above argument for every x ∈ Tα0 separately on T≥x by

using the second round of σ, continuing the play P0(x). We get an ordinal
α1 > α0, for every x ∈ Tα1 a partial (2-round) play P1(x), which, on the one
hand, continues the appropriate P0(y) (where y is the predecessor of x on level
α0), on the other hand, it can be continued to any element of T≥x.

Continuing this way we get α0 < α1 < · · ·. Let α be the limit of these
ordinals. If x ∈ Tα, then, letting ti be the predecessor of x on level αn, we get
that the union of the partial plays Pi(ti) is a play in which II plays according
to σ, and the element of the tree played by I and II remain below x, therefore
II loses, a contradiction.

33. We first consider the case when λ is regular. We claim that we can as-
sume property (C) of normality. Indeed, using the argument in the solution of
Problem 24 given a κ-tree 〈T,≺〉 is as in the problem, we can consider 〈U,≺〉
where for α = 0 or successor b ∈ Uα if and only if b is an α + 1-branch of
〈T,≺〉, for α limit b ∈ Uα if and only if b is an α-branch of 〈T,≺〉 that extends
to Tα. Set b ≺ b′ if b′ extends b. Then 〈U,≺〉 is a κ-tree, 1 ≤ |Uα| ≤ |Tα| < λ,
and if B = {bα : α < κ} is a κ-branch of 〈U,≺〉, then

⋃
B is a κ-branch of

〈T,≺〉.
We therefore assume that 〈T,≺〉 of the problem satisfies (C) of normality.

Set S = {α < κ : cf (α) = λ}, a stationary set by Problem 21.8. For α ∈ S,
x 
= y ∈ Tα, there is some β < α such that T<x and T<y differ from level β. As
|Tα| < λ = cf (α), there is some f(α) < α such that the elements of Tα have
distinct predecessors in Tf(α). As f is a regressive function on a stationary
set, we can apply Fodor’s lemma (Problem 21.9) and get a stationary S′ ⊆ S
and some γ < κ such that f(α) = γ holds for α ∈ S′. Pick xα ∈ Tα for α ∈ S′.
Let yα be the predecessor of xα on level γ. As κ is regular and |Tγ | < κ,
yα = y holds for α ∈ S′′, |S′′| = κ. We claim that Z = {xα : α ∈ S′′} is
totally ordered. Indeed, if α < β are in S′′ and z is xβ ’s predecessor on level
α, then y ≺ xα, z so xα = z, i.e., xα ≺ xβ . Finally, B =

⋃
{T≤x : x ∈ Z} is a

κ-branch.
If λ is singular and 〈T,≺〉 is as in the problem, then for every α < κ there

is some regular cardinal µα < λ such that |Tα| < µα holds. As κ is regular and
there are at most λ regular cardinals below λ, there is a set Z ⊆ κ, |Z| = κ
such that µα = µ holds for α ∈ Z. We can now apply the already covered case
for the tree on

⋃
{Tα : α ∈ Z} and get a κ-branch.

If κ is singular, let µ = cf (κ), κ = sup{κξ : ξ < µ}. Let 〈T,≺〉 be the
disjoint union of the branches bξ with bξ of height κξ. Then 〈T,≺〉 has no
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κ-branch and |Tα| < µ+ < κ holds for every α < κ. [DJ. Kurepa: Ensembles
ordonnés et ramifiés, Publ. Math. Univ. Belgrade, 4(1935), 1–138]

34. Let 〈T,≺〉 be a κ-Aronszajn tree. Set x ∈ T ′ if and only if T>x contains
elements of arbitrarily large height < κ. Notice that if y ≺ x ∈ T ′, then y ∈ T ′

so for x ∈ T ′, T ′
<x = T<x holds and so the height of x in T ′ is the same as the

height of x in T .
We claim that T ′ has elements of arbitrarily large height < κ. Indeed, if no

x ∈ Tα is in T ′ for some α < κ, then for every x ∈ Tα there is a β(x) < κ such
that for no y % x does o(y) ≥ β(x) hold. As |Tα| < κ, the set {β(x) : x ∈ Tα}
has a bound β < κ, but then Tβ can have no element.

Assume that x ∈ T ′, o(x) < α < κ. By the definition of T ′, there are
κ elements y ∈ T , with x ≺ y. Some κ of them has o(y) > α. Then, let
pα(y) ∈ Tα be y’s predecessor at level α. For κ many y, pα(y) = p holds for
the same p ∈ Tα and so p ∈ T ′. We proved therefore property (A) of normality
for T ′ and so from now we will assume (A) for T .

Now assume that 〈T,≺〉 is a κ-Aronszajn tree satisfying (A). If x ∈ T ,
then the set T>x must contain incomparable elements as otherwise it would
be a branch of cardinality κ. If x ≺ y, z and y, z are incomparable then
there are y′ % y, z′ % z with o(y′) = o(z′) and of course, y′, z′ are also
incomparable. We get, therefore, that if x ∈ Tα then some Tβ(x) (β(x) > α)
contains incomparable successors of x. As κ is regular and |Tα| < κ, some
β(α) > α applies for all x ∈ Tα.

We can then choose, by transfinite recursion, the increasing sequence {αξ :
ξ < κ} such that every x ∈ Tαξ

has incomparable successors in Tαξ+1 , so
T ′ =

⋃
{Tαξ

: ξ < κ} satisfies (A)+(B) of the definition of normality.
Assume finally that 〈T,≺〉 is a κ-Aronszajn tree satisfying (A)+(B) of the

definition of normality. Define the tree T ′ as follows. If α = 0 or a successor
ordinal, then let b ∈ T ′ if and only if b is an α + 1-branch of T . If α is limit
then let b ∈ T ′ if and only if b is an α-branch of T that has an extension on
level Tα. Set b ≺ b′ if and only if b′ extends b. Now |T ′

α| = |Tα| if α = 0 or a
successor, and 1 ≤ |T ′

α| ≤ |Tα| if α is a limit ordinal. Moreover, if {bα : α < κ}
was a κ-branch in 〈T ′,≺〉 then

⋃
{bα : α < κ} would be a κ-branch in 〈T,≺〉.

〈T ′,≺〉 is therefore a κ-Aronszajn tree and it is easy to see that it satisfies the
definition of normality.

35. One direction is obvious; if b is a κ-branch, then b is a subset of order type
κ in 〈T, <lex〉.

For the other direction assume that {xξ : ξ < κ} is a subset of 〈T, <lex〉
of order type either κ or κ∗. As κ is regular and every level of 〈T,≺〉 has
cardinality less than κ, we have that o(xξ) → κ Therefore, for any given
α < κ, pα(xξ), the predecessor of xξ on level α, is defined for all large ξ.

As by the definition of <lex the sequence p0(xξ) (ξ < κ) is weakly increasing
(or decreasing) in the ordered set 〈T0, <0〉 of cardinality < κ, we have that
p0(xξ) = a0 for some a0 and for ξ ≥ γ0 with an appropriate γ0 < κ. Repeating
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the argument for level one, but only using the above “tail” of the sequence, we
get that p1(xξ) = a1 holds for ξ ≥ γ1, etc. By recursion we get the elements
{aα : α < κ} and increasing ordinals {γα : α < κ} such that pα(xξ) = aα for
ξ ≥ γα. But then {aα : α < κ} is a κ-branch.

36. Let S be the set of finite sequences of elements of κ. Clearly, |S| = κ.
For α < κ+ we are going to construct an injection fα : α → S by transfinite
recursion on α. f0 can only be the empty function. If fα is given, set fα+1(β) =
0 for β = α and fα+1(β) = 1fα(β), that is, if fα(β) = γ1 · · · γn then we let
fα+1(β) = 1γ1 · · · γn (concatenation). If α is a limit ordinal, enumerate Cα

increasingly as {x(α, ξ) : ξ < εα}. We may assume that x(α, 0) = 0. If β < α,
let γ = x(α, ξ) be the least element of Cα greater than β. Set fα(β) = ξfγ(β),
where again, the right-hand side denotes the string starting with ξ and then
continuing with the sequence fγ(β).

We claim that fα is an injection of α into S. This we prove by induction
on α. The induction step is obvious, if α is zero or a successor ordinal. Assume
that α is limit and fα(β) = fα(β′). Then ξfγ(β) = ξ′fγ′(β′) with the ordinals
ξ′, γ′ corresponding to β′. As the two strings are equal, we must have ξ = ξ′

but then γ = γ′. We then get fγ(β) = fγ(β′) and so β = β′ by the inductive
hypothesis.

We define the κ+-Aronszajn tree 〈T,≺〉 as follows. The nodes on Tβ are
the functions fα β for β ≤ α < κ+. t ≺ t′ if and only if t′ extends t. It is
obvious that T has no κ+-branches as its elements are injective functions so
a κ+-branch would give rise to an injection of κ+ into S, a set of cardinality
κ.

We show that |Tβ | ≤ κ holds for β < κ+. Assume we are given fα β ∈ Tβ .
We prove that there are finitely many ordinals 0 = γ0 < · · · < γt = β and
corresponding strings s1, . . . , st such that if γi−1 ≤ δ < γi then fα(δ) =
sifγi(δ) holds. This suffices for our claim as there are at most κ ways of
selecting γ0, . . . γt, s1, . . . , st.

We prove this claim by induction on α. It is obvious for α = β and the
inductive step from α to α + 1 is equally clear.

Assume finally that α is limit. There exist successive elements γ0 < γ1 <
· · · γn of Cα such that γn−1 ≤ β < γn and γ0 = x(α, δ) with either δ = 0 or δ
a limit ordinal. Inspection of the definition of fα shows that on the intervals
[0, γ0), [γ0, γ1), . . . , [γn−1, β) fα equals to fγ0 , (δ + 1)fγ1 , (δ + 2)fγ2 , . . . , (δ +
n)fγn , respectively. (Here we use that Cγ0 = Cα ∩ γ0.) Each of these terms
gives restriction of the required type except the last one. In that case, however,
as γn < α, we can refer to the inductive hypothesis, and argue again, that fγn

restricted to [γn−1, β) splits into finitely many functions of the required type.
[This proof is due to S. Todorcevic.]

37. We slightly modify the solution of the previous problem. Fix a system {Cα :
α < κ+} where, for every limit ordinal α < κ+, Cα is a closed, unbounded
subset of α, of order type cf (α) (which is always ≤κ). We assume that 0 ∈ Cα,
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and Cα = {x(α, ξ) : ξ < εα} is its increasing enumeration. Let S be the set
of finite sequences of elements of κ, clearly, |S| = κ. For α < κ+ we are
going to construct an injection fα : α → S, by transfinite recursion on α.
f0 is the empty function. If fα is given, set fα+1(β) = 0 for β = α and
fα+1(β) = 1fα(β), (concatenation). If α is limit, β < α, then let γ = x(α, ξ)
be the least element of Cα, greater than β and set fα(β) = ξfγ(β), again,
concatenating ξ and the finite string fγ(β).

Just as in the preceding problem, fα is an injection of α into S.
We again define the κ+-Aronszajn tree 〈T,≺〉 as follows. The nodes on Tβ

are the functions fα β for β ≤ α < κ+, and t ≺ t′ if and only if t′ extends t.
As in the preceding problem, T has no κ+-branches.

In order to show that |Tβ | ≤ κ holds for every β < κ+ we claim that if
β ≤ α < κ+ then fα β has the following specific form. β, that is, [0, β) splits
into the disjoint union of fewer than κ disjoint intervals of the form I = [γ, δ)
and on each of them, fα restricts to a function of the form x �→ sfδ(x) with
some s ∈ S. This proves that |Tβ | ≤ κ, as by the hypothesis on cardinal
exponentiation, there are at most κ functions of the required type. We prove
the above statement by transfinite induction on α. It is obvious if α = β,
and the inductive step from α to α + 1 is equally clear. Assume now that
α > β is a limit ordinal. Then Cα splits α into cf (α) ≤ κ many intervals of
the form [γ, δ), only < κ of those having nonempty intersection with β. On
only one of them it is not clear that fα β is of the required form: the one
for which γ ≤ β < δ holds. In this interval, fα’s restriction is equal to (the
restriction of) ξfδ where ξ < κ is the index of δ in the increasing enumeration
of Cα. But now we can refer to the inductive hypothesis which says that [γ, β)
splits into < κ intervals, with each of them fδ restricting to some function
of the required form, and so the statement holds for α. [E. Specker: Sur un
problème de Sikorski, Coll. Math., 2(1949), 9–12. The present proof is due to
S. Todorcevic.]

38. Notice that κ is regular and κ > ω1 by Problems 28.3 and 28.5. Let 〈T,≺〉
be a κ-tree. Let µ be a κ-additive measure on T . By additivity, µ(T≤α) = 0
for every α < κ. For t ∈ T set f(t) = µ(T≥t). For every α < κ, the set
Uα = {t ∈ Tα : f(t) > 0} is countable and nonempty, and if s ≺ t ∈ Uα,
s ∈ Tβ , then s ∈ Uβ . If U =

⋃
{Uα : α < κ}, then 〈U,≺〉 is a tree of height κ,

with countable levels, so by Problem 33 it has a κ-branch which is a κ-branch
of 〈T,≺〉, as well. [J. Silver: Some applications of model theory in set theory,
Ann. Math. Logic, 3(1970), 45–110]

39. We are going to use the condition in the form that on every set of cardi-
nality κ+ there is an ultrafilter consisting of sets of cardinality κ+ such that
if we decompose the ground set into λ parts then exactly one of them is in
the ultrafilter.

Let T be a κ+-tree. Set µ = cf (κ) and choose an increasing continuous
sequence of cardinals 〈κξ : ξ < µ〉 with κ0 = 0 and κ = sup{κξ : ξ < µ}.
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Enumerate each Tα as Tα = {tαξ : ξ < κ}. As |T | = κ+, there is an ultrafilter
Dµ on T , as described above. For every α < κ+,

T>α =
⋃

{Bα
β : β < µ},

where
Bα

β =
⋃

{T>x : x = tαξ , κβ ≤ ξ < κβ+1}.

As |T≤α| ≤ κ, T>α ∈ Dµ. By the property prescribed for Dµ, for every α < κ+

there is a unique β(α) < µ with Bα
β(α) ∈ Dµ. For a set Z ⊆ κ+ of cardinality

κ+ we have β(α) = β for α ∈ Z with some common β < µ.
We notice that

(∗) if α < α′ are in Z then there are x = tαξ ∈ Tα, x′ = tα
′

ξ′ ∈ Tα′ with
κβ ≤ ξ, ξ′ < κβ+1, such that x ≺ x′.

Indeed, if z ∈ Bα
β ∩ Bα′

β ∈ Dµ, then there are x ∈ Tα, x′ ∈ Tα′ , x ≺ x′ ≺ z.
Now consider an ultrafilter Dκβ+1 on the set Z (of cardinality κ+) and

put the elements of Z into the (not necessarily disjoint) classes Z(ξ, η) for
κβ ≤ ξ, η < κβ+1 by putting α ∈ Z(ξ, η) provided {γ : tαξ ≺ tγη} ∈ Dκβ+1 .
Note that every α belongs to some Z(ξ, η); therefore, there is a class Z(ξ, η) ∈
Dκβ+1 . We claim that {tαξ : α ∈ Z(ξ, η)} generates a κ+-branch. Indeed, if
α, α′ ∈ Z(ξ, η), α < α′ then there is some γ > α′ such that tαξ , tα

′
ξ ≺ tγη , so

tαξ ≺ tα
′

ξ . [M. Magidor, S. Shelah: The tree property at successors of singular
cardinals, Arch. for Math. Logic, 35(1996), 385–404]

40. Let 〈A, <〉 be an ordered set of cardinality κ and let ≺ be a well-ordering
of A in type κ. Color a pair {a, b} ∈ [A]2, a < b, green if a ≺ b, and let it be
blue if b ≺ a. As κ → (κ)22, there is a monochromatic B ⊆ A of size κ. If the
color of B is green, then on B the orders < and ≺ are the same, if the color
is blue, the order < on B agrees with ≺∗, the reverse of the well order. In the
former case 〈B, <〉 is of order type κ, in the latter case it is of order type κ∗.

41. Assume to the contrary first that κ is singular with µ = cf (κ) < κ and
κ = sup{κα : α < µ} where κα < κ. Let 〈A,≺〉 be the ordered union with
respect to α < µ of the disjoint ordered sets 〈Aα, <α〉 of order type κ∗

α.
That is, x ≺ y holds if x ∈ Aα, y ∈ Aβ with α < β. If B ⊆ A is well
ordered, then for each α the intersection B ∩ Aα is finite (otherwise B ∩ Aα

would include an infinite decreasing sequence), so |B| ≤ µ. If, however, B is
reversely well ordered, then it can meet only finitely many Aα (otherwise the
set of elements in different Aα would include an infinite increasing sequence)
hence its cardinality is again smaller than κ. This contradicts the hypothesis,
hence κ must be regular.

Now let λ < κ ≤ 2λ. By Problem 6.93 the lexicographically ordered set
λ{0, 1} (of size 2λ) does not include increasing or decreasing sequences of
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length λ+ ≤ κ. Therefore, the assumption in the problem implies 2λ < κ, and
so κ is strongly inaccessible.

42. Assume κ is singular, cf (κ) = µ, κ = sup{κα : α < µ} with κα < κ for
α < µ. Let the tree 〈T,≺〉 be the disjoint union of the branches bα with height
κα. Formally, bα = κα × {α} and 〈ξ, α〉 ≺ 〈ξ′, α′〉 if and only if α = α′ and
ξ < ξ′. Then 〈T,≺〉 is of height κ, every level is of size µ < κ, and there is no
κ-branch. Hence, if κ has the tree property, then it is regular.

43. Let κ be the smallest strong limit regular cardinal bigger than ω, and
let C = {cα : α < κ} be a closed, unbounded set in κ consisting of infinite
cardinals plus c0 = 0, satisfying 2cα < cα+1 for α < κ. We claim that for every
ξ < κ there is a function fξ defined on C ∩ ξ which is regressive and assumes
every value finitely many times. We prove this by induction on ξ. It suffices
to prove the result for ordinals of the form cα, cα +1. This latter case is easy:
if fcα is given, we simply extend it to fcα+1 by associating an arbitrary image
for cα. The same argument works for fcα+1 . We are done unless ξ = cα where
α is a limit ordinal. By our conditions on κ and on C, ξ must be a singular
ordinal, let µ < ξ be its cofinality. Let D = {dβ : β < µ} ⊆ C be a closed,
unbounded subset in ξ, d0 = 0 < µ < d1. We define fξ as follows. If x ∈ C ∩ ξ
and x /∈ D, then there is a unique β < µ such that dβ < x < dβ+1. Now
set fξ(x) = dβ + fdβ+1(x) (ordinal addition). Notice that fξ(x) < x as x is
an infinite cardinal by condition and so the sum of two smaller ordinals is a
smaller ordinal. Finally, let fξ be an injection between D\{0} and the interval
(0, d1). It is clear that fξ is as required.

Let T be the set of all functions defined on some C ∩ λ, λ ∈ C, which
are regressive and take every value finitely many times. Put f ≺ g if g is an
extension of f . This way we get a tree, the αth level of which is formed by all
functions in question with domain C∩λα. Thus, these levels are not empty for
all α < κ, so the tree is of height κ. The number of functions f : λα → λα is at
most λλα

α = 2λα < κ, so every level is of cardinality smaller than κ. Finally, in
this tree there is no branch of length κ, for if there was such a branch then its
union would be a regressive function on C that takes all values finitely many
times, which is impossible by Problem 21.9.

44. (b)⇒(a) is trivial, (a)⇒(d) holds by Problem 40, (d)⇒(c) by Problems
41 and 35. All that remains to show is that (c) implies (b).

Assume (c). κ is a strongly inaccessible cardinal; therefore, the product
of fewer than κ cardinals, each smaller than κ, is less than κ. For n = 1
the statement of (b) holds by the regularity of κ. We prove it for larger n by
mathematical induction. Suppose that we have it for n and consider a coloring
f : [κ]n+1 → σ of the (n + 1)-tuples. We construct an endhomogeneous set
A ⊆ κ of cardinality κ, i.e., if x1 < · · · < xn < y < y′ are n + 2 elements of A,
then f(x1, . . . , xn, y) = f(x1, . . . , xn, y′). This suffices, as then we can define
a coloring of the n-tuples by assigning g(x1, . . . , xn) = f(x1, . . . , xn, y) where
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y > xn is an arbitrary element of A. By the inductive hypothesis, there is a
κ-sized set B ⊆ A that is homogeneous for g, and so it is homogeneous for f ,
as well.

The construction of A will be done via a construction of a κ-tree T (a
ramification tree). Every node of T will be an element of κ and to each x ∈ T
we associate a set Hx ⊆ κ. It will have the property that if x 
= y are elements
of the same level then Hx and Hy are disjoint, in fact, the sets {Hx : x ∈ Tα}
constitute a partition of κ \ T≤α. To start, let 0 be the sole element of T0.
Accordingly, H0 = κ \ {0}.

Assume that the tree below level α is constructed and α is a limit ordinal.
For every α-branch B of the tree T<α if the set KB =

⋂
{Hx : x ∈ B} is

nonempty, then we let t(B) = min(KB) be the only successor of B on level α
and Ht(B) = KB \ {t(B)}. We notice that for a ∈ T<α, a ≺ t(B) if and only
if a ∈ B. |Tα| is at most as large as the number of α-branches in T<α, which,
a product of < κ cardinals each smaller than κ, by the induction hypothesis
is less than κ itself.

We notice that {Hx : x ∈ Tα} forms a partition of κ \ T≤α.
Assume now that α = β + 1 is a successor ordinal. Consider an element

x ∈ Tβ . Define an equivalence relation ∼ on Hx as follows. For c, d ∈ Hx,
c ∼ d if and only if for any a1 < · · · < an from T≤x f(a1, . . . , an, c) =
f(a1, . . . , an, d) holds. This is clearly an equivalence relation on Hx, and the
number of equivalence classes is at most

σ|[T≤x]n| ≤ σ|T≤x|+ω ≤ 2σ+|α|+ω < κ.

For each nonempty equivalence class C let yC be its least element. We make
these elements yC the immediate successors of x, and set HyC

= C \ {yC} for
them. Once again as some Hx were split to more classes plus some elements
put into T we will have the required condition that {Hx : x ∈ Tα} partitions
κ \ T≤α. In particular, Tα 
= ∅ for every α < κ, so the height of the tree is κ.

Note also that if x ≺ y in the tree, and x∗ is the element for which x∗  y
and o(x∗) = o(x)+1, then either y = x∗ or y ∈ Hx∗ . Hence if a1 < · · · < an are
elements of T≤x, then f(a1, . . . , an, y) = f(a1, . . . , an, x∗) holds. In particular,
any branch in 〈T,≺〉 is endhomogeneous.

By the tree property of κ there is a κ-branch A in T , which, as we have
just remarked, is endhomogeneous. This completes the proof of (c)⇒(b).
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The measure problem

1. Let X be an infinite set and F0 the set of those F ⊂ X for which X \ F
is finite. This F0 is a filter, and it can be extended to an ultrafilter F (see
Problem 14.6(c)). Now for A ⊂ X set µ(A) = 1 if and only if A ∈ F . The
properties of ultrafilters show that µ is a finitely additive nontrivial measure
on X.

2. It is clear that µ is a κ-additive 0–1-valued measure on X if and only if
the set of measure 0 sets is a κ-complete prime ideal. Furthermore, I is a
κ-complete prime ideal if and only if F = {X \ F : F ∈ I} is a κ-complete
ultrafilter.

3. Suppose the contrary, and assume that µ is a real-valued measure on all
subsets of ω1. Let {Un,α : n < ω, α < ω1} be an Ulam matrix (see Problem
18.1). For every α < ω1, as

⋃
{Un,α : n < ω} has countable complement

and every countable set is of measure 0, there are some n = n(α) < ω and
k = k(α) < ω such that µ(Un,α) > 1/k. There is a pair 〈n, k〉 that occurs as
〈n(α), k(α)〉 for uncountably many α, say for α ∈ S, |S| = ℵ1, which is absurd
as then Un,α, α ∈ S, would be disjoint sets each having measure greater than
1/k (there cannot be even k such sets).

4. It is enough to show that the union of some of the sets is nonmeasurable
in [0, 1]; therefore, instead of R consider [0, 1] and instead of the sets their
intersection with [0, 1]. Thus, if the sets are Aα, α < ω1, then they are of
measure 0 and Aα ⊂ [0, 1]. Now if all unions were measurable then for Y ⊂ ω1
we could set

µ(Y ) = m (∪α∈Y Aα)

with m standing for Lebesgue measure, and this way we would get a nontrivial
[0, 1]-valued σ-additive measure on ω1, which is not possible by the preceding
problem.
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5. Let µ be a [0, 1]-valued measure on κ. First of all, any set Y ⊂ κ of cardi-
nality < κ is of measure 0 (by nontriviality and κ-additivity), hence κ must
be regular, for otherwise it is the union of fewer than κ sets of cardinality
smaller than κ, hence it would have measure 0. That κ cannot be a successor
cardinal, say κ = λ+, can be proven the same way as Problem 3 was solved,
just use a λ × λ+-Ulam matrix instead of an ω × ω1 one.

6. Assume that µ is a [0, 1]-valued measure on the subsets of [0, 1]. For 0 ≤ x ≤
1 define f(x) = µ

(
[0, x]

)
. This is a nondecreasing continuous (by µ({x}) = 0

and the σ-additivity of µ) function with f(0) = 0, f(1) = 1 (not necessarily
strictly monotone). For A ⊆ [0, 1] set µ(A) = µ

(
f−1[A]

)
. It is easy to verify

that µ is a κ-additive (at this moment possibly trivial) [0, 1]-valued measure
on [0, 1]. We show that µ([0, x]) = x for 0 ≤ x ≤ 1. By σ-additivity then µ(A)
equals the Lebesgue measure of A for every Borel set A (see Problem 12.23
and recall that the intervals [0, x], x ∈ [0, 1] generate the Borel sets of [0, 1]),
and by completeness it also follows that every set that is a subset of the set of
a Borel set of measure 0 is also of measure 0. Hence µ extends the Lebesgue
measure (and in particular, it is a nontrivial measure, i.e., µ({x}) = 0 for all
x ∈ [0, 1]).

To prove µ([0, x]) = x notice that the set {y : 0 ≤ f(y) ≤ x} is of the form
[0, u] with some u satisfying f(u) = x. Therefore, µ([0, x]) = µ

(
[0, u]

)
= x.

7. Let µ be a [0, 1]-valued measure on κ > c, and let I be the set of measure
0 subsets of κ. Then I is a κ-complete ideal (not necessarily a prime ideal),
in particular every A 
∈ I is of cardinality κ. If there is an A ⊂ κ, A 
∈ I such
that for all disjoint decomposition A = A0 ∪ A1 one of the Aj belongs to I,
then I ′ = {A ∩ I : I ∈ I} is a κ-complete prime ideal on A, hence κ = |A|
is measurable.

Therefore, if we assume to the contrary that κ is not a measurable cardinal,
then for all A ⊂ κ there is a disjoint decomposition A = A0 ∪ A1 such that if
A 
∈ I then A0, A1 
∈ I. By transfinite induction on α < ω1 for every function
f : α → {0, 1} we define a set Af in the following way. Set A∅ = κ. Suppose
α < ω1, and that Ag have already been defined for all g : β → {0, 1}, β < α.
Let f : α → {0, 1}. If α is a limit ordinal, then set Af = ∩β<αAf β

. On the

other hand, if α = β + 1, then set Af = (Af β
)f(β), and this completes the

definition of the sets Af . Extend this definition to f : ω1 → {0, 1} by setting
Af = ∩α<ω1Af α

. It is clear that if β < α < ω1 and f : α → {0, 1} then
Af ⊆ Af β

, and if f 
= g are both mapping α into {0, 1}, then Af ∩ Ag = ∅.
Transfinite induction on α gives that for each α < ω1⋃

f∈α{0,1}
Af = κ, (28.1)

and then actually this is also true for α = ω1 as well. Note also that the union
on the left is a disjoint union.
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Now let

B =
⋃

{Af : f ∈ α{0, 1}, α < ω1, Af ∈ I} .

There are at most c many terms in the union on the right, hence by the κ-
completeness of I, we have B ∈ I (recall that κ > c). Let γ 
∈ B. On applying
(28.1) for α = ω1 we can see that there is an f : ω1 → {0, 1} such that γ ∈ Af .
But then γ ∈ Af α

for all α < ω1, and hence, by the definition of B, Af α

∈ I

for all α < ω1. Therefore, the sets Af α
\ Af α + 1 = (Af α

)1−f(α) do not
belong to I, hence we get the ω1 disjoint sets

Af α
\ Af α + 1, α < ω1,

of positive measure, which is absurd. This contradiction proves that κ is mea-
surable.

8. We know from Problem 3 that κ > ℵ1 (actually, Problem 5 shows that
κ > ℵω). Let µ : P(κ) → [0, 1] be a σ-additive measure on κ. We claim that
it is κ-additive. If this is not the case, then there is a ω < λ < κ and disjoint
sets Aα, α < λ such that for A = ∪α<λAα we have µ(A) 
=

∑
α<λ µ(Aα).

Since the sum on the right is the same as the supremum of its finite partial
sums, the σ-additivity of µ gives that there are only countably many Aα’s
with µ(Aα) > 0, and necessarily µ(A) >

∑
α<λ µ(Aα). Using again the σ-

additivity we may exclude all Aα with µ(Aα) > 0, i.e., we may assume that
µ(Aα) = 0 for all α but A = ∪α<λAα is of positive measure. For B ⊂ λ define

ν(B) =
1

µ(A)
µ (∪α∈BAα)) .

Because of the disjointness of the Aα’s this is a σ-additive measure on λ with
the property that ν(λ) = µ(A)/µ(A) = 1 and ν({α}) = µ(Aα)/µ(A) = 0
for all α < λ, i.e., ν is a nontrivial σ-additive measure on λ < κ. But this
contradicts the minimality of κ, and this contradiction proves that κ is real
measurable.

9. The solution to Problem 8 can be repeated word for word.

10. Instead of R we work with ω{0, 1}, and suppose there is a σ-additive 0–
1-valued measure on all subsets. For each n < ω one of the sets A0

n = {f :
f(n) = 0} or A1

n = {f : f(n) = 1} is of measure 1, and the one with this
property is denoted by A

g(n)
n . Then g ∈ ω{0, 1} and {g} is the intersection

of the measure 1 sets A
g(n)
n , n = 0, 1, . . ., hence it must have measure 1 (the

complement is the union of the countably many ω{0, 1}\A
g(n)
n sets of measure

0). But then µ is trivial, and this proves that there is no nontrivial σ-additive
0–1-valued measure on R.
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11. Regularity follows from Problem 5. Now let λ < κ, and suppose that
2λ ≥ κ. Let ν be a κ-additive 0–1-valued measure on κ. Extend it to a κ-
additive 0–1-valued measure µ on 2λ by stipulating µ(A) = ν(A∩κ). Now we
can repeat the proof of the preceding problem on λ{0, 1}. For each α < λ one
of the sets A0

α = {f : f(α) = 0} or A1
α = {f : f(α) = 1} is of measure

1, and the one with this property is denoted by A
g(α)
α . Then g ∈ λ{0, 1} and

{g} is the intersection of the measure 1 sets A
g(α)
α , α < λ, hence it must have

measure 1 (the complement is the union of the λ < κ many λ{0, 1} \ A
g(α)
α

sets of measure 0). But then µ is trivial, and so ν must be trivial, and this
proves that we must have 2λ < κ if κ is measurable. Therefore, κ is a strong
limit cardinal.

12. Suppose first that F is not closed for diagonal intersection, i.e., there are
Fα ∈ F such that if F = {α : α ∈ Fβ for all β < α} is their diagonal
intersection, then F 
∈ F . Since F is an ultrafilter, κ \ F ∈ F . For each
α ∈ κ \ F there is a βα < α such that α 
∈ Fβα

. The mapping f defined by
α → βα is regressive on κ \ F ∈ F , but f−1(β) ⊆ (κ \ F ) \ Fβ is not in F for
any β < κ. Thus, F is not a normal filter.

Conversely, suppose that F is an ultrafilter but it is not normal, i.e., there
is an F ∈ F and a regressive f : F → κ such that Fα = f−1(α) 
∈ F for all
α < κ. Then κ \ Fα is in F , and let G be their diagonal intersection. Then
γ ∈ G ∩ F would mean γ ∈ κ \ Ff(γ) (note that f(γ) < γ), which is not the
case (because γ ∈ f−1(f(γ))). Therefore, G∩F = ∅, and since F ∈ F , the set
G cannot be a member of F , and this shows that F is not closed for diagonal
intersection.

13. It is clear that if F is κ-complete and nontrivial (i.e., all κ \ {α} ∈ F)
then it does not contain a subset of cardinality smaller than κ. Now suppose
that F is a normal ultrafilter on κ for which every element is of cardinality
κ, hence if A ⊂ κ, |A| < κ, then κ \ A ∈ κ. We want to show that if λ < κ
and Aα, α < λ are fewer than κ sets from F , then their intersection is also
in F . Set Aα = κ for λ ≤ α < κ, and form the diagonal intersection B
of all these Aα. By Problem 12 this B belongs to F . But it is clear that
(∩α<λAα) \ λ = B \ λ = B ∩ (κ \ λ), and here the right-hand side is the
intersection of two elements of F ; therefore, it belongs to F . Hence ∩α<λAα

also belongs to F .

14. (a) Let G be the set of measure 1 sets. Then G is a κ-complete ultrafilter
on κ from which it easily follows that ≡ is an equivalence relation on κκ,
and ≺ is irreflexive and transitive on the set of equivalence classes. As for
trichotomy, if f, g ∈ κκ, then the union of the sets {α : f(α) < g(α)},
{α : f(α) = g(α)}, and {α : g(α) < f(α)} is κ, so one (and only one) of
them belongs to G. If it is the first one then f ≺ g, if it is the second then
f = g, and if it is the third then g ≺ f . This proves that ≺ is an ordering. To
show that it is a well-ordering it is sufficient to show that there is no infinite
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decreasing sequence · · · ≺ f2 ≺ f1 ≺ f0. In fact, if such a sequence existed
then all the sets An = {α < κ : fn+1(α) < fn(α)} would belong to G, and,
by κ-completeness, so would do their intersection, i.e., ∩n<ωAn 
= ∅. But this
would lead to nonsense, for then {fn(α)}n<ω would be a decreasing sequence
of ordinals for any α ∈ ∩n<ωAn.

(b) First of all, no {α} belongs to F , since f−1
0 [{α}] = f−1

0 (α) is of
measure 0. Next, it is clear that if F ∈ F and F ⊆ F ′ then F ′ also belongs to
F . Finally, if f−1

0 [Fγ ], γ < λ with λ < κ are of measure 1, then so is

f−1
0 [∩γ<λFγ ] = ∩γ<λf−1

0 [Fγ ],

and this shows that F is closed for fewer than κ intersections. Therefore, F
is a κ-complete (nontrivial) filter on κ. But it is an ultrafilter, since either
f−1
0 [Y ] or its complement κ \ f−1

0 [Y ] = f−1
0 [κ \ Y ] is of measure 1 for all

Y ⊆ κ.
It is left to show the normality. Let F ∈ F and let f : F → κ be a regressive

function. We may assume that 0, 1 
∈ F , and f(α) ≥ 1 for all α ∈ F (otherwise
consider max{f, 1}). Extend f to a κ by setting it equal to 0 outside F . For the
function f(f0) we have for all α 
∈ f−1

0 (0) the inequality f(f0(α)) < f0(α), and
since f−1

0 (0) is of measure 0, this means that f(f0) ≺ f0. By the minimality
of f0 this is possible only if f(f0) 
∈ Y , i.e., (f(f0))−1(α) = f−1

0 [f−1(α)] is
of measure 1 for some α < κ. Therefore, by the definition of F , we have
f−1(α) ∈ F . Here α = 0 is not possible because f−1(0) = κ \ F is not in F ,
hence f−1(α) ⊂ F is an inverse image of the original f belonging to F . This
proves that F is a normal ultrafilter.

15. Let F be a κ-complete normal ultrafilter on κ (see Problem 14). We prove
the stronger statement that if g : [κ]r → σ is an arbitrary coloring, then there
is an F ∈ F homogeneous for f .

For r = 1 this is clear by the κ-completeness of F , and from here we use
induction on r. So let us suppose that the claim has already been proven for
some r, and let g : [κ]r+1 → σ be a coloring of the (r + 1)-tuples. For each
α < κ define the coloring gα on [κ \ (α + 1)]r by setting gα(V ) = g({α} ∪ V )
for any V ∈ [κ \ (α + 1)]r. By the induction hypothesis there is an Fα ∈ F
homogeneous for gα in some color, say in color τα < σ. Let F ′ be the diagonal
intersection of the Fα’s. By Problem 12 this also belongs to F . To each α ∈ F ′

there is an associated color τα, therefore, by the κ-completeness of F , there
is an F ⊂ F ′, F ∈ F and a τ < σ such that for α ∈ F we have τα = τ . We
claim that F is homogeneous in color τ for g. In fact, if V ⊂ F has r + 1
elements and α is its smallest element, then V \ {α} ⊂ Fα by the definition
of the diagonal intersection, hence g(V ) = gα(V \ {α}) = τα = τ .

16 Let F be a κ-complete normal ultrafilter on κ (see Problem 14). If g :
[κ]<ω → σ is a coloring, then the restriction gr of g to [κ]r is a coloring on
the set of r-tuples. By the preceding problem for each r there is an Fr ∈ F
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homogeneous with respect to gr. Then ∩Fr ∈ F is clearly a set of cardinality
κ such that all r-tuples of it for any fixed r < ω have the same color.

17. (a) Such a linear functional I was constructed in Problem 17.19. Note
that the functional I from Problem 17.19 has the property that if f, g ∈ BN

are such that f(n) − g(n) → 0 as n → ∞, then I(f) = I(g).

(b) Let I0 be the functional from part (a), and for an f ∈ BN let

F (n) =
f(0) + · · · + f(n)

n + 1
.

Now I(f) = I0(F ) is clearly linear, normed, and translation invariant, for if
g(n) = f(n + 1) and

G(n) =
g(0) + · · · + g(n)

n + 1
,

then we have G(n) − F (n) → 0 as n → ∞, and hence I0(F ) = I0(G).

(c) Let I0 be the functional from part (b). Note that such a functional is
necessarily independent of finitely many values of f ∈ BN. In fact, if f and g
differ only in finitely many values, then there are translations of them (in the
sense of part (b)) which are identical. Now for an f ∈ BZ let f+(n) = f(n)
and f−(n) = f(−n − 1) for all n ∈ N. Then f± ∈ BN, hence we can set
I(f) = (I0(f+) + I0(f−))/2. This is clearly nontrivial, linear and normed.
Its translation invariance follows from the fact that if F (n) = f(n + 1), then
F+(n) differs from g+(n) := f+(n+1) only in finitely many values and F−(n)
differs from g−(n) := f−(n − 1) only in finitely many values, hence

I(F ) = (I0(F+) + I0(F−))/2 = (I0(g+) + I0(g−))/2
= (I0(f+) + I0(f−))/2 = I(f).

(d) We prove that there is a translation invariant normed linear functional
In on BZn by induction on n. For n = 1 this was done in part (c), and suppose
now that In is already known to exist. Let fa(y) = f(y + a) denote the
translate of f by the vector a. If f ∈ BZn+1 , then for each fixed x ∈ Z the
function fx(y1, . . . , yn) = f(x, y1, . . . , yn) belongs to BZn , hence x → In(fx)
is well defined and belongs to BN, and we can set In+1(f) = I1(In(fx)). This
In+1 is clearly nontrivial, linear, and normed. If a = (a0, . . . , an) ∈ Zn+1,
then we have (fa)x = (fx+a0)b where b = (a1, . . . , an). Therefore, by the
translation invariance of In we have In

(
(fa)x

)
= In(fx+a0), and then by the

translation invariance of I1 it follows that I1

(
In

(
(fa)x

))
= I1

(
In(fx)

)
, which

proves the translation invariance of In+1.

(e) Consider the In from part (d). For f ∈ BA the function F (y1, . . . , yn) =
f(y1s1 + . . . + ynsn), yi ∈ N, is in BZn , hence we can set I(f) = In(F ). This
clearly satisfies all the requirements.
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(f) Let B = {f ∈ BA : ‖f‖ ≤ 1} = A[−1, 1] be the unit ball of BA.
Consider C = {I | I : B → [−1, 1]} = B[−1, 1] equipped with the product
topology on B[−1, 1]. Being the product of compact spaces, this is compact.
For a finite subset S of A let CS be the set of all normed linear functionals I
from C that are invariant for translation with any s ∈ S, where by linearity
we mean that if f1, f2, c1f1+c2f2 ∈ B, then I(c1f1+c2f2) = c1I(f1)+c2I(f2).
We claim that this is a closed subset of C, and to this end it is sufficient to
show that its complement relative to C is open. If I ∈ B[−1, 1] is not in CS ,
then either

• I(1) 
= 1, or
• there is an f ∈ B with |I(f)| > ‖f‖, or
• there are f1, f2, f1 + f2 ∈ B, c1, c2 ∈ R with I(c1f1 + c2f2) 
= c1I(f1) +

c2I(f2), or
• there is an s ∈ S and an f ∈ B such that if fs is the translate of f with s

then I(fs) 
= I(f).

In each case the corresponding property depends only on finitely many co-
ordinates in B[−1, 1], hence it holds in a neighborhood of I, and this proves
that the complement of CS is open (relative to C).

Thus, each CS is compact and nonempty by part (e). Since

CS1 ∩ · · · ∩ CSm
= CS1∪···∪Sm

,

we can conclude that the intersection of all CS with S ⊂ A, |S| < ∞ is
nonempty, and any I∗ in this intersection is a translation-invariant normed
linear functional on B. Thus, all we need to do is to extend I∗ from B to all
of BA while preserving its properties.

Let f ∈ BA and select a natural number N with N > ‖f‖. Then
f/N ∈ B and we can set I(f) = NI∗(f/N). This is a good definition: if
M > ‖f‖ is another integer, then by the additivity of I∗ on B we have
NI∗(f/N) = N(MI∗(f/NM)) = MI∗(f/M), and similar argument gives
that I is an extension of I∗, and that it is a translation-invariant normed
linear functional on BA.

(g) Let I be the linear functional from part (f), and for a subset H of A
set µ(H) = I(χH) where χH is the characteristic function of H (i.e., it is 1
on H and 0 on A \ H). This clearly satisfies the requirements.

(h) Consider the I0 from part (f) for the Abelian group R (with addition
as operation). The isometries of R are translations (x → x+ y) and reflection
(x → −x) coupled with translations. Now set I(f) = (I0(f) + I0(f−))/2,
where f−(x) = f(−x). This is clearly invariant for reflection. But it is also
invariant for translation, for if the translate of f by y is fy = f(· + y), then
I(fy) = (I0(fy) + I0((fy)−))/2, and since (fy)− = (f−)−y, the translation
invariance of I0 gives that this is the same as I(f).
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(i) This follows from (h) the same way as we deduced (g) from (f).

(j) We identify R2 with the complex plane C. The isometries of R2 are of
the form TxRt and TxRtS, where S is the reflection onto the real line (complex
conjugation: z → z), Rt for |t| = 1 is rotation about the origin by angle arg(t)
(multiplication by t: z → tz) and Tx is translation by x (adding x: z → z+x).
Let I0 be a translation-invariant normed linear functional from part (f) for
the Abelian group R2 (where R2 is equipped with the addition operation).
Exactly as in part (i) (by considering (I0(f)+I0(f−))/2 where f−(z) = f(z))
this gives rise to a translation-invariant normed linear functional, which is also
invariant with respect to reflection S, so we may assume that already I0 has
this property. Let T be the unit circle with multiplication as operation. It is
an Abelian group, and let I1 be a rotation-invariant normed linear functional
on BT (see part (f)). Now for an f ∈ BR2 and t ∈ T we set f t(z) = f(tz),
and define I(f) = I1(I0(f t)). This is clearly linear, normed, and rotation
invariant (for rotations about the origin, which is enough). It is also translation
invariant: if gx(z) = g(z + x) is the translate of a function g ∈ BR2 by
x, then (fx)t = (f t)x/t, hence by the translation invariance of I0 we get
I0((fx)t) = I0(f t), and so I(fx) = I(f). The same argument shows that I is
invariant with respect to reflection (S), hence I is invariant with respect to
all isometries of R2.

(k) This again follows from (j) by considering characteristic functions of
sets (see the proof of (g)).

(l) Let I0 be the translation-invariant functional from (f) for BR, and let f
be a bounded function on R with bounded support. Note that I0 is a positive
linear functional. For an integer n let fn be the periodic extension of the
restriction f [n, n + 1) with period 1, and set

I(f) =
∑

n

I0(fn).

Note that all but finitely many terms in this sum are zero. We claim that this
I satisfies all the requirements. That I is a positive linear functional is clear.

First we prove translation invariance. Let a = k + b with k an integer and
0 ≤ b < 1, and let fa(x) = f(x + a) be the a-translate of f . Making use that
(recall that χE denotes the characteristic function of E)

(fa)n =
(
(fχ[n+a,n+k+1)))n+k

)
b
+
(
(fχ[n+k+1,n+a+1))n+k+1)

b
,

we obtain from the additivity and translation invariance of I0:

I(fa) =
∑

n

{
I0
(
(fχ[n+a,n+k+1)))n+k

)
+ I0

(
(fχ[n+k+1,n+a+1))n+k+1)}

=
∑

n

{
I0
(
(fχ[n+a,n+k+1)))n+k

)
+ I0

(
(fχ[n+k,n+a))n+k

)}
=
∑

n

I0
(
(fχ[n+k,n+k+1))n+k

)
= I(f),
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i.e., translation invariance holds.
Next observe that I(χ[0,1)) = 1, and as a consequence I(χ[0,1/m)) = 1/m,

because m translates of χ[0,1/m) add up to χ[0,1). Then for any k ≥ 1 we have
I(χ[0,k/m)) = k/m, and hence the positivity of I gives

k1

m1
≤ I(χ[0,x)) ≤

k2

m2

whenever k1/m1 ≤ x ≤ k2/m2. But here k2/m2 can be arbitrarily close to
k1/m1, and I(χ[0,x)) = x follow for all x > 0. This implies again by translation
invariance I(χ[a,b))) = b− a for all a < b, and a similar equality is true for all
intervals (open, semi-closed, or closed) by the monotonicity of I. Therefore,
if g is a step function with bounded support and finitely many steps, then
I(g) =

∫
g, where

∫
denotes Riemann integration. Finally, if f is a Riemann

integrable function with bounded support, then for every ε > 0 there are step
functions g1 ≤ f ≤ g2 such that∫

g2 −
∫

g1 < ε,

and since we also have∫
g1 = I(g1) ≤ I(f) ≤ I(g2) =

∫
g2,

the equality

I(f) =
∫

f

follows if we let ε → 0.

(m) We prove the statement by induction on n. For n = 1 this was done
in part (l), and suppose now that In−1 is already known to exist. Exactly as
in part (d) let fa(y) = f(y + a) denote the translate of f by the vector a,
and if f ∈ BRn is of bounded support, then set In(f) = I1(In−1(fx)), where
fx(y1, . . . , yn−1) := f(x, y1, . . . , yn−1). This In is clearly linear and positive,
and the proof used in part (d) shows that it is translation invariant (just repeat
that proof with Rn in place of Zn). We have by induction In(χ[0,1)n) = 1,
and then as in part (l) one can see that In agrees with the Riemann integral
for the functions χ[0,1/m)n , from which just as in part (l) one can deduce
that In agrees with the Riemann integral for all finite linear combinations
of characteristic functions of sets of the form

∏n
j=1[aj , bj) as well as their

open and closed variants. Since for every Riemann integrable function f and
for every ε > 0 one can find two such linear combinations g1 and g2 with
g1 ≤ f ≤ g2 and

∫
g2 −

∫
g1 < ε, I(f) =

∫
f follows just as in part (l).

(n) Let I be the functional from part (m) for Rn. If E is a bounded subset
of Rn then set µ(E) = I(χE). This is clearly finitely additive and translation
invariant, and extends Jordan measure. For unbounded E define
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µ(E) = lim
r→∞ I(χE∩Br ),

where Br denotes the closed ball around the origin of radius r. By monotoni-
city the limit on the right-hand side exists, and for bounded sets E we get back
the µ(E) = I(χE) definition. Using monotonicity and translation invariance
of I it is easy to verify the translation invariance of µ.

(o) Use the reflection-rotation technique of parts (h), (j) to generate isom-
etry invariant functionals I from the translation invariant I0 defined in part
(m). E.g., in R2 considering (I0(f)+ I0(f−))/2 where f−(z) = f(z) gives rise
to a translation invariant positive linear functional, which is also invariant
with respect to reflection z → z and extends Riemann integral (note that if
f is Riemann integrable, then so is f−, and

∫
f =

∫
f−), so we may assume

that already I0 has this property. Let T be the unit circle with multiplication
as operation, and let I1 be a rotation-invariant normed linear functional on
BT (see part (f)). Now for an f ∈ BR2 with bounded support and t ∈ T we
set f t(z) = f(tz), and define I(f) = I1(I0(f t)). This is clearly linear, positive,
rotation invariant, and the same proof that was given in part (j) shows that it
is also translation invariant. Hence I is invariant with respect to all isometries
of R2. Finally, if f ∈ BR2 is Riemann integrable, then so is every f t with the
same integral as f , hence

I(f) = I1(I0(f t)) = I1

(∫
f t

)
= I1

(∫
f

)
=
∫

f,

i.e., I extends the Riemann integral.

(p) Set as in part (n)

µ(E) = lim
r→∞ I(χE∩Br ),

where I is the functional from part (o) for Rn, n = 1, 2. The same argument
that we gave in part (n) shows that this is an isometry-invariant measure that
extends Jordan measure.
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Stationary sets in [λ]<κ

1. [λ]<κ =
⋃
{Xα : α < κ} where Xα = {P ∈ [λ]<κ : α = min (κ \ P )}.

2. Assume that γ < κ and {Xα : α < γ} are bounded sets, X =
⋃
{Xα : α <

γ}. For α < γ choose Pα ∈ [λ]<κ with the following property: no Q ⊇ Pα is
in Xα. If now P =

⋃
{Pα : α < γ}, then P ∈ [λ]<κ (as κ is regular) and no

Q ⊇ P is in X.

3. It is obvious that the increasing union of sets each containing α is again a
set containing α. For unboundedness, for every P ∈ [λ]<κ, P ∪ {α} will be an
element of the set in question. The other claim is similar.

4. Assume that S is stationary and Q ∈ [λ]<κ is given. In order to show that
there exists a P ∈ S with P ⊇ Q we remark that the set {P ∈ [λ]<κ : P ⊇ Q}
is closed, unbounded by Problem 3. Hence it must intersect S.

5. If A ⊆ κ is unbounded, then it is unbounded in [κ]<κ as well: if P ∈ [κ]<κ,
then P ⊆ α where α ∈ A is any element with sup(P ) ≤ α.

If A ⊆ κ is unbounded in [κ]<κ then it is unbounded in κ, as well: if β < κ
then, by unboundedness, some P ∈ A has β ⊆ P . As A ⊆ κ, P = α for some
α < κ, so β ≤ α ∈ A, as claimed.

If A ⊆ κ is closed, then it is closed in [κ]<κ as well: if {ατ : τ < µ} is some
increasing sequence from A then it is an increasing sequence of ordinals less
than κ. There is, therefore, a supremum α of them, which is in A, and then⋃
{ατ : τ < µ} = α as is required for closure of A in [κ]<κ.

If A ⊆ κ is closed in [κ]<κ then it is closed in κ as well: indeed, assume that
{ατ : τ < µ} is an increasing sequence of elements of A. Then {ατ : τ < µ} is
⊆-increasing in [κ]<κ, so by hypothesis P =

⋃
{ατ : τ < µ} ∈ A. But P is an

ordinal, that is, an initial segment of κ, and it can only be the supremum of
our sequence.
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From what was just said, it follows that if A ⊆ κ and it is a stationary
subset of [κ]<κ, then it is also stationary in κ. For the other implication it
suffices to prove that if C ⊆ [κ]<κ is closed, unbounded, then so is C ∩ κ,
that is, the set of those elements of C that are initial segments of κ. Closure
is immediate. For unboundedness, pick β < κ. Then select the increasing
sequence P0, P1, . . . of elements of C with β ⊆ P0 and then sup(Pn) ⊆ Pn+1.
Then P = P0 ∪ P1 ∪ · · · will be in C, and by construction it is an initial
segment in κ, i.e., P = α for some ordinal α < κ, and clearly α ≥ β.

6. One direction is obvious as every increasing sequence is manifestly a directed
system.

For the other direction assume that γ < κ is an infinite cardinal and
Y = {Pα : α < γ} is a directed subsystem of a system X closed under
increasing unions of length < κ.

We show
⋃

Y ∈ X by induction on γ. For γ = ω select n0 < n1 < · · · such
that n0 = 0 and Pni+1 ⊇ Pi ∪ Pni . Clearly, Pn0 ⊆ Pn1 ⊆ · · · is an increasing
sequence with union P0 ∪ P1 ∪ · · ·.

For γ > ω we use the fact that if Y is a directed system and Z ⊆ Y , then
there is a directed subsystem Z ⊆ Z ′ ⊆ Y with |Z ′| ≤ |Z| + ω. By this, we
can decompose Y as an increasing, continuous union Y =

⋃
{Yα : α < γ} of

directed systems Yα of smaller cardinality. By our inductive hypothesis we get⋃
Yα ∈ X for every α < γ, so finally this holds for Y , as {Yα : α < γ} is an

increasing family of sets.

7. (a) It is obvious that C(f) is closed under increasing unions, as the increas-
ing union of sets, each closed under f , is again a set closed under f . To show
unboundedness, assume that P ∈ [λ]<κ. Set P0 = P and for n = 0, 1, 2, . . . let

Pn+1 = Pn ∪
⋃{

f(s) : s ∈ [Pn]<ω
}

.

Induction gives, as κ > ω is regular, that |Pn| < κ. Now P0 ∪ P1 ∪ P2 ∪ · · · is
an f -closed set of cardinality < κ, containing P .

(b) Assume that C is closed, unbounded. Define f(s) for every s ∈ [λ]<ω by
recursion on |s| as follows. Let f(∅) ∈ C be arbitrary. For |s| > 0 let f(s) ∈ C
be such that s ⊆ f(s) and also f(t) ⊆ f(s) holds for every t ⊆ s, t 
= s
(these values have been determined before f(s)). Assume that P ∈ C(f),
P 
= ∅. Then P =

⋃
{f(s) : s ∈ [P ]<ω} and as this is the union of a directed

subsystem of C, it is in C by Problem 6.

8. Assume that {Cα : α < γ} are closed, unbounded sets, γ < κ. It is obvious
that C =

⋂
{Cα : α < γ} is closed. By Problem 7 for every α < γ there

is some fα : [λ]<ω → [λ]<κ such that C(fα) \ {∅} ⊆ Cα. If we now set
f(s) =

⋃
{fα(s) : α < γ} for every s ∈ [λ]<ω, then f : [λ]<ω → [λ]<κ and

clearly C(f) ⊆
⋂
{C(fα) : α < γ} so by Problem 7(a) this latter set, therefore

C, is an unbounded set.



Solutions Chapter 29 : Stationary sets in [λ]<κ 465

9. Let f : [λ]<ω → [λ]<κ be an arbitrary function with f({α}) = α for α < κ
(that is, f assigns the set α ∈ [κ]<κ to the point α < κ). By Problem 7 almost
every P is in C(f). If P ∈ C(f) then P ∩κ has the property that if α ∈ P ∩κ
then α ⊆ P ∩ κ so P ∩ κ is an initial segment.

10. Given an algebra on λ with the operations fi : [λ]ni → λ for i = 0, 1, . . .,
set f(s) = f0(s) ∪ f1(s) ∪ · · · and apply Problem 7(a).

11. We consider various properties of P ∈ [λ]<κ and notice that they hold
for P ∈ C(f) for certain functions f : [λ]<ω → [λ]<κ. Then, if we take the
pointwise union of these functions, then all the properties hold for the elements
of the appropriate C(f). First, if f({α}) = α for α < κ then P ∩ κ < κ holds
for every P ∈ C(f). Second, assume that f(κ ·α+β) + κ ·α, β (for β < κ) and
κ · α + β ∈ f ({κ · α, β}). Then, if P ∩ [κ · α, κ · (α + 1)) 
= ∅ holds for some
α, then P ∩ [κ · α, κ · (α + 1)) is the left translation of the interval κ ∩ P by
κ · α, so we are done.

12. Set C = �{Cα : α < λ}. In order to show that C is closed and unbounded,
assume that γ < κ and {Pξ : ξ < γ} is an increasing sequence of elements of C,
P =

⋃
{Pξ : ξ < γ}. If α ∈ P , then α ∈ Pξ for some ξ < γ, so α ∈ Pζ holds for

every ξ < ζ < γ, therefore Pζ ∈ Cα, and then P =
⋃
{Pζ : ξ < ζ < γ} ∈ Cα

as Cα is closed.
In order to show that C is unbounded, assume that P ∈ [λ]<κ is arbitrary.

Set P0 = P and then choose P1, P2, . . . as follows. Let Pn+1 ⊇ Pn be an
element of

⋂
{Cα : α ∈ Pn} (the latter set is closed, unbounded by Problem

8). Set P ′ = P0∪P1∪· · ·. Then P ′ ∈ C as if α ∈ P ′ then α ∈ Pn ⊆ Pn+1 ⊆ · · ·
for some n and then Pn, Pn+1, . . . ∈ Cα, so P ′ ∈ Cα.

13. Assume that the statement fails, i.e., for every α < λ there is some closed,
unbounded set Cα such that f(P ) 
= α holds for P ∈ Cα. By the previous
problem, the diagonal intersection C of the closed, unbounded sets {Cα : α <
λ} is closed, unbounded again. But then, if P ∈ S ∩ C, then f(P ) 
= α holds
for every α ∈ P , a contradiction.

14. Let G : [λ]<ω → λ be a bijection. By Problem 7, almost every P is “closed”
under G, G−1, that is, the following are true: if s ∈ [P ]<ω, then G(s) ∈ P and
if α ∈ P , then G−1(α) ⊆ P . Given f as in the problem, for a.e. P ∈ S we have
g(P ) = G (f(P )) ∈ P , so by Problem 13 there are a stationary S′ ⊆ S and a
γ < λ such that for P ∈ S′ we have g(P ) = γ. But then, f(P ) = G−1(γ) is
true for P ∈ S′.

15. Assume that X ⊆ [λ]<κ is nonstationary. Then X ∩ C = ∅ holds for
some closed, unbounded set C. By Problem 7(b) C(g) \ {∅} ⊆ C for some
g : [λ]<ω → [λ]<κ, so C(g)∩X = ∅ or {∅}, i.e., no ∅ 
= P ∈ X is closed under
g. Let f(P ) be a finite subset s ⊆ P such that g(s) 
⊆ P . Now clearly f−1(s)
is bounded: it contains no P ⊇ g(s).
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16. If {Pα : α < γ} is an increasing sequence with γ < κ and κ ∩ Pα ∈ C
holds for every Pα then, as C is closed, it holds for

⋃
{Pα : α < γ}. For

unboundedness, assume that P ∈ [λ]<κ. Pick δ ∈ C, δ > sup(P ∩ κ). Then
P ∪ δ is above P and has the required property.

17. To show that A is closed, assume that {Pα : α < γ} is an increasing
sequence of elements of A, γ < κ, P =

⋃
{Pα : α < γ}. Set ξα = sup(Pα) ∈ C.

Now if ξ = sup{ξα : α < γ}, then ξ = sup(P ) and this is in C as C is closed.
To show that A is unbounded, let P ∈ [λ]<κ be arbitrary. Let ξ be the

least element of C above sup(P ). Clearly, P ∪ {ξ} ∈ A.

18. Set B = {P ∈ [λ]<κ : κ(P ) ∈ S}. We have to show that B is stationary,
that is, B ∩ C 
= ∅ holds for every closed, unbounded set C. Assume that C
is closed, unbounded. Without loss of generality, κ ∩ P < κ holds for every
P ∈ C (Problem 9). For α < κ we define the increasing, continuous sequence
of elements of C as follows. Let P0 ∈ C be arbitrary. If 0 < α < κ is a limit
ordinal, then, of course, Pα =

⋃
{Pβ : β < α}. And for successor ordinals,

let Pα+1 be some element of C with Pα+1 ⊇ Pα and κ(Pα+1) > κ(Pα). This
done, we observe that {κ(Pα) : α < κ} is closed, unbounded, so there exists
an element of it in S and then we are done.

19. For ω1 ≤ α < ω2 let ϕα be a bijection between ω1 and α. Set, for ω1 ≤
α < ω2, γ < ω1, Pαγ = ϕα[γ] = {ϕα(ξ) : ξ < γ}. We claim (and this suffices)
that S = {Pαγ : γ < ω1 ≤ α < ω2} is stationary. To this end, by Problem
7(b), it suffices to show that S ∩C(f) 
= ∅ holds for every f : [λ]<ω → [λ]<ℵ1 .
Indeed, given f , there is some ω1 ≤ α < ω2 such that α is closed under f ,
that is, f(s) ⊆ α holds for every s ∈ [α]<ω. Repeating this argument for the
underlying set α, we get that there is some γ < ω1 such that ϕα[γ] = Pαγ is
closed under f . Indeed, set γ0 = 1 and inductively select γn+1 < ω1 such that
ϕα[γn+1] ⊇ f

[
ϕα[γn]

]
. Then γ = sup{γn : n < ω} is as required.

20. As ℵℵ0
2 = max

(
ℵ2, 2ℵ0

)
, see Problem 10.27(b), it suffices to show that

every closed, unbounded set C has cardinality at least 2ℵ0 . By Problem 7(b)
this can further be reduced to the case when C is of the form C(f) for some
f : [λ]<ω → [λ]<κ. Assume therefore that we are given such an f . Set T =
{α < ω2 : cf(α) = ω}, a stationary set in ω2. For α ∈ T let Aα = {gn(α) :
n < ω} be an ω-sequence of ordinals less than α converging to α. Let Bα be
the f -closure of Aα. Notice that Bα ⊇ Aα is a countable set.

We argue that the following statement suffices:
(+) If T ′ ⊆ T is stationary, then there exist x0, x1 and disjoint stationary
T0, T1 ⊆ T ′ such that for α ∈ T0, x0 ∈ Aα and x1 /∈ Bα hold and for α ∈ T1,
x1 ∈ Aα, and x0 /∈ Bα hold.

Indeed, assuming (+) we can recursively construct x(s) < ω2 and a station-
ary T (s) ⊆ T for every finite 0–1 sequence s such that x(s) ∈ Aα (α ∈ T (s))
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and x(s0) /∈ Bα (α ∈ T (s1)), x(s1) /∈ Bα (α ∈ T (s0)). This implies that if we
set

Ug =
⋂

{Bα : α ∈ T (g n), n < ω}

for g : ω → {0, 1}, that is for the continuum many infinite 0–1 sequences,
then {x(g n) : n < ω} ⊆ Ug and if s 
⊆ g then x(s) /∈ Ug, so the f -closed sets
{Ug : g ∈ ω{0, 1}} are distinct.

In order to show (+) we first reduce it to
(++) If T0, T1 ⊆ T are stationary, then there are some x < ω2 and stationary
T ′

0 ⊆ T0 and T ′
1 ⊆ T1 such that x ∈ Aα (α ∈ T ′

0), x /∈ Bα (α ∈ T ′
1).

Clearly, two applications of (++) give (+).
To show (++) we first argue that there are ℵ2 ordinals, {xβ : β < ω2}

such that for every xβ there are stationarily many α ∈ T0 that xβ ∈ Aα. [By
transfinite recursion. If {xγ : γ < β} is already constructed, ξ = sup{xγ :
γ < β} then for α ∈ T0, α > ξ there is some f(α) ∈ Aα, f(α) > ξ, and for
stationary many α, f(α) is the same by Fodor’s theorem (Problem 21.9). Now
this value can be taken as xβ .] Now for every α ∈ T1, α > sup{xβ : β < ω1},
as Bα is countable, there exists some β < ω1 that xβ /∈ Bα. Again, by Fodor’s
theorem, for stationary many α ∈ T1 this xβ is the same and this can be chosen
as the x in (++). [J. E. Baumgartner: On the size of closed unbounded sets,
Annals of Pure and Applied Logic 54(1991), 195–227]

21. (a) Assume that C ⊆ [λ]<κ is a closed, unbounded set. Choose P0 =
P ∈ C arbitrarily. For n = 0, 1, . . . choose Pn+1 ∈ C such that Pn+1 ⊇ Pn,
κ ∩ Pn+1 > |Pn|. If P = P0 ∪ P1 ∪ · · ·, then P ∈ C ∩ Z will hold.

(b) First we remark that it suffices to show that if S ⊆ Z is stationary and
κ < µ ≤ λ is regular, then S is the disjoint union of µ stationary sets. Indeed,
if this holds, and λ is singular (otherwise we are done) then we can write λ as
λ = sup{λα : α < cf(λ)} the supremum of regular cardinals. Decompose first
S as the union of cf(λ) disjoint stationary sets, then split the αth set into the
union of λα disjoint stationary sets.

In order to prove the claim, let fP : P → κ(P ) be injective for P ∈ S. For
α < µ set gα(P ) = fP (α) for α ∈ P . Notice that any given α < µ is contained
in almost every P ∈ S (Problem 3). By Problem 13 there are a γα and a
stationary Sα ⊆ S such that gα(P ) = γα < κ holds for P ∈ Sα. As µ > κ is
regular, there is a set B ⊆ µ of cardinality µ that γα = γ holds for α ∈ B.
Now {Sα : α ∈ B} are disjoint stationary subsets of S, indeed, if P ∈ Sα ∩Sβ

then γ = gα(P ) = gβ(P ), so fP (α) = fP (β) = γ would hold, contradicting
the injectivity of fP .

22. (a) If some S′ decomposed as S′ =
⋃
{Sα : α < κ} then we would get

S =
(
(S \ S′) ∪ S0

)
∪
⋃
{Sα : 1 ≤ α < κ}, a decomposition into κ stationary

sets.

(b) Indeed, if S ∩Z is stationary, then, by Problem 21(b), it decomposes into
κ stationary sets, and this contradicts part (a).
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(c) Assume that the statement fails. Then by Problem 13 we can select by
transfinite recursion on ξ < κ the distinct elements xξ and stationary sets
Sξ ⊆ S such that for P ∈ Sξ, f(P ) = xξ holds. But then, the κ stationary
sets {Sξ : ξ < κ} are disjoint.

(d) If not, then κ = µ+ for some cardinal µ. For P ∈ S we let fP : µ → P
be surjective. By part (c) for every α < µ there is a closed, unbounded set
Cα such that for P ∈ Cα ∩ S, fP (α) ∈ Qα holds, where Qα ∈ [λ]<κ. If we
set C =

⋂
{Cα : α < µ}, Q =

⋃
{Qα : α < µ}, then Q ∈ [λ]<κ and for the

elements P of the stationary, and so unbounded S ∩C we will have P ⊆ Q, a
contradiction.

(e) For almost every P ∈ S′, µP = |f(P )| < κ(P ), so µP ∈ P . By part (c),
there is a µ < κ such that for almost every P ∈ S′, µP ≤ µ < κ(P ) holds.
For these P we can set f(P ) ⊆ {xP

α : α < µ}. By part (c) again, for a closed,
unbounded set Cα we have that xP

α ∈ Qα for P ∈ Cα ∩ S with |Qα| < κ. Set
C =

⋂
{Cα : α < µ}, a closed, unbounded set and Q =

⋃
{Qα : α < µ}. Then

for P ∈ S′ ∩ C, that is, for almost every P ∈ S′, we have f(P ) ⊆ Q.

(f) First we show that κ(P ) is regular, in particular a cardinal, for a.e. P ∈ S.
Indeed, if not, then for a stationary S′ ⊆ S there are a µ(P ) < κ(P ) and
some fP : µ(P ) → κ(P ) with cofinal range. By part (c), for almost every
P ∈ S′, we have µ(P ) ≤ µ with some µ < κ, and by part (e) for every
α < µ for almost every P ∈ S′ we have fP (α) ∈ Qα, for some Qα ∈ [λ]<κ.
If Q =

⋃
{Qα : α < µ} then Q ∈ [λ]<κ and for almost every P ∈ S′ we have

κ(P ) ⊆ Q, which is impossible by Problem 4.
If κ(P ) = µ(P )+ held for stationary many P ∈ S, then, as µ(P ) < κ(P ),

we had, by part (c), that µ(P ) = µ for stationary many P ∈ S with some µ,
but that is impossible for then this stationary set would not meet the closed
and unbounded set {P : µ+ ≤ κ(P )} (see Problems 3, 9).

(g) Assume otherwise, that is, there is a stationary S′ ⊆ S such that for P ∈ S′

there is a closed, unbounded set CP ⊆ [P ]<κ(P ) such that S ∩ CP = ∅. By
part (e) for every Q ∈ [λ]<κ there exists some Q′ ⊇ Q, Q′ ∈ [λ]<κ such that
the following holds: for a. e. P ∈ S′ there is some R ∈ CP with Q ⊆ R ⊆ Q′.
If we now set Q∗ = Q ∪ Q′ ∪ Q′′ ∪ · · ·, then for a. e. P ∈ S′, Q∗ ∈ CP holds.
We have, therefore, that the set D = {Q ∈ [λ]<κ : for a.e. P ∈ S′, Q ∈ CP } is
unbounded. It is obviously closed (see Problem 8), and as D ∩ S = ∅ we get
a contradiction.

(h) By the previous parts we find that there is a closed, unbounded C ⊆ [λ]<κ

such that for P ∈ S ∩C we have that κ(P ) is inaccessible and S ∩ [P ]<κ(P ) is
stationary in [P ]<κ(P ). By Problem 7(b) there is some f : [λ]<ω → [λ]<κ such
that C(f)\{∅} ⊆ C. For s ∈ [λ]<ω let g(s) ⊇ f(s) be such that |g(s)|+1 ⊆ g(s)
(add every γ ≤ |f(s)| + 1 to f(s)). As C(g) ⊆ C(f), the above things hold
for C(g) as well. By Problem 7(a), C(g) ∩ S is unbounded, so we can choose
P ∈ C(g) ∩ S, P 
= ∅, with κ(P ) minimal. Notice that for s ∈ [P ]<ω we have
|g(s)| + 1 ⊆ g(s) ⊆ P , hence |g(s)| < κ(P ) so the restriction of g to [P ]<ω
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is a function [P ]<ω → [P ]<κ(P ). If now D ⊆ [P ]<κ(P ) is the set of elements
closed under this function, then D is closed, unbounded in [P ]<κ(P ). As S is
stationary there, there is Q ∈ D∩S, but then κ(Q) < κ(P ) and Q ∈ C(g)∩S,
a contradiction. [A. Hajnal., M. Gitik, Nonsplitting subset of Pκ(κ+), Journal
of Symbolic Logic, 50(1985), 881–894]

23. By Problem 10.20 we have
∣∣[λ]ℵ0

∣∣ > λ hence GCH gives
∣∣[λ]ℵ0

∣∣ = λ+.
Enumerate [λ]ℵ0 as {Aα : α < λ+} in such a way that Aα 
= Aβ holds
for α 
= β, and similarly enumerate the functions from [λ]<ω to [λ]ℵ1 as
{fα : α < λ+}. We define S the following way. For Y ∈ [λ]ℵ1 we let Y be an
element of S if and only if the following holds: Aα ⊆ Y implies that Y is closed
under fα. To show that S is stationary it suffices to show (by Problem 7(b))
that S ∩ C(f) 
= ∅ holds for every f : [λ]<ω → [λ]ℵ1 . Define the increasing,
continuous sequence {Yξ : ξ ≤ ω1} of elements of [λ]ℵ1 with Y0 ∈ [λ]ℵ1

arbitrary and such that for every ξ < ω1 the set Yξ+1 includes f [[Yξ]<ω] as
well as fα [[Yξ]<ω] for every α with Aα ⊆ Yξ. Then clearly Yω1 ∈ S ∩ C(f).
For the other property assume that U ⊆ S is an unbounded subset that is not
stationary. By Problem 7(b) again, there is some function f : [λ]<ω → [λ]ℵ1

that U ∩ C(f) = ∅. Let α be the ordinal that f = fα. As U is unbounded,
Aα ⊆ Y holds for some Y ∈ U . As Y ∈ S this implies that Y is closed under
fα, which shows U ∩ C(f) 
= ∅, a contradiction. [J. E. Baumgartner]

24. (a) A is obviously closed under any f : [A]<ω → [A]≤ℵ0 .

(b) If x ∈ A, then let f : [A]<ω → [A]≤ℵ0 be a function such that x ∈ f(s)
holds for every s ∈ [A]≤ℵ0 . Then, if B ∈ S is closed under f , then x ∈ B
holds, so x ∈

⋃
S.

(c) By Problem 7 a set S ⊆ [λ]<ℵ1 is stationary if and only if it intersects
every set of form C(f), where f : [λ]<ω → [λ]≤ℵ0 , and that is λ-stationarity
in the new sense.

(d) Let f : [B]<ω → [B]≤ℵ0 be a function. Fix x ∈ B. Let f ′ : [A]<ω → [A]≤ℵ0

defined by f(s) ∪ {x} for s ∈ [B]<ω and {x} otherwise. If P ∈ S, P 
= ∅ is
closed under f ′, then P ∩ B is closed under f , and obviously x ∈ P ∩ B so it
is nonempty.

(e) Assume that f : [B]<ω → [B]≤ℵ0 . For X ⊆ B let f∗(X) be the closure
of X, i.e., f∗(X) = f0(X) ∪ f1(X) ∪ · · ·, where f0(X) = X, and fn+1(X) =⋃
{f(s) : s ∈ [fn(X)]<ω} for n = 0, 1, 2, . . .. Notice that f∗(X) is countable

for X countable and f∗(X) =
⋃
{f∗(s) : s ∈ [X]<ω}. Set g(s) = f∗(s) ∩ A

for s ∈ [A]<ω. Choose P ∈ S such that P is closed under g. Set Q = f∗(P ).
Clearly, Q is closed under f . We claim that P = Q ∩ A, so Q ∈ T . Indeed,

Q ∩ A =
⋃

{f∗(s) ∩ A : s ∈ [P ]<ω} =
⋃

{g(s) : s ∈ [P ]<ω} = P.

(f) If the statement fails, then for every x ∈ A there is some fx : [A]<ω →
[A]≤ℵ0 such that F (a) 
= x holds for every a which is closed under fx. Set
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f(s) =
⋃{

fx(t) : {x} ∪ t ⊆ s
}

for every s ∈ [A]<ω. Notice that f(s) is countable, as it is the union of finitely
many countable sets. As S is stationary, there is some a ∈ S which is closed
under f . If now x = F (a) ∈ a, then for every t ∈ [a]<ω we have fx(t) ⊆
f
(
{x} ∪ t

)
⊆ a, as a is f -closed, that is, a is closed under fx, so F (a) 
= x,

contradiction. [S. Shelah, W. H. Woodin]
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The axiom of choice

1. By Cantor’s theorem κ < 2κ = ℵ0 (see, e.g., Problem 10.21), that is, κ is
finite, and then so is 2κ.

2. First we construct the functions fωα . For ωα = ω set fω = g where
g(n, m) = 2n(2m+1)−1. Notice that g(0, 0) = 0. Our intention is to construct
fωα by transfinite recursion on α in such a way that for β < α the function
fωα extends fωβ . Given fωα define fωα+1 as follows.

fωα+1(ωαn + ξ, ωαm + ζ) = ωαg(n, m) + fωα(ξ, ζ).

If α is limit then, using the above extension property, we can take

fωα =
⋃

{fωβ : β < α}.

Next we define fωα·n for 1 < n < ω by using fωα and composing it with the
following bijection h : ωα ·n → ωα (and its inverse); h(ωα ·m + ξ) = n · ξ + m
where m < n and ξ < ωα.

Finally, to construct fωα·n+γ from fωα·n for γ < ωα it suffices to give
a bijection h between ωα · n + γ and ωα · n (and then we can compose h,
fωα·n, and h−1). Let h be the following function. h(ωα · n + ξ) = ξ for ξ < γ,
h(ξ) = γ + ξ for ξ < ωα, and finally, h(ξ) = ξ for ωα ≤ ξ < ωαn.

3. It suffices to show that there is a surjection R → ω1 as for every 0 < α < ω2
there is a surjection from ω1 onto α. For this, if x ∈ R codes some ordinal
β < ω1 we map it to β, otherwise map it to 0. x codes β for example, if 〈ω, <〉
is a well-ordered set of order type β, where i < j if and only if the 2i3j-th
digit of x is 1. We map all reals to 0 that do not code an ordered set or they
do code, but the ordered set is not well ordered.

4. (a) We consider cases. Assume first that ℵ1 = c. We claim that there are
exactly c perfect sets. For this, it suffices to show that there are at most c
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closed sets, which is equivalent to showing that there are at most c open sets.
Every open set is the union of open intervals of rational endpoints, so, if I is
the set of open intervals of rational endpoints, then the power set of I, a set
of cardinality c can be mapped onto the set of open sets. The latter set, being
the surjective image of a set of cardinality c = ℵ1, itself is of cardinality at
most ℵ1, as claimed. Given this, one can define an uncountable set with no
perfect subsets via diagonalization.

If ℵ1 < c, then any subset of the reals of cardinality ℵ1 is obviously an
uncountable set with no perfect subsets.

Assume, finally, that ℵ1 
≤ c. By Problem 3, R has a surjection onto ω1.
c + c = c, as can be seen from the decomposition of any interval into two

subintervals. Therefore, R has a surjection onto a set of cardinality c + ℵ1.
But c + ℵ1 > c as c + ℵ1 ≥ c and c + ℵ1 = c would give ℵ1 ≤ c.

(b) Consider the Vitali decomposition of R, i.e., P = R/ ∼ where x ∼ y
if and only if x − y ∈ Q. If f : R → P is the mapping that sends x ∈ R into
its class in P, then f is an onto mapping. It is easy to give continuum many
reals with pairwise irrational difference, so |R| ≤ |P|. Assume that |R| < |P|
does not hold, i.e., |R| = |P|. Then, as R can be ordered, the set P can also
be ordered, let < be an ordering of it. Now let

A = {x ∈ R \ Q : x + Q < (−x) + Q}.

Then A cannot be measurable, as the mapping x �→ r − x bijects A onto its
relative complement in R \ Q for every rational number r, and therefore A
cannot have relative density greater than half in any rational interval, and the
same also holds for its complement. [W. Sierpiński: Sur une proposition qui
entrâıne l’existence des ensembles non measurables, Fund. Math., 34(1947),
157–162]

(c) If there are no two disjoint stationary sets in ω1, then by the second
solution of Problem 20.19, there is no subset of R with cardinality ℵ1. The
argument there requires to prove that if A0, A1, . . . ⊆ ω1 all include closed,
unbounded subsets, then A0 ∩ A1 ∩ · · · is nonempty. For this, we need to fix
club sets witnessing this, and this requires ACω. Now, if ℵ1 
≤ c then we can
conclude as in part (a).

5. Assume that m = kn. In order to prove Cn let {Ai : i ∈ I} be a collection
of n-element sets. Let S be some set with k elements. As {Ai × S : i ∈ I} is
a set of m-element sets, we can apply Cm to get a choice function g. Finally,
just project g to get the required function f : let f(i) = x, where g(i) = 〈x, y〉
for some y ∈ S.

6. Let F = {Ai : i ∈ I} be a system of 4-element sets. Let G be the family of
all 2-piece, 2-element set partitions of the elements of F , that is, {X, Y } ∈ G
if and only if X, Y ∈ [Ai]2 for some i ∈ I and X ∩ Y = ∅.

Let H be the set of all two-element subsets of all Ai-s, that is,
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H =
⋃{

[Ai]2 : i ∈ I
}
.

By hypothesis, there is a choice function g for G, and another, h for H. We
are going to describe, in terms of g, h, a choice function f for F . Given i ∈ I,
there are 3 partitions in G corresponding to Ai. Given one of them {X, Y },
evaluate h

(
g
(
{X, Y }

))
. This is an element of Ai so we select 3 times some

element of Ai.
We now consider cases. If the same point is selected 3 times then let it be

f(i). If a point is selected twice and another once, then let f(i) be the point
chosen twice. Finally, if three different points are chosen, then let f(i) be the
remaining point. [A. Tarski]

7. Let F = {Ai : i ∈ I} be a system of 6-element sets.
Let G,H be the set of all two-element, respectively all three-element sub-

sets of all Ai-s, that is,
G =

⋃{
[Ai]2 : i ∈ I

}
,

H =
⋃{

[Ai]3 : i ∈ I
}
.

Let g, h be choice functions for G,H.
We first argue that it suffices to find somehow a function F such that F (i)

is a nonempty, proper subset of Ai. Indeed, from F, g, h we can construct a
choice function for F as follows. If F (i) is a singleton, let its only element be
f(i). If |F (i)| = 2, apply g to select an element of it. If |F (i)| = 3, apply h
to select an element of it. If |F (i)| = 4, apply g to select an element of its
complement. If |F (i)| = 5, let f(i) be the only element of its complement.

To find a function F as described in the previous paragraph let G be a
choice function on those 3-element sets that occur as 3-piece partitions of
some Ai. For every such partition {X, Y, Z} of some Ai we can canonically
choose an element as follows. Set e

(
{X, Y, Z}

)
= g

(
G
(
{X, Y, Z}

))
. This way

we associate with every such partition an element from Ai. As there are 15
such partitions we select 15 times an element of Ai. Let F (i) be the set of those
elements chosen at least 3 times. Then clearly 1 ≤ |F (i)| ≤ 5. [A.Mostowski:
Axiom of choice for finite sets, Fundamenta Mathematicae, 33(1945), 137–
168]

8. Let {Ai : i ∈ I} be a system of nonempty, finite sets. By assumption, the
set

⋃
{Ai : i ∈ I} can be ordered. Now let, for i ∈ I, f(i) be equal to the least

(by the presumed ordering) element of Ai. Clearly, f is a choice function.

9. By induction, we can assume that n = 1. Assume that |A| = κ, |B| = λ,
and F : A ∪ {x} → B ∪ {y} is a bijection. We seek for a bijection between A
and B. If F (x) = y we are done, F A is a bijection from A to B. Otherwise,
if F (x) = y′, F (x′) = y, let F ′ be equal to F on A − {x′}, and F ′(x′) = y′.
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10. As ℵ0 ≤ κ holds κ can be written as κ = λ + ℵ0 for some cardinal λ. We
can then write κ + ℵ0 = (λ + ℵ0) + ℵ0 = λ + (ℵ0 + ℵ0) = λ + ℵ0 = κ.

11. Clearly, κ + 1 ≤ 2κ holds for every κ. [For every set S the power set
P(S) contains all one-element subsets of S plus the empty set.] Assume we
have equality for some κ > 1. Then κ must be infinite. By assumption, for
some set A of cardinality κ and for some element p /∈ A we have a bijection
F : P(A) → A ∪ {p} and we can assume F (A) = p. Define the elements
a0, a1, . . . as follows. a0 = F (∅), an+1 = F ({a0, . . . , an}). Induction shows
that the elements a0, a1, . . . are distinct. That is, ℵ0 ≤ κ, so by Problem 10
we have κ+1 ≤ κ+ℵ0 = κ < 2κ, a contradiction. [E. Specker: Verallgemeinerte
Kontinuumshypothese und Auswahlaxiom, Archiv der Mathematik, 5 (1954),
332–337]

12. Using Problem 10 and the fact that κ ≤ 2κ, we get

κ + 2κ ≤ 2κ + 2κ = 21+κ = 2κ.

13. For transitivity, assume that a � b � c. Then a + c = a + (b + c) =
(a + b) + c = b + c = c, so a � c holds as well.

As for the second statement, for one direction, if ℵ0κ ≤ λ then λ = ℵ0κ+µ
for some cardinal µ. Then,

κ + λ = κ + (ℵ0κ + µ) = (κ + ℵ0κ) + µ = (1 + ℵ0)κ + µ = ℵ0κ + µ = λ.

For the other direction, let A, B be disjoint sets with |A| = κ, |B| = λ,
and assume that f : A ∪ B → B is an injection. Then, for j > 0 we have
A∩f j [A] ⊆ A∩B = ∅, so f i[A]∩ f i+j [A] = ∅, that is, the sets f [A], f2[A], . . .
are disjoint subsets of B of cardinal κ. This shows that ℵ0κ ≤ λ.

14. In the former case κ+κ = 2κ = 2(ℵ0λ) = (2ℵ0)λ = ℵ0λ = κ. In the latter
case we have 1+λ = λ by Problem 10, and so κ+κ = 2λ+2λ = 21+λ = 2λ = κ.

15. We have to show that if A, B are sets and A × {0, 1} ∼ B × {0, 1}, then
A ∼ B. We can assume that A, B are disjoint. Let f : A×{0, 1} → B×{0, 1}
be a bijection.

We construct an edge-colored, directed graph as follows. The vertices are
the sets of the form

{
〈x, i〉, 〈y, j〉

}
, where f

(
〈x, i〉

)
=
(
〈y, j〉

)
, that is, we

identify 〈x, i〉 and 〈y, j〉. Draw an edge from 〈x, 0〉 to 〈x, 1〉 and color it red
(for x ∈ A), and draw an edge from 〈y, 0〉 to 〈y, 1〉 and color it blue (for
y ∈ B). (So every point in either A or B is represented as an edge of this
graph.) We have a directed graph in which every vertex is on exactly one red
and one blue edge. Therefore, its connected components are finite cycles of
even lengths (possibly of length 2) and 2-way infinite paths. Our task is to
determine a bijection between the red and the blue edges.
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We do this individually for the components. There is no problem (actually,
no choice) in the case of a cycle of length 2: map the edges to each other. Also,
if the edges of a cycle or an infinite path are consecutively directed, i.e., it is
a directed cycle or path, we define the bijection, if the red edge

−−−−−−−→〈x, 0〉〈x, 1〉 is
followed by the blue

−−−−−−−→〈y, 0〉〈y, 1〉, then map x to y.
Otherwise, there are some pairs of edges with the same vertex as the ends

of the arrow, i.e., of the type −→uv and ←−vw. Pair all these edges to each other,
and cut them out from the cycle/path in question. This means that, using the
above notation, we remove v and identify u and w (and of course, the point
represented by −→uv is mapped to the point represented by ←−vw). Notice that, as
we remove pairs of consecutive edges, in the remaining part of the cycle or
path, the edges again come interchangingly as red, blue, red, etc. Repeat this
operation inductively.

In the case of finite cycles in finitely many steps, we either pair all the
edges or eventually we get a fully directed cycle, and this case is handled as
above.

In the case of infinite paths, if we repeat this argument infinitely many
times, either all the edges get eventually paired up, in which case we are done,
or there remains a finite, or infinite part. If the remaining part is infinite, the
edges are necessarily consecutively directed and we are done with the above
argument.

If the remaining part has an even number of edges, we can pair them up
starting with either end.

If, however, the remaining part has an odd number of edges, then it has
a medium edge, so we identified an edge in the path, and we can use that to
define a pairing of the edges (in the original) path, for example if it is a red
edge −→uv then map it to the next edge (that is, to ←−vw or −→vw), and continue
this bijection both ways. [F. Bernstein: Untersuchungen aus der Mengenlehre,
Inaugural Dissertation, Halle, 1901. This proof is from W. Sierpiński: Sur
l’égalité 2m = 2n pour les nombres cardinaux, Fund. Math. 3(1922), 1–6.]

16. Let A be a set of cardinality κ. As A is infinite for every natural number n
there are subsets of A of cardinality n. Let f(n) = {X ⊆ A : |X| = n}. Then
f(n) is a nonempty subset of P(A) so f is an embedding of the set of natural
numbers into P

(
P(A)

)
.

17. If α is a countable ordinal, then there are subsets of (Q, <) of order type
α. [As we are not assuming the axiom of choice this is a little delicate. Let
〈A,≺〉 be an ordered set of order type α. Enumerate A as A = {ai : i < ω}
and Q as Q = {qi : i < ω}. Define the order preserving f : A → Q as follows.
f(a0) = q0, and then by induction let f(ai+1) be qj , where j is minimal with
respect to the condition that this choice be consistent with order preservation.]
Let F be the function that maps every α < ω1 to the set of all subsets of Q
with order type α. By the above argument, F is injective. We have that
F (α) ⊆ P(Q) that is, F maps into P

(
P(Q)

)
.



476 Chapter 30 : The axiom of choice Solutions

18. If A is some set and 〈x, y〉 ∈ A×A, then by the definition of ordered pairs
〈x, y〉 =

{
{x}, {x, y}

}
∈ P

(
P(A)

)
. This implies that |A × A| ≤ 22|A|

.

19. If |A| = κ and β is an ordinal with |β| ≤ κ, then there exist binary relations
R ⊆ B × B for some B ⊆ A that well-order B into type β. We can recover β
from R; therefore, the mapping

β �→
{
R ⊆ A × A : R orders some subset of A into type β

}
is an injective mapping of those ordinals into P(A×A). We cannot inject all or-
dinals (a proper class) into a set, because then by the axiom of comprehension
(which states that if X is a set and ϕ is a formula with one free variable, then
the elements of X that satisfy ϕ form again a set) the image is a set, and then
the inverse is a mapping from that set to the class of ordinals which contra-
dicts the axiom of replacement. This shows that H(κ) exists with

∣∣H(κ)
∣∣ 
≤ κ.

By the above argument we have an injection of the ordinals below H(κ) into
P(A × A), and by the previous problem

∣∣H(κ)
∣∣ ≤ 2κ·κ ≤ 222κ

. [F.Hartogs:
Über das Problem der Wohlordnung, Matematische Annalen, 76(1915), 436–
443]

20. Let A be an infinite set, we show it has a well-ordering. By Hartogs’
lemma (Problem 19) there is a well-ordered set 〈B,≺〉 such that |B| 
≤ |A|.
We show that |A| ≤ |B| and this suffices, for the ordering on B can be pulled
back to A. We can assume that A, B are disjoint. By assumption, there is
an injection F : (A ∪ B) × (A ∪ B) → A ∪ B. If x ∈ A, then the mapping
y �→ F (x, y) cannot map into A, as there is no injection from B into A. There
are, therefore, elements y ∈ B with F (x, y) ∈ B. Let yx be the least (by ≺,
the well-ordering of B) such element. Then x �→ F (x, yx) is an injection from
A into B.

21. It suffices, by Problem 20, to show that GCH implies κ2 = κ for every
infinite cardinal κ. Assume κ is infinite. As κ ≤ κ + 1 < 2κ holds by Problem
11 we have κ + 1 = κ, so ℵ0 ≤ κ (Problem 13). Next, κ ≤ κ + κ ≤ 2κ + 2κ =
2κ+1 = 2κ as κ + 1 = κ. We have, therefore, either κ + κ = κ or κ + κ = 2κ.
In the latter case, we had 2κ = 2κ = 21+κ = 2 · 2κ so we could deduce,
using Problem 15, that κ = 2κ, a contradiction to Problem 11. We have,
therefore, κ + κ = κ. Also, κ ≤ κ2 ≤ 2κ2κ = 2κ+κ = 2κ so either κ2 = κ
or κ2 = 2κ, and we can assume the latter. Let S be a set of cardinality κ.
We show that it has a well-ordering (and so by Problem 2 κ2 = κ holds). Fix
some bijection F : P(S) → S × S. As ℵ0 ≤ κ there are infinite well-orderable
sets X ⊆ S. If we give a method to select an element from S \ X for every
infinite well-ordered 〈X,≺〉 with X ⊆ S, X 
= S, we can copy the proof of the
well-ordering theorem. Here is what we do for such an X. Let f : X ×X → X
be the injection from Problem 2. For x ∈ X, set x ∈ Y if and only if f−1(x)
is defined, and x /∈ F−1

(
f−1(x)

)
. F (Y ) cannot be an element of X × X as
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if F (Y ) = f−1(y) then y ∈ Y holds if and only if y /∈ Y . We get, therefore,
that F (Y ) = 〈u, v〉 where either u ∈ S \ X, in which case we select u, or else
v ∈ S \ X and then we select v. [A. Lindenbaum, A. Tarski: Communication
sur les recherches de la Théorie des Ensembles, Comptes Rendus des Séances
de la Société des Sciences et des Lettres de Varsovie, 19 (1926), 299–330. First
published proof given in W. Sierpiński: L’hypothèse généralisée du continu et
l’axiome du choix, Fund. Math. 34 (1947), 1–5.]

22. By the axiom of foundation every set is a subset of some Vα of the cu-
mulative hierarchy. It suffices, therefore, to show that every Vα can be well
ordered under the stated condition. Given Vα, let g be a function defined on
the nonempty subsets of Vα such that g(X) is always a finite, nonempty sub-
set of X. From g, we will construct a well-ordering <α of Vα. Actually, we
construct by transfinite recursion on γ ≤ α, a well-ordering <γ of Vγ . Let
<0 be the only ordering of the one-element V0. If γ ≤ α is limit and <δ is
already defined for all δ < γ we let, for x, y ∈ Vγ , x <γ y if and only if either
rk(x) < rk(y) or else δ = rk(x) = rk(y) and x <δ y. That is, we endow each
Vδ \

⋃
{Vξ : ξ < δ} with the ordering <δ and place them one after the other.

Assume now that γ = δ + 1 and we have the well-ordering <δ on Vδ. Now
Vγ = P(Vδ). The proof of the well-ordering theorem gives a well-ordering of
Vγ once we give a choice function f on all nonempty subsets of Vγ . We define
f as follows. If X ⊆ Vγ , X 
= ∅, our g gives a finite, nonempty subset g(X)
of X, say {Y1, . . . , Yn}. Notice that each Yi is a subset of Vδ, which is already
well ordered by <δ. We can now select the lexicographically least Yi as f(X).
[H. Rubin, J. Rubin: Equivalents of the Axiom of Choice, North-Holland,
1963]

23. Let {Ai : i ∈ I} be a system of nonempty sets; it suffices (by Problem
22) to show that there is a function selecting a nonempty finite subset of
each. We can assume, without loss of generality, that the Ai’s are disjoint.
Let k be an arbitrary field, and adjoin all elements of X =

⋃
{Ai : i ∈ I} as

indeterminates to k. We get the field k(X) of rational functions of X. Call a
polynomial p ∈ k[X] i-homogeneous of degree d if the sum of the exponents of
elements of Ai is d in every monomial in p. Call a rational function p

q ∈ k(X)
i-homogeneous of degree d if there is some n that p is i-homogeneous of degree
n + d and q is i-homogeneous of degree n. Let K be the subfield of k(X)
generated by k and all elements of the form y/x where x, y ∈ Ai (i ∈ I).
Clearly, every element of K is i-homogeneous of degree 0 for every i. Let V
be the vector space over K generated by X. By assumption, V has a basis B.
For i ∈ I, x ∈ Ai, x can uniquely be written as

x =
∑

b∈B(x)

αb(x)b,

where B(x) is a finite subset of B and αb(x) is a nonzero element of K. If
y ∈ Ai is another element, then
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y =
∑

b∈B(y)

αb(y)b =
∑

b∈B(x)

y

x
αb(x)b,

so we get that B(x) = B(y) and αb(y) = y
xαb(x). Thus, the ratio αb(x)/x

depends only on i, not on x ∈ Ai. As αb(x) ∈ K, the rational function αb(x)/x
has homogeneous i-degree −1. Therefore, some variables from Ai must occur
in the denominator. Let Bi be the set of those variables for all b ∈ B(x). Then,
for every i ∈ I, Bi is a nonempty finite subset of Ai and we are done. [A. Blass:
Existence of bases implies the axiom of choice, Axiomatic Set Theory (J.E.
Baumgartner, D.A. Martin, S. Shelah, eds), Contemporary Mathematics, 31,
1984, 31–33]

24. One direction is easy: if the axiom of choice is assumed, X is some graph on
a set V 
= ∅, then the set of those cardinals, for which there is a good coloring
of X, is a well-ordered set of cardinals, with |V | as the largest element. It has,
therefore, a smallest element, and that is the chromatic number of X.

For the other implication assume that there is a cardinal κ that cannot
be well ordered. There is, by Hartogs’ lemma (Problem 19) an ordinal ϕ such
that |ϕ| 
≤ κ. Notice that κ 
≤ |ϕ| also holds (as otherwise κ would be well
orderable). Let A be some set of cardinality κ. Let the vertex set V of our
graph X be A × ϕ. Join two vertices 〈x, y〉 and 〈x′, y′〉 if and only if x 
= x′

and y 
= y′ both hold. Notice that for this graph both projections 〈x, y〉 �→ x
and 〈x, y〉 �→ y are good colorings, therefore if µ, the chromatic number of
X exists, then µ ≤ κ, |ϕ|. As |ϕ|, κ are incomparable, equality cannot hold,
so µ < κ, |ϕ|. As µ < |ϕ|, µ is a well-orderable cardinal. By the definition
of chromatic number there is a decomposition A × ϕ =

⋃
{Ai : i ∈ I} into

independent vertex sets with |I| = µ.
Consider first the case when for every x ∈ A there is some i ∈ I with Ai

intersecting {x} × ϕ in more than one element. Let I(x) be the set of these
indices i, so I(x) ⊆ I, nonempty. Now I(x) ∩ I(x′) = ∅ holds for x 
= x′,
indeed, otherwise we could find 〈x, y〉, 〈x′, y′〉 ∈ Ai for some i with x 
= x′,
y 
= y′, an impossibility. As I can be well ordered, we can choose the least
element (by that ordering) of each I(x), let this be f(x). Then f : A → I is
an injection, contradicting µ < κ.

Finally, we consider the case that there is some x ∈ A such that Ai ∩
({x} × ϕ) has at most one element for every i ∈ I. Then the mapping α �→ i(α)
for α < ϕ, where 〈x, α〉 ∈ Ai(α), will be an injection ϕ → I which contradicts
µ < |ϕ|. [F.Galvin, P.Komjáth: Graph colorings and the axiom of choice,
Periodica Math. Hung. 22 (1991), 71–75]

25. Assume, toward a contradiction, that A is a set that cannot be well or-
dered. Let κ = H(A) be its Hartog’s ordinal (see Problem 19). We notice that
κ is a cardinal and |A| and κ are both smaller than their product, |A|κ. Indeed,
|A| ≤ |A|κ and κ ≤ |A|κ are obvious, and equality in either case would give
either |A| ≤ κ or κ ≤ |A|, which are ruled out by the non-well orderability of
A and by the Hartog’s property of κ, respectively.
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On the set A × κ define the following set mapping. For 〈x, α〉 ∈ A × κ,
let f(x, α) = {x} × α. Notice that |f(x, α)| = |α| < κ < |A × κ| by the
above remark. Assume by Hajnal’s theorem that X ⊆ A × κ is a free set of
cardinality |A×κ|. For every x ∈ A, X intersects {x}×κ in at most one point,
so the projection to the first coordinate shows |X| ≤ |A|, which contradicts
|A| < |A×κ|. [Norbert Brunner: Set-mappings on Dedekind sets, Notre Dame
Journal of Formal Logic, 30(1989), 268–270]

26 Let R = A0∪A1∪· · · be a decomposition into countable sets. By Problem 3
there is a surjection f : R → ω1. If Bi = f [Ai] (i < ω) then ω1 = B0∪B1∪· · ·
is a decomposition of ω1 into the union of countably many countable sets.

For the second claim we first observe that there is a countable subset B
with sup(B) = ω1. Indeed, if no Bi satisfies this, then βi = sup(Bi) < ω1
for each of them, but then B = {β0, β1, . . .} is as required. As by Hausdorff’s
theorem there is a cofinal ω-sequence in B, we are done.

27. Assume that ω2 = A1∪A2∪· · · where every Ai is countable. We may as well
assume that the sets are disjoint (otherwise replace Ai by Ai\(A1∪· · ·∪Ai−1)).
Every Ai inherits a well-ordering from ω2, let its order type be δi. Clearly,
each δi is countable. We can map Ai onto

[δ0 + · · · + δi−1, δ0 + · · · + δi)

(where δ0 = 0) by mapping the αth element of Ai to δ0 + · · ·+ δi−1 + α. This
will map ω2 = A1 ∪ A2 ∪ · · · to δ1 + δ2 + · · · = lim{δ1 + · · · + δi : i < ω}. The
latter ordinal is the increasing limit of countable ordinals; it is therefore at
most ω1. So we reached an embedding of ω2 into ω1, a contradiction. [T. Jech:
On hereditarily countable sets, Journ. Symb. Logic, 47(1982), 43–47]
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Well-founded sets and the axiom of foundation

1. (a) → (b) If we are given a partially ordered set 〈P, <〉, then define R(x, y)
iff y < x. Then the condition for DC holds, so we get that there are a0, a1, . . .
with R(a0, a1), R(a1, a2), . . ., i.e., · · · < a1 < a0.

(b) → (a) Assume that we are given the binary relation R on the nonempty
set A such that for every x ∈ A there is some y ∈ A with R(x, y). Let P be the
set of all finite sequences 〈a0, . . . , an〉 where a0, . . . , an are elements of A and
R(a0, a1), . . . , R(an−1, an) all hold. Partially order P by making 〈b0, . . . , bm〉 <
〈a0, . . . , an〉 if and only if 〈b0, . . . , bm〉 is a proper end-extension of 〈a0, . . . , an〉,
i.e., m > n and bi = ai holds for 0 ≤ i ≤ n. P is clearly nonempty (it contains
the one-element sequences) and it has no minimal element, as 〈a0, . . . , an〉
has proper end-extensions, for example, 〈a0, . . . , an, an+1〉 where an+1 any
element for which R(an, an+1) holds. There is, by (b), an infinite decreasing
chain in 〈P, <〉 and this gives a sequence a0, a1, . . . of elements of A such that
R(ai, ai+1) holds for i = 0, 1, . . ..

(b) → (c) Assume that a partially ordered set 〈Q, <〉 is ill founded. Then
there is a nonempty P ⊆ Q with no minimal element. By (b) there is an
infinite descending chain in 〈P, <〉, therefore in 〈Q, <〉.

(c) → (b) If a partially ordered set 〈P, <〉 has no minimal element, then it
is certainly not well founded so by (c) there is an infinite descending chain in
〈P, <〉.

2. One direction is obvious: assume that there is a monotonic ordinal-valued
function f on P and Q ⊆ P is nonempty. Pick p ∈ Q with f(p) minimal. Then
p is a minimal element in Q: should q < p hold for some q ∈ Q we would get
f(q) < f(p), contradicting the minimality of f(p).

Assume now that 〈P, <〉 is well founded. By transfinite recursion on α we
select the subsets Pα ⊆ P as follows. P0 is the set of minimal elements of
〈P, <〉. In general, Pα is the set of minimal elements of

P \
⋃

β<α

Pβ .
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By well foundedness, Pα is nonempty, so long as the above set is nonempty,
and obviously these sets are disjoint. So eventually we decompose P as P =⋃
{Pα : α < ϕ} for some ordinal ϕ. Assume that p < q are in P and q ∈ Pα.

Then q is a minimal element in the corresponding set, so p cannot be in that
set, hence p ∈ Pβ for some β < α. We can, therefore, define f(p) = α iff
p ∈ Pα.

3. By the well-ordering theorem we can enumerate P as P = {pα : α < ϕ} for
some ordinal ϕ. Put pα into Q iff there is no β < α with pα < pβ .

We show that Q ⊆ P is as required.
〈Q, <〉 is well founded: if there is a decreasing chain · · · < q1 < q0 in Q,

that is, · · · < pα1 < pα0 , then, by the well-ordering property of ordinals, we
have αn < αn+1 for some n, that is, pαn

is greater than the later pαn+1 , a
contradiction.

Q is cofinal: assume that p ∈ P . Choose pα ≥ p with α minimal. Then
pα ∈ Q, indeed, otherwise, there is some p ≤ pα < pβ with β < α, but that
contradicts the minimal choice of α.

4. The counterexample will be built on the Cartesian product ω1 × ω1. We
make 〈α, β〉 ≺ 〈α′, β′〉 if and only if α < α′ and β > β′. In a supposed in-
finite decreasing/increasing sequence the first/second coordinates would give
an infinite decreasing sequence of ordinals, which is impossible. Assume, to-
ward a contradiction, that ω1 × ω1 = A0 ∪ A1 ∪ A2 ∪ · · · is a decomposition
into countable many antichains. For every α < ω1 there is some natural num-
ber i(α) such that for uncountably many β we have 〈α, β〉 ∈ Ai(α). By the
pigeon hole principle there are ordinals α < α′ and some number i that
i = i(α) = i(α′) holds. Pick an 〈α′, β′〉 ∈ Ai. As there are arbitrarily large β
with 〈α, β〉 ∈ Ai we can select with β > β′ and then we get 〈α, β〉, 〈α′, β′〉 ∈ Ai

that is, 〈α, β〉 ≺ 〈α′, β′〉, a contradiction.

5. Indeed, the function f constructed in the solution of Problem 2 has this
property; if f(p) = α and β < α then p is an element of Pα ⊆

⋃
{Pγ : γ ≥ β}

and by the well foundedness of 〈P, <〉 there is a minimal element q of this
latter set below p so q ≤ p and q ∈ Pβ . Clearly, q < p as f(q) 
= f(p).

Toward unicity, assume that r0 and r1 both have the properties described
in the problem and r0 
= r1. Then {x ∈ P : r0(x) 
= r1(x)} is nonempty, so
there is a minimal element p in it. But then both r0(p) and r1(p) are the least
strict upper bound for {r0(x) : x < p} = {r1(x) : x < p}. We get therefore
r0(p) = r1(p) and this gives a contradiction to the choice of p.

6. If T ⊆ FS(κ) is a tree, R(T ) = α, and r is a rank function witnessing this,
then by |FS(κ)| = κ implies |T | ≤ κ, and as r assumes every value ≤ α we
have |α + 1| ≤ κ, i.e., α < κ+.

We prove the other statement by transfinite induction on α.
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For α = 0 we can (and must) take the one-element tree, that is, the one
consisting of ∅, the empty sequence.

Assume that α < κ+ and T ⊆ FS(κ) is a tree with R(T ) = α. Let T ′

be the tree consisting of the empty string plus all strings of the form 0̂ s for
s ∈ T . Clearly, T ′ is also well founded. If r, r′ are the rank functions assigned
to T , T ′, respectively, then by induction on r(s) we get that r′(0̂ s) = r(s)
holds for every s ∈ T , so r′(0) = α, and finally r′(∅) = α + 1.

Assume finally that 0 < α < κ+ is a limit ordinal, and we have the
construction for every ordinal less than α. Enumerate α, that is, the ordinals
below α, as α = {β(i) : i < κ} (with possible repetitions). For i < κ let Ti

be a tree with R(Ti) = β(i). Let the tree T consist of ∅, the empty string,
and of the strings of the form î s for s ∈ Ti. T is obviously well founded (all
but the first elements of a putative infinite decreasing sequence would be in
some Ti). Let r be the rank function of T and ri that of Ti. We again get that
r(î s) = ri(s), so r(i) = β(i) and hence

R(T ) = r(∅) = sup{β(i) + 1 : i < κ} = α.

7. Let r, r′ be the rank functions for T , T ′. We construct the appropriate
f : T → T ′ by recursion on the level, and during the recursion we keep the
property r(x) ≤ r′(f(x)). First map the root of T to the root of T ′. Extend f
from level n to level n + 1 by keeping the condition r(x) ≤ r′ (f(x)) for every
x. This is possible as if we have r(x) ≤ r′ (f(x)) for some x ∈ T , then the
left-hand side is the strict smallest upper bound of all values r(y) for x � y,
the right-hand side is the strict smallest upper bound of similar values r′(z)
for f(x) � z, so for each y in the former set we can choose an appropriate f(y)
in the latter set with r(y) ≤ r′(f(y)).

8. Using the previous problem it suffices to show that if T ′ is ill founded, then
T  T ′ holds for any tree T . Indeed, if ∅ = y0 � y1 � · · · is an infinite branch
in T ′, then we can set f : T → T ′ where f(x) = yn whenever x is on level n
in T .

9. Irreflexivity and trichotomy are clear. For transitivity assume that s <KB
t <KB u where

s = s(0)s(1) · · · s(n), t = t(0)t(1) · · · t(m), and u = u(0)u(1) · · ·u(k).

We have to show that s <KB u holds. There are several cases to consider.
If s extends t, t extends u, then obviously s extends u and we are done. If
s extends t and t(i) < u(i) at the first difference, then clearly s(i) < u(i)
also holds, and that is where the first difference occurs. Next, assume that
s(i) < t(i) holds at the first difference and t extends u. Then either s extends
u (if u is so short that u(i) does not exist) or else s(i) < u(i) = t(i) and this is
the least difference, we are done in either case. Assume finally that s(i) < t(i)
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holds at the least difference of s, t and t(j) < u(j) holds at the least difference
of t, u. If i = j then s(i) < t(i) < u(i) hold and i is the place of the first
difference of s and u. If i < j then s(i) < t(i) = u(i) hold, and j is the place
of the first difference, if j < i then s(j) = t(j) < u(j) hold, and it is the place
of the first difference.

Concerning the other statement first notice that if T is not well founded
then there is a infinite chain s0 � s1 � s2 � · · · and this itself constitutes a
<KB-descending sequence. For the other direction assume that s0, s1, s2, . . . is
a <KB-descending sequence. Only s0 can be the empty sequence. Therefore,
s1(0), s2(0), . . . all exist. As we have a <KB-descending sequence, we must
have s1(0) ≥ s2(0) ≥ · · ·, so si(0) stabilizes from some point on: si(0) = t(0)
for i ≥ n0. Only the first of these elements, sn0 can possibly be of length one,
for the rest we have that

sn0+1(1) ≥ sn0+2(1) ≥ · · ·

holds, and that must stabilize again from some point: si(1) = t(1) for i ≥
n1. Repeating this argument we get an infinite string t = t(0)t(1) · · · whose
every finite initial segment is the initial segment of some si. Therefore, these
segments are elements of T , and they form an infinite decreasing sequence in
T as was needed.

10. (a) Assume that W has no winning strategy. That is, at the starting
position, W has no winning strategy. He cannot make a step after which he
will possess a winning strategy as this would mean that he had one at the
beginning. After W’s first step, B can always answer that W still won’t have a
winning strategy. Indeed, if for every answer of B, W could produce a winning
strategy, by combining them into one strategy, he could get a winning strategy
outright. This argument gives that B can forever prolong the situation that W
has no winning strategy. But this strategy must be a winning strategy for B,
as the game certainly ends in finitely many steps (the trees are well founded),
and otherwise if the play was a win for W then the last move is obviously
made by W and he, therefore, has a winning strategy at the very last moment
(before making the final, and winning, move).

(b) In virtue of (a) it suffices to derive a contradiction from the assumption
that B has a winning stategy. Let σ be such a strategy. Let T0, T1, . . . be trees,
isomorphic to the tree on which the original game is played. We place a pawn
on the root of every Ti. At every step, one of the pawns is moved one step
up. We also have players p0, p1, p2, . . .. p0 is a moron, he makes a move on T0,
whenever asked for. Each pi for i ≥ 1 sees only Ti−1 and Ti, pi believes that
she is B, she thinks that Ti−1 is TW and Ti is TB and she playes according to
σ. We also have some function f(α) that tells us where the game is played at
moment α.

First f(0) = 0 and p0 makes an arbitrary move on T0. Next f(1) = 1.
In general, if f(α) = i > 0, then player pi wakes up and investigates Ti−1
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and Ti. If she observes that one of the pawns has been moved up one step
since her last action, then she answers according to σ. If she moves on Ti then
we let f(α + 1) = i + 1, otherwise (if she moves on Ti−1 or passes) we let
f(α + 1) = i − 1. If, however, she observes that there was no movement then
she passes and we let f(α + 1) = i − 1. When f(α) = 0, p0 makes a step on
T0, and we define f(α + 1) = 1. Observe that if there is a pass by a pi then
everybody will pass until p0 makes a move.

Notice that f cannot attain the same value infinitely many times as Ti is
well founded and if the pawn on it reaches a terminal node, then pi+1 would
observe in the next step that she lost, although she played according to σ. We
get, therefore, that f(α), that is, the center of action, must tend to infinity.
Then we write α = ω, f(ω) = 0, and again have p0 make a move. This way
we can continue the game so long as α < ω2. But this is impossible, for then
at some step α < ω2 the pawn on T0 must reach a terminal node, which is a
contradition, as we have seen. [Fred Galvin]

11. Let 〈P, <〉 consist of an increasing sequence x0 < x1 < · · ·. Let 〈Q, <〉
contain one largest element, y, plus a chain Ln of length n, for every positive
natural number n. We make the chains Ln incomparable, but smaller, of
course, than y. It is obvious that both 〈P, <〉 and 〈Q, <〉 are well founded
(every element in 〈P, <〉 and all but one elements in 〈Q, <〉 have finitely many
elements below).

Assume that f is an order-preserving mapping from 〈P, <〉 into 〈Q, <〉. If
f(x0) ∈ Ln, then f(xn+1) would be greater than y, an impossibility. Thus,
such an f does not exist.

Assume that f is an order-preserving mapping from 〈Q, <〉 into 〈P, <〉. If
f(y) = xn then we are in trouble in finding room for the image of the chain
Ln+1 of size n + 1. Thus, such an f does not exist, either.

12. Assume x ∈ x. Set A = {x}. By the axiom of foundation there is y ∈ A
with y ∩ A = ∅. y = x is the only possibility, but as x ∈ x ∩ A we have a
contradiction.

13. Assume that x ∈ y and y ∈ x. Set A = {x, y}. Applying the axiom of
foundation we get that there is some z ∈ A with z∩A = ∅, which is nonsense,
as if z = x then y is a common element in z and A, and if z = y then x is.

14. For n = 0 the empty set (and only it) will be good. If some set A is good
for n, then A ∪ {A} is good for n + 1.

We now prove by induction on n that there is only one good set for n. This
clearly holds for n = 0. Assume we have this for some n and A, B are good
sets for n + 1. That is, A, B are both n + 1-element transitive sets, ordered
by ∈. Let a, b be the largest elements. Then a, b are good sets for n, so a = b.
Moreover, A = a ∪ {a} = b ∪ {b} = B, and we are done.
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15. Assume that {x} is transitive. We have that x ∈ {x}, so every element of
x (if there are any) is an element of {x}, i.e., it can only be x. So either x = ∅
or x = {x}. The latter case is impossible by Problem 12, so the only solution
is {∅}.

16. Assume that {Ai : i ∈ I} is a nonempty set of transitive sets. If x ∈⋂
{Ai : i ∈ I} and y ∈ x then, by transitivity, y ∈ Ai holds for all i ∈ I so

y ∈
⋂
{Ai : i ∈ I}. If x ∈

⋃
{Ai : i ∈ I}, then x ∈ Ai for some Ai, so, if y ∈ x

then y ∈ Ai (as Ai is transitive), so y ∈
⋃
{Ai : i ∈ I}.

17. Assume first that y ∈ x ∈ TC(A). Then x ∈ An for some n and then
y ∈ An+1 so surely y ∈ TC(A).

For the other statement, if A ∈ B and B is transitive, then we get by
induction for every n that An ⊆ B. A0 ⊆ B is just a reformulation of A ∈ B,
and if An ⊆ B holds then, by transitivity, all elements of elements of An, i.e.,
all the elements of An+1 should be in B. But then, TC(A) = A0∪A1∪· · · ⊆ B.

18. (a) We show by transfinite induction on α that Vα is transitive. This is
obvious for V0 = ∅. If α is limit, then we can use the inductive assumption and
argue that Vα, the union of transitive sets, is itself transitive (see Problem 16).
To finish the proof we have to show that if Vα is transitive then so is Vα+1.
Assume that y ∈ x ∈ Vα+1. That is, x ⊆ Vα, so y ∈ Vα, so by the assumption,
y ⊆ Vα which means that y ∈ Vα+1 and that was to be proved.

(b) We show by transfinite induction on α ≥ β that Vβ ⊆ Vα holds. This is
obvious for β = α, the base case. If α > β is limit then again it is obvious (Vα

is defined as a union with Vβ in it). To cover the successor case it suffices to
show that Vα ⊆ Vα+1. That is, x ∈ Vα implies x ∈ Vα+1, i.e., x ∈ Vα implies
x ⊆ Vα, i.e., that Vα is transitive, which is just part (a).

(c) rk(x) = 0 is impossible, as V0 = ∅ has no elements. rk(x) cannot be
some limit ordinal α either, as Vα is the union of the sets Vβ for β < α and
so every element of it appears earlier.

(d) Assume that y ∈ x and rk(x) = α + 1. Thus, x ∈ Vα+1, or, equally,
x ⊆ Vα, from which we get y ∈ Vα, that is, rk(y) ≤ α.

(e) Assume that every element of x is ranked. By the axiom of replacement
there is some ordinal α such that rk(y) ≤ α holds for every y ∈ x. Thus,
x ⊆ Vα, so x ∈ Vα+1, x is indeed ranked.

(f) For one direction assume that every set is ranked and A is a nonempty
set. Select x ∈ A with rk(x) minimal. Such an x exists, by the well-ordering
property of ordinals. We claim that x ∩ A = ∅. Indeed, if y ∈ x ∩ A then by
(d) we have rk(y) < rk(x) and, as y ∈ A, this would contradict the minimal
choice of x.

For the other direction assume that the set A is not ranked. Let B be the
transitive closure of A (see Problem 17). Set C = {x ∈ B : x is not ranked}.
C is not empty (as, for example, A ∈ C). We claim that C contradicts the



Solutions Chapter 31 : Well-founded sets and the axiom of foundation 487

axiom of foundation. Indeed, if x ∈ C then x is an element of the transitively
closed B and as x is not ranked, by (e) there is some y ∈ x which is not
ranked. But then y ∈ B as well, so y ∈ x ∩ C.

19. X = ∅ is clearly a solution. We prove that there is no other solution.
Assume that X×Y = X and X is nonempty. Pick x ∈ X with rk(x) minimal.
Then, as X × Y = X, x = 〈u, v〉 for some u ∈ X, v ∈ Y , we get that as
u ∈ {u} ∈

{
{u}, {u, v}

}
= 〈u, v〉 = x ∈ X holds, we have rk(u) < rk(x), a

contradiction.

20. (a) Define first F(x) = rk(x) for x ∈ C. Then F is an operation from C
into the class of ordinals. If α is an ordinal, then F−1(α) is necessarily a set,
as it is a subset of Vα. We do not know if the range H of F is all the ordinals,
but it is certainly a proper class, as otherwise, by the axiom of replacement,
we would get that

C =
⋃

{F−1(α) : α ∈ H}

is a set.
To eliminate the gaps, let G map the αth element of H to α. G maps H

onto an initial segment of the ordinals, which, being a proper class, can only
be the class of all ordinals. So we are finished by taking the composition of F
and G.

(b) Using (a), it suffices to give a mapping F from the ordinals to the
ordinals such that F−1(α) is a proper class for every ordinal α. For this we let
F(κ + α) = α where κ is an infinite cardinal and α < κ, on the other places
we let F be defined arbitrarily. Notice that this definition is unambigious, as
κ can be calculated from κ + α by considering its cardinality, and α can be
determined from κ + α and κ by left subtraction. Every value α is attained
on a proper class; namely, on the ordinals of the form κ + α where κ > α is a
cardinal.

21. For every x ∈ C let α(x) be the least ordinal that occurs as the rank of
some y ∼ x. Such an α(x) exists as every set is ranked and it is uniquely
determined by the minimality property of ordinals. Then set

F(x) =
{
y ∈ Vα(x) : y ∼ x

}
.

This is always a set, as is a subset of Vα(x). F is, therefore, an operation. Notice
that F(x) is always a nonempty set. Now, if x ∼ y then α(x) = α(y) and so
F(x) = F(y). On the other hand, if F(x) = F(y) then any z ∈ F(x) = F(y)
witnesses x ∼ z ∼ y.

22. Assume the statement holds. If A is any set, it has an embedding into the
class of ordinals. Then, we can get a well-ordering of A by pulling back the
well ordering of the ordinals.
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Assume now that the axiom of choice holds, C is a proper class, κ a cardinal.
We have to show that C has a subset of cardinality precisely κ. By AC, κ is well
orderable, we can simply assume that it is an ordinal. The class {rk(x) : x ∈ C}
is a proper class of ordinals, so κ can be embedded (actually, there is an initial
segment of order type κ). We have, therefore, found a subset B of C, such
that B has a surjective image of cardinality κ. Using the axiom of choice
again, we get that B has a subset of cardinality κ. [John von Neumann: Die
Axiomatisierung der Mengenlehre, Mathematische Zeitschrift 27(1928), 669–
752]

23.
(c) → (b) → (a) is obvious.
(a) → (c). Given a global choice operation F we well-order the universe

as follows. Let <α be a well-ordering of Vα+1 \ Vα determined by the proof
of the well-ordering theorem using F (restricted to the nonempty subsets of
Vα+1\Vα). Then set x < y iff either rk(x) < rk(y) or else rk(x) = rk(y) = α+1
for some ordinal α and x <α y. In this case, the predecessors of x are included
into the set Vα+1 where rk(x) = α + 1.

(e) → (d) is obvious.
(d) → (c). Apply (d) to the universe and the class of ordinals, which

obviously has a setlike well order.
(c) → (e). Assume that A is a proper class with <, its inherited setlike

well-ordering. For any ordinal α there is exactly one element of A which is
the αth (whose set of predecessors form a well-ordered set of ordinal α), and
this gives a bijection between A and the class of ordinals.

24. Increasing κ if needed, we can assume that κ is uncountable, regular.
It suffices to show that Hκ ⊆ Vκ. Assume that |TC(x)| < κ. We show by
transfinite induction on the rank of y ∈ TC(x) that y ∈ Vκ. As x ∈ TC(x)
this will give the result. Assume that we reached some y ∈ TC(x). We know
that |y| < κ (by condition) and that rk(z) < κ holds for every z ∈ y (by
the inductive hypothesis). As κ is regular, there is some α < κ, such that
rk(z) < α holds for every z ∈ y, that is, y ⊆ Vα, so y ∈ Vα+1 ⊆ Vκ.

25. We define the following subclasses Mα of M by transfinite recursion on α
for every ordinal α. If Mβ is defined for β < α then let Mα consist of those
elements x of M that are not in any of the Mβ ’s but every yEx is.

We claim that every element of M is in some Mα. Assume first that some
x ∈ M is not in any of the Mα’s, but every yEx is. Then

y �→ min{β : y ∈ Mβ}

is an operation defined on {y : yEx} that is a set, as M was supposed to be
setlike. By the axiom of replacement the range of this set under the operation
is a set of ordinals, it is therefore bounded by some ordinal α. Then x will



Solutions Chapter 31 : Well-founded sets and the axiom of foundation 489

be an element of Mα+1 at the latest. We proved, therefore, that if x ∈ M is
such that it is not in any of the Mα’s then necessarily some x1Ex has the
exact same property. Repeating, we get a decreasing sequence . . . x2Ex1Ex,
contradicting the well foundedness of E.

We now define π(x) for x ∈ Mα by transfinite recursion on α:

π(x) = {π(y) : yEx} .

π is injective: if x 
= y then there is z, zEx, z 
E y (or vice versa) and then
π(z) ∈ π(x), π(z) /∈ π(y), so π(x) 
= π(y). π is an isomorphism: yEx if and
only if π(y) ∈ π(x). We set N as the range of π.

For unicity, assume that π1 : (M,E) → (N1,∈), π2 : (M,E) → (N2,∈)
are isomorphisms. By transfinite induction on α we get that π1(x) = π2(x)
holds for x ∈ Mα, that is, π1 = π2 and therefore N1 = N2. [A. Mostowski: An
undecidable arithmetical statement, Fund. Math., 36(1949), 143–164]



Part III

Appendix



1

Glossary of Concepts

Abelian group is a group with commutative operation.

algebraic number is a complex number z that satisfies an equation of the
form anzn + · · · + a0 = 0 where n > 0, an �= 0 and all coefficients ai are
integers.

algebraically closed field is a field F such that if a0, . . . , an ∈ F , an �= 0,
n > 0, then there is an x ∈ F with a0 + a1x + · · ·+ anxn = 0.

analytic set in Rn is a set that is the continuous image of a Borel set.

antichain in a partially ordered set is a subset no two elements of which are
comparable.

antilexicographic ordering in a product of ordered sets is the ordering
in which the last difference in the coordinates is decisive (i.e., if 〈Ai, <i〉,
i ∈ I, where 〈I,≺〉 is an ordered set, then for f, g ∈

∏
i∈I Ai the element f is

smaller in the antilexicographic ordering than g if there is an i0 ∈ I such that
f(i0) <i0 g(i0), but for all i ∈ I with i0 ≺ i the equality f(i) = g(i) holds).

antisymmetric relation is a binary relation ρ such that (a, b) ∈ ρ and
(b, a) ∈ ρ implies a = b (aρb and bρa implies a = b).

Aronszajn tree is a tree of height ω1 with all levels and branches countable.
In general, a κ-Aronszajn tree is a tree of height κ such that each level and
each branch is of cardinality smaller than κ.

associative operation is a binary operation h such that h(a, h(b, c)) =
h(h(a, b), c) holds for all elements.
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automorphism of an algebraic structure is a 1-to-1 mapping of the ground
set onto itself that preserves operations and relations.

axiom of choice (AC) is the statement that for any family of nonempty
sets there is a choice function, i.e., if {Ai}i∈I is a family of nonempty sets
then there is a mapping f : I → ∪i∈IAi with f(i) ∈ Ai for all i ∈ I.

axiom of comprehension states that if A is a set then the elements of A
with a given property again form a set. Formally, if ϕ(x1, x2, . . . , xn+1) is a
formula in the first order language of set theory and A, a1, . . . , an are sets,
then {x ∈ X : ϕ(x, a1, . . . , an)} is a set.

axiom of replacement claims that if F(x) is an operation and A is a set,
then {F(x) : x ∈ A} is a set.

Baire function is an element of the smallest family of functions (say on an
interval) that contains all continuous functions and that is closed for pointwise
limits.

basis in a vector space V over a field F is a set B such that every element
of V can be uniquely written in a form λ1v1 + · · · + λnvn with vi ∈ B and
λi ∈ F .

bijective mapping is an injective and surjective mapping (the same as a
“1–1 and onto” mapping).

binary relation on a set A is a subset of A×A.

bipartite graph is a graph in which the vertex set has a decomposition
V = V1 ∪ V2, V1 ∩ V2 = ∅ such that all edges go between points of V1 and V2.

Boolean algebra is an algebraic structure (A,+, ·,′ , 0, 1), such that the
structure (A,+, ·, 0) is a commutative ring with multiplicative unit 1 in which
+ and · are idempotent operations, ′ is a unary operation such that (a′)′ = a
for all a, and for all a we have a · a′ = 0, a + a′ = 1.

Borel function is a real-valued function f (defined on a topological space)
such that f−1(−∞, a) is a Borel set for all a ∈ R. Complex-valued Borel
function has real-valued Borel functions as its real and imaginary parts.

Borel set is an element of the smallest σ-algebra containing the open sets.

branch in a tree 〈T,≺〉 is an ordered subset B that intersects every level of
the tree. An α-branch of a tree 〈T,≺〉 is an ordered subset b ⊆ T<α which
intersects every level Tβ (β < α).
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Cantor set is ∩∞
n=0In, where I0 = [0, 1] and In+1 is obtained from In by

removing from every subinterval [a, b] of In the middle third (a+(b−a)/3, b−
(b−a)/3). It is a perfect set of measure zero and of cardinality c. The Cantor
set is precisely the set of those x ∈ [0, 1] which have a ternary expansion (i.e.,
expansion in base 3) that does not contain the digit 1.

cardinal is an ordinal α such that for β < α we have β �∼ α.

cardinal exponentiation: κλ is the cardinality of BA where A has cardi-
nality κ and B has cardinality λ.

cardinality of a set is its size: two sets have the same cardinality if and only
if they are equivalent. The cardinality of the set A is the smallest ordinal α
with A ∼ α.

Cartesian product
∏

i∈I Ai of a family Ai, i ∈ I of sets is the set of all
choice functions f : I → ∪i∈IAi, f(i) ∈ Ai for all i ∈ I. When I is finite, say
I = 1, 2, . . . , n, then this is often identified with the set

{(a1, . . . , an) : ai ∈ Ai}

of n-tuples with ith coordinate from Ai, and then we write for it A1×· · ·×An.

ccc (countable chain condition) property holds in an ordered set (topological
space) if every family of pairwise disjoint nonempty open intervals (sets) is
countable.

chain in a partially ordered set is an ordered subset.

choice function for a family Ai, i ∈ I, of sets is a function f : I → ∪i∈IAi

such that f(i) ∈ Ai for all i ∈ I.

chromatic number of a graph G is the smallest κ such that G has a coloring
with κ colors.

circuit in a graph is a is a sequence of distinct vertices v1, v2, . . . , vn (n ≥ 3)
such that vi is joined to vi+1 and vn is joined to v1.

class is a well-determined part of the universe (of sets) that is not necessarily
a set. Formally, if ϕ(x1, . . . , xn+1) is a formula in the first-order language of
set theory with free variables x1, . . . , xn+1 and a1, . . . , an are sets, then the
collection of sets x which satisfy ϕ(x, a1, . . . , an) forms a class.

closed unbounded set in an ordinal α is a set C ⊂ α that is closed in the
order topology on α and that is cofinal with α.
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club set in an ordinal is the same as closed and unbounded set.

cofinality: the ordered set 〈A,≺〉 is cofinal with its subset B if for every
a ∈ A there is a b ∈ B such that a � b. There is always a well-ordered B with
this property.

cofinality cf(〈A,≺〉) of an ordered set 〈A,≺〉 is the smallest ordinal α such
that there is a cofinal well-ordered B ⊂ A for which the order type of 〈B,<〉
is α. It is always true that cf〈A,≺〉 ≤ |A|.

coloring of an infinite graph (V, E) with colors I is a mapping f : V → I
such that f(x) �= f(y) whenever (x, y) ∈ E (neighboring points have different
colors). In this case we say that (V, E) is |I|-colorable.

commutative operation is a binary operation h such that h(a, b) = h(b, a)
holds for all elements.

compact space is a topological space in which every open cover includes a
finite subcover.

complete metric space is a metric space 〈X, d〉, for which it is true that if
xn ∈ X, n = 0, 1, . . . is a Cauchy sequence (i.e., d(xn, xm)→ 0 as n, m→∞),
then there is an element x ∈ X such that d(xn, x)→ 0 as n→∞.

connected graph is a graph such that any two vertices are connected by a
path.

continuously ordered set is an ordered set 〈A,≺〉 such that for any disjoint
decomposition A = B∪C, where B �= A is a nonempty initial segment, either
B has a largest element or C has a smallest element (but not both).

Continuum hypothesis (CH) is the assumption that c = ℵ1, i.e., that every
infinite subset of R is equivalent either with R or with N. It is a statement
neither provable nor disprovable in the Zermelo–Fraenkel axiom system.

Countryman type is the order type of an ordered set 〈S,≺〉 if S×S is the
union of countably many chains under the partial order “〈x, y〉 � 〈x′, y′〉 if
and only if x � x′ and y � y′” .

dense set

• in a topological space: A is dense in the topological space T if every open
set contains a point of A.



Glossary of concepts 497

• in an ordered set: A is dense in the ordered set 〈B,≺〉 if for every x, y ∈ B
there is an element a ∈ A with x � a � y, where x � y ⇔ x ≺ y or x = y
(this is the same definition as density in topological spaces if one uses the
order topology).

densely ordered set is an ordered set 〈A,≺〉 such that for any a, b ∈ A
with a ≺ b there is a c ∈ A with a ≺ c ≺ b.

density of a set A ⊂ N is defined as

lim
n→∞

|A ∩ {0, 1, . . . , n− 1}|
n

provided this limit exists.

dichotomous relation on A is a binary relation ρ on A such that either aρb
or bρa holds for all a, b ∈ A.

discrete set in a topological space is a set A such that each point in A has
a neighborhood that does not contain any other point of A.

distributivity: a binary operation h is called left (right) distributive
with respect to the binary operation g if h(a, g(b, c)) = g(h(a, b), h(a, c))
(h(g(b, c), a) = g(h(b, a), h(c, a))) holds for all elements.

divisible group is an Abelian group (G, +) such that for all x ∈ G and for

all n ≥ 1 there is an y such that x =
n−times︷ ︸︸ ︷

y + · · ·+ y.

domain of a function f : A→ B is the set A.

edge coloring (also called good edge coloring) of a graph (V, X) (with edge
set X) with colors I is a mapping f : X → I such that f(e) �= f(e′) whenever
e and e′ have common endpoints.

end segment in an ordered set 〈A,≺〉 is a subset B ⊆ A such that b ∈ B,
b ≺ c imply c ∈ B. It is called proper if it is not the whole set.

equivalence of sets: A ∼ B if and only there is a bijection between A and
B.

equivalence relation is a reflexive, transitive, and symmetric relation.

field is a commutative ring (F, +, ·) such that (F \{0}, ·) is an Abelian group
(here 0 is the additive unit), i.e., if there is a multiplicative unit and every
nonzero element is multiplicatively invertible.
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filter is a family F of subsets of a ground set X such that ∅ �∈ F , if A, B ∈ F
then A ∩B ∈ F , and if A ∈ F and A ⊆ B ⊆ X, then B ∈ F .

first-category set in a topological space is a set that is the countable union
of nowhere-dense sets.

function is a set f consisting of ordered pairs (x, y) such that (x, y), (x, y′) ∈
f imply y = y′. The set

A = {x : (x, y) ∈ f for some y}

is called the domain (Dom(f)) of f , and

C = {y : (x, y) ∈ f for some x}

is called its range (Ran(f)). If C ⊂ B, then we write f : A → B. It is also
customary to write f(x) for y when (x, y) ∈ f .

generating set in a vector space is a set B such that every element in the
space is a linear combination of elements of B.

Generalized continuum hypothesis (GCH) is the assumption that 2κ =
κ+ for all infinite cardinals κ. It is a statement neither provable nor disprovable
in the Zermelo-Fraenkel axiom system.

G-free graph is a graph that does not include the graph G as a subgraph.

graph is a pair (V, X) where V is a set (the vertex set) and X is a set of two
element subsets {x, y} of V . Think of V as the set of vertices (points), X as
the set of edges, {x, y} the edge connecting x and y.

group is an algebraic structure (G, ·) where · is an associative binary oper-
ation on G with unit element (e ∈ G such that e · g = g · e = g for all g) such
that every element g ∈ G has an inverse (an h such that g · h = h · g = e).

Hausdorff topological space is a topological space in which any two (dif-
ferent) elements have disjoint neighborhoods. Same as T2 space.

height

• of an element x in a tree is the order type of the set of the elements smaller
than x.

• of a tree is the smallest ordinal α for which the αth level of the tree is
empty.
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homogeneous set (monochromatic set) in a coloring is a set with constant
color.

ideal

• in a ring R is a subring I such that for all. a ∈ I and b ∈ R the products
ab and ba belong to I

• of sets is a set I of subsets of some ground set X such that X �∈ I, if I ∈ I
and J ⊆ I then J ∈ I and if I, J ∈ I then I ∪ J ∈ I.

idempotent operation is a binary operation h with h(a, a) = a for all ele-
ments.

independent set in a graph is any set of vertices such that no two are
connected by an edge.

initial segment in an ordered set 〈A,≺〉 is a subset B ⊆ A such that b ∈ B,
c ≺ b imply c ∈ B. It is called proper if it is not the whole set.

injective mapping is the same as a one-to-one mapping (f(x) �= f(y) if
x �= y).

interval in an ordered set 〈A,≺〉 is a subset B ⊆ A such that a, b ∈ B and
a ≺ c ≺ b imply c ∈ B.

interval topology (order topology) on an ordered set is the topology gen-
erated by the intervals of the set.

irreflexive relation is a binary relation ρ such that no element is in relation
with itself: (a, a) �∈ ρ.

Kκ is the full graph with κ vertices.

Kκ,λ is the full bipartite graph with bipartition classes of cardinality κ and
λ (i.e., the vertex set is {xξ}ξ<κ ∪ {yη}η<λ with xξ �= yη and every element
xξ is joined to every yη).

lattice is an algebraic structure (A,∧,∨), in which ∧,∨ are commutative,
associative, and idempotent operations such that a∧(a∨b) = a and a∨(a∧b) =
a hold for all elements. A lattice is called distributive if ∧ and ∨ are distributive
with respect to each other.

level (level set) in a tree is the set of elements with the same “height”, i.e.,
the αth level set of 〈T,≺〉 is the set of those elements x ∈ T for which the
order type of {y : y ≺ x} is α.
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lexicographic ordering in a product of ordered sets is the ordering in which
the first difference in the coordinates is decisive (i.e., if 〈Ai, <i〉, i ∈ I, where
〈I,≺〉 is an ordered set, then for f, g ∈

∏
i∈I Ai the element f is smaller in the

lexicographic ordering than g if there is an i0 ∈ I such that f(i0) <i0 g(i0),
but for all i ∈ I with i ≺ i0 the equality f(i) = g(i) holds).

limit cardinal is an uncountable cardinal κ such that λ < κ implies λ+ < κ.

limit ordinal is a non-successor, nonzero ordinal α (i.e., β < α implies
β + 1 < α).

linearly independent system B in a vector space means that if v1, . . . , vn ∈
B are different elements then and λ1v1 + · · · + λnvn = 0 if and only if λ1 =
· · · = λn = 0 (nontrivial linear combinations cannot be zero).

lower density of a set A ⊂ N is defined as

lim inf
n→∞

|A ∩ {0, 1, . . . , n− 1}|
n

.

matching in a graph (V, E) is a set M of disjoint edges such that every
v ∈ V is the endpoint of an edge in M .

maximal element in a partially ordered set is an x such that no element is
larger than x.

measurable cardinal is a cardinal κ for which there is a κ-additive nontriv-
ial 0–1-valued measure on all subsets of a set of cardinality κ (i.e., if |X| = κ,
then there is a μ : P(X) → {0, 1} such that μ(X) = 1, μ({x}) = 0 for all
x ∈ X, and if Yi, i ∈ I, |I| < κ is a disjoint family of fewer than κ sets then
μ(∪iYi) =

∑
i μ(Yi)).

metric on a set X is a mapping d : X → [0,∞) with the properties that
d(x, y) = 0 if and only if x = y, d(x, y) = d(y, x) and (triangle inequality)
d(x, y) ≤ d(x, z) + d(z, y).

metric space is a set X with a metric d on it, in which the topology is
generated by balls, i.e., sets of the form {y : d(x, y) < r}, x ∈ X, r > 0.

metrizable topology is a topology equivalent to the topology of a metric
(i.e., there is a metric on the space such that the open sets in the topology
and in the metric are the same).

minimal element in a partially ordered set is an x such that no element is
smaller than x.
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monochromatic set (homogeneous set) in a coloring is a set with constant
color.

monotone mapping between two ordered sets 〈A,≺〉 and 〈B,<〉 is a map-
ping f : A→ B such that a ≺ b implies f(a) < f(b).

nonstationary set in an ordinal α is a set that is disjoint from some closed
and unbounded set.

normal topological space is where any two disjoint closed sets can be
separated by disjoint open sets (i.e., if F1 ∩ F2 = ∅ are closed sets then there
are disjoint open sets F1 ⊆ G1 and F2 ⊆ G2).

nowhere dense set in a topological space is a set such that its closure has
no inner point.

one-to-one correspondence (1-to-1 correspondence) between sets A and
B is a one-to-one mapping of A onto B. Such mappings are often called
bijections. This is nothing else than an equivalence between A and B.

one-to-one mapping (1-to-1 mapping) is the same as an injective mapping,
i.e., it maps different elements into different elements (f(x) �= f(y) if x �= y).

operation (in set theory) is a mapping x �→ F(x) that is not necessarily
a function (i.e., its domain or range may not be sets). Formally, it is the
correspondence x �→ y given by ϕ(x, y, a1, . . . , an), where ϕ(x1, . . . , xn+2) is
a formula in the first-order language of set theory with the property that for
every x there is at most one y for which ϕ holds, and a1, . . . , an are given sets.

ordered pair is a set of the form (a, b) = {{a}, {a, b}}.

ordered set is a pair 〈A,≺〉 where A is a set and ≺ is an irreflexive, transitive
and trichotomous relation on A.

ordered sum of order types θi with respect to 〈I,≺〉 is the order type
of the ordered union of ordered sets 〈Ai, <i〉 with respect to 〈I,≺〉, where
〈Ai, <i〉 has order type θi (denoted by

∑
i∈I (≺) θi).

ordered union of the ordered sets 〈Ai, <i〉, i ∈ I with respect to the ordered
set 〈I, <〉 (where the Ai’s are disjoint sets) is the ordered set 〈B,<〉 in which
B = ∪i∈IAi, and for a ∈ Ai and b ∈ Aj the relation a ≺ b holds if and only if
i < j or i = j and a <i b.

ordering is a binary relation that is irreflexive, transitive, and trichotomous
(on a ground set).
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order topology (interval topology) in an ordered set 〈A, <〉 is the topology
generated by the intervals. It is also the topology generated by sets of the
form A, {x : x < a}, {x : a < x} with a, b ∈ A.

order type: two ordered sets are said to have the same order types if they
are similar.

ordinal is the order types of a well-ordered set. We identify every ordinal
α with the set of ordinals smaller than α, i.e., α = {β : β < α}. The von
Neumann definition of ordinals: ordinals are transitive sets A (i.e., a ∈ A
implies a ⊆ A) that are well ordered by the ∈ relation.

partial ordering is a binary relation that is irreflexive and transitive.

partially ordered set is a pair 〈A,≺〉 where A is a set and ≺ is an irreflexive
and transitive relation on A.

partition relation κ → (λ)r
ρ means that if we color the r-element subsets

of a set X of cardinality κ with ρ colors, then there is a homogeneous set
(monochromatic set) Y ⊂ X of cardinality λ (i.e., every r-element subset of
Y has the same color).

path in a graph is a sequence v1, . . . , vn of distinct vertices such that each
vi is connected to vi+1 by an edge.

perfect set is a nonempty closed set (in a topological space) that is dense
in itself, i.e., any neighborhood of any point x contains a point different from
x.

permutation of a set is a one-to-one mapping of the set onto itself.

planar graph is a graph that can be represented in the plane with noncross-
ing (curved) edges.

predecessor (immediate predecessor) to a ∈ A in a partially ordered set
〈A,≺〉 is an element b such that b ≺ a but there is no c ∈ A with b ≺ c ≺ a.

prime field of a field F is the subfield generated by 1. It is isomorphic to
either Q or to one of Zp (the field of integers mod p with a prime number p).
In fact, if the characteristic of F is p > 0 (i.e., if p · 1 = 0) then the prime
field is Zp, and if the characteristic is 0 (i.e., m · 1 �= 0 for any m > 0) then
the prime field is isomorphic to (Q,+, ·).

prime ideal is a maximal ideal I over a ground set X (alternatively, for
every Y ⊂ X either Y or X \Y belongs to I). It is trivial if I = {Y : x �∈ Y }
for some x ∈ X.



Glossary of concepts 503

product of cardinals κi, i ∈ I is the cardinality of the product set
∏

i∈I Ai

where the Ai’s are sets of cardinality κi (denoted by
∏

i∈I κi).

product of order types θ and ρ is the order type of the antilexicographi-
cally ordered product of two ordered sets of order type θ and ρ, respectively
(denoted by θ · ρ).

product of sets Ai, i ∈ I is the set of all choice functions f : I → ∪iAi,
f(i) ∈ Ai, i ∈ I for the sets Ai.

proper class is a class that is not a set.

proper initial segment is an initial segment of an ordered set that is not
the whole set.

Pythagorean triplet: positive integers a, b, c with the property c2 = a2+b2.
If a, b, c do not have a common divisor, then one of a and b, say b, is even,
and then they are of the form a = n2−m2, b = 2mn, and c = n2 + m2 where
m, n are relatively prime natural numbers of different parity.

range of a function f : A→ B is the set of all elements y = f(x), x ∈ A.

real-valued measurable cardinal is a cardinal κ for which there is a κ-
additive nontrivial [0, 1]-valued measure on all subsets of a set of cardinality
κ (i.e., if |X| = κ, then there is a μ : P(X) → [0, 1] from the power set of
X into [0, 1] such that μ(X) = 1, μ({x}) = 0 for all x ∈ X, and if Yi, i ∈ I,
|I| < κ is a disjoint family of fewer than κ sets then μ(∪iYi) =

∑
i μ(Yi)).

reflexive relation is a binary relation ρ for which (a, a) ∈ ρ for all a (aρa for
all a).

regressive function f on a subset A of an ordinal α is a function f : A→ α
with the property that f(ξ) < ξ for all ξ ∈ A, ξ �= 0.

regular cardinal is an infinite cardinal κ that coincides with its cofinality
(cf(κ) = κ). Equivalently, κ is not the sum of fewer than κ cardinals each
smaller than κ.

relation: A subset of the Cartesian product

k−times︷ ︸︸ ︷
A×A× · · · ×A is called a k-ary

relation on A. It is called a binary relation when k = 2. For easier notation
(a, b) ∈ ρ is often denoted aρb.

reverse order type θ∗ to an order type θ is the order type of 〈A,≺∗〉
where θ is the order type of 〈A,≺〉, and ≺∗ is the reverse ordering on A, i.e.,
a ≺∗ b⇐⇒ b ≺ a.
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ring is an algebraic structure (A,+, ·, 0), in which (A,+, 0) is a commutative
group (i.e., + is a commutative and associative operation, a + 0 = a for all
a, and for all a there is an element a∗ such that a + a∗ = 0) and · is an
associative operator that is distributive with respect to + from both sides
(i.e., a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a).

σ-algebra is a family A ⊂ X of subset of a ground set X such that ∅ ∈ A,
if Ai ∈ A, i = 0, 1, 2, . . . then ∪∞

i=0Ai ∈ A, and if A ∈ A then X \A ∈ A.

second-category set in a topological space is a set that is not the countable
union of nowhere-dense sets.

separable metric/topological space is a metric/topological space includ-
ing a countable dense subset.

similarity mapping between two ordered sets 〈A,≺〉 and 〈B,<〉 is a mono-
tone and surjective mapping f : A→ B.

similarity of ordered sets 〈A,≺〉 and 〈B,<〉 means that there is a simi-
larity mapping between them.

singular cardinal is a non-regular infinite cardinal.

spanning tree in a graph G is a subgraph T which is a tree that contains
all points of G.

spanned subgraph (induced subgraph) G′ = (V ′, X ′) of a graph G = (V, X)
is a graph with V ′ ⊆ V and X ′ = X ∩ (V ′ × V ′).

Specker type is the order type of an uncountable ordered set that does not
embed ω1, ω∗

1 (the reverse of ω1), or an uncountable subset of the reals.

stationary set is a set that intersects every closed and unbounded sets (in
an ordinal α).

strong limit cardinal is an uncountable cardinal κ such that λ < κ implies
2λ < κ.

strongly inaccessible cardinal is a strong limit regular cardinal, i.e., a
regular κ such that λ < κ implies 2λ < κ.

subbase in a topological space 〈X, T 〉 is a set B ⊂ T such that for every
x ∈ X and for every V ∈ T with x ∈ V (i.e., for every neighborhood of x)
there are finitely many U1, . . . , Um ∈ B with x ∈ ∩m

j=1Uj ⊆ V .

subgraph G′ = (V ′, X ′) of a graph G = (V, X) is a graph with V ′ ⊆ V and
X ′ ⊆ X.
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successor

• to a ∈ A in a partially ordered set 〈A,≺〉 is an element b such that a ≺ b
but there is no c ∈ A with a ≺ c ≺ b.

• to a cardinal κ is the smallest cardinal λ that is bigger than κ (it is denoted
by κ+).

• to an ordinal θ is the smallest ordinal ξ that is bigger than θ (it is actually
θ + 1).

successor cardinal is an infinite cardinal of the form κ+.

successor ordinal is an ordinal of the form β + 1.

sum of cardinals κi, i ∈ I is the cardinality of the set ∪i∈IAi where the
Ai’s are disjoint sets of cardinality κi (denoted by

∑
i∈I κi).

surjective mapping: f : A→ B such that every b ∈ B has a pre-image (i.e.,
f [A] = B). It is also said that f maps A onto B.

Suslin line is a nonseparable ordered set which is ccc, that is, it does not
include a countable dense set and every family of pairwise disjoint nonempty
open intervals is countable .

Suslin tree is an ω1-tree with no ω1-branch or uncountable antichain in it.

symmetric relation is a binary relation ρ for which (a, b) ∈ ρ implies (b, a) ∈
ρ (aρb implies bρa).

T2 space is a Hausdorff topological space.

topological space 〈X, T 〉, where T ⊆ P(X) is a set of subsets of X (the
set of open sets in the space) with X ∈ T and closed under finite intersection
and arbitrary union.

tournament is a complete directed graph (i.e., all edges of a complete undi-
rected graph is directed in exactly one way). It is called transitive if whenever
−→uv and −→vw are edges, then so is −→uw.

transcendence basis in a field F is a set B such that the elements of B are
algebraically independent over the prime field F1 of F (i.e., if p(x1, . . . , xn) is
a nonzero polynomial over F1, i.e., with coefficients in F1, and a1, . . . , an ∈ B
are different elements, then p(a1, . . . , an) �= 0), but for every a ∈ F there
is a nonzero polynomial p(x1, . . . , xn, xn+1) over F1 and different elements
a1, . . . , an ∈ B so that p(a1, . . . , an, a) = 0.
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transcendental number is a non-algebraic number (in C or R).

transitive relation is a binary relation ρ for which (a, b) ∈ ρ and (b, c) ∈ ρ
implies (a, c) ∈ ρ (aρb and bρc implies aρc).

tree

• as a graph: is a connected graph without circuit.
• as a partially ordered set: is a partially ordered set 〈X,≺〉 such that for

every x ∈ X the set {y : y ≺ x} is well ordered. It is called a κ-tree if its
height is κ and every level is of cardinality smaller than κ.

tree property of a cardinal κ means that every tree of height κ the levels
of which are of cardinality smaller than κ includes a branch of length κ.

trichotomous relation on A is a binary relation ρ on A such that one of
(a, b) ∈ ρ, (b, a) ∈ and a = b holds for all a, b ∈ A (one of aρb, bρa and a = b
holds for all a, b ∈ A).

ultrafilter is a maximal filter F over a ground set X (alternatively, for every
Y ⊆ X either Y or X \ Y belongs to F). It is called trivial if it is generated
by an element (i.e., there is an x such that the elements in the ultrafilter are
those subsets of the ground set that contain x).

upper density of a set A ⊂ N is defined as

lim sup
n→∞

|A ∩ {0, 1, . . . , n− 1}|
n

.

vector space over a field F is an Abelian group (V, +) such that for every
λ ∈ F and v ∈ V the product λv ∈ V is also defined and is an element
of V , if 1 is the multiplicative unit of F then 1v = v for all v ∈ V , and
the following identities hold: λ(u + v) = λu + λv, (λ1λ2)u = λ1(λ2u) and
(λ1 + λ2)u = λ1u + λ2u.

weakly compact cardinal is a cardinal κ > ω for which κ→ (κ)22 holds.

well-founded partially ordered set is a partially ordered set in which every
nonempty subset contains a minimal element.

well-ordered set is an ordered set in which every nonempty subset contains
a smallest element.

well-ordering theorem is the statement that on every set there is a well-
ordering (i.e., for every set X there is a binary relation ≺ on X such that
〈X,≺〉 is a well-ordered set).
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ℵα is the αth infinite cardinal (same as ωα).
AB = {f : f : A→ B} is the set of all mappings from A to B.

[A]κ is the set of subsets of A of cardinality κ.

[A]<κ is the set of subsets of A of cardinality < κ.

A ∼ B, equivalence of A and B.

AΔB = (A \B) ∪ (B \A), symmetric difference.

�Cα, diagonal intersection.

A×B = {(a, b) : a ∈ A, b ∈ B}, Cartesian product.

Ac = X \A, complement with respect to the ground set X.

cf(〈A,≺〉) is the cofinality of the ordered set 〈A,≺〉.

cf(α) is the cofinality of the ordinal α.

CH stands for the continuum hypothesis.

c, the cardinality continuum, i.e., the cardinality of R.

χA is the characteristic function of the set A.

Dom(f) is the domain of the function f .

η is the order type of 〈Q, <〉.

f [A] = {f(a) : a ∈ A} is the set of the images of elements of A under f .

f−1(y) = {x : f(x) = y} is the inverse image of the element A under f .

f−1[A] = {x : f(x) ∈ A} = ∪y∈Af−1(y) is the inverse image of the set A
under f .

FS(κ) is the set of finite sequences of ordinals smaller than κ.
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GCH stands for the generalized continuum hypothesis.

κλ is the λ power of κ.

κ+ is the successor cardinal to the cardinal κ.

Kλ is the complete graph with vertex set of cardinality λ.

Kλ,ρ is the complete bipartite graph with bipartition classes of size λ and ρ.

λ is the order type of 〈R, <〉.

N = ω = {0, 1, 2, . . .} is the set of natural numbers.

ω = {0, 1, 2, . . .} is the set of natural numbers and also its order type.

ω1 is the first uncountable ordinal.

ωα is the αth infinite cardinal, same as ℵα (ω0 = ℵ0 = ω, i.e., counting is
started at 0).

P(A) = {B : B ⊂ A} is the power set of A (set of all subsets of A).∏
i∈I Ai = {f : I → ∪i∈IAi : f(i) ∈ Ai for all i ∈ I} is the set of all choice

functions for the family {Ai}i∈I .∏
i∈I κi is the product of the cardinals κi.

Q is the set of rational numbers.

Ran(f) is the range of the function f .

R is the set of real numbers.

Rn is the n-dimensional Euclidean space.

R∞ is the set of infinite sequences of real numbers.∑
i∈I (≺) θi is the ordered sum of the order types θi with respect to 〈I,≺〉.∑
i∈I κi is the sum of the cardinals κi.

θ0 + θ1 is the sum of the order types θ0 and θ1 in this order (with respect to
the ordered set 〈{0, 1}, <〉.

θ0 · θ1 is the product of the order types θ0 and θ1 in this order.

θ∗, reverse order type to θ.

Z is the set of integers.
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Δ-family, 107
Δ-system, 107
ε-contractions, 83
κ-Aronszajn tree, 111
≤ p-cover, 82
σ-algebra, 5, 17, 61
Cn, 127
κ-tree, 111

Abelian group, 66, 83
accumulation point, 20
acute triangles, 63
additive subgroups of R, 17
additively commutative, 46
alephs, 52
Alexander subbase theorem, 66
algebra of sets, 139
algebraic

numbers, 9
structure, 16, 24, 63
variety, 63

algebraically closed field, 61, 66
almost

disjoint sets, 17, 79
every element, 123

everywhere, 89
antichain, 55, 111
antilexicographic

ordering, 24
product, 24

antilexicographically ordered set, 26
antisymmetric, 23
arithmetic with order types, 33
Aronszajn tree, 111
atom, 11, 167
automorphisms, 11, 16
axiom

of choice, 65
of comprehension, 476
of global choice, 132

Baire functions, 17, 61
Baire’s theorem, 20, 21
balls with rational center and

radius, 10
Banach-Tarski paradox, 81
bases of R, 17
basis, 65
Bernstein–Hausdorff–Tarski

inequality, 53
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bijections, 81
binary relation, 23
bipartite graph, 96
bipartition classes, 96
Boolean algebra, 6
Borel

functions, 17
sets, 17, 20, 61

bounded linear transformations
of L2[0, 1], 16

branch in a tree, 111

canonical functions, 93
canonical models, 3
Cantor set, 14, 15, 26
Cantor’s inequality, 53
cardinal addition, 51

exponentiation, 51
multiplication, 51

cardinality, 13, 51
Cauchy equation , 17
“Cauchy’s criterion”, 6
ccc, 112
centered set, 56
chain, 55, 65
characteristic function, 5
choice functions, 51
chromatic number, 66, 95, 128
circuit, 95
closed, 40, 90

additive subgroups, 16
set, 85, 89, 123
set without rational points, 168
sets in Rn, 16
subspaces of C[0, 1], 16
unbounded set, 89, 123

club set, 85, 89, 123
cofinal subset, 24, 27
cofinality, 24
coloring, 95

the plane, 63
common left multiple, 44
compact topological space, 66
comparable, 111

elements, 55
complement, 4, 95
complementation, 4
complete

bipartite graph, 96
Boolean algebra, 7
graph, 96

completely distributive Boolean
algebra, 7

congruences, 82, 83
connected graph, 66
continuous curves, 16
continuously ordered set, 28
continuum, 15

hypothesis, 15, 52
convergence

in the order topology, 85
of sets, 6

convex function, 19
countable, 9

disjoint union, 5, 61
countably infinite Boolean

algebra, 11
Countryman type, 112
cumulative hierarchy, 131

de Bruijn–Erdős theorem, 97
decimal expansion, 170
decomposition

of R, 60
of the plane, 64

degree, 95
dense, 26

set in a tree, 112
densely ordered set, 26, 28
density zero, 18
dependent choice, 129
diagonal intersection, 90
dichotomous, 23
discrete set, 19
disks with rational center

and radius, 10
distributive lattice, 6
divisibility, 43
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divisible, 66
hull, 66

edge set, 95
end segment, 24, 25
epsilon-ordinal, 48
equidecomposability, 81
equidecomposable, 81
equivalence theorem, 13
equivalent sets, 13
Euclidean n-space, 63
exact cover, 66
exceptional sets, 19

field of the rationals, 67
field, 61, 66
filter, 56, 65, 75
finite

cardinal, 51
cover property, 66
ordinals, 37

finitely additive measure, 81
fixed point, 7, 27
for almost every, 89
forest, 95
free

graph, 498
group, 83
set, 109

fundamental theorem of cardinal
arithmetic, 51, 52

Gödel pairing function, 161
Galvin’s tree game, 131
general distributive laws, 4
generalized continuum

hypothesis, 52, 54
generating

subset, 67
system, 66

good coloring, 95
graph, 95
greatest common

left divisor, 43

right divisor, 44

Hamel basis, 17, 67
Hartogs’ lemma, 128
Hausdorff topological space, 16
Hausdorff’s theorem, 27
height of a tree, 111

of an element in a tree, 111
Hessenberg sum, 49
Hilbert cube, 21
homomorphism, 24

ideal, 75
idempotent, 6
immediate successor, 111
incomparable, 111

elements, 55
increasing sequence of sets, 287
indecomposable, 45

ordinals, 46
independent

rotations, 83
set in a graph, 95
system, 65

induced subgraph, 95, 504
inequality

between cardinals, 51
between ordinals, 37

infinite graph, 95
initial segment, 24, 25
interval, 24, 25, 40

topology, 24, 40, 49
irrational numbers, 14
irreflexive, 23
isometry-invariant measure, 81
isomorphism, 24

Jordan measurable subsets of R, 17

König’s
inequality, 53
lemma, 111
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Kleene–Brouwer ordering, 130

R. Laver’s theorem, 25
least common right multiple, 44
Lebesgue measure, 60
left distributive, 33
left divisor, 43
left multiple, 43
left multiplications, 82
level set, 165

of a tree, 111
lexicographic ordering, 24
lexicographic product, 24
limit inferior of sets, 5
limit ordinal, 37, 39
limit superior of sets, 5
Lindelöf property, 19
linear

functionals of L2[0, 1], 17
subspaces of C[0, 1], 17

linearly ordered set, 23

mappings between ordered sets, 23
matching, 95
maximal

element, 65
ideal, 65

measure zero sets, 60
metric on R∞, 20
monochromatic, 96
monotone

mapping, 24
real function, 16, 19

Mostowski’s collapsing lemma, 132
multiplicatively commutative, 47

natural sum, 49
nondegenerated intervals, 20
nonmeasurable sets, 60
nonstationary, 89, 90, 123

set, 85
normal

expansion, 45
filter, 119

form, 45
representation, 43
tree, 111

N-set, 37

of power continuum, 15
one-to-one correspondence, 13
open

sets in Rn, 16
cover, 20
set in a tree, 112

operation, 129
order-sensitive, 33
order topology, 24
order types, 33
orderable, 66
ordered

set, 23, 24
union, 24, 29

orderings of the natural numbers, 16
ordinals, 37

paradoxical, 82
partially ordered set, 6, 55, 66
partitions, 81
path in a graph, 95
Peano curves, 21
perfect set, 20, 60, 61
permutations of the natural

numbers, 16
planar polygon, 82
power set, 17
predecessor, 25, 111
prime

ideal, 75
ordinal, 46

primeness, 43
principal filter, 75
product

of order types, 33
of prime ordinals, 46
set, 51

proper
ideal, 65
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initial segment, 24
Pythagorean triplets, 151

quotient ring, 6

rank function, 130
ranked set, 131
rationally independent, 67
regressive function, 85, 89
regular cardinal, 51, 52, 89
regularity, 51
representation

in a base, 43
in base ω, 43

restriction, 23
reverse type, 34
Riemann integrable functions, 17
right

divisor, 43
multiple, 43

right-continuous function, 16, 19
ring, 6, 65

scattered set, 28
second category sets, 60
semi-continuous real functions, 16
semi-open intervals, 20
set mapping, 109
set of

infinite 0–1 sequences, 14, 15
infinite real sequences, 15

similarity, 24
mapping, 27

singular cardinal, 51, 52
smaller than, 23

or equal, 23
smallest common left multiple, 44
spanning tree, 66
special tree, 111
Specker type, 112
squashing a tree, 112
stationary, 89, 90, 123

set, 85
strict monotonicity, 24

strongly universal graph, 96
subalgebra, 61
subbase, 66
subcover, 20
subgraph, 95, 96
successor cardinal, 52
successor, 25, 111

ordinal, 37, 39
sum

of cardinals, 51
of order types, 33

Suslin
line, 112
tree, 112

symmetric difference, 3

topological
product, 17
subgraph, 95

tournament, 101
transcendence basis, 66
transcendental numbers, 9
transfinite

enumeration, 63
recursive process, 59

transitive, 23
closure, 131
set, 37, 131

tree, 111, 130
property, 111

trichotomous, 23
trivial filter, 75
Tychonoff’s theorem, 66

Ulam matrix, 79
ultrafilter, 65, 75
unbounded, 90

set, 85, 89, 123
uncountable, 9
unit sphere, 82
universal graph, 96
upper density 1, 18
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vector space, 65
vertex set, 95
von Neumann, 37

well-founded set, 129
well-founded, 66

well-ordered set, 23, 24, 26
well-ordering theorem, 65
winning strategy, 12

Zorn’s lemma, 65
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