




To my wife Jean)))



Contents)

Preface)

1 Matrices)

.
Xl)

1.1 The Basic Operations . . . 1
1.2 Row Reduction . . . . . . . . . . . . . . . 10

1.3 The Matrix Transpose . . . . . . . . . . . 17

1.4 Determinants. . . . . . . . . . . . . . 18

1.5 Permutations . . . . 24

1.6 Other Formulas for the Determinant . . . . . . . 27

Exercises . . . . . . . . . . . . . . . . . . . . . 31)

2 Groups
2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

2.9

2.10

2.11
2.12)

Laws of Composition ..............
Groups and Subgroups .............
Subgroups of the Additive Group of Integers .
Cyclic Groups. . . . . . . . ... .

Homomorphisms . . . . . . . . . . . . . . . .
Isomorphisms . . . . . . . . . . . . . . . . . . .

Equivalence Relations and Partitions
Cosets . . . . . . . . . . . . . . .
Modular Arithmetic . . . . . . . . . .

The Correspondence Theorem
Product Groups .. . . . .
Quotient Groups . . . . .. .. . .
Exercises .. . . . . . . .. ....)

37

40

43

46

47
51
52
56
60
61
64

66

69)

3 Vector Spaces)
3.1 Subspacesof }Rn . . . . . . . . . . . . 78

3.2 Fields . . . . . 80
3.3 Vector Spaces. . . . . . . . 84

3.4 Bases and Dimension . . . 86
3.5 Computing with Bases . . 91

3.6 Direct Sums . . . . 95
3.7 Infinite-Dimensional Spaces . . 96

Exercises . . . . . . . . . . . . . . 98)

4 Linear Operators
4.1 The Dimension Formula ........

4.2 The Matrix of a Linear Transformation)
102
104)

v)))



vi Contents)

4.3 Linear Operators . . . . . . . . . .
4.4 Eigenvectors . . . . . . . . .

4.5 The Characteristic Polynomial . . .
4.6 Triangular and Diagonal Forms . . .
4.7 JordanForm . . . .

Exercises . . . . . . . . . . . . . . .)

108

110

113

116
120
125)

5 Applications of LinearOperators
5.1 Orthogonal Matrices and Rotations

5.2 Using Continuity . . . . . . . . . . .

5.3 Systems of Differential Equations .
5.4 The Matrix Exponential . .

Exercises . . . . . . . . . . . . . . .)

132

138

141

145
150)

6 Symmetry

6.1

6.2

6.3

6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12)

Symmetry of Plane Figures
Isometries . . . . . . . . . . . . . . .
Isometries of the Plane .......
Finite Groups of Orthogonal Operators on the Plane
DiscreteGroups of Isometries . . . . . .

Plane Crystallographic Groups . . . . . . . . . . . .
Abstract Symmetry: Group Operations . . . .
The Operation on Cosets . . . .

The Counting Formula ....
Operations on Subsets . . . .. ....
Permutation Representations . . . . . . . . . .

Finite Subgroups of the Rotation Group
Exercises . . . . . . . . . . . . . . . . . .)

154

156

159

163
167
172
176
178
180
181
181
183

188)

7 More Group Theory
7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8

7.9

7.10

7.11)

Cayley's Theorem . . . .
The Class Equation .. . . . .
p-Groups . . . . . . . . . . . . .

The Class Equation of the Icosahedral Group
Conjugation in the Symmetric Group
Normalizers . . . . . . .
The Sylow Theorems

Groups of Order 12 ..
The Free Group .. . . . . . .
Generators and Relations .

The Todd-Coxeter Algorithm
Exercises .. . . . . . . . . . .)

195

195

197

198
200
203
203
208
210
212
216
221)

8 Bilinear Forms

8.1 Bilinear Forms
8..2 Symmetric Forms. .)

229

231)))



Contents vii)

8.3 Hermitian Forms . . . . . . . . . . . . . . . 232

8.4 Orthogonality. . . . . . . . . . . . . . . . 235
8.5 Euclidean Spacesand Hermitian Spaces. . . . . . . 241

8.6 The Spectral Theorem . . . . . . . . . . . 242

8.7 Conics and Quadrics . . . . . 245

8.8 Skew-Symmetric Forms . . . . . . . . . 249

8.9 Summary . . . . . . 252. .
Exercises . . . . . . . . . . . . . . . 254)

9 Linear Groups)
9.1 The ClassicalGroups . . . . . . . . . . . . 261

9.2 Interlude: Spheres . . . . . . . . . 263

9.3 The Special Unitary Group SU2 . . . . . 266

9.4 The Rotation Group S03 . . . . . . 269

9.5 One-Parameter Groups . . . . . . . . . . 272

9.6 The Lie Algebra . . . . . . . . . . . . . . . . . . 275

9.7 Translation in a Group . . 277
9.8 Normal Subgroups of SL2 . . . . . . . . . 280

Exercises . . . . . . . . . . . . . . . . . . . . . 283)

10 Group Representations
10.1
10.2
10.3
10.4
10.5
10.6
10.7

10.8

10.9)

Definitions ...........
Irreducible Representations. .

U ni tary Represen ta tions ...
Characters ................
One-DimensionalCharacters.
TheRegularRepresentation .

Schur's Lemma . . . . . . . .. ....
Proof of the Orthogonality Relations

Representations of SU2 . . . . . . . . .
Exercises .. . . . . . . . . . . . . . .)

290

294

296

298
303
304
307
309
311
314)

11 Rings
11.1 Definition of a Ring . . . . . . . . . . .

11.2 Polynomial Rings. . . . . . . . . . . . .
11.3 Homomorphisms and Ideals ......
11.4Quotient Rings . . . .

11.5 Adjoining Elements . . . .
11.6 Product Rings. .

11.7 Fractions ............
11.8Maximal Ideals . . . . .

11.9 Algebraic Geometry .
Exercises .... . . .)

323\"

325

328

334
338
341
342
344
347
354)))



viii Contents)

12 Factoring
12.1 Factoring Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2 Unique Factorization Domains . . . . . . . . . . . . . . . . . . . . . . . . . .
12.3 Gauss'8 Lemma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.4 Factoring Integer Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . .
12.5 Gauss Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .)

Exercises ... . . . . . .) . ..... ..... ...... ...... ..... It)

13 Quadratic Number Fields
13.1 Algebraic Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2 Factoring Algebraic Integers . . . . . . . . . . . . . . . . . . . * . . . . . . .

13.3 Ideals in Z[ H ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.4 Ideal Multiplication ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.5 Factoring Ideals ..................................
13.6 Prime Ideals and Prime Integers . . . . . . . . . . . . . . . . . . . . . . . . .
13. 7 Ideal Classes ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.8 Computing the Class Group. . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.9 Real Quadratic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.1 0 About Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercises ., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \302\267. .)

14 Linear Algebra in a Ring
14.1 Modules.......................................
14.2Free Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14.3 Identi ti es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.4 Diagonalizing Integer Matrices . . . . . . . . . . . . . . . . . . . . . . . . . .
14.5 Generators and Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.6 Noetherian Rings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14.7 Structure of Abelian Groups . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.8 Application to Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . .
14.9 Polynomial Rings in Several Variables. . . . . . . . . . . . . . . . . . . . . .

Exercises . . . . ., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .)

15 Fields

15.1 Examples of Fields . . . . . . . . . . .. . . . . . .. . . . .. . . . .. . . . .. . . . .

15.2 Algebraic and Transcendental Elements ........................
15.3The Degree of a Field Extension . . . . . . . . .. . . . . . . . . .. . . . . .. . .

15.4 Finding the Irreducible Polynomial ........................
15.5Ruler and Compass Constructions . . .. .. . . . . ... . ... . . . . . .. . . . .. ..

15..6 Adjoining Roots . . . . . . . . . ... . . . . .. .. . . .. . . . . . . . . . . .. .. . .

15.7 Finite Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.8 Primitive Elements .. . . . . . .. . . . .. .. . . . .. . . .. . .. . . . . . .. . \302\267\302\267. .. \302\267

15.9 Function Fields . . . . . . . . . ..\302\267. . . . .. \302\267\302\267\302\267\302\267\302\267\302\267.. .. .. \302\267\302\267\302\267\302\267.. \302\267\302\267\302\267\302\267..

15.10 The Fundamental Theorem of Algebra . . . . . . . .. \302\267\302\267\302\267\302\267\302\267\302\267\302\267\302\267\302\267.. \302\267\302\267\302\267)

Exercises .................................. \302\267\302\267\302\267. \302\267\302\267)

359

360

367

371
376
378)

383

385

387

389
392
394
396
399
402
405
408)

412

414

417

418
423
426
429
432
436
437)

442

443

446

449
450
456
459
462
463
471
472)))



Contents ix)

16 Galois Theory
16.1 SymmetricFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :. 477

16.2 The Discriminant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

16.3 Splitting Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 483

16.4 Isomorphisms of Field Extensions . . . . . . . . . . . . . . . . . . . . . . .. 484

16.5 Fixed Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

16.6 Galois Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 488

16.7 The Main Theorem ................................ 489

16.8 Cubic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 492

16.9 Quartic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

16.10 Roots of Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

16.11 Kummer Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 500

16.12 Quintic Equations . . . . . . . . . . . . . . . . .. 502

Exercises .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 505)

APPENDIX)

Background Material
A.l About Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 513

A.2 The Integers .................................... 516
A.3 Zorn's Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 518
A.4 The Implicit Function Theorem ......................... 519

Exercises .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 521)

Bibliography 523

Notation 525

Index 529)))





Preface)

Important though the general concepts and propositions may be with

which the modern and industrious passion for axiomatizing and generalizing
haspresentedus, in algebra perhaps more than anywhere else, nevertheless J

am convinced that the specialproblemsin all their complexity constitute the
stockand coreof mathematics, and that to master their difficulties requires

on the whole the harder labor.)

-Herman Weyl)

This book began many years ago in the form of supplementary notes for my algebra classes.

I wanted to discuss someconcretetopics such as symmetry, linear groups, and quadratic
number fieldsin more detail than the text provided, and to shift the emphasis in group theory
from permutation groupsto matrix groups. J...Jattices, another recurring theme, appeared
spontaneously.

My hope was that the concrete material would interest the students and that it would

make the abstractions more understandable- in short, that they could get farther by learning
both at the same time. This worked pretty welLIt tookme quite a while to decide what to

include, but I gradually handed out more notes and eventually began teaching from them
without another text. Though this produced a book that is different from most others, the
problemsI encountered while fitting the parts together caused me many headaches. I can't

recommend the method.
Thereismoreemphasis on special topics here than in most algebra books. They tended

to expandwhen the sections were rewritten, because I noticedover the years that, in contrast

to abstract concepts,with concrete mathematics students often prefer more to less.As a

result, the topics mentioned above have become major parts of the book.
In writing the book, I tried to followtheseprinciples:

1. The basic examples should precede the abstract definitions.

2. Technical points should be presented only if they are used elsewhere in the book.

3. All topics should be important for the average mathematician.)

Although these principles may sound like motherhood and the flag, I found it useful to have
them stated explicitly. They are, of course, violated here and there.

The chapters are organized in the order in which I usually teach a course, with linear

algebra,group theory, and geometry making up the first semester. Rings are first introduced
in Chapter 11, though that chapter is logically independent of many earlier ones. I chose)

XI)))



xii Preface)

this arrangement to emphasize the connections of algebra with geometry at the start, and
because,overall, the material in the first chapters is the most important for peoplein other

fields. The first half of the book doesn'temphasize arithmetic, but this is made up for in the

later chapters.)

About This Second Edition

The text has been rewritten extensively, incorporating suggestionsby many people as well as
the experience of teaching from it for 20 years. I have distributed revised sections to my class
all along, and for the past two years the preliminary versions have been used as texts.As a

result, I've received many valuable suggestionsfrom the students. The overall organization
of the book remains unchanged, though I did split two chapters that seemed long.

There are a few new items.Noneare lengthy, and they are balanced by cuts made
elsewhere.Someof the new items are an early presentation of Jordan form (Chapter 4), a
short sectionon continuity arguments (Chapter 5), a proof that the alternating groups are

simple (Chapter 7), short discussions of spheres (Chapter 9), product rings (Chapter11),
computer methods for factoring polynomials and Cauchy'sTheorembounding the roots of a

polynomial (Chapter 12),and a proof of the Splitting Theorem based on symmetric functions

(Chapter 16).I'vealsoadded a number of nice exercises. But the book is long enough, so

I've tried to resistthe temptation to add material.)

NOTES FOR THE TEACHER)

This book is designed to allow you to choose among the topics. Don't try to cover the book,
but do include some of the interesting specialtopics such as symmetry of plane figures, the
geometry of SU2, or the arithmetic of imaginary quadratic number fields. If you don't want

to discuss such things in your course, then this is not the book for you.
There are relatively few prerequisites. Students should be familiar with calculus, the

basic properties of the complexnumbers,and mathematical induction. An acquaintance with

proofs is obviously useful. The concepts from topology that are used in Chapter 9, Linear

Groups, should not be regardedas prerequisites.

I recommend that you pay attention to concrete examples,especially throughout the

early chapters. This is very important for the students who come to the course without a

clear idea of what constitutes a proof.
One could spend an entire semester on the first five chapters, but since the real fun

starts with symmetry in Chapter 6, that would defeat the purpose of the book. Try to get

to Chapter 6 as soonas possible,so that it can be done at a leisurely pace.In spite of its

immediate appeal, symmetry isn't an easy topic. It is easy to be carriedaway and leave the

students behind.
These days most of the students in my classes are familiar with matrix operations and

modular arithmetic when they arrive. I've not been discussing the first chapter on matrices
in class, though I do assign problems from that chapter. Here are some suggestions for

Chapter 2, Groups.

1. Treat the abstract material with a light touch. You can have another go at it in Chapters 6
and 7.)))
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2. For examples, concentrate on matrix groups. Examples from symmetry are best deferred
to Chapter 6.

3. Don't spend much time on arithmetic; its natural place in this book is in Chapters 12

and 13.

4. De-emphasizethe quotient group construction.
J

Quotient groups present a pedagogical problem. While their construction is concep-
tually difficult, the quotient is readily presented as the imageof a homomorphism in most

elementary examples,and then it does not require an abstract definition. Modular arithmetic

is about the only convincing example for which this is not the case. And since the integers
modulo n form a ring, modular arithmetic isn't the ideal motivating example for quotients
of groups. The first serious use of quotient groups comes when generators and relations are
discussed in Chapter 7. I deferred the treatment of quotients to that point in early drafts
of the book, but, fearing the outrage of the algebra community, I eventually moved it to

Chapter 2. If you don't plan to discuss generators and relations for groups in your course,
then you can defer an in-depth treatment of quotients to Chapter 11,Rings, where they play
a central role, and where modular arithmetic becomes a prime motivating example.

In Chapter 3, Vector Spaces,I'vetried to set up the computations with bases in such a

way that the students won't have trouble keepingthe indicesstraight. Since the notation is
used throughout the book, it may be advisableto adoptit.

The matrix exponential that is defined in Chapter 5 is used in the description of one-

parameter groups in Chapter 10, so if you plan to include one-parameter groups, you will

need to discuss the matrix exponential at some point. But you must resist the temptation to

give differential equations their due. You will be forgiven because you are teaching algebra.

Except for its first two sections, Chapter 7, again on groups,contains optional material.

A section on the Todd-Coxeter algorithm is included to justify the discussionof generators

and relations, which is pretty useless without it. It is fun, too.
There is nothing unusual in Chapter 8, on bilinear forms. I haven't overcome the main

pedagogical problem with this topic
- that there are too many variations on the sametheme,

but have tried to keep the discussion short by concentrating on the real and complexcases.
In the chapter on linear groups, Chapter 9,plan to spendtime on the geometry of SU2.

My students complained about that chapter everyyear until I expanded the section on SU2,
after which they began asking for supplementary reading,wanting to learn more. Many of
our studentsaren'tfamiliar with the concepts from topology when they take the course,but

I've found that the problems caused by the students'lack of familiarity can be managed.
Indeed, this is a good place for them to get an idea of a manifold.

I resisted including group representations, Chapter 10, for a number of years, on the

grounds that it is too hard. But students often requested it, and I kept asking myself:If the
chemistscanteach it, why can't we? Eventually the internal logic of the book won out and

group representationswent in. As a dividend, hermitian forms got an application.

You may find the discussion of quadratic number fields in Chapter 13 too long for a
generalalgebracourse.With this possibility in mind, I've arranged the material so that the

end of Section13.4,onidealfactorization, is a natural stopping point.
It seemed to me that one should mention the most important examples of fields in a

beginning algebra course, so I put a discussion of function fields into Chapter 15.Thereis)))
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always the question of whether or not Galois theory should be presented in an undergraduate

course, but as a culmination of the discussion of symmetry, it belongs here.

Some of the harder exercisesare marked with an asterisk.

Though I've taught algebra for years, various aspects of this book remain experimental,
and I would be very grateful for critical comments and suggestionsfrom the people who use it.)
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CHAPTER 1)

Matrices)

\nt\"Ueh wftb oneo 60afenfge dne q5tn\ne genennl,

tvtlcbta dnet \netmtfjtuno o6et efnte \netmfn6ttuno fafjlg fft,

06tt W03U ffcO noeft etwaa fjin3Ufe\ntn o6et bauon Wtgnefjmen Ui\nt.)

-Leonhard Euler 1)

Matrices playa central role in this book. They form an important part of the theory, and

many concrete examples are basedon them.Thereforeit is essential to devel9P facility in

matrix manipulation. Since matrices pervade mathematics, the techniques you will need are
sure to be useful elsewhere.)

1.1 THE BASIC OPERATIONS)

Let m and n be positive integers. An m X n matrix is a collection of mn numbersarranged

in a rectangular array)
n columns)

all al n)

(1.1.1)) m rows)

amI Qmn)

For example,
[\n ; \n ]

is a 2 X 3 matrix (two rows and three columns).We usually introduce

a symbol such as A to denote a matrix.
The numbers in a matrix are the matrix entries.They may be denoted by aij, where i

and j are indices(integers)with 1 < i < m and 1 < j < n, the index i is the row index, and
j is the column index. So aij is the entry that appears in the ith row and jth column of the
matrix:)

})

I aij)

1 This is the opening sentenceof Euler's book Algebra, which was published in St. Petersburg in 1770.)

1)))



2 Chapter 1) Matrices)

In the above example, all == 2, a13 = 0, and a23 == 5. We sometimes denote the matrix
whose entriesareail by (ai}).

An n X n matrix is called a square matrix. A 1 X 1 matrix [a] contains a singlenumber,

and we do not distinguish such a matrix from its entry.
A 1 Xn matrix is an n-dimensional row vector. We drop the index i when m == 1 and

write a row vector as)

[al
... an], or as (al,..., an).

Commas in such a row vector are optional.Similarly, an m X 1 matrix is an

m-dimensional column vector:)

hI)

b m)

In most of this book, we won't make a distinction between an n-dimensional column vector
and the point of n-dimensional space with the same coordinates. In the few places where the

distinction is useful, we will state this clearly.

Addition of matrices is defined in the same way as vector addition. Let A ==
(ai)) and

B == (b i}) be two m Xn matrices. Their sum A + B is the m Xn matrix S = (Si) defined by)

Si}
==

ail + bi}.)

Thus)

[\037
\037

\037]+[\037
-\037 n=n \037

\037l

Addition is defined only when the matrices to be added have the same shape - when they

are m Xn matrices with the same m and n.
Scalar multiplication of a matrix by a number isalsodefined as with vectors. The result

of multiplying an m Xn matrix A by a number c is another m Xn matrix B ==
(bi), where

hi} ==
Cai}

for all i, j. Thus)

[

2 1 0

] [

4 2 0

]
2 1 3 5

==
2 6 10

\302\267)

Numbers will also be referred to as scalars.Let'sassume for now that the scalars are real
numbers. In later chapters other scalars will appear. Just keep in mind that, except for

occasional reference to the geometry of real two- or three-dimensional space, everything in

this chapter continues to hold when the scalarsarecomplexnumbers.

1-'he complicated operation is matrix multiplication. The first case to learn is the product
AB of a row vector A and a column vector B, which is defined when both are the samesize,)))
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say m. If the entries of A and B are denoted by ai and bi, respectively, the product AB is the
1 X 1 matrix, or scalar,)

(1.1.2)) a1b1+ a2b2 + . . . + amb m .)

Thus)

[ 1 3 5]
[

-
i]

= 1 - 3 + 20 = 18.)

The usefulness of this definition becomes apparent when we regardA and B as vectors that

represent indexed quantities. For example, consider a candy bar containing m ingredients.
Let ai denote the number of grams of (ingredient)i per bar, and let bi denote the cost of
(ingredient)iper gram.The matrix product AB computes the cost per bar:)

(grams/bar)
.

( cost/gram) ==
(cost/bar).)

In general, the product of two matrices A ==
(ai)) and B = (hi)) is defined when the

number of columns of A is equal to the number of rows of B. If A is an f X m matrix and B is
an m Xn matrix, then the product will be an.e Xn matrix. Symbolically,)

(f Xm) .
(m Xn) = (f Xn).)

The entries of the product matrix are computed by multiplying all rows of A by all colun1ns

of B, using the rule (1.1.2).If we denote the product matrix AB by P ==
(pi)), then)

(1.1.3)) Pi) = anbl) + ai2 b 2j + . . . + aimbmj.)

This is the product of the ith row of A and the jth column of B.)

b l})

ail
. . . . aim) .

Pi})

b m ))

For example,)

(1.1.4))
[7 \037

\037][-\037]=[l\037l)))
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This definition of matrix multiplication has turned out to provide a very convenient
computational tool. Going back to our candy bar example,supposethat there are .e candy
bars. We may form the f Xm matrix A whose ith row measures the ingredients of (bar)i' If

the cost is to be computedeachyear for n years, we may form the m x n matrix B whose jth
column measures the cost of the ingredients in (year)). Again, the matrix product AB == P

computes cost per. bar: Pi} == cost of (bar)i in (year)).

One reason for matrix notation is to provide a shorthand way of writing linear

equations. The system of equations)

allxl +

a21x I +)

+ alnX n

+ a2n X n)

b1

- b2)

amlxl + ... + amnX n b m)

can be written in matrix notation as)

(1.1.5)) AX == B)

where A denotes the matrix of coefficients, X and B are column vectors, and AX is the
matrix product:)

Xl) b l)

A)

X n)

b m)

We may refer to an equation of this form simply as an \"equation\" or as a \"system.\"
The matrix equation)

[i \037
\037]

[\037:]

=

L\037 ])

represents the following system of two equations in three unknowns:)

2XI + X2 = 1

Xl + 3X2 + 5X3 = 18.)

Equation (1.1.4)exhibitsone solution, Xl == 1, X2 = -1, X3 = 4. There are others.
The sum (1.1.3)that defines the product matrix can also be written in summation or

\"sigma\" notation as)

(1.1.6))

m

Pi} ==
Laivbv}

=
Laivbv}.

v=l v)))
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Each of these expressions for Pij isa shorthand notation for the sum. The large sigma
indicatesthat the terms with the indices v == 1, . . . , m are to be addedup.The right-hand

notation indicates that one should add the terms with all possible indices v. It is assumed
that the reader will understand that, if A is an .ex m matrix and B is an m x n matrix, the

indices should run from 1 to m. We've used the greek letter \"nu,\" an uncommon symbol
elsewhere, to distinguish the index of summation clearly.

Our two most important notations for handling sets of numbers are the summation

notation, as used above, and matrix notation. The summation notation is the more versatile

of the two, but because matrices are more compact, we use them whenever possible. One
of our tasks in later chapters will be to translate complicated mathematical structures into

matrix notation in order to be ableto work with them conveniently.
V arious identities are satisfied by the matrix operations. The distributive laws)

(1.1.7)) A(B+B')=AB+AB', and (A+A')B==AB+A'B)

and the associative law)

(1.1.8)) (AB)C == A(BC))

are among them. These laws hold whenever the matrices involved have suitable sizes, so
that the operations are defined. For the associative law, the sizes should be A == .e x m,
B == m Xn, and C == n X p, for some \302\243,m, n, p. Since the two products (1.1.8)are equal,
parenthesesarenot necessary, and we will denote the triple product by ABC. It is an .e x P
matrix. For example, the two ways of computing the triple product)

ABC=

[;J
[1 0 1]

[\037 :])

are)

(AB)C=
U \037

\037]
[\037 :]

=
[\037 i]

and A(BC) =
U]

[2 1] =
[\037 i].)

Scalar multiplication is compatible with matrix multiplication in the obvious sense:)

(1.1.9)) c(AB) == (cA)B == A(cB).)

The proofs of these identities are straightforward and not very interesting.
However, the commutative law does not hold for matrix multiplication, that is,)

(1.1.10)) AB=f:;BA, usually.)))
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Even when both matrices are square,the two products tend to be different. For instance,)

[ \037
\037] [i \037]

=

[\037
\037],

while
[ \037 n [\037 \037]

=

[\037
\037l)

If it happens that AB = BA, the two matrices are saidto commute.

Since matrix multiplication isn't commutative, we must be careful when working with

matrix equations. We can multiply both sides of an equation B = C on the left by a

matrix A, to conclude that AB = AC, provided that the products are defined. Similarly,
if the products are defined, we can concludethat BA = CA. We cannot derive AB = CA

from B = C.
A matrix all of whoseentriesare 0 is called a zero matrix, and if there is no danger of

confusion,it will be denoted simply by O.
The entriesau of a matrix A are its diagonal entries.-A matrix A is a diagonal matrix

if its only nonzero entries are diagonal entries.(Theword nonzero simply means \"different
from zero.\"It is ugly, but so convenient that we will use it frequently.)

The diagonal n X n matrix all of whose diagonalentriesare equal to 1 is called the n X n

identity matrix, and is denoted by In. It behaves like the number 1 in multiplication: If A is

an m X n matrix, then)

(1.1.11)) A1n = A and ImA = A.)

We usually omit the subscript and write I for In.
Here are someshorthand ways of depicting the identity matrix:)

1) o) 1)

1=)

o) 1) 1)

We often indicate that a whole region in a matrix consists of zeros by leaving it blank or by

putting in a single O.

We use * to indicate an arbitrary undetermined entry of a matrix. Thus)

* ... *)

*)

may denote a square matrix A whose entries below the diagonal are 0, the other entries

being undetermined. Such a matrix is called upper triangular. The matrices that appear in

(1.1.14) below are upper triangular.

Let A be a (square) n Xn matrix. If there is a matrix B such that)

(1.1.12)) AB = In and BA = In,)))
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then B is called an inverse of A and is denoted by A-I:)

(1.1.13)) A-IA=I=AA- l
.)

A matrix A that has an inverse iscalledan invertible matrix.

For example, the matrix A =

[; \037]

is invertible. Its inverse is A-1 =
[_\037 -;),

as

can be seen by computing the products AA- 1 and A-lA. Two moreexamples:)

(1.1.14))
[1 2rl=[1!]

and
[1 n-

1

=[1 -iJ.)
We will see later that a square matrix A is invertible if there is a matrix B such that either
one of the two relations AB = In or BA = In holds, and that B is then the inverse (see
(1.2.20\302\273 . But since multiplication of matrices isn't commutative, this fact is not obvious. On
the other hand, an inverse is unique if it exists. The next lemma shows that there can be only
one inverse of a matrix A:)

Lemma 1.1.15 Let A be a square matrix that has a right inverse, a matrix R such that AR = I
and alsoa left inverse, a matrix L such that LA = I. Then R = L. SoA is invertible and R is
its inverse.)

Proof R = IR = (LA)R = L(AR) = LI = L.) o)

Proposition 1.1.16 Let A and B be invertible n X n matrices. The product AB and the inverse

A-I are invertible, (AB)-1 = B-1A-I and (A-
l

)-1 = A. If AI, . . . ,Am are invertible n Xn

matrices, the product Al
\302\267. . Am is invertible, and its inverse is A\037l

. . .
All.)

Proof. Assume that A and B are invertible. To show that the product B-lA- l = Q is the

inverse of AB = P, we simplify the products PQ and QP, obtaining I in both cases. T.l1e
verification of the other assertionsis similar. 0)

The inverse of
[

1
2] [

1
iJ

=

[

1

\037]
1S

[

1 -

n [
1

i ]
=

[

1 -

t l)

\302\267It is worthwhile to memorize the inverse of a 2 X 2 matrix:)

(1.1.17))
[

a b
J

-I 1
[

d -
a
h

]

.
e d

-
ad - be -e)

The denominator ad - be is the determinant of the matrix. If the determinant is zero, the

matrix is not invertible. We discussdeterminants in Section 1.4.)))
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Though this isn't clear from the definition of matrix multiplication, we will see that most

square matrices are invertible, though finding the inverse explicitly is not a simple problem
when the matrix is large. The set of all invertible n Xn matrices is called the n-dimensional

general linear group.It will be one of our most important examples when we introduce the

basic concept of a group in the next chapter.
For future reference, we note the following lemma:)

Lemma 1.1.18 A square matrix that has either a row of zerosor a column of zeros is not
invertible.)

Proof If a row of an n X n matrix A is zero and if B is any other n x n matrix, then the
correspondingrow of the product AB is zero too.SoAB is not the identity. Therefore A has

no right inverse. A similar argument shows that if a column of A is zero, then A has no left

inverse. 0)

Block Multiplication)

Various tricks simplify matrix multiplication in favorable cases; block multiplication is one
of them. Let M and M' be m x nand n x p matrices,and let r be an integer less than n. We

may decompose the two matrices into blocks as follows:)

M = [AIB] and M' =
[\037: J.

where A has r columnsand A' has r rows. Then the matrix product can be computedas)

(1.1.19)) MM' == AA' + BB'.)

Notice that this formula is the same as the rule for multiplying a row vector and a column

vector.)

We may also multiply matrices divided into four blocks. Suppose that we decompose an

m X n matrix M and an n X p matrix M' into rectangular submatrices)

M=\037,
LclDJ) \037

'B'
M'

--
C/ D'

')

where the number of columns of A and C are equal to the number of rows of A' and B'. In
this case the rule for block multiplication is the same as for multiplication of 2 X 2 matrices:)

(1.1.20))
\037 \037 ==

AA' + BC' AR' + BD'

LCIDJLc'lD'J CA'+DC' CB'+DD')

These rules can be verified directly from the definition of matrix multiplication.)))
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Please use block multiplication to verify the equation)

\037 r \037 \037 \037 \037l =
r;

\037I:
\037

1 .

Lo

-

q31 b 0 1 oj. L J)

Besides facilitating computations, block multiplication is a useful tool for proving facts
about matrices by induction.)

Matrix Units)

The matrix units are the simplest nonzero matrices. The m Xn matrix unit eij has a 1 in the

i, j position as its only nonzero entry:)

.
J)

(1.1.21)) eij)
.

l) 1)

We usually denote matrices by uppercase (capital) letters,but the use of a lowercase letter
for a matrix unit is traditional.

\302\267The set of matrix units is called a basis for the space of all m x n matrices, because every

m Xn matrix A = (aij) is a linear combination of the matrices eij:)

(1.1.22)) A = ail e l! + al2el2 + . . . =
L aU eij.
i ,j)

The indices i, j under the sigmamean that the sum is to be taken over all i = 1, . . . , m and

all j = 1, . . . , n.Forinstance,)

[\037 \037] =3[1) ] +2[) 1]+1[1' ]+4[) 1]
= 3ell+2e12+1e21+ 4e22.)

The product of an m X n matrix unit eij and an n X p matrix unit eji is given by the formulas)

(1.1.23)) eij eji = eii and eijeki = 0 if j =1=k)

. The column vector ei, which has a single nonzero entry 1 in the position i, is analogous
to a matrix unit, and the set {el, . . . , en}of these vectors forms what is called the standard
basis of the n-dimensional space }Rn (see Chapter 3, (3.4.15)). If X is a column vector with

entries (Xl, . . . ,xn ), then)

(1.1.24 )) x) Xl el + . \302\267\302\267+ X n en) L Xiei \302\267

i)))
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The formulas for multiplying matrix units and standard basis vectors are)

(1.1.25)) eij ej == ei, and eij ek = 0 if j=l=k.)

1.2 ROW REDUCTION)

Left multiplication by an n X n matrix A on n X p matrices, say)

(1.2.1 )) AX = Y,)

can be computed by operating on the rows of X. If we let Xi and Yi denote the ith rows of
X and Y, respectively, then in vector notation,)

(1.2.2)) Yi == ailXl + ... + ainXn,)

-Xl-

-X2\037)
-Yl-
-Y2-)

A)

-X n
-) -Y n

-)

For instance, the bottom row of the product)

[-\037 j] U \037
\037]

-

U \037
-\037])

can be computed as -2[1 2 1]+ 3[1 3 0]= [1 5 -2].
Left multiplication by an invertible matrix is calleda row operation. We discuss these

row operations next. Somesquare matrices called elementary matrices are used. Thereare
three types of elementary 2 x 2 matrices:)

(1.2.3))
.

[
1 a

] [
1 0

]
( 1) 0 1

or aI') (ii)[ \037 \037
J.)

(iii)
[c 1]

or
[1 cJ.)

where a can be any scalar and c can be any nonzero scalar.

There are also three types of elementary n x n matrices. They are obtainedby splicing

the elementary 2 X 2 matrices symmetrically into an identity matrix. They are shown below
with a 5 x 5 matrix to save space,but the size is supposed to be arbitrary.)))
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(1.2.4)

Type (i):
1 J J I

1 1
I 1 a J 1

1 or 1 (i =1= j).

J 1 1 a 1
1 1)

One nonzero off-diagonal entry is added to the identity matrix.)

Type (ii):
1 J

1
I 0 1

1
} 1 0

1)

The ith and jth diagonal entries of the identity matrix are replaced by zero, and 1's are
added in the (i, j) and (j, i) positions.

Type (iii): I

1)

1)
.

I) C) (C=I= 0).)
1)

1)

One diagonal entry of the identity matrix is replaced by a nonzero scalarc.
\302\267The elementary matrices E operate on a matrix X this way: To get the matrix EL\302\245,you

must:)

(1.2.5) Type(i): with a in the i, j position, \"add a. (row j) of X to (row i), \"

Type(ii): \"interchange (row i) and (row j) of L\302\245,\"

Type(iii): \"multiply (row i) of X by a nonzero scalar c.\"

These are the elementary row operations. Please verify the rules.)

Lemma 1.2.6 Elementary matrices are invertible, and their inverses are also elementary

matrices.)

PrlJof The inverse of an elementary matrix is the matrix corresponding to the inverse row
operation:\"subtract a. (row j) from (row i),\" \"interchange (row i) and (row j)\" again, or

\"multiply (row i) by c- 1.\" 0)))
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We now perform elementary row operations(1.2.5)on a matrix M, with the aim of
ending up with a simpler matrix:)

sequenceof operations ,
M\037\037 ... --+M.)

Since each elementary operation is obtained by multiplying by an elementary matrix, we
can expressthe result of a sequence of such operations as multiplication by a sequence

E1, . . . , Ek of elementary matrices:)

(1.2.7)) M' = Ek . . .
E2ElM.)

This procedure to simplify a matrix is called row reduction.
As an example, we use elementary operations to simplify a matrix by clearing out as

many entries as possible,working from the left.)

[

1 1
o 1
0-0)

[

1 1 2 1 5

] [

1 1 2 1 5

]

M = 1 1 2 6 10 \037 \037 0 0 0 5 5 \037

12527 01312
2 1 5

] [

1 0 -1 0 3

] [

1 0 -1 0 3

]
3 1 2 -+-+ 0 1 3 1 2 \037 0 1 3 0 1
055 00011 00011)

M'.)

(1.2.8))

The matrix M' cannot be simplified further by row operations.

Here is the way that row reduction is used to solve systemsof linear equations.

Suppose we are given a system of m equations in n unknowns, say AX = B, where A
is an m X n matrix, B is a given column vector, and X is an unknown column vector. To

solve this system, we form the m X (n + 1) block matrix, sometimes calledthe augmented

matrix)

all) al n) h l)

(1.2.9)) M = [A IB] =)

aml) a mn) b n)

and we perform row operations to simplify M. Note that EM = [EAIEB].Let)

M' = [A'IB
'
]

be the result of a sequence of row operations.The key observation is this:)

Proposition 1.2.10 The systemsA' X = B' and AX = B have the samesolutions.)))
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Proof. SinceM' is obtained by a sequence of elementary row operations,thereareelemen-
tary matrices E1, . . . , Ek such that, with P = Ek . . .

El,)

M
' = Ek'\" ElM = PM.)

The matrix P is invertible, and M' =
[A'iB']

= [PAIPB]. If X is a solution of the original

equation AX = B, we multiply by P on the left: PAX = PB, which is to say, A' X = B'.
SoX also solves the new equation. Conversely,if A' X = B '

, then p-l A'X = p-lB', that is,

AX = B. D)

For example,considerthe system)

(1.2.11 ))

Xl+ X2+ 2x 3+ X4= 5
Xl + X2 + 2X3 + 6X4 = 10
Xl + 2X2 + 5X3 + 2X4 = 7.)

Its augmented matrix is the matrix whose row reduction is shown above. The system of

equations is equivalent to the one defined by the end result M ' of the reduction:)

=3

=1

X4 = 1.

We can read off the solutionsof this system easily: If we choose X3 = c arbitrarily, we can
solve for Xl, x2, and X4. The general solution of (1.2.11) can be written in the form)

Xl -
X3

X2 + 3X3)

X3 = C, Xl = 3 + C, X2 = 1 - 3c, X4 = 1,)

where c is arbitrary.
We now go backto row reduction of an arbitrary matrix. It is not hard to see that, by

a sequence of row operations, any matrix M can be reduced to what is called a row echelon
matrix. The end result of our reduction of (1.2.8) is an example. Here is the definition: A

row echelon matrix is a matrix that has these properties:)

(1.2.12)

(a) If (row i) of M is zero, then (row j) iszerofor all j > i.

(b) If (row i) isn'tzero,its first nonzero entry is 1. This entry is called a pivot.

(c) If (row (i + 1) isn't zero, the pivot in (row (i + 1) isto the right of the pivot in (row i).

(d) The entriesabove a pivot are zero. (The entries belowa pivot are zero too, by (c).))

The pivots in the matrix M ' of (1.2.8)and in the examples below are shown in boldface.

To make a row reduction, find the first column that contains a nonzero entry, say

m. (If there is none, then M is zero, and is itself a row echelonmatrix.)Interchangerows

using an elementary operation of Type (ii) to move m to the top row. Normalize m to 1
using an operation of Type (iii). This entry becomes a pivot. Clear out the entries below)))
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this pivot by a sequence of operations of Type (i). The resulting matrix will have the

block form)

o . .0 1 * .. *
0..0 0 * .. *

\037, which we write as
L I I D:J

= MI.)

o . .0 0 * .. *)

We now perform row operations to simplify the smaller matrix DI. Because the blocks to
the left of Dl are zero, these operationswill have no effect on the rest of the matrix MI. By
induction on the nunlber of rows, we may assume that Dl can be reduced to a row echelon
matrix, say to D2, and M1 is thereby reducedto the matrix)

\037

LI [b 2J
= M2.)

This matrix satisfies the first three requirements for a row echelon matrix. The entriesin Bl

above the pivots of D2can be clearedout at this time, to finish the reduction to row echelon
fu\037. D)

It can be shown that the row echelon matrix obtained from a matrix M by row reduction
doesn't depend on the particular sequence of operations used in the reduction. Since this

point will not be important for us, we omit the proof.
As we said before, row reduction is useful because one can solve a system of equations

A' X == B' easily when A' is in row echelon form. Another example: Suppose that)

[

1 6 0 1
[A'IB']== 0 0 1 2

000 0) \037l)

There is no solution to A'X == B' because the third equation is 0 == 1. On the other hand,)

[

1 6 0 1
[A'IB']== 0 0 1 2

o 000) \037])

has solutions. Choosing X2 == c and X4 == c' arbitrarily, we can solve the first equation for Xl
and the second for X3. The general rule is this:)

Proposition 1.2.13 Let M' ==
[A'IB'] be a block row echelon matrix, where B' is a column

vector.The system of equations A' X == B' has a solution if and only if there is no pivot in the
last column B'. In that case, arbitrary values can be assigned to the unknown Xi, provided)))
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that (column i) does not contain a pivot. When these arbitrary values are assigned,the other

unknowns are determined uniquely. D)

Every homogeneouslinear equation AX = 0 has the trivial solution X = O.But looking
at the row echelon form again., we conclude that if there are more unknowns than equations

then the homogeneous equation AX = 0 has a nontrivial solution.)

Corollary 1.2.14 Every system ..4X == 0 of m homogeneous equations in n unknowns, with

m < n\" has a solution X in which some Xi is nonzero.)

Proof Ro\\v reduction of the block matrix [A)O]yields a matrix [A'IO] in which A' is in row

echelon form. The equation A'X == 0 has the same solutions as AX = O. The number. say r,
of pivots of AI is at most equal to the number m of rows, so it is less than n. The proposition
tells us that we may assign arbitrary values to n - r variables Xi. 0)

We now use row reduction to characterize invertible matrices.)

Lemma 1.2.15 A square row echelonmatrix M is either the identity matrix I, or else its
bottom row is zero.)

Proof Say that M is an n X n row echelon matrix. Since there are n columns,thereareat most

n pivots, and if there are n of them, there has to be one
o

in each column. In this case, M = I.
If there are fewer than n pivots, then some row iszero,and the bottom row is zero too. D)

Theorem 1.2.16 Let A be a squarematrix. The following conditions are equivalent:

(a) A can be reduced to the identity by a sequence of elementary row operations.
(b) A is a product of elementary matrices.

(c) A is invertible.)

Proof We prove the theoremby proving the implications (a) ==> (b) ==> (c) ==> (a). Suppose

that A can be reducedto the identity by row operations, say Ek . . .
ElA

= I. Multiplying
both sides of this equation on the left by Ell

\302\267. \302\267
Ei

1
, we obtain A =

Ell
\302\267\302\267\302\267

Ei
1

. Since

the inverse of an elementary matrix is elementary, (b) holds, and therefore (a) implies (b).

Because a product of invertible matrices is invertible, (b) implies (c). Finally, we prove the
implication (c) => (a). If A is invertible, so is the end result A' of its row reduction. Since an

invertible matrix cannot have a row of zeros, Lemma 1.2.15shows that A' is the identity. 0

Row reductionprovides a method to compute the inverse of an invertible matrix A:

We reduce A to the identity by row operations: Ek
. . . ElA == I as above. Multiplying both

sides of this equation on the right by A-I,)

-1
Ek . . .Ell =

Ek
. . .

\302\2431
= A .)

Corollary 1.2.17 Let A be an invertible matrix. To compute its inverse, one may apply

elementary row operations E1, . . . , Ek to A, reducing it to the identity matrix. The same

sequence of operations, when applied to the identity matrix I, yieldsA-
1

. 0)))
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Example 1.2.18 We invert the matrix A =

U \037].

To do this, we form the 2X4 block

matrix)

[All]
=

[

1 5
2 6)

1 0

]
.

o 1)

We perform row operations to reduce A to the identity, carrying the right side along, and

thereby end up with A-
1 on the right.)

(1.2.19))

[All] ==

[

1 5

2 6

[

1 5
o 1)

\037 \037]

-*

[\037 -\037

\037 -l]-*[\037
\037)

-\037 \037]-*

-! -n
= [IIA-1].)

o)

Proposition 1.2.20 Let A be a square matrix that has either a left inverse or a right inverse,

a matrix B such that either BA == I or AB == I. Then A is invertible, and B is its inverse.)

Proof Suppose that AB == I. We perform row reduction on A. Say that A' == PA, where

P == Ek'\" \302\2431is the product of the corresponding elementary matrices, and A' is a row
echelonmatrix. Then A' B == P AB = P. Because P is invertible, its bottom row isn't zero.
Then the bottom row of A' can't be zeroeither.Therefore A' is the identity matrix (1.2.15),
and so P is a left inverse of A. Then A has both a left inverse and a right inverse, so it is
invertible and Bis its inverse.

If BA == I, we interchange the roles of A and B in the above reasoning. We find that B

is invertible and that its inverse is A. Then A is invertible, and its inverse is B. D)

We come now to the main theorem about square systems of linear equations:)

Theorem 1.2.21 Square Systems. The following conditions on a square matrix A are

equivalent:

(a) A is invertible.

(b) The system of equationsAX == B has a unique solution for every column vector B.

(c) The system of homogeneous equations AX == 0 has only the trivial solution X == O.)

Proof Given the system AX == B, we reduce the augmented matrix [AIB] to row echelon
form [A'IB'].The systemA'X == B' has the same solutions. If A is invertible, then A' is the

identity matrix, so the unique solution is X == B'. This shows that (a) => (b).
If an n X n matrix A is not invertible, then A' has a row of zeros. One of the equations

making up the system A' X == 0 is the trivial equation. So there are fewer than n pivots.)))
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The homogeneous system A/X = 0 has a nontrivial solution (1.2.13), and so does AX = 0

(1.2.14). This shows that if (a) fails, then (c) also fails, hence that (c) => (a).
Finally, it is obvious that (b) => (c). 0

We want to take particular note of the implication(c) => (b) of the theorem:

If the homogeneous equation AX = 0 has only the trivial solution,
then the general equation AX == B has a unique solution for every column vector B.

This can be useful because the homogeneous system may be easierto handle than the general

system.)

Example 1.2.22 Thereexistsa polynomial pCt) of degree n that takes prescribed values, say

p(ai) = hi, at n + 1 distinct points t = aD, . . . , an on the realline. 2 To find this polynomial,

one must solve a system of linear equations in the undetermined coefficients of pCt). In

order not to overload the notation, we'll do the case n = 2, so that)

pet)
= Xo + Xl! + X2 t2 .)

Let aD, aI, a2 and ho, hl , b2be given. The equations to be solved are obtainedby substituting

ai for t. Moving the coefficients Xi to the right, they are

Xo + aixl + afxz = hi)

for i = 0, 1, 2. This is a system AX = B of three linear equationsin the three unknowns

XO, Xl, X2, with)

1 aD a6
1 al ai
1 a2 a\037)

The homogeneous equation, in which B = 0, asksfor a polynomial with 3 roots aD,Ql,az.A

nonzero polynomial of degree 2 can have at most two roots, so the homogeneousequation

has only the trivial solution. Therefore there isa unique s.olution for every set of prescribed
values b o , hI, b2.

By the way, there is a formula, the IJagrange Interpolation Formula, that exhibits the

polynomial pCt) explicitly. 0)

1.3 THE MATRIX TRANSPOSE)

In the discussion of the previous section,we chose to work with rows in order to apply the

results to systemsof linear equations. One may also perform column operations to simplify
a matrix, and it is evident that similar results will be obtained.)

2Elements of a set are said to be distinct if no two of them are equal.)))
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Rows and columns are interchanged by the transpose operation on matrices. The
transposeof an m X n matrix A is the n x m matrix At obtained by reflecting about the
diagonal:At ==

(bij), where b ij ==
aji. For instance,

.)

[
\037 ; r

=
[; \037

]

and [ 1 2 3 ]t =

[\037l
Herearethe rules for computing with the transpose:)

(1.3.1)) (AB)t == BtA
t

, (A + B)t == At + B t
, (cA)t == cAt, (At)t == A.)

Using the first of these formulas, we can deduce facts about right multiplication from the

corresponding facts about left multiplication. The elementary matrices (1.2.4) act by right

multiplication AE as the following elementary column operations)

\"with a in the i, j position,add a. (column i) to (column j)\";
\"interchange (column i) and (column j)\";

\"multiply (column i) by a nonzero scalar c.\"

Note that in the first of these operations,the indices i, j are the reverse of those in (1.2.5a).)

(1.3.2))

1.4 DETERMINANTS)

Every square matrix A has a number associatedto it called its determinant, and denoted by
detA. We define the determinant and derive some of its properties here.

The determinant of a 1X 1 matrix is equal to its single entry)

(1.4.1)) det [a] == Q,)

and the determinant of a 2X 2 matrix is given by the formula

(1.4.2) det
[\037 \037]

= ad - be.

The determinant of a 2 X 2 matrix A has a geometric interpretation. Left multiplication

by A maps the space \037.z of real two-dimensional column vectors to itself, and the area of
the parallelogram that forms the image of the unit square via this map is the absolute value

of the determinant of A. The determinant is positive or negative, according to whether the

orientation of the square is preservedor reversedby the operation. Moreover, detA == 0 if

and only if the parallelogram degeneratesto a linesegmentor a point, which happens when

the columns of the matrix are proportional.

A picture of this operation, in which the matrix is
[\037

; ],
is shown on the following

page. The shaded region is the image of the unit square under the map. Its area is 10.

This geometric interpretation extends to higher dimensions.Left multiplication by a

3 X 3 real matrix A maps the space}R3 of three-dimensional column vectors to itself,and the
absolutevalue of its determinant is the volume of the image of the unit cube.)))
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. . . . .

. . .

. .Ae2 .

. . . .

.
\037

(1.4.3)
I.

e2
Ael

.
el)

The set of all real n X n matrices forms a space of dimension n2
that we denote by,

}Rn xn. We regard the determinant of n X n matrices as a function from this space to the real
numbers:

det :IR
n Xn

---+ IR.

The determinant of an n X n matrix is a function of its n 2 entries. There is one such function

for each positive integer n. Unfortunately, there are many formulas for these determinants,
and all of them are complicated when n is large. Not only are the formulas complicated, but

it may not be easy to show directly that two of them define the same function.

We use the following strategy: We choose one of the formulas, and take it as onr\037

definition of the determinant. In that way we are talking about a particular function.\" We

show that oar chosen function is the only one having certain special properties\037 Then, to
show that another formula defines the same determinant function, one needs only to checki<
those properties for the 'Other-Junction. This is often not too difficult.

We use a formula that computes the determinant of an n Xn matrix in terms of certain
(n -1) X (n

- 1) determinants by a processcalledexpansion by.minors. The determinants of
submatrices of a matrix are called minors. Expansion by minors allowsus to give a recursive

definition of the determinant.
The word recursive means that the definition of the determinant for n x n matrices

makes use of the determinant for (n - 1)X (n
- 1) Jmatrices. Since we have defined the

determinant for 1 X 1 matrices, we will be able to use our recursive definiti@n ;to ..compute
2 X 2 determinants, then kn'Owing this, to compute 3X 3 determinants, and so on.

Let .A;bean n X n matrix and let Aij denotethe (n
- 1) X (n

- 1) 'Submatrix obtained
b-y\\crossing out the ith row\"and the jthcolumn of A!)

(1.4.4))

}

\037

i
/////?j///

\037

\037
\

=
Aij')))
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For example, if)

A =

[\037
\037

\037],

then A21 =
[\037

i J.

\302\267
Expansion by minors on the first column is the formula)

(1.4.5)) detA = all detAIl
- a21 detA21 + a31detA31

- . . . :i a n ldetA n l.)

The signs alternate, beginning with +.

It is useful to write this expansion in summation notation:)

(1.4.6)) detA = L :iavldetAvl.
v)

The alternating sign can be written as (_1)v+1. It will appear again. We take this formula,

together with (1.4.1), as a recursive definition of the determinant.
For 1X 1 and 2 x 2 matrices, this formula agrees with (1.4.1) and (1.4.2).The determinant

of the 3 X 3 matrix A shown above is)

get A = 1 . det
D \037]

- 2 . det
[\037 iJ

+ 0 \302\267det

[\037 ;J

= 1 \302\267
(-9)

- 2 . (-15) = 21.)

Expansions by minors on other columns and on rows,which we define in Section 1.6, are
among the other formulas for the determinant.

It is important to know the many special properties satisfied by determinants.We

present some of these properties here, deferring proofs to the end of the section. Because
we want to apply the discussion to other formulas, th\037 properties will be stated for an

unspecifiedfunction 8.)

Theorem 1.4.7 Uniqueness of the Determinant.Thereisa unique function 8 on the space of
n Xn matrices with the properties below, namely the determinant (1.4.5).
(i) With / denoting the identity matrix, 8(/) = 1.

(ii) 8 is linearin the rows of the matrix A.

(iii) If two adjacent rows of a matrix A are equal, then 8(A) = O.)

The statement that 8 is linear in the rows of a matrix means this: Let Ai denote the ith row
of a matrix A. Let A, B, D be three matrices,all of whose entries are equal, except for those

in the rows indexed by k. Supposefurthermore that Dk = cAk + c'Bk for some scalars c and
c'. Then 8(D) = c8(A) + c'8(B):)

(1.4.8)) 8 CAi+C'Bi) =c8 -Ai- +c'8 -Bi-)))
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This allows us to operate on one row at a time, the other rowsbeingleft fixed. For example,

since [0 2 3] = 2[0 1 0]+3[0 0 1],)

8

[1

2

i]

= 28
[1

1
1]

+38
[1 \037]

= 2 . 1 + 3 . 0 = 2.

Perhaps the most important property of the determinant is its compatibility with matrix

multiplica tion.)

Theorem 1.4.9 Multiplicative Property of the Determinant. For any n Xn matrices A and B,
det (AB) = (detA)(detB).)

The next theorem gives additional properties that are implied by those listed in (1.4.7).)

Theorem 1.4.10 Let8 be a function on n x n matrices that has the properties (1.4.7)(i,ii,iii).
Then

(a) If A' is obtainedfrom A by adding a multiple of (row j) of A to (row i) and i:# j, then

8(A') = 8(A).

(b) If A' is obtainedby interchanging (row i) and (row j) of A and i =1= j, then

8(A') = -8(A).
(c) If A' is obtained from A by multiplying (row i) by a scalarc, then 8(A') = c8(A).

If a row of a matrix A is equal to zero,then 8(A) = O.

(d) If (row i) of A is equal to a multiple of (row j) and i =I- j, then 8(A) = O.)

We now proceed to prove the three theoremsstated above, in reverse order. The fact
that there are quite a few points to be examined makes the proofs lengthy. This can't be
helped.

ProofofTheorem 1.4.10. The first assertion of (c) is a part of linearity in rows (1.4.7)(ii).
The second assertionof (c) follows, because a row that is zero can be multiplied by 0 without

changing the matrix, and it multiplies 8(A) by O.

Next, we verify properties (a),(b),(d) when i and j are adjacent indices,say j = i + 1.To
simplify our display, we represent the matrices schematically,denoting the rows in question

by R = (row i) and S = (row j), and suppressing notation for the other rows. So
[\037]

denotes our given matrix A. Then by linearity in the ith row,)

(1.4.11)) 8
[

R

\037
CS]

= 8
[\037]

+ c 8
[\037]

.)

The first term on the right side is 8(A), and the second is zero (1.4.7).This proves (a) for

adjacent indices. To verify (b) for adjacent indices, we use (a) repeatedly. Denoting the rows

by Rand S as before:)))
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(1.4.12))

8
[

R

]
==8

[
R-S

]
==8

[

R-S

]
==8

[

R-S
]

==8

[

-S

]
==-8

[

5

]S S S+ (R
- S) R R R

.)

Finally , (d) for adj acent indices follows from (c) and (1.4. 7)(iii).

To completethe proof, we verify (a),(b ),(d) for an arbitrary pair of distinct indices.

Suppose that (row i) is a multiple of (row j). We switch adjacent rows a few times to obtain
a matrix A' in which the two rows in question are adjacent. Then (d) for adjacent rows tells
us that 8(A') == 0, and (b) for adjacent rows tells us that 8(A') == :l: 8(A). So 8(A) == 0, and

this proves (d). At this point, the proofs of that we have given for (a) and (b) in the case of

adjacent indices carryover to an arbitrary pair of indices. 0)

The rules(1.4.10)(a),(b),(c)show how multiplication by an elementary matrix affects

8, and they lead to the next corollary.)

Corollary 1.4.13 Let 8 be a function on n X n matrices with the properties (1.4.7), and let E
@.e an elementary matrix. For any matrix A, 8(EA) == 8(E)8(A). Moreover,

(i) If E is of the first kind (add a multiple of one row to another), then 8(E) == 1.

{ii) If E is of the second kind (row interchange), then 8(E) == -1.

(iii) If E is of the third kind (multiply a row by c), then 8(E) == c.)

Proof The rules (1.4.10)(a),(b),(c) describe the effect of an elementary row operation on
8(A),so they tell us how to compute 8(EA) from 8(A). I'hey tell us that 8(E'A) == E 8(A),

where E == 1, -1, or c according to the type of elementary matrix. By setting A == I, we find

that 8(E) == 8(\302\243/) == E8(I) == E. 0)

Proof of the multiplicative property, Theorem 1.4.9. We imagine the first step of a row re-
duction of A, say EA == A'. Suppose we have shown that 8(A' B) == 8(A')8(B). We apply

Corollary 1.4.13: 8(E)8(A) == 8(A'). Since A' B == E(AB) the corollary also tells us that

8(A'B) == 8(E)8(AB). Thus

8(E)8(AB) == 8(A' B) == 8(A')8(B) == 8(E)8(A)8(B).)

Canceling 8(E), we see that the multiplicative property is true for A and B as well. This being
so, induction shows that it suffices to prove the multiplicative property after row-reducing
A. So we may suppose that A is row reduced. Then A is either the identity, or else its bottom

row is zero. The property is obvious when A == I. If the bottom row of A is zero, so is the
bottom row of AB, and Theorem 1.4.10 shows that 8(A) = 8(AB) == o. The property is true

in this case as well. D)

Proof of uniquenessof the determinant, Theorem 1.4.7. There are two parts. '\"[0 prove unique-

ness, we perform row reduction on a matrix A, say A' == Ek
. . .

EIA. Corollary 1.4.13 tells us

how to compute 8(A) from 8(A'). If A' is the identity, then 8(A') == 1. Otherwise the bottom

row of A' is zero, and in that case Theorem 1.4.10 shows that 8(A
'
) == O. This determines

8 (A) in both cases.)))
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Note: It is a natural idea to try defining determinants using compatibility with multiplication

and Corollary 1.4.13. Since we can write an invertible matrix as a product of elementary

n1atrices, these properties determine the determinant of every invertible matrix. But there
are many ways to write a given matrix as such a product. Without going through some steps
as we have, it won't be clear that two such products will give the same answer. It isn't easy
to make this idea work.

To complete the proof of Theorem1.4.7.we must show that the determinant function

(1.4.5)we have defined has the properties (1.4.7). This is doneby induction on the size of the
matrices. We note that the properties (1.4.7) are true when n == 1, in which case det [a] =:a.
Sowe assume that they have been proved for determinants of (n - 1) X (n

- 1) matrices.
Then all of the properties (1.4.7), (1.4.10), (1.4.13),and (1.4.9)are true for (n

- 1) X (n
- 1)

matrices. We proceed to verify (1.4.7) for the function 8 == det defined by (1.4.5), and for
n x n matrices.Forreference,they are:)

(i) With I denoting the identity matrix, det (I) =: 1.

(ii) det is linear in the rows of the matrix A.

(iii) If two adjacent rows of a matrix A are equal, then det (A) =: O.)

(i) If A =: In. then all == 1 and a v 1
== 0 when v > 1. The expansion(1.4.5)reduces

to det(A) == 1 det(AIl)' Moreover, All == /n-l, SO by induction, det(Al1) == 1 and

det(In) == 1.

(ii) To prove linearity in the rows, we return to the notation introduced in (1.4.8). We show

linearity of each of the terms in the expansion (1.4.5),i.e.,that)

( 1.4.14)) d vl det (D vl) == c avl det (Avl) + C'bvl det (Bvl))

for every index v. Let k be as in (1.4.8).

Case 1: v == k. The row that we operate on has beendeletedfrom the minors Akl, Bkl, Dkl so
they are equal, and the values of det on them are equal too. On the other hand, akl, bkl,dk1

are the first entries of the rows Ak, Bk, Dk, respectively. So d k1
== cakl + c' bkl, and (1.4.14)

follows.)

Case 2: V=I=k. If we let
A\037, B\037, Dk

denote the vectors obtained from the rows Ak, Bk, Dk,

respectively, by dropping the first entry, then
A\037

is a row of the minor A vI, etc. Here

Dk == C
A\037

+ c'
B\037,

and by induction on n, det
(D\037l)

== c det (A \0371) + c' det
(B\037l)'

On the

other hand, since v =1= k, the coefficients avl, b v1 , d v1 are equal. So (1.4.14)is true in this case

as well.

(iii) Suppose that rows k and k + 1 of a matrix A are equal. lJnless v == k or k + 1, the minor

A v l has two rows equal, and its determinant is zero by induction. Therefore, at most two

terms in (1.4.5) are different from zero. On the other hand, deleting either of the equalrows

gives us the same matrix. So akl ==
ak+l1 and Akl == Ak+l1' Then)

det (A) == :t: akl det (Akl) =t= ak+l1 det (Ak+l1) == O.)

This completes the proof of Theorem1.4.7.) D)))



24 Chapter 1) Matrices)

Corollary 1.4.15

(a) A square matrix A is invertible if and only if its determinant is different from zero. If A

is invertible, then det (A -1) = (detA )-1.

(b) The determinant of a matrix A is equal to the determinant of its transposeAt.

(c) Properties (1.4.7) and (1.4.10) continue to hold if the word row is replaced by the word

column throughout.)

Proof (a) If A is invertible, then it is a product of elementary matrices, say A = \302\2431
. . . Er

(1.2.16). Then detA = (detE1)'\" (detEk).The determinants of elementary matrices are
nonzero (1.4.13),so detA is nonzero too. If A is not invertible, there are elementary matrices

\302\2431,\302\267. . , Er such that the bottom row of A' = E1 . . .
ErA is zero (1.2.15). Then detA' = 0, and

det A = 0 as well. If A is invertible, then det(A -1)detA == det(A
-1

A) = det 1 == 1, therefore

det (A-
1) = (detA)-l.

(b) It is easy to check that det E == det E t
if E is an elementary matrix. If A is invertible,

we write A == E1 . . . Ek as before. Then At ==
E\037.

. .
Ei, and by the multiplicative property,

detA = detA
t

. If A is not invertible, neither is At. Then both det A and detA t
are zero.)

(c) This follows from (b).) o)

1.5 PERMUTATIONS)

A permutation of a set S is a bijective map p from a set S to itself:)

(1.5.1)) p:S \037 S.)

The table)

(1.5.2))
i) 1 2 3 4 5

35412)p(i))
exhibits a permutation p of the set {I, 2,3,4,5}of five indices: pel) == 3, etc. It is bijective
because every index appears exactly once in the bottom row.

The set of all permutations of the indices {I, 2, ... , o}iscalled the symmetric group,
and is denoted by Sn. It will be discussed in Chapter 2.

The benefit of this definition of a permutation is that it permits composition of

permutations to be defined as composition of functions. If q is another permutation, then

doing first p then q means composingthe functions: q 0 p. The composition is called the

product permutation, and will be denoted by q p.
Note: Peoplesometimeslike to think of a permutation of the indices 1, . . . , n as a list of
the same indices in a different order, as in the bottom row of (1.5.2). This is not good for

us. In mathematics one wants to keep track of what happens when one performs two or
more permutations in succession. For instance, we may want to obtain a permutation by
repeatedly switching pairs of indices. Then unless things are written carefully, keeping track
of what has been done becomes a nightmare. D

The tabular form shown above is cumbersome. It ismore common to use cycle notation.

To write a cycle notation for the permutation p shown above, we begin with an arbitrary)))
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index, say 3, and follow it along: p(3) == 4, p( 4) == 1, and pel) == 3. The string of three
indices forms a cycle for the permutation, which is denoted by)

(1.5.3)) (341) .)

This notation is interpreted as follows:the index3 is sent to 4, the index 4 is sent to 1, and

the parenthesis at the end indicates that the index 1 is sent back to 3 at the front by the

permutation:)

1\0374

\0373J)

Because there are three indices, this is a 3-cycle.
Also, p(2) == 5 and p(5) == 2, so with the analogous notation, the two indices 2, 5 form

a 2-cycle(25).2-cycles are called transpositions.
The complete cycle notation for p is obtained by writing these cycles one after the

other:)

(1.5.4)) p == (341) (25).)

The permutation can be read off easily from this notation.
One slight complication is that the cycle notation isn't unique, for two reasons. First,

we might have started with an index different from 3. Thus)

(3 41) , (13 4) and (413))

are notations for the same 3-cycle. Second, the order in which the cycles are written doesn't

matter. Cycles made up of disjoint setsof indices can be written in any order. We might just
as well write)

p == (52) (134).

The indices (which are 1,2,3,4,5 here) may be grouped into cycles arbitrarily, and the
result will be a cycle notation for some permutation. For example, (34) (2) (15) represents
the permutation that switches two pairs of indices,while fixing 2. However, I-cycles, the
indices that are left fixed, are often omitted from the cycle notation. We might write this

permutation as (34) (15). The 4-cycle)

(1.5.5)) q :=(1452))

isinterpreted as meaning that the missing index 3 is left fixed. Then in a cycle notation for a

permutation, every index appears at most once.(Of course this convention assumes that the

set of indices is known.) The oneexceptionto this rule is for the identity permutation. We'd

rather not use the empty symbol to denote this permutation, so we denoteit by 1.

To compute the product permutation q p, with p and q as above, we follow the indices

through the two permutations, but we must remember that q p means q 0 p, \"first do p, then

q.\" So since p sends3 --* 4 and q sends 4 --* 5, qp sends3 --* 5. Unfortunately, we read

cycles from left to right, but we have to fun through the permutations from right to left, in a)))
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zig-zag fashion. This takes some getting used to, but in the end it is not difficult. The result
in our case is a 3-cycle:)

then this first do this

qp = [(1452)] 0 [(341)(25)J
= (135),)

the missing indices2 and 4 beingleft fixed. On the other hand,)

pq
== (234).)

Composition of permutations is not a commutativeoperation.
Thereis a permutation matrix P associated to any permutation p. Left multiplication

by this permutation matrix permutes the entries of a vector X using the permutation p.
For example,if there are three indices, the matrix P associatedtothe cyclic permutation

p == (123) and its operation on a column vector are as follows:)

(1.5.6))
[

0 0 1

] [

Xl

] [

X3

]

PX == 1 0 0 X2 =
Xl .

o 1 0 X3 X2)

Multiplication by P shifts the first entry of the vector X to the second position and so on.
It is essential to write the matrix of an arbitrary permutation down carefully, and to

check that the matrix associated to a product pq of permutations is the product matrix PQ.
The matrix associated to a transposition (25) is an elementary matrix of the second type,
the one that interchanges the two corresponding rows. This is easyto see.But for a general

permutation, determining the matrix can be confusing.

\302\267To write a permutation matrix explicitly, it is best to use the n X n matrix units eij, the
matrices with a single 1 in the i, j position that were defined before (1.1.21). The matrix

associated to a permutation p of Sn is)

(1.5.7)) P==Lepi,i.)

(In order to make the subscriptas compact as possible, we have written pi for p(i).)

This matrix acts on the vector X == L ejxj as follows:)

(1.5.8)) PX = (Lepi.i)(Lejxj) =
Lepi.iejXj

=
Lepi.ieixi

= Lepixi.
i j i,j i i)

This computation is made using formula (1.1.25).The terms epi,iej in the double sum are

zero when i \"* j.

To express the right side of (1.5.8) as a column vector, we have to reindex so that the

standard basis vectors on the right are in the correct order, el, . . . , en rather than in the)))
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permuted order epl, . . ., e
pn

. We set pi == k and i ==
p-1k. Then

.)

(1.5.9)) LepiXi
==

Lekxp-1k.
i k)

This is a confusing point: Permuting the entries Xi of a vector by p permutes the

indices by p
-1 .

For example,the 3 X 3 matrix P of (1.5.6)is e21 + e32 + e13, and)

PX == (e21 + e32 + e13)(elxl + e2x2 + e3 x 3) == el X 3 + e2xl + e3X2.)

Proposition 1.5.10

(a) A permutation matrix P always has a single 1 in each row and in each column, the rest
of its entries being O. Conversely, any such matrix is a permutation matrix.

(b) The determinant of a permutation matrix is :!:1.

(c) Let p and q be two permutations, with associated permutation matrices P and Q. The
matrix associated to the permutation pq is the product PQ.)

Proof We omit the verification of (a) and (b). The computation below proves (c):)

PQ =
(\037epi,i)(\037 eqj,j)

=
\037

epi,i eqj,j =
\037

epqj,qjeqj,j
=

L epqj,j'
l } l,J } })

This computation is made using
formula (1.1.23). The terms epi,ieqj,j in the double sum are

zero unless i ==
q j. SO PQ is the permutation matrix associated to the product permutation

pq, asclaimed. 0)

\302\267The determinant of the permutation matrix associated to a permutation p is called the
sign of the permutation:)

(1.5.11)) signp = det P == :!: 1.)

A permutation p is even if its sign is + 1, and odd if its sign is -1. The permutation (123) has

sign + 1. It is even, while any transposition, such as (12), has sign -1 and is odd.
Every permutation can be written as a product of transpositions in many ways. If a

permutation p is equal to the product Tl
. . . Tk, where Ti are transpositions, the number k

will always be even if p is an even permutation and it will always be odd if p is an odd

permutation.
Thiscompletesourdiscussion of permutations and permutation matrices. We will come

back to them in Chapters 7 and 10.)

1.6 OTHERFORMULAS FOR THE DETERMINANT)

There are formulasanalogousto our definition (1.4.5) of the determinant that use expansIons

by minors on other columns of a matrix, and also ones that use expansions on rows.)))
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Again, the notation Aij stands for the matrix obtained by deleting the ith row and the

jth column of a matrix A.

Expansion by minors on the jth column:

detA = (-1)1+ja1jdetA1j + (-1)2+jazjdetA2j +... + (-l)n+janjdetAnj,)

or in summation notation,)

(1.6.1))

n

detA =
L(-l)v+ja v j detA vj .
v=l)

Expansion by minors on the ith row.')

detA = (-l)i+laildetAn + (-1)i+2aizdetAi2+ ... + (-l)i+naindetAin,)

(1.6.2))

n

detA =
L(-l)i+vaivdetAiva
v=1)

For example, expansion on the second row gives)

det

[\037
\037

\037]

= -0 det
[\037 ;J

+ 2 det
U \037]

- 1 det
D \037]

= 1.)

To verify that these formulas yield the determinant, one can check the properties (1.4.7).
The alternating signs that appear in the formulas can be read off of this figure:)

(1.6.3))

+ +
+)

+) +)

The notation (-l)i+ j for the alternating sign may seem pedantic, and harder to remember

than the figure. However, it is useful because it can be manipulated by the rules of algebra.

We describe one moreexpressionfor the determinant, the complete expansion. The
completeexpansionis obtained by using linearity to expand on all the rows, first on (row 1),
then on (row 2), and so on. Fora 2x2matrix, this expansion is made as follows:)

det
[\037 :]

= a det
[\037

\037]
+ b det

[\037 \037]

= ae det
U \037]

+ ad det
[\037 n

+ be det
[\037 \037]

+ bd det
[\037 n.)))
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The first and fourth terms in the final expansion are zero, and)

det

[\037 \037]

= ad det
[\037 n

+ be det
[\037 \037]

= ad - be.)

Carrying this out for n x n matrices leads to the complete expansion of the determinant,
the formula)

(1.6.4)) detA ==
L (signp)al,pl\" .an,pn,

permp)

in which the sum is over all permutations of the n indices, and (signp) is the sign of the

permutation.
For a 2x 2 matrix, the complete expansion gives us back Formula (1.4.2).Fora 3x3

matrix, the complete expansion has six terms, becausethere are sixpermutations of three

indices:)

(1.6.5)) detA =)

all a 22a 33 + al2a23 a 31 + a13a 2la 32
- alla23 a 32

- al2 a 2la 33 - a13a22 a 31.)

As an aid for rememberingthis expansion, one can display the block matrix [AlA]:)

(1.6.6))

all a12 al3 all al2 a13
\" \" X / /

a2l a22 a23 a21 a22 a23
x x x

a31 a32 a33 a31 a32 a33)

The three terms with positive signs are the products of the terms along the three diagonals
that go downward from left to right, and the three terms with negative signs are the products
of terms on the diagonalsthat go downward from right to left.

Warning: The analogous method will not work with 4X4 determinants.

The complete expansion is more of theoretical than of practical importance. Unless
n is small or the matrix is very special, it has too many terms to be useful for com-

putation. Its theoretical importance comesfrom the fact that determinants are exhibited
as polynomials in the n 2 variable matrix entries aij, with coefficients :f: 1. For example,
if each matrix entry aij is a differentiable function of a variable t, then because sums
and productsof differentiable functions are differentiable, det A is also a differentiable
function of t.)

The Cofactor Matrix)

The cofactor matrix of an n X n matrix A is the n x n matrix cof(A) whose i, j entry is)

(1.6.7)) cof(A)ij
== (-I)i+

j
detAji,)))
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where, as before, Aji
is the matrix obtained by crossing out the jth row and the ith column.

So the cofactor matrix is the transposeof the matrix made up of the (n - 1)X (n
- 1) minors

of A, with signs as in (1.6.3). This matrix is used to provide a formula for the inverse matrix.

If you need to compute a cofactor matrix, it is safest to make the computation in three

steps: First compute the matrix whose i, j entry is the minor det Aij, then adjust signs, and

finally transpose. Here is the computation for a particular 3 X 3 matrix:)

(1.6.8))

A=

[\037
\037 !]: [j -\037 =!], [=\037

_\037 -!], [j -\037 =!]

=cof(A).)

Theorem 1.6.9 Let A be an n X n matrix, let C == cof(A) be its cofactor matrix, and let
a == detA. If a*O, then A is invertible, and A-I == a- 1

C. In any case, CA == AC == aI.)

Here al is the diagonal matrix with diagonal entries equal to a. For the inverse of a 2 X 2

matrix, the theorem gives us back Formula 1.1.17. The determinant of the 3x3 matrix A

whose cofactor matrix is computed in (1.6.8) above happens to be 1, so for that matrix,

A-I == cof(A).)

Proof of Theorem 1.6.9. We show that the i, j entry of the product CA is equal to ex if i == j

and is zero otherwise. Let Ai denote the ith column of A. Denoting the entries of C and A

by Cij and aij, the i, j entry of the product CA is)

(1.6.10)) L Civavj = L (-1)v+i
det Aviavj.

v v)

'Yhen i == j, this is the formula (1.6.1) for the determinant by expansion by minors on

column j. So the diagonal entriesof CA are equal to ex, as claimed.

Suppose that i =1= j. We form a new matrix M in the following way: The entries of l'v! are

equal to the entries ofA, exceptfor those in column i. The ith column Mi of M is equal to
the jth column Aj of A. Thus the ith and the jth columns of M are both equal to

Aj\037
and

detM == O.

Let D be the cofactor matrix of M, with entries dij. The i, i entry of DM is)

Ldivmvi
==

L(-l)v+idetM vim vi.
v v)

This sum is equal to det M,which is zero.

OQ the oth.cr hand, sincethe ith column of M is crossed out when forming M vi, that

minor is equal to Avi. And since the ith column of M is equal to the jth column of A,

m vi == Qv j. So the i, i entry of DM is also equal to)

L (-1)
v+i

det AviQvj,
lJ)))
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which is the i, j entry of CA that we want to determine. Therefore the i, j entry of CA is

zero, and CA = aI, as claimed. It follows that A-I = a-I cof(A) if a=j::.O.The computation

of the product AC is done in a similar way, using expansion by minors on rows. D)

A general algebraical determinant in its developed form

may be likened to a mixture of liquids seemingly homogeneous,
but which, being of differing boiling points, admit of beingseparated

by the process of fractional distillation.

-James Joseph Sylvester)

EXERCISES)

Section 1 The Basic Operations)

[

1 2 5

]

1.1. What are the entriesa2I,and a23 of the matrix A = 2 7 8 ?
094

1.2.Determine the products AB and BA for the following values of A and B:)

[
1 2 3

] [

-8 -4

] [
1 4

] [

6 -4
]

A =
3 3 1 ' B =

_\037 _\037

; A =
1 2 ' B =

3 2')

1.3.Let A = [al . . .an] bea row vector, and let B =

[
\0371

]

be a column vector.Compute

the products AB and BA. bn

1.4. Verify the associative law for the matrix product
[\037 i] [\037

\037
\037]

[\037 ]

.

Note: This is a self-checkingproblem.It won't come out unless you multiply correctly. If

you need to practice matrix multiplication, use this problem as a model.
1.5.3Let A, B, and C be matricesof sizes l Xm, m Xn, and n X p. How many multiplications

are required to compute the product AB? In which order should the triple product ABC
be computed, so as to minimize the number of multiplications required?)

1.6. Compute
[

1

\037] [1 nand [1 \037r
.

[

1 1 l

]

n

1.7. Find a formula for 1
\037

' and prove it by induction.)

3
Suggested by Gilbert Strang.)))
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1.8. Compute the following products by block multiplication:)

1 1 1 5 1 2 1 0

0 1 0 1 0 1 0 1 0 1 2

mtiJ
1 0 0 1 1 0 0 1

0 1 0 4 2 3 .

3 0 1 5 0 40 1 1 0 0 1 1 3

1.9.Let A, B be square matrices.

(a) When is (A + B)(A - B) = A
2 - B2? (b) Expand (A + B)3.)

1.10. Let D be the diagonal matrix with diagonal entries d1, . . . ,dn , and let A == (ai j) be an
arbitrary n Xn matrix. Compute the products DA and AD.

1.11.Prove that the product of upper triangular matrices is upper triangular.
1.12. In eachcase,find all 2 x 2 matrices that commute with the given matrix.)

(a)[\037 \037J. (b)[\037 \037J. (C)[\037 \037l (d)[\037 il (e)[\037 \037l

1.13. A square matrix A is nilpotent if A k == 0 for some k > \037.Prove that if A is nilpotent, then

I + A is invertible. Do this by finding the inverse.

1.14. Find infinitely many matrices B such that BA = /2 when)

A =

[: fl
and prove that there is no matrix C such that AC == 13.

1.15. With A arbitrary, determine the products eijA, Aeij, ejAek, eiiAejj, and eijAekl')

Section 2 Row Reduction
. 2.1. For the reduction of the matrix M (1.2.8)given in the text, determine the elementary

matricescorrespondingto each operation. Compute the product P of these elementary
matrices and verify that PM is indeed the end result.

2.2.Find all solutions of the system of equations AX = B when)

[

1 2 1 1

]
A= 3 0 0 4

1 -4 -2 2)

and B = (a)
[\037l

(b)
[i l

(c)

[\037l)

2.3. Find all solutions of the equationXl + X2 + 2X3 -
X4 == 3.

2.4. Determine the elementary matricesusedin the row reduction in Example (1.2.18), and
verify that their product is A

-1
.)))
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2.5. Find inverses of the following matrices:)

[1 1]. [i \037]. [1 n[l l][i n.)

2.6.The matrix below is based on the Pascal triangle. Find its inverse.)

1

1 1

121
133 1
14641)

2.7.\037lake a sketch showing the effect of multiplication by the matrix A ==

[

2 -

\037]

on

the plane JR2.
\302\2672

2.8. Prove that if a product AB of 11 X n matrices is invertible, so are the factors A and B.

2.9. Consider an arbitrary system of linear equations AX == B, where A and B are real
matrices.)

(a) Prove that if the system of equations AX == B has more than one solution then it has

infinitely many.
(b) Prove that if there is a solution in the complex numbers then there is also a real

solution.)

2.10. Let A be a squarematrix. Show that if the system AX == B has a unique solution for some
particular column vector B, then it has a unique solution for all B.)

Section 3 The Matrix Transpose

3.1. A matrix B is symmetric if B == B
t

. Prove that for any square matrices B, BB t
and B + B t

are symmetric, and that if A is invertible, then (A-l)t == (A t)-I.

3.2. Let A and B be symmetric fl X n matrices. Prove that the product AB is symmetric if and

only if AB == BA.

3.3. Suppose we make first a row operation, and then a column operation, on a matrix A.

Explain what happens if we switch the order of these operations, making the column

operation first, followed by the row operation.
3.4. Howmuch can a matrix be simplified if both row and column operations are allowed?)

Section 4 Determinants

4.1. Evaluate the following determinants:)

(a)
[2:i \037],

(b)
[i -n,

(c)
[\037

\037
\037l

(d))

100 0
5 200
8 6 3 0 .
097 4)))



34 Chapter 1) Matrices)

4.2. (self-checking) Verify the rule detAB = (detA)(detB)for the matrices

A =
[i \037land

B =
U

- \0371

4.3. Compute the determinant of the following n X n rnatrix using induction on n:)

2 -1

-1 2-1
-1 2-1

-1)

2 -1
-1 2)

4.4. Let A be an n Xn matrix. Determine det (-A) in terms of detA.

4.5. Use row reductionto prove that detA t = detA.

[

A B

]

.
4.6.Prove that det

0 D
= (detA)(detD), if A and D are square blocks.)

Section5 Permutation Matrices

5.1. Write the following permutations as products of disjoint cycles:

(12) (13) (14) (15), (123)(234) (345), (1234)(2345),(12)(23)(34) (45) (51),

5.2. Let p be the permutation (1342) of four indices.

(a) Find the associated permutation matrix P.

(b) Write p as a product of transpositionsand evaluate the corresponding matrix product.
(c) Determine the sign of p.)

5.3. Prove that the inverse of a permutation matrix P is its transpose.

5.4. What is the permutation matrix associated to the permutation of n indicesdefined by

p(i) = n - i + I? What is the cycle decomposition of p? What is its sign?

5.5. In the text, the products qp and pq of the permutations (1.5.2) and (1.5.5)wereseento

be different. However, both products turned out to be 3-cycles. Is this an accident?)

Section 6 Other Formulas for the Determinant

6.1.(a) Compute the determinants of the following matrices by expansion on the bottom
row:)

[ ; ; ]
,

[
\037 \037 \037

]

,
r

\037 -i -\037

]

,

[

\037 \037 \037

]

.

o 2 1 t 1 -1 1 1 1 1
I.-

(b) Compute the determinants of these matrices using the complete expansion.

(c) Compute the cofactor matrices of these matrices, and verify Theorem 1.6.9

for them.

6.2. Let A be an n x n matrix with integer entries aij. Prove that A is invertible, and that its

inverse A -1 has integer entries,if and only if det A = ::i:1.)))
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Miscellaneous Problems

*M.l. Let a 2n x 2n matrix be given in the form M =
[\037

g ],
where each blockis an n X n

matrix. Suppose that A is invertible and that A C == CA. Use block multiplication to prove
that det M == det (AD

- CB). Givean example to show that this formula need not hold if

AC:;i: CA.

M.2. Let A be an m Xn matrix with m < n. Prove that A has no left inverse by comparing A

to the square n X n matrix obtained by adding (n
- m) rows of zeros at the bottom.

M.3. The trace of a squarematrix is the sum of its diagonal entries:

trace A == a 11 + a22 + . . . + ann,

Show that trace (A + B) == trace A + trace B, that trace AB == trace BA, and that if B is

invertible, then trace A == trace BAB- 1.

M.4. Show that the equation AB - BA == I has no solution in real n Xn matrices A and B.

M.S. Write the matrix
[j ;]

as a product of elementary matrices, using as few as you can,

and prove that your expression is as short as possible.
M.6.Determine the smallest integer n such that every invertible 2 X 2 matrix can be written as

a product of at most n elementary matrices.

M.7. (Vandermonde determinant))

(a) Prove that det

[
\037 i \037

]

== (a
- b) (b - c)(c- a).

a2
b

2 c 2

(b) Prove an analogousformula for n X n matrices, using appropriate row operations to
clear out the first column.

(c) {lse the Vandermonde determinant to prove that there is a unique polynomial pet)
of degree n that takes arbitrary prescribed values at n + 1 points to, . . . , tn.

*M.8. (an exercise in logic) Consider a general system AX == B of m linear equations in n

unknowns, where m and n are not necessarily equal. The coefficientmatrix A may have

a left inverse L, a matrix such that LA == In. If so, we may try to solve the system as we
learn to do in school:

AX == B, LAX == LB\" X == LB.

But when we try to check our work by running the solution backward, we run into trouble:

If X == LB, then AX == ALB. We seem to want L to be a right inverse, which isn't what

was gIven.

(a) Work some examples to convince yourself that there is a problem here.

(b) Exactly what does the sequence of steps madeabove show? What would the existence
of a right inverse show? Explain clearly.

M.9. LetA be a real2x2 matrix, and 1etAl, A2 be the columns of A..LetP be the parallelogram

whose vertices are 0, AI, A2, Al + A2. Determine the effect of elementary row operations
on the area of P, and use this to prove that the absolute value IdetAI of the determinant

of A is equal to the area of P.)))
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*M.I0. Let A, B be m Xn and n Xm matrices. Prove that 1m
- AB is invertible if and only if

In - BA is invertible.

Hint: Perhaps the only approach available to you at this time is to find an explicit
expression for one inverse in terms of the other. As a heuristic tool, you could try

substituting into the power series expansionfor (1
- x)-l. The substitution will make no

sense unless someseriesconverge\037 and this needn't be the case. But any way to guess a
formula is permissible, provided that you check your guess afterward.

M.ll. 4(discreteDirichlet problem) A function feu, v) is harmonic if it satisfies the Laplace

equation
a 2

{ +
a 2

{ := O. The Dirichlet Problem asks for a harmonic function on a Plane
au av

region R with prescribed values on the boundary. Thisexercisesolves the discrete version
of the Dirichlet problem.

Let f be a real valued function whose domain of definition is the set of integers Z. To
avoid asymmetry, the discrete derivative is defined on the shifted integersZ + 1, as the

first difference f'(n + !) == fen + 1) - fen). The discrete second derivative is back on
the integers:f\"(n) == f'(n + !) - f'(n - !) := fen + 1) - 2f(n) + fen -1).
Let feu, v) be a function whose domain is the latticeof points in the plane with integer

coordinates. The formula for the discrete secondderivative shows that the discrete version
of the Laplace equation for f is

feu + 1, v) + feu
- 1, v) + feu, v + 1) + f(u\037 v-I) \0374f(u, v) == o.

So f is harmonic if its value at a point (u, v) is the average of the values at its four

neighbors.
A discrete region R in the plane is a finite set of integer lattice points. Its boundary

aR is the set of lattice points that are not in R, but which are at a distance 1 from some

point of R. We'll call R the interior of the region R == R u aRe Suppose that a function

fJ is given on the boundary a R. The discrete Dirichlet problem asksfor a function f
defined on R, that is equal to f3 on the boundary, and that satisfies the discrete Laplace
equation at all points in the interior. This problem leads to a system of linear equations
that we abbreviateas LX == B. To set the system up, we write f3uv for the given value
of the function f3 at a boundary point. So feu, v) == fJuv at a boundary point (u, v). Let
Xuv denote the unknown value of the function feu, v) at a point (u, v) of R. We order
the points of R arbitrarily and assemble the unknowns Xu v into a column vectorX. The

coefficient matrix L expresses the discrete Laplace equation, except that when a point

of R has some neighbors on the boundary, the corresponding terms will be the given
boundary values. These terms are moved to the other side of the equation to form the
vector B.)

(a) When R is the set of five points (0,0), (0, :i:1), ( :i:1,0), there are eight boundary

points. Write down the system of linear equations in this case, and solve the Dirichlet
problem when fJ is the function on aR definedby fJuv == 0 if v < 0 and f3uv

== 1 if

v> o.

(b) The maximum principle states that a harmonic function takes. on its maximal value
on the boundary. Prove the maximum principle for discrete harmonic functions.

(c) Prove that the discrete Dirichlet problem has a unique solution for every region R
and every boundary function \037.)

41 learned this problem from Peter Lax, who told me that he had learned it from my father, Emil Artin.)))
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Groups)

II est peu de notions en mathematiquesqui soientplus primitives

que celie de loi de composition.

-Nicolas Bourbaki)

2.1 LAWS OF COMPOSITION)

A law of composition on a set S is any rule for combining pairs a, b of elements of S to get
another element,say p, of S. Some models for this concept are addition and multiplication
of real numbers.Matrix multiplication on the set of n X n matrices is another example.

Formally, a law of composition is a function of two variables,or a map)

S x S -+ S.)

Here S x S denotes,as always, the product set, whose elements are pairsa, b of elements

of S.

The element obtained by applying the law to a pair a, b is usually written using a

notation resembling one usedfor multiplication or addition:)

p == ab, a X b, a cb, a + b,)

or whatever, a choice being made for the particular law in question. The element p may be

called the product or the sum of a and b, depending on the notation chosen.

We will use the product notation ab most of the time. Anything done with product

notation can be rewritten using another notation such as addition, and it will continue to be
valid. The rewriting is just a change of notation.

It is important to note right away that ab stands for a certain element of .S, namely for

the element obtained by applying the given law to the elementsdenotedby a and b. Thus

if the law is matrix multiplication and if a =
[\n ;]

and b =
[\n \n],

then ab denotes

the matrix

[\n \n ].
Once the product ab has been evaluated, the elements a and b cannot

be recoveredfrom it.

With multiplicative notation, a law of compositionis associative if the rule)

(2.1.1)) (ab)c == a(bc) (associative law))

37)))
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holds for all a, b, c in S, where (ab)c means first multiply (apply the law to) a and b, then

multiply the result ab by c. A law of composition is commutative if)

(2.1.2)) ab == ba (commutative law))

holds for all a and b in S. Matrix multiplication is associative, but not commutative.

It is customary to reserveadditive notation a + b for commutative laws - laws such

that a + b == b + a for a1]a and b. Multiplicative notation carries no implication either way

concerning commutativity.

The associative law is more fundamental than the commutative law, and one reason for

this is that composition of functions is associative.Let T be a set,and let g and f be maps
(or functions) from T to T. Let g 0 f denote the composed map t \037 g(f(t)): first apply f,
then g. The rule)

g,J\037gof)

is a law of compositionon the set of maps T -+ T. rrhis law is associative. If f, g, and hare
threemaps from T to T, then (h 0 g) 0 f == h 0 (g 0 .I):)

hog
\037

TLT\037T\037T.\037
go!)

Both of the composed maps send an element t to h (g( J(t))).
When T contains two elements, say T == {a, b}, there are four maps T \037 T:)

i: the identity map, defined by i(a) = a, i(b) == b;

T: the transposition, defined by T(a) == b, T(b) == a;

a: the constant function a(a) == ex(b) == a;

13: the constant function (3(a) == f3(b) = b.)

The law of composition on the set {i,T, ex, f3} of maps T \037 T can be exhibited in a

rnultiplication table:)

1 T ex fJ

1 1 T ex fJ

(2.1.3) 1: T 1 f3 ex,

ex ex ex ex ex

f3 f3 f3 f3 f3

which is to bc read in this way:

f)

g go!)

Thus To ex = f3, while ex 0 T == cx. Composition of functions is not a commutative law.)))
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Going back to a general law of composition,supposewe want to define the product of
a string of n elements of a set: ala2.\" an = ? There are various ways to do this using the

given law, which tells us how to multiply two elements. For instance, we could first use the

law to find the product ala2, then multiply this element by a3, and so on:

\302\253ala2)a3)a4
. . . .

There are several other ways to form a product with the elements in the given order, but if

the law is associative, then all of them yield the same element of S. This allowsus to speak
of the product of an arbitrary string of elements.)

Proposition 2.1.4 Let an associative law of composition be given on a set S. Thereis a
unique way to define, for every integer n, a product of n elements al, . . . , an of 5, denoted

temporarily by [al
. . .

an], with the following properties:

(i) 1-'heproduct[al] of one element is the element itself.

(ii) The product [ala2] of two elements is given by the law of composition.

(iii) For any integer i in the range 1 < i < n, [a1\".an]
== [al

... aiJ[ai+l . .. an].)

The right side of equation (iii) means that the two products [al . . .aiJ and [ai+l . . . an] are

formed first, and the results are then multiplied using the law of composition.

Proof We use induction on n. 1\"hc product is defined by (i) and (ii) for n < 2, and it does

satisfy (iii) when n = 2. Supposethat we have defined the product of r elementswhen

r < n - 1, and that it is the unique product satisfying (iii). We then define the product of n

elements by the rule)

[al
. . .

an]
==

[al
. . .

an-l][a n ],

where the terms on the right side are those already defined. If a productsatisfying (iii) exists,

then this formula gives the product because it is (iii) when i = n - 1.Soif the product of n

elements exists, it is unique. We must now check (iii) for i < n - 1:)

[a1
. . .

an]
= [al . . .a n -l][an]

==
([al

... aiJ[ai+l ... an-1J)[an ]

= [al . . . ad([ai+l . . .
an-I][anJ)

= [al
. . .

a;][ai+l
. . .

an])

(our definition)
(induction hypothesis)
(associativelaw)

(induction hypothesis).)

This completes the proof. We will drop the brackets from now on and denotethe product by

al . . . an. 0)

An identity for a law of compositionis an element e of S such that)

(2.1.5)) ea == a and ae == a, for all a in S.)

There can be at most one identity, for if e and e' are two such elements, then since e is an

identity, ee' == e
'
, and since e ' is an identity, e == ee'. Thus e == ee' == e'l

Both matrix multiplication and composition of functions have an identity. For n x n

matrices it is the identity matrix I, and for the set of maps T \037 T it is the identity map
- the

map that carries each element of T to itself.)))
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\302\267The identity element will often be denoted by 1 if the law of composition is written

multiplicatively, and by 0 if the law is written additively. These elementsdo not need to be

related to the numbers 1 and 0, but they share the property of being identity elements for

their laws of composition.

Supposethat a law of composition on a set S, written multiplicatively, is associative

and has an identity 1. An element a of S is invertible if there is another element b such that

ab == 1 and ba == 1,

and if so, then b is calledthe inverse of a. The inverse of an element is usually denoted by

a-
1

, or when additive notation is being used,by -a.

We list without proof some elementary properties of inverses. All but the last have

already been discussed for matrices. For an example that illustrates the last statement, see
Exercise 1.3.

\302\267If an element a has both a left inverse f and a right inverse r, i.e., if fa == 1 and

ar == 1, then .e == r, a is invertible, r is its inverse.
. If a is invertible, its inverse is unique.
. Inverses multiply in the opposite order: If a and b are invertible, so is the product

ab, and (ab)-1 == b-
1 a- 1 .

. An element a may have a left inverse or a right inverse, though it is not invertible.

Power notation may be used for an associative law:With n > 0, an == a . . . a (n factors),
a- n == a-l . . . a-

1
, and a O == 1. The usual rules for manipulation of powers hold: a ras == a

r +s

and (ar)S == ars. When additive notation is used for the law of composition, the power
notation an is replaced

bl
the notation na == a + . . . + a.

Fraction notation a is not advisable unless the law of composition is commutative,

because it isn't clear from the notation whether the fraction stands for ba- 1 or for a-1b, and

these two elements may be different.)

2.2 GROUPS AND SUBGROUPS)

A group is a set G togetherwith a law of composition that has the following properties:

. The law of comp9sition is associative: (ab)e == a(be) for all a, b, c in G.

. G contains an identity element 1, such that 1a == a and a1 == a for all a in G.

. Every element a of G has an inverse, an element b such that ab == 1 and ba == 1.

An abelian group is a group whoselaw of composition is commutative.

For example, the set of nonzero real numbers forms an abelian group under multipli-
cation, and the set of an real numbers forms an abelian group under addition.The set of

invertible n X n matrices, the general linear group,is a very important group in which the

law of composition is matrix multiplication. It is not abelian unlessn == 1.

When the law of composition is evident, it is customary to denote a group and the set

of its elements by the same symbol.
Theorderof a group G is the number of elementsthat it contains. We will often denote

the order by IGI:)

(2.2.1)) I G I == number of elements, the order, of G.)))
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If the order is finite, G is saidto be a finite group. If not, G is an infinite group. The same

terminology is used for any set. The order 151of a set 5 is the number of its elements.
Here is our notation for some familiar infinite abelian groups:)

the set of integers, with addition as its law of composition
- the additive group of integers,
the set of real numbers, with addition as its law of

composition- the additive group of real numbers;
the set of nonzero real numbers, with multiplication as
its law of composition

- the multiplicative group,
the analogousgroups,where the set C of complex num-

bers replaces the set IR of real numbers.

Warning: Others might use the symbol \037+ to denote the set of positive real numbers. To

be unambiguous, it might be better to denote the additive group of reals by OR, +), thus

displaying its law of composition explicitly.However,our notation is more compact. Also,
the symbol JRx denotes the multiplicative group of nonzero rea] numbers.Theset of all real

numbers is not a group under multiplication because 0 isn't invertible. D)

(2.2.2)) z+:)

IR+:)

IR
X

:)

C+ , cX:)

Proposition 2.2.3 Cancellation Law. Let a, b,c be elements of a group G whose law of

composition is written multiplicatively. If ab == ac or if ba == ca, then b == c. If ab == a or if

ba == a, then b == 1.)

Proof Multiply both sides of ab == ac on the left by a-I to obtain b == c. The other proofs
are analogous. D

Multiplication by a-I is essential for this proof. The Cancellation Law needn't hold when

the element a is not invertible. For instance,)

[1 1][\037 1]=[1 1][3 1].)
Two basic examples of groups are obtained from laws of composition that we have

considered- multiplication of matrices and composition of functions -
by leaving out the

elements that are not invertible.

\302\267The n X n genera/linear group is the group of all invertible n x n matrices. It isdenotedby

(2.2.4) G Ln ==
{n

x n invertible matrices A
}.

If we want to indicate that we are working with real or with complex matrices, we write
G Ln (IR) or G Ln (C), according to the case.

Let M be the set of maps from a set T to itself. A map f: T \037 T has an inverse
function if and only if it is bijective, in which case we say f is a permutation of T. The

permutations of T form a group, the law being composition of maps. As in section 1.S, we
usemultiplicative notation for the composition of permutations, writing q p for q 0 p.

. The group of permutations of the set of indices {l, 2, . . . , o} is called the symmetric group,
and is denotedby 5n:)

(2.2.5)) Sn is the group of permutations of the indices 1, 2, . . . , D.)))
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There are n! ('n factorial' == 1 . 2 . 3 . . . n) permutations of a set of n elements\037 so the

symmetric group Sn is a finite group of order n!.
The permutations of a set {a, b} of two elements are the identity i and the transposition

T (see 2.1.3). They form a group of order two. If we replace a by 1 and b by 2, we see that

this is the same group as the symmetric group 52. There is essentially only one group G of

order two. To see this, we note that one of its elements must be the identity 1; let the other
element be g. The multiplication table for the group contains the four products 11, 19, g1,
and gg. All except gg are determined by the fact that 1 is the identity element. Moreover,

the Cancellation Law shows that g g::l= g. The only possibility is gg == 1. So the multiplication
table is completelydetermined.Thereis just one group law.

We describe the symmetric group 53 next. This group, which has order six, serves
as a convenient example because it is the smallest group whoselaw of composition isn't

. commutative. We will refer to it often. To describe it, we pick two particular permutations

in terms of which we can write all others. We take the cyclic permutation (123), and the

transposition (12), and labelthem as x and y, respectively. '\"rhe rules

(2.2.6) x 3
== 1, y2 == 1, yx == x

2
y

arc easy to verify. Using the cancellation law, one sees that the six elements 1, .X\", x
2

, y, xy, x2
y

are distinct.So they are the six elements of the group:

(2.2.7) 53
==

{I, X, x 2
; y, xy, x2y}.

In the future, we will refer to (2.2.6)and (2.2.7)asour \"usual presentation\" of the symmetric

group 53.Note that 53 is not a commutative group, becauseyx::l= xy.

The rules (2.2.6) suffice for computation. Any product of the elements x and y and of

their inverses can be shown to be equal to one of the products (2.2.7) by applying the rules

repeatedly. To do so,we move all occurrences of y to the right side using the last rule, and
we use the first two rules to keep the exponents small.For instance,

(2.2.8) x-Iy
3

x
2

y == x
2

y.x
2
y == x

2
(yx)xy == x

2
(x

2
y)xy == xyxy

== x(x
2

y)y == 1.

One can write out a multiplication table for S3 with the aid of the
rule\037 (2.2.6), and because

of this, those rules are called defining relations for the group. We study defining relations in

Chapter 7.

We stop here.The structure of Sn becomes complicated very rapidly as n increases.
One reasonthat the general linear groups and the symmetric groups are important is

that many other groups are contained in them as subgroups. A subset H of a group G is a

subgroup if it has the following properties:)

(2.2.9)
. Closure:If a and b are in H, then ab is in H.

. Identity: 1 is in H.

. Inverses: If a is in H, then a- 1 is in H.)

These conditions are explained as follows:The first one tells us that the law of composition
on the group G defines a law of composition on H\037 called the induced law. The second and
third conditions say that H is a group with respect to this induced law. Notice that (2.2.9))))
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mentions all parts of the definition of a group exceptfor the associative law. We don't need
to mention associativity. It carries over automatically from G to the subset H.

Notes: (i) In mathematics, it is essential to learn the definition of each term. An intuitive

feeling will not suffice. For example,the set T of invertible real (upper) triangular 2 X 2

matrices is a subgroup of the general linear group G L2, and there is only one way to verify
this, namely to go backto the definition. It is true that T is a subsetof G L2. One must verify

that the product of invertible triangular matrices is triangular, that the identity is triangular,
and that the inverse of an invertible triangular matrix is triangular. Of course these points

are very easy to check.

(ii) Closure is sometimesmentioned as one of the axioms for a group, to indicate that the

product ab of elements of G is again an element of G. We includeclosureasa part of what

is meant by a law of composition. Then it doesn't need to be mentioned separately in the

definition of a group. 0)

Examples2.2.10

(a) The set of complex numbers of absolutevalue 1, the set of points on the unit circle in

the complex plane, is a subgroupof the multiplicative group ex called the circlegroup.
(b) The group of real n X n matrices with determinant 1 is a subgroupof the general linear

group G Ln, calledthe special linear group. It is denoted by SL n :)

(2.2.11 )) SL n (IR) is the set of real n X n matrices A with determinant equal to 1.)

The defining properties (2.2.9) are often very easy to verify for a particular subgroup, and
we may not carry the verification out.

.
Every group G has two obvious subgroups: the group G itself, and the trivial subgroup

that consists of the identity element alone. A subgroup is a proper subgroupif it is not one
of those two.)

2.3 SUBGROUPS OF THE ADDITIVE GROUP OF INTEGERS)

We review some elementary number theory here, in terms of subgroups of the additive

group Z+ of integers. To begin,we list the axioms for a subgroup when additive notation is

used in the group: A subset S of a group G with law of composition written additively is a
subgroupif it has these properties:)

(2.3.1)
. Closure:If a and b are in S, then a + b is in S.

. Identity: 0 is in S.

\302\267Inverses: If a is in S then -a is in S.)

Let a be an integer different from O. We denote the subset of Z that consists of all

multiples of a by Za:

(2.3.2) Za ==
{n E Z

\\
n == ka for some k in Z}.

This is a subgroup of Z+.Itselementscanalsobe describedas the integers divisible by a.)))
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Theorem 2.3.3 Let S be a subgroupof the additive group Z+. Either S is the trivial subgroup

{O}, or else it has the form Za, where a is the smallest positive integer in S.)

Proof Let S be a subgroup of Z+. Then 0 is in S, and if 0 is the only element of S then S

is the trivial subgroup. So that case is settled. Otherwise, S contains an integer n different

from 0, and either n or -n is positive. The third property of a subgroup tellsus that -n is in

S, so in either case, S contains a positive integer.We must show that S is equal to Za, when

a is the smallest positive integer in S.

We first show that 'La is a subset of S, in other words, that ka is in S for every integer
k. If k is a positive integer, then ka = a + a + . ..+a (k terms). Since a is in S, closure and

induction show that ka is in S. Since inversesare in S, -ka is in S. Finally, 0 = Oa is in S.

Next we show that S is a subset of Za, that is, every element n of S is an integer

multiple of a. We use division with remainder to write n = qa + r, where q and r are integers
and where the remainderr is in the range 0 < r < a. Since Za is contained in S, qa is in S,

and of course n is in S. Since S is a subgroup,r = n -
qa is in S too. Now by our choice, a is

the smallest positive integer in S, while the remainder r is in the range 0 < r < a. The only

remainder that can be in S is O. So r = 0 and n is the integer multiple qa of a. 0

There is a striking application of Theorem 2.3.3 to subgroups that contain two integers
a and b. The set of all integer combinations ra + sb of a and b,

(2.3.4) S = Za + Zb =
{n E Z In = ra + sb for some integers r, s}

is a subgroup of Z+. It is called the subgroupgenerated by a and b because it is the smallest

subgroup that contains both a and b. Let's assumethat a and b aren't both zero, so that S

is not the trivial subgroup {O}. Theorem 2.3.3 tells us that this subgroup S has the form Zd
for some positive integer d; it is the set of integers divisibleby d. The generator d is called
the greatest common divisor of a and b, for reasonsthat are explained in parts (a) and (b)
of the next proposition. The greatest common divisor of a and b is sometimes denoted by

gcd(a, b).)

Proposition 2.3.5 Let a and b beintegers,not both zero, and let d be their greatest common

divisor, the positive integer that generates the subgroup S = '?la+ Zb.SoZd = Za + '?lb.
Then

(a) d divides a and b.

(b) If an integer e dividesboth a and b, it also divides d.

(c) Thereare integersrand s such that d = ra + sb.)

Proof Part (c) restates the fact that d is an element of S. Next, a and b are elements of S
and S = Zd,sod divides a and b. Finally, if an integer e divides both a and b, then e divides

the integer combination ra + sb = d. 0
Note: If e divides a and b, then e divides any integer of the form ma + nb. So (c) implies

(b). But (b) does not imply (c). As we shall see, property (c) is a powerful tool. 0

One can compute a greatestcommon divisor easily by repeated division with remainder:

For example, if a = 314and b = 136,then

314 = 2 . 136 + 42, 136= 3.42+10, 42 = 4 . 10 + 2.)))
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Using the first of these equations, one can show that any integer combination of 314 and 136
canalsobe written as an integer combination of 136and the remainder 42, and vice versa. So
2(314)+ 2(136)= Z(136)+ Z(42), and therefore gcd(314, 136) = gcd(136,42).Similarly,

gcd(136,42)
= gcd( 42, 10) = gcd(10,2) == 2. So the greatest common divisorof 314 and 136

is 2. This iterative method of finding the greatest common divisor of two integers is called
the Euclidean Algorithm.

If integers a and b are given, a second way to find their greatest common divisor is
to factor each of them into prime integers and then to collect the common prime factors.
Properties(a)and (b) of Proposition 2.3.5 are easy to verify using this method. But without

Theorem 2.3.3, property (c), that the integer determined by this method is an integer

combination of a and b wouldn't beclearat all. Let's not discuss this point further here. We
come back to it in Chapter 12.

Two nonzero integersa and b are said to be relatively prime if the only positive integer
that divides both of them is 1. Then their greatest common divisor is 1: Za + Zb = Z.)

Corollary 2.3.6 A pair a, b of integers is relatively prime if and only if there are integersr
and s such that ra + sb == 1. D)

Corollary 2.3.7 Let p be a prime integer. If p divides a product ab of integers, then p
divides a or p divides b.

')

Proof Suppose that the prime p dividesab but does not divide a. The only positivedivisors
of pare 1 and p. Since p does not divide a, gcd(a, p) == 1. Therefore there are integers r
and s such that ra + sp = 1. We multiply by b: rab + spb == b, and we note that p divides

both rab and spb. Sop divides b. 0

There is another subgroupof Z+ associated to a pair Q,b of integers, namely the

intersection Za n Zb, the set of integers contained both in Za and in Zb. We assume now

that neither a nor b is zero.ThenZa n Zb is a subgroup. It is not the trivial subgroup {OJ

because it contains the product ab, which isn't zero. So Za n Zb has the form Zm for some

positive integer m. This integer m iscalledthe least common multiple of a and b, sometimes

denoted by lcm(a, b), for reasons that are explained in the next proposition.)

Proposition 2.3.8 Let a and b be integers different from zero, and let m be their least

common multiple
- the positive integer that generates the subgroup S == Za n Zb. So

Zm = Za n Zb.Then

(a) m is divisible by both a and b.
(b) If an integer n is divisible by a and by b, then it is divisible by m.)

Proof Both statements follow from the fact that an integer is divisible by a and by b if and

only if it is contained in Zm == Za n Zb. 0

Corollary2.3.9 Letd =
gcd(a, b) and m == lcm(a, b) be the greatest common divisor and

least common multiple of a pair a, b of positive integers, respectively. Then ab == dm.)

Proof Since bid is an integer, a divides abld. Similarly, b divides abld. So m divides
ab/d, and dm divides ab. Next, we write d == ra + sb. Then dm = ram + sbm.Both terms)))
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on the right are divisible by ab, so ab divides dm. Since ab and dm are positive and each
one divides the other, ab == dm. 0)

2\0374\037 CYG:LIC GROURS.)

We come now to an important abstract exampleof a subgroup, the cyclic subgroup generated
by an arbitrary clement x of a group G. We use multiplicative notation. The cyclic subgroup
H generatedby x is the set of all elements,that are powers of x:)

(2.4.1)) H
{

-2 -1 1 2
}== ...,x ,x , ,x ,x ,... .)

This is the smallest subgroup of G that contains x, and it is often denoted by <x). But to

interpret (2.4.1) correctly, we must remember that the notation x n
represents an element

of the group that is obtained in a particular way. Different powersmay represent the same

element. For example, if G is the multiplicative group IR
x

and x == -1, then all elements in

the list are equal to 1 or to -1, and H is the set {l, -I}.
Thereare two possibilities: Either the powers x n

represent distinct elements, or they

do not. We analyze the case that the powers of x are not distinct.)

PropositioD.2.4.2 Let <x) be the cyclic subgroup of-a group G generated by an element x,
and let S denotethe set of integers k such that xk == 1.

(a) The set S is a subgroupof the additive group Z+.

(b) TM:'D powers x r == x
S

, with r > s, are equal if and only if x r- s == 1, i.e., if and only if r - s
is in S.

(c) Supposethat S is not the trivial subgroup. Then S == Zn for some positive integer n.
'\"fhe powers 1, x, x 2, ..., xn -1 are the distinct elements of the subgroup < x), and the
order of <x> is n.)

Proof (a),1f xk == 1 and xl == 1, then xk+l == xk xl == 1. This shows that if k and f are in S,

then k + \302\243,is in S. So the first property (2.3.1) for a subgroup is verified.Also,xO == 1., so 0 is
in S. Finally, if k is in S, i.e., xk == 1, then x- k == (x

k
)-l == 1 too, so -k is in S.

(b) This follows from the Cancellation Law 2.2.3.

(c) Suppose that S *{O}.Theorem2.3.3shows that S == Zn, where n is the smallest positive

integer in S. If xk is an arbitrary power, we divide k by n, writing k ==
qn + r with r in the

range 0 < r, < n. Then xqn == 1 q == 1, and xk == x qn x r == x
r . TherefQre xk is equal to one of

the powers 1, x, ..., xn - 1 . It follows from (b) \"that these powers are distinct, because xn
is

the sfl?.allest positive power equal to 1. D

The group, < x) == {1, x, ..., x n
-1} described by part (c) of this proposition is called a

cyclicgroup of ordern. It iscalledcyclic because repeated multiplication by x cycles through

the n elements.,

All; e}e\037\037At ,x oft a group has order n if n is the smallest positive integer with the

property x\037 == 1, \\\\{hich is the same thing as saying that the, cyclic subgroup (x> generated.
by x has order n.

With the usual prese.ntationof the symmetric group S3, tl)e element x has order 3, and

y has.,order!2.\037In; any gfouP, the identity element is the only,element of order 1.)))
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If xn
1= 1 for all n > 0, one says that x has infinite order. The matrix

[\037 \037]

has

infinite order in G L2(IR;),while
[ _ \037

\037]

has order 6.

When x has infinite order, the group <x> is said to be infinite cyclic. We won't have
much to say about that case.)

Proposition 2.4.3 L,et x be an element of finite order n in a group, and let k be an integer

that is written as k == nq + r where q and r are integersand r is in the range 0 < r < n.
. xk =x r .

. xk == 1 if and only if r == O.

. Let d be the greatest common divisor of k and n. The order of xk IS equal
to n/d. 0)

One may also speak of the subgroup of a group G generatedby a subset U. This is
the smallest subgroup of G that contains U, and it consists of all elements of G that can be

expressed as a product of a string of elements of U and of their inverses. A subset U of G
is said to generate G if every element of G is such a product.Forexample,we saw in (2.2.7)
that the set U == {x, y} generates the symmetric group 53.The elementary matrices generate
G Ln (1.2.16). In both of these examples, inverses aren't needed. That isn't always true. An

infinite cyclic group <x> is generatedby the element x, but negative powers are neededto
fill out the group.

The Klein four group V, the group consisting of the four matric\037s)

(2.4.4 ))
[:1:1 :1:1].)

is the simplest group that is not cyclic. Any two of its elements different from the identity

generate V. The quaternion group H is another example of a small group. It consists of the
eight matrices)

(2.4.5)) H=={:f:l, :f:i,:i:j,:i:k},)

where)

[

1 0

]

.
[

i 0
]

.
[

0 1
] [

0 i

]
1 ==

0 1
' I ==

0 -i
' J ==

-1 0
' k ==

i 0
.)

These matrices can be obtained from the Pauli matrices of physics by multiplying by i.

The two elements i and j generate H. Computation leads to the formulas)

(2.4.6))
.2 .2 ..2

1
.. ..

k
.
k k

. \302\267
k

. -
k

\302\267
I ==

J
== k == -

, IJ == -
JI == , J == -

J == I , I == -) =
J.)

2.5 HOMOMORPHISMS)

Let G and G' be groups, written with multiplicative notation. A homomorphism cp:G \037 G'

is a map from G to G' such that for all a and b in G,)

(2.5.1)) cp(ab) == cp(a)cp(b).)))
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The left side of this equation means

first multiply a and b in G, then send the product to G' using the map cp,

while the right side means

first send a and b individually to G' using the map cp, then multiply their images in G'.

Intuitively, a homomorphism is a map that is compatible with the laws of compositionin the

two groups, and it provides a way to relate different groups.)

Examples 2.5.2 The following maps are homomorphisms:
(a) the determinant function det: G Ln (I\037) \037 \037x (1.4.10),

(b) the sign homomorphism u: Sn \037 {:f: 1} that sends a permutation to its sign (1.5.11),
(c) the exponential map exp: \037+ \037 ]Rx defined by .\037'V'-t eX,

(d) the map cp:z+ \037 G defined by cp(n) == an , where a is a given element of G,

(e) the absolute value map I I: (CX \037 }Rx.)

In examples (c) and (d), the law of composition is written additively in the domain and
multiplicatively in the range. The condition (2.5.1) for a homomorphism must be rewritten
to take this into account. It becomes)

cp(a + b) == cp(a)cp(b).)

The formula showing that the exponential map is a homomorphismis ea+ b
==. e

a e b .

The following homomorphismsneedtobe mentioned, though they are less interestjng.
The trivial homomorphism cp: G \037 G' between any two groups maps every element of G to
the identity in G'. If H is a subgroup of G, the inclusion map i: H \037 G defined by i (x) == x

for x in H is a homomorphism.)

Proposition2.5.3Letcp: G \037 G' be a group homomorphism.

(a) If al, . . . , ak are elements of G, then cp(al . . .
ak)

= cp(al)
. . . cp(ak)'

(b) cp maps the identity to the identity: cp(lG) = 1G',
(c) cp maps inverses to inverses: cp(a-

l ) == cp(a)-l.)

Proof The first assertion followsby induction from the definition. Next, since 1 . 1= 1and

since cp is a homomorphism, cp(l)cp(l) == cp(l
. 1) == cp(l). We cancel cp(l) from both sides

(2.2.3)to obtain cp(l) = 1. Finally, cp(a-1)cp(a) == cp(a-1a) == cp(l) == 1. Hence cp(a-
1
) is the

inverse of cp(a). 0)

A group homomorphism determines two important subgroups:its imageand its kernel.

. The image of a homomorphism cp:G \037 G', often denoted by im cp, is simply the image of

cp as a map of sets:)

(2.5.4)) imcp ==
{x E G'

I
x == cp(a) for some a in

G},)

Another notation for the image would be cp(G).)))
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The image of the map Z+ -+ G that sends n \037 an is the cyclic subgroup <a> generated
by a.

.

The image of a homomorphism is a subgroup of the range. We will verify closure and

omit the other verifications.Let x and y be elements of the image. This means that there

are elements a and b in G such that x := cp(a)and y = cp(b).Sincecp is a homomorphism,

xy = cp(a)cp(b)= cp(ab).Soxy is equal to cp(something). It is in the image too.

\302\267The kernel of a homomorphism is more subtle and also more important. The kernel of cp,

often denoted by ker cp, is the set of elements of G that are mapped to the identity in G':)

(2.5.5)) kercp:= {a E G
I cp(a):= I}.)

The kernel is a subgroup of G because, if a and b are in the kernel, then cp(ab) == cp(a )cp(b) ==

1 . 1 = 1, so ab is in the kernel, and so on.

The kernel of the determinant homomorphism G L n (IR) -+ ]Rx is the special linear
group SLn (IR) (2.2.11). The kernel of the sign homomorphism Sn --+ {:f: 1} is called the

alternatiYfg group. It consists of the even permutations, and is denoted by An:)

(2.5.6)) The alternating group An is the group of even permutations.)

The kernel is important because it controls the entire homomorphism. It tells us not
only which elements of G are mapped to the identity in G', but also which pairs of elements

have the same image in G'.

\302\267If H is a subgroup of a group G and a is an element of G, the notation aH will stand for
the set of all products ah with h in H:)

(2.5.7)) aH ==
{g E Gig == ah for some h in

H}.)

This set is called a left coset of H in G, the word \"left\" referring to the fact that the element

a appears on the left.)

Proposition 2.5.8 Let cp : G -+ G' be a homomorphism of groups, and let a and b be
elementsof G. Let K be the kernel of cpo The following conditions are equivalent:

\302\267
cp(a) == cp(b),

. a -1 b is in K ,

\302\267b is in the coset aK,
. The cosets bK and aK are equal.)

Proof Suppose that cp(a)
== cp(b). Then cp(a-

1
b) == cp(a-1)cp(b)

:= cp(a)-lcp(b) == 1.

Therefore a-I b is in the kernel K. To prove the converse, we turn this argument around.

If a-1b is in K, then 1 == cp(a-1b) == cp(a)-lcp(b), so cp(a) == cp(b). This shows that the first

two bullets are equivalent. Their equivalencewith the other bullets follows. D)

Corollary 2.5.9 A homomorphism cp: G -+ G' is injective if and only if its kernel K is the
trivial subgroup {1} of G.)))



50 Chapter 2) Groups)

Proof. If K = {I},Proposition2.5.8shows that cp(a) = cp(b) only when a- 1b = 1,i.e.,a == b.

Conversely, if cp is injective, then the identity is the only element of G such that cp(a) = 1,
so K = {I}. 0)

The kernelof a homomorphism has another important property that is explained in

the next proposition. If a and g are elements of a group G, the elementgag-1is called the

conjugate of a by g.)

Definition 2.5.10 A subgroup N of a group G is a normal subgroup if for every a in Nand

every gin G, the conjugate gag- 1
is in N.)

Proposition 2.5.11 The kernel of a homomorphism is a normal subgroup.)

Proof If a is in the kernel of a homomorphism q;:G \037 G
' and if g is any element of G,

then cp(gag-
1) = cp(g)cp(a)q;(g-l)=

cp(g)lcp(g)-l
= 1. Therefore gag-

1 is in the kernel

too. 0)

Thus the speciallineargroup SL n (\037) is a normal subgroup of the general linear group
GLn(IR),and the alternating group An is a normal subgroup of the symmetric group Sn.
Every subgroup of an abelian group is normal, because if G is abelian, then gag- 1 = a for

all a and all g in the group. But subgroups of nonabelian groupsneedn'tbe normal. For

example, in the symmetric group S3,with its usual presentation (2.2.7), the cyclicsubgroup
<y> of order two is not normal, because y is in G, but xyx-

1 = x2
y isn't in <y>.

. The center of a group G, which is often denoted by Z, is the set of elements that commute

with every element of G:)

(2.5.12)) z = {z E G
I zx = xz for all x E G}.)

It is always a normal subgroupof G. The center of the speciallinear group SL2(\037) consists

of the two matrices I, -I. Thecenterof the symmetric group Sn is trivial if n > 3.)

Example 2.5.13 A homomorphism cp: 54 -+ 53 between symmetric groups.

There are three ways to partition the set of four indices {I, 2, 3, 4}into pairs of subsets

of order two, namely)

(2.5.14 )) 0 1 : {t, 2} U {3, 4}, 02 : {I, 3}U {2, 4}, n3: {I, 4} U {2, 3}.)

An element of the symmetric group S4 permutes the four indices, and by doing so it

also permutes these three partitions. This defines the map cp from 54 to the group of
permutations of the set {n1, 02, n3}, which is the symmetric group 53. For example,the

4-cycle p = (1234) acts on subsetsof order two as follows:)

{I, 2}\037 {2, 3} {I, 3} \037 {2, 4} {I, 4} \037 {I, 2}

{2, 3} \037 {3, 4} {2, 4} \037 {I, 3} {3, 4} \037 {I, 4}.)

Looking at this action, one sees that p acts on the set {n 1,n2, n3}of partitions as the

transposition (n1 n3) that fixes n2 and interchanges 0 1 and n3.)))
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If p and q areelementsof 84, the product pq is the composedpermutation po q,
and the action of pq on the set {nl, 02, n3}isthe composition of the actions of q and p.
Thereforecp(pq)

= cp(p)cp(q), and cp is a homomorphism.
The map is surjective, so its image is the whole group 83.Itskernelcanbe computed.

It is the subgroup of S4 consisting of the identity and the three products of disjoint trans-
positions:)

(2.5.15)) K = {i, (12)(34),(13)(24),(14)(23)}.)
o)

2.6 ISOMORPHISMS)

An ison10rphism cp:G \037 G' from a group G to a group G' isa bijective group homomor-

phism - a bijective map such that ep(ab) = cp(a)f{J(b)for all a and bin G.)

Examples 2.6.1
\302\267The exponential map e t is an isomorphism,when it is viewed as a map from the

additive group ]R+ to its image, the multiplicative group of positive real numbers.
. If a is an element of infinite order in a group G.,the map sending n 'V4 an is an

isomorphism from the additive group Z+ to the infinite cyclic subgroup < a> of G.
\302\267The set P of n Xn permutation matrices is a subgroup of GLn,and the map Sn \037 p

that sends a permutation to its associatedmatrix (1.5.7) is an isomorphism. D)

Corollary 2.5.9 gives us a way to verify that a homomorphism cp : G -+ G/ is an
isomorphism.To do so,we check that ker f{J

= {l}, which implies that qJ is injective, and also
that im q; = G', that is, cp is surjective.)

Lemma 2.6.2 If qJ:G \037 G' is an isomorphism, the inverse map cp-l:G' \037 G is also an

isomorphism.)

Proof The inverse of a bijective map is bijective. We must show that for all x and y in G',

cp-l(x)q;-l(y) = ((J-l(xy). We set a =
<p-

1
(x), b = cp-l(y), and c = q;-l(xy).What has to

be shown is that ab = c, and since cp is bijective, it suffices to show that q;(ab) = ep(c). Since

cp is a homomorphism,)

cp(ab) = cp(a)f{J(b)= xy
= ep(c).)

o)

This lemma showsthat when cp: G \037 G' is an isomorphism, we canmakea computation

in either group.. then use cp or cp-l to carry it over to the other. So, for computation with the

group law, the two groups have identical properties.To picture this conclusion intuitively,

suppose that the elements of one of the groupsare put into unlabe]ed boxes, and that

we have an oracle that tells
\037s,

when presented with two boxes, which box contains their

product. We will have no way to decide whether the elementsin the boxes are from G or
from G/.

Two groups G and G' are said to be isomorphic if there exists an isomorphismqJ from

G to G'. We sometimesindicate that two groups are isomorphic by the symbol \037)

(2.6.3 )) G \037G' means that G is isomorphicto G' .)))
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Since isomorphic groups have identicalproperties,it is often convenient to identify them with

each other when speaking informally. For instance, we often blur the distinction between
the symmetric group Sn and the isomorphicgroup P of permutation matrices.

\302\267The groups isomorphic to a given group G form what is called the isomorphism classof G.

Any two groups in an isomorphism class are isomorphic. When one speaks of classifying
groups, what is meant is to describe these isomorphismclasses.This is too hard to do for all

groups, but we will see that every group of prime order p is cyclic. So all groups of order
p are isomorphic.Thereare two isomorphism classes of groups of order 4 (2.11.5)and five

isomorphism classes of groups of order12(7.8.1).
An interesting and sometimes confusing point about isomorphismsis that there exist

isomorphisms cp : G \037 G from a group G to itself. Such an isomorphism is called an

automorphism. The identity map is an automorphism, of course, but there are nearly always
others. The most important type of automorphism is conjugation: Let g be a fixed element

of a group G. Conjugation by g is the map cp from G to itself defined by)

(2.6.4 )) cp(x) = gxg-
1

.)

This is an automorphism because, first of all, it is a homomorphism:)

cp(xy)= gxyg-l = gxg-1gyg-l= cp(x)cp(y),)

and second, it is bijective because it has an inverse function -
conjugation by g-l.

If the group is abelian,conjugation by any element g is the identity map: gxg-
1 = x.

But any noncommutative group has nontrivial conjugations, and so it has automorphisms
different from the identity. For instance, in the symmetric group 83, presented as usual,
conjugation by y interchanges x and x2

.

As was said before, the element gxg-1is the conjugate of x by g, and two elements
x and x' of a group G are conjugate if x' = gxg-

1 for some g in G. The conjugate gxg-
1

behaves in much the same way as the element x itself; for example, it has the same order in

the group. This follows from the fact that it is the image of x by an automorphism. (See the

discussion followingLemma 2.6.2.)
Note:One may sometimes wish to determine whether or not two elements x and y of a
group G areconjugate,i.e.,whether or not there is an element g in G such that y = gxg-

1.
It is almost always simpler to rewrite the equation to be solved for g as yg = gx. D

. The commutator aba-1b-
1 is another element associated to a pair a, b of elements of a

group.

The next lemma follows by moving things from one sideof an equation to the other.

Lemma2.6.5 Two elements a and b of a group commute, ab = ba, if and only if aba- 1 = b,
and this is true if and only if aba- 1b- 1 = 1. D)

2.7 EQUIVALENCE RELATIONS AND PARTITIONS

A fundamental mathematical construction starts with a set S and forms a newsetby equating

certain elements of S. For instance,we may divide the set of integers into two classes, the)))
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even integers and the odd integer\037. The new set we obtain consists of two elements that

could be called Even and odd. Or, it is common to view congruent triangles in the plane
as equivalent geometric objects. This very general procedure arisesin several ways that we
discuss here.

\302\267A partition n of a set S isa subdivision of S into nonoverlapping, nonempty subsets:)

(2.7.1)) S= union of disjoint nonempty subsets.)

The two sets Even and Odd partition the set of integers. With the usual notation,
the se ts)

(2.7.2)) {I}, {y, xy, x2
y}, {x,x2})

form a partition of the symmetricgroup S3.
\302\267An equivalence relation on a set Sisa relation that holds between certain pairs of elements.
of S. We may write it as a \037b and speak of it as equivalence of a and b. An equivalence

relation is required to be:)

(2.7.3)
\302\267transitive: If a \037band b \037c , then a \037c.

\302\267
symmetric: If a \037b , then b \037a.

\302\267
reflexive: For all a, a \037a.

Congruence of triangles is an example of an equivalence relation on the set of triangles

in the plane. If A, B, and C are triangles, and if A is congruent to ,Band B is congruent to

C, then A is congruent to C, etc.

Conjugacy is an equivalence relation on a group. Two group elementsare conjugate,
a \037

b, if b = gag-
1 for somegroup element g. We check transitivity: Suppose that a \037b

and b \037c. This means that b = glag11
and c = g2bg'21 for some group elementsg1and gz.

Then c = g2(gtagl1 )82
1 = (g2g1)a(g2g1)-1,soa \037c.

The concepts of a partition of S and an equivalence relation on S are logically

equivalent, though in practice one may be presented with just one of the two.)

Proposition 2.7.4 An equivalence relation on a set S determines a partition of S, and

conversely.)

Proof Given a partition of S, the corresponding equivalence relation is defined by the rule
that a \037b if a and b lie in the same subset of the partition. The axioms for an equivalence

relation are obviously satisfied. Conversely, given an equivalence relation, one defines a
partition this way: The subset that contains a is the set of all elements b such that a \037b. This

subset is called the equivalence class of a. We'll denote it by C a here:)

(2.7.5)) Ca = {bE S
I

a \037
b}.)

The next lemma completes the proof of the proposition.) o)))
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Lemma 2.7.6 Given an equivalence relation on a setS,the subsets of S that are equivalence
classespartition 5.)

Proof This is an important point, so we will check it carefully. We must remember that the
notation Ca standsfor a subset defined in a certain way. The partition consists of the subsets,
and several notations may describe the same subset.

The reflexive axiom tells us that a is in its equivalence class. Therefore the class Ca is

nonempty, and since a can be any element, the union of the equivalence classesis the whole

set S. The remaining property of a partition that must be verifiedis that equivalence classes

are disjoint. To show this, we show:)

(2.7.7)) IfC a and Cb have an element in common, then Ca == Cb.)

Since we can interchange the rolesof a and b, it will suffice to show that if Ca and Cb have

an element, say d, in common, then Cb C Ca, i.e., any element x of Cb is also in Ca. If X is
in Cb, then b \"-' x. Since d is in both sets, a \"-' d and b \"-'

d, and the symmetry property tells
us that d\"-' b. So we have a \"-'

d, d\"-' b, and b \"-' x. Two applications of transitivity show that

a \"-'
x, and therefore that x is in Ca. 0

For example, the relation on a group defined by a \"-' b if a and b are elementsof the

same order is an equivalence relation. The correspondingpartition is exhibited in (2.7.2) for
the symmetricgroup 53. _

If a partition of a set S is given, we may construct a new set S whose elementsare
the subsets. We imagine pu tti ng the subsets into separate piles, and we regard the piles as

the elements of our new
set\037.

It seems advisable to have a notation to distinguish a subset
from the element of the set 5 (the pil e) that it represents. If U is a subset,we will denote by

[U] the corresponding elementof 5. Thus if 5 is the set of in te gers and if Even and Odd
denotethe subsets of even and odd integers, respectively,then 5 contains the two elements
[Even]and [Odd].

We will use this notation more generally.When we want to regard a subset U of S as

an element of a set of subsets of S, we denote it by [U].

When an equivale nce relationon S is given, the equivalence classes form a partition,

and we obtain a new set S whose elements are the equivalence classes [Ca]. We can think of

the elements of this new set in another way, as the set obtained by changing what we mean

by equality amo ng elements. If a and b are in 5, we interpret a \"-' b to mean that a and b
becomeequalin

S!.-because C a == Cb. With this way of looking at it, the difference between

the two sets Sand S is that in S more elements have been declared\"equal,\" i.e., equivalent.
It seems to me that we often treat congruent triangles this way in school.

For any equivalence relation, there is a natural surjectivemap)

(2.7.8)) n:S-+S)

th at maps an element a of S to its equivalence class: n(a) ==
[Cal When we want to regard

S as the set obtained from
\037 by changing the notion of equality, it will be convenient to

denote the element [Ca] of S by the symbol a . Then the map n becomes)

1l'(a) = a)))
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We can work in S with the symbols used for elementsof S, but with bars over them to
remind us of the new rule:)

(2.7.9)) If a and b are in S, then a = b meansa rv b.)

A di sadvantage of this bar notation is that many symbols representthe same element
of IS. Sometimes this disadvantage can be overcome by choosinga particular element, a

representative element, in
\037ach e9uivalence

class. For example, the even and the oddintegers
are often represented by 0 and 1:)

(2.7.10)) {[Even],[Odd]}= to,I}.)

Though the pile picture may be easier to graspat first, the second way of viewing S is often
betterbecausethe bar notation is easier to manipulate algebraically.)

The Equivalence Relation Defined by a Map)

Any map of sets I: S -+ T gives us an equivalence relation on its domain S. It is defined by

the rule a I\"'v b if f(a) = f(b).

. The inverse image of an element t of T is the subset of S consisting of all elementss such

that f(s) = t. It is denoted symbolicallyas)

(2.7.11)) r1(t) ==
{s E S

I f(s) ==
t}.)

This is symbolic notation. Please rememberthat unless f is bijective, r 1
will not be a map.

1.he inverse imagesare alsocalledthe fibres of the map f, and the fibres that are not empty
are the

equivalenc\037
classes for the relation defined above.

Here the set S of equivalence classes has another incarnation, as the image of the map.
The elementsof the image correspond bijectively to the non empty fibres, which are the

equivalence classes.)

(2.7.12)) SomeFibresof the Absolute Value Map ex -* JRX.)

Example 2.7.13 If G is a finite group, we can define a map f: G -+ N to the set {I, 2,3, ...}
of natural numbers, letting I(a) be the order of the element a of G. The fibres of this map

are the sets of elementswith the same order (see (2.7.2), for example). 0)))
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We go baclc to a group homomorphism lfJ: G -+ G'. The equivalence relation on G

defined by cp is usually denoted by ==, rather than by \037, and is referred to as congruence:)

(2.7.14)) a == b if cp(a) = cp(b).)

We have seenthat elements a and b of G are congruent, i.e.,q;(a)= cp(b), if and only if b is
in the coset aK of the kernel K (2.5.8).)

Proposition2.7.15LetKbe the kernel of a homomorphism cp:G -+ G'. The fibre of cp that

contains an element a of G is the coset aK of K. These cosets partition the group G, and

they correspond to elementsof the image of cpo 0)

G) .) G')
qJ)

(2.7.16)) A Schematic Diagram of a GroupHomomorphism.)

2.8 COSETS

As before, if H is a subgroupof G and if a is an element of G, the subset)

(2.8.1 )) aH = {ah I
h in H}.)

is called a left coset. The subgroup H is a particular left coset because H = 1H.
The cosetsof H in G are equivalence classesfor the congruence relation)

(2.8.2)) a==b if b = ah for some h in H.)

This is very simple, but let's verify that congruence is an equivalencerelation.

Transitivity: Suppose that a == band b == c. This means that b = ah and c = bh ' for some
elementsh and h' of H. Therefore c = ahh'. Since H is a subgroup, hh' is in H, and thus

a = c.
Symmetry: Suppose a = b, so that b = aha Then a = bh-1

and h- 1 is in H, so b=a.
Reflexivity: a = al and 1 is in H, so a=a.

Notice that we have made use of all the defining properties Qf a subgroup here: closure,
inverses,and identity.)))
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Corollary 2.8.3 The left cosets of a subgroup H of a group G partition the group.)

Proof The left cosets are the equivalenceclassesfor the congruence relation (2.8.2). 0

Keep in mind that the notation aH defines a certain subset of G. As with any

equivalence relation, several notations may define the same subset. For example,in the

symmetric group 53, with the usual presentation(2.2.6),the element y generates a cyclic
subgroup H ==

<y> of order 2. There are three left cosets of H in G:)

(2.8.4)) H == {I, y} == yH, xH == {x, xy} == xyH, x
2 H == {x

2
, x2y} == x2yH.)

These sets do partition the group.
Recapitulating, let H be a subgroup of a group G and let a and b be elements of G.

The following are equivalent:

(2.8.5)
. b == ah for some h in H, or, a-1b is an element of H,
. bisan element of the left coset aH,
. the left cosets aH and bH are equal.
The number of left cosets of a subgroup is calledthe index of H in G. The index is

denotedby)

(2.8.6)) [G : H].)

Thus the index of the subgroup < y> of 53 is 3. When G is infinite, the index may be infinite

too.)

Lemma 2.8.7 All left cosets aH of a subgroup H of a group G have the same order.)

Proof Multiplication by a defines a map H \037 aH that sends h \037 aha This map is bijective
because its inverse is multiplication by a-I. 0)

Since the cosets all have the same order, and since they partition the group, we obtain
the important CountingFormula)

(2.8.8)) IGI == IHI [G:H]

(order of G) ==
(order of H) (number of eosets),)

where,as always, I G I denotes the order of the group. The equality has the obvious meaning
if some termS are infinite. For the subgroup <y> of 53, the formula reads 6 == 2 . 3.

It follows from the counting formula that the terms on the right side of (2.8.8) divide

the left side. One of these facts is called Lagrange's Theorem:)

Theorem2.8.9Lagrange's Theorem. Let H be a subgroup of a finite group G. The order of

H divides the order of G. 0)

Corollary2.8.10 Theorderof an element of a finite group divides the order of the group.)))
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Proof The order of an element a of a group G is equal to the order of the cyclic subgroup
(a) generatedby a (Proposition 2.4.2). 0)

Corollary 2.8.11 Supposethat a group G has prime order p. Let a be any element of G

other than the identity. Then G is the cyclic group <a) generatedby a.)

Proof The order of an element a * 1 is greater than 1 and it divides the order of G, which

is the prime integer p. So the order of a is equal to p. This is also the order of the cyclic
subgroup (a) generatedby a. Since G has order p, (a) = G. 0
This corollary classifies groups of prime order p. They form one isomorphism class, the class
of the cyclicgroupsof order p.

.

The counting formula can also be appliedwhen a homomorphism cp: G \037 G' is given.
As we have seen(2.7.15),the left cosets of the kernel ker cp are the nonempty fibres of the

map <po They are in bijective correspondence with the elements of the image.)

(2.8.12)) [ G : k er cp]
==

I im cp I.)

Corollary 2.8.13 Let cp:G \037 G' be a homomorphism of finite groups. Then

\302\267
I G I == Iker cp I

.
Iim cp I,

. Ikercpl divides IGI, and

.
lim cpl divides both IGI and IG'I.)

Proof The first formula is obtained 1?y combining (2.8.8) and (2.8.12), and it implies that

Ikercpl and lim <pI divide ICI. Since the image is a subgroupof G', Lagrange's theorem tells
us that its order divides I G'I too. 0

For example, the sign homomorphism (J' : Sn \037 {:f: 1} (2.5.2)(b) is surjective, so its
imagehas order2.Itskernel,the alternating group An, has order

\037n1.
Half of the elements

of Sn are even permutations, and half are odd permutations.
The Counting Formula 2.8.8 has an analogue when a chain of subgroups is given.)

Proposition 2.8.14 Multiplicative Property of the Index. Let C ::JH :) K be subgroups of

a group G. Then [G:K] = [G:H][H:K].)

Proof We will assume that the two indices on the right are finite, say [G : H] \037 m and

[H : K] == n. The reasoning when one or the other is infinite is similar. We list the m cosets

of H in G, choosing representative elements for each coset,say as glH, ..., gmH. Then
glH u . . . U gm H is a partition of G. Similarly, we choose representative elements for each
cosetof K in H, obtaining a partition H = h1K u . . . U h n K. Since multiplication by gi is

an invertible operation, giH = gihlK U ... U gihnK will be a partition of the coset giH.
Putting these partitions together, G is partitioned into the mn casetsgihj K. 0)

Right Cosets)

Let us go back to the definition of cosets. We made the decisionto work with left cosets aH.

One can alsodefine right eosets of a subgroup H and repeatthe above discussion for them.)))
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The right cosets of a subgroup H of a group G are the sets)

(2.8.15)) Ha ==
{ha I

h E H}.)

They are equivalenceclassesfor the relation (right congruence)

a==b if b == ha, for some h in H.

Right cosets also partition the group G, but they aren't always the saine as left cosets. For

instance, the right cosets of the subgroup <y> of S3 are

(2.8.16) H == {I, y} = Hy, Hx == {x, x2y} ==
Hx2y, Hx2 == {x

2
, xy} == Hxy.

This isn't the same as the partition (2.8.4) into left cosets. However, if a subgroup is normal,
its right and left cosets are equal.)

Proposition 2.8.17 Let H be a subgroup of a group G. The following conditions are
equivalent:

(i) H is a normal subgroup:For all h in H and all g in G, ghg-
1 is in H.

(ii) For all gin G, gHg-
1 == H.

(iii) For all g in G, the left coset g H is equal to the right coset Hg.

(iv) Every left coset of H in G is a right coset.)

Proof The notation g Hg- 1standsfor the set of all elements ghg-
1, with h in H.

Suppose that H is normal. So (i) holds, and it implies that gHg-
1 C H for all g in G.

Substituting g-l for g shows that g-l Hg C H as well.We multiply this inclusion on the left

by g and on the right by g-1 to conclude that H c gHg-
l . Therefore gHg- 1 == H. This

shows that (i) implies (ii).It is clear that (ii) implies (i). Next, if g Hg-
1 == H, we multiply

this equation on the right by g to conclude that g H == Hg. .This shows that (ii) implies (iii).
Oneseessimilarly that (iii) implies (ii). Since (iii) implies (iv) is obvious, it remains only to
check that (iv) implies (iii).

We ask: Under what circumstances can a left coset be equal to a right coset? We recall

that the right cosets partition the group G, and we note that the left coset g H and the right

coset Hg have an element in common, namely g == g .1 == 1 .
g. So if the left coset gH is

equal to any right coset, that coset must be Hg. 0)

Proposition 2.8.18

(a) If H is a subgroup of a group G and g is an element of G, the set g Hg
-1 is alsoa

subgroup.

(b) If a group G has just one subgroup H of order r, then that subgroup is normal.)

Proof (a) Conjugationby g is an automorphism of G (see (2.6.4\302\273, and gHg-
1 is the image

of H. (b) See(2.8.17):gHg-J is a subgroup of order r. D

Note:If H is a subgroup of a finite group G, the counting formulas using right eosets or left

cosets are the same, so the number of left cosets is equal to the number of right cosets. This

is also true when G is infinite, though the proof can't be made by counting (see Exercise

M.8). 0)))
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2.9 MODULAR ARITHMETIC)

This section contains a brief discussionof one of the most important concepts in number

theory, congruence of integers. If you have not run across this concept before, you will want

to read more about it. See, for instance, [Stark]. We work with a fixed positive integer n

throughout the section.

. Two integers a and b are said to be congruentmodulo n)

(2.9.1 )) a = b modulo n,)

if n divides b - a, or if b = a + nk for someintegerk.Forinstance, 2 == 17 modulo 5.

It is easy to check that congruence is an equivalence relation, so we may consider

the equivalence classes, called congruenceclasses,that it defines. We use bar notation, and
denote the congruence class of an integer a modulo n by the symbol a . This congruence
class is the set of integers)

(2.9.2)) a = {. . . , a - n,a,a + n, a + 2n, ...
}.)

If a and b are integers, the
\037quation

a = b means that a == b modulo n, or that n divides

b - a. Thecongruenceclass0 is the subgroup)

o = Zn = { . . . ,-n,0,n,2n,...}
=

{kn I
k E

Z})

of the additive group Z+. The other congruenceclassesare the cosets of this subgroup.
Please note that Zn is not a right coset - it is a subgroup of Z+. The notation for a coset of

a subgroup H analogous to aH, but using additive notation for the law of composition, is
a + H =

{a + h
I

h E H}. To simplify notation, we denotethe subgroup Zn by H. Then
the cosets of H, thecongruenceclasses,are the sets)

(2.9.3)) a + H = {a+ kn
I

k E Z}.)

The n integers 0, 1, . . . , n - 1 are representative elements for the n congruence classes.)

Proposition 2.9.4 Thereare n congruence classes modulo n, namely 0, 1, . . . , n - 1. The

index [Z:Zn] of the subgroup Zn in Z is n. 0)

Leta and b be congruence classes represented by integersa and b. Their sum is defined
to be the congruence class of a + b, and their product is the class of ab. In other words,by

definition,)

(2.9.5)) a +b=a+b and ab=ab.)

This definition needs some justification, because the samecongruenceclasscan be repre-

sented by many different integers. Any integer a' congruent to a modulo n representsthe
sameclassas a does.Soit had better be true that if a' = a and b' == b, then a' + b' = a + b
and a'b' == ab. Fortunately, this is so.)

Lemma 2.9.6 If a'=a and b' == b modulo n, then a' + h' == a + b and a' b' == ab

modulo n.)))
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Proof Assume that a ' = a and b
' = b, so that a

' = a + rn and b' = b + sn for some

integers rand s. Then a' + b' = a +b+ (r+s)n.This shows that a' + h' == a + b. Similarly,
a'b '

== (a + rn)(b + sn) = ab + (as+ rb + rns)n, so a'b' = ab. 0)

The associative,commutative, and distributive laws hold for additionand multiplication

of congruence classes because they hold for addition and multiplication of integers. For

example, the distributive law is verified as follows:)

a (b + c) = a(b + c) = a(b + c)

== ab + ac

= ab + ac == a b + a C)

(definition of + and Xfor congruenceclasses)
(distributive law in the integers)

(definition of + and X for congruence classes).)

The verifications of other lawsare similar, and we omit them.

The set of congruence classes modulo n may be denotedby anyone of the symbols
ZjZn, ZjnZ, or Zj(n). Addition, subtraction, and multiplication in ZjZn can be made
explicit by working with integers and taking remainders after division by n. That is what the

formulas (2.9.5) mean. They tell us that the map)

(2.9.7)) Z \037 ZjZn)

that sends an integer a to itscongruenceclassa iscompatible with addition and multiplication.
Therefore computations can be made in the integers and then carried over to ZjZn at the

end. However, computations are simpler if the numbers are kept small. This can be doneby

computing the remainder after some pa!t \037f\037
com put ation has been

m\037e.

_ Thu s
i\037

n _ 29, so\037hat 7lJZn
= {O, 1,2, ..., 28},then (35)(17 + 7) can be computed

as35. 24 == 6 . (-5) == -30 = -1.

In the long run, the bars over the numbers become a nuisance.They are often left off.
When omitting bars, one just has to remember this rule:)

(2.9.8)) To say a = bin Z/Zn means that a = b modulo n.)

Congruences modulo a prime integer have specialproperties,which we discuss at the

beginning of the next chapter.)

2.10 THE CORRESPONDENCE THEOREM)

Let cp:G \037 9 be a group homomorphism, and let H be a subgroup of G. We may restrict cp

to H, obtaining a homomorphism)

(2.10.1)) CPIH:H\037g.)

This means that we take the samemap cP but restrict its domain: So by definition, if h is in

H, then [cpIH](h) == cp(h). (We've added brackets around the symbol cplB for clarity.) The

restriction is a homomorphism becausecP is one, and the kernel of CPIH is the intersection of
the kernel of cP with H:)

(2.10.2)) ker(cpIH) = (kercp)n H.)))
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This is clear from the definition of the kernel.The imageof q;1 H is the same as the image

cp(R) of H under the map q;.
The Counting Formula may help to describe the restriction.According to Corollary

(2.8.13), the order of the image divides both IHI and 191.If IHI and 191 have \037o common

factor, cp(R) == {I}, so H is contained in the kernel.)

Example 2.10.3 The image of the sign homomorphism (J': Sn \037 {:f: I} has order 2. If a

subgroup H of the symmetric group Sn has odd order, it will be contained in the kernel
of a, the alternating group An of even permutations. This will be so when H is the cyclic
subgroup generatedby a permutation q that is an element of odd order in the group. Every
permutation whose order in the group is odd, such as an n-cycle with n odd, is an even
permutation. A permutation that has even order in the group may be odd or even. 0)

Proposition2.10.4Let q; : G \037 Q be a homomorphism with kernel K and let H be a
subgroupof Q. Denote the inverse image q;-l(H) by H. Then H is a subgroup of G that

contains K. If H is a normal subgroupof Q, then H is a normal subgroupof G. If cp is

surjective and if H is a normal subgroup of G, then H is a normal subgroup of Q,)

For example, let q; denote the determinant homomorphism G Ln (IR.) \037 }Rx. The set of

positive real numbers is a subgroupof \037x; it is normal because IR
x

is abelian. Its inverse

image, the set of invertible matrices with positive determinant, is a normal subgroup of

G Ln (JR).

Proof This proof is simple,but we must keep in mind that cp-l is not a map. By definition,
q;-l(7t) == H is the set of elementsx of G such that q;(x) is in H. First, if x is in the kernel

K, then cp(x) == 1. Since 1 is in H, x is in H. Thus H contains K. We verify the conditions

for a subgroup.
Closure:Supposethat x and yare in H. Then q;(x) and q;(y)arein H. Since H is a subgroup,
q;(x)q;(y)is in H. Since <p is a homomorphism, q;(x)q;(y) = q;(xy). So q;(xy) is in H, and

xy is in H.

Identity: 1 is in H because q;(I) == 1 is in H.
Inverses: l\037et \"'\037be an element of H. Then q;(x)is in 7t, and since 7t is a subgroup, q;(x)-l
is also in H. Since cp is a homomorphism, <p(x)-l = q;(x- 1), so cp(x-1) is in H, and x-I is
in H.

Suppose that 1t is a normal subgroup. Let x and g be elementsof Hand G, respec-

tively. Then cp(gxg-1) = cp(g)q>(x)q;(g)-lis a conjugate of q;(x), and cp(x)is in H. Because

1t is normal, q;(gxg- 1) is in 11, and therefore gxg-
1 is in H.

Suppose that cp is surjective, and that H is a normal subgroup of G. Let a be in

H, and let b be in Q. There are elements x of Hand y of G such that q;(x) = a
and cp(y) == b. Since H is normal, yxy-l is in H, and therefore q;(yxy-l) = bab- 1 is
in H. D)

Theorem 2.10.5 Correspondence Theorem. Let cp : G \037 g be a surjective group homo-
morphism with kernel K. There is a bijective correspondence between \037ubgroups of Q and

subgroups of G that contain K:

{subgroups of G that contain K} \037 {subgroups of
g}.)))
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This correspondence is defined as follows:

a subgroup H of G that contains K \037 its image cp(ll) in Q,

a subgroup 1t of 9 \037 its inverse image <p-1(1-{)in G.)

If Hand 7-\302\243are corresponding subgroups, then H is normal in G if and only if H is normal

inQ.

If Hand H arecorrespondingsubgroups, then !HI == IHIIKI.)

Example 2.10.6 We go back to the homomorphism cp: S4 -4 S3 that was defined in Example
2.5.13, and its kernelK (2.5.15).

The group 53 has six subgroups, four of them proper. With the usual presentation,
there isonepropersubgroup of order 3, the cyclic group <.x),and there are three subgroups
of order 2, including < y>. The Correspondence Theorem tells us that there are four proper
subgroups of S4that contain K. Since I KI = 4, there is one subgroupof order 12 and there
are three of order 8.

We know a subgroup of order 12, namely the alternating group A4.That is the subgroup
that corresponds to the cyclicgroup <x>of S3.

The subgroups of order 8 can be explainedin terms of symmetries of a square. With

vertices of the square labeled as in the figure below, a counterclockwise rotation through

the angle j( /2 corresponds to the 4-cycle(1234).Reflection about the diagonal through the
vertex 1correspondsto the transposition (24). These two permutations generate a subgroup
of order 8. The other subgroups of order 8 can be obtained by labeling the vertices in

other ways.)

2 1)

3 4)

There are also some subgroups of S4 that do not contain K: The Correspondence
Theoremhas nothing to say about those subgroups. D)

Proof of the Correspondence Theorem. Let H be a subgroup of G that contains K, and let
H be a subgroup of Q. We must check the following points:

\302\267cp(ll) is a subgroup of Q.
.

cp-l (H) is a subgroup of G, and it contains K.

. H is a normal subgroup of Q if and only if q;-1 (?-l) is a normal subgroupof G.

. (bijectivity of the correspondence) q;(cp-l(H)) = Hand cp-l(cp(ll))
= H.

. Icp-l(H) I
= IHII KI.)

Since <p(ll) is the image of the homomorphism q;IB, it is a subgroup of Q. The second and
third bullets form Proposition 2.10.4.

Concerning the fourth bullet, the equality cp(cp-l(1-l)) = 1-l is true for any surjective

map of setscp:S \037 S' and any subset H of S'. Also, He cp-l(<p(H) is true for any map)))
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q; of sets and any subset H of S. We omit the verification of these facts. Then the only
thing remaining to be verified is that H :> cp-l(cp(ll)). Let x be an elementof q;-1(q;(ll)).

We must show that x is in H. By definition of the inverse image, ((J(x)is in !{J(ll)., say

cp(x) = q>(a), with a in H. Then a-I x is in the kernel K (2.5.8), and since H contains K,

a- 1x is in H. Since both a and a-tx are in H, x is in H too.
We leave the proofof the last bullet as an exercise. 0)

2.11 PRODUCT GROUPS

Let G, G' be two groups. The productset G x G', the set of pairs of elements (a, a') with

a in G and a' in G', can be made into a group by component-wisemultiplication
- that is,

multiplication of pairsis defined by the rule)

(2.11.1 )) (a, a') \302\267
(b, h') = (ab, a'b').)

The pair (1, 1)is the identity, and the inverse of (a, at) is (a-I, a,-I).The associative law in

G X G' follows from the fact that it holds in G and in G'.
The group obtained in this way is called the product of G and G' and is denoted by

G X G'. It is re1ated to the two factors G and G' in a simpleway that we can sum up in terms

of some homomorphisms)

(2.11.2))

G\037 ;/GGxG'

G'\037 \037G')

They are defined by i(x) = (x, 1), i'(x') = (1,.x'),p(x,x')= x, p'(x, x') = x'. The
injective homomorphisms i and if may be used to identify G and G' with their images, the

subgroups G X 1 and 1 x G' of G x G/.The maps p and p' are surjective,the kernelof pis

1 X G', and the kernelof p' isG X 1. These are the projections.
It is obviously desirable to decompose a given group G as a product, that is, to find

groups Hand H' such that G is isomorphic to the product H X H'. The groups Hand H l

will be simpler, and the relation betweenH X H' and its factors is easily understood.It is
rarethat a group is a product, but it does happen occasionally.

For example, it is rather surprising that a cyclicgroup of order 6 can be decomposed:
A cyclic group C6 of order 6 is isomorphic to the product C2 X C3 of cyclic groups of orders
2 and 3.To see this, say that C2 = <y) and C3 = <z), with y2 = 1 and Z3 = 1, and let x
denote the element(y, z) of the product group C2 X C3. The smallest positive integer k such
that xk = (),k, Zk) is the identity (1, 1) is k = 6. Sox has order 6. Since C2 X C3 a]so has

order 6, it is equal to the cyclic group <x>.Thepowers of x, in order.. are.

(1, 1), (y, z), (1, Z2), (y, 1), (1, z) \037(y, Z2). 0

There is an analogousstatement for a cyclic group of order rs, whenever the two

integers rand s have no common factor.)

Proposition 2.11.3 Let rand s be relatively prime integers. A cyclic group of order rs is

isomorphic to the product of a cyclicgroup of order r and a cyclic group of order s. 0)))



Section 2. 11) Product Groups 65)

On the other hand, a cyclicgroup of order 4 is not isomorphic to a productof two cyclic

groups of order 2. Every element of C2 X C2 has order 1 or 2,whereasa cyclic group of order

4 contains two elements of order 4.

The next proposition describesproductgroups.)

Proposition 2.11.4 Let Hand K be subgroupsof a group G, and let f: H X K --+ G be the
multiplication map, definedby I(h, k) == hk. Its image is the set HK ==

{hklh
E H, k E K}.

(a) f is injective if and only if H n K == {I}.

(b) f is a homomorphism from the product group H X K to G if and only if elements of K

commute with elements of H: hk == kh.

(c) If H is a normal subgroupof G, then HK is a subgroup of G.

(d) I is an isomorphism from the product group H X K to G if and only if H n K == {I},

HK == G, and also Hand K are normal subgroups of G.

It is important to note that the multiplication map may be bijective though it isn't a group
homomorphism. This happens,for instance, when G == 53, and with the usual notation,
H == < x ) and K == < y).

Proof (a) If H n K contains an element x =1= 1, then x-I is in H, and l(x-
1

, x) == 1 == 1(1, 1),
so f is not injective. Suppose that H n K == {I}. Let (hI, k 1) and (hz, k2 ) be elements of
Hx K such that hIk l == h2k2. We multiply both sides of this equation on the left by hIt and
on the right by k 2

1
, obtaining k1k2

1 == h 1
t
h2' The left side is an element of K and the right

side is an element of H. SinceH n K == {I}, k 1k\"2

1 == h 1
1
h2 == 1. Then kl == k2, hI == h2,

and (hI, k 1 ) == (h2, k2).

(b) Let (hI, kl ) and (h2, k2) be elements of the product group H X K. The product of these
elements in the product group Hx K is (h 1h2, kIk2),and f(h 1 h2, k 1k2) == hIh2ktk2, while

f(h 1, kl ) l(h 2 , k2) == hl k l h 2k2.Theseelementsareequalif and only if h 2kI == kIh2.

(c) Suppose that H is a normal subgroup. We note that K H is a union of the left cosets
kH with k in K, and that HK is a union of the right cosets Hk. Since H is normal,
kH == Hk, and therefore HK == KH. Closure of HK under multiplication follows,because
HKHK == HHKK == HK. Also, (hk)-l == k-Ih-

I is in KH == HK. This proves closure of
HK under inverses.)

(d) Suppose that Hand K satisfy the conditions given. Then f is both injective and surjective,

so it is bijective. According to (b), it is an isomorphism if and only if hk == kh for all h in H

and k in K. Consider the commutator (hkh- I)k- 1 == h(kh--
1 k- 1

). Since K is normal, the left

side is in K, and since H is normal, the right side is in H. Since H n K == {1}, hkh- 1k- I == 1,

and hk == kh. Conversely, if f is an isomorphism, one may verify the conditions listed in the

isomorphic group H X K instead of in G. D

We use this proposition to classify groups of order 4:)

Proposition 2.11.5 There are two isomorphism classesof groups of order 4, the class of the

cyclic group C4 of order 4 and the class of the Klein Four Group,\\vhich is isomorphic to the

product C2X C2 of two groups of order 2.)))
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Proof Let G be a groilp of order 4. The order of any element x of G divides 4, sothereare
two cases to consider:

Case 1: G contains an element of order 4. Then G is a cyclicgroup of order 4.

Case 2: Every element of G except the identity has order 2.
In this case, x = x-I for everyelement x of G. Let x and y be two elements of G. Then

xy has order 2, soxyx-1y-1=
(xy) (xy) = 1. This shows that x and y commute (2.6.5), and

sincetheseare arbitrary elements, G is abelian. So every subgroupis normal. We choose

distinct elements x and y in G, and we let Hand K be the cyclic groups of order 2 that they

generate. Proposition 2.11.4(d) sho\\vs that G is isomorphic to the product group H X K. 0)

2.12 QUOTIENT GROUPS)

In this section we show that a law of composition can be defined on the set of easets of a
normal subgroup N of any group G. This law makes the set of cosets of a normal subgroup

into a group, called a quotient group.

Addition of congruence classes of integersmodulo n is an example of the quotient

construction. Another familiar example is addition of angles.Every real number represents
an angle, and two real numbers represent the same angle if they differ by an integer multiple
of 21r.The group N of integer multiples of 21Tis a subgroupof the additive group 1R+ of real

numbers, and angles correspond naturally to (additive) cosets () + N of N in G. The group
of anglesis the quotient group whose elements are the cosets.

The set of cosets of a normal subgroup N of a group G is often denoted by GIN.)

(2.12.1 )) G / N is the set of cosets of N in G.)

When we regarda cosetC as an element of the set of cosets,the bracket notation [C]

may be used. If C == aN, we may also use the bar notation to denote the element [C] by a ,
and then we would denote the set of cosets by G:)

G ==
GIN.)

Theorem 2.12.2 Let N be a normal subgroup of \037roup G, and let G denote the set of

cosets of N in G. There is a law of compositionon G that makes this set into a group, such
that the map n: G --+ G defined by j((a) == a is a surjective homomorphism whose kernel
is N.)

. The map 1r is often referred to as the canonical map from G to G. The word \"canonical\"

indicates that this is the only map that we might reasonably be talking about.

The next corollary is very simple, but it is important enough to singleout:)

Corollary 2.12.3 Let N be a normal subgroup of a group G, and let G denote the set
of cosets of N in G. Let 1r : G \037 G be the canonical homomorphis\037. Let aI, ..., ak be

elements of G such that the product al . . .ak is in N. Then a l . . .a k
= 1.)

Proof Let p == al
.. . aka Then p is in N, so 1r(p) == P = 1. Since 1'[is a homomorphism,

al . ..ak
== p . 0)))
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Proof of Theorem 2.12.2. There are several things to be done. We must

\302\267define a l\037w of composition on G ,
\302\267

prove that the law makes G into a group,

\302\267
prove that J( is a surjective homomorphism, and

\302\267
prove that the kernel of j( is N.)

We use the following notation: If A and B are subsets of a group G, then A B denotes the
set of productsab:)

(2.12.4 )) A B = {x E G
j

x == ab for some a E A and b E B}.)

We will call this a product set, though in some other contexts the phrase \"productset\"refers
to the set A X B of pairs of elements.)

Lemma 2.12.5 Let N be a normal subgroup of a group G, and let aN and bN be cosets of
N. The product set (aN)(bN) is also a coset. It is equal to the coset abN.)

We note that the set (aN)(bN) consists of all elements of G that can be written in the

form anbn l
, with nand n' in N.)

Proof Since N is a subgroup, NN == N. Since N is normal, left and right cosets are equal:
Nb == bN (2.8.17). The lemma is proved by the following formal manipulation:)

(aN)(bN) = a(Nb)N = a(bN)N= abNN = abN.) o)

This lemma allowsus to define multiplication on the set G == G / N. Using the bracket
notation (2.7.8), the definition is this: If C1 and Cz are cosets,then [Cl][ C2] ==

[C 1 C2],

Where C 1C2 is the productset.The lemma shows that this product set is another coset. To

compute the product [Cl][C2], take any elements a in C 1 and b in C2. Then Cl == aN,

C2 = bN, and Cl C2 is the coset abN that contains ah. Sowe have the very natural formula)

(2.12.6)) [aN][bN] = [abN] or ab = ab.)

Then by definition of the map n in (2.12.2),)

(2.12.7)) n(a)7r(b) == a b = ab = n(ab).)

The fact that n is a homomorphism will follow from (2.12.7), once we show that G is a group.
Since the canonicalmap 1'[is surjective (2.7.8), the next lemma proves this.)

Lemma 2.12.8 Let G be a group, and let Y be a set with a law of composition, both
laws written with multiplicative notation. Let cp : G -+ Y be a surjective map with the

homomorphism property, that cp(ab) == cp(a)cp(b) for all a and b in G. Then Y is a group
and cp is a homomorphism.)))
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Proof The group axioms that are true in G are carried over to Y by the surjective map q;.
Hereis the proof of the associative law:Let Yl, Y2, Y3 be elements of Y. Sinceq;is surjective,
Yi

= q;(Xi) for some Xi in G. Then

(YIY2)Y3 == (q;(Xl)q;(X2) )q;(X3)=q;(XIX2)q;(X3)=q;( (XIX2)X3)
*

q;(Xl (X2 X 3)) = q;(Xl)q;(X2 X 3)=q;(Xl) (q;(X2)q;(X3)) =
Yl (Y2Y3).)

The equality marked with an asterisk is the associative law in G. The other equalities follow
from the homomorphism propertyof q;. The verifications of the other group axioms are
similar. 0)

The only thing remaining to be verified is that
th\037

kernel of the homomorphism n is
the subgroup N. Well, n(a) = n(1) if and only if a == 1, or [aN] = [IN], and this is true if

and only if a is an element of N. 0)

G)

(2.12.9)) A Schematic Diagram of Coset Multiplication.)

Note: Our assumption that N be a normal subgroup of G is crucial to Lemma 2.12.5.If H
is not normal, there will be left cosets Cl and C2 of H in G such that the product set C 1C2
does not lie in a single left coset. Going backoncemoreto the subgroup H == < Y> of S3,
the product set (1H)(xH)contains four elements: {I, y}{x, xy} = {x,xy, x2y, x2}. It is not
a coset. 'fhe subgroup H is not normal. 0

The next theorem relates the quotient group construction to a general group homo-
morphism,and it provides a fundamental method of identifying quotient groups.)

--

Theorem 2.12.10' First Isomorphi\037m Theorem. Let q;: G -+ G/ be a surjective group

homomorphism with kernel N. The quotient group G == G / N is isomorphic to the image

G'. To be precise, let TC: G -+ G be the canonical map.Thereis a unique isomorphism

qJ : G -+ G' such that qJ == qJ 0 Jr.)

G
cP

> G'.

\037 /, ,;\037

G)))
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Proof The elements of G are the cosets of N, and they are also the fibres of the map cp

(2.7.15). The map cp referred to in the theorem is the one that sends a nonempty fibre to
its image: cp ( x ) == cp(x). For any surjective map of sets cp: G \037 G

'
, one can form the set

G of fibres, and then one obtains a diagram as above, in which cp is the bijective map that

se nds a fibre to its image. When cp is a gr oup homomorphism, cp is an isomorphism because

cp (ab) = cp(ab) = cp(a)cp(b) ==
cp ( a ) cp (b). 0)

Corollary 2.12.11 Let cp:G \037 G
' be a group homomorphismwith kernel N and image H'.

The quotient group G = GIN is isomorphic to the image H'. 0)

Two quick examples:The imageof the absolute value map (CX \037 JRx is the group
of positive real numbers,and its kernel is the unit circle V. The theorem asserts that the

quotient group (CX IV is isomorphic to the multiplicative group of positive real numbers.

The determinant is a surjective homomorphism G Ln (JR) \037 JRx, whose kernel is the special
linear group SLn (IR). So the quotient G Ln (JR) / SL n (JR) is isomorphic to IR

x
.

There are also theorems called the Secondand the Third Isomorphism Theorems,

though they are less important.)

<fa gft6t olfo ftOt ufd Uttft6ft6tnt \037den !Jon \037tU\037tnf

wdtijt Pdj nftijt woijf ijttgtijftn rn\037tn;

un6 6nijtt tntfft\037tn 6ft 6ttftfjft6tnt a6tUt 6tt \037nt6tmotftf

6tttn tint JtOfftijt mft tfntt 6tfon6ttn \037d !Jon \037tU\037tn6dt\037tiPfotf fp.

-Leonhard Euler)

EXERCISES)

Section 1 Lawsof Composition

1.1. Let S be a set. Prove that the law of composition definedby ab == a for all a and b in S is

associative. For which sets does this law have an identity?

1.2. Prove the properties of inversesthat are listed near the end of the section.

1.3. Let N denote the set {1,2, 3, ...,}of natural numbers, and let s:N \037 N be the shift map,
definedby s(n) == n + 1. Prove that s has no right inverse, but that it has infinitely many

left inverses.)

Section 2 Groups and Subgroups

2.1. Make a multiplication table for the symmetric group S3.

2.2. Let Sbea setwith an associative law of composition and with an identity element. Prove
that the subset consisting of the invertible elements in S is a group.

2.3. Let x, y, Z, and UJ be elements of a group G.

(a) Solve for y, given that xyz-l w == 1.

(b) Suppose that xyz == 1. Does it follow that yzx == I? Does it follow that yxz = I?)))
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2.4. In which of the following cases is H a subgroup of G?

(a) G =
GLn(C) and H = GLn(1\037).

(b) G = \037x and H = {I, -I}.
(c) G = Z+ and H is the set of positive integers.

(d) G = JRx and H is the set of positive reals.

(e) G = G L2(lR) and H is the set of matrices

[\037
\037l

with a* O.

2.5. In the definition of a subgroup, the identity element in H is required to be the identity
of G. One might require only that H have an identity element, not that it need be the
sameas the identity in G. Show that if H has an identity at all, then it is the identity in

G. Show that the analogous statement is true for inverses.
2.6. Let G be a group. Define an oppositegroup GO with law of composition a * b as follows:

The underlying set is the same as G, but the law of composition is a * b = ba. Prove that

GO is a group.)

Section 3 Subgroupsof the Additive Group of Integers

3.1. Let a = 123and b = 321. Compute d = gcd(a,b), and express d as an integer
combinationra + bs.

3.2.Prove that if a and b are positive integers whose sum is a prime p, their greatest common

divisor is 1.

3.3. (a) Define the greatest common divisor of a set {al,. .., an} of n integers. Prove that it

exists, and that it is an integer combination of al, . . . , an.

(b) Prove that if the greatest common divisor of {al, . . . , an} is d, then the greatest
commondivisor of {all d, . . . , anid}is 1.)

Section 4 Cyclic Groups

4.1. Let a and b be elements of a group G. Assume that a has order 7 and that a
3 b = ba 3

.

Prove that ab = baa

4.2. An nth root of unity is a complex number z such that zn = 1.

(a) Prove that the nth roots of unity form a cyclic subgroup of ex of order n.

(b) Determine the product of all the nth roots of unity.

4.3. Let a and b be elementsof a group G. Prove that ab and ba have the same order.
4.4.Describeall groups G that contain no proper subgroup.
4.5. Prove that every subgroup of a cyclicgroup is cyclic. Do this by working with exponents,

and use the descriptionof the subgroups of Z+ .

4.6. (a) Let G be a cyclic group of order 6.How many of its elements generate G? Answer

the same question for cyclicgroups of orders5 and 8.

(b) Describe the number of elements that generate a cyclic group of arbitrary order n.

4.7. Let x and y be elements of a group G. Assume that each of the elements x, y, and xy has
order2.Prove that the set H = {1,x, y, xy} is a subgroup of G, and that it has order 4.)))
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4.8. (a) Prove that the elementary matrices of the first and third types (1.2.4) generate
GLn (lR).

(b) Prove that the elementary matricesof the first type generate SL n (IR). Do the 2 X 2

case first.

4.9. How many elements of order 2 does the symmetric group 84 contain?

4.10. Show by example that the product of elementsof finite order in a group need not have
finite order. What if the group is abelian?

4.11.(a) Adapt the method of row reduction to prove that the transpositions generate the

symmetric group Sn.
(b) Prove that, for n > 3, the three-cyclesgenerate the alternating group An.)

Section 5 Homomorphisms

5.1.Let cp: G -+ G' be a surjective homomorphism. Prove that if G is cyclic\037 then G' is cyclic,
and if G is abelian, then G' is abelian.

5.2. Prove that the intersection K n H of subgroupsof a group G is a subgroup of H, and

that if K is a normal subgroup of G, then K n H is a normal subgroup of H.

5.3. Let U denotethe group of invertible upper triangular 2 X 2 matrices A =

[\037 \037],

and

let <p : U -+ lR
x be the map that sends A \037 a

2 . Prove that cp is a homomorphism, and
determine its kernel and image.

5.4. Let f: 1R+ -+ ex be the map I(x) == e
ix . Prove that f is a homomorphism, and determine

its kernel and image.

5.5. Prove that the n X n matrices that have the block form M =

[\037
\037

]
, with

A in GLr(IR) and D in GLn-r(JR), form a subgroup H of GLnOR), and that the

map H -+ G Lr(JR) that sends M \037 A is a homomorphism. What is its kernel?

5.6. Determine the center of GLn (IR).

Hint: You are asked to determine the invertible matrices A that commute with every

invertible matrix B. Do not test with a general matrix B. Test with elementary matrices.)

Section 6 Isomorphisms

6.1. Let G' be the group of real matrices of the form

[1 \037
].

Is the map jR+ -+ G' that

sends x to this matrix an isomorphism?

6.2. Describe all .homomorphisms cp : z+ -+ Z+. Determine which are injective, which are

surjective, and which are isomorphisms.

6.3. Show that the functions f = 1/ x, g == (x
- 1) / x generate a group of functions, the law of

composition being composition of functions, that is isomorphic to the symmetric group S3.
6.4.Prove that in a group, the products ab and ba are conjugate elements.

6.5. Decide whether or not the two matrices A =

[

3

2]
and B =

[_\037 \037]

are conjugate

elements of the general linear group G L2 OR).)))
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6.6. Are the matrices
[1 \037l [\037 1]

conjugate elements of the group G L2(JR)? Are they

conjugate elements of SL20R)?
6.7. Let H be a subgroup of G, and let g be a fixed element of G. The conjugate subgroup

gHg-
1 is defined to be the set of all conjugates ghg- 1, with h in H. Prove that gHg-l is

a subgroup of G.
6.8. Prove that the map A \037 (A t)-l is an automorphism of GLn (JR).

6.9. Prove that a group G and its opposite group GO (Exercise 2.6) are isomorphic.
6.10.Find all automorphisms of

(a) a cyclicgroup of order 10, (b) the symmetric group S3.
6.11.Let a be an element of a group G. Prove that if the set {I, a} is a normal subgroup of G,

then a is in the center of G.)

Section 7 EquivalenceRelations and Partitions

7.1. Let G be a group. Prove that the relation a \"-J b if b = gag- 1 for some g in G is an

equivalence relation on G.
7.2.An equivalence relation on S is determined by the subset R of the set S x S consisting of

those pairs (a, b) such that a \"-J b. Write the axioms for an equivalence relation in terms

of the subset R.

7.3. With the notation of Exercise 7.2, is the intersectionR n R' of two equivalence relations
Rand R' an equivalence relation? Is the union?

7.4. A relation R on the set ofreal numbers can be thought of as a subsetof the (x, y)-plane.
With the notation of Exercise7.2,explain the geometric meaning of the reflexive and
symmetric properties.

7.5. With the notation of Exercise 7.2, each of the following subsets R of the (x, y)-plane
defines a relation on the set \037 of real numbers. Determine which of the axioms (2.7.3)
are satisfied: (a) the set {(s, s) I S E JR}, (b) the empty set, (c) the locus{xy+ 1= OJ,

(d) the locus {x
2
y -

xy2
- x + y = OJ.

7.6. Howmany different equivalence relations can be definedon a set of five elements?)

Section 8 Cosets
8.1.Let H be the cyclic subgroup of the alternating group A4 generated by the permutation

(123). Exhibit the left and the right cosets of H explicitly.

8.2. In the additive group JRm of vectors, let W be the set of solutions of a system of homo-
geneouslinear equations AX = o. Show that the set of solutions of an inhomogeneous
system AX = B is either empty, or else it is an (additive) coset of W.

8.3. Does every group whose order is a powerof a prime p contain an element of orderp?
8.4.Does a group of order 35 contain an elementof order 5? of order 7?

8.5. A finite group contains an element x of order 10 and also an element y of order6.What

can be said about the order of G?
8.6.Let qJ: G --* G' be a group homomorphism. Supposethat I G I = 18, I G' I

= 15, and that

qJ is not the trivial homomorphism. What is the order of the kernel?)))
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8.7. A group G of order22 contains elements x and y, where x =1= 1 and y is not a powerof x.

Prove that the subgroup generated by these elements is the whole group G.
8.8.Let G be a group of order25.Prove that G has at least one subgroup of order 5, and that

if it contains only one subgroup of order5,then it is a cyclic group.
8.9. Let G be a finite group. Under what circumstances is the map cp:G \037 G defined by

cp(x) = x2 an automorphism of G?

8.10. Prove that every subgroup of index 2 is a normal subgroup, and show by example that a

subgroup of index 3 need not be normal.

8.11. Let G and H be the following subgroups of G L2 (JR):)

G={[\037 n},H={[\037 n},)

with x and y real and x > O. An element of G can be representedby a point in the right

half plane. Make sketches showing the partitions of the half plane into left cosets and into

right cosets of H.

8.12. Let Sbea subset of a group G that contains the identity element 1, and such that the left

cosets as, with a in G, partition G. Prove that S is a subgroup of G.
8.13.Let S be a set with a law of composition: A partition TI1 U TI2 U . .. of S is compatible

with the law of composition if for all i and j, the product set)

ninj
= {xy I x E n i , Y E nj})

is contained in a single subset nk of the partition.

(a) The set Z of integers can be partitioned into the three sets [Pos], [Neg],[{O}]. Discuss

the extent to which the laws of composition + and X are compatible with this

partition.
(b) Describeall partitions of the integers that are compatible with the operation +.)

Section9 Modular Arithmetic

9.1. For which integers n does 2 have a multiplicative inverse in ZjZn?

9.2. What are the possible valuesof a
2 modulo 4? modulo 8?

9.3. Prove that every integer a is congruent to the sum of its decimal digits modulo 9.

9.4. Solvethe congruence 2x = 5 modulo 9 and modulo 6.

9.5. Determine the integers n for which the pair of congruences 2x -
y

= 1 and 4x +
3y= 2 modulo n has a solution.

9.6. Prove the Chinese Remainder Theorem: Let a, b, u, v be integers, and assume that the

greatest common divisor of a and b is 1. Then there is an integerx such that x == u modulo

a and x= v modulo b.

Hint.' Do the case u = 0 and v = 1 first.

9.7. Determine the order of each of the matrices A =
[ \037 \037

]

and B =
[ \037 \037

]

when the
matrix entries are interpreted modulo 3.)))
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Section 10 The Correspondence Theorem

10.1.Describehow to tell from the cycle decompositionwhether a permutation is odd or even.
10.2.Let Hand K be subgroups of a group G.

(a) Prove that the intersection xH n yK of two cosets of Hand K is either empty or

else is a coset of the subgroup H n K.
(b) Prove that if Hand K have finite index in G then H n K alsohas finite index in G.)

10.3. Let G and G' be cyclic groups of orders 12 and 6, generated by elements x and y,
respectively, and let qJ : G \037 G' be the map defined by qJ(x

i
) == yi. Exhibit the

correspondence referred to in the Correspondence Theorem explicitly.

10.4. With the notation of the Correspondence Theorem, jet H and H' be corresponding
subgroups.Prove that [G : H] == [G

/
: H'].

10.5. With reference to the homomorphism S4 \037 83 described in Example 2.5.13, determine
the six subgroups of S4 that contain K.)

Section 11 Product Groups
11.1.Let x be an element of order r of a group G, and let y be an element of G

i
of order s.

What is the order of (x, y) in the product group G x G'?
11.2.What does Proposition 2.11.4 tell us when, with the usual notation for the symmetric

group S3,K and H are the subgroups <y> and <x>?
11.3.Prove that the product of two infinite cyclic groups is not infinite cyclic.

11.4. In each of the following cases, determine \\vhether or not G is isomorphicto the product

group Hx K.

(a) G = }Rx, H == {:f: 1}, K = {positivereal numbers}.
(b) G == {invertible upper triangular 2 X 2 matrices}, H == {invertible diagonal matrices},

K ==
{upper triangular matrices with diagonal entries 1}.

(c) G = ex,H == {unit circle}, K == {positive real numbers}.

11.5. Let G1 and G2 be groups, and let Zi be the center of Gi. Prove that the center of the

product group G1X G2 is 21 X 22.

11.6. Let G be a group that contains normal subgroups of orders3 and 5, respectively. Prove
that G containsan element of order 15.

11.7. Let H bea subgroup of a group G, let qJ:G \037 H be a homomorphism whose restriction
to H is the identity map, and let N be its kernel. What can one say about the product
map HxN \037 G?

11.8. Let G, G', and H be groups. Establish a bijective correspondence between homomor-
phisms <t> : H \037 G X G' from H to the product group and pairs (cp, qJ') consisting of a

homomorphism qJ:H \037 G and a homomorphism qJ':H \037 G'.

11.9. Let Hand K be subgroupsof a group G. Prove that the product set H K is a subgroup

of G if and only if H K == K H.)

Section 12 Quotient Groups
12.1.Show that if a subgroup H of a group G is not normal, there are left cosets aH and bH

whose productis not a coset.)))
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12.2. In the generallinear group G L3(IR), consider the subsets

H =
[\037

r \037land

K =

[\037
[ \037l

where * represents an arbitrary real number. Showthat H is a subgroup of G L3, that K

is a normal subgroup of H, and identify the quotient group HI K. Determine the center

of H.

12.3. Let P be a partition of a group G with the property that for any pair of elements A, B of
the partition, the product set AB is containedentirely within another element C of the
partition. Let N be the element of P that contains 1.Prove that N is a normal subgroup
of G and that P is the set of its cosets.

12.4. Let H == {:f: 1, :f: i} be the subgroup of G == ex of fourth roots of unity. Describe the

cosets of H in G expJicitly. Is G I H isomorphic to G?

12.5. Let G be the group of upper triangular real matrices
[\037 \037],

with a and d different

from zero. For each of the following subsets, determine whether or not S is a subgroup,
and whether or not S is a normal subgroup. If S is a normal subgroup, identify the

quotient group GIS.

(i) S is the subset defined by b == O.

(ii) S is the subset definedby d == 1.

(iii) S is the subset definedby a = d.)

Miscellaneous Problems

M.l. Describe the column vectors(a, c)t that occur as the first column of an integer matrix A

whose inverse is also an integer matrix.

M.2. (a) Prove that every group of even order containsan element of order 2.

(b) Prove that every group of order 21 containsan element of order 3.

M.3. Classifygroupsof order 6 by analyzing the following three cases:

(i) G contains an elementof order 6.

(ii) G contains an element of order 3 but none of order 6.

(iii) All elements of G have order 1or 2.)

M.4. A semigroup S is a set with an associative law of composition and with an identity.
Elements are not required to have inverses,and the Cancellation Law need not hold. A

semigroup S is said to be generatedby an element s if the set {1, s, s2, . . .}of nonnegative

powers of s is equal to S. Classify semigroups that are generated by one element.

M.5. Let S be a finite semigroup (see Exercise M.4) in which the Cancellation Law 2.2.3holds.
Prove that S is a group.

*M.6.Let a == (al, . . . , ak) and b == (b 1 , . . . , bk) be points in k-dimensional space IRk. A

path from a to b is a continuous function on the unit interval [0, 1] with values in IRk, a

function X: [0,1]-+ R
k

, sendin
f

t\"'\" X (t) = (Xl (t), . . . , xk (t)), such that X (0) = a and

X(l) == b. If S is a subset of 1R
.

and if a and b are in S, define a \037b if a and b can be
joined by a path lying entirely in S.)))
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(a) Show that f'V is an equivalence relation on S. Be careful to check that any paths you

construct stay within the set S.
(b) A subset S is path connected if a \"\"'b for any two points a and b in S. Show that every

subset S is partitioned into path-connected subsets with the property that two points
in different subsets cannotbe connected by a path in S.

(c) Which of the following loci in JR2 are path-connected: {x
2 + y2

= I}, {xy = O},
{xy==l}?)

*M.7.The set of n X n matrices can be identified with the space JRnxn. Let G be a subgroup of
GLn (JR). With the notation of Exercise M.6,prove:

(a) If A, B, C, D are in G, and if there are paths in G from A to B and from C to D, then
there is a path in G from AC to RD.

(b) The set of matrices that can be joined to the identity I forms a normal subgroup of
G. (It is called the connected component of G.)

*M.8.(a)
.

The group SL n OR) is generated by elementary matrices of the first type (see
Exercise 4.8). Use this fact to prove that SL n OR) is path-connected.

(b) Show that G Ln O\037) is a union of two path-connected subsets, and describe them.

M.9. (doubleeosets)Let Hand K be subgroups of a group G, and let g be an element of G.

The set HgK ==
{x E G

I
x = hgk for some h E H, k E K} is called a doublecoset.Do

the double cosets partition G?

M.IO. Let H bea subgroup of a group G. Show that the double cosets (see Exercise M.9))

HgH ==
{hlgh2Ihl, h 2 E H})

are the left cosets gH if and only if H is normal.

*M.l1. Most invertible matrices can be written as a productA = LV of a lower triangular matrix

L and an upper triangular matrix U, where in addition all diagonal entries of U are 1.

(a) Explain how to compute Land U when the matrix A is given.
(b) Prove uniqueness, that there is at most one way to write A as such a product.
(c) Show that every invertible matrix can be written as a product LPU, where L, U are

as above and P is a permutation matrix.

(d) Describe the double cosets LgU (seeExerciseM.9).)

M.12. (postage stamp problem) Let a and b be positive, relatively prime integers.

(a) Prove that every sufficiently large positive integer n can be obtained as ra + sb,
where rand s are positive integers.

(b) Determine the largest integer that is not of this form.

M.13. (a game) The starting position is the point (1, 1), and a permissible \"move\" replaces a

point (a, b) by one of the points (a + b, b) or (a,a +b).So the position after the first

move will be either (2, 1) or (1,2).Determine the points that can be reached.

M.14.(generating SL2(Z\302\273 Prove that the two matrices

E=[\037 \037], E'=D n)))
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generate the group SL2(Z) of all integer matrices with determinant 1. Remember that

the subgroup they generate consists of all elements that can be expressed as products
using the four elements E, E', E-1, E,-l.
Hint: Do not try to write a matrix directly as a product of the generators. Use row
reduction.

M.15.(the semigroup generated by elementary matrices) Determine the semigroup S (see
Exercise M.4) of matrices A that can be written as a product, of arbitrary length, each of

whose terms is one of the two matrices)

[ \037 iJ,
or

[i \037l)

Show that every elementof S can be expressed as such a prod,uct in exactly one way.
.

M.16. l(the homophonicgroup.'a mathematical diversion) By definition, English words have
the same pronunciation if their phonetic spellings in the dictionary are the same. The
homophonic group 11 is generated by the letters of the alphabet, subjectto the following
relations: English words with the same pronunciation represent equal elements of the

group. Thus be = bee, and since 11 is a group, we can cancel be to conclude that e = 1.
Try to determine the group ?t.)

1I learned this problem from a paper by Mestre, Schoof, Washington and Zagier.)))
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Vector Spaces)

Immer mit den einfachsten Beispielen anfangen.

-David Hilbert)

3.1 SUBSPACES OF IRn

OUf basic models of vector spaces, the topic of this chapter, are subspaces of the space IR
n of

n-dimensional real vectors. We discuss them in this section. The definition of a vector space
is given in Section 3.3.

Though row vectors take up lessspace,the definition of matrix multiplication makes
column vectorsmore convenient, so we usually work with them. To save space, we sometimes
usethe matrix transpose to write a column vector in the form (aI, . . . , an)t. As mentioned

in Chapter 1, we don't distinguish a column vector from the point of IR
n with the same

coordinates. Column vectors will often be denoted by lowercase letters such as v or w, and

if v is equal to (aI, . . . , an)t, we call (aI, . . . , an)t the coordinate vector of v.

We consider two operations on vectors:)

al b i
vectoraddition: +

(3.1.1)
an b n

al

scalar multiplication: e

an)

al + b I)

, and)

an + b n)

cal)

can)

These operations make \nn into a vector space.

A subset W of IR
n

(3.1.1) is a subspace if it has these properties:)

(3.1.2)

(a) If wand w' are in W, then w + w' is in W.)

78)))
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(b) If w is in Wand c is in IR, then ew is in W.

(c) The zerovector is in W.

There is another way to state the conditions for a subspace:

(3.1.3) W is not empty, and if Wl, . . . , W n are elements of Wand Cl, . . . , C n are scalars,
the linear combination c1WI + . . . + c n W n is also in W.)

Systems of homogeneous linear equations provide examples.Given an m X n matrix
A with coefficients in JR., the set of vectors in jRn whose coordinate vectors solve the
homogeneousequation AX == 0 is a subspace, called the nullspaceof A. Though this is very
simple,we'Ill check the conditions for a subspace:

. riX == 0 and A Y == 0 imply A (X + Y) == 0: If X and Yare solutions,soisX + Y.

. AX == 0 implies AcX = 0: If X is a solution, so is eX.

. AO == 0: The zero vector is a solution.

The zerospaceW == {OJ and the whole space W = jRn are subspaces. A subspace isproper
if it is not one of these two.The next proposition describes the proper subspaces of jR2.)

Proposition 3.1.4 Let W be a proper subspace of the space JR.2, and let w be a nonzero
vector in W. Then W consists of the scalar multiples cw of w. Distinct proper subspaces

have only the zero vector in common.)

The subspace consisting of the scalar multiples ew of a given nonzero vector W is called the

subs pace spanned by w. Geometrically, it is a line through the origin in the plane ]R2.

Proof of the proposition. We note first that a subspace W that is spanned by a nonzero
vector w is also spanned by any other nonzero vector w' that it contains. This is true
because if w' == cw with c* 0, then any multiple aw can also be written in the form ac- I w'.

Consequently, if two subspaces Wl and W2 that are spanned by vectors WI and W2 have a

nonzero element v in common, then they are equal. /

Next, a subspace W of jR2, not the zero space, contains a nonzero elementWI. Since

W is a subspace, it contains the space Wl spanned by WI, and if WI == W, then W consists
of the scalarmultiples of one nonzero vector. We show that if W is not equal to WI, then it

is the whole space R
2

. Let Wz be an element of W not in WI, and let W2 be the subspace

spanned by W2. Since WI\"* W2, these subspaces intersect only in O. So neither of the two
vectors WI and Wz is a multiple of the other. Then the coordinate vectors, call them Ai, of Wi
aren't proportional, and the 2X2 block matrix A ==

[AIIAz] with these vectors as columnshas
a nonzero determinant. In that case we can solve the equation AX = B for the coordinate
vector B of an arbitrary vector v, obtaining the linear combination v = WIXI + W2X2. This

shows that W is the whole space jR2. 0

It can also be seen geometrically from the parallelogram \037aw for vector addition that

every vector is a linear combination el WI + c2 w Z.)))
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C2 W 2)

C1Wl + C2 W 2)

The description of subspaces of R2
that we have given is clarified in Section 3.4 by the

concept of dimension.)

3.2 FIELDS)

As mentioned at the beginning of Chapter1, essentially all that was said about matrix

operations is true for complex matrices aswell as for real ones. Many other number systems
serve equally well. To describe these number systems,we list the propertiesof the \"scalars\"

that are needed, and are ledto theconceptof a field. We introduce fields here beforeturning

to vector spaces, the main topic of the chapter.

Subfields of the field e of complex numbers are the simplest fields to describe.A

subfield of <C is a subset that is closed under the four operations of addition, subtraction,

multiplication, and division, and which contains 1. In other words, F is a subfield of <C if it

has these properties:)

(3.2.1) C+,-, x,7, 1)
. If a and b are in F, then a + b is in F.

. If a is in F, then -a is in F.

\302\267If a and b are in F, then ab is in F.

. If a is in F and a*O, then a-I is in F.

\302\2671 is in F.

These axioms imply that 1 - 1 = 0 is an element of F. Another way to state them is to say
that F is a subgroup of the additive group C+, and that the nonzero elements of F form a
subgroupof the multiplicative group ex.

Some examples of subfields of C:

(a) the field 1R of real numbers,

(b) the field Q of rational numbers (fractions of integers),
(c) the field Q[.J2] of all complex numbers of the form a + b.J2, with rational number\037

a and b.)

The concept of an abstract field is only slightly harder to grasp than that of a subtield,
and it contains important new classes of fields,including finite fields.)

Definition 3.2.2 Afield F is a set togetherwith two laws of composition
+ x

F x F \037 F and F X F -+ F

called addition: a, b -v-+ a + b and multiplication: a, b \037 ab, which satisfy these axioms:)))
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(i) Addition makes F into an abelian group F+; its identity element is denoted by O.

(ii) Multiplication is commutative, and it makes the set of nonzero elementsof F into an
abelian group F X

; its identity element is denoted by 1.

(iii) distributive law: For all a, b, and c in F, a(b + c) = ab + ac.)

The first two axioms describe properties of the two laws of composition, addition and
multiplication, separately. The third axiom, the distributive law, relates the two laws.

You will be familiar with the fact that the real numbers satisfy these axioms,but the fact

that they are the only ones neededfor the usual algebraic operations can only be understood
after some experience.

The next lemma explains how the zero element multiplies.)

Lemma 3.2.3 Let F bea field.)

(a) The elements 0 and 1 of F are distinct.

(b) For all a in F, aO = 0 and Oa = O.

(c) Multiplication in F is associative, and 1 is an identity element.)

Proof (a) Axiom (ii) implies that 1 is not equal to O.

(b) Since0 is the identity for addition, 0 + 0 = O. Then aO + aO = a(O + 0) = aO. Since F+

is a group, we can cancelaO to obtain aO = 0, and then Oa = 0 as well.

(c) SinceF -
{O} is an abelian group, multiplication is associative when restricted to this

subset. We need to show that a(he) = (ab)c when at least one of the elements is zero. In
that case, (b) shows that the products in question are equal to zero. Finally, the element 1 is
an identity on F - {OJ.Settinga = 1in (b) shows that 1 is an identity on all of F. 0

Aside from subfields of the complex numbers, the simplest examplesof fields are

certain finite fields called prime fields, which we describe next. We saw in the previous

chapter that the set Z/nZ of congruence classes modulo an integer n has laws of addition

and multiplication derived from addition and multiplication of integers. All of the axioms
for a field hold for the integers, except for the existence of multiplicative inverses. And as

noted in Section 2.9, such axioms carryover to addition ,and multiplication of congruence
classes. But the integers aren't closedunder division, so there is no reason to supposethat

congruence classes have multiplicative inverses. In fact they needn't. The class of 2, for
example,has no multiplicative inverse modulo 6. It is somewhat surprising that when p is a

prime integer, all nonzero congruence classes modulo p have inverses,and therefore the set

Z/ pZ is a field.This field is called a prime field, and is often denoted by JFp .

Using bar notation and choosing the usual representative elementsfor the p congruence

classes,)

(3.2.4)) lFp
= {O\"l,..., p-l} = Z/pZ.)

Theorem3.2.5Letp be a prime integer. Every nonzero congruence classmodulo p has a

multiplicative inverse, and therefore
1Fp

is a field of order p.)

We discussthe theorem before giving the proof.)))
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If a and b are integers,then a =1=0 means that p does not divide a, and ab = 1 means
ab= 1modulo p. The theoremcan be stated in terms of congruence in this way:)

(3.2.6))
Let p be a prime,and let a be an integer not divisibleby p.

Thereisan integer b such that ab= 1modulo p.)

Finding the inverse of a congruence classa modulo p can be done by trial and error if p is

small. A systematic way is to compute the powers of a . Ifp = 13 and a = 3, then a 2 = 9 and

a 3 = 27 = t. W e are lucky: a has order 3, and therefore 3- 1= 32
= 9 . On the other hand,

the powersof 6 run through every nonzero congruenceclassmodulo 13. Computing powers

may not be the fastest way to find the inverse of 6. But the theorem tellsus that the set
JF\037

of

nonzero congruence classes forms a group.Soevery element a of
1F\037

has finite order, and if

a has orderr, its inverse will be a (r-l).
To makea proofof the theorem using this reasoning, we needthe cancellationlaw:)

Proposition 3.2.7 Cancellation Law. Let p be a prime integer, and let a , band c be
elementsof JFp .

(a) If ab = 0, then a = 0 or b = O .

(b) If a *O and if ab = a c , then b = c.)

Proof (a) We represent the congruenceclassesa and b by integers a and b, and we translate

into congruence. The assertion to be proved is that if p divides ab then p divides a or p
divides b. This is Corollary 2.3.7.)

(b) It follows from (8) that if a =J!:Oand a (b - c)
= 0, then b - c = O .) o)

Proof of Theorem (3.2.5). Let a be a nonzeroelementof 1Fp. We consider the powers
1, a , a2

, a
3

, . . . Sincethere are infinitely many exponents and only finitely many elements

in IF p, there must be two powers that are equal, say am = all , where m < n . We cancel a'
n

from both sides: I = a (n-rn). Then a (n-ln-l) is the inverse of a . D)

It will be convenient to drop the bars over the letters in what follows, trusting
ourselves to remember whether we are working with integers or with congruence classes,
and rememberingthe rule (2.9.8):)

If a and b are integers,thena = b in JFp means a ==b modulo p.

As with congruences in general, computation in the field
1Fp

can be done by working
with integers, except that division cannot be carried out in the integers. One can ope-
rate with matrices A whose entries are in a field, and the discussion of Chapter 1 can be
repeatedwith no essential change.

Suppose we ask for solutions of a system of -n linear equations in n unknowns in

the prime field JFp . We represent the system of equationsby an integer system, choosing

representatives for the congruenceclasses,say AX = B, where A is an n X n integer matrix

and B is an integer column vector. To so)ve. the system in JFp , we invert the matrix A

modulo p. The formula cof(A)A = 8I, where 8 = detA (Theorem 1.6.9), is valid for integer)))
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matrices, so it also holds in
lFp

when the matrix entries are replaced by their congruence
classes. If the congruence class of 8 isn't zero, we can invert the matrix A in

1Fp by computing

8- 1
cof(A).)

Corollary 3.2.8 Let AX = B be a system of n linear equations in n unknowns, where the
entries of A and B are in

IFp,
and let 8 == detA. If 8 is not zero, the system has a unique

solution in IFp. 0)

Consider, for example, the system AX.== B, where)

A =

[\037 \037]

and B =
[

- n
.)

The coefficients are integers, so AX == B defines a system of equationsin IFp for any prime
p. The determinant of A is 42, so the system has a unique solution in IFp for all p that do

not divide 42, i.e., all p different from 2, 3, and 7. For instance, detA == 3 when evaluated

modulo 13. Since3-1= 9 in IFI3,)

A-I = 9
[_\037 -\037]

=

[\037 -\037]

and X = A-IB =
[\037J.

modulo 13.)

The system has no solution in IF2 or IF3. It happens to have solutions in IF7, though detA == 0

modulo 7.

Invertible matrices with entries in the prime field IFp provide new examples of finite

groups, the general linear groups over finite fields:)

G Ln (IF p ) == {n X n invertible matrices with entries in
IFp}

SL n (IFp ) == {n X n matrices with entries in
IFp

and with determinant 1})

For example, the group of invertible 2 X 2 matrices with entries in JF2 contains the six

elements)

(3.2.9)) G L2 (F2) =

/[

1
1]

,
[\037 1], [1 \037

]
,

[1

1

]
,

[1 \037
]

,
[\037

1 ] I.)

This group is isomorphic to the symmetric group S3. The matrices have been listed in an

order that agrees with our usual list {1, x, x2
, y, xy, x2y} of the elements of S3.

One property of the prime fields
IFp

that distinguishes them from subfields of C is that

adding 1 to itself a certain number of times, in fact p times, giveszero.The characteristic of

a field F is the order of 1,as an element of the additive group F+, providedthat the order

is finite. It is the smallest positive integer m such that the sum 1 + . . . + 1 of m copies of

1 evaluates to zero.If the order is infinite, that is, 1 + . . .+ 1is never 0 in F, the field is,
somewhat perversely, said to have characteristic zero. Thus subfields of C have characteristic

zero, while the prime field
IFp

has cha!acteristic p.)

Lemma 3.2.10 1'he characteristic of any field F is either zero or a prime number.)))
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- -
Proof. To avoid confusion, we let 0 and 1denotethe additive an d the multiplicative identities
in

\037he
field F, respectively, and if k is a positive integer, \037e

let k denote the sum of k copies
of 1. Suppose that the characteristic m is not zero. Then 1generatesa cyclic subgroup H of
F+ of order m, an d m == O. The distinct elements of the cyclicsubgroupH generated by I
are the elements k with k == 0, 1, . . . , m-l (Proposition 2.4.2). Suppose that m isn't prime,

say m = rs, with 1 < r, s < m. Then rand s arein the multiplicative group F X = F - {OJ,
but the product rs, which is equal to 0, is not in px. This contradicts the fact that F X is a

group. Therefore m must be prime. 0

The prime fields IFp have another remarkable property:)

Theorem 3.2.11Structure of the Multiplicative Group. Let p be a prime integer. The

multiplicative group JF; of the prime field is a cyclic group of order p - 1.)

We defer the proof of this theorem to Chapter 15, where we prove that the multiplicative

group of every finite field is cyclic (Theorem 15.7.3).

. A generator for the cyclic group F; is calleda primitive root modulo p.

There are two primitive roots modulo 7, namely 3 and 5, and four primitive roots

modulo 11. Dropping bars, the powers 3\302\260,3
1

, 3 2
, . . . of the primitive root 3 modulo 71istthe

nonzeroelementsof JF 7 in the following order:)

(3.2.12)) JF\037
== {I, 3,2,6,4, 5} == {I, 3, 2, -1, -3\037 -2}.)

Thus there are two ways to list the nonzero elements of Fp, additively and multiplica-

tively. If ex is a primitive root modulo p,)

(3.2.13)) F;
== {I, 2, 3, . . . , p- 1}== {I, ex, ex

2
, . . . , exp- 2

},)

3.3 VECTOR SPACES)

Having some examples and the concept of a field, we proceed to the definition of a vector

space.)

Definition 3.3.1 A vector space V over a field F is a set together with two laws of
composition:
(a) a4dition: V X V \037 V, written v, w \037 v + w, for v and w in V,

(b) scalar multiplication by elements of the field: F X V \037 V, written c, v \037 cv, for c in
F and v in V.

These laws are required to satisfy the following axioms:

\302\267Addition makes V into a commutativegroup V+, with identity denoted by O.

\302\2671 v == v, for all v in V.

. associative law: (ab)v = a(bv), for all a and b in F and all v in V.

\302\267distributive laws: (a + b)v == av + bv and a(v + w) == av + aw, for all a and b in

F and all v and w in V.)))
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The space Fn of column vectors with entries in the field F forms a vector spaceover F,

when addition and scalar multiplication are defined as usual (3.1.1).
Some more examples of real vector spaces (vector spaces over JR):)

Examples 3.3.2

(a) Let V = C be the set of complexnumbers. Forget about multiplication of two complex
numbers. Rememberonly addition ex + f3 and multiplication rex of a complex number ex

by a real number r. These operationsmake V into a real vector space.
(b) The set of real polynomials p(x) = anx n

+ . . . + ao is a real vector space, with

addition of polynomials and multiplication of polynomials by real numbers as its laws of
composition.

(c) The set of continuous real-valued functions on the real line is a realvector space, with

addition of functions f + g and multiplication of functions by real numbers as its laws

of composition.

(d) The set of solutions of the differential equation \037?
= -y is a real vector space. 0)

Eachof our examples has more structure than we look at when we view it as a vector space.
This is typical.Any particular example is sure to have extra features that distinguish it from

others, but this isn't a drawback. On the contrary, the strength of the abstract approach lies
in the fact that consequences of the axiomscan be applied in many different situations.

Two important concepts,subspaceand isomorphism, are analogous to subgroups and
isomorphismsof groups. As with subspaces of JRn, a subspace W of a vector space V

over a field P is a nonempty subset closed under the operations of addition and scalar
multiplication. A subspace W is proper if it is neither the whole space V nor the zero

subspace {OJ.For example,the spaceof solutions of the differential equation (3.3.2)(d) is a
propersubspaceof the space of all continuous functions on the real line.)

Proposition 3.3.3 Let V = F 2
be the vector space of column vectors with entries in a field

F. Every proper subspace W of V consists of the scalar multiples {cw} of a single nonzero
vector w. Distinct proper subspaces have only the zero vector in common.)

The proof of Proposition 3.1.4carriesover.) o)

Example 3.3.4 Let F be the prime field JFp . The space F 2 contains p2 vectors, p2 - 1
of which are nonzero. Because there are p - 1 nonzero scalars, the subspace W = {cw}
spannedby a nonzero vector w will contain p

- 1 nonzero vectors.Thereforep2 contains

(p2
- 1) / (p - 1)= P + 1proper subspaces. 0)

An isomorphism ({J from a vector space V to a vector space V', both over the same field

F, is a bijective map cp : V --+ V' compatible with the two laws of composition, a bijective

map such that)

(3.3.5)) cp(v+ UJ)
= cp(v) + cp(w) and cp(cv) == ccp(v),)

for all v and w in V and all c in F.)))
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Examples 3.3.6

(a) Let FnXn denote the set of n X n matrices with entries in a field F. This set is a vector

space over F, and it is isomorphic to the space of column vectors of length n 2.

(b) If we view the set of complex numbers as a real vector space, as in (3.3.2)(a), the map
cp:1R

2 -+ C sending (a, b)t 'V'7 a + bi is an isomorphism. 0)

3.4 BASES AND DIMENSION)

We discuss the terminology usedwhen working with the operations of addition and scalar
multiplication in a vector space. The new conceptsare span, independence, and basis.

We work with ordered sets of vectors here. We put curly brackets around unordered

sets, and we encloseorderedsetswith round brackets in order to make the distinction clear.

Thus the ordered set (v, w) is different from the ordered set (w, v), whereasthe unordered

sets {v, w} and {w, v} are equal. Repetitions are allowed in an ordered set. So (v, v, w) is
an ordered set, and it is different from (v, w), in contrast to the convention for unordered
sets,where {v, v, w} and {v, w} denote the same sets.

\302\267Let V be a vector space over a field F, and let S == (VI, . . . , v n ) be an ordered set of

elements of V. A linear combination of S is a vector of the form)

(3.4.1 )) w == CIVI +... + CnV n , with Ci in F.)

It is convenient to allow scalars to appear on either side of a vector. We simply agree
that if v is a vector and c isa scalar,then the notations vc and cv stand for the same vector,
the one obtained by scalar multiplication. SO VI Cl + . . . + Vn C n == Cl VI + . . . + C n Vn .

Matrix notation provides a compact way to write a linear combination, and the way we

write ordered sets of vectors ischosenwith this in mind. Since its entries are vectors,we call
an array S == (V1, . . . , v n ) a hypervector. Multiplication of two elements of a vector space
is not defined, but we do have scalar multiplication. This allows us to interpret a productof

the hypervector S and a column vector X in F n
, as the matrix product)

Xl)

(3.4.2)) SX == (VI, . . . , v n )) == vI Xl + . . . + vnXn.)

X n)

Evaluating the right side by scalar multiplication and vector addition, we obtain another

vector, a linear combination in which the scalar coefficients Xi are on the right.

We carry along the subspaceW of JR3 of solutions of the linear equation)

(3.4.3)) 2Xl
- X2 -

2X3 == 0, or AX == 0, where A == (2, -1, -2))

as an example. Two particular solutions WI and W2 are shownbelow,togetherwith a linear

combination WI Yl + W2Y2.)

(3.4.4)) WI =

[\037]

. W2 =

[\037].

WIYI + W2Y2 =

[YI

2

!/2 ]
.)))



Section 3.4) Bases and Dimension 81)

If we write S = (WI, W2) with Wi as in (3.4.4) and Y = (YI, Y2)t, then the combination
WIYl + W2Y2 can be written in matrix form as SY.

\302\267The set of all vectors that are linear combinations of S =
(VI, . . . , v n ) forms a subspace

of V, called the subspace spanned by the set.

As in Section 3.1, this span is the smallest subspace of V that contains S, and it will

often be denoted by Span S.The spanof a single vector (VI) is the spaceof scalar multiples

CVl of VI.
One can define span also for an infinite set of vectors. We discuss this in Section 3.7.

Let's assume for now that the sets are finite.)

Lemma 3.4.5 Let S be an ordered set of vectors of V, and let W be a subspace of V. If
sew, then SpanS C W. 0)

The columnspaceof an m X n matrix with entries in F is the subspace of Fm spanned

by the columns of the matrix. It has an important interpretation:)

Proposition 3.4.6 LetA be an m x n matrix, and let Bbe a column vector, both with entI es
in a field F. The system of equationsAX = B has a solution for X in Fm if and only if B is
in the column space of A.)

Proof. Let A I, . . . , An denote the columns of A. For any column vector X = (Xl, . . . , X n ) t,
the matrix product AX is the column vector A I Xl + . . . + Anxn. This is a linear combination

of the columns, an element of the column space, and if AX = B, then B is this linear
combination. D)

A linear relation among vectors VI, . . . , Vn is any linear combination that evaluates to

zero -
any equation of the form)

(3.4.7)) VI xl + V2X2 + . . .+ VnX n = 0)

that holds in V, where the coefficientsXi are in F. A linear relation can be useful because, if

Xn is not zero, the equation (3.4.7)can be solved for Vn .)

Definition 3.4.8 An ordered set of vectors S =
(VI, . . . , v n ) is independent, or linearly

independent if there is no linear relation SX = 0 except for the trivial one in which X = 0,
i.e.,in which all the coefficients Xi are zero. A set that is not independent is dependent.)

An independent set S cannot have any repetitions. If two vectors Vi and Vj of S are

equal, then Vi
-

Vj
= 0 is a linear relation of the form (3.4.7), the other coefficients being

zero. Also, no vector Vi in an independent set is zero, becauseif Vi is zero, then Vi
= 0 is a

linear relation.)

Lemma3.4.9

(a) A set (VI) of one vector is independentif and only if VI =/::-0.

(b) A set (VI, V2) of two vectors is independent if neither vector is a multiple of the other.

(c) Any reordering of an independent set is independent. 0)))
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Suppose that V is the space pm and that we know the coordinate vectors of the vectors

in the set S =
(VI, . . . , v n ). Then the equation SX = 0 gives us a system of m homogeneous

linear equationsin the n unknowns Xi, and we can decideindependenceby solving this

system.)

Example 3.4.10 Let S =
(VI, VZ, V3, V4) be the set of vectors in IR3 whose coordinate vectors

are)

(3.4.11)) Al
=

[\037],

A2 =

[\037],
A3

=

[\037],

A4 =

[\037]

.)

Let A denote the matrix made up of these column vectors:)

(3.4.12))

[

1 1 2 1

]
A= 0 2 1 1 .

1 023)

A linear combination will have the form SX = VIXI + V2X2 + V3X3 + V4X4, and its coordinate
vector will be AX == AIXI + AZX2 + A3X3 + A4X4. The homogeneous equation AX = 0 has a
nontrivial solution because it is a system of three homogeneousequationsin four unknowns.

So the set S isdependent.On the other hand, the determinant of the 3 x 3 matrix AI formed

from the first three columns of (3.4.12) is equal to 1, so the equation A'X = 0 has only the

trivial solution. Therefore (VI, V2, V3) is an independent set. D)

Definition 3.4.13 A basis of a vector space V is a set (Vl, . . . , v n ) of vectors that is

independent and also spans V.)

We will often use a boldface symbol such as B to denote a basis.The set (VI, V2, V3)
defined above is a basis of JR3 because the equation AI X = B has a unique solution for all

B (see 1.2.21). The set (WI, W2) defined in (3.4.4) is a basis of the space of solutions of the

equation 2Xl
- X2 -

2X3 = 0, though we haven't verified this.)

Proposition 3.4.14 The set B == (VI, . . . , v n ) is a basis of V if and only if every vector w in

V can be written in a unique way as a combination w = VI Xl + . \302\267\302\267+ VnX n = BX.)

Proof The definition of independence can be restated by saying that the zero vector can be
written as a linear combination in just one way. If every vector can be written uniquely as a

combination, then B is independent, and spans V, so it is a basis.Conversely,supposethat B

is a basis. Then every vector w in V can be written as a linear combination. Suppose that w

is written as a combination in two ways, say w == BX = BX ' . Let Y = X - X'. Then BY = O.

This is a linear relation among the vectors VI, . . . , Vn , which are independent. Therefore
X - X' = O. The two combinations are the same. D)

Let V == pn be the space of column vectors.As before, ei denotes the column vector
with 1 in the ith position and zeroselsewhere(see(1.1.24\302\273. The set E = (el, . . . , en) is

a basis for F n
called the standard basis. If the coordinate vector of a vector v in Fn is)))
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x = (Xl, . . . , xn)t,then v = EX = elXl +. \302\267. + enX n is the unique expression for v in terms

of the standard basis.

We now discuss the main facts that relate the three concepts, of span, independence,
and basis. The most important one is Theorem3.4.18.)

Proposition 3.4.15 Let S = (VI, . . . , v n ) be an ordered set of vectors, let w be any vector in

V, and let S' = (S,w) be the set obtained by adding w to S.

(a) Span S = Span S' if and only if w is in Span S.

(b) Supposethat S is independent. Then S' is independent if and only if w is not in Span S.)

Proof This is very elementary, so we omit most of the proof. We show only that if S is

independent but S' is not, then w is in the span of S. If S' isdependent,there is somelinear
relation)

VIXI + . . . + VnX n + wy = 0,

in which the coefficients Xl, . . . , Xn and yare not all zero. If the coefficienty werezero,
the expression would reduce to SX = 0, and sinceS is assumed to be independent, we could
concludethat X = 0 too. The relation would be trivial, contrary to our hypothesis.SoY=f::.O,

and then we can solve for w asa linearcombination of VI, . . . , Vn . 0)

\302\267A vector space V is finite-dimensional if some finite set of vectors spans V. Otherwise, V

is infinite-dimensional.

For the rest of this section, our vector spaces are finite-dimensional.)

Proposition 3.4.16 Let V be a finite-dimensionalvector space.

(a) Let S be a finite subset that spans V, and let L be an independent subset of V. One can
obtain a basis of V by adding elements of S to L. .

(b) Let Sbe a finite subset that spans V. One can obtain a basis of V by deleting elements

from S.)

Proof (a) If S is contained in Span L, then L spans V, and so it is a basis (3.4.5).If not,
we choose an element v in S, which is not in Span L. By Proposition 3.4.15,L ' = (L, v)
is independent. We replace L by L'. Since S is finite, we can do this only finitely often. So

eventually we will have a basis.)

(b) If Sisdependent,thereisa linear relation VICI +. . .+ VnC n = 0 in which some coefficient,
say Cn, is not zero. We can solve this equation for Vn , and this shows that Vn is in the span of

the set Sl of the first n -1 vectors.Proposition3.4.15(a)shows that SpanS = SpanSI. So S1
spans'l. We replace S by SI. Continuing this way we must eventually obtain a family that is

independent but still spans V: a basis.)

\037Note: There is a problem with this reasoning when V is the zero vector space {OJ. Starting

with an arbitrary set S of vectors in V, all equal to zero, our procedurewill throw them

out one at a time until there is only one vector VI left. And since VI is zero, the set (VI) is

dependent. Howcan we proceed? The zero space isn't particularly interesting, but it may)))
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lurk in a corner, ready to trip us up. We have to allow for the possibility that a vector space
that arises in the course of some computation, such as solving a system of homogeneous
linearequations, is the zero space, though we aren't aware of this. In order to avoid having

to mention this possibility as a specialcase,we adopt the following definitions:)

(3.4.17)
\302\267The empty set is independent.
\302\267The span of the empty set is thezerospace{OJ.)

Then the empty set is a basis for the zero vector space. These definitions allow us to throw

out the last vector Vl, which rescues the proof. 0

We come now to the main fact about independence:)

Theorem3.4.18LetSand L be finite subsets of a vector spaceV. Assume that S spans V
and that L is independent. Then S contains at least as many elements as L does:ISI > ILl.)

As before, ISI denotes the order, the number of elements,of the set S.

Proof. Say that S == (Vl, . .., v m ) and that L == (Wl, . .., w n ). We assume that ISI < ILl,

i.e., that m < n, and we show that L is dependent. To do this, we show that there is a linear
relation WIXl + . . . + WnX n = 0, in which the coefficients Xi aren't all zero. We write this

undetermined relation as LX == O.

Because S spans V, each element
Wj

of L is a linear combination of S, say Wj ==

Vlalj + . . . + vmamj = SAj, where
Aj

is the column vector of coefficients.We assemble

these column vectors into an m X n matrix)

(3.4.19))
I

A== Al

I)

I

An .

I)

Then)

(3.4.20)) SA == (SAl, . . . , SAn) = (Wl, . . . , w n ) == L.)

We substitute SA for L into our undetermined linear combination:)

LX == (SA)X.

The associative law for scalar multiplication implies that (SA)X == S(AX). The proof is the
same as for the associative law for multiplication of scalarmatrices (which we omitted). If

AX == 0, then our combination LX will be zero too. Now since A is an m X n matrix with

m < n, the homogeneoussystem AX == 0 has a nontrivial solution X. Then LX == 0 is the

linear relation we are lookingfor. 0)

Proposition 3.4.21 Let V be a finite-dimensionalyector space.
(a) Any two bases of V have the sameorder(thesamenumber of elements).

(b) Let B be a basis.If a finite set S of vectors spans V, then ISI > IBI, and ISI == IBI if and

only if S is a basis.)))
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(c) Let B be a basis. If a set L of vectors is independent,then ILl < IBI, and ILl =
IBI if and

only if L is a basis.)

Proof (a) We note here that two finite bases HI and B2 have the sameorder,and we will

show in Corollary 3.7.7 that every basis of a finite-dimensional vector spaceis finite. Taking

S = HI and L = B2 in Theorem 3.4.18 shows that 181\\
> 1821, and similarly, IB 21 > IB11.

Parts (b) and (c) follow from (a) and Proposition 3.4.16. 0)

Definition 3.4.22 The dimension of a finite-dimensionalvector space V is the number of
vectors in a basis. This dimension will be denoted by dim V.)

The dimension of the space F n
of column vectors is n because the standard basisE =

(e1,..., en) contains n elements.

Proposition 3.4.23 If W is a subspace of a finite-dimensionalvector space V, then W is
finite-dimensional,and dim W < dim V. Moreover, dim W = dim V if and only if W = V.)

Proof We start with any independent set L of vectors in W, possibly the empty set. If L
doesn'tspan W, we choose a vector w in W not in the span of L.ThenL' = (L, w) will be

independent (3.4.15). We replace L by L'.
Now it is obvious that if L is an independent subset of W, then it is also independent

when thought of as a subset of V. So Theorem 3.4.18 tells us that ILl < dim V. Therefore
the processof adding elements to L must come to an end, and when it does, we will have a

basis of W. SinceL contains at most dim V elements, dim W < dim V. If ILl = dim V, then

Proposition 3.4.21(c) shows that L is a basis of V, and therefore W = V. 0)

3.5 COMPUTING WITH BASES

The purpose of bases is to provide a method of computation, and we learn to use them in

this section. We consider two topics:how to express a vector in terms of a basis, and how to
relate different bases of the same vector space.

Supposewe are given a basis B =
(VI, . . . , v n ) of a vector space V over F. Remember:

This means that every vector v in V can be expressedasa combination

(3.5.1) v = VI Xl + . . . + VnX n , with Xi in F,

in exactly one way (3.4.14). The scalarsXi are the coordinates of v, and the column vector

Xl)

(3.5.2)) x=)

Xn)

is the coordinate vector of v, with respect to the basis B.
For example,(cost, sin t) is a basis of the spaceof solutions of the differential equation

y\"
= - y. Every solution of this differential equation is a linear combination of this basis. If

we are given another solution f(t), the coordinate vector (Xl, X2)t of f is the vector such

that J(t) = (cos t)Xl + (sin t)X2. Obviously, we need to know something about f to find X.)))



92 Chapter 3) Vector Spaces)

Not very much: just enough to determinetwo coefficients. Most properties of f are implicit

in the fact that it solves the differential equation.
What we can always do, given a basis B of a vector space of dimension n, is to define

an isomorphism of vector spaces (see 3.3.5)from the space F n
to V:)

(3.5.3)) 1/1':F
n

\037 V that sends X \037 BX.)

We will often denote this isomorphism by B, because it sends a vector X to BX.)

Proposition 3.5.4 Let S =
(VI, . . . , v n ) be a subsetof a vector space V, and let 1/1':Fn \037 V

be the map defined by 1/I'(X)= SX.Then

(a) 1/1' is injective if and only if S is independent,
(b) 1/1' is surjective if and only if S spans V, and

(c) 1/1 is bijective if and only if S isa basis of V.)

This follows from the definitions of independence,span, and basis. 0

Given a basis,the coordinate vector of a vector v in V is obtained by inverting the map
1/1' (3.5.3). We won't have a formula for the inverse function unless the basis is given more

explicitly, but the existence of the isomorphism is interesting:)

Corollary 3.5.5 Every vector space V of dimension n over a field F is isomorphic to the
space F n

of column vectors. 0)

Notice also that pn is not isomorphic to pm when m=t::n, because Fn has a basis of n

elements, and the number of elements in a basis depends only on the vector space. Thus the
finite-dimensionalvector spaces over a field F are completelyclassified.The spacesFn of

column vectors are representative elements for the isomorphismclasses.
The fact that a vector space of dimension n is isomorphicto Fn will allow us to

translate problems on vector spaces to the familiar algebra of column vectors, once a basis
is chosen. Unfortunately, the samevector space V will have many bases. Identifying V with

the isomorphic space Fn is useful when a natural basis is in hand, but not when a basis is
poorly suited to a given problem. In that case, we will need to change coordinates,i.e.,to
change the basis.

The space of solutions of a homogeneous linear equation AX = 0, for instance, almost

never has a natural basis. The space W of solutions of the equation 2Xl -
X2

- 2X3 = 0
has dimension2, and we exhibiteda basis before: B = (WI, W2), where WI

= (1,0, l)t and

W2 = (1,2, O)t (see (3.4.4\302\273. Using this basis, we obtain an isomorphism of vector spaces
}R2 \037 W that we may denote by B. Since the unknowns in the equation are labeled Xi, we

need to choose another symbol for variable elements of }R2 here. We'll use Y = (Yl, Y2) t.

The isomorphism B sends Y to the coordinate vector of BY =
WIYl + W2Y2 that was

displayed in (3.4.4).

However, there is nothing very special about the two particular solutions WI and W2.

Most other pairs of solutions would serve just as well. The solutions
w\037

= (0, 2, -l)t and

w; = (1,4,-l)t give us a second basis B'
==

(w\037, w;) of W. Either basis suffices to express

the solutions uniquely. A solution can be written in either one of the forms)))
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(3.5.6))

[

Yl + Y2

]

2Y2

Yl) [

Y;

]

or
2y\037

+ 4 Y2 .

-Y\037
-

Y2)

Change of Basis

Suppose that we are given two bases of the same vector space V, say B =
(VI, . . . , v n ) and

B' ==
(v\037,

. . . , v\037) . We wish to make two computations.We ask first: How are the two bases
related?Second,a vector v in V will have coordinates with respect to each of these bases,
but they will be different. So we ask: How are the two coordinate vectors related? These are
the basechange computations, and they will be very important in later chapters. They can
alsodrive you nuts if you don't organize the notation carefully.

Let's think of B as the old basisand B' as a new basis. We note that every vector of the
new basis S' is a linearcombination of the old basis B. We write this combination as)

(3.5.7))
I

v
j

= VIPIj + V2P2j + ... + VnPnj.)

The column vector Pj ==
(PIj,

. . . , Pnj)
t is the coordinate vector of the new basis vector

vj, when it is computed using the old basis. We collect these column vectors into a square
matrix P, obtaining the matrix equation B' == BP:

B' = ( v\037,
.. . , v\037)

= (VI, . . . , Vn )

[

P
]

= BP.)(3.5.8))

The jth column of P is the coordinatevector of the new basis vector
vj

with respect to the

old basis.This matrix P is the basechange matrix. 1)

Proposition 3.5.9

(a) Let Band B' be two bases of a vector space V. The basechange matrix P is an invertible
matrix that is determined uniquely by the two bases Band B'.

(b) LetB == (VI, . . . , v n ) be a basis of a vector space V. The other bases are the setsof the

form B' = BP, where P canbe any invertible n X n matrix.)

Proof (a) The equation B' = BPexpressesthe basis vectors vi as linear combinations of

the basis B. There is just one way to do this (3.4.14), so P is unique.To show that P is

an invertible matrix, we interchange the roles of Band B'. Thereis a matrix Q such that

B == B' Q. Then

B = B'Q = BPQ, or (VI, . . . , Vn ) = (VI, . \302\267. , Vn )

[

PQ
].)

This equation expresseseachVi as a combination of the vectors (VI, . . . , v n ). The entries
of the product matrix PQ are the coefficients. But since B is a basis, there is just one way to)

1This basechange matrix is the inverse of the one that was used in the first edition.)))



94 Chapter 3) Vector Spaces)

write Vi as a combination of (Vl, . . . , v n ), namely Vi = Vi, or in matrix notation, B = BI.So
PQ= I.)

(b) We must show that if B is a basis and if P is an invertible matrix, then B' = BPisalsoa
basis.Since P is invertible, B = B'p-I. This tells us that the vectors Vi are in the span of B'.
Therefore B' spans V, and since it has the same number of elements as B, it is a basis. 0

LetX and X' be the coordinate vectors of the samearbitrary vector V, computed with

respect to the two bases Band B', respectively, that is, V = BX and V = B' X'. Substituting
B = B'p-l gives us the matrix equation)

(3.5.10)) V = BX = B' p- l
X.)

This shows that the coordinate vector of V with respect to the new basisB',which we call X',
is p- IX. We can also write this as X = PX'.

Recapitulating, we have a single matrix P, the basechangematrix, with the dual

properties)

(3.5.11)) B' = BP and P X' = X,)

where X and X' denotethe coordinatevectors of the same arbitrary vector v, with respect

t.o the two bases. Each of these properties characterizes P. Please take note of the positions
of P in the two relations.

Going back once moreto the equation 2XI
- X2 -

2X3
= 0, let Band B' be the bases

of the space W of solutions described above, in (3.5.6). The basechange matrix solves the
equation)

[

0 1

] [

1
2 4 = 0

-1 -1 1)

;

]
[

Pll P12
]

. It is P =

[

-1 -1

]
.

o P21 P22 1 2)

The coordinate vectors Y and Y' of a given vector V with respect to these two bases, the ones
that appear in (3.5.6), are related by the equation

py' =
[-\037 -\037] [\037]

=
[;\037]

= y.)

Another example: Let B be the basis(cost, sin t) of the space of solutions of the differential

equation
d
d

2

?
= -yo If we allow complexvalued functions, then the exponential functions. t

e:3:it = cos t:i: i sin t are also solutions,and B' = (e
it

, e- it
) is a new basis of the space of

solutions. The basechange computation is)

(3.5.12))

. .

[

1
(ell, e- It

) = (cos t, sin t)
i)

\037

]

.
-I)

One cas\037 in which the basechange matrix is easyto determineis that V is the space
F n

of column vectors, the old basis is the standard basisE = (el,..., en), and the new)))
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basis, we'll denoteit by B = (VI, . . . , v n ) here, is arbitrary. Let the coordinatevector of Vi,
with respect to the standard basis,be the column vector Bi. So Vi = EBi. We assemble these
columnvectors into an n X n matrix that we denote by [B]:
(3.5.13))

I

[B]
= Bl

I)

I I

Bn .Then(vI,.\",V n ) - (el,...,e n ) Bl

I I)

I

Bn

I)

i.e., B = E[B]. Therefore [B]is the basechange matrix from the standard basis E to B.)

3.6 DIRECT SUMS)

The concepts of independenceand span of a set of vectors have analogues for subspaces.
If WI, . . . , Wk are subspaces of a vector space V, the set of vectors v that can be written
as a sum)

(3.6.1 )) V = WI + . . . + Wk,)

where Wi is in Wi is called the sum of the subspaces or their span, and is denoted by

WI + \302\267. . + W k :)

(3.6.2)) WI +... + Wk
= {v E V

I
V = WI +... + Wk, with Wi in Wi}.)

The sum of the subspacesis the smallest subspace that contains all of the subspaces
WI, . . . , Wk. It is analogous to the span of a set of vectors.

The subspacesWI, . . . , Wk are called independent if no sum WI + . . . + Wk with Wi in

Wi is zero, except for the trivial sum, in which Wi = 0 for all i. In other words, the spaces are

independent if)

(3.6.3)) WI + ... + Wk
= 0, with Wi in Wi, implies Wi = 0 for all i.)

Note.' Suppose that vI, . . . , Vk are elements of V, and l\037t Wi be the span of the vector

Vi. Then the subspaces WI, . . . , Wk are independent if and only if the set (VI, . . . , v n ) is

independent. This becomes clear if we compare (3.4.8) and (3.6.3). The statement in terms

of subspaces is actually the neater one,becausescalarcoefficients don't need to be put in

front of the vectors Wi in (3.6.3). Since each of the subspaces Wi is closed under scalar

multiplication, a scalarmultiple CWi is simply another element of Wi. 0

We omit the proof of the next proposition.)

Proposition 3.6.4 Let WI, . . . , Wk be subspaces of a finite-dimensional vector spaceV, and

let Bi be a basis of Wi.

(a) The following conditions are equivalent:

. The subspaces Wi are independent, and the sum W1 + . . . + Wk is equal to V.

. Theset B = (B1, . . . , Bk) obtained by appending the bases Bi is a basis of V.

(b) dim(WI + . . . + Wk)
< dim WI + . . . + dim Wk, with equality if and only if the spaces

are independent.)))
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(c) If W; is a subspaceof Wi for i = 1, ..., k, and if the spaces WI, . . . , Wk are independent,
then so are the

W\037,
. . . , W k \" 0)

If the conditions of Proposition 3.6.4(a)aresatisfied, we say that V is the direct sunz of

WI, . . . , Wk, and w\037, write V = WI EB . . . EB Wk:)

(3.6.5))
V = WI EB . . . $ Wk, if WI + . . . + Wk = V

and WI,..., Wk are independent.)

If V is the direct sum\" every vector v in V can be written in the form (3.6.1) in exactly one

way.)

Proposition 3.6.6 Let WI and \"V2 be subspaces of a finite-dimensionalvector space \\l.

(a) dim WI + dim W2 == dim(WI nW 2) + dim(WI + W2).

(b) WI and W2 are independent if and only if WI n W2 == {OJ.

(c) V is the direct sum WI EB W2 if and only if WI n W2 = {OJ and WI + W2 == V.

(d) If WI + W 2 = V, there is a subspaceW 2 of W2 such that WI EB W z
= V.)

Proof. We prove the key part (a):We choose a basis, U = (UI, . . . , Uk) for WI n W2, and we
extendit to a basis (U, V) == (UI, . .. , Uk; VI, ..., v m ) of WI. We also extendU to a basis

(U, W) == (UI, ..., Uk; wI, ..., w n ) of W2. Then dim(WI n W2) == k, dim WI == k + m,
and dim W2

== k + n. The assertion will follow if we prove that the set of k + m + n elements
(U,V, W) == (u I, . . . , Uk; VI, . . . , V m ; WI, . . . , w n ) is a basis of WI + W 2 .

We must show that (U, V, W) is independent and spans WI + W2. An element v of
WI + W2 has the form w' + w\" where w' is in Wl and w\" is in W2. We write w' in terms of

our basis (U, V) for WI, say w' = UX + VY = UIXI + . . . + UkXk + VIYI +. . . + vmYm. We

also write w\" as a combination UX' + WZ of our basis (U, W) for W2. Then V = w' + u/' ==

V(X + X') + VY + WZ.

Next, suppose we are given a linear relation VX + VY + WZ = 0, among the elements
(U, V, W). We write this as UX + VY = -WZ. The left side of this equation is in WI and the
right side is in W2. Therefore - WZ is in WI n W2,and so it is a linear combination UX' of the
basisU.This gives us an equation UX' + WZ == O. Since the set (U, W) is a basis for W2, it is

independent, and therefore X' and Z arezero.The given relation reduces to UX + VY == O.

But (U, V) is also an independent set. So X and Yare zero.Therelationwas trivial. D)

3.7 INFINITE-DIMENSIONAL SPACES)

V ector spac\037s that are too big to be spannedby any finite set of vectors are calledinfinite-

dimensional. We won't need them very often, but they are important in analysis, so we
discussthem briefly here.

One of the simplest examplesof an infinite-dimensional space is the space ]ROO of

infinite real row vectors)

(3.7.1)) (a) = (at,a2,a3,.. .).)

An infinite vector can be thought of as a sequence al, a2, . . . of real numbers.)))
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The space IR
oo has many infinite-dimensional subspaces. Here are a few; you will be

able to make up somemore:)

Examples 3.7.2

(a) Convergent sequences: C == {(a) E ]Roo
I

the limit lim an exists}.
n\037oo)

00

(b) Absolutely convergent series: \302\2431=
{(a) E }Roo

I L Ian I <
ex)}.

1

(c) Sequences with finitely many terms different from zero.)

z ==
{(a) E \037(X)

I an == 0 for all but finitely many n}.)

Now suppose that if is a vector space, infinite-din1ensionalor not. What do we mean

by the span of an infinite set S of vectors? It isn't always possible to assign a value to
an infinite combination cl VI + c2 V2 + . . '. If V is the vector space JRn, then a value can
be assigned providedthat the series Cl VI + C2 v2 + . .. converges.But many series don't

converge, and then we don't know what value to assign. In algebra it is customary to speak
only of combinations of finitely many vectors. The span of an infinite set S is defined to be
the set of the vectors v that are combinationsof finitely many elements of S:)

(3.7.3)) v == CI VI + . . . + CrV;', where VI,..., Vr are in S.)

The vectors Vi in S can be arbitrary, and the number r is allowedto dependon the vector V

and to be arbitrarily large:)

(3.7.4)) s s _

I

finite combinations

I

pan -
of elements of S

.)

For example, let ei == (0, . . . ,0, 1,0, . . .) be the row vector in }Roo with 1 in the ith

position as its only nonzero coordinate. Let E == (el, e2, e3, . . .) be the set of these vectors.

This set does not span Roo, because the vector)

w = (1, 1,1,. . .))

is not a (finite) combination. The spanof the set E is the subspace Z (3.7.2)(c).
A set S, finite or infinite, is independent if there is no finite linear relation)

(3.7.5)) Cl VI + . . . + Cr V r == 0, with VI, . . . , V r in S,)

except for the trivial relation in which Cl == . \302\267\302\267== Cr == O. Again, the number r is allowed to
be arbitrary, that is, the condition has to hold for arbitrarily large r and arbitrary elements
Vl, . . . , V r of S. For example, the setS'= (w; el, e2, e3, . . .) is independent,if wand ei are

the vectors definedabove.With this definition of independence, Proposition 3.4.15continues
to be true.

As with finite sets, a basis S of V is an independent set that spans V. The set
S == (el, e2, . . .) is a basis of the space Z. The monomials xi form a basis for the space)))
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of polynomials. It can be shown, using Zorn's Lemma or the Axiom of Choice, that every

vector space V has a basis(seethe appendix, Proposition A.3.3). However, a basis for ]Roo

will have uncountably many elements, and cannot be made very explicit.
Let us go backfor a moment to the case that our vector space V is finite-dimensional

(3.4.16),and ask if there can be an infinite basis. We saw in (3.4.21) that any two finite bases
have the same number of elements. We complete the picture now, by showing that every
basis is finite. This followsfrom the next lemma.)

Lemma 3.7.6 Let V be a finite-dimensional vector space, and let Sbe any set that spans V.
Then S contains a finite subset that spans V.)

Proof By hypothesis, there is a finite set, say (UI, . . . , urn), that spans V. Because S spans
V, each of the vectors Ui is a linear combination of finitely many elements of S. The elements
of S that we use to write all of thesevectors as linear combinations make up a finite subset

S' of S. Then the vectors Ui are in SpanS', and since (Ut, .. . , urn) spans V, so does S'. 0)

Corollary3.7.7 Let V be a finite-dimensional vector space.
\302\267

Every basis is finite.

\302\267
Every set S that spans V contains a basis.

.
Every independent set L is finite, and can be extended to a basis.) o)

Idon'tneedto learn 8 + 7: I'll remember 8 + 8 and subtract 1.

-T. Cuyler Young, Jr.)

EXERCISES)

Section 1 Fields

1.1. Prove that the numbers of the form a + b,J2,where a and b are rational numbers, form a

subfield of C.

1.2. Find the inverse of 5 modulo p, for p = 7, 11, 13, and 17.
1.3.Compute the product polynomial (x

3
+ 3x 2 + 3x + 1)(x4

+ 4x 3 + 6x 2 + 4x + 1)when the

coefficients are regarded as elementsof the field JF 7. Explain your answer.

1.4. Considerthe system of linear equations
[ \037

-

\037] [ \037\037]

=

[i]

(a) Solve the system in lFp when p = 5,11, and 17.
(b) Determine the number of solutions when p = 7.)

1.5. Determine the primes p such that the matrix

A =

[
\037 \037 -\037

]-2 0 2)

is invertible, when its entries are consideredto be in JF
p')))
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1.6. Solve completely the systems of linear equations AX = 0 and AX = B, where)

A =

[! j _
n

' and B =

[

-
U

( a) in Q, (b) in IF2, ( c) in JF 3 , (d) in IF 7 .

1.7. By finding primitive elements, verify that the multiplicative group JF; is cyclicfor all primes

p < 20.

1.8. Let p bea prime integer.

(a) Prove Fermat's Theorem: For every integer a, a P == a modulo p.

(b) Prove Wilson's Theorem: (p -1)!=-l(modulo p).

1.9. Determinethe orders of the matrices
[

1
\037

]

and
[

2
1]

in the group G L2 (JF 7).

1.10. Interpreting matrix entries in the field JF2, prove that the four matrices

[ \037
\037], [\037

\037J. U \037J. [\037 n
form a field.

Hint: You can cut the work down by using the fact that various laws are known to hold for
addition and multiplication of matrices.

1.11. Prove that the sef of symbols {a + bi
I a, b E JF3} forms a field with nine elements, if the

laws of compositionare made to mimic addition and multiplication of complexnumbers.
Will the same method work for lF5? For IF7? Explain.)

Section 2 VectorSpaces)

2.1.(a) Prove that the scalar product of a vectorwith the zero element of the field F is the
zero vector.

(b) Prove that if w is an element of a subspaceW, then -w is in W too.

2.2. Which of the following subsets is a subspaceof the vector space FnXn of n x n matrices
with coefficients in F?

(a) symmetric matrices(A
= At), (b) invertible matrices, (c) upper triangular matrices.)

Section 3 Bases and Dimension

3.1. Find a basis for the space ofn X n symmetric matrices (At = A).
3.2. Let W C JR4 be the space of solutions of the system of linear equations AX = 0, where

A =

[i \037 ; \037l
Find a basisfor W.

3.3. Prove that the three functions x
2

, cos x, and eX are linearly independent.

3.4. Let A be an m X n matrix, and let A' be the result of a sequence of elementary row

operations on A. Prove that the rows of A span the samespaceas the rows of A'.

3.5. Let.V = F n be the space of column vectors. Prove that every subspace W of V is the

space of solutions of some system of homogeneous linear equations AX = O.)))
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3.6. Find a basis of the space of solutions in JRn of the equation)

x] + 2X2 + 3X3 + . . . + nX n == O.)

3.7. Let (Xl, . . . , Xm ) and (Y 1, . . . , Y n ) be bases for JRm and JRn, respectively. Do the mn
matricesXi

Y)
form a basis for the vector spaceJRmxn of all nl X n matrices?

3.8. Prove that a set (VI, . . . , v n ) of vectors in F n is a basis if and only if the matrix obtained
by assembling the coordinate vectors of Vi is invertible.)

Section 4 Computing with Bases)

4.1. (a) Prove that the set B == \302\2531,2, O)t, (2,1, 2)t, (3,1, l)t) is a basisof1R
3

.

(b) Find the coordinate vectorof the vector v = (1, 2, 3)t
with respect to this basis.

(c) Let B'
== \302\2530;1, O)t, (1,0, 1)t, (2,1, O)t).Determine the basechange matrix P from B

to B/
.

4.2. (a) Determine the basechange matrix in JR2, when the old basis is the standard basis
E == (el, e2) and the new basis is B = (el+ e2,el- e2)'

(b) Determine the basechange matrix in }Rn, when the old basis is the standard basisE

and the new basis is B == (en, en-I, . . . , el)'

(c) Let B be the basis of JR2 in which VI == el and V2 is a vector of unit length making an

angle of 1200
with V1. Determine the basechange matrix that relates E to B.

4.3. Let B == (VI, . . . , v n ) be a basis of a vector space V. Prove that one can get from B to any
other basis B'

by a finite sequence of steps of the following types:

(i) Replace Vi by Vi + aVj, i =1= j, for some a in F,

(ii) Replace Vi by CVi for some C=1= 0,

(iii) Interchange Vi and Vj.

4.4. Let JFp be a prime field, and let V ==
JF\037.

Prove:

(a) The number of basesof V is equal to the order of the general linear group G L2 (JF p).

(b) The order of the generallinear group G L2(JF p ) is pep + 1)(p - 1)2,and the order of
the special linear group SL2(F p ) is pep + l)(p - 1).

4.5.How many subspaces of each dimension are there in (a) IF\037, (b) JF\037?)

Section 5 Direct Sums

5.1. Prove that the space JRnxn of all n x n real matrices is the direct sum of the space of

symmetric matrices(At
== A) and the space of skew-symmetric matrices (At = -A).

5.2. The trace of a square matrix is the sum of its diagonal entries. Let WI be the spaceof n X n
matrices whose trace iszero.Find a subspace W2 so that lR nXn = WI ffi W2.

5.3. Let WI, . . . , Wk be subspaces of a vector space V, such that V == L Wi. Assume that

WI n W2 = 0, (Wl + W2) n W3 = 0, ... , (WI + W2 +... + Wk-I) n W k = O. Prove that
V is the direct sum of the subspacesWI, . . . , Wk.)))
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Section 6 Infinite-Dimensional Spaces
6.1.Let E be the set of vectors (el, e2,...) in }Roo, and let w = (1,1,1, .. .).Describethe

span of the set (w, el, e2, . . .).
6.2.The doubly infinite row vectors (a) == (..., a-I, ao, aI, .. .), with ai real form a vector

space. Prove that this space is isomorphic to ]Roo .

*6.3. For every positive integer,we can define the space lP to be the space of sequences such

that L lai IP < 00. Prove that lP is a propersubspaceof fP+l.

*6.4. Let V be a vector spacethat is spanned by a countably infinite set. Prove that every
independent subsetof V is finite or count ably infinite.)

Miscellaneous Problems

M.!. Consider the determinant function det: F2X2 -* F, where F == JFp is the prime field of
order p and F 2x2 is the space of 2 X 2 matrices. Show that this map is surjective, that all
nonzero valuesof the determinant are taken on the same number of times, but that there
are more matrices with determinant 0 than with determinant 1.

M.2. Let A be a real n X n matrix. Prove that there is an integer N such that A satisfies a

nontrivial polynomial relation A
LV

+ eN -1 AN -1 + . ..+ Cl A + Co = O.

M.3. (polynomial paths) (a) Let x(t) and yet) be quadratic polynomials with real coefficients.

Prove that the image of the path (x(t) , y(t\302\273is contained in a conic, i.e.,that there is a real

quadratic polynomial f(x, y) such that f(x(t), yet\302\273\037is identically zero.

(b) Let x(t) == t
2 - 1 and yet) == t 3 - t. Find a nonzero real polynomial f(x, y) such that

f(x(t), y(t\302\273 is identically zero. Sketch the locus {f(x, y) == O} and the path (x(t), y(t\302\273

in lR
2 .

(c) Prove that every pair x(t), yet) of real polynomials satisfies some real polynomial
relation f(x, y) == O.

*M.4. Let V be a vectorspaceover an infinite field F. Prove that V is not the union of finitely

many proper subspaces.
*M.5.Let a be the rea] cube root of 2.

(a) Prove that (1, a, ex?) is an independent set over Q, i.e., that there is no relation of the

form a + ba + ca 2 == 0 with integers a, b, c.
Hint: Divide x 3 - 2 by cx

2
+ bx + a.

(b)Prove that the real numbers a + ba + ca2
with a, b, c in Q form a field.

M.6. (Tabascosauce:a mathel11,atical diversion) My cousin Phil collects hot sauce. He has about

a hundred different bottles on the shelf, and many of them, Tabasco for instance, have only

three ingredients other than water: chilis, vinegar, and salt. What is the smallest number
of bottles of hot sauce that Phil would need to keep on hand so that he could obtain any

recipe that uses only these three ingredients by mixing the ones he had?)))



CHAPTER 4)

Linear Operators)

That confusions of thought and errors of reasoning
still darken the beginnings of Algebra,

;s the earnestand just complaint of sober and thoughtful men.

-Sir William Rowan Hamilton)

4.1 THE DIMENSION FORMULA)

A linear transformation T: V \n W from one vector space over a field F to another is a
map that is compatible with addition and scalarmultiplication:)

(4.1.1)) T(VI + V2) = T(VI)+ T(V2) and T(eVI) = eT(VI),)

for all VI and V2 in V and all c in P. This is analogous to a homomorphism of groups, and

calling it a homomorphism would be appropriate too. A linear transformation is compatible
with arbitrary linear combinations:)

(4.1.2)) T(:L:>jCi)
= L T(vj)cj.

i i)

Left multiplication by an m X n matrix A with entries in P, the map)

(4.1.3))
A

pn \n pm that sends X \n AX)

is a linear transformation. Indeed, A(XI + X2) = AXl + AX2, and A (eX) =' cAX.
If B = (VI, . . . , v n ) is a subset of a vector space V over the field P, the map pn \n V

that sends X \n BX is a linear transformation.
Another example:Let Pn be the vector space of real polynomial functions)

(4.1.4)) ant'\" + an-It\"'-I +... + al! + ao)

of degree at most n. The derivative
-9t

defines a linear transformation from Pn to Pn-I.
Thereare two important subspaces associated with a linear transformation: its kernel

and its image:)

(4.1.5))
kerT = kernel of T = {v E V

\\ T(v) = OJ,

im T =
image of T = {w E W

I
w = T( v) for some v E V}.)

102)))
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The kernelis often called the nullspace of the linear transformation. As onemay guess from

the analogy with group homomorphisms, the kernel is a subspaceof V and the image is a
subspaceof W.

The main result of this section is the next theorem.)

Theorem 4.1.6Dimension Formula. Let T: V \037 W be a linear transformation. Then)

dim(ker 1) + dim(im 1) = dim V.)

The nullity and the rank of a linear transformation T are the dimensions of the kernel
and the image, respectively,and the nullity and rank of a matrix A are defined analogously.
With this terminology, (4.1.6) becomes)

(4.1.7)) nullity + rank = dimension of V.)

Proof of Theorem (4.1.6). We'll assume that V is finite-dimensional, say of dimensionn. Let
k be the dimension of ker T, and let (Ut, . . . , Uk) be a basis for the kernel. We extend this

set to a basis of V:)

( 4.1.8)) (UI, \302\267. . , Uk; VI, \302\267\302\267\302\267, Vn-k).)

(see (3.4.15\302\273. For i = 1, ..., n -
k, let Wi = T(Vi). If we prove that C = (WI, ..., Wn-k) is

a basis for the image, it will follow that the image has dimension n - k, and this will prove
the theorem.

We must show that C spans the image and that it is an independent set. Let w be an

element of the image. Then w =
T(v) for some v in V. We write V in terms of the basis:)

v = aIuI + .. . + akuk + bl VI + . . . + bn-kVn-k)

and apply T, noting that T(Ui) = 0:

W = T(v) = blWl +... + bn-kWn-k.)

Thus w is in the span of C.

Next, we show that C is independent. Suppose we have a linear relation)

( 4.1.9)) Cl WI + . . .+ Cn-kWn-k
= O.)

Let v = CI VI + . . . + Cn-kVn-k, where Vi are the vectors in (4.1.8). Then)

T(v) = CI wI +... + Cn-kWn-k = 0,)

so V is in the nullspace. We write V in terms of the basis (UI, . . . , Uk) of the nullspace, say
v = alUl + ...+ akuk. Then)

-alul
- . . . -

akuk + Cl VI + . . . + Cn-kVn-k
= -V + V = O.)

But the basis (4.1.8) is independent. So-al = 0,... , -ak = 0, and Cl = 0, . . . , Cn-k
= o.

The relation (4.1.9) was trivial. Therefore C is independent. 0)))
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When T is left multiplication by a matrix A (4.1.3), the kernel of T, the nullspaceof A,

is the set of solutions of the homogeneous equation AX = O.The image of T is the column

space, the space spannedby the columns of A, which is also the set of vectors B in [?m such

that the linear equation ,,4X= B has a solution (3.4.6).
It is a familiar fact that by adding the solutions of the homogeneousequation AX = 0to

a particular solution X 0 of the inhomogeneous equation AX = B,oneobtains all solutions of

the inhomogcneous equation. Another way to say this is that the set of solutions of AX = B

is the additive coset Xo + N of the nullspace N in Fn.
An n x n matrix A whose determinant isn't zero is invertible, and the system of

equations AX == B has a unique solution for every B. In this case, the nullspace is {OJ, and

the column space is the whole space f-'n. On the other hand, if the determinant iszero,the

nullspace N has positive dimension, and the image, the column space\037 has dimension less

than n. Not all equations AX == B have solutions, but those that do have a solution have
more than one solution, because the set of solutions is a cosetof N.)

4.2 THE MATRIX OF A LINEAR TRANSFORMATION)

Every linear transformation from one spaceof column vectors to another is left multiplication
by a matrix.)

Lemma 4.2.1 Let T : Fn -4 Fm be a linear transformation between spaces of column

vectors, and let the coordinate vector of T(e}) be A} ==
(al),

. . ., a,n})t. Let A be tbe m Xn
matrix whosecolumnsare AI, . . . ,An. Then T acts on vectors in Fn as multiplication by A.)

Proof T(X) = T(Lj e}Xj)
=

Lj T(ej)xj = Lj Aj Xj
== AX.) o)

For example, let e == cos (), s == sin (). Counterclockwise rotation p: JR2 \037 JR2 of the

plane through the angle () about the origin is a linear transformation. Its matrix is)

( 4.2.2)) R ==

[

e -s

]
.

s c)

Let's verify that multiplication by this matrix rotates the plane. We write a vector X in the

form r(cos a\037 sin a)t, where r is the length of X. Letc' == cos a and Sf == sin a. The addition
formulas for cosineand sine show that)

RX = r
[
e -s

] [
e'

]
== r

[

Cc' - ss'
]

= r
[
cos(e+a)

]s e s' se' + es' sin(() + a)
.)

So RX is obtained from X by rotating through the angle (), as claimed.
One can Inake a computation analogous to that of Lemma 4.2.1 with any linear

transformation T: V ---+ W, once bases of the two spaces are chosen.If B == (Vl, . . . , v n ) is

a basis of V, we use the shorthand notation T(B) to denotethe hypervector)

( 4.2.3)) T(B) =
(T(Vl)\037 . . . , T(v n )).)))
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If v = BX =
VlXl + . . . + VnXn, then)

(4.2.4)) T(v) =
T(Vl)XI + ... + T(vn)x n = T(B)X.)

Proposition 4.2.5 Let T: V \037 W be a linear transformation, and let B =
(Vl, . . . , v n ) and

C =
(Wl, . . . , w m ) be bases of V and W, respectively. Let X be the coordinate vector of an

arbitrary vector v with respect to the basis B and let Y be the coordinate vector of its image

T( v). So v = BX and T( v) = CY.Thereis an m X n matrix A with the dual properties)

(4.2.6)) T(B)= CA) and) AX == Y.)

This matrix A is the matrix of the transformation T with respect to the two bases. Either of

the properties (4.2.6) characterizes the matrix.)

Proof We write T(v}) as a linear combination of the basis C, say)

(4.2.7)) T(Vj) = wlal} + . ..+ wma m },)

and we assemble the coefficientsail into a column vector A} ==
(al), . . ., amj)t, so that

T(v})
= CA}. Then if A is the matrix whose columns are At, . .. ,An,)

( 4.2.8)) T(B) = (T( VI ), . . . , T( Vn \302\273
= (WI, . . . , Wm)

[)

A)

]

= CA,)

as claimed.Next, if v == BX, then)

T(v) = T(B)X == CAX.)

Therefore the coordinate vector of T(v), which we named Y, is equal to AX.) o)

The isomorphisms }'n -+ V and Fm \037 W determined by the two bases (3.5.3)helpto
explain the relationship between T and A. If we use those isomorphisms to identify V and
W with Fn and Fm, then T corresponds to multiplication by A, as shown in the diagram

below:)

(4.2.9)) Fn

81
V)

A:> Fm

Ie)T > W)

X\037AX

\037 {

BX \037 T(B)X = CAX)

Going from F n
to W along the two paths gives the sameanswer. A diagram that has this

property is said to be commutative. All diagrams in this book are commutative.
Thus any linear transformation between tinite-dimensional vector spaces V and W

corresponds to matrix multiplication, once basesfor the two spaces are chosen. This is a nice
result, but if we change bases we can do much better.)))



106 Chapter 4) Linear Operators)

Theorem 4.2.10

(a) Vector space form: Let T: V \037 W be a linear transformation between finite-dimensional

vector spaces. There are bases Band C of V and W, respectively, such that the matrix

of T with respect to these bases has the form)

Ir)

A'=)
o)

(4.2.11))

where Ir is the rX r identity matrix and r is the rank of T.
(b) Matrix form: Given an m Xn matrix A, there are invertible matrices Q and P such that

A' == Q-l AP has the form shown above.

Proof (a)Let(UI,. .., Uk) be a basis for the kernel of T. We extend this set to a basis B
of V, listing the additional vectors first, say (VI, . . . , Vr ; Ul, . . . , Uk), where r + k = n. Let
Wi = T( Vi). Then, as in the proof of (4.1.6), one sees that (WI, . . . , w r ) is a basisfor the

image of T. We extend this set to a basis C of W, say (Wl, . . . , Wr ; Zl, . . . , zs), listing the

additional vectors last. The matrix of T with respect to these baseshas the form (4.2.11).
Part (b) of the theorem can be proved using row and column operations. The proof is

Exercise 2.4. 0
This theorem is a prototype for a number of results that are to come. It showsthe

advantage of working in vector spaces without fixed bases (or coordinates), because the
structure of an arbitrary linear transformation is describedby the very simple matrix (4.2.11).
But why are (a) and (b) considered two versions of the same theorem? To answer this, we
needto analyze the way that the matrix of a linear transformation changes when we make
other choices of bases.

Let A be the matrix of T with respect to bases Band C of V and W, as in (4.2.6), and
let B' =

(v\037,
. . . , v\037) and C' ==

(w\037,
. . . , w\037) be new bases for V and W. We can relate the

new basisB'to the old basis B by an invertible n X n matrix P, as in (3.5.11). Similarly, C' is
related to C by an invertible m Xm matrix Q.Thesematrices have the properties)

(4.2.12)) B' == BP P X' = X,) and) C' = CQ, QY' = Y.)

Proposition 4.2.13 Let A be the matrix of a linear transformation T with respect to given
bases Band C.

(a) Supposethat new bases B' and C' are relatedto the given bases by the matrices P and
Q, as above. The matrix of T with respect to the new bases is A' == Q-l AP.

(b) The matrices A' that represent T with respect to other basesare those of the form

A' = Q-l AP, where Q and P canbe any invertible matrices of the appropriate sizes.

Proof (a)We substitute X == PX
' and Y = QY' into the equation Y = AX (4.2.6), obtaining

QY' == APX'. So y' == (Q-1AP)X'. Since A' is the matrix such that A'X' == Y', this shows

that A' = Q-lAP. Part (b) follows because the basechange matrices can be any invertible

matrices (3.5.9). 0)))
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It follows from the propositionthat the two parts of the theorem amount to the same

thing. To derive (a) from (b), we supposegiven the linear transformation T, and we begin
with arbitrary choices of bases for V and W, obtaining a matrix A. Part (b)tellsus that there

are invertible matrices P and Q such that A' = Q-1AP has the form (4.2.11).When we use

these matrices to change basesin V and W, the matrix A is changed to A'.
To derive (b) from (a), we view an arbitrary matrix A as the matrix of the linear

transformation \"left multiplication by A\" on column vectors.Then A is the matrix of T with

respect to the standard bases of pn and pm, and (a) guarantees the existence of P, Q so that

Q-IAP has the form (4.2.11).

We also learn something remarkable about matrix multiplication here, because left

multiplication by a matrix is a linear transformation. Left multiplication by an arbitrary
matrix A is the same as left multiplication by a matrix of the form (4.2.11), but with reference

to different coordinates.
In the future, we will often state a result in two equivalent ways, a vector space form

and a matrix form, without stopping to show that the two forms are equivalent. Then we will

present whichever proof seemssimpler to write down.

We can use Theorem4.2.10to derive another interesting property of matrix mul-

tiplication. Let N and V denote the nullspace and column space of the transformation

A : F n -+ Fm. So N is a subspaceof F n and V is a subspace of pm. Let k and r denote the
dimensionsof Nand V. So k is the nullity of A and r is its rank.

Left multiplication by the transpose matrix At defines a transformation At: pm \037 Fn

in the opposite direction, and therefore two more subspaces, the nullspace NI and the
column space VI of At. Here VI is a subspace of F n

, and NI is a subspace of Fm. Let

kl and rl denote the dimensionsof NI and VI, respectively. Theorem 4.1.6 tells us that

k + r = n, and alsothat k 1 + rl = m. Theorem 4.2.14below gives one more relation among
these integers:)

Theorem 4.2.14 With the above notation, rl = r: The rank of a matrix is equal to the rank

of its transpose.)

Proof Let P and Q be invertible matrices such that A' = Q-I AP has the form (4.2.11).

We begin by noting that the assertion is obvious for the matrix A'. Next, we examine the

diagrams)

Fn

PI)

A
\037F m

A' I
Q

:> pm)

At
<:) pm

1
QI)

( 4.2.15)) pn

Pil)

F n) pn)
A ,t

.II() F m)

The vertical arrows are bijective maps. Therefore,in the left-hand diagram, Q carries the
column space of A' (the image of multiplication by A') bijectively to the column space of A.

The dimensions of these two column spaces,the ranks of A and A', are equal.Similarly, the

ranks of At and A
,t

are equal. So to prove the theorem, we may replace the matrix A by A'.

This reduces the proof to the trivial case of the matrix (4.2.11). 0)))
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We can reinterpret the rank rl of the transpose matrix At. By definition, it is the

dimension of the space spanned by the columns of At, and this can equally well be thought

of as the dimension of the spaceof row vectors spanned by the rows of A. Because of this,
people often refer to rl as the row rank of A, and to r asthe column rank.

The row rank is the maximal number of independent rows of the matrix, and the
column rank is the maximal number of independentcolumns.Theorem4.2.14can be stated

this way:)

Corollary 4.2.16 The row rank and the columnrank of an m X n matrix A are equal. D)

4.3 LINEAR OPERATORS)

In this section, we study linear transformations T: V -+ V that map a vector spaceto itself.

They are called linear operators. Left multiplication by a (square) n X n matrix with entries
in a field P defines a linear operatoron thespacepn of column vectors.

For example, let c = cos() and s = sin e. The rotation matrix (4.2.2))

[\037 -n)

is a linear operator on the plane }R2.

The dimension formula dirn(ker 1) + dim(im 1) = dim V is valid for linear operators.
But here, since the domain and range are equal,we have extra information that can be
combinedwith the formula. Both the kernel and the image of Tare subspaces of Y.)

Proposition 4.3.1 Let K and W denote the kernel and image, respectively, of a linear

operator T on a finite-dimensional vector space V.

(a) The following conditionsare equivalent:

\302\267T is bijective,
\302\267K = {OJ,

\302\267W = V.

(b) The following conditions are equivalent:

. V is the direct sum K EB W,

. K n W = {OJ,

\302\267K + W = V.)

Proof (a) T is bijective if and only if the kernel K is zeroand the image W is the whole
space V. If the kernel is zero, the dimension formula tells us that dim W = dim V, and

therefore W = V. Similarly, if W = Y, the dimension formula shows that dim K = 0, and
therefore K = O. In both cases, T is bijective.

(b) V is the direct sum K EB W if and only if both of the conditions K n W = {OJ and

K + W = V hold. If K n W =
{OJ, then K and Ware independent, so the sum U = K + W

is the direct sum K E9 W, and dim U = dim K + dim W (3.6.6)(a). The dimensionformula

shows that dim U = dim V, so U = V, and this shows that K EB W = V. If K + W = V,

the dimension formula and Proposition3.6.6(a)show that K and Ware independent, and

again, V is the direct sum. D)))
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\302\267A linear operator that satisfies the conditions (4.3.1)(a) is called an invertible operator.
Its inverse function is also a linear operator. An operator that is not invertible is a singular
operator.

The conditions of Proposition 4.3.1(a) are not equivalent when the dimensionof V

is infinite. For example, let V = ]Roo be the space of infinite row vectors (lll, a2, . . .) (see
Section 3.7). The kernel of the right shift operator S+, defined by

(4.3.2) S+(al, a2, ...) = (0,al, a2\037 . ..),)

is the zero space,and its image isa propersubspace of V. The kernel of the left shift operator

S- ., defined by)

S-(at, a2, a3,...) == (a2, Q3,...),

is a proper subspace of V, and its image is the whole space.
The discussion of bases in the previous section must be changed slightly when we are

dealing with linear operators. We should pick only one basisB for V, and use it in place of

both of the bases Band C in (4.2.6). In other words., to define the matrix A of T with respect

to the basis B, we shouldwrite)

(4.3.3 )) T(B) = BA, and AX = Y as before.)

As with any linear transformation (4.2.7), the columns of A are the coordinate vectors of the
imagesT(vj) of the basis vectors:)

(4.3.4 )) T(Vj)
= Vlalj + . . . + VnlIn}.)

A linear operator is invertible if and only if its matrix with respect to an arbitrary basis is an
invertible matrix.

When one speaks of the the matrix of a linear operatoron the spaceFl1,it is assumed

that the basis is the standard basis E, unless a differentbasisisspecified.Theoperatoris then

multiplication by that matrix.

A new feature ariseswhen we study the effect of a change of basis. Suppose that B is

replaced by a new basisH/.

Proposition4.3.5 LetA be the matrix of a linear operatorT with respect to a basis B.

(8) Supposethat a new basis B' is described by H' == BP. The matrix that represents T with

respect to this basis is A' = p-l AP.

(b) The matrices A' that represent the operator T for different basesare the matrices of the

form A' = p-l AP, where P can be any invertible matrix. 0)

In other words,the matrix changes by conjugation. This is a confusing fact to grasp.
So, though it follows from (4.2.13), we win rederive it. Since B' = BP and sinceT(B)= BA,

we have)

T(B') = T(B)P = BAP.

We are not done. The formula we have obtained expresses T(D') in terms of the old basis B.

To obtain the new matrix, we must write T(D') in terms of the new basisH/. So we substitute

B = H'p-1 into the equation. Doing so gives us T(D/) = B'p-lAP. 0)))
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In general, we say that a square matrix A is similar to another matrix A' if A' == p-I AP

for some invertible matrix P. Such a matrix A' is obtainedfrom A by conjugating by p-1,
and sinceP can be any invertible matrix, p- 1 is alsoarbitrary. It would be correct to use the
term conjugate in place of similar.

Now if we are given the matrix A, it is natural to look for a similar matrix A' that

is particularly simple. One would like to get a result somewhat likeTheorem4.2.10.But

here our allowable change is much more restricted,becausewe have only one basis, and
therefore one matrix P, to work with. Having domain and range of a linear transformation

equal, which seems at first to be a simplification, actually makes things more difficult.

We can get some insight into the problem by writing the hypothetical basechange
matrix as a product of elementary matrices,sayP == E1

. . . Er. Then)

p- 1AP ==
\302\243;.1

. . .
Ell A E 1 . . .Er.)

In terms of elementary operations, we are allowed to change A by a sequence of steps
A \037 g-1 AE. In other words, we may perform an arbitrary column operation E on A,

but we must also make the row operation that corresponds to the inverse matrix \0371.

Unfortunately, these row and column operations interact, and analyzing them becomes

confusing.)

4.4 EIGENVECTORS)

The main tools for analyzing a linear operator T: V -+ V are invariant subspaces and
eigenvectors.
. A subspace W of V is invariant, or more precisely T -invariant, if it is carried to itself by
the operator:)

(4.4.1)) TW c W.)

In other words, W is invariant if, whenever W is in W, T( w) is also in W. When this is so, T
definesa linear operatoron W, called its .restriction to w. We often denote this restriction

by Tlw.
If W is aT-invariant subspace,we may form a basis B of V by appending vectors to a

basis (WI, . . . , Wk) of W, say)

( 4.4.2)) B == (WI, \302\267. \302\267, Wk; VI, . . . , Vn-k)')

Then the fact that W is invariant is reflected in the matrix of T. The columns of this matrix,
we'll call it M, are the coordinate vectors of the image vectors (see (4.3.3)).But T(wj) is

in the subspace W, so it is a linear combination of the basis (WI, . .., Wk). When we write

T( W j) in terms of the basis B, the coefficients of the vectors VI, . . . , Vn-k will be zero. It
follows that M will have the block form)

( 4.4.3))
M=[\037 \037J.)

where A is a kxk matrix, the matrix of the restriction of T to W.)))
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If V happens to be the direct sum WI E9 W2 of two T-invariant subspaces, and if we

make a basis B = (Bl, B2)of V by appending bases of WI and W2, the matrix of T will have

the block diagonal form)

(4.4.4)) M =
[

AI 0

]o A2
')

where Ai is the matrix of the restriction of T to Wi.

The conceptof an eigenvector is closely related to that of an invariant subspace.

\302\267An eigenvector v of a linear operatorT is a nonzero vector such that)

( 4.4.5)) T(v) = AV)

for some scalar A, i.e., some element of F. A nonzero column vector is an eigenvector of a

square matrix A if it is an eigenvector for the operation of left multiplication by A.

The scalarA that appears in (4.4.5) is called the eigenvalue associated to the eigenvector
v. When we speak of an eigenvalue of a linear operatorT or of a matrix A without specifying
an eigenvector, we mean a scalarA that is the eigenvalue associated to someeigenvector.
An eigenvalue may be any element of F, including zero, but an eigenvector is not allowed
to bezero.Eigenvalues are often denoted, as here, by the Greek letter A (lambda).l

An eigenvector with eigenvalue 1 is a fixed vector: T(v)
= v. An eigenvector with

eigenvalue zero is in the nullspace: T(v)
= O. When V = }Rn, a nonzero vector v is an

eigenvector if v and T( v) are parallel.
If v is an eigenvector of a linear operator T, with eigenvalue A, the subspace W

spanned by v will be T -invariant, because T(cv) = CA v is in W for all scalarsc. Conversely,

if the one-dimensional subspace spanned by v is invariant, then v is an eigenvector. So an

eigenvector can be described as a basisof a one-dimensional invariant subspace.
It is easy to tell whether or not a given vector X is an eigenvector of a matrix A. We

simply check whether or not AX is a multiple of X. And, if A is the matrix of T with respect

to a basis B, and if X is the coordinate vector of a vector v, then X is an eigenvector of A if

and only if v is an eigenvector for T.
The standard basis vector el == (l,O)t is an eigenvector, with eigenvalue 3, of the

matrix)

[\037 \037J.)

The vector (1, -l)t is another eigenvector, with eigenvalue 2. The vector (O,l,l)t is an

eigenvector, with eigenvalue 2, of the matrix)

[

1 1 -1

]

A= 2 1 1 .
302)

IThe German word \"eigen\"means roughly \"characteristic.\" Eigenvectors and eigenvalues are sometimescalled

characteristic vectors.)))
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If (V1, . . . , v n ) is a basis of V and if VI is an eigenvector of a linear operator T, the

matrix of T will have the block form)

(4.4.6))
[\037 \037]=)

A-

D)

* ...) *)

*)

o)

where A is the eigenvalue of VI. This is the block form (4.4.3) in the case of an invariant

subspace of dimension 1.)

Proposition 4.4.7 Similar matrices (A' = P-1
AP) have the same eigenvalues.)

This is true because similar matrices represent the same linear transformation.) D)

Proposition 4.4.8

(a) Let T be a linear operator on a vector space V. The matrix of T with respect to a basis
B = (VI, . . . , v n ) is diagonal if and only if each of the basis vectors v j is an eigenvector.

(b) An n Xn matrix A is similar to a diagonal matrix if and only if there is a basisof pn that

consists of eigenvectors.)

This follows from the definition of the matrix A (see (4.3.4\302\273. If T( vj) =
Aj

v j, then

Al)

( 4.4.9)) T( B) == (VI A 1, . . . V n An) = (V 1, ..., V n ))

An)
o)

This proposition shows that we can represent a linear operator simply by a diagonal
matrix, provided that it has enough eigenvectors. We will see in Section 4.5 that every linear

operator on a complex vector space has at least one eigenvector, and in Section 4.6 that

in most cases there is a basisof eigenvectors. But a linear operator on a real vector space

needn't have any eigenvector. For example, a rotation of the plane through an angle ()
doesn't carry any vector to a parallel one unless()is0 or Te. The rotation matrix (4.2.2) with

e=l= 0, Te has no real eigenvector.

\302\267A general example of a real matrix that has at least one real eigenvalue is one all of whose
entries are positive.Such matrices, called positive matrices, occur often in applications,
and one of their most important properties is that they always have an eigenvector whose
coordinatesare positive (a positive eigenvector).

Instead of proving this fact, we'll illustrate it by examining the effect of multiplication

by a positive 2x2 matrix A on \0372. Let Wi = Aei be the columns of A. The parallelogram
law for vector addition shows that A sends the first quadrant S to the sector bounded by the

vectors Wi and W2.The coordinatevector of Wi is the ith column of A. Since the entries of)))
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A are positive, the vectors Wi lie in the first quadrant. SoA carries the first quadrant to itself:
S :) AS. Applying A to this inclusion, we find AS :) A 2S, and so on:)

( 4.4.10)) S::) AS::) A
2

S::) A 3S::)...,)

asis illustrated below for the matrix A =
[i \037

]

.

Now, the intersection of a nestedset of sectors is either a sector or a half-line. In our

case, the intersection Z = n A
r S turns out to be a half-line. This is intuitively plausible,

and it can be shown in various ways, but we'll omit the proof. We multiply the relation

Z = n A
r

S on both sides by A:)

AZ=A(\037Ars) =(1A

r S=Z.)

Hence Z = AZ. Therefore the nonzero vectors in Z are eigenvectors.)

I-\037-'
\037, .

\037
i

L

\037

\037
j
t-!)

(4.4.11))

........-.r\037
\037 j

>\037

,------)

Images of the First Quadrant UnderRepeatedMultiplication by

a Positive Matrix.)

4.5 THE CHARACTERISTIC POLYNOMIAL)

In this section we determine the eigenvectorsof an arbitrary linear operator. We recall that

an eigenvector of a linear operator T is a nonzero vector v such that)

(4.5.1)) T(v) = AV,
,)

for some A in F. If we don't know A, it can be difficult to find the eigenvector directly when
the matrix of the operator is complicated. The trick is to solve a different problem, namely

to determine the eigenvalues first. Once an eigenvalue A is determined, equation (4.5.1)
becomes linear in the coordinates of v, and solving it presents no problem.

We begin by writing (4.5.1) in the form)

(4.5.2)) [AI - T](v)
= 0,)))
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where I stands for the identity operator and AI - T isthe linearoperatordefined by)

( 4.5.3)) [AI - T] (v) = AV - T(v).)

It is easy to checkthat AI - T is indeed a linear operator.We can restate (4.5.2) as follows:
,)

(4.5.4))
A nonzero vector v is an eigenvector with eigenvalue A

if and only if it is in the kernel of A I - T.)

Corollary4.5.5 Let T be a linearoperatorona finite-dimensional vector space V.

(a) The eigenvalues of T are the scalars A in F such that the operator AI - T is singular,

i.e., its nullspace is not zero.

(b) The following conditions are equivalent:

\302\267T is a singular operator.
. T has an eigenvalue equal to zero.
. IfA is the matrix of T with respect to an arbitrary basis, then detA == O. 0)

If A is the matrix of T with respect to some basis,then the matrix of Al - T is AI - A.

So AI - T is singular if and only if det (AI -
A)

= O. This determinant can be computed
with indeterminate A, and doing so provides us, at least in principle, with a method for

determining the eigenvalues and eigenvectors.

Suppose for example that A is the matrix
[i :]

whose action on JR2 is illustrated in

Figure (4.4.11). Then)

AI - A =
[

A-3 -2
]-1 A-4)

and)

det(Al-A) = A2 -7A+10 = (A-5)(A-2).
The determinant vanishes when A = 5 or 2, sothe eigenvalues of A are 5 and 2. To find the

eigenvectors, we solve the two systems of equations [51
- A]X = 0 and [21- A]X

= O. The

solutions are determined up to scalarfactor:)

( 4.5.6)) VI =
U]

, v2 ==

[
- i l)

We now consider the samecomputation for an indeterminate matrix of arbitrary size.
It is customary to replace the symbol A by a variable t. We form the matrix tl - A:)

(4.5.7)) tI - A =)

(t-all)

-a2l)

-al2
(t- a 22)

. . \302\267)

-al n

-a2n)

-anl) (t-a nn ))

The complete expansion of the determinant [Chapter 1 (1.6.4)]shows that det (tl - A) is a
polynomial

of degree n in t whose coefficientsare scalars,elementsof F.)))
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Definition 4.5.8 The characteristic polynomial of a linear operatorT is the polynomial)

pet) == det (tl
- A),)

where A is the matrix of T with respect to some basis.)

The eigenvaluesof T are determined by combining (4.5.5) and (4.5.8):)

Corollary 4.5.9 The eigenvalues of a linear operator are the roots of its characteristic

polynomial. 0)

Corollary 4.5.10 Let A be an upper or lower triangular n X n matrix with diagonal entries

al1, . . ., ann. The characteristic polynomial of A is (t - all).\" (t
- ann). The diagonal

entries of A are its eigenvalues.)

Proof If A is upper triangular, so is tl -
A, and the diagonal entries of tI - A are t - au.

The determinant of a triangular matrix is the product of its diagonalentries. 0)

Proposition 4.5.11 The characteristic polynomial of an operator T doesnot depend on the

choice of a basis.)

Proof. .A secondbasis leads to a matrix A' = p-l AP (4.3.5), and

tl - A' = 11- p-lAP == p-l (11 - A)P. Then

det (11- A')
== det p-1det (ll - A)detP == det (II

- A).

The characteristic polynomial of the 2 X 2 matrix A =
[\037 \037]

is)

o)

(4.5.12))

.

[

[-a -b

]
2

pet) == det (1/ - A) = det d
= t - (traceA)t + (detA),-c t-)

where trace A = a + d.
An incomplete description of the characteristic polynomial of an n X n matrix is

given by the next proposition, which is proved by computation. It wouldn't be very

difficult to determine the remaining coefficients,but explicit formulas for them aren't
\037ften

used.)

Proposition 4.5.13 The characteristic polynomialof an n X n matrix A has the form

p(t) == t
n - (trace A)t

n - 1
+ (intermediate terms) + (-l)n(detA),)

where trace A, the 'race of A, is the sum of its diagonal entries:)

trace A == all + U22+ ' . .+ ann.) o)

Proposition 4.5.11 shows that aU coefficients of the characteristic polynomial are
independent of the basis. For instance, trace(p-t AP) == trace A.)))
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Since the characteristic polynomial,the trace, and the determinant are independent of

the basis, they depend only on the operator T. Sowe may define the terms characteristic
polynomial, trace, and determinant of a linear operator T. They are the ones obtained using
the matrix of T with respect to any basis.)

Proposition 4.5.14 Let T be a linearoperatoron a finite-dimensional vector space V.

(a) If V has dimension n, then T has at most n eigenvalues.

(b) If F is the field of complex numbers and V *{O},then T has at least one eigenvalue, and
hence at least one eigenvector.)

Proof (a) The eigenvalues are the rootsof the characteristic polynomial, which has degree
n. A polynomial of degree n can have at most n roots. This is true for a polynomial with

coefficients in any field F (see (12.2.20\302\273.)

(b) The Fundamental Theorem of Algebra assertsthat every polynomial of positive degree
with complex coefficients has at least one complexroot.Thereis a proof of this theorem in

Chapter 15 (15.10.1). 0)

For example, let Re be matrix (4.2.2) that represents the counterclockwiserotation of

JR2 through an angle e. Its characteristic polynomial, pet) = t2 - (2cos())t + 1, has no real
root providedthat e* 0, ]'(, so no real eigenvalue.We have observed this before. But the

operator on ((:2 defined by Re does have the complexeigenvalueseI-iB .

Note: When we speak of the roots of a polynomial pet) or the eigenvalues of a matrix or
linear operator,repetitions corresponding to multiple roots are supposed to be included.
This terminology is convenient, though imprecise. 0)

Corollary4.5.15 If A1, . . . , An are the eigenvalues of an n X n complex matrix A, then det A

is the product Al
. . . An, and trace A is the sum Al + . . . + An.)

Proof. Let pet) be the characteristic polynomial of A. Then

(t - A1) \302\267. \302\267
(t

- An) = pet) = t
n - (traceA)t

n - 1
+ . . . :f: (detA). 0)

4.6 TRIANGULAR AND DIAGONAL FORMS)

In this section we show that for \"most\" linear operators on a complexvector space, there is

a basis such that the matrix of the operator is diagonal.The key fact, which Was noted at the
end of Section 4.5, is that every complex polynomial of positive degree has a root. This tells
us that every linear operator has at least one eigenvector.)

Proposition 4.6.1

(a) Vector space form: Let T be a linearoperatoron a tinite-dimensional complex vector

space V. There is a basisB of V such that the matrix of T with respect to that basis is

upper triangular.

(b) Matrix form: Every complex n Xn matrix A is similar
t\037

an upper triangular matrix:

There is a matrix PEG Ln (C) such that P-1AP is upper triangular.)))
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Proof The two assertions are equivalent, because of (4.3.5).We will work with the matrix.
Let V = en. Proposition 4.5.14(b) shows that V contains an eigenvector of A, call it VI.
Let A be its eigenvalue. We extend (v) to a basisB =

(VI, .. ., vn ) for V. The new matrix

A' = P-1AP has the block form)

( 4.6.2)) A' = l!l!J
[OTD]

,)

where D is an (n - 1)X (n
- 1) matrix (see (4.4.6).By induction on n, we may assume that

the existence of a matrix Q E G Ln-l (C) such that Q-l DQ is upper triangular will have been

proved. Let)

[1]0 J \"-1,
\037

*

j
Q1 =

[OTQ]\"
Then A =

Ql A Q1 =
0 Q-1DQ

is upper triangular, and A\" = (PQI)-IA(PQl).) o)

Corollary 4.6.3 Proposition 4.6.1continues to hold when the phrase \"upper triangular\" is

replaced by \"lower triangular.
\

The lower triangular form is obtained by listing the basis B of (4.6.1)(a) in reverse

order. 0

The important point for the proof of Proposition 4.6.1 is that every complex polynomial
has a root. The same proof will work for any field F, provided that all the roots of the
characteristic polynomial are in the field.)

Corollary 4.6.4

(a) Vector space form: Let T be a linear operatoron a finite-dimensional vector space V

over a field F, and suppose that the characteristic polynomial of T is a productof linear

factors in the field F. Thereis a basis B of V such that the matrix A of T is upper (or
lower) triangular.

(b) Matrix form: Let A be an n X n matrix with entries in F, whose characteristic polynomial
is a product of linear factors. There is a matrix PEG Ln (F) such that P-1AP is upper

(or lower) triangular.)

The proof is the same, except that to make the induction step one has to check that the

characteristic polynomial of the matrix D that appears in (4.6.2) is p(t)/(t -
A), where pet)

is the characteristic polynomial of A. Then the hypothesis that the characteristic polynomial
factors into linear factors carriesover from A to D. 0

We now ask which matrices A are similar to diagonal matrices.They are called

diagonalizable matrices. As we saw in (4.4.8) (b), they are the matrices that have bases

of eigenvectors. Similarly, a linear operator that has a basis of eigenvectors is calleda
diagonalizable operator. The diagonal entries are determined, exceptfor their order, by the
linear operator T. They are the eigenvalues.

Theorem 4.6.6 below gives a partial answer to our question; a morecompleteanswer

will be given in the next section.)))
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Proposition 4.6.5 Let VI,..., v r be eigenvectors of a linear operator T with distinct

eigenvalues AI, . . . , Ar. The set (VI, . . . , v r ) is independent.)

Proof We use induction on r. The assertion is true when r = 1,becausean eigenvector

cannot be zero. Suppose that a dependence relation)

o == al VI + . . . + arV r)

is given. We must show that aj == 0 for all i. We apply the operator T:)

o == T(O) == a1T(vl) +... + arT(v r) = alAI VI +... + arArvr.)

This is a seconddependencerelation among (VI, ..., vr ). We eliminate V r from the two

relations, multiplying the first relation by Ar and subtracting the second:)

o == al (Ar
- AI)VI + . . .+ ar-I (A r

- Ar-l)Vr-l.)

Applying induction, we may assume that (VI, . . . , V r - I) is an independent set.This tells us

that the coefficients ai(Ar -
Ai), i < r, are all zero. Since the Ai are distinct, Ar -

Ai is not

zero if i < r. Thus al = . . . == ar-l = O. The original relation reducesto 0 = arv r . Since an

eigenvector cannot be zero,ar is zero too. D)

The next theorem followsby combining (4.4.8) and (4.6.5):)

Theorem 4.6.6 Let T be a linearoperatoron a vector space V of dimension n over a field

F. If its characteristic polynomial has n distinct roots in F, there is a basis for V with respect
to which the matrix of T is diagonal. 0)

Note:Diagonalization is a powerful tool. When one is presentedwith a diagonalizable

operator, it should be an automatic responseto work with a basis of eigenvectors.

As an example of diagonalization, consider the real matrix)

( 4.6.7)) A =
[i \037l)

Its eigenvectors were computed in (4.5.6). These eigenvectors form a basis B == (Vl, V2) of

}R2.According to (3.5.13),the matrix relating the standard basis E to this basis B is)

( 4.6.8))
P=[B]=U -n, p-l=\037U _n,and)

(4.6.9)) p-l AP = \037

[

1 2

] [
3 2

] [
1 2

]
=

[

5

]
= A.

3 1 -1 1 4 1 -1 2)

The next proposition is a variant of Proposition 4.4.8. We omit the proof.)))
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Proposition 4.6.10 Let F be a field.

(a) Let T be a linearoperatoron Fn. IfB == (VI, ..., v n ) is a basisof eigenvectors of T, and

if P = [B], then A = P- 1
AP = [B]-IA[B] is diagonal.

(b) Let B = (VI, . . . , v n ) be a basis of Fn, and let A be the diagonal matrix with diagonal
entries AI, . . . , An that are not necessarily distinct. There is a unique matrix A such

that, for i == 1, . . . , n, Vi is an eigenvector of A with eigenvalue Ai, namely the matrix

[B]A [B]-I. 0)

A nice way to write the equation [B]-IA[B] = A is)

(4.6.11)) A[B] = [B]A.)

One application of Theorem 4.6.6 is to compute the powersof a diagonalizable matrix.

The next lemma needsto be pointed out, though it follows trivially when one expands the
left sides of the equations and cancels pp-l.)

Lemma 4.6.12 LetA, B, and P be n x n matrices.If P is invertible, then (p-l AP) (p-l BP) =
p-1(AB)P, and for all k > 1, (P-1AP)k

= p-l A kP. 0)

Thus if A, P, and A are as in (4.6.9), then)

Ak==PAkp-l==\037
[

l 2

][
5

]

k

[

l 2

]
_\037

[

5k+2k+l 2.5k_2k+l

]3 1 -1 2 1 -1 -
3 5

k - 2k
2. Sk + 2k .)

If J(t) == ao + al t + . . . + antn
is a polynomial in t with coefficients in F and if A is an

n Xn matrix with entries in F, then f(A) will denote the matrix obtained by substituting A

formally for t.)

( 4.6.13)) f(A) == ao! + alA + . . . + an An .)

The constant term ao gets replaced by aol. Then if A == P AP- 1
,)

(4.6.14 )) J(A)
= J(P AP- 1

) == ao! + alP AP- 1 + . . . + anPAn p-
1

== P f(A)P-
1

.)

The analogous notation is used for linear operators:If T is a linear operator on a vector

space over a field F, the linear operatorf(1) on V is defined to be)

(4.6.15)) f(1) == ao! + al T + . . .+ an Tn ,)

where I denotes the identity operator. The operator f(1) acts on a vector by f(1)v =

aov + al Tv + \302\267. . + an rnv. (In order to avoid too many parentheses we have omitted some
by writing Tv for T(v).))))
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4.7 JORDAN FORM)

Suppose we are given a linear operator T on a finite-dimensional complex vector space
V . We have seen that, if the roots of its characteristic polynomial are distinct, there is

.a basis of eigenvectors, and that the matrix of T with respect to that basis is diago-
nal. Here we ask what can be done without assuming that the eigenvalues are distinct.
When the characteristic polynomial has multiple roots there will most often not be a
basis of eigenvectors, but we'll see that, nevertheless, the matrix can be made fairly

simple.

An eigenvector with eigenvalue A of a linear operator T is a nonzero vector v such

that (T -
A)V

= O. (We will write T - A for T - AI here.) Sinceour operatorT may not

have enough eigenvectors, we work with generalized eigenvectors.

. A generalized eigenvectorwith eigenvalue A of a linear operator T is a nonzero vector x

such that (T -
A)k x = 0 for some k > O. Its exponent is the smallest integer d such that

(T-A)dx=O.)

Proposition 4.7.1 Let x be a generalizedeigenvectorof T, with eigenvalue A and exponent
d, and for j

> 0, let Uj = (T -
A)jX. Let B = (uo, . . ., Ud-l),and let X = Span B. Then X

is aT-invariant subspace, and B is a basis of X.

We use the next lemma in the proof.)

Lemma 4.7.2 With Uj as above, a linear combination y =
CjUj + ... + Cd-1Ud-l with

j < d - 1 and
Cj =1= 0 is a generalized eigenvector, with eigenvalue A and exponent d - j.)

Proof Sincethe exponent of x is d, (T -
A)d-l x = Ud-l =1= O. Therefore (T - A)d-j-I Y

=

Cj Ud-l isn't zero, but (T
- A )d-

j Y = O.So y is a generalizedeigenvectorwith eigenvalue A

and exponent d - j, asclaimed. 0)

Proof of the Proposition. We note that

{

AUj+U}+l

Tu} =
AU}

o)

(4.7.3))

ifj<d-l

ifj=d-l
if j > d - 1.)

Therefore Tu} is in the subspace X for all j. This shows that X is invariant. Next, B

generates X by definition. The lemma shows that every nontrivial linear combination of B is
a generalizedeigenvector,so it is not zero. Therefore B is an independent set. 0)

Corollary 4.7.4 Let x be a generalizedeigenvectorfor T, with eigenvalue A. Then A is an

ordinary eigenvalue - a root of the characteristic polynomial of T.)

Proof. If the exponent of x is d, then with notation as above, Ud-l is an eigenvector with

eigenvalue A. 0)))
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Formula 4.7.3determinesthe matrix that describes the action of T on the basisB of

Proposition 4.7.1. It is the dxd Jordan blockJA . Jordan blocks are shown below for low

values of d:)

(4.7.5)) J A) [A],
[\037 A]'

[\037
\037 A]')

A

1 A

1 A

1 A)

, ...)

The operation of a Jordan block is especially simple when A == O. The dxd block Jo
operates on the standard basisof Cd as)

(4.7.6)) e1 \037 e2 \037 . . . \037 ed \037 O.)

The 1 X 1 Jordan block Jo is zero.

The JordanDecompositionTheorembelow asserts that any complex n Xn matrix is
similar to a matrix J made up of diagonal Jordan blocks(4.7.5)- that it has the Jordan form)

(4.7.7))

11
J2)

J=)

Ji)

where Ji = J Ai for some Ai. The blocks Ji can have various sizes di, with 'Ed; = n,
and the diagonal entries Ai aren't necessarily distinct.The characteristic polynomial of the

matrix J is)

(4.7.8)) pet) = (t - Al)d1(t -
A2)d

2 . . . (t
- Ai)d i .)

The 2x2 and 3X3 Jordan forms are)

(4.7.9))
[AI A2J. [\037l All)

[

AI
A2

]

,

[

\037l Al

]

,

[

\037l At

]

,
A3 A2 1 A1)

where the scalars Ai may be equal or not, and in the fourth matrix, the blocks may be listed

in the other order.)

Theorem4.7.10JordanDecomposition.
(a) Vector space form: Let T be a linear operatoron a finite-dimensional complex vector

space V. There is a basisB of V such that the matrix of T with respect to B has Jordan
form (4.7.7).

(b) Matrix form: Let A be an n X n complex matrix. There is an invertible complexmatrix P

such that p-1 AP has Jordanform.

It is also true that the Jordan form of an operator T or a matrix A is unique except for the
orderof the blocks.)))
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Proof This proof is due to Filippov [Filippov]. Induction on the dimension of V allows us

to assume that the theorem is true for the restriction of T to any proper invariant subspace.
So if V is the direct sum of properT-invariant subspaces, say VI EB . . . EB V r , with r > 1, then
the theorem is true for T.

Supposethat we have generalized eigenvectors Vi, for i = 1, . . . , r. Let Vi be the

subspace defined as in Proposition 4.7.1, with x =
Vi. If V is the direct sum VI \342\202\254a. . . Ef) V r ,

the theorem will be true for V, and we say that VI, . . . , V r are Jordan generators for T. We

will show that a set of Jordangeneratorsexists.)

Step 1.' We choose an eigenvalue A of T, and replace the operator T by T - AI. If A is the
matrix of T with respect to a basis, the matrix of T - AI with respect to the same basis will

be A - AI, and if one of the matrices A or A - AI is in Jordan form, so is the other. So
replacingT by T - AI is permissible.Having done this, our operator, which we still call T,
will have zero as an eigenvalue. This will simplify the notation.)

Step 2: We assume that 0 is an eigenvalue of T. Let Ki and Vi denote the kernel and image,
respectively,of the ith power T i .Then Kl CK2 C. . . and VI \037 U2 \037 . . . . Because V is finite-

dimensional, these chains of subspaces become constant for large r, say Km = Krn+1 = . . .
and U m = Um+1 = . . '. Let K = Km and U = Urn. We verify that K and U are invariant

subspaces, and that V is the direct sum K EB U.

The subspaces are invariant because TKm C Km-l C Km and TUrn = Um+1 = Urn.

To show that V = K E9 U, it suffices to show that K n U = {OJ(see Proposition 4.3.1(b\302\273.

Let z be an element of K n U.Then Trn z = 0, and also z = Tm V for some v in V. Therefore
T2m v = 0, so v is an element of K2m. But K2rn = Krn, so Tm v = 0, i.e., z = O.

Since T has an eigenvalue 0, K is not the zero subspace. Therefore U has smaller
dimension than V, and by our induction assumption, the theorem is true for Tlu. Unfortu-
nately, we can't use this reasoning on K, becauseU might be zero. So we must still prove

the existence of a Jordan form for TIK. We replace V by K and T by TIK.)

\302\267A linear operator T on a vector space V is called nilpotent if for some positive integer r,
the operator T r is zero.)

We have reducedthe proof to the case of a nilpotent operator.)

Step 3: We assume that our operator T is nilpotent. Every nonzero vector will be a generalized
eigenvector with eigenvalue O. Let Nand W denote the kernel and image of T, respectively.
Since T is nilpotent, N =t={O}. Therefore the dimension of W is smaller than that of V,
and by induction, the theorem is true for the restriction of the operator to W. So there

are Jordan generators WI, . . . , W r for TIw. Let ei denote the exponent of Wi, and let Wi

denote the subspace formed as in Proposition 4.7.1, using the generalized eigenvector Wi.

So W = WI E9 . . . E9 W r .
For eachi, we choose an element Vi of V such that TVi = Wi. The exponent di of Vi

will be equal to ei + 1.Let Vi denote the subspace formed as in (4.7.1) using the vector Vi.

Then TVi = Wi. Let V denote the sum VI + . . . + Vr . SinceeachVi is an invariant subspace,
so is U. We now verify that VI, . . . , V r are Jordan generators for the restrictionTI u, i.e.,

that the subspaces Vi are independent.)))
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We notice two things: First, TV +; W because IV; = Wi. Second, Vi n N C Wi. This
follows from Lemma 4.7\0372, which shows that Vi n N is the span of the last basis vector

Tdi-
1

Vi. Since di - 1 \037 ej, which is positive, Tdi-1Vj is in the image Wi-
We suppose given a relation VI + \302\267, . + v r \037

0, with Vi in Vi. We must show that Vi = 0
for all i. Let Wi :;;:TVi. Then WI + . . . + Wr = 0, and Wi is in Wi. Since the subspaces Wi are

independent, Wi :;;:0 for aU i. So TVi = 0, which means that Vi is in Vi n N. Therefore Vi is

in Wi. Using the fact that the subspaces Wi are independent once more,we conclude that,

Vi = 0 for all i.

Step 44' We show that a set of Jordan generatorsfOf T can be obtained by adding some

elements of N to the set {VI, . . . , Vr} of Jordan generators for TI u.
Let v be an arbitrary element of V and let Tv :; w. SinceTV = W, there is a vector u

in U such that Tu == w ;;: Tv. Then z \037 v -- u is in N and v ::- U + z. Therefore U + N == V.

This being so, we extend a basisof U to a basis of V by adding elements, say z1, . . . , Zf\" of

N (see Proposition 3.4.16(a\302\273). Let N' be the span of (Zl, ..\",Zl). Then Un N' = {OJand
U + N' = V, so V is the direct sum U $ N',

The operator T is zero on N J
, so N

J
is an invariant subspace, and the matrix of TIN1- is

the zero matrix, which has Jordan form. Its Jordan blocksare 1X 1 zero matrices. Therefore

{VI, . \302\267. , Vr; Zl, . . . Zl}is a set of Jordan generators for T. 0

It isn't difficult to determine the Jordan form for an operator T, provided that the
eigenvalues are known, and the analysis also proves uniqueness of the form. However,

finding an appropriate basis of V can be painful, and is best avoided.
Todeterminethe Jordan form, one chooses an eigenvalue A, and replaces T by T..- AI,

to reduceto thecasethat A = O. Let Ki denote the kernelof r i
, and let ki be the dimension

of Ki. In the case of a singledxd Jordanblock with A = 0, these dimensions are:)

kblock _

{

i if i < d
i

-
d if i > d

.)

The dimensions ki for a general operatorT are obtained by adding the numbers
kflock

for

each block with A = O. So kl will be the number of blocks with A = 0, k2 - kl will be the

number of blocks of sized > 2 with A = 0, and so on.

Two simple examples:)

A =

[

0

0
1 \037 \037

]

and B =

[
\037 = \037 \037

]

.

-1 0 -1 1-1)

HereA
3 = 0, but A

2
=f. O. If v is a vector such that A

2 v =1= 0, for instance v = el, then

(v, Tv, T2
v) will be a basis. The Jordanform consists of a single 3 X 3 block.

On the other hand, B2 = O. Taking v = el again, the set (v, Tv) is independent, and
this gives us a 2x2 block. To obtain the Jordan form, we have to add a vector in N, for

example v' = e2 + e3,which will give a 1 x 1 block(equalto zero).The required basis is

(v, Tv, v').)))
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It is often useful to write the Jordan form as J = D + N, where D is the diagonal part
of the matrix, and N is the part belowthe diagonal. For a single Jordan block, we will have

D = AI and N = Jo,asis illustrated below for a 3 X 3 block:
,)

fA =

[\037
\037 A]

=

[\037
\037

A]

+

[\037
\037 0]

= AI + 10 = D + N.)

Writing J = D + N is convenient because D and N commute. The powersof J can be

computed by the binomial expansion:)

(4.7.11)) Jr = (D + N)r = Dr +
(\037)Dr-lN + (\037)Dr-2N2 + ...

,)

When J is an n X n matrix, N n = 0, and this expansion has at most n terms. In the case of a

single block, the formula reads)

(4.7.12)) Jr =
(AI +Jo)r = Ar] + (\037)Ar-IJo + (\037)Ar-2J6 + ... .)

Corollary 4.7.13 Let T be a linear operatoron a finite-dimensional complex vector space.
The following conditions are equivalent:

(a) T is a diagonalizable operator,
(b) every generalized eigenvector is an eigenvector,
(c) all of the blocks in the Jordan form for Tare 1X 1 blocks.

The analogous statements are true for a square complex matrix A.)

Proof (a):::} (b): Suppose that T is diagonalizable, say that the matrix of T with respect to

the basis B = (VI, . . . , v n ) is the diagonal matrix A with diagonal entries AI, . . . , An. Let

v be a generalized eigenvector in V, say that (T -
A)kv

= 0 for some A and some k > O.
We replace T by T - A to reduce to the case that Tkv = O. Let X = (Xl, . . . , xn)t be the

coordinate vector of v. The coordinatesof Tkv will be Afxio Since Tkv = 0, either Ai = 0,

or Xi = 0, and in .either case, Af Xi = O. Therefore Tv = O.)

(b) :::} (c): We prove the contrapositive.If the Jordan form of T has a kx k Jordanblockwith

k > 1, then looking back at the action (4.7.6) of J A
- AI, we see that there is a generalized

eigenvector that is not an eigenvector. So if (c) is false, (b)is false too. Finally, it is clear that

(c) =} (a). 0)

Here is a niceapplication of Jordan form.)

Theorem 4.7.14 Let T be a linearoperatorona finite-dimensional complex vector space V.

If some positive power of T is the identity, say T
r = I, then T is diagonalizable.)

Proof It suffices to show that every generalized eigenvector is an eigenvector. To do this,

we assume that (T -
Al)2v = 0 with v*O, and we show that (T

-
A)V = O. Since A is an

eigenvalue and sincerr = I, A
r = 1. We divide the polynomial t

r - 1 by t - A:

tr -1 = (tr
-1+ 'At

r - 2 +... + Ar-\037t + Ar-l)(t
-

A).)))
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We substitute T for t and apply the operatorsto v. Let w = (T -
A)V. Since rr - 1=0,)

o = (TT
- /)v = (Tr-l + A TT-2 + \302\267. \302\267+ A r - 2T + A

r -]
)(T -

A)V

=
(rr-

1
+ )..T r-2 +... + )..r-2T+ )..r-l)W

= r)..,r-l w .

(For the last equality, one uses the fact that Tw = AU).) Since rAr-1w = 0, w = o. 0
We go back for a moment to the resultsof this section. Where has the hypothesis that

V be a vector space over the complexnumbers been used? The answer is that its only use is
to ensure that the characteristic polynomial has enough roots.)

Corollary4.7.15Let V be a finite-dimensional vector space over a field F, and let T be a
linear operatoron V whose characteristic polynomial factors into linear factors in F. The

Jordan Decomposition theorem 4.7.10is true for T. 0)

The proof is identical to the one given for the case that F = C.)

Corollary 4.7.16 Let T be a linear operatorona finite-dimensional vector space over a field
of characteristiczero.Assume that Tr = I for some r > 1 and that the polynomial r - 1
factors into linear factors in F. Then T is diagonalizable. 0)

The characteristic zero hypothesis is neededto carry through the last step of the proof
of Theorem 4.7.14, where from the relation rAr-1w = 0 we want to conclude that w = o.
The theorem is false in characteristic different from zero.)

\037\037\037'\

-Yvonne Verdier
2)

EXERCISES)

Section 1 The Dimension Formula

1.1. Let A be a .e X m matrix and let B be an n X p matrix. Prove that the rule M 'V'7 AM B

defines a linear transformation from the space F\"l
X n of m X n matrices to the space F i xp.

1.2.Let Vl, . . . , Vn be elements of a vector space V. Prove that the map cp:Fn -4 V defined

by cp(X) = V1 Xl + . . . + VnX n is a linear transfonnation.

1.3. Let A be an In Xn matrix. Use the dimension formula to prove that the space of solutions
of the linear system AX = 0 has dimension at leastn - m.

1.4.Prove that every m Xn matrix A of rank 1 has the form A = XY!, where X., Yare m- and

n-dimensional column vectors. How uniquely determined are these vectors?

2rve received many emai1s asking about this rebus. Yvonne, an anthropologist, and her husband Jean-Louis, a

mathematician. were closefriends who died tragically in 1989. In their memory.. I included them among the people

quoted. The history of the valentine was one of Yvonne's many interests, and she sent this rebus as a valentine.)))
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1.5. (a) Let U and W be vector spaces over a field F. Show that the operations two
(u, tV) + (u/, w') == (u + u/, w + w') and c(u, w) = (cu,cw) on pairs of vectors
make the productsetUX W Into a vector space. It is called the productspace.

(b) Let U and W be subspaces of a vector space V. Show that the map T: UX W \037 V

defined by T(u, tv) == u + W IS a hnear transformation.

(c) Express the dimension formula for T in terms of the dimensionsof subspaces of V.)

Section 2 The Matrix of a Linear Transformation

2.1. Let A and B be 2x2 matrices. Determine the matrix of the operator T: M \037 AMBon the

space F2x2 of 2x2 matrIces, with respect to the basis (ell, e12,e2l,e22) of p2X2.

2.2. Let A be an n Xn matnx. and let V denote the space of n-dImensional row vectors. What

l\037the matrix of the linear operator \"right multiplication by A\" wIth respect to the standard
hasisof V?

2.3-. FInd all real 2 X 2 matrices that carry the line y
= x to the line y

= 3x.

2.4. Prove Theorem 4.21O(b) uSIng row and column operations.
2.5. 3Let A be an m X n matrix of rank r, let I be a set of r row indices such that the

corre\"ponding rows of A are independent, and let J be a set of r column indices
such that the corre\037ponding columns of A are independent. Let M denote the r x r
submatrix of A obtained by taking rows from I and ccHurtlt1s from ). Prove that M is

tnvertlble)

Sectinn 3 Linear Operator\037

3.1. DetermIne the dimensions of the kernel and the image of the linear operator T on the

space JR.n defined by T(Xl, ..., xn)t == (Xl + X n , X2 + Xn-l, . . . , X n + Xl)t.

3.2. (a) Let A =

[\037 \037]

be a real matrix, with c not zero. Show that using conjugation by

elementary matrices, one can eliminate the \"a\" entry.

(b) WhIch matrices with c = 0 are similar to a matrix in which the \"a\" entry is zero?

3.3. Let T. V -+ V be a linear operator on a vectorspaceof dimension 2. Assume that T is not
multiplication by a scalar. Prove that there is a vector v in V such that (v, T( v)) is a basis
of V, and describe the matrix of T with respect to that basis.

3.4. Let B be a complex n X n matrix. Prove or disprove:The linear operator T on the space of
all n X n matrices defined by T(A) == AB - BA is singular.)

Section 4 Eigen\\'ectors

4.1. Let 1\037be a linear operator on a vectorspace\037 and let A be a scalar. The eigenspaceV(A)

is the set of eigenvectors of T with eigenvalue A, together with O. Prove that V(A) is a

T -invariant subspace.
4.2. (a) Let T be a linear operator on a finite-dimensional vector space V, su-ch that T2 is the

Identity 'Operator. Prove that for any vector v in V, v - Tv is either an eigenvector with

eIgenvalue -1, or the zero vector. With notation as in Exercise 4.1, prove that V is the

direct sum of the eigenspaces V O) and V( -1) .

3
Suggested by Robert DeMarco)))
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(b) Generalize this method to prove that a linear operator T such that T4 :=:I decomposes
a complex vector space into a sum of four eigenspaces.

4.3. Let T be a linear operator on a vector space V. Prove that if WI and W2 are T-invariant

subspaces of V, then WI + W2 and WI n W2 are T-invariant.

4.4. A 2x2 matrix A has an eigenvector VI = (1, 1)1 with eigenvalue 2 and also an eigenvector

V2 = (1, 2)t with eigenvalue 3. Determine A.

4.5. Find all invariant subspaces of the real linear operatorwhosematrix is

(a)
[

1
\037l

(b)

[1
2

3l
4.6.Let P be the real vector space of polynomials p(x) = ao + Ql+ ...+ QnXn of degree at

most n, and let D denote the derivative fx , considered as a linearoperator on P.

(a) Prove that D is a nilpotent operator, meaning that Dk = 0 for sufficiently large k.

(b) Find the matrix of D with respect to a convenient basis.

(c) Determine all D-invariant subspaces of P.

4.7. Let A =

[\037 \037]

be a real 2x2 matrix. The condition that a column vector X be an

eigenvector for left multiplication by A is that AX = Y be a scalar multiple of X, which

means that the slopes s =
X2/Xl and s' = Y2/Yl are equal.

(8) Find the equation in s that expresses this equality.

(b) Suppose that the entries of A are positive real numbers. Prove that there is an

eigenvector in the first quadrant and also one in the second quadrant.

4.8. Let T be a linear operator on a finite-dimensional vector space for which every nonzero
vector is an eigenvector. Prove that T is multiplication by a scalar.)

Section5 The Characteristic Polynomial)

5.1. Compute the characteristic polynomials and the complex eigenvalues and elgenvec-
tors of)

[

-2 2
] [

1 i
]( a) _ 2 3 ' (b) - i 1 ') (\037)

[

c<?s
e - sin 8

]
.

SIn e cos f))

5.2. The characteristic polynomial of the matrix below is (3 - 4t - 1.Determine the missing
entries.)

[

0 1 2

]
1 1 0
1 * *)

5.3. What complex numbers might be eigenvalues of a linear operator T such that

(8) T r = I, (b)r 2 - 5T + 61 = O?)))
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5.4. Find a recursiverelation for the characteristic polynomial of the kx k matrix)

o 1

101
1)

1

1 0)

and compute the polynomial for k < 5.
5.5.Which real2x2 matrices have real eigenvalues? Prove that the eigenvalues are real if the

off-diagonal entries have the same sign.
5.6. Let V be a vector space with basis (va, . . . , vn ) and let aa, . . . , an be scalars. Define a linear

operator T on V by the rules T(Vi) == Vi+l if i < nand T(v n ) == aovo + al VI + . . . + an V n .

Determine the matrix of T with respect to the given basis, and the characteristicpolynomial

of T.

5.7. Do A and A t have the same eigenvectors?the same eigenvalues?

5.8. Let A = (ai j) be a 3X 3 matrix. Prove that the coefficient of t in the characteristic

polynomial is the sum of the symmetric 2 x 2 minors

det
[
all a12

]

+ det
[

all a 13

]

+ det
[

a 22 a23

]
.

a21 a22 a31 a33 a32 a33)

5.9. Consider the linear operator of left multiplication by an m Xm matrix A on the space
FmXm of all m Xm matrices. Determinethe trace and the determinant of this operator.

5.10. Let A and B be n x n matrices. Determine the trace and the determinant of the operator
on the space Fnxn definedby M \037AMB.)

Section 6 Triangular and Diagonal Forms)

6.1. Let A be an n X n matrix whose characteristic polynomial factors into linear factors:

pet) == (t
- AI).\" (t -

An). Prove that trace A == Al + ... + An, that detA = Al . ..
An.

6.2. Suppose that a complex n X n matrix A has distinct eigenvalues AI, . . . , An, and let
VI, . . . , Vn be eigenvectors with these eigenvalues.

(a) Show that every eigenvector is a multiple of one of the vectors Vi.

(b) Show how one can recover the matrix from the eigenvalues and eigenvectors.)

6.3. Let T be a linear operator that has two linearly independent eigenvectors with the same
eigenvalueA. Prove that A is a multiple root of the characteristic polynomial of T.

6.4. Let A =

[\037
; ].

Find a matrix P such that p-l AP is diagonal,and find a formula for the

matrix A
3o.

6.5. In each case,find a complex matrix P such that p-l AP is diagonal.)

(a)
[

\037
i

]
, (b)

[

\037 \037 \037

]

, ( c)
[

c\037s
e - sin e

]
.-l 1 0 1 0 Sin e cos e)))
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6.6. Suppose that A is diagonalizable. Can the diagonalization be done with a matrix P in the
special linear group?

6.7. Prove that if A and Bare n X n matrices and A is nonsingular, then AB is similar to BA.

6.8. A linear operator T' is nilpotent if some positive power Tk is zero'.Provethat T is nilpotent
if and only if there is a basis of V such that the matriJt of T is upper triangular, with

diagonal entries zero.

6.9. Find all real 2 x 2 matrices such that A 2 = I, and describe geometrically the way they

operate by left multiplication on R 2
.

6.10. Let M be a matrix made up of two diagonal blocks:M =
[\037 \037].

Prove that M is

diagonalizable if and only if A and Dare diagonalizable.

6.11.Let A =

[\037 \037]

be a 2x2 matrix with eigenvalue A.

(a) Show that unless it is zero, the vector (b, A - a)t is an eigenvector.
(b) Find a matrix P such that p-l AP is diagonal, assuming that b =I=-0 and that A has distinct

eigenvalues.)

Section 7 Jordan Form

7.1. Determine the Jordan form of the matrix

[\037)

1 0

]

1 0 .
1 1)

7.2. Prove that A)

[

-

\037

-

\037

-

i]

is an idempotent matrix, i.e., that A 2 = A, and find its)

Jordan form.

7.3. Let V be a cOInplex vector space of dimension 5, and let T be a linear operator on V

whose characteristic polynomial is (t -
A)5. Suppose that the rank of the operator T - AI

is 2. What are the possible Jordan forms for T?

7.4. (a) Determine all possibleJordan forms for a matrix whose characteristic polynomial is

(t + 2)2(t - 5)3.
(b) What are the

possible
Jordan forms for a matrix whose characteristic polynomial is

(t + 2)2(t- 5) , when space of eigenvectors with eigenvalue 2 is one-dimensional, and
the space of eigenvectors with eigenvalue 5 is two-dimensional?

7.5. What is the Jordan form of a matrix A all of whose eigenvectors are multiples of a single
vector?

7.6. Determine all invariant subspaces of a linear operator whoseJordan form consists of one
block.

7.7. Is every complex square matrix A such that A
2 == A diagonalizable?

7.8. Is every complexsquarematrix.L1 similar to its transpose?

7.9. Find a 2 X 2 matrix \\vith entries in IF p that has a power equal to the identity and an

eigenvalue in IF p, hut is not diagonalizable.)))
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Miscellaneous Problems

M.t. Let v = (a 1, . . . , an) bea realrow vector. We may form the n! X n matrix M whose rows
are obtained by permuting the entries of v in all possible ways. The rows can be listed in

an arbitrary order. Thus if n = 3, M might be)

al a2 a3
al a3 a2

a2 a3 al
a2 a1 a3
a3 al a2

a3 a2 at)

Determine the possible ranks that such a matrix could have.

M.2. Let A be a complex n x n matrix with n distinct eigenvalues AI, . . . , An. Assume that Al

is the largest eigenvalue, that is, that IAII > IAi I for all i > 1.

(a) Prove that for most vectors X, the sequence Xk

.

Al-
k A kX converges to an

eigenvector Y with eigenvalue Al, and describe preciselywhat the conditions on X
are for this to be true.

(b) Prove the same thing without assuming that the eigenvalues At, ..., An are distinct.)

M.3. Compute the largest eigenvalue of the matrix
[\037 \037]

to three-place accuracy, using a

method basedon ExerciseM.2.
M.4. If X = (Xl, X2, . . .) is an infinite real row vector and A = (aij), 0 < i, j < 00 is an infinite

real matrix, one mayor may not able to define the matrix product XA. For which A can

one define right multiplication on the space ROO of all infinite row vectors (3.7.1)?on the

space Z (3.7.2)?

*M.5. Let cp:Fn \037 F
m be left multiplication by an m X n matrix A.

(8) Prove that the following are equivalent:
. A has a right inverse, a matrix B such that AB = I,
.

cp is surjective,
\302\267the rank of A is m.

(b) Prove that the following are equivalent:
. A has a left inverse, a matrix B such that BA = I,
\302\267

cp is injective,

. the rank of A is n.)))
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M.6. Without using the charactetistit polynomial, prove that a linear operator on a vectorspace
bf dimertsion n can have at nlost n distinct eigenvalues.

*M.'. (powers of art operator) Let r be a linear operator on a vector space V. Let Kr and Wr
denote the kernel and image, respectively, of T r

.

(8) ShowthatKlCK2G... and that WI :=) W2:J....

(b) The following conditions might or might not hold for a particular value of r:
(1)Kr = Kr+1' (2) Wr == W r + 1, (3) Wr n Kl == to}' (4) Wt + Kr == V.

Find all implications among the conditions(1)-(4)when V is finite dimensional.

(c) Do the same thing when V is infinite dimensional.

M.S. Let T be a linear operator on a finite-dimensional complex vectorspaceV.

(a) Let A be an eigenvalue of t, ahd lel VA be the get of generalizedeigenvectors, together

with the zero vector. i'toV\342\202\254that V\037 is aT-invariant subspace of V. (this subspaceis
caned a generalized eigeH.space.)

(b) Prove that V is the direct sum of its generalized eigenspaces.

M.9. Let V be a finite-dimefisiortai vector space. A linear operator T: V --+ V is called a
projection:if r 2 == T (hot necessarily art Botthogohal projection\.") Let K and W be the
kernel and image of a lInear opetatdt T. Prove

(it) t i\037a proje'ction orttd W if ahd only if the restriction of T to W is the identity map.
(b) If T is a projection, then \\1 is the direct sum W EB K.

(c) The trace of a projectiort T is equal to its tartk.

M.Io.. Let A and B be Wi Xn <and n xm teal thattices.

(8) Prove that if A is a honzeto eigenvalue Df the in x tti matrix A B th.en it is also an

eigenvalue of the n Xn matrix BA. show by example that this need not be true if

A =0.

(b) Prove that 1m
- A\037 is invertible if and only if In

- BA is invettible.)))



CHAPTER 5)

Applications of Linear Operators)

By relieving the brain from all unnecessary work,

a good notation sets it free to concentrate
on more advanced problems.

-Alfred North Whitehead)

5.1 ORTHOGONALMATRICES AND ROTATIONS)

In this section, the field of scalars is the real number field.
We assume familiarity with the dot product of vectors in }R2. The dot product of column

vectors X = (Xl, . . . ,xn)t,Y = (YI, . . . , Yn)t in \nn is defined to be)

(5.1.1)) (X.Y) = XIYl+\".+XnYn.)

It is convenient to write the dot product as the \natrix product of a row vector and a column

vector:)

(5.1.2)) (X . Y) = Xty.)

For vectors in IR
2

, one has the formula)

(5.1.3)) (X. Y)
= IXIIY/cose,)

where e is the angle between the vectors. This formula follows from the law of cosines)

(5.1.4}) c2 = a 2
+ b

2 - 2abcose)

for the side lengths Q, b, c of a triangle, where e is the angle between the sides a and b.
To derive (5.1.3), we apply the law of cosines to the triangle with vertices 0, X, Y. Its side
lengths are lXI, IYI, and IX

- YI, so the law of cosinescan be written as)

((X
- y). (X -

Y\302\273)= (X. X) + (Y. Y)
- 2/XI/Y/ cose.)

The left side expandsto (X .
X)

- 2(X . Y) + (Y . V), and formula (5.1.3) is obtained by
comparing this with the right side. The formula is valid for vectors in \nn too, but it requires)

132)))
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understanding the meaning of the angle, and we won't take the time to go into that just now

(see (8.5.2\302\273. .

The most important points for vectors in JR2 and R 3 are

. the square IX/
2 of the length of a vector X is (X . X) = XtX, and

\302\267a vector X is orthogonal to another vector Y, written X 1. Y, if and only if

Xty = o.

We take these as the definitions of the length IX/ of a vector and of orthogonality of

vectors in }Rn. Note that the length IXI is positive unless X is the zerovector, because

IX/
2 = XtX = xi + . ..+ x\037 is a sum of squares.)

Theorem 5.1.5Pythagoras. If X 1. Y and Z = X + Y, then IZ/
2 = IXI

2
+ I y/

2
.)

This is proved by expanding ztZ. If X .1Y, then Xty = ytX = 0, so)

ztz = (X + y)t(X + Y) = XtX + Xty + ytX + yty = XtX + yty. 0)

We switch to our lowercasevector notation. If VI, . . . , Vk are orthogonal vectors in }Rn

and if W =
Vt + . . . + Vk, then Pythagoras's theorem showsby induction that)

(5.1.6)) IwI
2 = /vll

2 +... + I V k/
2

.)

Lemma 5.1.7 Any set (Vl, . . . , Vk) of orthogonal nonzero vectors in ]Rn is independent.)

Proof Let W = Cl Vl + . . .+ Ck Vk be a linear combination, where not all Ci are zero, and let
Wi

== CiVi. Then W is the sum WI + . .. + Wk of orthogonal vectors, not all of which are zero.
By Pythagoras, /w1

2 = IWtl2 +... + IWk/2 > 0, so w*O. 0

. An orthonormal basis B = (Vl, . . . , v n ) of JRn is a basis of orthogonal unit vectors (vectors

of length one). Another way to say this is that B is an orthonormal basis if)

(5.1.8)) (Vi' Vj) =
Oij,)

where 8ij, the Kronecker delta, is the i, j-entry of the identity matrix, which is equal to 1 if

i = j and to 0 if i * j.)

Definition 5.1.9 A real n X n matrix A is orthogonal if A tA = I, which is to say,A is invertible

and its inverse is At.)

Lemma 5.1.10 An n X n matrix A is orthogonal if and only if its columns form an orthonormal
basis of R

n
.)

Proof Let Ai denote the ith column of A. Then
A}

is the ith row of At. The i, j-entry of A tA

is
A\037Aj,

so AtA = I if and only if A}Aj
= 8ij for all i and j. 0

The next properties of orthogonal matrices are easyto verify:)))
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Proposition 5.1.11

(8) The product of orthogonal matrices is orthogonal, and the inverse of an orthogonal
matrix, its transpose, is orthogonal. The orthogonal matrices form a subgroup On of
GLn, the orthogonal group.

(b) The determinant of an orthogonal matrix is :t: 1. The orthogonal matrices with determi...

nant 1 form a subgroup SOn of On of index 2, the special orthogonal group. 0)

Definition 5.1.12 An orthogonal operator T on IR
n

is a linear operator that preserves the dot

product: For every pair X, Y of vectors,)

(TX \302\267TY) = (X . Y).)

Proposition 5.1.13A linear operator T on}Rn is orthogonal if and only if it preserves lengths
of vectors,or, if and only if for every vector X, (TX. TX) = (X . X).)

Proof Suppose that lengths are preserved, and let X and Y be arbitrary vectors in JRfl.

Then)

(T(X + Y) . T(X + Y))
= ((X + Y) . (X + Y\302\273.

The fact that (TX . TY) = (X .
Y) follows by expanding the two sides of this equality and

cancelling. 0)

Proposition 5.1.14 A linear operator T on jRn is orthogonal if and only if its matrix A with

respect to the standard basis is an orthogonal matrix.)

Proof If A is the matrix of T, then)

(TX. TY) = (AX)t(AY) =
Xt(AtA)Y.)

The operat\037r is orthogonal if and only if the right side is equal to Xty for all X and \302\245.We

can write this condition as Xt(AtA
- I)Y = O.The next lemma shows that this is true if and

only if A tA - I = 0, and therefore A is orthogonal. 0)

Lemma 5.1.15 Let M be an n x n matrix. If X t
MY = 0 for all column vectors X and Y, then

M=O.)

Proof The product e}Mej evaluates to the i, j-entry of M. For instance,)

[ 0 1 ]
[:\037\037 :\037\037] [\037 ]

= m21.

If
e\037Mej

= 0 for all i and j, then M = O.) o)

We now describe the orthogonal2x2 matrices.

. A linear operator T on JR2 is a reflection if it has orthogonal eigenvectors VI and V2 with

eigenvalues 1 and -1, respectively.)))
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Because it fixes Vl and changes the sign of the orthogonal vector V2, such an operator
reflects the planeabout the one-dimensional subspace spanned by Vl. Reflection about the
el-axisis given by the matrix)

(5.1.16)) So=
[\037

-
n

\302\267)

Theorem 5.1.17

(a) The orthogonal 2x 2 matrices with determinant 1 are the matrices)

(5.1.18)) R = .

[

c -s

]s c')

with c = cos e and s = sine, for some angle e. The matrix R represents counterclockwise
rotation of the plane }R2 about the origin and through the angle e.)

(b) The orthogonal 2x 2 matrices A with determinant -1 are the matrices)

(5.1.19)) S =
[
c S

]

= RSos -c)

with c and s as above. The matrix S reflects the plane about the one-dimensional
subspaceof JR2 that makes an angle \037e

with the el-axis.)

Proof Say that)

A=[\037 :])

is orthogonal. Then its columnsare unit vectors (5.1.10), so the point (c, s)t lieso_n the unit

circle, and c = cose and s = sin e, for some anglee. We inspect the product P = Rt
A, where

R is the matrix (5.1.18):)

(5.1.20)) P = RtA =

[b : J.)

SinceR
t

and A are orthogonal, so isP. Lemma 5.1.10 tells us that the second column is a unit

vector orthogonal to the first one. So)

P=[\037 :t\037J.

Working back, A = RP, so A = R if detA = 1and A = S = RSoif detA = -1.
We've seen that R represents a rotation (4.2.2),but we must still identify the operator

defined by the matrix S. The characteristic polynomial of S is (2 - 1, so its eigenvalues are
1 and -1. Let Xl and X 2 be unit-length eigenvectors with these eigenvalues. Because S is
orthogonal,)

(5.1.21))

(Xl. X2) = (SXl . SX2)= (Xl' -X2)
= -(Xl' X2).)))
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It follows that (Xl' X 2) == O. The eigenvectors are orthogonal. The span of Xl will be the
line of reflection.To determinethis line, we write a unit vector X as (e', s') t, with e' == cos ex

and s' = sin a. Then)

sx==

[

ee' +SS'

]
==

[

c?s(e-ex)
]

.
se' - es' sIn(e- a))

When a = ie, x is an eigenvector with eigenvalue 1, a fixed vector.

We describe the 3 X 3 rotation matrices next.)

D)

Definition 5.1.22 A rotation of IR
3 about the origin is a linear operator p with these

properties:

\302\267p fixes a unit vector u, calledapoleof p, and

\302\267
p rotates the two-dimension a] subspace W orthogonal to u.)

The axis of rotation is the line l spanned by u. We also call the identity operator a rotation,

though its axis is indeterminate.
If multiplication by a 3 x 3 matrix R is a rotation of}R3,R is calleda rotation matrix.)

u)

( 5.1.23)) A Rotation of }R3.)

The sign of the angle of rotation depends on how the subspace W is oriented. We'll orient
W looking at it from the head of the arrow u. The angle e shown in the figure is positive.
(This is the \"right hand rule.\

When u is the vector el, the set (e2, e3) will be a basis for W, and the matrix of p will

have the form)

(5.1.24)) M =

[

\037 \037 -\037

]

,

o s c)

where the bottom right 2 x 2 minor is the rotation matrix (5.1.18).

\302\267A rotation that is not the identity is described by the pair (u, e), calleda spin, that consists

of a pole u and a nonzero angle of rotation e.

The rotation with spin (u, 0) may be denoted by P(u,B).Every rotation p different

from the identity has two poles, the intersections of the axisof rotation l with the unit sphere

in R 3. These are the unit-length eigenvectors of P with eigenvalue 1. The choice of a pole)))
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u defines a directionon l, and a change of direction causes a change of sign in the angle
of rotation. If (u, (J) is a spin of p, so is (-u, -(J).Thus every rotation has two spins, and
P(u ,8)

= P (- u ,
- 8) .)

Theorem 5.1.25 Euler's Theorem. The 3X 3 rotation matrices are the orthogonal 3x 3
matrices with determinant 1, the elements of the special orthogonal group 50 3.)

Euler's Theorem has a remarkable consequence, which follows from the fact that 803 is a

group. It is not obvious, either algebraically or geometrically.)

Corollary5.1.26 The composition of rotations about any two axes is a rotation about some

other axis. 0)

Because their elements represent rotations, the groups 802 and 803 are calledthe
two- and three-dimensional rotation groups. Things become more complicatedin dimension

greater than 3. The 4X4 matrix)

(5.1.27))

cosa - sIn a
Slncx coscx)

cos f3
- sin f3

sin fJ cos fJ)

is an element of 504. Left multiplication by this matrix rotates the two-dimensional subspace
spannedby (el, e2) through the angle a, and it rotates the subspace spanned by (e3, e4)
through the angle fJ.

Before beginning the proof of Euler's Theorem, we note two more consequences:)

Corollary 5.1.28 Let M be the matrix in S03 that represents the rotation P(u,a) with

spin (u, a).

(a) The trace of M is 1 + 2 cos ex.

(b) Let B be another element of 803, and let u' = Bu. The conjugateM' = BMB
t

represents

the rotation P(u',a) with spin (u', ex).)

Proof (a) We choose an orthonormal basis (Vl, V2, V3) ofJR 3 such that Vl = u. The matrix
of P with respect to this new basis will have the form (5.1.24), and its trace will be 1 + 2 cos ex.
Since the trace doesn't depend on the basis, the trace of M is 1 + 2 cosa too.)

(b) Since 803 is a group, M' is an element of 803. Euler's Theorem tells us that M' .is a

rotation matrix. Moreover, u' is a pole of this rotation: SinceB is orthogonal,u' = Bu has

length 1, and)

M'u' = BMB-1u'= BMu = Bu = u'.)

Let a' be the angle of rotation of M' about the pole u'. The traces of M and its conjugate
M' are equal,so cosex = cos a'. This implies that a' = :f:: ex. Euler's Theorem tells us that)))
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the matrix B alsorepresentsa rotation, say with angle f3 about some pole. SinceBand M'

depend continuously on fJ, only one of the two values ::i:afor a' can occur. When fJ
= 0,

B == I, M' == M, and a' == a. Therefore a' == a for all fJ. 0)

Lemma 5.1.29 A 3 x 3 orthogonal matrix M with determinant 1 has an eigenvalue
equal to 1.)

Proof To show that 1 is an eigenvalue, we show that the determinant of the matrix M - I
is zero. If B is an n X n matrix, det (-B) = (-I)ndetB.We are dealing with 3 X 3 matrices, so

det (M - I) == -det (I
- M). Also, det (M

- I)t == det (M
- 1) and detM == 1. Then

det (M - I) == det (M
- I)t == detM det (M - I)t = det (M(M

t -
I\302\273

= det (I - M).)

The relation det (M - I) = det(I -
M) shows that det (M - I) == O.) o)

Proof of Euler's Theorem. Suppose that M represents a rotation p with spin (u, a). We
form an orthonormal basisB of V by appending to u an orthonormal basis of its orthogonal

space W. The matrix M' of p with respect to this basis will have the form (5.1.24),which

is orthogonal and has determinant 1. Moreover,M == PM' p-l, where the matrix P is equal
to [B] (3.5.13).Sinceits columns are orthonormal, [B] is orthogonaL ThereforeM is also

orthogonal, and its determinant is equal to 1.)

Conversely, let M be an orthogonal matrix with determinant 1, and let T denote left

multiplication by M. Let u be a unit-length eigenvector with eigenvalue 1, and let W be the

two-dimensional space orthogonal to u. Since T is an orthogonal operator that fixes u, it

sends W to itself. So W is aT-invariant subspace, and we can restrict the operatorto W.

Since T is orthogonal, it preserves lengths (5.1.13), so its restriction to W is orthogonal

too. Now W has dimension2, and we know the orthogonal operators in dimension 2: they are
the rotations and the reflections (5.1.17). The reflections are operators with determinant -1.
If an operator T acts on W as a reflection and fixes the orthogonal vector u, its determinant

will be -1 too. Since this is not the case, TI w is a rotation. This verifies the secondcondition

of Definition 5.1.22, and shows that T is a rotation. 0)

5.2 USINGCONTINUITY)

Various facts about complex matrices can be deducedby diagonalization, using reasoning
based on continuity that we explain here.

A sequence Ak of n x n matrices convergesto an 11 X 11 matrix A if for every i and j, the
i, j-entry of Ak converges to the i, j entry of A. Simi1arly, a sequence Pk (t), k = 1,2,...,of

polynomials of degree 11with complex coefficientsconvergesto a polynomial pet) of degree
n if for every j, the coefficient of t j in Pk converges to the corresponding coefficient of p. We

may indicate that a sequence Sk of complex numbers, matrices,or polynomials converges to

S by writing Sk \037 S.
-)

Proposition 5.2.1 Continuity of Roots. Let Pk(t) be a sequenceof monic polynomials of

degree < 11,and let pet) be another monic polynomial of degree n. Let l\302\245k,l,
. . . , l\302\245k,nand

al, . . . an denote the roots of thesepolynomials.)))
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(a) If ex k, 11 \037 a 11 for v == 1, . . . , n, then P k \037 p.

(b) Conversely, if Pk \037 P, the roots ak,v of Pk can be numbered in such a way that

ak, v \037 a v for each v = 1, . . . , n.)

In part (b), the roots of eachpolynomial Pk must be renumbered individually.

Proof We note that Pk(t) == (t
- ak,l) . . . (t -

ak,n)
and pet) == (t

- al) . . . (t - an).Part

(a) follows from the fact that the coefficients of pet) are continuous functions - polynomial
functions - of the roots, but (b) is less obvious.)

Step 1: Let ak,v be a root of Pk nearest to aI, i.e.,such that lak, v
- all is minimal. We

renumber the roots of Pk so that this root becomes ak,l. Then)

lal -
ak,lln

< I(al
- ak,l).\" (al - ak,n)1==

Ipk(al)l.)

The right side converges to Ip(al)1 == o. Therefore the left side does too, and this shows that

ak I \037 al.,)

Step 2: We divide, writing Pk(t) == (t
-

ak,l)qk(t) and pet) == (t
- al)q(t). Then qk and

q are monic polynomials, and their roots are ak,2, . . . , ak,n and a2, . . . ,an,respectively.

If we show that qk \037 q, then by induction on the degree n, we will be able to arrange the
roots of qk so that they converge to the roots of q, and we will be done.

To show that qk \037 q, we carry the division out explicitly. To simplify notation,

we drop the subscript 1 from al. Say that pet) == t
n + an-l t n - l + . . . + alt + ao, that

q(t) == t
n - l + bn_2tn-2 + . . .+ bIt+bo , and that the notation for Pk and qk is analogous.

The equation pet) == (t
- a)q(t) implies that)

b n -2 == ex + an-I,

b n - 3 == (X2 + a + a n -2,)

bo)
n-l n-2

== ex + a an-l + . . .+ aa2+ al.)

Since ak 1 -+ a and ak i \037 ai, it is true that bk i \037 hi.\" ,) o)

Proposition 5.2.2 Let A be an n X n complex matrix.

(a) There is a sequenceof matrices Ak that converges to A, and such that for all k the
characteristic polynomialPk(t) of Ak has distinct roots.

(b) If a sequenceAk of matrices converges to A, the sequence Pk(t) of its characteristic

polynomials converges to the characteristicpolynomial pet) of A.

(c) Let Ai be the roots of the characteristic polynomial p. If Ak \037 A, the roots Ak,i of Pk
can be numbered so that Ak,i -+ Ai for each i.)

Proof (a) Proposition 4.6.1 tells us that there is an invertible n X n matrix P such that

A' == p-l AP is upper triangular. Its eigenvalueswill be the diagonal entries of that matrix.

We let
A\037

be a sequence of matrices that converges to A', whose off-diagonal entries are the)))
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same as thoseof A', and whose diagonal entries are distinct.Then
A\037

is upper triangular, and

its characteristic polynomialhas distinct roots. Let Ak = P
A\037p-l

. Since matrix multiplication
is continuous, Ak \037 A. The characteristic polynomial of Ak is the same as that of

A\037,
so it

has distinct roots.)

Part (b) follows from (a) because the coefficients of the characteristic polynomial depend

continuously on the matrix entries, and then (c) follows from Proposition 5.2.1. 0

One can use continuity to prove the famous Cayley-Hamilton Theorem. We state the
theorem in its matrix form.)

Theorem 5.2.3 Cayley-HamiltonTheorem.Letpet) = t
n

+ Cn_lt
n - l +. \302\267. + Clt + Cobe the

characteristic polynomial of an n Xn complex matrix A. Then peA) = An + Cn_lA
n - 1 +

\302\267. . + Cl A + co! is the zero matrix.)

For example, the characteristic polynomialof the 2X2 matrix A, with entries a, b, c, d
as usual, is t2 - (a + d)t + (ad - bc)(4.5.12).The theorem asserts that)

(5.2.4))
[\037 \037r-(a+d)[\037 \037]+(ad-bC)[b n

=
[\037 \037].)

This is easy to verify.)

Proof of the Cayley-Hamilton Theorem. Step1..Thecasethat A is a diagonal matrix.
Let the diagonal entries be A1, . . . , An. The characteristic polynomial is)

pet) = (t -
A1)

. . . (t
- An).)

Here peA) is alsoa diagonal matrix, and its diagonal entries are p(Ai). SinceAi are the

roots of P, p(Ai) = 0 and peA)
= O.)

Step 2.' The case that the eigenvalues of A are distinct.
In this case, A is diagonalizable; say A' = p-1AP is diagonal. Then the characteristic

polynomial of A' is the same as the characteristic polynomial pet) of A, and moreover,)

peA) = Pp(A')P-l

(see (4.6.14\302\273. By step 1, peA') = 0, so peA)
= O.)

Step 3: The general case.
We apply proposition5.2.2.We let Ak be a sequence of matrices with distinct

eigenvalues that converges to A. Let Pk be the characteristic polynomial of Ak. Since the
sequencePk converges to the characteristic polynomial p of A, Pk(Ak) \037 peA). Step 2

tells us that Pk(Ak) = 0 for all k. Therefore peA) = O. 0)))
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5.3 SYSTEMSOF DIFFERENTIAL EQUATIONS

We learn in calculus that the solutions of the differential equation)

(5.3.1))
dx
-=ax
dt)

are x(t) = ce at
, where c is an arbitrary real number. We review the proof because we want

to use the argument again. First, ceat
does solve the equation. To show that every solution

has this form, let x(t) be an arbitrary solution. We differentiate e- at
x(t) using the product

rul e:)

(5.3.2))
:t

(e-
at

x(t)) :::;; (-ae-at)x(t) + e -at
(ax(t\302\273

= O.)

Thus e- at
x(t) is a constant c, and x(t) = ceat.

To extendthis solution to systems of constant coefficientdifferential equations, we use

the following terminology. A vector-valued function or matrix-valued function is a vector or

! matrix whose entries are functions of t:)

Xl (t)) all (t)) al n (t))

(5.3.3)) X(t) =) A(t) =)

X n (t)) aml (t)) amn (t))

The calculus operationsof taking limits and differentiating are extended to vector-

valued and matrix-valued functions by performing the operations on each entry separately.
The derivative of a vector-valued or matrix-valued function is the function obtained by
differentiating each entry:)

(5.3.4))
dX

dt)

X\037(t))
dA

dt)

a\0371 (t)) a\037n (t))

X\037(t)) a\037l (t)) a\037n (t))

where xi' (t) is the derivative of Xi (t), and so on. So
\037\037

is defined if and only if each of the
functions Xi (t) is differentiable. The derivativecan alsobe describedin matrix notation:)

(5.3.5))
dX

= lim
X(t+h)-X(t)

.
dt h\037O h)

Here X(t + h) - X(t) is computed by vector addition and the h in the denominator stands

for scalar multiplication by h- 1. The limit is obtained by evaluating the limit of each entry

separately. So the entriesof (5.3.5) are the derivatives xi(t). The analogousstatement is true
for matrix-valued functions.)))
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Many elementary properties of differentiation carryover to matrix-valued functions.
The product rule, whoseproof is an exercise, is an example:)

Lemma 5.3.6 Product Rule.

(a) Let A(t) and B(t) be differentiable matrix-valued functions of t, of suitable sizesso
that their product is defined. Then the matrix product A (t)B(t) is differentiable, and its
derivative is)

d(AR) dA dB

dt
==

dt
B + A

\"di')

(b) Let AI, . . . , Ak be differentiable matrix-valued functions of t, of suitable sizes so that

their product is defined. Then the matrix product A 1
. . .

Ak is differentiahle, and its
derivative is)

d
k

dA i

d/
A1 000

Ak) =
LAI

00
oAi-l( dt )Ai+l 00

oAk-

i=l)
D)

A system of homogeneous linear; first-order,constant-coefficient differential equations
is a matrix equation of the form)

(5.3.7))
dX

dt
==AX,)

where A is a constant n X n matrix and X(t) is an n-dimensional vector-valued function.

Writing out such a system, we obtain a system of n differential equations)

dx] ain X n (t)
dt-

== all Xl (t) + +

(5.3.8)
dXn

ann Xn (t).d
== anI X1 (t) + . . . +

J)

The Xi (t) are unknown functions, and the scalars aU are given. For example, if)

(5.3.9)) A =
[i \037j,)

(5.3.7) becomes a system of two equations in two unknowns:

dXl

dt

== 3XI + 2X2

dX2- == Xl + 4X2 .
dt)

(5.3.10))

l'he simplest systems are those in which A is a diagonal matrix with diagonal entries

Ai. Then equation (5.3.8)reads

dx'
\037 == '1 .x .

( t ) 1
- 1 n

dt
All ,

. - ,..., .)(5.3.11))))
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Here the unknown functions Xi are not mixed up by the equations, so we can solve for each
one separately:)

(5.3.12)) A\"t
Xi = Cie I

,)

for some arbitrary constants Ci .

The observation that allows us to solve the differential equation (5.3.7) in many cases
is this: If V is an eigenvector for A with eigenvalue A, i.e., if A V = A V, then)

(5.3.13)) x = eAt V)

is a particular solution of (5.3.7).Here eAtV must be interpreted as the product of the

variable scalar eAt and the constant vector V. Differentiation operates on the scalarfunction,

fixing V, while multiplication by A operates on the vector V, fixing the scalar eAt. Thus

\037
eAtV = AeAtV and also AeAtV == AeAtV. For example,)

U ]
and

[ -
n)

are eigenvectors of the matrix (5.3.9),with eigenvalue 5 and 2, respectively, and)

(5.3.14))
[

e5t

]e5t) and)

[

2e2t

]_e2t)

solve the system (5.3.10).

This observation allows us to solve (5.3.7)whenever the matrix A has distinct real

eigenvalues.In that case every solution will be a linear combination of the special solutions

(5.3.13). To work this out, it is convenient to diagonalize.)

Proposition 5.3.15 Let A be an n Xn matrix, and let P be an invertible matrix such that
A = p-l AP is diagonal, with diagonal entries AI, . . . , An. The general solution of the system

\037
== AX is X = PX, whereX = (cleA

!!, ....., cneAnt)t solves the equation \037
= AX.)

The coefficients Ci are arbitrary. They are often determined by assigning initial condi-

tions - the value of X at some particular to.

Proof. We multiply the equation \037
= AX by P:

P\037
= pAX = APX. But since P is

constant, p ';f,
= d<g) =

\037..
Thus

\037
= AX. This reasoning can be reversed,soX solves

the equation with A if and only if X solves the equation with A.. 0

The matrix that diagonalizes the matrix (5.3.10) was computed before(4.6.8):)

(5.3.16)) A =

[\037 \037l)

p_
[

1-
1) -n,)

and A =
[

5
2]

\302\267)))
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Thus)

(5.3.17)) x=
[

Xl

]

=Px=
[

1 2
] [

Cle5t

]

=

[

c 1e5t
+2C2e2t

]
.

X2 1 -1 C2e2t Cl eSt - C2e2t)

In other words, every solution is a Jinear combination of the two basic solutions (5.3.14).
We now consider the case that the coefficient matrix A has distinct eigenvalues, but

that they are not all real. To copy the method used above, we first consider differential

equations of the form (5.3.1), in which a is a complex number. Properlyinterpreted,the
solutions of such a differential equation still have the form ce a(.The only thing to remember

is that eat will now be a complex-valuedfunction of the real variable t.
The definition of the derivative of a complex-valued function is the same as for real-

valued functions, provided that the limit (5.3.5) exists. There are no new features.We can

write any such function x(t) in terms of its real and imaginary parts, which will be real-valued
functions, say)

( 5.3.18)) x(t) = pet) + iq(t).)

rrhen x is differentiable if and only if p and q are differentiable, and if they are, the derivative
of X is p' + iq'. This followsdirectly from the definition. The usual rules for differentiation,

such as the product rule, hold for complex-valued functions. These rules can be proved
either by applying the corresponding theorem for real functions to p and q, or by copying

the proof for real functions.
The exponentialof a complex number a = r + si is defined to be)

(5.3.19)) e
a = er+si = er(coss + i sins).)

Differentiation of this formula shows that deat / dt = ae a(. Thereforecea ( solves the

differential equation (5.3.1),and the proof given at the beginning of the sectionshows that

these are the only solutions.

Having extended the case of one equation to complex coefficients, we can use diago-
nalization to solve a system of equations (5.3.7) when A is a complex matrix with distinct

eigenvalues.

For example, let A =

[
_ \037 \037J

The vectors Vl =

[\037 ]

and V2 =
[\037]

are eigenvectors,

with eigenvalues 1 + i and 1 - i, respectively. Let B denote the basis (Vl, V2). Then A is

diagonalized by the matrix P = [B]:)

(5.3.20)) p-lAP=!
[

\037
-i

][

1 1

][
\037

i

]

=
[

l+i .
]

=A.2 -I 1 -Ill 1 1 - I)))



Section 5.4) The Matrix Exponential 145)

-

[
i

] [
C e(l+i)t

]
Then X = _1 = 1

(l-i)t . The solutions of (5.3.7)are
x2 C2 e)

(5.3.21 ))

[

Xl

]

_ - _
[

C1e(1+i)t + iC2e(1-i)t

]X2
- PX-

iCl e(l+i)t + C2 e (1-i)t ,)

where Cl, C2 are arbitrary complex numbers. Soevery solution is a linear combination of the
two basic solutions)

(5.3.22))
[

e(l +i)t

]ie(l+i)t)
and)

[

ie(l-i)t

]e(l-i)t
.)

However, these solutions aren't very satisfactory, becausewe began with a system of
differential equationswith real coefficients, and the answer we obtainedis complex.When

the equation is real, we will want the real solutions. We note the following lemma:)

Lemma 5.3.23 Let A be a real n Xn matrix, and let X(t) be a complex-valuedsolution of

the differential equation \037\037
= AX. The real and imaginary parts of X(t) solve the same

equation. 0)

Now every solution of the original equation (5.3.7),whether real or complex, has the
form (5.3.21)for some complex numbers Cia So the real solutions are among thosewe have

found. To write them down explicitly,we may take the real and imaginary parts of the

complex solutions.

The real and imaginary parts of the basic solutions (5.3.22) are determinedusing

(5.3.19). They are)

(5.3.24))
[

et
c\037s

t

]-e t SIn t)
and)

[

et sin t

]

.
etcost)

Every real solution is a reallinearcombination of these particular solutions.)

5.4 THE MATRIX EXPONENTIAL

Systems of first-order linear, constant-coefficientdifferential equations can be solved for-

mally, using the matrix exponential.
The exponential of an n X n real or complexmatrix A is the matrix obtained by

substituting A for x and I for 1 into the Taylor's series for eX, which is)

(5.4.1))

X x2 x 3
eX

=l+-+-+-+...
I! 2! 3!)))
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Thus by definition,)

( 5.4.2))
A A 2

A
3

\037=I+-+-+-+...
I! 2! 3!

.)

We will be interested mainly in the matrix valued function etA of the variable scaiar t,
so we substitute tA for A:)

(5.4.3))
t11 t2Jt2 (3J13

fA
Ie = +,+-,-+-,-+....1. 2. 3.)

Theorem 5.4.4

(a) The series (5.4.2)convergesabsolutely and uniformly on bounded sets of complex
matrices.

(b) etA is a differentiable function of t, and its derivative is the matrix product Ae tA .

(c) Let A and B be complex n Xn matrices that commute: AB = BA. Then eA+
B = e-4eB

.)

In order not to break up the discussion,we have moved the proof of this theorem to the end
of the section.

The hypothesisthat 11 and B commute is essential for carrying the fundamental

propertye
x+y = eXe Y over to matrices. Nevertheless,(c) is very useful.)

Corollary 5.4.5 For any n X n complex matrix 11, the exponential eA is invertible, and its

inverse is e-A
.)

Proof. Because A and -A commute,eAe-A = eA- A = eO = I.) o)

Sincematrix multiplication is relatively complicated, it is often not easy to write down
the entries of the matrix eA. Theywon't be obtained by exponentiating the entries of A unless

A is a diagonal matrix. If A is diagonal, with diagonal entries Ai, . . . , An, then inspection of
the series showsthat e

A is also diagonal, and that its diagonal en tries are eAi .

The exponential is also fairly easy to compute for a triangular 2 X 2 matrix. For

example, if)

A=[l \037].)

then)

(5.4.6)) \037 =

[

1

1 ]
+ ;! [1 ;J

+
;! [

1

\037]

+ ... =
[e :2]')

It isa goodexerciseto calculate the missing entry * directly from the series.)))
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The exponential of eA can be determined whenever we know a matrix P such that

A = P-1APis diagonal.Using the rule P-lAkp = (P-1AP)k (4.6.12)and the distributive law

for matrix multiplication,)

p-letp = (p-l/p) + (rlAP) + (r 1
AP)2

+... _ e P
-

1AP = eA.
1! 2!

Suppose that A is diagonal, with diagonal entries Ai. Then e A is also diagonal, and its
diagonal entries are e Ai . In this case we can compute e4 explicitly:)

(5.4.7))

(5.4.8)) et = PeAp-l.)

ForexamPle,ifA=[l ;]andP=[l \037J.thenrlAP=A=[l 2J.so

et = PeA r 1 =
[1 \037] [e e2

] [1

-

\037]

=

[e e2\037\037
J.)

The next theorem relates the matrix exponential to differential equations:)

Theorem 5.4.9 LetA be a real or complex n x n matrix. The columns of the matrix etA form

a basis for the space of solutions of the differential equation \037\037
= AX.)

Proof Theorem 5.4.4(b) shows that the columns of etA solve the differential equation.To
show that every solution is a linear combination of the columns, we copy the proof given at

the beginning of Section 5.3.LetX(t)be an arbitrary solution. We differentiate the matrix

product e- tA
X(t) using the product rule (5.3.6):)

(5.4.10)) :t (e-tAx(t))
=

(-Ae-tA)X(t)
+e-

tA
(AX(t\302\273).)

Fortunately, A and e- tA
commute. This follows directly from the definition of the expo-

nentiaL So the derivative is zero. Therefore e- tA
X(t) is a constant column vector, say

C == (Cl, . . . , cn)t, and X(t) = etAC.This expressesX(t) as a linear combination of the
columns of etA, with coefficients Ci. The expression is unique becauseetA is an invertible

matrix. 0)

Though the matrix exponential always solves the differential equation (5.3.7),it may

not be easy to apply in a concrete situation because computation of the exponentialcanbe
difficult. But if A is diagonalizable, the exponential can be computed as in (5.4.8). We can
use this method of evaluating etA to solve equation (5.3.7). Of cO-urse we will get the same

solutions as we didbefore.Thus if A, P, and A are as in (5.3.16), then)

fA _ tA -1 _

[

1 2

] [
e5t

] (

_!

) [

-1 -2
]

_!
[

(eSt +2e2t) (2e
St -2e 2t

)

]
e - Pe P - 1 -1 e

2t
3 -1 1

-
3 (e5t - e 2t) (2e5t

+ e 2t
)

\302\267)))
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The columns of the matrix on the right form a second basis for the spaceof solutions

that was obtained in (5.3.17).

One can also use Jordan form to solve the differential equation. The solutionsfor

an arbitrary kxk Jordan block J A (4.7.5) can be determined by computing the matrix

exponential. We write J A = Al + N, as in (4.7.12), where N is the kx k Jordan blockJo with

A = O. Then N k = 0 so,
tN tk-1N

k - 1

e tN
=I+

1T
+ooo+

(k-l)!)
SinceN and AI commute,)

(

tN tk-1N k - 1

)
e tl = eAt! etN = eAt I + _ + . . .+I! (k-1)!')

Thus if J is the 3 x 3 block)

J =

[i i 3].)

then)

etj =

[

e3t
e3t

] [

\037 1

]

_

[
:::t e3t

]e 3t
i! t2 t 1

-
i!i2 e

3t te 3t e3t

\302\267)

The columns of this matrix form a basis for the space of solutions of the differential
. dX

equatIon dt
= JX.

We now go back to prove Theorem 5.4.4.Themain facts about limits of series that we

will use are given below, together with references to [Mattuck] and [Rudin]. Those authors

consider only real valued functions, but the proofs carryover to complex valued functions

because limits and derivatives of complexvalued functions can be defined by working on the

real and imaginary parts separately.
If rand s are realnumbers with r < s, the notation [r, s] stands for the interval

r < t < s.)

Theorem5.4.11([Mattuck], Theorem 22.2B, [Rudin], Theorem 7.9). Let mk be a series of

positive real numbers such that L m k converges. If u (k)
(t) are functions on an interval [r, s],

and if lu (k) (t) I < mk for all k and all t in the interval, then the series L u (k)
(t) converges

uniformly on the interval. D)

Theorem 5.4.12 ([Mattuck], Theorem 11.5B, [Rudin], Theorem7.17).Let u(k) (t) be a

sequence of functions with continuous derivatives on an interval [r, s]. Supposethat the

series L u(k) (t) convergesto a function f(t) and also that the series of derivatives L u,(k) (t)

converges uniformly to a function get), on the interval. Then f is differentiable on the
interval, and its derivative is g. D)))
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Proof of Theorem 5.4.4(a). We denote the i,j-entry of a matrix A by (A)ij here. So (AB)ij
standsfor the entry of the product matrix AB, and (Ak)ij for the entry of the kth power A k .
With this notation, the i, j-entry of eA is the sum of the' series

(A )
\"

( A2 )
.. (A3 )

..

(e4 ) .. =
( I )

\"
+

lJ
+

lJ
+

lJ
+ . . .

lJ lJ I! 2! 3!
\302\267)(5.4.13))

To prove that the series for the exponential converges absolutely and uniformly, we need to
show that the entries of the powers A

k do not grow too quickly.
We denote by IIA 1/ the maximum absolute value of the entries of a matrix A, the smallest

real number such that)

(5.4.14)) I (A)ijl
<

IIA II for all i, j.)

Its basicpropertyis this:)

Lemma 5.4.15 Let A and B be complex n Xn matrices. Then IIABII
< nIIAIIIIBII, and for all

k> 0, IIAkll < nk-11IAlik.)

Proof We estimate the sizeof the i, j-entry of AB:)

n n

I (AB)ijl
=

L(A)iv(B)vj
< L I(A)ivll(B)vjl <

nliAl1 IIBII.

v=l v=l)

The second inequality follows by induction from the first one.) o)

We now estimate the exponential series: Let a be a positive real number such that

'nilAIl
< a. The lemma tells us that I (Ak)ijl

< a k
(with one n to spare).So)

I (\037)ijl
<

I (I)ijl + I (A)ijl +
;, I

(A
2

)ijl
+

;! I
(A

3)ijl
+ . . .

a a2
a

3

<1+-+-+-+... .- I! 2! 3!
The ratio test shows that the last seriesconverges(to ea

of course). Theorem 5.4.11 shows
that the series for eA

converges absolutely and uniformly for all A with n IIA 1\\ < a. 0)

(5.4.16))

Proof of Theorem 5. 4. 4(b), (c). We use a trick to shorten the proofs. That is to begin by
differentiating the series for e

tA + B
, assuming that A and B are commuting n X n matrices.

The derivative of tA + B is A, and

etA + B = I +
(tA + B)

+
(tA + B)2 +... .I! 2!)

(5.4.17))

Using the product rule (5.3.6),we see that, for k > 0, the derivative of the term of degree k
of this series is)

\037

(

tA + B)k

)
=

(
\037

\037(tA + B)i-l A (tA + B)k-i
)

.
dt k! k!

\037)))
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(5.4.18))

SinceAB == BA, we can pull the A in the middle out to the left:

\037

(

tA + B)k

)
= kA

(tA + B)k-l = (tA + Bl- 1

dt k! k! A

(k
- 1)!

\302\267)

This is the product of the matrix A and the term of degree k - 1of the exponential series.
So term-by-term differentiation of (5.4.17) yields the series for AetA + B .

To justify term-by-term differentiation,weapplyTheorem 5.4.4(a).Thetheoremshows

that for given A and B, the exponential seriesetA + B
converges uniformly on any interval

r < t < s. Moreover, the series of derivatives converges uniformly to Ae tA+B. By Theorem
5.4.12,the derivative of e tA+B can be computedterm by term, so it is true that

\037etA+B == Ae
tA + B

dt

for any pair A, B of matrices that commute. Taking B == 0 proves Theorem 5.4.4(b).

Next, we copy the method used in the proof of Theorem 5.4.9. We differentiate the
product e-tAetA+B, again assuming that A and B commute. As in (5.4.10), we find that

:/ e-tAetA+B)

=
(_Ae-

tA
) (e

tA + B

)
+

(e-
tA

) (Ae
tA + B

)
= O.)

Therefore e-tAetA+B == C, where C is a constant matrix. Setting t == 0 shows that eB == c.

Setting B == 0 shows that e- tA == (etA)-l. Then (etA)-letA+B == e
B . Setting t == 1 shows that

\302\2430+B== \302\2430e
B

. This proves Theorem 5.4.4(c). 0

We will use the remarkable properties of the matrix exponential again, in Chapter 9.)

I have not thought it necessary to undertake the labour
of a formal proof of the theorem in the general case.

-Arthur Cayley1)

EXERCISES)

Section 1 Orthogonal Matrices and Rotations

1.1.Determine the matrices that represent the following rotations of \0373:

(a) angle (), the axis e2, (b) angle 2Jr/3, axis contains the vector (1, 1, 1)t, (c)angle Jr/2,

axis contains the vector (1, 1,0)/.
1.2.What are the complex eigenvalues of the matrix A that represents a rotation of JR3 through

the angle () about a pole u?
1.3.Is On isomorphic to the product group SOnX { ::t I}?

1.4. Describe geometrically the actionof an orthogonal 3 x 3 matrix with determinant -1.)

1
Arthur Cayley, one of the mathematicians for whom the Cayley-Hamilton Theorem is named, stated that

theorem for n Xn matrices in one of his papers, and then checked the 2x2 case(see(5.2.4)).He closed his

discussion of the theorem with the sentence quoted here.)))
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1.5. Let A be a 3 x 3 orthogonal matrix with det A = 1, whoseangle of rotation is different from
o or Jr, and let M = A - At.

(a) Show that M has rank 2, and that a nonzero vector X in the nullspace of M is an

eigenvector of A with eigenvalue 1.

(b) Find such an eigenvector explicitly in terms of the entries of the matrix A.)

Section 2 Using Continuity

2.1. Use the Cayley-Hamilton Theorem to expressA-I in terms of A, (detA)-l, and the
coefficients of the characteristic polynomial. Verify your expression in the 2 x 2 case.

2.2. Let A be m x m and B be n x n complex matrices, and consider the linear operator T on

the space c mXn of all complex matrices defined by T(M) = AMB.

(a) Show how to constructan eigenvector for T out of a pair of column vectors X, Y, where

X is an eigenvector for A and Y is an eigenvector for Bt.
(b) Determine the eigenvalues of T in terms of those of A and B.

(c) Determine the trace of this operator.

2.3. Let A be an n X n complex matrix.

(a) Consider the linearoperator T defined on the space c nxn
of all complex n Xn matrices

by the rule T(M) = AM - MA. Prove that the rank of this operator is at most n
2 - n.

(b) Determine the eigenvalues of T in terms of the eigenvaluesA 1, . . . , An of A.)

2.4. Let A and B be diagonalizable complex matrices.Prove that there is an invertible matrix P
such that p-l AP and P-IBP are both diagonalif and only if AB = BA.)

Section 3 Systemsof Differential Equations

3.1. Prove the product rule for differentiation of matrix-valued functions.

3.2. Let A(t) and B(t) be differentiable matrix-valued functions of t. Compute

(a)
\037

(A(t)3), (b)
\037

(A(t)-l). (c)
\037

(A (t)-l B(t)).

3.3. Solve the equation \037\037
= AX for the following matrices A:

(a)
n ;].

(b)
[-\037 n.

(c)

[\037
\037 _:].

(d)

[\037
\037 \0371

3.4. I-IetA and B be constant matrices, with A invertible. Solve the inhomogeneous differential

. dX
B

.
f h I

.
h

. dX
AXequatIon - = AX + m terms 0 t e so utlons to t e equation

-
d

= .
m t

Section 4 The Matrix Exponential

4.1. Compute to for the following matrices A:)

(a)
[a

b

J.
(b)

[2ni \037\037\037].

(c)
[\037

-\037 1
(d)

[i \037].

(e)

[\037
\037

0]')))
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4.2. Prove the formula etrace A = det (eA).
4.3.Let X be an eigenvector of an n X n matrix A, with eigenvalue A.

(a) Prove that if A is invertible then X is an eigenvectorfor A -1, with eigenvalue A -1.

(b) Prove that X is an eigenvector for eA' with eigenvalue eA.

4.4. Let A and B be commuting matrices. To prove that eA+ B = eAe B, one can begin by

expanding the two sides into double sums whose terms are multiples of Ai Bj. Prove that

the two double sums one obtainsare the same.

4.5. Solve the differential equation
:\037

= AX when A is the given matrix:

(a)
[i 2]'

(b)

[\037 \037],
(c)

[\037
\037 J.

4.6. For an n X n matrix A, define sin A and cos A by using the Taylor's series expansions for
sinx and cosx.)

(a) Prove that these seriesconverge for all A.

(b) Prove that sin(tA) is a differentiable function of t and that ;t sin(tA) = A cos(tA).

4.7. Discuss the range of validity of the following identities:

(a) cos2 A + sin 2
A = I,

(b) e iA = cosA + i sin A,

(c) sin(A + B) = sin A cos B + cosA sinB,
(d) e2 7!iA = I,

(e)
d(\037t(t\302\273)

= e4(t)
:\037

, whenA(t) is a differentiable matrix-valued function of t.

4.8. Let P, Bk,and B be n Xn matrices, with P invertible. Prove that if Bk converges to B, then

p-I Bk P converges to P-IBP.)

MiscellaneousProblems
M.t. Determine the group On (Z) of orthogonalmatrices with integer entries.

M.2. Prove the Cayley-HamiltonTheorem using Jordan form.

M.3. Let A be an n X n complex matrix. Prove that if trace A k = 0 for all k > 0, then A is

nilpotent.

M.4. Let A be a complex n Xn matrix all of whoseeigenvalues have absolute value less than 1.

Prove that the series I + A + A 2 +... converges to (I - A)-I.
M.S. The Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, . . ., are defined by the recursive relations

In = In-l + In-2,with the initial conditions 10 = 0,11 = 1.This recursive relation can be

written in matrix form as
[\037

\037] [j:=\037 ]
=

[ Ii:
1
]

.)))
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(a) Prove the formula fn =
\037

[ C \037

a

)
-

C \037

a

) 2]
, where a = ../5.

(b) Suppose that a sequence an is defined by the relation an = !-(an-l + an -2). Compute
the limit of the sequence an in terms of ao, al.)

M.6. (an integral operator) The space C of continuous functions f(u) on the interval [0,1] is one
of many infinite-dimensional analogues of ]Rn, and continuous functions A (u, v) on the
square0 < u, v < 1 are infinite-dimensional analogues of matrices.The integral)

A . f =
k

1
A(u, v)f(v)dv)

is analogous to multiplication of a matrix and a vector. (To visualize this, rotate the unit

square in the u, v-plane and the interval [0, 1] by 90\302\260in the clockwise direction.) The
response of a bridge to a variable load could, with suitable assumptions, be represented
by such an integral. For this, f would represent the load along the bridge, and then A . f
would compute the vertical deflection of the bridgecausedby that load.

This problem treats the integral as a linear operator. For the function A = u '- v,
determine the image of the operator explicitly. Determine its nonzero eigenvalues,and

describe its kernel in terms of the vanishing of some integrals. Do the same for the function

A = u 2 + v
2

;

M.7. Let A be a 2X 2 complex matrix with distinct eigenvalues, and let X be an indeterminate

2 X 2 matrix. Howmany solutions to the matrix equation X2 = A can there be?

M.8. Find a geometricway to determine the axis of rotation for the compositionof two three-

dimensional rotations.)))



CHAPTER 6)

Symmetry)

L'algebre n'est qu'une geometrieecrite;
fa geometrie n'est qu'une algebre figuree.

-Sophie Germain)

Symmetry provides some of the most appealing applications of groups. Groups were

invented to analyze symmetriesof certain algebraic structures, field extensions (Chapter 16),
and because symmetry is a common phenomenon, it is one of the two main ways in which

group theory is applied. The other is through group representations, which are discussed in

Chapter 10. The symmetries of plane figures, which we study in the first sections, provide a

rich source of examplesand a background for the general concept of a group operation that
is introduced in Section 6.7.

We allow free use of geometric reasoning. Carrying the arguments back to the axioms

of geometry will be left for another occasion.)

6.1 SYMMETRY OF PLANE FIGURES

Symmetries of plane figures are usually classified into the types shown below:)

(6.1.1)) Bilateral Symmetry.)

*)

( 6.1.2)) Rotational Symmetry.)

154)))
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\037\037\037\037)

(6.1.3)) Translational Symmetry.)

Figures such as these are supposedto extendindefinitely in both directions. There is also a
fourth type of symmetry, though its name, glide symmetry, may be less familiar:)

/ / / /
, , ,)

(6.1.4)) Glide Symmetry.)

Figures such as the wal1paperpattern shown below may have two independent translational
symmetries,)

(6.1.5))

and other combinations of symmetriesmay occur. The star has bilateral as wellas rotational

symmetry. In the figure below, translational and rotational symmetry are combined:)

(6.1.6))

Another example:)

(6.1.7))))
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A rigid motion of the plane is calledan isometry, and if an isometry carries a subset
F of the plane to itself, it is called a symmetry of F. The set of all symmetries of F forms a
subgroupof the group of all isometries of the plane:If m and m' carry F to F, then so does
the composed map mm', and so on. This is the group of symmetries of F.

Figure 6.1.3has infinite cyclic groups of symmetry that are generated by the translation
t that carries the figure one unit to the left.)

G {
-2 -1 1 2

}== ..., t , t , , t, t , . .. .)

Figure 6.1.7 has symmetries in addition to translations.)

6.2 ISOMETRIES)

The distancebetween points of JRn is the length lu
- vi of the vector u - v. An isometry of

n-dimensional space \037n is a distance-preserving map f from }Rn to itself, a map such that,

for all u and v in }Rn ,)

(6.2.1 )) If(u)
- f(v)1 == lu

-
vi.)

An isometry will map a figure to a congruent figure.)

Examples 6.2.2

(a) Orthogonal linear operatorsare isometries.)

Because an orthogonal operator cp is linear, cp(u) -
cp( v) = cp(u - v), so Icp(u)

-
cp( v) I

=

Icp( u - v) I, and because cp is orthogonal, it preserves dot products and therefore lengths,
so Icp(u

- v)1 == lu
- vi.

(b) Translation t a by a vector a, the map defined by ta(x) == x + a, is an isometry.

Translations are not linear operators because they don't send 0 to 0, exceptof course

for translation by the zero vector, which is the identity map.

(c) The compositionof isometries is an isometry. 0)

Theorem 6.2.3The following conditions on a map ({J:\037n \037 \037n are equivalent:

(a) ({J is an isometry that fixes the origin: cp(O)
= 0,

(b) cp preserves dot products: (cp(v)
.

cp( w\302\273
== (v . w), for all v and w,

(c) cp is an orthogonal linear operator.)

We have seen that (c) implies (a). The neat proof of the implication (b) ==> (c) that we

present next was found a few years ago by Sharon Hollander, when she was a student in an

MIT algebra class.

Lemma 6.2.4 Let x and y be points of R n
. If the three qot products (x .x), (x

.
y), and

(y \302\267
y) are equal, then x =

y.)))
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Proof Suppose that (x
. x) = (x . y) = (y .

y). Then)

\302\253x
- y) . (x -

y\302\273
= (x. x) - 2(x. y) + (y. y)

= o.)

The\037length of x -
y is zero, and therefore x :=

y.) o)

Proof of Theorem 6.2.3, (b) =}(c): Letq; be a map that preserves dot product.Then it will

be orthogonal, provided that it is a linear operator (5.1.12).To prove that q; is a linear
operator, we must show that q;(u + v) == q;(u) + q;(v) and that q;(cv) = cq;(v), for all u and
v and all scalars c.

Given x in R
n

, we'll use the symbolx' to stand for q;(x). We also introduce the symbol
w for the sum, writing w == u + v. Then the relation q;(u + v) = q;(u) + q;(v) that is to be

shown becomes w' :=u' + v'.
We substitute x = w' and y :=u' + v' into Lemma 6.2.4. To show that w' := u ' + v', it

suffices to show that the three dot products

(w' .w'), (w'.(u'+ v'\302\273, and \302\253u'+ v') . (u' + v'\302\273)

are equal. We expand the second and third dot products. It suffices to show that

(w'
. w') := (w'. u') + (w' .

v')
== (u'. u') + 2(u' . v') + (v' . v').)

By hypothesis, cp preserves dot products. So we may drop the primes: (w' . w') = (w .
w),

etc. Then it suffices to show that)

( 6.2.5)) (w.w) = (w.u)+(w.v) := (u.u)+2(u.v)+(v.v).)

Now whereas w' := u' + v' is to be shown, w = u + v is true by definition. So we may

substitute u + v for w. Then (6.2.5)becomestrue.
Toprove that q;(cv) := ccp(v), we write u := cv, and we must show that u' := cv'. The

proof is analogous to the one we have just given. 0

Proofof Theorem 6.2.3, (a) =} (b): Let q; be an isometry that fixes the origin. With the

prime notation, the distance-preserving property of cp reads)

( 6.2.6)) ( (u' - v') .
(u

I -
v'\302\273:= \302\253u - v) . (u -

v\302\273,)

for all u and v in R
n . We substitute v == o. Since 0' == 0, (u' . u') == (u

. u). Similarly,

(v' . v') =
(v

.
v). Now (b) follows when we expand(6.2.6)and cancel (u . u) and (v .

v)

from the two sides of the equation. 0)

Corollary 6.2.7 Every isometry 1 of]Rn is the composition of an orthogonal linear operator
and a translation. More precisely, if f is an isometry and if 1(0) = a, then f =

taq;, where

fa is a translation and q;is an orthogonal linear operator. This expression for f is unique.)

Proof Let f be an isometry, let a =
f(O), and let cp

:= t-af. Then taC{J
= f. The corollary

amounts to the assertionthat cp is an orthogonal linear operator. Since cp is the composition)))
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of the isometries t-a and f, it is an isometry. Also, cp(O)= t-a/(O) = t-a(a) = 0, so q; fixes
the origin. Theorem6.2.3shows that cp is an orthogonal linear operator. The expression
f =

taCfJ is unique because, since cp(O)= 0, we must have a = 1(0), and then cp
= t- a /. 0

To work with the expressions tacp for isometries, we need to determinethe product

(the composition) of two such expressions.We know that the composition cp1/f of orthogonal

operators is an orthogonal operator. The other rulesare:)

( 6.2.8)) tatb = ta+b and cpt a = ta1cp, where a' = cp(a).)

We verify the last relation: cpta(x) = cp(x+ a) == cp(x) + cp(a) := cp(x) + a' =
ta/cp(x).)

Corollary 6.2.9 The set of all isometries of Jl{n forms a group that we denote by M n , with

composition of functions as its law of composition.)

Proof The con1position of isometries is an isometry, and the inverse of an isometry is an

isometry too, becauseorthogonal operators and translations are invertible, and if f = tacp,
then r 1 =

q;-lt\037l
= cp-1t_ a . This is a composition of isometries. 0

lVote.' It isn't very easy to verify, directly from the definition, that an isometry is invertible.)

The Homomorphism Aln -+ On)

There is an important map Jr: Mn \037 On, defined by dropping the translation part of an

isomctry f. We write f (uniquely) in the form 1 =
tacp, and define n(j) =

cpo)

Proposition 6.2.10 The map JT is a surjective homomorphism. Its kerne] is the set T =
{tv}

of translations, which is a normal subgroupof M n .)

Proof It is obvious that T{ is surjective, and once we show that TC is a homomorphism, it

will be obvious that T is its kernel, hence that T is a normal subgroup. We must show that

if f and g are isometries,then TC(fg)
= TC(j)7r(g). Say that / =

tacp and g = tb 1/f, so that

:rr(j) =
cp and n(g) = 1/1.Then cptb

= tb1cp, where b ' = cp(b)and fg = tacp t b1/l = ta +b1cp1fr.

So n(fg) =
cp1/f

= JT(j)n(g). 0)

Change of Coordinates)

Let P denote an n-dimensional space. The formula tac{) for an isometry depends on our
choiceof coordinates, so let's ask how the formula changes when coordinates are changed.
We will allow changes by orthogonal matrices and also shifts of the origin by translations. In
other words,we may change coordinates by any isometry.

To analyze the effect of sucha change,we begin with an isometry f, a point p of P, and

its image q = f(p), without reference to coordinates. When we introduce our coordinate
system, the space P becomes identified with IRn , and the points p and q have coordinates,

say x = (Xl, . . . , xn)t and Y == (Yl, . . . , Yn)t. Also, the isometry f wil1 have a formula tac{)
in terms of the coordinates; let's call that formula m. The equation q = f(p) translates to)))
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y = m (x) (= tacp(x)). We want to determine what happens to the coordinate vectors and to
the formula, when we change coordinates.The analogous computation for change of basis
in a linear operator gives the clue: In \\vill be changed by conjugation.

Our change in coordinates will be given by some isometry, let's denoteit by 17 (eta).

Let the new coordinate vectors of p and q be x' and y'. Thenew formula m ' for f is the one
such that m

'
(x') = y'. We also have the formula rJ(X') = x analogous to the change of basis

formula PX' = X (3.5.11).
We substitute 17(X

'
) = x and 1](Y')= Y into the equation nl (x) = y, obtaining m 1] (x')

= rJ(Y'), or 1J-
1

mYJ(.x')
= yl. The new formula is the conjugate,asexpected:)

(6.2.11)) I -1
m =

rJ mrJ.)

Corollary 6.2.12 The homomorphism JT: : M n \037 On (6.2.10) does not change when the
origin is shifted by a translation.)

When the origin is shifted by a translation tv = 1], (6.2.11) reads m ' = t-vmt v . Since

translations are in the kernel of Jr and since TC is a homomorphism, TC(m') =
TC(m). 0)

Orientation)

The determinant of an orthogonal operator cp on R n is :f: 1. The operator is said to be
orientation-preserving if its determinant is 1 and orientation-reversing if its determinant is
-1. Similarly, an orientation-preserving (or orientation-reversing) isometry f is one such
that, 'Nhen it is written in the form f =

tacp, the operator cp is orientation-preserving (or

orientation-reversing). An isometry of the plane is orientation-reversing if it interchan\037ges
front and back of the plane, and orientation-preserving if it maps the front to the front.

The map)

(6.2.13)) a:Mn\037{:f:l})

that sends an orientation-preserving isometry to 1 and an orientation-reversing isometry to

-1 is a group homomorphism.)

6.3 ISOMETRIES OF THE PLANE)

In this section we describe isometries of the plane, both algebraically and geometrically.
We denote the group of isometries of the plane by M. To compute in this group, we

choose some special isometriesas generators, and we obtain relations among them. The
relations are somewhat analogous to those that define the symmetric group 83, but because
M is infinite, there are more of them.

We choose a coordinatesystem and use it to identify the plane P with the space JR.2.

Then we choose as generators the translations, the rotations about the origin, and the re-
flection about the e1-axis. We denote the rotation through the angle () by Po, and the
reflection about the el-axisby r. These are linear operators whose matricesR and So were

exhibited before (see (5.1.17)and (5.1.16\302\273.)))
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(6.3.1)

1. translation ta by a vector a: ta(x) = x + a =
[\037\037]

+

[:\037].

2
.

b I () b h
..

( ) [
cos(J - sin (J

] [
Xl

]

. rotatlon Po Y an ang e a out t e orIgIn: pe x == .
() ()

.
SIn cos X2

3. reflection r about the el-axis: r(x) =
[\037

-
n [;\037 J)

We haven't listed all of the isometries.Rotations about a point other than the origin
aren't included, nor are reflections about other lines, or glides. However, every element of

M is a product of these isometries, so they generate the group.)

Theorem 6.3.2 Let m be an isometry of the plane. Then m == tvpe, or else m == tvPer, for

a uniquely determined vector v and angle (), possibly zero.)

Proof Corollary 6.2.7asserts that any isometry m is written uniquely in the form m == tvCfJ

where ({J is an orthogonal operator. And the orthogonal linear operatorson R
2 are the

rotations Po about the origin and the reflections about lines through the origin. The

reflections have the form Per (see (5.1.17\302\273. 0

An isometry of the form tvpe preservesorientation while tvPer reverses orientation.

Computation in M can be done with the symbols tv,p(), and r, using the following rules

for composing them. The rulescanbe verified using Formulas 6.3.1 (see also (6.2.8\302\273.

Petv == t vl Pe, where v' == Pee v),

(6.3.3) rt v == tvlr, where v' == rev),

rPe == P-e r .

tvt w == t v+ w , PeP.\"
==

Pe+.\", and rr == 1.)

The next theorem describes the isometries of the plane geometrically.

Theorem 6.3.4 Every isometry of the plane has one of the following forms:

(a) orientation-preserving isometries:

(i) translation:a map tv that sends p \037 p + v.

(ii) rotation: rotation of the plane through a nonzero angle ()about some point.

(b) orientation-reversing isometries:

(i) reflection: a bilateral symmetry about a line .e.
(ii) glide reflection (or glide for short): reflectionabout a line .e,followed by translation

by a nonzero vector parallel to .e.

The proof of this remarkable theorem is below. One of its consequences is that the

compositionof rotations about two different points is a rotation about a third point, unless it)))
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is a translation. This isn't obvious, but it follows from the theorem, because the composition
preservesorientation.

Somecompositions are easier to visualize. The composition of rotations through

angles ex and f3 about the same point is a rotation about that point, through the angle
ex + f3. The composition of translations by the vectors a and b is the translation by their

sum a + b.
The composition of reflections about nonparallel lines \302\2431,\302\2432is a rotation about the

intersection point p ==
\302\2431n \302\2432.This also follows from the theorem, becausethe composition

is orientation-preserving, and it fixes p. The compositionof reflections about parallel lines
is a translation by a vector orthogonal to the lines.)

Proof of Theorem (6.3.4). We consider orientation-preserving isometries first. Let f be an

isometry that preserves orientation but is not a translation. We must prove that f is a
rotation about some point. We choose coordinates to write the formula for f as m == taPe

as in (6.3.3). Since m is not a translation, 8*0.)

Lemma 6.3.5 An isometry f that has the form m == taPe, with ()\"* 0, is a rotation through

the angle () about a point in the plane.)

Proof To simplify notation, we denotePo by p. To show that f represents a rotation with

angle e about some point p, we change coordinatesby a translation t p. We hope to choose
p sothat the new formula for the isometry f becomesm '

== p. If so, then f will be rotation

with angle e about the point p.

The rule for change of coordinates is t p (x') == x, and therefore the new formula for f is
m' == t

p
1mt p ==

t-ptapt p (6.2.11). We use the rules (6.3.3):ptp
:=

tp'P' where p' == p(p).

Then if b := - p + a + p' := a + p(p) - p, we will have m' == tbP. We wish to choose p such
that b == O.

Let I denote the identity operator, and let c == cos () and s == sin e. The matrix of the
linear operatorI -

P is)

( 6.3.6))
[

l-c S

]-s l-c .)

Its determinant is 2 - 2c == 2 - 2 cos 8. The determinant isn't zero unless cos 8 := 1,and this

happens only when e == O. Since ()*O, the equation (1 - p)p == a has a unique solution for

p. The equation can be solved explicitly when needed. 0)

The point p is the fixed point of the isometry taPo, and it can be found geometrically,
as illustrated below. The line -e passes through the origin and is perpendicular to the vector

a. The sector with angle () is situated so as to be bisectedby -e, and the fixed point p is
determinedby inserting the vector a into the sector, as shown.)))
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\302\243,
,
,

'\\
'\\

,
'\\

,
'\\

,
a)

o)

(6.3.7)) The fixed point of the isometry taPe.)

To complete the proof of Theorem 6.3.4,we show that an orientation-reversing isometry
m == taPer is a glide or a reflection. To do this, we change coordinates. The isometry Per
\037s

a reflection about a line .eothrough the origin. We may as well rotate coordinatesso that

fa becomes the horizontal axis. In the new coordinatesystem, the reflection becomes our
standard reflectionr, and the translation ta remains a translation, though the coordinates of
the vector a will have changed. Let's use the same symbola for this new vector. In the new
coordinatesystem, the isometry becomes m = tar. It acts as)

[

Xl

]
t

[

Xl

] [

Xl + al
]

m
X2

= a - X2
= -

X2' + a2
\302\267)

This isometry is the glide obtained by reflection about the line .e : {X2 =
\037a2},

followed by

translation by the vector al el. If al = 0, m is a reflection.
This completesthe proof of Theorem 6.3.4. 0)

Corollary 6.3.8The glide line of the isometry taPer is parallel to the line of reflection

of Per. 0)

The isometries that fix the orIgIn are the orthogonal linear operators, so when

coordinates are chosen, the orthogonal group 02 becomesa subgroup of the group of
isometries M. We may also consider the subgroup of M of isometries that fix a point of the
planeother than the origin. The relationship of this group with the orthogonal group is given

in the next proposition.)

Proposition 6.3.9 Assume that coordinates in the plane have been chosen,so that the ortho-

gonal group 02 becomesthe subgroupof M of isometries that fix the origin. Then the group
of isometriesthat fix a point p of the plane is the conjugate subgroup t p Ozt-pl.)

Proof If an isometry m fixes p, then t
p

1mt p fixes the origin: t\037lmtpo
=

t\037lmp
=

t\037l P = o.

Conversely, if m fixes0, then t p mt p
1 fixes p. 0)))
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One can visualize the rotation about a point p this way: First translate by t- p to move p to

the origin, then rotate about the origin, then translate back to p.
We go back to the homomorphism T( : M \037 02 that was defined in (6.2.10). The

discussion above shows this:)

Proposition 6.3.10 Let p be a point of the plane, and let PO,p denote rotation through the

angle e about p. Then Jr(Po,p)= Po.Similarly, if rl is reflection about a line -e or a glide
with glide line l that is parallel to the x-axis, then n(rl) = r. 0)

Points and Vectors

In most of this book, there is no convincing reason to distinguish a point p of the plane
p = \0372 from the vector that goes from the origin 0 to p, which is often written as OP in

calculus books. However, when working with isometries, it is best to maintain the distinction.

So we introduce another copy of the plane, we call it V, and we think of its elements as
translation vectors. Translation by a vector v in V acts on a point p of P as tv(p) = P + v.

It shifts every point of the plane by v.

Both V and P are planes. The difference between them becomes apparent only when
we change coordinates.Supposethat we shift coordinates in P by a translation: 1}

= two The

rule for changingcoordinatesis rJ(p') ==
p, or p' + w = p. At the same time, an isometry

m changes to m ' = rJ-1mrJ = t-wmt w (6.2.11). If we apply this rule with m = tv, then

m
' = t-wtvt w == tv. The points of P get new coordinates,but the translation vectors are

unchanged.
On the other hand, if we change coordinates by an orthogonal operator cp, then

.
cp(p') = p, and if m = tv, then m

' =
cp-1tvCP

= tvl, where v' = cp-1v.So cpv
' = v. The effect

of change of coordinates by an orthogonal operator is the sameon P ason V.

\"The only difference between P and V is that the origin in P needn't be fixed, whereas
the zero vector is picked out as the origin in V.

Orthogonal operators act on V, but they don't act on P unlessthe origin is chosen.)

6.4 FINITE GROUPS OF ORTHOGONAL OPERATORS ON THE PLANE)

Theorem 6.4.1 Let G be a finite subgroup of the orthogonal group 02. There is an integer
n such that G is one of the following groups:

(a) en: the cyclic group of order n generated by the rotation p(), where () = 2n In.
(b) Dn:the dihedral group of order 2n generated by two elements: the rotation Po, where

() = 2n In, and a reflection r
' about a line .ethrough the origin.)

We will take a moment to describe the dihedral group Dn beforeproving the theorem.

This group depends on the line of reflection, but if we choose coordinatesso that l

becomes the horizontal axis,the group will contain our standard reflection r, the onewhose

matrix is)

( 6.4.2))
[1 -1].)))
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Then if we also
w\037ite p for Po, the 2n elements of the group will be the n powers pi of

p and the n products pi r. The rule for commuting p and r is)

rp =

[1 -1][\037 -;]=[_\037 ;][1 -1]
_ p-1r,)

where c = cos 8, s = sin8, and 8 = 2]\"( In.
To conform with a more customary notation for groups,we denotethe rotation

P2TC/n

by x, and the reflection r by y.)

Proposition 6.4.3 The dihedral group Dn has order2n.It is generated by two elements x
and y that satisfy the relations)

x n == 1,) y2 = 1,)
-1yx == x y.)

The elements of Dn are)

1
2 n-l 2 n-l, X, X , . . . , x ; y, xy, x y, . . . ,x y.) o)

Using the first two relations (6.4.3), the third one can be rewritten in various ways. It is

equivalent to)

(6.4.4)) xyxy = 1, and also to yx =
xn-ly.)

When n = 3, the relations are the sameas for the symmetric group 53 (2.2.6).)

Corollary6.4.5The dihedral group D3 and the symmetric group S3are isomorphic. 0)

Forn > 3, the dihedral and symmetricgroupsare not isomorphic, l?ecause Dn has order 2n,
while Sn has order n!.

When n > 3, the elements of the dihedral group Dn are the orthogonal operators that

carry a regular n-sidedpolygon \037 to itself - the group of symmetries of \037. This is easy to

see, and it follows from the theorem: A regular n-gon is carriedto itself by the rotation by
2JrIn about its center,and also by some reflections. Theorem 6.4.1identifies the group of all

symmetries as Dn.

The dihedralgroups Dl, D2 are too small to be symmetry groups of an n-gon in the

usual sense. Dl is the group {I, r} of two elements. So it is a cyclicgroup,as is C2.But

the element r of Dl is a reflection, while the element different from the identity in C2 is the
rotation with angle Jr. The group D2 contains the four elements {1, p, r, pr}, where p is
the rotation with angle Jr and pr is the reflection about the vertical axis. This group
is isomorphicto the Klein four group.

If we like, we can think of Dl and D2 as groups of symmetry of the I-gon and 2-gon:)

C>) C>)
I-gon.) 2-gon.)))
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We begin the proof of Theorem6.4.1now. A subgroup 1 of the additive group \037+ of

real numbers is called discrete if there is a (small) positive real number E such that every
nonzero element c of r has absolute value > E.)

Lemma 6.4.6 Let r be a discretesubgroup of \037+. Then either r = {OJ,or r is the set tla of

integer multiples of a positive real number a.)

Proof This is very similar to the proof of Theorem 2.3.3,that a nonzero subgroup of Z+ has
the form '!In.

If a and b are distinct elements of r, then since r is a group, a - b is in r, and

la - bl > E. Distinct elements of r are separated by a distance at least E. Since only finitely

many elements separated by E can fit into any bounded interval, a boundedinterval contains

finitely many elements of r.
Supposethat r =F{O}. Then r contains a nonzero element b, and since it is a group, r

contains-b aswell.Soit contains a positive element, say a'. We choose the smallest positive
element a in 1. We can do this because we only need to choose the smallestelementof the

finite subset of r in the interval 0 < x < a'.
We show that r = Za. Sincea is in rand r is a group, Za C r. Letbbe an element of

r. Then b = ra for some real number r. We take out the integer part of r, writing r = m + ro
with m an integer and 0 < ro < 1.Since r is a group, b' = b - ma is in r and h' = roa.Then

o < b' < a. Sincea is the smallest positive element in r, b' must be zero. Sob = ma,which

is in Za. This shows that r C ?la, and therefore that r = '!la. D

Proof of Theorem (6.4.1). Let G be a finite subgroup of 02. We want to show that G is Cn

or Dn. We remember that the elements of 02 are the rotations pe and the reflections Per.)

Case1:All elements of G are rotations.)

We must prove that G is cyclic. Let 1 be the set of real numbers ex such that Pa is in

G. Then r is a subgroup of the additive group \037+, and it contains 2Jr. Since G is finite, r is

discrete. So r has the form Za. Then G consists of the rotations through integer multiples
of the angle ex.Since 2Jr is in r, it is an integer multiple of a. Thereforea = 2TC / n for some
integer n, and G = Cn.)

Case 2: G contains a reflection.)

We adjust our coordinates so that the standard reflection r is in G. Let H denote the

subgroup consistingof the rotations that are elements of G.We apply what has been proved
in Case 1 to conclude that H is the cyclic group generated by Pe, for some angle () = 2n/n.
Then the 2n products pZ and pZr, for 0 < k < n - 1, are in G, so G contains the dihedral
group Dn. We claim that G == Dn, and to show this we take any element g of G. Theng
is either a rotation or a reflection.If g is a rotation, then by definition of H, g is in H. The

elements of H are alsoin Dn, so g is in Dn. If g is a reflection,we write it in the form Par
for somerotation Pal Since r is in G, so is the product gr = Pa.ThereforePa is a power _of

Po, and again, g is in Dn. D)))
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Theorem 6.4.7 Fixed Point Theorem. Let G be a finite group of isometries of the plane.
Thereisa point in the plane that is fixedby every element of G, a point p such that g(p) = p
for all g in G.)

Proof This is a nice geometricargument. Let S be any point in the plane, and let S be the
set of points that are the images of S under the various isometries in G. So each elements'
of S has the form s' == g(s) for some g in G. This set is called the orbit of s for the action
of G. The element s is in the orbit because the identity element 1 is in G, and s = l(s). A

typical orbit for the case that G is the group of symmetriesof a regular pentagon is depicted
below,together with the fixed point p of the operation.

Any element of G will permute the orbit S. In other words, if s' is in Sand h is in G,

then h(S') is in S: Say that s' = g(s), with g in G. Since G is a group,hg is in G. Then

hg(s) is in S and is equal to h(S/).)

. .
. .
.

*P .s)

. .)

. .)

We list the elements of S arbitrarily, writing S = {Sl, . . . , sn}.The fixed point we are

looking for is the centroid, or center of gravity of the orbit, defined as

(6.4.8) P ==
\037(Sl + . . . + sn),)

where the right side is computed by vector addition, using an arbitrary coordinate system in

the plane.)

Lemma 6.4.9 Isometries carry centroidsto centroids: Let S = {s!, . . . , sn} be a finite set of

points of the plane, and let p be its centroid,as defined by (6.4.8). Let m be an isometry.Let
m(p) = p' and m(si) ==

sf'
Then p' is the centroid of the set S' =

{s\037,
. . . , s\037}. 0)

The fact that the centroid of our s\037t S is a fixed point follows.An element g of G permutes
the orbit S. It sends S to S and therefore it sends p to p. 0

Proof of Lemma 6.4.9This can be deduced by physical reasoning. It can be shown alge-

braically too. To do so, it suffices to look separately at the cases m = fa and m =
cp, where

cp is an orthogonal operator. Any isometry is obtained from such isometriesby composition.
Case1:m = fa is a translation. Then s; = Si+ a and p'

= p + a. It is true that

p' = p + a =
k\302\253Sl + a) +... + (sn + a\302\273= k(s\037 + ... + s\037).)

Case 2: m =
cp is a linear operator. Then

p' = cp(p)==
CP(k(Sl +... + sn\302\273

=
*(cp(Sl) + ... + CP(Sn\302\273

=
k(s\037 + ... + s\037). 0)))
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By combining Theorems 6.4.1 and 6.4.7 one obtains a descriptionof the symmetry

groups of bounded figures in the plane.)

Corollary 6.4.10 Let G be a finite subgroup of the group M of isometriesof the plane.

If coordinates are chosen suitably, G becomes one of the groups Cn or Dn described in

Theorem 6.4.1. 0)

6.5 DISCRETE GROUPS OF ISOMETRIES)

In this section we discuss groups of symmetriesof unbounded figures such as the one depicted
in Figure 6.1.5. What I call the kaleidoscopeprinciple can be used to construct a figure with

a given group of symmetries.You have probably looked through a kaleidoscope. One sees
a sectorat the end of the tube, whose sidesare bounded by two mirrors that run the length
of the tube and are placedat an angle e, such as e = Jr /6. One also sees the reflection of the
sectorin each mirror, and then one sees the reflection of the reflection, and so on.Thereare
usually some bits of colored glass in the sector, whose reflections form a pattern.

Thereis a group involved. In the plane at the end of the kaleidoscope tube, let \302\2431and

l2 be the lines that bound the sector formed by the mirrors. The group is a dihedral group,
generatedby the reflections ri about fi. The productrlr2 of these reflections preserves
orientation and fixesthe point of intersection of the two lines, so it is a rotation. Its angle of
rotation is :t: 2e.

One can use the same principle with any subgroup G of M. We won't give precise

reasoning to show this, but the method can be made precise. We start with a random figure
R in the plane. Every element g of our group G will move R to a new position, call it gR.

The figure F is the union of all the figures gR. An element h of the group sends g R to hg R,
which is also a part of F, so it sends F to itself. If R is sufficiently random, G will be the
group of symmetries of F. As we know from the kaleidoscope, the figure F is often very
attractive. The result of applying this procedure when G is the group of symmetries of a
regular pentagon is shown below.)

\037)

Of course many different figures have the same group of symmetry. But it is interesting and
instructive to describe the groups. We are going to presenta rough classification, which will

be refined in the exercises.

Some subgroups of M are too wild to have a reasonable geometry. For instance,if the

angle () at which the mirrors in a kaleidoscope are placed were not a rational multiple of 21T,)))
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there would be infinitely many distinct reflections of the sector. We need to rule this

possibility out.)

Definition 6.5.1 A group G of isometriesof the plane P is discrete if it does not contain

arbitrarily small translations or rotations.Moreprecisely, G is discrete if there is a positive
real number E so that:

(i) if an element of G is the translation by a nonzero vector a, then the length of a is at

least E: lal > E, and

(ii) if an element of G is the rotation through a nonzero angle e about some point of the

plane, then the absolute value of () is at least E: lei > E.)

Note.' Since the translation vectors and the rotation angles form different sets, it might seem

more appropriate to have separatelower bounds for them. However, in this definition we

don't care about the bestbounds for the vectors and the angles, so we chooseE small enough
to take care of both at the same time. 0

The translations and rotations are all of the orientation-preserving isometries (6.3.4),
and the conditions apply to all of them. We don't impose a condition on the orientation-

reversing isometries. If m is a glide with nonzero glide vector v, then m 2 is the translation

t2v' So a lower bound on the translation vectors determines a bound for the glidevectors too.

There are three main tools for a\037alyzing a discrete group G:)

(6.5.2)) \302\267the translation group L, a subgroup of the group Y of translation vectors,
\302\267the point group G, a subgroup of the orthogonal group 02,

\302\267an operation of G on L.)

The TranslationGroup)

The translation group L of G is the set of vectors v such that the translation tv is in G.)

(6.5.3)) L == {v E Y
I tv E G}.)

Since tvt w = t v + w and t\037l
= t-v, L is a subgroup of the additive group Y+ of all translation

vectors.The bound E on translations in G bounds the lengths of the vectors in L:)

(6.5.4)) Every nonzero vector v in L has length Ivl
> E.)

. A subgroup L of one of the additive groups V+ or }Rn+ that satisfies condition (6.5.4) for
some E > 0 is called a discretesubgroup. (This is the definition made before for }R+.)

A subgroup L is discrete if and only if the distance between distinct vectors a and b

of L is at least E. This is true because the distance is the length of b -
Q, and b - a is in L

because L is a group. If (6.5.4)holds,then Ib
- al > E. 0)

Theorem6.5.5 Every discrete subgroup L of y+ or of JR.2+ is one of the following:

(a) thezerogroup: L =
{OJ.)))
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(b) the set of integer multiples of a nonzero vector a:

L = tla = {ma I
m E Z}, or)

(c) the set of integer combinations of two linearly independent vectors a and b:

L = Za + Zb = {ma+ nb 1m,n Ell}.)

Groups of the third type listed above are called lattices,and the generating set (a, b) is called
a lattice basis.)

. . . . . . . . . . .

. . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . .

. . . . . . . . . . .
( 6.5.6) A Lattice)

Lemma 6.5.7 Let L be a discretesubgroup of V+ or ]R2+.

(a) A bounded region of the plane contains only finitely many points of L.

(b) If L is not the trivial group, it contains a nonzero vector of minimal length.)

Proof (a) Since the elements of L are separated by a distance at least \342\202\254,a small square can
contain at most one point of L. A region of the plane is bounded if it is contained in some

large rectangle. We can cover any rectangle by finitely many small squares, each of which

contains at most one point of L.)

(b) We say that a vector v is a nonzero vector of minimal length of L if L contains no shorter
nonzerovector.To show that such a vector exists, we use the hypothesis that L is not the
trivial group. There is some nonzero vector a in L. Then the disk of radius lal about

the origin is a bounded region that contains a and finitely many other nonzero pointsof L.

Some of those points will have minimal length. 0

Given a basisB = (u, w) of]R2, we let n (B)denotethe parallelogram with vertices

0, u, w, u + w. It consists of the linear combinations ru + sw with 0 < r < 1 and 0 < s < 1.
We also denote by n'(B) the region obtained from TI(B) by deleting the two edges
[u, u + w] and [w, u + w]. It consistsof the linear combinations ru + sw with 0 < r < 1 and
o < s < 1.)

Lemma 6.5.8 Let B = (u, w)beabasis ofIR
2

, and let L be the lattice of integer combinations
of B. Every vector v in ]R2 can be written uniquely in the form v = x + Va, with x in Land

Vo in O'(B).)))
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Proof Since B is a basis, every vector is a linear combination ru + sw, with real coefficieints

rand s. We take out their integer parts, writing r == m + ro and s == n + So, with m, n integers
and 0 < ro, So < 1. Then v == x + vo, where x == mu + nv is in Land Vo == rou + SaW is in

n'(B). There is just one way to do this. 0

Proof of Theorem 6.5.5 It is enough to considera discretesubgroup L of }R2+. The case that

L is the zero group is included in the list. If L =t{0},there are two possibilities:)

Case 1: All vectors in L lie on a line l through the origin.

Then L is a subgroup of the additive group of .e+, which is isomorphic to Jl{+.Lemma 6.4.6
showsthat L has the form 'La.)

Case2:Theelementsof L do not lie on a line.)

In this case\" L contains independent vectorsa' and b
'
, and then H' == (a', b') is a basis of JR2.

We must show that there is a lattice basis for L.

We first consider the line .e spanned by a
'
. The subgroup L n f of .e+ is discrete, and a '

isn'tzero.Soby what has been proved in Case 1, L has the form Za for some vector a. We

adjust coordinates and rescale so that a becomes the vector (1, O)t.

Next, we replace b' ==
(b\037, b;)t by -b '

if necessary, so that
b\037

becomes positive. We

look for a vector b == (b I , b 2)t in L with b2 positive, and otherwise as small as possible.i\\

priori, we have infinitely many elements to inspect.However, since h' is in L, we only need
to inspectthe elements b such that 0 < bz

< b 2 0 Moreover, we may add a multiple of a to
b, so we may also assume that 0 < hI < 1.When this is done, b will be in a bounded region
that contains finitely many elements of L. We look through this finite set to find the required

element b, and we show that B = (a, b) is a lattice basis for L.

Let L == Za + Zb. Then L C L. We
must_show

that every element of L is in L, and

according to Lemma 6.5.8,appliedto the lattice L, it is enough to show that the only element

of L in the region 0' (B) is the zerovector.Let C = (CI, C2)t be a point of L in that region,
so that 0 < CI < 1 and 0 < C2 < b2. Since b2 was chosen minimal, C2 == 0, and c is on the line
f. Then c is an integer multiple of a, and since 0 < Cl < 1,c = O. 0)

The Point Group)

We turn now to the second tool for analyzing a discrete group of isometries. We choose
coordinates,and go back to the homomorphism 1T:M --+ 02 whose kernel is the group T
of translations (6.3.10). When we restrict this homomorphism to a discrete subgroup G, we
obtain a homomorphism)

( 6.5.9)) nfG: G --+Oz.)

The point group G is the image of G in the orthogonal group 02.
It is important to \037ake a clear distinction between elementsof the group G and

those of its point grouE.... G. So to avoid confusion,we will put bars over symbols when they
represent elements of G. For g in G, g w ill be an orthogonal operator.

By definition, a rotation P e is in G if G contains an element of the form taPe, and this

is a rotation through
the same angle e about some point of the plane (6.3.5). The inverse)))
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image in G of an element Po of G consists of the elements of G that are rotations through
the angle e about various points of the plane.

Similarly, let .edenotethe line of reflection of Per. As we have noted before, its angle
with the el :axis is !e (5.1.17).The point group G contains Per if there is an element taPer in

G, and taPer is a reflection or a glide reflection along a line parallel to .e(6.3.8).The inverse

image of Per consists of all of the elements of G that are reflections or glidesalonglines
parallel to f. To sum up:

\302\267The point group G records the anglesof rotation and the slopes of the glidelinesand the

lines of reflection, of elements of G.)

Proposition 6.5.10 A discrete subgroup G of O 2 is finite, and is therefore either cyclicor
dihedral.)

Proof Since G contains no small rotations, the set r of real numbers ()such that pe is in G
is a discrete subgroupof the additive group 1R+ that contains 2n. Lemma 6.4.6 tells us that

r has the form ze, where e = 2nIn for some integer n. At this point, the proof of Theorem
6.4.1carriesover. 0)

The Crystallographic Restriction)

If the translation group of a discretegroup of isometries G is the trivial group, the restriction

of Tr to G will be injective. In this case G will be isomorphic to its point group G, and will

be cyclic or dihedral. The next propositionis our third tool for analyzing infinite discrete

groups. It relates the point group to the translation group.

Unless an origin is chosen, the orthogonal group 02 doesn'toperateon the plane P.

But it does operate on the space V of translation vectors.)

Proposition 6.5.11 Let G be a discretesubgroup of M . Let a be an element of its translation

group L, and let g be an element of its point group G. Then g(a) is in L.)

We can restate this proposition by saying that the elements of G map L to itself. So G is
contained in the group of symmetries of L, when L is regarded as a figure in the plane V.

Proof of Proposition 6.5.11Leta and g be elements of Land G, respectively,let g be the

image of gin G , and let a' = g(a).We will show that tal is the conjugate gtag-
1. This will

show that tal is in G, and therefore that a ' is in L. We write g =
tbCP' Then cp is in 02 and

g =
cp o So a

' =
cp (a). Using the formulas (6.2.8), we find:

gtag-
1

== (tbCP)ta(CP-1t-b) == tbtalcpcp-1t-b = tal.) o)

Note: It is important to understand that the group G does not operate on its translation

group L. Indeed, it makes no sense to askwhether G operates on L, because the elements
of G are isometries of the plane P, while L is a subset of V. Unless an origin is fixed, P is not

the same as V. If we fix the origin in P, we can identify P with V. Then the question makes
sense.We may ask:.ls there a point of P so that with that point as the origin, the elements
of G carry L to itself? Sometimesyes,sometimes no. That depends on the group. 0)))
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The next theorem describes the point groupsthat can occur when the translation group
L is not trivial.)

Theorem 6.5.12 Crystallographic Restriction. Let L be a discretesubgroup of V+ or \0372+,

and let H C 02 be a subgroupof the group of symmetries of L. Supposethat L is not the
trivial group. Then

(a) every rotation in H has order 1, 2, 3, 4, or 6, and

(b) H is one of the groups C n or Dn, and n = 1,2,3,4, or 6.)

In particular, rotations of order 5 are ruled out. Thereisno wallpaper pattern with five-fold

rotational symmetry (\"Quasi-periodic\"patterns with five-fold symmetry do exist. See, for
example,[Senechal].)

Proofofthe Crystallographic Restriction We prove (a). Part (b) follows from (a) and from
Theorem 6.4.1.Let p be a rotation in H with angle 8, and let a be a nonzerovector in L

of minimal length. Since H operateson L, pea) is alsoin L. Then b = pea) - a is in L

too, and since a has a minimal length, Ihl > lal. Looking at the figure below, one sees that

Ihl < lal when () < 2TC /6. So we must have () > 2TC /6. It follows that the group H isdiscrete,
hence finite, and that p has order < 6.)

o)

The case that e = 2TC /5 can be ruled out too, because for that angle, the element b ' =
p2(a)+ a isshorter than a:)

a) D)

6.6 PLANE CRYSTALLOGRAPHIC GROUPS)

We go backto our discretegroup of isometries GeM. We have seen that when L is the

trivial group, G is cyclic or dihedral. The discretegroups G such that L is infinite cyclic

(6.5.5)(b) are the symmetry groups of frieze patterns such as those shown in (6.1.3), (6.1.4).

We leave the classificationof those groups as an exercise.
When L is a lattice, G is called a two-dimensional crystallographic group. These

crystallographic groups are the symmetry groups of two-dimensional crystals such asgraphite.
We imagine a crystal to be infinitely large. Then the fact that the molecules are arranged
regularly implies that they form an array having two independent translational symmetries.
A wallpaper pattern also repeats itself in two different directions - once along the strips of

paper because the pattern is printed using a roller, and a second time because strips of paper
are glued to the wall side by side. The crystallographic restriction limits the possibilities and)))
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allows one to classify crystallographic groups into 17 types. Representative patterns with the

various types of symme try are illustrated in Figure (6.6.2).
The point group G and the translation group L do not determine the group G

completely. Things are complicated by the fact that a reflection in G needn't be the image

of a reflection in G. It may be represented in G only by glides, as in the brick pattern
that is illustrated below.This pattern (my favorite) is relatively subtle becauseits group of

symmetries doesn't contain a reflection. It has rotational symmetries with angle TCabout
the center of each brick. All of these rotations represent the same element Pn of the

point group G. There are no nontrivial rotational symmetries with angles other than 0

an d Jr. The Eattern also has glidesymmetry along the dashed line drawn in the figure, so
G = D2= {I,Pn , r, Pn r }.)

One can determine the point group of a pattern fairly easily, in two steps: One looks
first for rotational symmetries. They are usually relatively easy to find. A rotation Po in the

point group G is representedby a rotation with the same angle in the group G of symmetries
of the pattern. When the rotational symmetries have been found, one will know the integer
n such that the point group is C n or Dn. Then to disting uis h Dn from Cn, on\037}ooks

to see

if the pattern has reflection or glide symmetry. If it does, G = Dn, and if not, G = Cn.)

Plane CrystallographicGroupswith a Fourfold Rotation in the Point Group

As an example of the methods used to clas\037ify discrete groups of isometries, we analyze
groupswhose point groups are C4 or D4. _

Let G be such a group, let P denote the rotation with angle Jr /2 in G, and let L be the

lattice of G, the set of vectors v such that tv is in G.)

Lemma 6.6.2 The lattice L is square.

Proof We choose a nonzero vector a in L of minimal length. The point group operateson
L,sopea)

= b is in L and is orthogonal to a. We claim that (a, b) is a lattice basis for L.

Suppose not. Then according to Lemma 6.5.8,there will be a point of L in the region

n '
consisting of the points rIa + r2bwith 0 < ri < 1. Sucha point w will be at a distance less

than lal from one of the four vertices 0,a, b,a + b of the square. Call that vertex v. Then
v - w is also in L, and Iv -

wi < lal. This contradicts the choice of a. D

We choose coordinates and rescaleso that a and b become the standard basis vectors
el and e2. Then L becomes the lattice of vectors with integer coordinates, and n ' becomes
the set of vectors (s, t)t with 0 < s < 1 and 0 < t < 1. This determinescoordinatesin the

plane P up to a translation.)))
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\

( 6.6.2)) Sample Patterns for the 17PlaneCrystallographic Groups.)))
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The orthogonal operatorson V that send L to itself form the dihedral group D4

generated by the rotation p through the angle 1T /2 and the standard reflection r. Our
assumption is that p is in G . If r is also in G , then G is the dihedral group D4. If not, G is

the cyclic group C4. We describe the group G when G is C4first. Let g be an elelnent of G
whose image in G is the rotation p. Then g is a rotation through the angle 1T /2 about some

point p in the plane. We translate coordinates in the plane P so that the point p becomes
the origin. In this coordinate system, G contains the rotation p =

P1r/2
about the origin.)

Proposition 6.6.3 Let G beaplanecrystallographic group whose point group G is the cyclic

group C4. \\\\iith coordinates chosen so that L is the lattice of points with integer coordinates,
and so that P =: Pn /2 is an element of G, the group G consists of the products lvpi, with v

in Land 0 < i < 4:)

G == {tv pI I v E .l.;}.)

Proof. Let G' denote the set of elementsof the form tvpi with v in L. We must show that

G' = G. By definition of L, tv is in G, and also p is in G. So tvpi is in G, and therefore G'
is a subset of G.

_ To prove the opposite inclusion, let g be any elelnent of G. Since the point group
G is C4, every element of G preserves orientation. So g has the form g =

tuPa for some

translation vector u and some angle O!.The image of this element in the point group is Pa,
soex is a multiple of 17:/2,and Pa = pi for some i. Since p is in G, g p-i = t u is in G and u is
in L. Therefore g is in G'. D)

We now consider the case that the point group G is D4.)

Proposition6.6.4 Let G be a plane crystallographic group whose point group G is the
dihedral group D4. Let coordinates be chosen so that L is the lattice of points with integer

coordinates and so that p =
P7T/2 is an element of G. Also, let c denote the vector

(\037, i)t.
There are two possibilities:

(a) The elementsof G are the products tvCP where v is in Land cp is in D4,)

G = {tv pi Iv E L} U {tvpirlv E L}, or)

(b) the elements of G are products txCP, with qJ in D4. If cp is a rotation, then x is in L, and

if cp is a reflection, then x is in the coset c + L:)

G = {tv pi Iv E L} U {tupirlu E c+ L},)

Proof Let H be the subset of orientation-preserving isometries in G. This is a subgroup
of G whose lattice of translations is L, and which contains p. So its point group is C4 .

Proposition 6.6.3 tells us that H consists of the elements tvpi, with v in L.

The point group also contains the reflection r. We choose an element g in G such that

g = r. It will have the form g = tur for some vector u, but we don't know whether or not u
is in L. Analyzing this case will require a bit of fiddling. Say that u = (p, q)t.

We can multiply g on the left by a translation tv in G (i.e., v in L), to move u into the

region n' of points with 0 < p, q < 1.Let's suppose this has been done.)))
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We compute with g = tur, using the formulas (6.3.3):)

g2 = turtur = t u + ru and (gp)2 = (tu rp)2 = t u + rpu .)

These are elements of G, so u + ru = (2p,O)t, and u + rpu = (p - q,q - p)t are in the

lattice L. They are vectors with integer coordinates. Since 0 < p, q < 1and 2p is an integer,
p is either 0 or !. Since p

- q is also an integer, q = 0 if p = 0 and q =
\037

if p =
\037.

So

there are only two possibilities for u: Eitheru = (0,O)t, or u = c =
(\037, !)t.

In the first case,
g = r, soG contains a reflection. This is case (a) of the proposition. The second possibility is
case(b). 0)

6.7 ABSTRACT SYMMETRY: GROUP OPERATIONS

The conceptof symmetry can be applied to things other than geometric figures. Complex
conjugation(a+bi) --+ (a

- hi), for instance,may be thought of as a symmetry of the complex
numbers. Since complex conjugation is compatible with addition and multiplication, it is

called an automorphism of the field C. Geometrically, it is the bilateral symmetry bf the

complex plane about the real axis, but the statement that it is an automorphism refers to its
algebraicstructure.The field F = Q[ J2] whose elementsare the real numbers of the form

a + b,J2, with a and b rational, also has an automorphism, one that sends a + b,J2 --+ a - b,J2.
This isn't a geometricsymmetry. Another example of abstract \"bilateral\" symmetry is given

by a cyclicgroup H of order 3. It has an automorphism that interchanges the two elements
different from the identity.

The set of automorphisms of an algebraic structure X, such asa group or a field, forms
a group, the law of composition being composition of maps.Each automorphism should be

thought of as a symmetry of X, in the sense that it is a permutation of the elementsof X that

is compatible with its algebraic structure. But the structure in this case is algebraic instead of
geometric.

Sothe words \"automorphism\" and \"symmetry\" are more or lesssynonymous, except

that \"automorphism\" is used to describea permutation of a set that preserves an algebraic
structure, while \"symmetry\" often, though not always, refers to a permutation that preserves
a geometric structure.

Both automorphisms and symmetries are special cases of the more general concept of
a group operation.An operation of a group G on a set S is a rule for combining an element

g of G and an element s of S to get another element of S. In other words, it is a map
G X S \037 S. For the moment we denote the result of applying this law to elements g and s

by g*s. An operation is required to satisfy the following axioms:)

Example 6.7.1

(a) l(1cs = s for all sin S. (Here 1is the identity of G.)

(b) associative law: (gg')*s= g*(g'*s),for all g and g' in G and all s in S.)

We usually omit the asterisk, and write the operation multiplicatively, as g, s --+ gs. With

multiplicative notation, the axioms are Is = sand(gg')s= g(g's).)))
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Examples of sets on which a group operates can be found manywhere,
l and most often,

it will be clear that the axioms for an operation hold. The group M of isometriesof the plane

operates on the set of points of the plane. It also operates on the set of lines in the plane and
on the set of triangles in the plane. The symmetric group Sn operates on the set of indices

{I, 2,..., o}.
The reasonthat such a la\\\\t is called an operation is this: If we fix an element g of G

but let s vary in S, then left rnultiplication by g (or operation of g) defines a map from S to
itself.We denote this map, which describes the way the elernent g operates, by m

g:)

(6.7.2)) mg:S \037 S)

is the map defined by n'lg(s) ==
gs. It is a permutation of ..5\037a bijective map, because it has

the inverse function In
g-l: multiplication by g-l.

\302\267Given an operation of a group G ona setS,an element s of S will be sent to various other
elements by the group operation. We coHeet together thoseelements,obtaining a subset

called the orbit Os of s:)

(6.7.3)) Os =
{Sf ESt S' = gs for some g in G}.)

When the group M of isometriesof the plane operates on the set S of triangles in the

plane, the orbit 0 \037 of a given triangle \037 is the set of all triangles congruent to \037. Another

orbit was introduced when we proved the existence of a fixed point for the operationof a

finite group on the plane (6.4.7).
The orbits for a group action are equivalenceclassesfor the equivalence relation)

(6.7.4)) S\037s' if S'=gs, forsomeginG.)

So if s \037
S', that is, if S' = gs for some g in G, then the orbits of s and of S' are the same.

Sincethey are are equivalence classes:)

(6.7.5)) The orbits partition the set S.)

The group operates independently on eachorbit.For example,the set of triangles of
the plane is partitioned into congruence classes, and an isometry permutes eachcongruence
classseparately.

If S consists of just one orbit, the operation of G is called transitive. This means
that every element of S is carried to every other one by some element of the group.The
symmetric group Sn operates transitively on the set of indices {I, . . . , n}. The group M of

isometries of the plane operates transitively on the set of points of the plane,and it operates

transitively on the set of lines.It Qoes not operate transitively on the set of triangles.

\302\267Tne stabilizer of an element s of S is the set of group elementsthat leave s fixed. It is a
subgroupof G that we often denote by G s :

(6.7.6) G s = {g E Gigs
= s}.)

1
While writing a book, the mathematician Masayoshi Nagata decided that the English language needed this

word; then he actually found it in a dictionary.)))
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For instance, in the operation of the group M on the set of points of the plane, the stabilizer
of the origin is isomorphic to the group 02 of orthogonal operators. The stabilizer of the
index n for the operation of the symmetric group Sn is isomorphic to the subgroup Sn-l
of permutations of {I, . . . , n-l}. Or, if S is the set of triangles in the plane, the stabilizer
of a particular equilateral triangle \037 is its group of symmetries, a subgroupof M that is

isomorphic to the dihedral group D3.

Note:It is important to be clear about the following distinction:When we say that an isometry
m stabilizesa triangle \037, we don't mean that m fixesthe points of \037. The only isometry that
fixes everypoint of a triangle is the identity. We mean that in permuting the set of triangles,
m carries\037 to itself. 0

Just as the kernel K of a group homomorphism cp: G --> G' tells us when two elements
x and y of G have the same image, namely, if x-I y is in K, the stabilizer G s of an element s

of S tells us when two elements x and y of G act in the same way on s.)

Proposition 6.7.7 Let Sbeaseton which a group G operates, let s be an element of S, and
let H be the stabilizer of s.

(a) If a and b are elementsof G, then as == bs if and only if a-Ib is in H, and this is true if

and only if b is in the coset aHa

(b) Suppose that as == s'. The stabilizer H' of s' isa conjugate subgroup:)

H' == aHa-
1

== {g E Gig == aha-
l for some h in H}.)

Proof. (a) as == bs if and only if s == a-I bs.

(b) If g is in aHa-I, say g == aha- 1 with h in H, then gs' == (aha-
l
)(as) == ahs == as == s',

so g stabilizes s'. This showsthat aHa-
l C H'. Since s == a-Is', we can reverse the roles

of sand s', to conclude that a-I H' a C H, which implies that H' C aHa-I. Therefore
H' == aHa-I. D)

Note: Part (b) of the proposition explains a phenomenon that we have seen several times
before: When as == Sf, a group element g fixess if and only if aga-

I fixes S'.)

6.8 THE OPERATION ON COSETS)

Let H be a subgroupof a group G. As we know, the left cosets aH partition G. We often
denotethe set of left cosets of H in G by G / H, copying this from the notation used for

quotient groupswhen the subgroup is normal (2.12.1), and we use the bracket notation [C]
for a coset C, when it is considered as an element of the set G / H.

The set of cosets G / H is not a group unlessH is a normal subgroup. However,

. The group G operates on G / H in a natural way.

The operation is quite obvious:If g is an element of the group, and C is a coset, then

g[C] is defined to be the coset[gC],where gC
== {gc ICE C}. Thus if [C] = [aH], then

g[ C] ==
[gaR]. The next proposition is elementary.)))
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Proposition6.8.1LetH be a subgroup of a group G.
,

(a) The operation of G on the set G / H of cosets is transitive.

(b) The stabilizer of the coset [H] is the subgroup H.) o)

Note the distinction oncemore:Multiplication by an element h of H does not act trivially
on the elements of the coset H, but it sends the coset [H] to itself.

Pleasework carefully through the next example. Let G be the symmetric group S3
with its usual presentation, and let H be the cyclic subgroup {I, y}. Its left cosets are)

( 6.8.2)) CI = H = {I, y}, C2 = xH = {x, xy}, C3 = x2
H = {x

2
, x2y})

(see (2.8.4)),and G operateson the set of cosets G / H = {[CI],[C2],[C3]}'The elements

x and y operate in the same way as on the set of indices {I, 2, 3}:)

(6.8.3)) m x B (123) and
my

B (23).)

For instance, yC2 =
{yx, yxy} = {x

2
y, x2} = C3.

The next proposition, sometimes called the orbit-stabilizer theorem, showshow an

arbitrary group operation can be describedin terms of operations on cosets.)

Proposition 6.8.4 Let S be a set on which a group G operates, and let s be an element

of S. Let H and Os be the stabilizer and orbit of s, respectively.There is a bijective map
E : G / H-+ Os defined by [aH] \037 as. This map is compatible with the operations of the

group: E(g[C]) ==
gE([ C]) for every coset C and every element g in G.)

For example, the dihedral group Ds operates on the vertices of a regular pentagon.
Let V denote the set of vertices, and let H be the stabilizer of a particular vertex. There is
a bijective map Ds/ H -+ V. In the operation of the group M of isometries of the plane P,
the orbit of a point is the set of all points of P. The stabilizer of the origin is the group 02 of
orthogonal operators,and there is a bijective map M/02 -+ P. Similarly, if H denotes the
stabilizer of a line and if \302\243denotes the set of all lines in the plane, there is a bijective map
M/ H -+ L.)

Proof of Proposition (6.8.4). It is clear that the map E defined in the statement of the
propositionwill be compatible with the operation of the group, if it exists. Symbolically, E

simply replaces H by the symbol s. What is not so clear is that the rule [g H] \037 gs defines a

map at all. Since many symbols g H represent the same coset, we must show that if a and b
are group elements,and if the cosets aH and bH are equal,then as and bs are equal too.
Supposethat aH = bH. Then a-1b is in H (2.8.5).Since H is the stabilizer of s, a-Ibs = s,
and therefore as = bs. Our definition is legitimate, and reading this reasoning backward,
we alsoseethat E is an injective map. Since E carries [g H] to gs, which can be an arbitrary
element of Os,E is surjective as well as injective. 0

No te: The reasoning that we made to define the map E occurs frequently. Suppose that a set

S is presented as the set of equivalence classes of an equivalence relation on a set S, and let)))
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J'(: S -+ S be the map that sends an element s to its equivalenceclasss. A common way to
define a map E from S to another set T is this: Given x in S , one chooses an element s in S
such that x == s, and defines E(X) in terms of s. Then one must show, as we did above, that

the definition doesn't depend on the choice of the element s whose equivalence class isx,
but only on x. This process is referredto as showing that the map is well defined. 0)

6.9 THE COUNTING FORMULA)

Let H be a subgroupof a finite group G. As we know, all cosets of H in G have the same
number of elements, and with the notation GI H for the set of cosets, the order I G I HI is
what is called the index [G :H] of H in G. The Counting Formula 2.8.8becomes)

(6.9.1 )) IGI = IHIIGI HI.)

There is a similar formula for an orbit of any group operation:)

Proposition 6.9.2 Counting Formula. Let5bea finite set on which a group G operates, and
let Gs and Os be the stabilizer and orbit of an element s of 5. Then)

IGI = IGsl/asI, or

(order of G) = (order of stabilizer).(orderof orbit).)

This follows from (6.9.1) and Proposition(6.8.4).
Thus the order of the orbit is equal to the index of the stabilizer,)

o)

(6.9.3)) IDsI = [G:G s ],)

and it divides the order of the group. There ispne such formula for every element s of S.

Another formula uses the partition of the set S into orbits to count its elements. We
number the orbitsthat make up S arbitrarily, as 01, . . . , Ok. Then)

(6.9.4)) 151 == 1011 + 1021 +... + JOkl.)

Formulas 6.9.2 and 6.9.4 have many applications.)

Examples 6.9.5 (a) The group G of rotational symmetries of a regular dodecahedron
operates transItively on the set F of its faces. The stabilizer Gf of a particular face f
is the group of rotations by multiples of 2TC 15 about the center of f; its order is 5. The

dodecahedron has 12 faces. Formula 6.9.2reads60= 5 .12,sothe order of G is 60. Or, G
operatestransitively on the set V of vertices.The stabilizer G v of a vertex v is the group of
order3 of rotations by multiples of 27i/3 about that vertex. A dodecahedron has 20vertices,
so60= 3.20,which checks. There is a similar computation for edges: G operates transitively
on the set of edges, and the stabilizer of an edge e contains the identity and a rotation by 7r

about the center of e. So tGel = 2.Since 60 = 2 . 30, a dodecahedronhas30 edges.)))
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(b) We may also restrict an operation of a group G to a subgroup H. By restriction, an

operation of G on a set S defines an operation of H on S, and this operation leads to more
numerical relations. The H-orbit of an element s will be contained in the G-orbit of s, so a
single G-orbit will be partitioned into H -orbits.

For example,let F be the set of 12 faces of the dodecahedron, and let H be the
stabilizer of a particular face f, a cyclic group of order 5. The order of any H-orbit is

either 1 or 5. So when we partition the set F of 12 faces into H-orbits, we must find two

orbits of urder 1. We do: H fixes f and it fixes the face opposite to f. The remaining faces

make two orbits of order 5. Formula 6.9.4 for the operation of the group H on the set
of faces is 12 = 1 + 1+ 5 + 5.Or,let K denote the stabilizer of a vertex, a cyclicgroup
of order 3. We may also partition the set F into K-orbits. In this case Formula 6.9.4 is
12= 3+ 3+ 3+ 3. D t)

6.10 OPERATIONS ON SUBSETS)

Suppose that a group G operates on a set S.IfU is a subset of S of order r,)

(6.10.1)) gU = {gu I
U E U})

is another subset of order r. This allows us to define an operation of G on the set of subsets
of order r of S. The axioms for an operation are verified casily.

For instance, let 0 be the octahedral group of 24 rotations of a cube, and let F

be the set of six faces of the cube. Then 0 also operateson the subsets of F of order

two, that is, on unordered pairs of faces. There are 15pairs, and they form two orbits:
F =

{pairs of opposite faces} U {pairs of adjacentfaces}.Theseorbits have orders 3 and 12,
respectively.

1\"he stabilizer of a subset U is the s\037t of group elements g such that [gU]
= [U], which

is to say,gU = U.The stabilizer of a pair of opposite faceshas order8.
Note this point once more: The stabilizcr of U consists of the group elements such that

gU = U. This means that g permutes the elements within U, that whenever u is in U, gu is

also in U.)

6.11 PERMUTATION REPRESENTATIONS)

In this section we analyze the various ways in which a group G can operate on a set S.)))
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\302\267A\" permutation representation of a group G is a homomorphism from the group to a
symmetric group:)

(6.11.1)) cp:G -+ Sn.)

Proposition6.11.2LetG beagroup.Thereisa bijective correspondence between operations
of G on the set S= {I... , n} and permutation representations G -+ Sn:)

[

operations of G

]
\037

[
permutati?n

]

.
on S representatIons)

Proof This is very simple, though it can be confusingwhen one sees it for the first time. If

we are given an operation of G on S, we define a permutation representation cp by setting
cp(g) = mg, multiplication by g (6.7.2). The associative property g(hi) == (gh)i shows that)

mg(mhi) ==
g(hi)

==
(gh)i ==

mghi.)

Hence cp is a homomorphism. Con\"ersely, if cp is a permutation representation, the same
formula defines an operation of G on S. D

Forexample,the operation of the dihedral group Dn on the vertices (Vi, . . . , v n ) of a

regular n-gon definesa homomorphism cp: Dn -+ Sn.

Proposition 6.11.2has nothing to do with the fact that it works with a set of indices.If
Perm(S)is the group of permutations of an arbitrary set S, we alsocalla homomorphism

cp: G -+ Perm(S) a permutation representationof G.)

Corollary 6.11.3 Let Perm(S) denote the group of permutations of a set S, and let G be a

group. There is a bijective correspondence between operations of G on S and permutation

representations cp:G -+ Perm(S):)

[
operations

] [
homomorphisms

]of G on S
\037

G \037 Perm(S)
.)

o)

A permutation representation G -+ Perm(S)needn'tbe injective. If it happens to be
injective,one says that the corresponding operation is faithful. To be faithful, an operation
must have the property that mg, multiplication by g, is not the identity map unless g = 1:)

(6.11.4) An operation is faithful if it has this property:

The only element g of G such that gs == s for every s in S is the identity.)

The operation of the group of isometriesM ontheset S of equilateral triangles in the plane
is faithful, because the only isometry that carries every equilateral triangle to itself is the

identity.)))
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Permutation representations q;: G -+ Perm(S)arerarely surjective because the order

of Perm(S) tendsto be very large. But one case is given in the next example.)

Example 6.11.5 The group GL2(IF2) of invertible matrices with mod 2 coefficients is

isomorphic to the symmetric group 53.
We denote the field JF2 by F and the group GL2(JF2)by G. The spaceF2of column

vectors consists of four vectors:)

o =
[\037],

el =

[\037J.
e2 =

[\037],
el + e2=

[\037J.)

The group G operates on the set of three nonzero vectors 5 = {el, e2,el + e2},and this

gives us a permutation representation cp:G -+ 53.The identity is the only matrix that fixes

both el and e2, so the operationof G on 5 is faithful, and cp is injective. The columns of an

invertible matrix must be an ordered pair of distinct elements of 5. There are sixsuch pairs,

so IGI == 6. Since S3 also has order six cp is an isomorphism. 0)

6.12 FINITE SUBGROUPS OF THE ROTATION GROUP

In this section, we apply the Counting Formula to classify the finite subgroups of S03, the

group of rotations of]R3. As happens with finite groups of isometries of the plane, all of them

are symmetry groups of familiar figures.)

Theorem 6.12.1 A finite subgroup of S03 is one of the following groups:)

C k: the cyclic group of rotations by multiples of 2n I k about a line, with k arbitrary;

Dk: the dihedralgroup of symmetries of a regular k-gon, with k arbitrary;

T: the tetrahedral group of 12 rotational symmetries of a tetrahedron;
0: the octahedral group of 24 rotational symmetriesof a cube or an octahedron;

I: the icosahedral group of 60 rotational symmetriesof a dodecahedron or an icosahedron.)

Note:The dihedralgroups are usually presented as groups of symmetry of a regular polygon
in the plane, where reflections reverse orientation. However,a reflection of a plane can be
achievedby a rotation through the angle n in three-dimensional space, and in this way the

symmetries of a regular polygon can be realizedas rotations of JR3. The dihedral group Dn
can be generatedby a rotation x with angle 2nIn about the el-axis and a rotation y with)))
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'\

angle 1r about the e2-axis.With c == cos 2n /n and s == sin 2Jl'ln, the matrices that represent

these rotations are)

(6.12.2)) x =
[1 \037 _\037],

and y =

[-1

1
-1].) o)

Let G be a finite subgroup of S03, of order N > 1. We'll call a pole of an element

g\"* 1 of G a pole of the group.Any rotation of }R3 except the identity has two poles - the
intersectionsof the axis of rotation with the unit sphere S2. So a poleof G is a point on the
2-spherethat is fixed by a group element g different from 1.)

Example 6.12.3 The group T of rotational symmetries of a tetrahedron b. has order12.Its
polesarethe points of 8 2

that lie above the centers of the faces, the vertices, and the centers
of the edges.Since\037 has four faces, four vertices, and sixedges,thereare 14poles.)

1polesl == 14 ==
\\faces I + Ivertices I + Iedges I

Each of the 11 elements g* 1 of T has two spins - two pairs (g, p), where p is a pole of g.

So there are 22 spins altogether.The stabilizer of a face has order 3. Its two elements '* 1

share a pole above the centerof a face. Similarly, there are two elements with a pole above

a vertex, and oneelementwith a pole above the center of an edge.)

Ispinsl == 22 == 21facesl + 2 I vertices I + ledges!)

o)

Let P denote the set of all poles of a finite subgroup G. We will get information about the

group by counting these poles. As the example shows, the count can be confusing.)

Lemma 6.12.4 The setP of poles of G is a union of G-orbits. So G operates on P.)

Proof Letp beapole,say the pole of an element g =f.: 1 in G, let h be another elementof G,

and let q = h p. We have to show that q is a pole,meaning that q is fixed by some element
g' of G other than the identity. The required elementis hgh-

1. This element is not equal to
1becauseg=l= 1, and hgh--1q ==

hgp
== h p = q. 0)

The stabilizer G
p

of a pole p is the group of all of the rotations about p that are in G.

It is a cyclicgroup, generatedby the rotation of smallest positive angle 8. We'll denote its

order by rp. Then e = 2JT: /rp.)))
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Since p is a pole, the stabilizer G p contains an element besides 1,sorp > 1.The set of

elements of G with pole p is the stabilizer Gp, with the identity element omitted. So there
are r

p
- 1 group elements that have p as pole. Every group elementg exceptone has two

poles. Since IGI == N, there are 2N - 2 spins.This gives us the relation)

(6.12.5)) L (rp
- 1) == 2(N

- 1).

pEP)

We collect terms to simplify the left side of this equation: Let n p denote the order of the

orbit Op of p. By the Counting Formula (6.9.2),)

(6.12.6)) rpnp == N.)

If two poles p and p' arein the same orbit, their orbits are equal,sonp == n p', and
ther\037fore

rp
== r

p\"
We label the various orbits arbitrarily, say as 01, 02, . . . Ok, and we let ni = n p

and ri ==
rp for p in Oi, so that niri = N. Since the orbit OJ contains ni elements,thereare

lli terms equal to ri - 1 on the Jeft side of (6.12.5). We collect those terms together.This

gives us the equation)
k

Lni(ri -1) = 2lV - 2.

1=-1)

\\Ve divide both sides by N to get a famous formula:)

( 6.12.7))
\037(1- :J

=2-
\037

.

1)

This may not look like a promisingtool, but in fact it tells us a great deal.The right side is

between 1 and 2, while each term on the left is at least i. It follows that there can be at most
three orbits.

Therest of the classification is made by listing the possibilities:

One orbit: 1 - :1= 2 -
\037

. This is impossible, because 1 - :1< 1,while 2 -
\037

> 1.

Two orbits: (1 - .1.) + (1- ..1)= 2 - 1. that is .1. + l = 1..
rl r2 N ' , r1 r2 N

Because ri divides N, this equation holds only when rl = r2 = N, and then nl == n2 = 1.

There are two poles PI and P2, both fixed by every element of the group.SoG is the cyclic

group C 1V of rotations whose axis of rotation is the line .e through Pl and P2.

Tlireeorbits:(1- 1-)+ (1- 1..)+ (1
- l) = 2 _ 2

.
r] r2 r3 N

'fhis is the most interesting case.Since
\037

is positive, the formula implies that)

( 6.12.8))

111- + -
+

- > 1.
T! r2 r3)

We arrange the ri in increasing order. Then rl = 2: If all ri were at least 3, the left side

vvould be < 1.)))
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Case 1: '1 = '2 = 2.The third order r3 = k can be arbitrary, and N = 2k:

ri = 2, 2, k; ni = k,k,2; N = 2k.

There is one pair of poles {p, p'} making the orbit 03. Half of the elements of G fix p, and

the other half interchange p and p'. So the elements of G are rotations about the line .e
through p and p', or else they are rotations by TC about a line perpendicular to .e.The group
G isthe group of rotations fixing a regular k-gon \037, the dihedral group Dk' The polygon Ll

lies in the plane perpendicular to l, and the vertices and the centers of facesof Ll correspond

to the remaining poles. The bilateral symmetries of \037 in 1R
2 have become rotations through

the angle TC in }R3.

Case 2: r1 = 2 and 2 < r2 < r3. The equation 1/2 + 1/4 + 1/4 = 1rules out the possibility
that r2 > 4. Thereforer2

= 3. Then the equation 1/2 + 1/3+ 1/6= 1 rules out r3 > 6. Only

three possibilities remain:)

(6.12.9))

(i) ri = 2,3,3; ni
= 6, 4, 4; N = 12.

The poles in the orbit 03 are the vertices of a regular tetrahedron, and G is the
tetrahedral group T of its 12 rotational symmetries.

(ii) r i = 2, 3, 4; n i = 12, 8, 6; N = 24.
The poles in the orbit 03 are the vertices of a regular octahedron,and G is the

octahedral group 0 of its 24 rotational symmetries.

(iii) ri = 2,3,5; ni
= 30, 20, 12; N = 60.

The poles in the orbit 03 are the vertices of a regular icosahedron, and G is the
icosahedralgroup I of its 60 rotational symmetries.

In eachcase,the integers ni are the numbers of edges,faces,and vertices, respectively.

Intuitively, the poles in an orbit should be the vertices of a regular polyhedronbecause
they must be evenly spaced on the sphere.However, this isn't quite correct, because the
centersof the edges of a cube, for example,form an orbit, but they do not span a regular
polyhedron.The figure they span is called a truncatedpolyhedron.

We'll verify the assertion of (iii). Let V be the orbit 03 of order twelve. We want to

show that the poles in this orbit are the vertices of a regular icosahedron. Let p be one of

the poles in V. Thinking of p as the north pole of the unit sphere gives us an equator and

a south pole. Let H be the stabilizer of p. Since r3 = 5, this is a cyclic group, generated by
a rotation x about p with angle 21f/5. When we decompose V into H-orbits, we must get

at least two H-orbits of order 1.Theseare the north and south poles. The ten other poles
making up V form two H-orbits of order5.We write them as {qO, . . . , q4} and

{q\037,
. . . , q\037},

where qi = xiqO and qi =
xiq\037. By symmetry between the north and south poles, one of

these H-orbits is in the northern hemisphere and oneis in the southern hemisphere, or else
both are on the equator.Let'ssay that the orbit {qi} is in the northern hemisphere or on the
equator.)))
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Let Ix, YI denote the spherical distance between points x and yon the unit sphere. We
note that d = Ip, qi I is independent of i = 0, . . . , 4, because there is an element of H that

carries qo \037
qi, while fixing p. Similarly, d ' = Ip,qi I is independent of i. So as p' rangesover

the orbit V the distance Ip, p'l takes on only four values 0, d, d'
and Jr. The values d and d '

are taken on five times each, and 0 and j( are taken on once. Since G operates transitively

on V, we will obtain the same four values when p isreplacedby any other pole in V.
We note that d < n/2 while d' > n/2. Becausethere are five poles in the orbit {qi},

the spherical distance Iqi, qi+ 11is less than 1f /2, so it is equal to d, and d < 1r /2. Therefore
that orbit isn't on the equator. The three polesp,qi,qi+l form an equilateral triangle. There
are five congruent equilateral triangles meeting at p, and therefore five congruent triangles
meet at each pole. They form the faces of an icosahedron.

Note:Thereare just five regular polyhedra. This can be proved by counting the number of

ways that one can begin to build one by bringing congruent regular polygons together at a
vertex. One can assemblethree,four, or five equilateral triangles, three squares, or three
regular pentagons.(Sixtriangles, four squares, or three hexagons glue together into flat

surfaces.) So there are just five possibilities. But this analysis omits the interesting question
of existence. Does an icosahedron exist? Of course,we can build one out of cardboard. But
when we do, the triangles never fit together precisely, and we take it on faith that this is due
to our imprecision.If we drew the analogous conclusion about the circleof fifths in music,
we'd be wrong: the circleof fifths almost closes up, but not quite. The best way to be sure

that the icosahedron existsmay be to write down the coordinates of its vertices and check
the distances. This is Exercise 12.7. D

Our discussionof the isometries of the plane has analogues for the group of isometries
of three-space. One can define the notion of a crystallographic group, a discretesubgroup

whose translation group is a three-dimensionallattice.The crystallographic groups are anal-

ogous to two-dimensional lattice groups, and crystals form examples of three-dimensional
configurations having such groups as symmetry. It can be shown that there are 230 types of
crystallographic groups, analogous to the 17 lattice groups(6.6.2).This is too long a list to
be useful,.socrystals have been classified more crudely into seven crystal systems. For more

about this, and for a discussionof the 32 crystallographic point groups, look in a book on

crystallography, such as [Schwarzenbach].)

Un bon heritage vaut mieux que Ieplusjoliprobleme
degeometrie,parcequ'il tient lieu de methode

generale, et serta resoudre bien des problemes.

-Gottfried Wilhelm leibnitz2)

21 learned this quote from V.I. Arnold. l'Hopital had written to Leibniz, apologizing for a long silence, and

saying that he had been in the country taking care of an inheritance. In his reply, Leibniz told him not to worry, and

continued with the sentence quoted.)))
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EXERCISES)

Section 1 Symmetry of Plane Figures

1.1. Determine all symmetries of Figures 6.1.4,6.1.6,and 6.1.7.)

Section 3 Isometries of the Plane

3.1.Verify the rules (6.3.3).

3.2. Let m be an orientation-reversing isometry. Prove algebraicallythat m 2 is a translation.

3.3. Provethat a linear operator on IR
2 is a reflection if and only if its eigenvalues are 1 and -1,

and the eigenvectors with these eigenvalues are orthogonal.

3.4. Prove that a conjugate of a glide reflectionin M is a glide reflection, and that the glide
vectors have the same length.

3.5. Write formulas for the isometries (6.3.1) in terms of a complex variable z = x + iy.

3.6. (a) Let s be the rotation of the plane with angle 11:/2 about the point (1, l)t. Write the

formula for s as a product taP().

(b) Let s denote reflectionof the plane about the vertical axis x = 1.Find an isometry g
such that grg-

1 = s, and write s in the form taPer.)

Section4 Finite Groups of Orthogonal Operators on the Plane

4.1. Write the product x 2yx- 1y-l x3
y3 in the form xi yj in the dihedral group Dn.

4.2. (a) List all subgroups of the dihedral group D4, and decidewhich ones are normal.

(b) List the proper normal subgroups N of the dihedral group Dl S , and identify the
quotient groups DlS/ N.

(c) List the subgroups of D6 that do not contain x 3
.

4.3. (a) Compute the left cosets of the subgroup H = {1, x 5
} in the dihedral group DIO.

(b) Prove that H is normal and that Dlo/ H is isomorphic to D5.
(c) Is Dloisomorphic to D5 x H?)

Section 5 DiscreteGroups of Isometries

5.1. Let.e 1 and .e2be lines through the origin in ]R2 that intersect in an angle Tr / n, and let ri be
the reflection about .ei. Prove that rl and r2 generate a dihedralgroup Dn.

5.2. What is the crystallographic restrictionfor a discrete group of isometries whosetranslation

group L has the form 'Lawith a =1=O?

5.3. How many sublattices of index3 are contained in a lattice L in JR2?

5.4. Let (a, b) be a lattice basis of a lattice L in JR2. Prove that every other latticebasishas the

form (a', b') = (a, b)P, where P is a 2 X 2 integer matrix with determinant :I:1.
5.5. Prove that the group of symmetries of the frieze pattern <j<j<j<j<j<j<] is isomorphic to the

directproduct C 2 X Coo of a cyclic group of order 2 and an infinite cyclic group.

5.6. Let G be the group of symmetries of the frieze pattern L, \037 L, \037 L, \037 L, \037 . Determine

the point group G of G, and the index in G of its subgroup of translations.)))
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5.7. Let N denote the group of isometries of a line JR.I. Classify discrete subgroups of N,
identifying those that differ in the choice of origin and unit length on the line.

*5.8.Let N' be the group of isometries of an infinite ribbon)

R =:. {(x, y) 1-1 < y < 1}.)

It canbe viewed as a subgroup of the group M. The following elements are in N':)

fa: (X, Y) \037 (X + a, y)
s: (x, y) -+ (-x, y)

r: (x, y) \037 (x, -y)

p: (x, y) \037 (-x, -y).)

(a) State and prove analoguesof (6.3.3) for these isometries.

(b) A frieze pattern is a pattern on the ribbon that is periodic and whose group of
symmetries is discrete. Classify the corresponding symmetry groups, identifying those
that differ in the choice of origin and unit length on the ribbon. Begin by making some

patterns with different symmetries. Make a careful case analysis when proving your

results.)

5.9. Let G be a discrete subgroup of M whose translation group is not trivial. Prove that

there is a point Po in the plane that is not fixed by any element of G exceptthe

identity.

5.10. Let f and g be rotations of the plane about distinct points, with arbitrary nonzero
angles of rotation () and ljJ. Prove that the group generated by f and g contains a
translation.

S.li. If Sand S' are subsetsof}Rn with S C S', then S is dense in SI if for every element Sl of S',
there are elements of S arbitrarily near to s'.

(0) Prove that a subgroup r of JR+ is either dense in JR, or else discrete.

(b) Prove that the subgroup of JR+ generated by 1 and v'2 is dense in IR+.

(c) Let H be a subgroup of the group G of angles.Prove that H is either a cyclicsubgroup

of G or else it is dense in G.)

5.12. Classifydiscretesubgroups of the additive group \0373+ .)

Section 6 Plane Crystallographic Groups .

6.1. (a) Determine the point group G for each of the patterns depicted in Figure (6.6.2).
(b) For which of the patterns can coordinates be chosenso that the group G operates on

the latticeL?
6.2.Let G be the group of symmetries of an equilateral triangular lattice L. Determine the

index in G of the subgroup of translations in G.

6.3. With each of the patterns shown, determine the point group and find a pattern with the
same type of symmetry in Table 6.6.2.

')))
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I I

\037

-)

*6.4. Classify plane crystallographic groupswith point group Dl = (1, r}.
6.5.(a) Prove that if the point group of a two-dimensional crystallographic group G is C6 or

D6,the translation group L is an equilateral triangular lattice.

(b) Classify those groups.
*6.6. Prove that symmetry groups of the figures in Figure 6.6.2 exhaust the possibilities.)

Section7 Abstract Symmetry: Group Operations

7.1. Let G = D4 be the dihedral group of symmetries of the square.

(a) What is the stabilizer of a vertex? of an edge?

(b) G operates on the set of two elements consisting of the diagonal lines. What is the
stabilizer of a diagonal?)

7.2. The group M of isometriesof the plane operates on the set of linesin the plane. Determine
the stabilizer of a line.

7.3. The symmetric group S3operateson two sets U and V of order 3. Decompose the product
set UXV into orbits for the \"diagonal action\" g(u, v) = (gu, gv), when

(a) the operations on U and V are transitive,

(b) the operation on U is transitive, the orbits for the operation on V are {Vl} and {V2,V3}.)

7.4. In each of the figures in Exercise 6.3, find the points that have nontrivial stabilizers, and

identify the stabilizers.

7.5. LetGbethe group of symmetries of a cube, including the orientation-reversing symmetries.
Describe the elements of G geometrically.)))
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7.6. Let G be the group of symmetries of an equilateral triangular prism P, including the

orientation-reversing symmetries. Determinethe stabilizer of one of the rectangular faces
of P and the order of the group.

7.7.Let G = G Ln (IR) operate on the set V = JRn by left multiplication.

(a) Describethe decomposition of V into orbits for this operation.

(b) What is the stabilizer of el?

7.8.Decomposethe set C 2x2 of 2X2 complexmatrices into orbits for the following operations

of G L2 (C): (a) left multiplication, (b) conjugation.

7.9. (a) Let Sbe the set JR.m
Xn of real m X n matrices, and let G = GLm (\037) X G Ln (JR.).Prove

that the rule (P, Q) * A = p\037Q-l define an operation of G onS.
(b) Describe the decomposition of S into G-orbits.

(c) Assume that m < n. What is the stabilizer of the matrix [I I OJ?)

7.10. (a) Describe the orbit and the stabilizer of the matrix

[ \037 \037
]

under conjugation in the

general linear group G Ln OR).

(b) Interpreting the matrix in G L2(IF5), find the order of the orbit.

7.11. Prove that the only subgroup of order 12 of the symmetric group S4 is the alternating

group A4.)

Section 8 The Operationon Cosets)

8.1. Does the rule P * A = P Apt define an operationof G Ln on the set of n X n matrices?

8.2. What is the stabilizer of the coset [aH] for the operation of G onG/ H?
8.3.Exhibit the bijective map (6.8.4) explicitly, when G is the dihedral group D4 and S is the

set of verticesof a square.

8.4. Let H be the stabilizer of the index 1 for the operation of the symmetric group G = Sn
on the set of indices {I, . . . , n}. Describe the left cosets of H in G and the map (6.8.4) in

this case.)

Section 9 The Counting Formula

9.1. Use the counting formula to determine the orders of the groups of rotational symmetries
of a cube and of a tetrahedron.

9.2. Let G be the group of rotational symmetries of a cube,let Gv, G e, G f be the stabilizers
of a vertex v, an edge e, and a face f of the cube, and let V, E, F be the sets of vertices,

edges, and faces, respectively. Determine the formulas that represent the decomposition
of each of the three sets into orbits for each of the subgroups.

9.3. Determine the order of the group of symmetries of a dodecahedron,when orientation-

reversing symmetries such as reflectionsin planes are allowed.

9.4. Identify the group T' of all symmetries of a regular tetrahedron, including orientation-

reversing symmetries.)))
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9.5. Let F be a sectionof an I-beam, which one can think of as the product set of the letter

I and the unit interval. Identify its group of symmetries, orientation-reversingsymmetries

included.

9.6. Identify the group of symmetries of a baseball, taking the seam (but not the stitching) into

account and allo\\\\ing orientation-reversing symmetries.)

Section 10 Operations on Subsets

10.1.Determine the orders of the orbits for left multiplication on the set of subsetsof order 3 of

D3.

10.2. Let S bea finite set on \\vhich a group G operates transitively. and let U be a subset of \037)'.

Prove that the subsets gU cover S evenly, that is, that every clement of S is in the \037arne

number of sets gU.

10.3. Consider the operation of left nlultiplication by G on the set of its subsets. Let [/ be a
subset such that the set,; gU partition G. Let H he the unique subset in this orbIt that

contains 1. Prove that II is a subgroup of G.)

Section11 Permutation Representations

11.1. Describe all ways in which S3 can operate on a set of four elements.

11.2. Describe all ways in which the tetrahedral group T canoperate on a set of two elements.

11.3.Let S be a set on which a group G operates, and let H be the subset of elementsg such

that gs == s for all s in S. Prove that H is a normal subgroup of G.
11.4.Let G be the dihedral group D4 of symmetries of a square. Is the action of G on the

vertices a faithful action? on the diagonals?

11.5. A group G operates faithfully on a set S of five elements, and there are two orbits, one of
order 3 and one of order 2. What are the possible groups?
Hint:Map G to a product of symmetric groups.

11.6.Let F = 1F3. There are four one-dimensional subspaces of the space of column vectors
p2. List them. Left multiplication by an invertible matrix permutes thesesubspaces.Prove

that this operation defines a homomorphism cp:GL2(F) -+ S4. Determine the kernel and

image of this homomorphism.

11.7. For each of the following groups, find the smallest integer n such that the group has a
faithful operation on a set of ordern: (a) D4, (b) D6, (c) the quaternion group H.

11.8. Find a bijective correspondence between the multiplicative group IF; and the set of

automorphisms of a cyclic group of order p.
11.9.Three sheets of rectangular paper S1, S2,S3are made into a stack. Let G be the group of

all symmetries of this configuration, including symmetries of the individual sheets as well
as permutations of the set of sheets. Determine the order of G, and the kernel of the map
G -+ S3 defined by the permutations of the set {S1,S2,S3}')

Section 12 Finite Subgroups of the RotationGroup)

12.1. Explain why the groups of symmetries of the dodecahedron and the icosahedron are
isomorphic.)))
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12.2. Describe the orbits of polesfor the group of rotations of an octahedron.
12.3.L,et 0 be the group of rotations of a cube, and let S be the set of four diagonal lines

connectingoppositevertices. Determine the stabilizer of one of the diagonals.

12.4. l#et G == () be the group of rotationsof a cuhe, and let If be the subgroup carrying one of
the

t\037vo
inscribed tetrahedra to itself (see Exercise3.4).Prove that H = T.

12.5. Prove that the icosahedral group has a subgroup of order 10.
12.6.Determine all subgroups of (a) the tetrahedral group, (b) the icosahedral group.

12.7.. 'Ihe 12 points (1: 1\037=i:a, O)t, (0, ::f: L, :ia)t. (:t:a, 0, :t: l)t form the vertices of a regular
icosahedronif a > 1 is chosen suitably. Verify this. and determine cx.

*12.8. Prove the crystaHngraphlc restriction for three-dimensional crystallographic groups:
A rotatiopal symn1et ry of a cryst\037il has order 2. 3, 4..or 6.)

Miscellaneous Problen!s

*M.1. Let G be a two-din1ensional crystaJIographic group such that no element gi= 1 fixes any

point of the plane. Prove that G is generated by two translations, or elseby one translation

and one glide.
M.2..(a) Prove that the set Aut G of automorphisms of a group G forms a group, the law of

cornpo\ition") being composition of functions.

(b) Prove that the map qJ : G --\302\273Aut G defined by g \037
(conjugation by g) is a homo-

morphism, and determine its kernel.

(c) The automorphisms that are obtained as conjugation by a group element are called
inner automorphisms. Prove that the set of inner automorphisms, the image of qJ, is a

normal subgroup of the group Aut G.

M.3. Determine the groups of automorphisms (see Exercise M.2) of the group
(a) C4, (b) C6 , (c) C2 X C2, (d) D4, (e) the quaternion group H.

*M.4.With coordinates Xl, . . . , Xn in }Rn as usual, the set of points defin'ed by the in-

equalities -1 < Xi < + 1, for i = 1,..., n, is an n-dimensional hypercube Cn . The

I-dimensional hypercube is a line segmentand the 2-dimensional hypercube is a square.
\037rhe 4-dimensional hypercube has eight face cubes, the 3-dimensional cubes defined by

{Xi:::::1}and by {Xi = -I}, for i == 1, 2, 3, 4, and it has 16 vertices ( :t:1, :1:1, :1:1,:1:1).
Let G n denote the subgroup of the orthogonalgroup On of elements that send the

hypercubeto itself, the group of symmetries ofCn , including the orientation-reversing sym-
metries. Permutations of the coordinates and sign changes are among the
elements of Gn .

(a) Use the counting formula and induction to determine the order of the group G n .

(b) Describe G n explicitly, and identify the stabilizer of the vertex (1, . . . , 1). Check your

answer by showing that G2 is isomorphicto the dihedral group D4.

*M.5. (a) Find a way to deternline the area of one of the hippo heads that make up the first

pattern in Figure 6.6.2. Do the same for one of the fleurs-de-lys in the pattern at the
bottom of the figure.

(b) A fundamental domain D for a plane crystallographic group is a boundedregion of the

plane such that the images g D, g in G, cover the plane exactly once,without overlap.)))
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Find two noncongruent fundamental domains for group of symmetries of the hippo
pattern. Do the same for the fleur-de-Iys pattern.

(c) Prove that if D and D' are fundamental domains for the same pattern, then D can be
cut into finitely many pieces and reassembled to form D'.

(d) Find a formula relating the area of a fundamental domain to the order of the point
group of the pattern.

*M.6. Let G be a discretesubgroup of M. Choose a point p in the plane whose stablilizerin G

is trivial, and let S be the orbit of p. For every point q of S other than p, let lq be the line

that is the perpendicular bisectorof the line segment [p, q], and let Hq be the half plane
that is bounded by lq and that contains p. Prove that D = n Hq is a fundamental domain
for G (seeExerciseM.5).

*M.7. Let G be a finite group operating on a finite set S. For each element g of G, let sg denote
the subset of elements of S fixed by g : sg = {sE S

I gs = s}, and let Gs be the stabilizer

of s.

(a) We may imagine a true-false table for the assertion that gs = s, say with rows indexed

by elements of G and columns indexed by elements of S. Gonstruct such a table for
the action of the dihedral group D3 on the vertices of a triangle.

(b) Prove the formula LSES IGsl =
LgEG ISgl.

(c) Prove Burnside's Formula: IGI .
(number of orbits) =

LgEG ISgl.

M.8. There are 70 =
(\037) ways to color the edges of an octagon, with four black and four white.

The group Dgoperateson this set of 70, and the orbits represent equivalent colorings.Use
Burnside's Formula (see Exercise M.7) to count the number of equivalence classes.)))
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More Group Theory)

The more to do or to prove, the easier the doing or the proof.
-JamesJoseph Sylvester)

We discuss three topics in this chapter: conjugation, the most important group operation,
the Sylow Theorems, which describe subgroups of prime powerorderin a finite group, and

generators and relations for a gronp.)

7.1 CAYLEY'S THEOREM)

Every group G operateson itself in several ways, left multiplication being one of them:)

(7.1.1))
GxG \n G

g,x\ngx.)

This is a transitive operation - there is just one orbit. The stabilizer of any element is the

trivial subgroup <1>,so the operation is faithful, and the permutation representation)

G \n Perm(G)

g \n m g
- left multiplication by g

definedby this operation is injective (see Section 6.11).)

(7.1.2))

Theorem7.1.3Cayley's Theorem. Every finite group is isomorphic to a subgroupof a

permutation group. A group of order n is isomorphic to a subgroup of the symmetric
group Sn.)

Proof Since the operation by left multiplication is faithful, G is isomorphic to its image in

Perm(G). If G has order n, Perm(G) is isomorphic to Sn. 0

Cayley's Theorem is interesting, but it is difficult to use becausethe orderof Sn is

usually too large in comparison with n.)

7.2 THE CLASSEQUATION

Conjugation, the operation of G on itself defined by)

(7.2.1)) (g, x) \n gxg-
1

.)

195)))
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is more subtle and more important than left multiplication. Obviously, we shouldn't use
multiplicative notation for this operation. We'll verify the associative law (6.7.1) for the

operation, usingg*x asa temporary notation for the conjugate gxg-
1:

(gh) *x = (gh)x(gh)-l= ghxh-1g-
1 = g(h * x)g-l = g * (h * x).

Having checked the axiom,we return to the usual notation gxg-
1.

. The stabilizer of an element x of G for the operation of conjugation is called the centralizer

of x. It is often denoted by Z(x):

(7.2.2) Z(x) =
{g E G

I gxg-
1 = x} = {g E G

I gx = xg}.

The centralizer of x is the set of elements that commute with x.

. The orbit of x for conjugation is called the conjugacy class of x, and is often denoted by
C(x). It consistsof all of the conjugates gxg-

1:

(7.2.3) C(x)= {x'E G
I

x' = gxg-
1 for some g in

G}.

The counting formula (6.9.2) tells us that)

IGI = IZ(x)I'IC(x)1

I G I
== Icentralizerl'lconj. class I

The center Z of a group G was defined in Chapter 2. It is the set of elementsthat

commute with every element of the group: Z ==
{z E G

I zy = yz for all y in
G}.)

(7.2.4 ))

Proposition 7.2.5

(a) The centralizer Z(x) of an element x of G containsx, and it contains the center Z.

(b) An element x of G is in the center if and only if its centralizer Z(x) is the whole group
G, and this happens if and only if the conjugacyclassC{x)consists of the element x
\037one. 0)

Since the conjugacy classes are orbits for a group operation, they partition the group.
This fact gives us the class equation of a finite group:)

(7.2.6)) IGJ ==
L ICI.

conjugacy
classes C)

If we number the conjugacyclasses,writing them as C 1, . . . , Ck, the class equation reads)

(7.2.7)) IGI = fCII +... + ICkl.)

The conjugacyclassof the identity element 1 consists of that element alone. It seems natural
to list that class first, so that tell = 1.Theotheroccurencesof 1 on the right side of the class
equation correspond to the elements of the center Z of G. Note also that each term on the

right side divides the left side, because it is the order of an orbit.

The numberson the right side of the class equation divide the

order of the group, and at least one of them is equal to 1.)(7.2.8))))
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This is a strong restriction on the combinations of integers that may occur in such an

eq ua tion.

The symmetric group S3 has order 6. With our usual notation, the element x has order
3.Itscentralizer Z(x) contains x, so its order is 3 or 6.Sinceyx

== x 2
y, x is not in the center

of the group, and IZ(x)1== 3. It follows that Z(x) == <x>, and the counting formula (7.2.4)
showsthat the conjugacy class C(x) has order 2. Similar reasoning shows that the conjugacy
classC(y) of the element y has order 3. The classequation of the symmetric group 53 is)

(7.2.9)) 6 == 1 + 2 + 3.)

As we see, the counting formula helps to determine the class equation.One can
determine the order of a conjugacy class directly, or one can compute the order of its
centralizer.Thecentralizer,beinga subgroup, has more structure, and computing its order is
often the better way. We will see a case in which it is easier to determine the conjugacy classes
in the next section, but let's look at another case in which one should usethe centralizer.

LetG be the special linear group 5L2CF3) of matrices of determinant 1 with entries
in the field IF3. The order of this group is 24 (see Exercise 4.4). To start computing the

class equation by listing the elements of G would be incrediblyboring.It is better to begin

by computing the centralizers of a few matrices A. This is done by solving the equation
PA = AP, for the matrix P. It is easier to use this equation, rather than PAP- 1 = A. For
instance, let

A =

[1 -1]
and P =

[\037
\037l

The equation PA == AP imposes the conditions b == -c and a == d, and then the equation
detP == 1 becomes a 2 + c2 == 1. This equation has four solutions in IF3: a == :l: 1, c == 0 and

a == 0, c == 1: 1. SO IZ(A)I == 4 and IC(A)I == 6. This gives us a start for the class equation:

24 == 1 + 6 + . . . .Tofinish the computation, one needs to compute centralizers of a few more

matrices. Since conjugate elementshave the same characteristic polynomial, one can begin
by choosing elements with different characteristic polynomials.

The classequation of 5L2(F3) is)

(7.2.10)

7.3 p-GROUPS

The class equation has several applicationsto groups\\vhose orders are positive powers of a

prime p. They are called p-groups.)

24 =: 1+ 1+ 4 + 4 + 4 + 4 + 6.)

Proposition 7.3.1 The center of a p-groupis not the trivial group.)

Proof Say that IGI == pe with e > 1. Every term on the right side of the class equation
dividespe, so it is a power of p too, possiblypO

= 1. The positive powers of p are divisible

by p. If the class Cl of the identity made the only contribution of 1 to the right side, the

equation would read

pe == 1 + L(multiples of p).

This is impossible, so there must be more l's on the right. The center is not trivial. 0)))
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A similar argument can be used to prove the following theorem for operations of
p-groups.We '11 leave its proof as an exercise.)

Theorem7.3.2FixedPoint Theorem. Let G be a p-group, and let Sbe a finite set on which

G operates. If the order of S is not divisible by p, there is a fixed point for the operation of
G on S - an element s whose stabilizer is the whole group. D

Proposition7.3.3 Every group of order p2 is abelian.)

Proof. Let G be a group of order p2. According to the previous proposition,its center Z is

not the trivial group. So the order of Z must be p or p2. If the order of Z is p2, then Z = G,
and G is abelian as the proposition asserts.Supposethat the order of Z is p, and let x be an

element of G that is not in Z. The centralizer Z(x) contains x as well as Z, so it is strictly

larger than Z. Since IZ(x)1 divides IGI,it must be equal to p2, and therefore Z(x) = G.
This means that x commutes with every element of G, so it is in the center after all, which is

a contradiction. Therefore the center cannot have order p. 0

Corollary 7.3.4 A group of order p2 is either cyclic,or the productof two cyclic groups of
order p.)

Proof. Let G bea group of order p2. If G contains an element of order p2, it is cyclic. If

not, every element of G different from 1 has order p. We choose elements x and y of order
p such that y is not in the subgroup <x). Proposition 2.11.4 shows that G is isomorphic to
the product <x) X < y). D)

The number of isomorphism classesof groups of order pe increases rapidly with e.

There are five isomorphism classes of groupsof order eight, 14 isomorphism classes of groups
of Qrder 16, and 51 isomorphism classesof groups of order 32.)

7.4 THE CLASSEQUATION OF THE ICOSAHEDRAL GROUP

In this section we use the conjugacy classes in the icosahedral group I - the group of

rotational symmetries of a dodecahedron, to study this interesting group. You may want to

refer to a model of a dodecahedronor to an illustration while thinking about this.
Let ()= 2Jr /3. The icosahedral group contains the rotation by (J about a vertex v. This

rotation has spin (v, (}), so we denoteit by p(v,()). The 20 vertices form an I-orbit orbit, and
if v' is another vertex, then p(v,() and

p(v',()
are conjugate elements of I. This follows from

Corollary 5.1.28(b). The vertices form an orbit of order 20, so all of the rotations
p(v,()

are

conjugate. They are distinct, because the only spin that defines the same rotation as (v, fJ) is

(-v, -(}) and -()=t=e. Sotheserotations form a conjugacy class of order 20.
Next, I contains rotations with angle 2n/5 about the center of a face, and the 12faces

form an orbit. Reasoning as above, we find a conjugacy class of order 12. Similarly, the

rotations with angle 4Jr/5 form a conjugacy class of order 12.
Finally, I contains a rotation with angle 1T about the center of an edge. Thereare30

edges,which gives us 30 spins (e, Jr). But Jr = -Jr. If e is the center of an edge, so is -e, and

the spins (e, 1l')and (-e, -n) represent the same rotation. This conjugacy class contains only

15 distinct rotations.)))
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The classequation of the icosahedral group is)

(7.4.1)) 60 = 1 + 20+ 12+ 12+ 15.)

Note.' Calling (v, e) and (e, n) spins isn't accurate, because v and e can't both have unit

length. But this is obviouslynot an important point.)

Simple Groups

A group G is simple if it is not the trivial group and if it contains no proper normal

subgroup
- no normal subgroup other than < 1 > and G. (This use of the word simple does

not mean \"uncomplicated.\" Its meaning here is roughly \"not compound.\") Cyclicgroupsof

prime order contain no proper subgroup at all; they are therefore simple groups. All other

groups except the trivial group contain proper subgroups, though not necessarily proper
normal subgroups.

The proof of the following lemma is straightforward.)

Lemma 7.4.2 Let N be a normal subgroup of a group G.

(a) If N contains an element x, then it contains the conjugacy class C(x) of x.
(b) N is a union of conjugacy classes.

(c) The orderof N is the sum of the ordersof the conjugacy classes that it contains. 0)

We now use the classequation to prove the following theorem.)

Theorem 7.4.3 The icosahedralgroup I is a simple group.)

Proof The order of a proper normal subgroup of the icosahedral group is a proper divisor

of 60, and according to the lemma, it is also the sum of some of the terms on the right side of

the class equation (7.4.1),including the term 1, which is the order of the conjugacy class of
the identity element. There is no integer that satisfies both of those requirements, and this

proves the theorem. 0

The property of being simple can be useful because one may run across normal

subgroups, as the next theorem illustrates.)

Theorem 7.4.4 The icosahedral group is isomorphicto the alternating group As. Therefore

As is a simplegroup.)

Proof To describe this isomorphism, we need to find a set S of five elements on which I

operates. This is rather subtle, but the five cubes that can be inscribedinto a dodecahedron,

one of which is shown below, form such a set.
The icosahedralgroup operates on this set of five cubes, and this operation defines

a homomorphism cp: I \037 Ss, the associated permutation representation. We show that cp

defines an isomorphism from I to the alternating group As. To do this, we usethe fact that

I is a simple group, but the only information that we need about the operation is that it isn't

trivial.)))
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(7.4.5)) One of the Cubes Inscribed in a Dodecahedron.)

The kernel of cp is a normal subgroup of f. SinceI is a simple group, the kernel is
either the trivial group < 1> or the whole group I. If the kernel were the whole group,
the operation of I on the set of five cubes would be the trivial operation, which it is not.
Therefore kercp

== < 1). This shows that cp is injective. It defines an isomorphism from 1 to
its image in 55.

Next, we compose the homomorphism <p with the sign homomorphisIn a: 55 -* {:I:::I},
obtaining a homomorphism acp: I \037 {:l: 1}. If this homomorphism were surjective,its kernel
would be a proper norma) subgroup of f. This is not the case because I is simple. '\"fherefore
the restriction is the trivial homomorphism, which means that the image of ({J is contained

in the kernel of CT, the alternating group As. Both I and As both have order 60\037 and ({J is

injective. So the image of cp, which is isomorphic to I, is As. 0)

7.5 CONJUGATION IN THE SYMMETRIC GROUP

The least confusing way to describe conjugation in the symmetric group is to think of

relabeling the indices. If the given indices are 1,2,3,4,5, and if we relabel them as
a, b, c,d,e,respectively, the permutation p == (134) (25) is changed to (acd) (be).

Towrite a formula for this procedure, we let qJ : I -1- L denote the relabeling map
that goes from the set I of indicesto the set L of letters: cp(l) == 3, cp(2) == b, etc. Then the
relabeled permutation is cp 0 p 0 cp-l. This is explained as follows:

First map letters to indices using cp-l.

Next, permute the indices by p.

Finally, map indices back to letters using cpo

We can use a permutation q of the indices to relabel in the same way. The result, the
conjugate p' = qpq-l, will be a new permutation of the same set of indices. For example, if

we use q == (1452) to relabel, we will get

q pq
-1

== (1452) 0 (134) (25) 0 (2541) = (435) (12) :::::p'.)
Thereare two things to notice. First, the relabeling will produce a permutation whose

cycles have the same lengths as the original one. Second,by choosing the permutation q)))
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suitably, we can obtain any other permutation that has cyclesof those same lengths. If we
write one permutation above the other, ordered so that the cycles correspond, we can use
the result as a table to define q. For example, to obtain p' = (435)(12)as a conjugate of

the permutation p = (134)(25),as we did above, we could write)

(134) (25)

(435) (12)
.)

The relabeling permutation q is obtained by reading this table down: 1 'V'-t 4, etc.

Because a cycle can start from any of its indices, there will most often be several

permutations q that yield the same conjugate.
The next propositionsums up the discussion.)

Proposition 7.5.1 Two pcrmutations p and p' are conjugate elements of the symmetric

group if and only if their cycle decompositionshave the same orders. 0)

We use Proposition7.5.1to determine the class equation of the symmetric group S4.
The cycle decomposition of a permutation gives us a partition of the set {I, 2, 3, 4}.The
ordersof the subsets nlaking a partition of four can be)

1, 1, 1, 1; 2, 1, 1; 2,2; 3,1; or 4.)

The permutations with cycles of theseordersarethe identity, the transpositions, the products
of (disjoint) transpositions,the 3-cycles, and the 4-cycles, respectively.

There are six transpositions, three products of transpositions, eight 3-cycles, and six
4-cycles. The proposition tells us that each of these sets

form\037
one conjugacy class, so the

classequa tion of 84 is)

(7.5.2)) 24 = 1 + 3 + 6+ 6+ 8.)

A similar computation shows that the class equation of the symmetric group S5 is)

(7.5.3)) 120 = 1 + 10+ 15+ 20+ 20+ 30+ 24.)

We saw in the previous section (7.4.4)that the alternating gt:0UP As is a simplegroup

because it is isomorphic to the icosahedralgroup I, which is simple. We now prove that most

alternating groups are simple.)

Theorem 7.5.4 Forevery n > 5, the alternating group An is a simple group.)

To complete the picture we note that A2 is the trivial group, A3 is cyclic of order three, and
that A4 is not simple. The group of order four that consists of the identity and the three

products of transpositions (12)(34), (13)(24), (14)(23)isa normal subgroup of 84 and
of A4 (see (2.5.13)(b\302\273).)

Lemma 7.5.5

(a) For n > 3, the alternating group An is generated by 3-cycles.
(b) Forn > 5, the 3-cycles form a single conjugacy class in the alternating group An.)))
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Proof (a) This is analogous to the method of row reduction. Say that an even permutation

p, not the identity, fixes m of the indices. We show that if we multiply p on the left by a
suitable3-cycleq, the product q p will fix at least m + 1indices.Induction on m will complete
the proof.

If p is not the identity, it will contain either a k-cycle with k > 3, or a product
of two 2-cycles. It does not matter how we number the indices, so we may suppose that

p
= (123. .k)... or p = (12)(34)....Let q = (321). The product qp fixes the index 1 as

well as all indices fixed by p.

(b) Suppose that n > 5, and let q == (123). According to Proposition 7.5.1, the 3-cycles
areconjugatein the symmetric group Sn. So if q' is another 3-cycle, there is a permutation
p such that pqp-I

= q'. If P is an even permutation, then q and q' are conjugate in An.

Suppose that p is odd. The transposition i =
(45) is in Sn because n > 5, and iqi- I = q.

Then pi is even, and (pi)q(pi)-l = q'. 0

ProofWe now proceed to the proof of the Theorem. Let N be a nontrivial normal subgroup

of the alternating group An with n > 5. We must show that N is the whole group An. It
suffices to show that N contains a 3-cycle.If so, then (7.5.5)(b) will show that N contains
every three-cycle, and (7.5.5)(a) will show that N = An.

Weare given that N is a normal subgroupand that it contains a permutation x different
from the identity. Three operations are allowed: We may multiply, invert, and conjugate.
For example,if g is any element of An, then gxg-

l and x- 1are in N too. So is their product,
the commutator gxg-1x-I. And since g can be arbitrary, these commutators give us many

elements that must be in N.

Our first step is to note that a suitable power of x will have prime order, say order
.e.We may replace x by this power, so we may assume that x has order .e. Then the cycle
decompositionof x will consist of .e-cycles and 1-cycles.

Unfortunately, the rest of the proof requires lookingseparately at several cases. In each
of the cases, we compute a commutator gxg- lx-l , hoping to be led to a 3-cycle.Appropriate
e,lements

can be found by experiment.

Case1:x has order.e > 5.)

How the indices are numbered is irrelevant, so we may suppose that x contains the .e-cycle
(12345 . .i), say x = (12345 . .i) y, where y is a permutation of the remaining indices. Let

g = (432).Then

first do this

gxg-1x-
l = [(432)] 0 [(12345

. .l)y] 0 [(234)] 0 [y-l(l. .54321)] =
(245).)

The commutator is a 3-cycle.)

Case2.'x has order 3.)

There is nothing to prove if x is a 3-cycle. If not, then x contains at least two 3-cycles, say
x = (123)(456)y. Letg = (432).Then gxg-Ix-

1 = (15243). The commutator has order
5.We go back to Case 1.)

Case3a.'x has order 2 and it contains a I-cycle.)))
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Since it is an even permutation, x must contain at least two 2-cycles, sayx ==
(12)(34)(5)y.

Let g == (531). Then gxg-1x-
1 == (15243). The commutator has order 5, and we go back

to Case1again.

.)

Case 3b: x has order .e== 2, and contains no 1-cycles.)

Since n > 5,x contains more than two 2-cycles. Say x ==
(12)(34)(56)y. Let g == (531).

Then gxg-
1x-I == (153)(246). The commutator has order 3 and we go backto Case2.

These are the possibilities for an even permutation of prime order, so the proof of the
theorem is complete. 0)

7.6 NORMALIZERS)

We consider the orbit of a subgroupH of a group G for the operation of conjugation by G.

The orbit of [H] is the set of conjugate subgroups [gHg- 1], with g in G. The stabilizer of
[H] for this operation is called the normalizer of H, and is denoted by N(H):)

(7.6.1)) N(ll) ==
{g

E G
I gHg-

1
==

H}.)

The Counting Formula reads)

(7.6.2)) IGI = IN(H)I. (number of conjugate subgroups).)

The number of conjugate subgroupsisequalto the index[G:N(H)].)

Proposition 7.6.3 Let H be a subgroupof a group G, and let N be the normalizer of H.

(a) H is a normal subgroupof N.

(b) H is a normal subgroupof G if and only if N == G.

(c) IHI divides INI and INI divides IGI. 0)

For example, let H be the cyclic subgroup of order two of the symmetricgroup S5 that

is generated by the element p == (12) (3 4). The conjugacy class C(p) contains the 15 pairs
of disjoint transpositions,eachof which generates a conjugate subgroup of H. The counting

formula shows that the normalizer N(ll) has ordereight: 120== 8 . 15.)

7.7 THE SYLOW THEOREMS)

The SylowTheoremsdescribethe subgroups of prime power order of an arbitrary finite

group. They are named after the Norwegian mathematician Ludwig Sylow, who discovered
them in the 19th century.

Let G be a group of order n, and let p bea prime integer that divides n. Let pe denote
the largest power of p that divides n, so that)

(7.7.1 ))
e

n ==
p m,)

where m is an integer not divisibleby p. Subgroups H of G of order pe are calledSylow

p-subgroups of G. A Sylow p-subgroup isa p-groupwhose index in the group isn't divisible
by p.)))
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Theorem 7.7.2 First SylowTheorem.A finite group whose order is divisibleby a prime p
contains a Sylow p-subgroup.)

Proofs of the SylowTheoremsare at the end of the section.)

Corollary7.7.3 A finite group whose order is divisible by a prime p contains an element of
order p.)

Proof Let G be such a group,and let H be a Sylow p-subgroup of G. Then H contains an
element x different from 1. The order of x dividesthe order of H, so it is a positive power
of p, say pk. Then Xpk-l has order p. D

This corollary isn't obvious. We already know that the order of any element divides the

order of the group, but we might imagine a group of order6, for example, made up of the

identity 1 and five elements of order 2.No such group exists. A group of order6 must contain

an element of order 3 and an element of order 2.

The remaining Sylow Theoremsgive additional information about the Sylow sub-
groups.)

Theorem 7.7.4 Second Sylow Theorem. Let G be a finite group whose order is divisible by
a prIme p.
(a) The Sylow p-subgroups of G are conjugatesubgroups.
(b) Every subgroup of G that is a p-group is contained in a Sylow p-subgroup.)

\037 conjugate subgroup of a Sylow p-subgroup will be a Sylow p-subgroup too.

Corollary7.7.5 A group G has just one Sylowp-subgroupH if and only if that subgroup is
normal. D)

Theorem 7.7.6 Third Sylow Theorem. Let G be a finite group whose order n is divisible
by a prime p. Say that n = pe m , where p doesnot divide m, and let s denote the number
of Sylow p-subgroups. Then s divides m and s is congruent to 1 modulo p: s = kp + 1 for

some integer k > O.)

Before proving the Sylow theorems, we will use them to classify groups of orders6,15,
and 21. These examples show the power of the theorems, but the classification of groups of

order n is not easy when n has many factors. There are just too many possibilities.)

Proposition 7.7.7

(a) Every group of order 15 is cyclic.

(b) There are two isomorphism classes of groups of order 6, the class of the cyclic group C6
and the class of the symmetric group 53.

(c) Thereare two isomorphism classes of groups of order 21:the classof the cyclic group

C21, and the c1assof a group G generated by two elements x and y that satisfy the

relations x 7 = 1, y3
== 1, yx = x2

y.)))
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Proof (a)LetGbea group of order 15. According to the Third Sylow Theorem, the number
of its Sylow3-subgroupsdivides 5 and is congruent 1 modulo 3.The only such integer is 1.

Therefore there is oneSylow 3-subgroup, say H, and it is a normal subgroup. For similar
reasons, there isjust oneSylow 5-subgroup, say K, and it is normal. The subgroup H is cyclic
of order 3, and K is cyclic of order5.The intersection H n K is the trivial group. Proposition

2.11.4(d) tells us that G is isomorphic to the product group Hx K.Soall groups of order 15
are isomorphic.to the productC3 X Cs of cyclic groups and to eachother.The cyclic group

ClS is one such group, so all groups of order 15 are cyclic.

(b) Let G be a group of order 6. The First SylowTheoremtells us that G contains a Sylow
3-subgroupH, a cyclic group of order 3, and a Sylow 2-subgroupK, cyclic of order 2.

The Third SylowTheorem tells us that the number of Sylow 3-subgroups divides 2 and is
congruent 1 modulo 3. The only such integer is 1.So there is one Sylow 3-subgroup H,
and it.is a normal subgroup. The same theorem also tells us that the number of Sylow
two-subgroups divides3 and is congruent 1 modulo 2. That number is either 1or 3.)

Case 1: Both Hand K are normal subgroups.

As in the previous example, G is isomorphic to the product group H X K, which is

abelian. All abelian groups of order 6 are cyclic.

Case2:G contains 3 Sylow 2-subgroups, say K 1, K2, K3.
The group G operates by conjugation on the set S ==

{[Kl], [K2], [K3]} of order
three, and this gives us a homomorphism cp:G \037 S3 from G to the symmetric group, the

associated permutation representation (6.11.2). The Second SylowTheoremtells us that

the operation on S is transitive, so the stabilizer in G of the element [Ki], which is the

normalizer N(Ki), has order 2. It is equal to Ki. Since Kl n K2 == {I}, the identity is the

only element of G that fixes aU elements of S. The operationis faithful, and the permutation
representation cp is injective. Since G and S3have the same order, cp is an isomorphism.)

(c) LetG bea group of order 21. The Third SylowTheoremshows that the Sylow 7-subgroup
K must be normal, and that the number of Sylow3-subgroupsis 1 or 7. Let x be a generator
for K, and let y be a generator for one of the Sylow 3-subgroups H. Then x7 = 1 and y3 = 1,
so H n K == {1}, and therefore the product map H x K -+ G is injective (2.11.4)(a). Since

G has order 21, the productmap is bijective. The elements of G are the products Xi yi with

o < i < 7 and 0 < j < 3.
SinceK isa normal subgroup, yxy-l is an element of K, a power of x, say xi, with i in

the range 1 < i < 7.Sothe elements x and y satisfy the relations)

(7.7.8))
73.

X == 1, y = 1, yx = x' y.)

These relations are enough to determine the multiplication table for the group. However,
the relation y3 == 1 restricts the possible exponents i, becauseit implies that y3xy-3 = x:

x =
y

3
xy-3 = y2xiy-2 = yx i2

y-l = x i3
.)

Therefore i 3 = 1 modulo 7.This tells us that i must be 1,2,or 4.)))
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.

The exponent i = 3, for instance, would imply x = X
33 = x 6 = x-i. Then x2 = 1 and

also x 7 = 1, from which it follows that x = 1. The group defined by the relations (7.7.8) with
i = 3 isa cyclic group of order 3, generated by y.

Case 1: yxy-i = x. Then x commutes with y. Both Hand K are normal subgroups. As

before, G is isomorphic to a direct productof cyclic groups of orders 3 and 7, and is a cyclic

group.

Case 2: yxy-i = x2
. As noted above, the multiplication table is determined.But we still

have to show that this group actually exists. This comes down to showing that the relations
don't causethe group to collapse, as happens when i = 3. We'll learn a systematic method
for doing this, the Todd-CoxeterAlgorithm, in Section 7.11. Another way is to exhibit the

group explicitly,for example as a group of matrices.Someexperimentation is required to do
this.

Since the group we are looking for is supposed to contain an element of order7, it is

natural to try to find suitable matrices with entries modulo 7. At least we can write down a
2 x 2 matrix with entries in JF7 that has order 7, namely the matrix x below. Then y can be
found by trial and error.Thematrices)

x =

[1 \037],
and y =

[
2

1
])

with entries in JF7 satisfy the relations x 7 = 1, y3
= 1, yx = x2

y, and they generate a group
of order 21.)

CaseJ: yxy-l
= x 4 . Then y2 xy-2 == x

2 . We note thaf y2 is also an element of order3.Sowe

may replace y by y2, which is another generator for H. The result is that the exponent 4 is

replaced by 2, which puts us back in the previous case.)

Thus there are two isomorphism classes of groups of order 21,as claimed.) o)

We use two lemmas in the proof of the first Sylow Theorem.)

Lemma 7.7.9 Let U be a subset of a group G. The order of the stabilizer Stab([U]) of [U]
for the operationof left multiplication by G on the set of its subsets divides both of the
orders IVI and IGI.)

Proof. If H is a subgroupof G, the H -orbit of an element u of G for left multiplication by
H is the right coset Hu. Let H be the stabilizer of [U]. Then multiplication by H permutes
the elementsof U, so U is partitioned into H-orbits, which are right cosets. Each coset has
order IHI,soIHIdivides IVI. Because H is a subgroup, IHIdivides ICI. 0)

Lemma 7.7.10 Let n be an integer of the form pe m , where e > 0 and p does not divide m.
The number N of subsets of order pe in a set of order n is not divisible by p.)

Proof. The number N is the binomial coefficient

(
ne

)

=
n en - 1) ...

en
- k) . eo

(n
- pe + 1)

p pe(pe- 1)...(pe
- k) . . . 1)))
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The reason that N=I= 0 modulo p is that every time p divides a term (n - k) in the numerator

of N, it also divides the term (pe - k) of the denominator the same number of times:
If we write k in the form k = pil, where p does not divide l, then i < e. Therefore
(m

- k) = (pe - k) and (n
- k) = (pe m -

k) are both divisible by pi but not by pi+l. 0

Proof of the First Sylow Theorem. Let 5 be the set of all subsets of G of order pe. One of
the subsets is a Sylowsubgroup,but instead of finding it directly we look at the operation of

left multiplication by G on 5. We will show that one of the subsets [U] of order pe has a
stabilizer of orderpe.That stabilizer will be the subgroup we are lookingfor.

We decompose 5 into orbits for the operation of left multiplication, obtaining an

equation of the form)

N= 151 =
L 101.

orbits 0)

According to Lemma 7.7.10, p doesn'tdivide N. So at least one orbit has an order that isn't

divisible by p, say the orbit O[U] of the subset [U]. Let H be the stabilizer of [U]. Lemma
7.7.9 tells us that the order of H divides the orderof U, which is pea SO IHI is a power of p.
We have IHI'IO[u]1 = IGI= pem , and IO[u]1 isn't divisible by p. Therefore10[u]1= m

and I HI = pe. So H is a Sylowp-subgroup. 0

Proofofthe Second Sylow Theorem. Suppose that we are given a p-subgroup K and a
Sylowp-subgroupH. We will show that some conjugate subgroup H' of H contains K,

which will prove (b). If K is also a Sylow p-subgroup,it will be equal to the conjugate
subgroupH', so (a) will be proved as well.

We choose a set C on which the group G operates, with these properties: p does not
divide the order ICI, the operation is transitive, and C contains an element c whose stabilizer
is H. The set of left cosets of H in G has these properties, so such a set exists.(We prefer

not to clutter up the notation by explicitreferenceto cosets.)
We restrict the operation of G on Cto the p-group K. Since p doesn't divide ICI, there

is a fixed point c' for the operation of K. This is the Fixed Point Theorem 7.3.2. Since the

operation of G is transitive, c' = gc for some g in G. The stabilizer of c' is the conjugate
subgroupgHg-l of H (6.7.7), and since K fixesc', the stabilizer contains K. 0

Proof of the Third Sylow Theorem. We write I G I
= pe m as before. Let s denotethe number

of Sylow p-subgroups. The Second SylowTheoremtellsus that the operation of G on the
setS of Sylow p-subgroups is transitive. The stabilizer of a particular Sylow p-subgroup [H]
is the normalizer N = N(B) of H. The counting formula tells us that the order of S, which

is s, is equal to the index [G :N].Since N contains H (7.6.3) and since [G: H] is equal to m,

s divides m.
Next, we decomposethe set S into orbits for the operation of conjugation by H. The

H-orbit of [H] has order 1. Since H isa p-group,the order of any H-orbit is a powerof p.

To show that s _ 1 modulo p, we show that no element of S except [H] is fixed by H.

Suppose that H' is a p-Sylowsubgroup and that conjugation by H fixes[H']. ThenH
iscontained in the normalizer N' of H', soboth Hand H' are Sylow p-subgroups of N'. The
secondSylow theorem tells us that the p-Sylow subgroups of N' are conjugate subgroups of

N'. But H' isa normal subgroup of N' (7.6.3)(a). Therefore H' = H. D)))
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7.8 GROUPS OF ORDER 12)

We use the Sylow Theorems to classify groups of order 12. This theorem servesto illustrate

the fact that classifying groups becomescomplicatedwhen the order has several factors.)

Theorem 7.8.1 Thereare five isomorphism classes of groups of order 12. They are

represen ted by:

\302\267the product of cyclic groups C4 X C3,

\302\267the product of cyclic groups C2 X C2 X C3,
\302\267the alternating group A4,
\302\267the dihedral group D6,
. the group generated by elements x and y, with relations x

4 = 1, y3
= 1, xy = y2X.)

All but the last of these groupsshould be familiar. The product group C4X C3 is isomorphic
to C12, and C2X C2 X C3 is isomorphic to C2 X C6 (see Proposition 2.11.3).

Proof. Let G be a group of order 12, let H be a Sylow2-subgroupof G, which has order 4,
and let K be a Sylow 3-subgroup of order 3. It follows from the Third Sylow Theorem that

the number of Sylow2-subgroupsis either 1 or 3, and that the number of Sylow 3-subgroups
is 1or 4.Also, H is a group of order 4 and is therefore either a cyclicgroup C4or the Klein
four group C2 X C2 (Proposition 2.11.5).Of courseK iscyclic.

Though this is not necessary for the proof, begin by showing that at least one of the
two subgroups, H or K, isnormal.If K isnot normal, there will be four Sylow 3-subgroups
conjugate to K, say K 1, . . . , K4, with K 1 = K. These groups have prime order, so the
intersection of any two of them is the trivial group < 1). Then there are only three elements

of G that are not in any of the groups Ki. This fact is shown schematically below.)

A Sylow 2-subgroup H has order 4, and H n Ki = <1). ThereforeH consists of the three

elements not in any of the groups Kj, together with 1. This describes H for us and shows
that there is only one Sylow 2-subgroup.Thus H isnormal.

Next, we note that H n K = <1), so the product map H X K -+ G is a bijectivemap
of sets (2.11.4). Every element of G has a unique expression as a product hk, with h in H

and k in K.)))
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Case 1: Hand K are both normal.

Then G is isomorphic to the product group H X K (2.11.4). Since there are two
possibilitiesfor H and one for K, there are two possibilities for G:)

G\037C4XC3 or G\037C2XC2XC3.)

Theseare the abelian groups of order 12.)

Case 2: K is not normal.

There are four conjugate Sylow3-subgroups,K1,..., K 4 , and G operates by con-
jugation on this set of four. This operation determines a permutation representation, a

homomorPl?ism cp: G\037 S4 to the symmetric group. We'll show that cp maps G isomorphi-

cally to the alternating group A4.
The normalizer Ni of Ki contains Ki, and the counting formula shows that INil = 3.

Therefore Ni = Ki. Since the only element in common to the subgroupsKi is the identity,

only the identity stabilizes all of these subgroups. Thus the operation of G is faithful, cp is

injective, and G is isomorphic to its image in 54.

Since G has four subgroups of order 3, it contains eight elements of order 3. Their
images are the 3-cycles in S4, which generate A4 (7.5.5\037. So the image of G contains A4.
SinceG and A4 have the same order, the image is equal to A4.)

Case 3: K is normal, but H is not.

Then H operatesby conjugation on K = {I, y, y2}.SinceH isnot normal, it contains

an element x that doesn't commute with y, and then xyx-
1 =

y2.)

Case 3a: K is normal, H is not normal, and H is a cyclic group.
The elementx generates H, so G is generated by elements x and y, with the relations)

(7.8.2))
4 1 3 1 2

x = , y = , xy = y x.)

Theserelations determine the multiplication table of G, sothereis at most one isomorphism
class of suchgroups.But we must show that these relations don'tcollapsethe group further,

and as with groups of order 21 (see 7.7.8),it is simplest to represent the group by matrices.
We'll use complex matrices here. Let w be the complex cube root of unity e

2TCi / 3 . The

complex matrices)

(7.8.3))
X=[l -1]

,
y=[w w2])

satisfy the three relations, and they generate a group of order 12.

Case 3b: K is normal, H is not normal, and H \037C2 X C2.

The stabilizer of y for the operation of H by conjugation on the set {y, y2}has order2.
SoH contains an element z =1= 1 such that zy = yz and alsoan element x such that xy =

y2 x.

Since H is abelian, xz = zx.Then G is generated by three elements x, y_ z, with relations

x 2 = 1, y3
= 1, Z2 = 1, yz = zy, xz = zx, xy

= y
2

x.)))
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These relations determine the multiplication table of the group, so there is at most one

isomorphism class of such groups.The dihedral group D6 isn't one of the four groups

described before, so it must be this one. Therefore G is isomorphic to D6. 0)

7.9 THE FREE GROUP)

We have seen that one can compute in the symmetric group S3usingthe usual generators x

and y, together with the relations x 3 == 1, y2 = 1, and yx = x2
y. In the rest of the chapter,

we study generators and relations in other groups.
We first consider groups with generators that satisfy no relations other than ones (\037uch

as the associative law) that are implied by the group axioms.A set of group elements that

satisfy no relations except those implied by the axioms is called free, and a group that has a

free set of generators iscalledafreegroup.
Todescribefree groups, we start with an arbitrary set, say S = {a,b,c,...}. We call its

elements \"symbols,\"and we define a word to be a finite string of symbols, in which repetition
is allowed. For instance a, aa, ba, and aaba are words.Two words can be composed by
juxtaposition, that is, placing them side by side:

aa, ba ---+ aaba.

This is an associative law of compositionon the set W of words. We include the \"empty

word\" in W as an identity element, and we use the symbol 1 to denoteit. Then the set

W becomes what is called the free semigroup on the set S.It isn't a group because it lacks

inverses, and adding inversescomplicates things a little.

Let S' be the set that consists of symbols a and a-I for every a in S:

(7.9.1) S' ==
{a,

a
-1

, b, b-1, C, c-
1

, . . . },

and let W' be the semigroupof words made using the symbols in S'. If a word looks like

. . .xx
-1 . . . or . . . x-I X . . .)

for some x in S, we may agree to cancel the two symbols x and x-I to reducethe length of

the word. A word is called reducedif no such cancellation can be made. Starting with any

word w in W', we can perform a finite sequence of cancellations and must eventually get a
reducedword wo, possibly the empty word 1. We call Wo a reduced form of w.

Theremay be more than one way to proceed with cancellation. For instance, starting

with w == abb-
1 c- 1

cb, we can proceed in two ways:)

a
\037\037-lc-lC

b

t

a {1 \037b

t

ab)

ab b- 1
{1<jb

\037

ab\037 -l\037

\037

ab)

The same reduced word is obtainedat the end, though the symbols come from different

places in the original word. (The onesthat remain at the end have been underlined.)This is

always true.)

Proposition 7.9.2 There is only one reduced form of a given word w.)))
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Proof We use induction on the length of w. If w isreduced,there is nothing to show. lfnot,
there must be some pair of synlbols that can be cancelled, say the underlined pair

w = ... x'x- 1 . .. .)

(Let's allow x to denote any element of S', with the understanding that if x = a-I then
.x-1 = a.) If we show that we can obtain every reduced form of w by canceHing the pair .:tx-1
first, the proposition will follow by induction, because the word ... /1-

1... isshorter.

Let UJo be a reduced form of w.It is obtained from w by some sequence of cancellations.

The first case is that our pair xx- I is cancelled at some step in this sequence. If so, we may

as well cancel .tx.
- 1

first. So this case is settled. On the other hand, since Wo is reduced, the
pair xx-1

cannot remain in U)o. At least one of the two symbols must be cancelled at some

time. If the pair itself is not cancelled\"the first cancellation involving the pair must look like)

,J-l.J. -1. . .l' -t
X . . .) or) . . .

Xf
1

i
. . . .)

Notice that the word obtained by this cancellation is the same as the one obtained by

cancelling the pair xx- I. So at this stage we may cancel the original pair instead.Then we

are back in the first case, so the proposition is proved. 0

We call two words 11)and Wi in W' equivalent, and we write W\"V w', if they have the
same reduced form. This is an equivalence relation.)

Proposition 7.9.3 Products of equivalent words are equivalent: If w rv w' and V\"V v', then

1.1JV \037 11/ v'.)

Proof To obtain the reduced word equivalent to the product u.,v, we may first cancel as

much as possible in wand in v, to reduce w to Wo and v to Vo. Then wv is reduced to WoVo.

Now we continue, canceJ1ing in Wo Vo until the word is reduced.If w rv w' and v rv
v', the

same process, when applied to w'v', passesthrough Wo Vo too, so it leads to the same re-
duced word. 0)

It follows from this proposition that equivalence classesof words can be multiplied:)

Proposition 7.9.4 The set :Fof equivalence classes of words in W' is a group, with the Jaw

of composition induced from multiplication (juxtaposition) in W'.)

Proo.f The facts that multiplication is associative and that the class of the empty word 1 is
an identity follow from the corresponding facts in W' (see Lemma 2.12.8). We must check

that all elements of :F are invertible. But clearly.. if w is the product xy. . .z of elements of

S', then the class of Z-l . ..y-lx-Iinverts the class of UJ. 0

The group F of equivalence classes of words in S' is called the free group on the set

S. An element of F correspondsto exactly one reduced word in W'. To multiply reduced

words, combine and cancel: (abc- 1)(cb) \037 abc-1cb = abb.

Power notation may be used: aaab- 1
b-

1 = a 3b- 2.

Note:The free group on a set S = {a}of one element is simply an infinite cyclic group. In

contrast, the free group on a set of two or more elements is quite complicated.)))
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7.10 GENERATORSAND RELATIONS)

Having described free groups, we now consider the more common case, that a set of

generators of a group is not free - that there are some nontrivial relations among them.)

Definition 7.10.1 A relation R among elements Xl, . . . , X n of a group G is a word r in the

free group on the set {Xl,. . . , xn} that evaluates to 1 in G. We will write such a relation
either asr, or for emphasis, as r = 1.)

For example,the dihedral group Dn of symmetries of a regular n-sided polygon is

generated by the rotation x with angle 2n In and a reflectiony, and thesegeneratorssatisfy

relations that were listed in (6.4.3):

(7.10.2) x n = 1, y2
= 1, xyxy = 1.

(The last relation is often written as yx = x- l
y, but it is best to write every relation in the

form r = 1 here.)
Onecanusetheserelations to write the elements of Dn in the form xi yj with 0 < i < n

and 0 < j < 2, and then one can compute the multiplication table for the group. So

the relations determine the group.They are therefore called defining relations. When the

relations are more complicated, it can be difficult to determine the elementsof the group
and the multiplication table explicitly, but, using the free group and the next lemma, we
will define the concept of a group generatedby a given set of elements, with a given set of
relations.)

Lemma 7.10.3 Let R be a subset of a group G. Thereexistsa unique smallest normal

subgroup N of G that contains R, called the normal subgroup generated by R. If a normal

subgroup of G contains R, it contains N. The elements of N can be described in either of

the following ways:

(a) An element of G is in N if it can be obtained from the elements of R using a finite

sequence of the operations of multiplication, inversion,and conjugation.
(b) Let R

'
be the set consisting of elementsrand r-l with r in R. An element of G is in N

if it can be written as a product Yl
. . .

Yr of some arbitrary length, where each Yv is a

conjugate of an element of R'
.)

Proof Let N denote the set of elementsobtained by a sequence of the operations mentioned
in (a). A nonempty subset is a normal subgroup if and only if it is closed under those

operations. Since N is closedunder those operations, it is a normal subgroup.Moreover,

any normal subgroup that contains R must contain N. So the smallest normal subgroup
containing R exists, and is equal to N. Similar reasoning identifies N as the subset described
in (b). 0)

As usual, we must take care of the empty set. We say that the empty set generates the trivial

subgroup {1}.)

Definition 7.10.4 Let F bethefreegroup on a set S = {Xl, . . . ,xn},and let R = {rl, . . . , rk}

be a set of elements of F. The group generated by S, with relations rl = 1, ... , rk
= 1, is

the quotient group 9 = FIR, where R is the normal subgroup of F generatedby R.)))
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The group Q will often be denoted by)

(7.10.5)) <Xl, \302\267\302\267\302\267, X n I r1, \302\267\302\267\302\267, rk >.)

Thus the dihedral group Dn is isomorphicto
th\037 group)

(7.10.6)) <x, Y I x
n

, y2, xyxy>.)

Example 7.10.7 In the tetrahedral group T of rotational symmetriesof a regular tetrahedron,
let x and y denoterotations by 2TC/3 about the center of a face and about a vertex, and let z
denoterotation by 1T about the center of an edge, as shown below. With vertices numbered
as in the figure, x acts on the verticesas the permutation (234), y acts as (123), and z acts
as (13)(24).Computing the product of these permutations shows that xyz acts trivially on
the vertices.Sincethe only isometry that fixes all vertices is the identity, xyz = 1.)

2)

(7.10.8)) 1)

So the following relations hold in the tetrahedral group:)

(7.10.9)) x3 = 1 , y3
= 1 , Z2 = 1 , xyz = 1.) o)

Two questions arise:

1. Is this a set of defining relations for T? In otherwords, is the group)

(7.10.10)) < 3 3 2 >x, y, z I x , y , z , xyz)

isomorphic to T?
It is easy to verify that the rotations x, y, z generateT, but it isn't particularly easy

to work with the relations. It is confusing enough to list the 12 elements of the group
as productsof the generators without repetition. We show in the next section that the
answer to our questionis yes, but we don't do that by writing ,the elements of the group

\\explicitly.

2. How can one compute in a group Q = <Xl, . . . , X n I r1, . . . , rk> that is presented by
generators and relations?

Becausecomputation in the free group :F is easy, the only problem is to decide when an
element w of the free group represents the identity element of Q, i.e., when w is an element
of the subgroup R. This is the wordproblemfor Q. If we can solve the word problem,then)))
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because the relation WI
== W2 is equivalent to w 1

I
W2 == 1, we will be able to decidewhen

two elements of the free group representequal elements of Q. This will enable us to compute.
The word problemcanbe solved in any finite group, but not in every group. However,

we won't discussthis point, because some work is required to give a precise meaning to
the statement that the word problem can or cannot be solved. If you are interested, see

[Stillwell].
The next example shows that computation in R can become complicated, even in a

relatively simple case.)

Example 7.10.11 The element W == yxyx is equal to 1 in the group T. Let's verify that W

is in the normal subgroup R generatedby the four relations (7.10.9). We use what you win

recognize as a standard method:reducing W to the identity by the allowed operations.
The relations that we will use are Z2 and xyz, and we'll denote them by p and q,

respectively. First, let W1 = y-l wy == xyxy. Because R is a normal subgroup,WI is in R if

and only if w is. Next, let W2 == q-1wl == z-
l
xy. Since q is in R, W2 is in R if and only if WI

is. Continuing, W3 == ZW2Z-1 ==
xyz-l, W4 ==

q-l w3 == Z-lZ-1, PW4 == 1. Solving back,
w == yqz-lqp-

1
zy-1 is in R. Thus W == 1 in the group (7.10.10). 0)

We return to the group Q defined by generators and relations. As with any quotient

group, we have a canonical homomorphism)

7r : F \037 FIR == Q

that sends a word W to the coset W ==
[wR], and the kernel of 7r is R (2.12.2). To keep

track of the group in which we are working, it might seem safer to denote the imagesin Q of

elements of F by putting bars over the letters. However, this isn't customary. When working
in Q, one simply remembers that elements WI and W2 of the free group are equalin Q if the

cosets WI Rand W2 R are equal, or if W 11 W2 is in R.

Since the defining relations ri are in R, ri == 1 is true in Q. If we write ri out as words,
then because TC is a homomorphism, the corresponding product in Q will be equal to 1 (see
Corollary 2.12.3). For instance, xyz == 1 is true in the group (x, y, z I x

3
, y3, z2, xyz).

We go back once more to the example of the tetrahedral group and to the first question.

How is the group (x, y, Z I x
3

, y3, Z2, xyz) related to T? A partial explanation is based on
the mapping properties of free groups and of quotient groups. Both of these properties are

intuitive. Their proofs are simpleenoughthat we leave them as exercises.)

Proposition 7.10.12Mapping Property of the Free Group. Let F be the free group on a set
S == {a, b, . . .}, and let G be a group.Any map of sets I: S \037 G extends in a unique way

to a group homomorphism cp:F \037 G. If we denote the image I(x) of an element x of S

by x , then cp sends a word in S' == {a, a-I, b, b- 1
, . . .}to the corresponding product of the

elements {a , a- I, b,b-I .. .}in G. 0)

This property reflects the fact that the elements of S satisfy no relations in F except those

implied by the group axioms. It is the reason for the adjective \"free.\

Proposition 7.10.13 Mapping Property of Quotient Groups. Let cp: G' \037 G be a group

homomorphism with kernel K, and let N be a normal subgroup of G' that is contained in K.)))
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-, -,
Let G = G'I N, and let Jr:G' \037 G be the canonical map a 'V'-t a . The rule cp(a ) = cp(a)-,
defines a homomorphism cp : G \037 G, and cp 0 Jr =

cp.)

G'
cp

> G

\037

--1/
I

I-
I cP

-/
0G)

This mapping property generalizesthe First Isomorphism Theorem. The hypothesis that N

be contained in the kernel K is, of course, essential.

The next corollary uses notation introduced previously: S == {Xl, . . . , xn} is a subset
of a group G, R == {rl, . . . , rk} is a set of relations among the elements of S of G, F
is the free group on S, and R is the normal subgroup of F generatedby R. Finally,

9 == <Xl, . . . , X n Irl . . . , rk) == FIR.)

Corollary 7.10.14

(i) There is a canonical homomorphism 1fr: 9 \037 G that sends Xi \037 Xi.

(ii) 1/1' is surjective if and only if the set S generates G.

(iii) 't/1 is injective if and only if every relation among the elements of S is in R.)

Proof We will prove (i), and omit the verification of (ii) and (iii).Themapping property of

the free group gives us a homomorphism cp: F \037 G with cp(Xi) == Xi. Since the relations
ri evaluate to 1 in G, R is contained in the kernel K of cpo Since the kernel is a normal
subgroup,R is also contained in K. Then the mapping property of quotient groups gives us
a map cp : 9 \037 G. This is the map 1fr:)

cP
F > G

\037 / ;=0/
9) D)

If the map l/f described in the corollary is bijective, one says that R forms a complete
set of relations among the generators S. To decide whether this is true requires knowing
more about G. Goingback to the tetrahedral group, the corollary gives us a homomorphism

1jf:Q \037 T, where 9 == (x, y, z I x3, y3, Z2, xyz). It is surjectivebecausex, y, Z generate T.

And we saw in Example 7.10.11 that the relation yxyx, which holds among the elements
of T, is in the normal subgroup R generated by the set {x

3, y3, z2, xyz}.Is every relation

among x, y, Z in R? If not, we'd want to add some more relations to our list.It may seem

disappointing not to have the answer to this question yet, but we will see in the next section
that 1/1 is indeed bijective.

Recapitulating, when we speakof a group defined by generators S and relationsR, we

mean the quotient group 9 == FIR, where F is the free group on Sand R is the normal

subgroup of F generated by R. Any set of relations will define a group. The larger R is,the
largerR becomes,and the more collapsing takes place in the homomorphism 1l': F \037 g.

The extreme case is R == F, in which case g is the trivial group. All relations become true in)))
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the trivial group. Problems arise because computation in F /R may be difficult. But because

generators and relations allow efficient computation in many cases, they are a useful tool.)

7.11 THE TODD-COXETER ALGORITHM)

The Todd-CoxeterAlgorithm, which is described in this section, is an amazing method for

determining the operation of a finite group G on the set of cosetsof a subgroup H.

In order to compute,both G and H must be given explicitly.Sowe consider a group)

(7.11.1)) G = <Xl,. . . ,X m I rl, . . . , rk>)

presented by generators and relations, as in the previous section.

We also assume that the subgroup H of G is given explicitly, by a set of words)

(7.11.2)) {hl,...,h s })

in the free group F, whose imagesin G generate H.

The algorithm proceeds by constructing some tables that become easier to read when

one works with right cosets Hg. The group G operatesby right multiplication on the set of
right cosets, and this changes the order of compositionof operations. A product gh acts by
right multiplication as \"first multiply by g, then by h\". Similarly, when we want permutations

to operate on the right, we must read a product this way:)

first do this then this

(234) 0 (123) = (12)(34).

The following rules suffice to determine the operation of G onthe right cosets:)

Rules 7.11.3)

1. The operation of each generator is a permutation.
2. The relations operatetrivially: they fix every coset.

3. The generatorsof H fix the coset [H].
4. The operationis transitive.)

The first rule follows from the fact that group elements are invertible, and the secondone
reflects the fact that the relations represent the identity element of G. Rules 3 and 4 are
specialpropertiesof the operation on cosets.

When applying these rules,thecosetsareusually denoted by indices 1, 2, 3, . . . ,with 1

standing for the coset [H]. At the start, one doesn't know how many indices will be needed;
new ones are addedas necessary.

We begin with a simpleexample,in which we replace y3 by y2 in the relations (7.10.9).)

Example 7.11.4 Let G be the group <x, y, z I x3, y2, Z2, xyz >, and let H be the cyclic

subgroup < z > generated by z. First, Rule 3 tells us that z sends 1 to itself, 1 \037 1. This

exhausts the information in Rule 3, so Rules 1 and 2 take over.Rule 4 will only appear

implicitly.
Nothing we have done up to now tells us what X does to the index 1. In such a case,

the procedure is simply to assign a new index,1 \037 2. (Since 1 stands for the coset[H], the)))
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index 2 stands for [Hx], but it is best to ignore this.) Continuing, we don't know where x
2

sends the index 2, so we assigna third index, 2 \037 3. Then 1 \037 3.

What we have so far is a partial operation, meaning that the operations of some

generators on someindiceshave been assigned. It is helpful to keep track of the partial

operation as one goes along.The partial operation that we have so far is)

z == (1)
. . . and x == (12 3 . .. .)

There is no closing parenthesis for the partial operation of x because we haven't determined

the index to which x sends 3.

Rule 2 now comes into play. It tells us that because x 3 is a relation, it fixes every index.

Since x2 sends 1 to 3,x must send 3 back to 1. It is customary to sum this information up in

a table that exhibits the operation of x on the indices:)

x x x
123 1

The relation xxx appears on top, and Rule 2 is reflected in the fact that the same inde) 1
appears at both ends. We have now determined the partial operation)

x == (123)
. ..

,)

except that we don't yet know whether or not the indices 1, 2, 3 represent distinct cosets.
Next, we ask for the operation of y on the index 1. Again, we don't know it, so we

assign a new index:1 \037 4. Rule 2 applies again. Since y2 is a relation, y must .send 4 backto
1.This is exhibited in the table)

y Y

1 4 l')
so y == (14)

. . .)

For review, we have now determined the entriesin the table below. The four defining
relations appear on top.)

x) x) x) y) y) z) z) x) y) z)

1) 2) 3) 1) 1) 4) 1) 1) 1) 1) 1) 2) 1)

The missing entry in the table for xyz is 1. This follows from the fact that z acts as a

permutation that fixes the index 1. Entering 1 into the table, we see that 2 \037 1. But we also

have 4 \037 1. Therefore 4 = 2. We replace 4 by 2 and continue constructing a table.
The entriesbelow have been determined:)

x) x) x) y) y) z) z) x) y) z)

1

2

3)

1

2

3)

2

1)

1) 1

2

3)

1

2
3)

1) 1

2

3)

1

2
3)

2

3

1)

3

1

2)

1

2

3)

1

2

3)

2

3

1) 2)

The third row of the table for xyz shows that 2 \037 3, and this determines the rest of the
table.Therearethree indices, and the complete operation is

.)

x == (123), y == (12), z == (23).)))
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At the end of the section,we will show that this is indeed the permutation representation
defined by the operation of G onthecosetsof H. 0)

What such a table tells us dependson the particular case. It will always tell us the
number of cosets,the index [G: H], which will be equal to the number of distinct indices:

3 in our example. It may also tell us something about the order of the generators. In our

example, we are given the relation Z2 == 1, so the order of z must be 1 or 2. But z acts on
indicesas the transposition (23), and this tells us that we can't have z == 1. So the order of z
is 2, and IHI == 2. The counting formula IGI ==

IHI[G: H] shows that G has order2.3 == 6.

The three permutations shown above generate the symmetric group 53, so the permutation
representation G -+ 53defined by this operation is an isomorphism.

If one takes for H the trivial subgroup {I}, the cosets correspond bijectively to the
group elements,and the permutation representation determines G completely.The costof

doing this is that there will be many indices. In other cases, the permutation representation

may not suffice to determinethe order of G.

We'll compute two more examples.)

Example7.11.5We show that the relations (7.10.9) form a completeset of relations for

the tetrahedral group. The verification is simplified a little if one uses the relation xyz == 1

to eliminate the generator z. SinceZ2 == 1, that relation implies that xy
== z-l == z. The

remaining elements x, y sufficeto generateT.Sowe substitute Z ==
xy into Z2, and replace

the relation Z2 by xyxy. The relations become)

(7.11.6)) x3 == 1, y3 == 1, xyxy == 1.)

These relations among J7 and yare equivalent to the relations (7.10.9)among x, y, and z, so

they hold in T.

Let G denote the group < x, y I x
3

, y3 , xyxy). Corollary (7.10.14)gives us a homo-

morphism 1fr: G -+ T. To show that (7.11.6) are defining relations for T, we show that 1fr is

bijective. Since x and y generateT, 1fr is surjective. So it suffices to show that the order of G
is equal to the order of T, which is 12.

We choose the subgroupH == < x). This subgroup has order 1or3becausex3
is one of

the relations. If we show that H has order 3 and that the index of H in G is 4, it will follow
that G has order 12, and we will be done. Here is the resulting table. To fill it in, work from
both ends of the relations.)

x x x y y y x y x y

1 1 1 1 1 2 3 1 1 1 2 3 1
2 3 4 2 2 3 1 2 2 3 1 1 2
3 4 2 3 3 1 2 3 3 4 4 2 3
4 2 3 4 4 4 4 4 4 2 3 4 4

The permutation representation is

(7.11.7) x = (234), y == (123).)

Since there are four indices, the indexof H is 4. Also, x does have order 3, not 1, because
the permutation associatedto x has order 3. The order of G is 12,as predicted.)))
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Incidentally, we see that T is isomorphic to the alternating group A4, because the

permutations (7.11.7) generate that group. 0)

Example 7.11.8 We modify the relations (7.10.9) slightly, to ilJustrate how \"bad\" relations

may collapse the group. Let G be the group <x, Ylx
3 , y3, y_\037yxy>. and let H be the

subgroup <y >.Here isa start for a table:)

x) x) x) y) y) y)

1

2)

2) 3) 1

2)

1

2)

1) 1) 1

2)

1

2)

y x

1

3)

2

1)

y x

3

1)

)')
1
2)

1

2)

In the table for yxyxy, the first three entries in the first row are determined by working from

the left, and the last three by working from the right. That row shows that 2 \037 3. The second

row is determined by working from the left, and it shows that 2 \037 2. So 2 = 3. Looking
at the table for xxx, we see that then 2 = 1. There is just one indexleft, so one coset, and

consequently H = G. The group G is generated by y. It is a cyclicgroup of order 3; 0)

Warning: Care is essentialwhen constructing such a table. Any mistake will cause the

operation to collapse.
In our examples,we took for H the subgroup generated by one of the generators of

G. If H isgeneratedby a word h, one can introduce a new generatoru and the new re]ation

u-1h = 1 (i.e.,u =
h). Then G (7.11.1) is isomorphic to the group

<Xl\" . . . , X m \" U I rl, . . . , rk, u -1 h >,)

and H becomes the subgroup generated by u. If H has several generators, we do this for

each of them.

We now address the question of why the procedure we have described determines the

operation on cosets. A formal proof of this fact is not possiblewithout first defining the

algorithm formally, and we have not done this. We will discuss the question informally. (See
[Todd-Coxeter] for a more complete discussion.) We describe the procedure this way: At a

given stage of the computation, we will have some set I of indices,and apartial operation on
I, the operation of some generators on some indices,will have been determined. A partial
operation need not be consistent with Rules 1, 2\" and 3'1 but it should be transitive; that is,

all indices should be in the \"partial orbit\" of 1. This is where Rule 4 comes in. It tens us not
to introduce any indices that we don't need. In the starting position, I is the set {1}of one

element, and no operations have beenassigned.
At any stage there are two possible steps:)

(7.11.9) (i)We may equate two indices i and j if the the rules tel] us that they are equal, or

(ii) we may choose a generator x and an index i such that ix has not been determined, and
define t\037 = j, where j is a new index.)

We never equate indices unless their equality is impJiedby the rules.
We stop the process when an operation has been determined that is consistent with

the rules. Thereare two questions to ask: First, willlhis procedure terminate? Second, if it)))
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terminates, is the operationthe right one? The answer to both questionsis yes. It can be
shown that the process does terminate, provided that the group G isfinite, and that preference

is given to steps of type (i). We will not prove this. More important for applications is the
fact that, if the process terminates, the resulting permutation representation is the right one.)

Theorem 7.11.10 Suppose that a finite number of repetitions of steps(i) and (ii) yields a

consistent table compatible with the rules (7.11.3). Then the table defines a permutation

representation that, by suitable numbering, is the representation on the right cosets of H in G.)

Proof. Say that the group is G =
<Xl, . . . , Xn Irl, . . . , rk >, and let 1* denote the final set of

indices. For each generator Xi, the table determines a permutation of the indices, and the

relations operate trivially. Corollary 7.10.14 givesus a homomorphism from G to the group
of permutations of 1*, and therefore an operation, on the right, of G on 1* (see Proposition
6.11.2).Provided that we have followed the rules, the table will show that the operation of
G is transitive, and that the subgroup H fixesthe index 1.

Let C denote the set of right cosets of H. We prove the propositionby defining a

bijective map cp* : 1* \037 C from 1* to C that is compatible with the operations of the group on

the two sets. We define cp* inductively, by defining at each stage a map cp:I \037 C from the

set of indicesdeterminedat that stage to C, compatible with the partial operation on I that

has been determined. To start, CPo : {I} --+ C sends 1 \037 [H]. Suppose that cp:I -+ Chasbeen
defined, and let I' be the result of applying one of the steps (7.11.9) to I.

In caseof step (ii), there is no difficulty in extending cp to a map q/ :I' 4 C.Say that

cp(i) is the coset [Hg], and that the operation of a generator x on i has been defined to be

a new index, say ix = j. Then we define cp' (j) = [Hgx], and we define cp' (k) == cp(k) for all

other indices.
Next, supposethat we use step (i) to equate the indicesi and j, so that I is collapsed to

form the new index set I'. The next lemma allows us to define the map q/ :I' \037 C.)

Lemma 7.11.11 Suppose that a map cp: I 4 Cis given, compatible with a partial operation on
I. Leti and j be indices in I, and suppose that one of the rules forces i ==

j. Then cp(i) = cp(j).)

Proof. This istruebecause,aswe have remarked before, the operation on cosetsdoessatisfy

the rules. 0)

The surjectivity of the map cp follows from the fact that the operation of the group on
the set C of right cosets is transitive. As we now verify, the injectivity follows from the facts

that the stabilizer of the coset [H] is the subgroup H, and that the stabilizer of the index 1

contains H. Let i and j be indices.Since the operation on 1* is transitive, i = 1a for some

group element a, and then cp(i) = cp(l)a = [Ha].Similarly, if j = 1b, then cp(j) ==
[Hb].

Suppose that cp(i) == cp(j), i.e., that Ha = Hb. Then H == Hba-
1

, so ba- 1 is an element of
H. SinceH stabilizes the index 1, 1 == 1ba-

1 and i = 1a == 1b = j. 0)

The method of postulating what we want has many advantages;
they are the same as the advantagesof theft over honest toil.

-Bertrand Russell)))
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EXERCISES)

Section 1 Cayley'sTheorem

1.1. Does the rule g * x = xg-
1 define an operation of G on G?

1.2. Let H be a subgroup of a group G. Describe the orbits for the operation of H on G by

left multiplication.)

Section 2 The ClassEquation

2.1. Determine the centralizer and the order of the conjugacy class of

(a) the matrix
[

1
n

in G L2( JF 3), (b) the matrix
[

1
2]

in G L2( JF S).

2.2. A group of order21contains a conjugacy class C(x) of order3.What is the order of x in

the group?

2.3. A group G of order12contains a conjugacy class of order 4. Prove that the center of G
is trivial.

2.4. Let G be a group, and let cp be the nth power map: cp(x)= xn
. What can be said about

how cp acts on conjugacy classes?

2.5. LetG be the group of matrices of the form
[x i ],

where x, Y E JR and x > o. Determine

the conjugacyclassesin G, and sketch them in the (x, y)-plane.

2.6. Determine the conjugacyclassesin the group M of isometries of the plane.

2.7. Rule out as many as you can, as class equationsfor a group of order 10:
1+ 1+ 1+2+ 5, 1 + 2 + 2 + 5, 1+ 2+ 3+ 4, 1 + 1 + 2 + 2 + 2+ 2.

2.8.Determine the possible class equations of nonabeliangroupsof order (a) 8, (b) 21.

2.9. Determine the class equation for the following groups: (a) the quaternion group, (b) D4,
(c)Ds, (d) the subgroup of G L2 (JF3) of invertible upper triangular matrices.

2.10.(a) Let A be an element of S03 that represents a rotation with angle Jr. Describe the

centralizer of A geometrically.

(b) Determine the centralizer of the reflection r about the el-axis in the group M of
isometriesof the plane.

2.11. Determine the centralizer in G L3 OR) of each matrix:)

[1

2

3] [1
1

2] [1
\037

J [1

\037

\037] [1

1

1].)

*2.12.Determine all finite groups that contain at most three conjugacy classes.

2.13. Let N be a normal subgroup of a group G. Supposethat INI = 5 and that IGI is an odd

integer. Prove that N is contained in the center of G.
2.14.The class equation of a group G is 1+ 4 + 5 + 5 + 5.

(a) DoesG have a subgroup of order 5? If so,is it a normal subgroup?

(b) Does G have a subgroup of order 4? If so,is it a normal subgroup?)))
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2.15. Verify the class equation (7.2.10) of SL2(IF3).

2.16. Let qJ: G -+ G' be a surjective group homomorphism, let C denote the conjugacyclassof

an element x of G, and let C' denote the conjugacy class in G' of its image qJ(x). Prove
that qJ maps C surjectively to C', and that IC' I divides ICI.

2.17. Use the class equationto show that a group of order pq, with p and q prime, contains an
elementof order p.

2.18. Which pairs of matrices

[
_ \037 J ], [\037

-

J ]
are conjugateelements of (a) G Ln (lR),

(b) SLn (JR)?)

Section 3 p-Groups

3.1. Prove the Fixed Point Theorem (7.3.2).

3.2. Let Z be the center of a group G. Prove that if G / Z is a cyclicgroup, then G is abelian,
and therefore G = Z.

3.3.A nonabelian group G has order p3, where p is prime.

(a) What are the possibleordersof the center Z?

(b) Let x be an element of G that isn't in Z. What is the order of its centralizer Z(x)?

(c) What are the possibleclassequations for G?)

3.4. Classify groups of order8.)

Section 4 The Class Equation of the IcosahedralGroup

4.1.The icosahedral group operates on the set of five inscribed cubes in the dodecahedron.
Determine the stabilizer of one of the cubes.

4.2. Is As the only proper normal subgroup of Ss?
4.3.What is the centralizer of an element oforder2 of the icosahedral group /?

4.4. (a) Determine the class equation of the tetrahedral group T.

(b) Prove that T has a normal subgroup of order4, and no subgroup of order 6.

4.5.(a) Determine the class equation of the octahedral group O.
(b) This group contains two proper normal subgroups.Find them, show that they are

normal, and show that there are no others.

4.6. (a) Prove that the tetrahedral group T is isomorphicto the alternating group A4, and
that the octahedral group 0 is isomorphicto the symmetric group 84.
Hint: Find sets of four elements on which the groups operate.

(b) Two tetrahedra can be inscribed into a cube C, each one using half the vertices.

Relate this to the inclusion A4 C S4.
4.7. Let G be a group of order n that operates non trivially on a set of order r. Prove that if

n > r!, then G has a proper normal subgroup.
4.8.(a) Suppose that the centralizer Z(x) of a group element x has order 4. What can be

said about the center of the group?

(b) Suppose that the conjugacy classC(y) of an element y has order 4.What can be said

about the center of the group?)))
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4.9. Let x be an element of a group G, not the identity, whose centralizer Z(x) has order pq,
where p and q are primes. Prove that Z(x) is abelian.)

Section 5 Conjugationin the Symmetric Group

5.1. (a) Prove that the transpositions (12), (23), . . . , (n- 1,n) generate the symmetric
group Sn.

(b) How many transpositions are needed to write the cycle (123. . . n)?
(c) Prove that the cycles (12. . . n) and (12) generate the symmetric group Sn.

5.2. What is the centralizer of the element (12) in S5?

5.3. Determine the orders of the elements of the symmetric group S7.
5.4. Describethe centralizer Z (a) of the permutation a == (153) (2 4 6) in the symmetric

group S7, and compute the orders of ZeD\") and of C(a).

5.5. Let p and q be permutations. Prove that the products pq and qp have cycles of equal
SIzes.)

5.6. Find all subgroups of 54 of order 4, and decide which ones are normal.

5.7. Prove that An is the only subgroup of 5n of index 2.
5.8.1Determine the integers n such that there is a surjective homomorphism from the

symmetric group Sn to Sn-l.
5.9. Letq bea 3-cycle in Sn. How many even permutations p are there such that pqp-l = q?

5.10. Verify formulas (7.5.2) and (7.5.3) for the class equationsof 84 and 8s, and determine
the centralizerof a representative element in each conjugacy class.

5.11.(a) Let C be the conjugacy class of an even permutation p in Sn. Show that C is either
a conjugacy class in An, or else the union of two conjugacy classes in An of equal
order. Explain how to decide which case occurs in terms of the centralizer of p.

(b) Determine the class equations of A4 and As.
(c) Onemay also decompose the conjugacy classes of permutations of odd order into

An -orbits. Describe this decomposition.

5.12. Determine the class equations of 56 and A6.)

Section 6 Normalizers

6.1. Prove that the subgroup B of invertible upper triangular matrices in G Ln (IR) is conjugate
to the subgroup L of invertible lower triangular matrices.

6.2. Let B be the subgroup of G = G Ln (C) of invertible upper triangular matrices, and
let U C B be the set of upper triangular matrices with diagonal entries 1. Prove that

B = N(U) and that B = N(B).

*6.3. Let P denote the subgroup of G Ln (JR)consisting of the permutation matrices. Determine

the normalizer N(P).
6.4. Let H be a normal subgroup of prime order p in a finite group G. Suppose that p

is the smallest prime that divides the order of G. Prove that H is in the
center Z(G).)

1
Suggested by Ivan Borsenko.)))
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6.5. Let p be a prime integer and let G be a p-group. Let H be a proper subgroup of G.
Prove that the normalizer N(H) of H is strictly larger than H, and that H is contained
in a normal subgroup of index p.

*6.6. Let H be a propersubgroup of a finite group G. Prove:

(a) The group G is not the union of the conjugate subgroups of H.
(b) Thereis a conjugacy class C that is disjoint from H.)

Section 7 The Sylow Theorems

7.1. Let n = pem , as in (4.5.1), and let N be the number of subsets of order pe in a set of
order n. Determine the congruence class of N modulo p.

7.2. Let G1 C G2 be groups whoseordersaredivisible by p, and let H1 be a Sylow p-subgroup

of G1. Prove that there is a Sylow p-subgroup H2 of G2 such that H1 = H2n G1.
7.3.How many elements of order 5 might be contained in a group of order 20?
7.4.(a) Prove that no simple group h\037s order pq, where p and q are prime.

(b) Prove that no simple group has order p2q,where p and q are prime.
7.5. Find Sylow 2-subgroups of the following groups: (a) DIO, (b) T, (c) 0, (d)I.
7.6.Exhibit a subgroup of the symmetric group S7 that is a nonabelian group of order 21.
7.7.Let n = pm be an integer that is divisible exactly once by p, and let G be a group of order

n. Let H be a Sylow p-subgroup of G, and let S be the set of all Sylow p-subgroups.
Explain how S decomposes into H -orbits.

*7.8. Compute the order of G Ln (IF p). Find a Sylow p-subgroup of GLn (1F p), and determine
the number of Sylow p-subgroups.

7.9. Classify groups of order (a) 33, (b)18,(c) 20, (d) 30.

7.10. Prove that the only simple groups of order <60are the groups of prime order.)

Section 8 The Groups of Order 12

8.1. Which of the groups of order 12describedin Theorem 7.8.1 is isomorphic to S3X C2?

8.2. (8) Determine the smallest integer n such that the symmetric group Sn contains a
subgroup isomorphic to the group (7.8.2).

(b) Find a subgroup of SL2(]F5) that is isomorphic to that group.
8.3. Determine the class equations of the groups of order12.
8.4.Prove that a group of order n = 2p, where p is prime, is either cyclic or dihedral.

8.5. Let G be a nonabelian group of order 28 whose sylow 2 subgroups are cyclic.

(8) Determine the numbers of sylow 2 - subgroupsand of sylow 7 - subgroups.
(b) Prove that there is at most one isomorphism class of such groups.
(c) Determine the numbers of elements of each order, and the class equation of G.)))
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8.6. Let G be a group of order 55.)

(a)) Prove that G is generated by two elements x and y, with the relations xll

y5 == 1, yxy-l == x
r

, for some r, 1 < r < 11.
Decide which values of r are possible.
Prove that there are two isomorphism classesof groups of order 55.)

- 1- ,)

(b)

(c))

Section 9 The Free Group

9.1. Let F be the free group on {x, y}. Prove that the three elements u == x 2
, V == y2, and

z == xy generate a subgroup isomorphic to the free group on u, v, and z.
9.2. We may define a closed word in S' to be the oriented loop obtained by joining the ends

of a word.Reading counterclockwise,)

c a-I
b b

a b
a c
bbd)

is a closed word. Establish a bijective correspondencebetweenreducedclosedwords and

conjugacy classes in the free group.)

Section 10 Generators and Relations

10.1. Prove the mapping properties of free groups and of quotient groups.

10.2. Let cp: G \037 G' be a surjective group homomorphism. Let S be a subset of G whose

image cp(S) generates G', and let T be a set of generators of ker cpo Prove that S U T

generates G.
10.3.Can every finite group G be presented hy a finite set of generators and a finite set of

relations?

10.4. The group G == <x, y; xyx-ly-l > is called a free abelian group. Prove a mapping
property of this group: If u and v are elementsof an abelian group A, there is a unique
homomorphism q;: G -* A such that q;(x) == u, q;(y) == v.

10.5. Prove that the group generated by x, y, z with the single relation yxyz-2 == 1 is actually
a free group.

10.6.A subgroup H of a group G is characteristicif it is carried to itself by all automorphisms
of G.

(a) Prove that every characteristic subgroup is normal, and that the center Z is a
characteristicsubgroup.

(b) Determine the normal subgroups and the characteristic subgroupsof the quaternion

group.

10.7. The commutator subgroup C of a group G is the smallest subgroup that contains all

commutators. Prove that the commutator subgroup is a characteristic subgroup (see
Exercise10.6),and that G / C is an abelian group.)))
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10.8. Determine the commutator subgroups (Exercise 10.7) of the following groups:

(a) S02, (b) 02, (c) the group M of isometrics of the plane, (d)Sn, (d)S03.
10.9.Let G denote the group of 3 X 3 upper triangular matrices with diagonal entries equal to 1

and with entries in the field 1F p' For each prime p, determinethe center, the commutator

subgroup (Exercise 10.6),and the orders of the elements of G.
10.10.Let F be the free group on x, y and let R be the smallest normal subgroup containing

the commutator xyx-1y-l.

(a) Showthat x
2

y
2x- 2y-2 is in R.

(b) Prove that R is the commutator subgroup (Exercise 10.7) of F.)

Section11 The Todd-Coxeter Algorithm

11.1. Complete the proof that the group given in Example 7.11.8is cyclicof order 3.

11.2. Use the Todd-Coxeter algorithm to show that the group defined by the relations (7.8.2)
has order 12and that the group defined by the relations (7.7.8) has order 21.

11.3.Usethe Todd-Coxeter Algorithm to analyze the group generated by two elements x, y,
with the following relations. Determine the order of the group and identify the group if

you can:

(a) x 2 =
y2

= 1, xyx = yxy, (b) x3 = y3 = 1, xyx = yxy,
(c)x4 = y2 = 1, xyx = yxy, (d)x4 = y4 = x 2

y2
= 1,

(e) x 3 = 1, y2 = 1, yxyxy = 1, (f) x
3 = y3 = yxyxy = 1,

(g)x4 = 1, y3 = 1, xy =
y

2
x, (h) x 7 = 1, y3

= 1, yx = x2y,
(i) x-I yx = y-l, y-I xy = x- 1, (j) y3

= 1, x 2
yxy = 1.

11.4.How is normality of a subgroup H of G reflected in the table that displays the operation
on cosets?

11.5. Let G be the group generatedby elements x, y, with relations x4 = 1,y3
= 1, x 2 = yxy.

Prove that this group is trivial in two ways: using the Todd-Coxeter Algorithm, and

working directly with the relations.

11.6. A triangle group Gpqr is a group <x, y, z I x P , yq, zr, xyz >,wherep < q < r arepositive

integers. In each case, prove that the triangle group is isomorphic to the group listed.

(a) the dihedral group Dn, when p, q, r = 2, 2, n,
(b) the octahedral group, when p, q, r = 2,3, 4,

(c) the icosahedral group, when p, q, r = 2, 3, 5.

11.7.Let \037 denote an equilateral triangle, and let a, b, e denote the reflections of the plane
about the three sidesof \037. Let x = ab, y

= be, z = ea. Prove that x, y, z generate a
triangle group (Exercise 11.6).

11.8. (a) Prove that the group G generated by elements x, y, z with relations x 2 = y3 = ZS =

1, xyz = 1 has order 60.
(b) Let H be the subgroup generated by x and zyz-l. Determine the permutation

representationof G on G / H, and identify H.

(c) Prove that G is isomorphicto the alternating group As.)))
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(d) Let K be the subgroup of G generated by x and yxz. Determine the permutation
representationof G on G / K, and identify K.)

Miscellaneous Problems

M.t. Classify groupsthat are generated by two elements x and y of order 2.
Hint.' It will be convenient to make use of the element z == xy.

M.2. With the presentation (6.4.3),determine the double eosets (see Exercise M.9) HgH of

the subgroup H = {I, y} in the dihedral group Dn. Show that each double coset has
either two or four elements.

*M.3. (a) Supposethat a group G operates transitively on a set S, and that H is the stabilizer
of an elementSo of S. Consider the operation of G on S X S defined by g(S1, S2) =

(gsl, gS2). Establisha bijective correspondence between double cosets of H in G

and G-orbits in S x S.
(b) Work out the correspondence explicitly for the case that G is the dihedral group D5

and S is the set of vertices of a pentagon.
(c) Work it out for the cas.ethat G == T and that S is the set of edgesof a tetrahedron.

*M.4. Let Hand K be subgroups of a group G, with H c K. Suppose that H is normal in K,
and that K is normal in G. Is H normal in G?

M.5. Let Hand N be subgroups of a group G, and assume that N is a normal subgroup.

(a) Determine the kernels of the restrictions of the canonicalhomomorphism 77: : G \037

G / N to the subgroups Hand HN.
(b) Applying First Isomorphism Theorem to these restrictions,prove the Second Iso-

morphism Theorem: H/(H n N) is isomorphic to (HN)/ N.

M.6. Let Hand N be normal subgroups of a group G such that H :) N. Let H == H/ Nand

G = G / N.
- -

(a) Prove that H is a normal subgroup of G.

(b) Use the composedhomomorphism G \037 G \037 G / H to prove the--
Third Isomorphism Theorem: G / H is isomorphicto G / H.

M.7. 2LetP1,P2 be permutations of the set S == {I, 2, ..., n}, and let Ui be the subset of S of

indices that are not fixed by Pi. Prove:

(a) If U1 n U2 == 0, the commutator P1P2Pl1 P2
1 is the identity.

(b) If U 1n U2containsexactly one element, the commutator P1P2P1
1
P2

1
is a three-cycle.

*M.8. Let H be a subgroup of a group G. Prove that the number of left cosets is equal to the

number of right cosets also when G is an infinite group.

M.9. Letx be an element, not the identity, of a group of odd order.Prove that the elements x
and x-I are not conjugate.)

2
Suggested by Benedict Gross.)))
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M.I0. Let G be a finite group that operates transitively on a set S of order > 2. Show that G

contains an element g that doesn't fix any element of S.
M.ll. Determine the conjugacy classes of elements order 2 in G L2 (Z).

*M.12. (class equation of SL2) Many, though not all, conjugacy classes in SL2(F) contain

matrices of the form A =

[ 1

-
\037

].

(a) Determine the centralizers in SL2(IFS) of the matrices A, for a = 0, 1,2,3,4.
(b) Determine the class equation of SL2OF's).
(c) How many solutions of an equation of the form x2 + axy + y2

= 1 in JF p might there
be? To analyzethis, one can begin by setting y = AX + 1. For most values of A there

will be two solutions, one of which is x = 0, y = 1.
(d) Determine the class equation of SL2 (1F p).)))



CHAPTER 8)

Bilinear Forms)

Ipresume that to the uninitiated
the formulaewill appear cold and cheerless.

-Benjamin Pierce)

8.1 BILINEAR FORMS)

The dot product (X .
Y)

== Xty == XIYI + . . . + XnYn on }Rn was discussed in Chapter 5.
It is symmetric: (Y. X) = (X. Y), and positive definite: (X. X) > 0 for every X*O. We

examine several analogues of dot product in this chapter. The most important ones are
symmetric forms and Hermitian forms. All vector spaces in this chapter are assumed to be
finite-dimensional.

Let V be a real vector space.A bilinear form on V is a real-valued function of two

vector variables - a map V x V \nIR. Given a pair v, W of vectors, the form returns a real
number that will usually be denoted by (v, w). A bilinear form is required to be linear in

each variable:)

(8.1.1)) (rVl, WI) = r(Vl, WI) and

(VI, rWl) == r(VI, WI) and)

(VI + V2, WI) == (VI, WI) + (V2, WI)

(VI, WI + wz) = (VI, WI) + (VI, wz))

for all Vi and Wi in V and all real numbers r. Another way to say this is that the form is

compatible with linear combinations in each variable:)

(8.1.2)) (L:XiVi,w) ==
L:xi(Vi, w)

(v, L:Wj Yj)
=

L:(v, Wj)Yj)

for all vectors Vi and 'Wi and all real numbers Xi and Yi. (It is often convenient to bring
scalarsin the second variable out to the right side.)

The form on JRn defined by)

(8.1.3)) (X, Y) == XtAY,)

where A is an n x n matrix, is an example of a bilinear form. The dot product is the case
A = I, and when one is working with real column vectors, one always assumes that the form

is dot product unless a different form has been specified.)

229)))



230 Chapter 8) Bilinear Forms)

If a basis B == (Vl, . . . , v n ) of V is given, a bilinear form ( , ) can be related to a form

of the type (8.1.3) by the matrix of the form. This matrix is simply A =
(aij), where

(8.1.4) aij == (Vi, Vj).)

Proposition 8.1.5 Let ( , ) be a bilinear form on a vector space V, let B == (Vl, . . . , v n ) be a
basis of V, and let A be the matrix of the form with respect to that basis. If X and Yare the
coordinate vectors of the vectors V and' w, respectively, then

(v, w) == XtA Y.)

Proof If v == BX and w == BY, then

(v, w) =
(\037ViXi' \037 VjYj)

=
\037Xi(Vi' Vj)Yj

=

\037XiaijYj
=XtAY. 0

l J l,J l,J
A bilinear form is symmetric if (v, w) == (w, v) for all v and w in V, and skew-

symmetric if (v, w) == -(w, v) for all v and w in V. When we refer to a symmetric form, we

mean a bilinear symmetric form, and similarly, reference to a skew-symmetricform implies

bilinearity.)

Lemma 8.1.6

(a) Let A be an n x n matrix. The form XtA Y is symmetric: XtA Y == ytAX for all X and Y,

if and only if the matrix A is symmetric: At == A.

(b) A bilinear form ( , ) is symmetric if and only if its matrix with respect to an arbitrary
basis is a symmetric matrix.

The analogous statements are true when the word symmetric is replaced by skew-symmetric.)

\\)

Proof (a) Assume that A ==
(aij) is a symmetric matrix. Thinking of XtA Y as a 1X 1 matrix,

it is equal to its transpose.Then XtAY = (XtAy)t == ytAtX = ytAX. Thus the form is

symmetric.To derive the other implication, we note that eitAej
==

ai), while
ejAei

==
aji. In

order for the form to be symmetric, we must have aij = aji.)

(b) This follows from (a) because (v, w) == XtA Y.

The effect of a change of basis on the matrix of a form is determined in the usual way.)

o)

Proposition 8.1.7 Let ( , ) be a bilinear form on a real vector space V, and let A and A' be
the matrices of the form with respect to two bases Band B'. If P is the matrix of change of

basis, so that B' = BP, then)

A' == ptAP.)

Proof Let X and X' be the coordinate vectors of a vector v with respect to the bases Band
B'.Then v == BX == B'X', and PX' == X. With analogous notation, w == BY = B'Y',)

(v, w) == XtAY == (PX')tA(PY') == X,t(ptAP)Y'.)

This identifies pt AP as the matrix of the form with respect to the basisB'.) '0)))
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Corollary 8.1.8 Let A be the matrix of a bilinear form with respect to a basis. The matrices
that represent the same form with respect to different bases are the matricesptAP, whereP
can be any invertible matrix. 0)

Note:Thereis an important observation to be made here.When a basis is given, both linear
operatorsand bilinear forms are described by matrices. It may be tempting to think that

the theories of linear operators and of bilinear forms are equivalent in some way. They are
not equivalent. When one makes a change of basis, the matrix of the bilinear form X t

A Y

changes to ptAP, while the matrix of the linear operator Y = AX changes to p-l AP. The
matrices obtainedwith respect to the new basis will most often be different. 0)

8.2 SYMMETRIC FORMS)

Let V be a real vector space. A symmetric form on V is positive definite if (v, v) > 0 for all
nonzero vectors v, and positive semi-definite if (v, v) > 0 for all nonzero vectors v. Negative

definite and negative semidefinite forms are definedanalogously.Dot product is a symmetric,

positive definite form on ]Rn .

A symmetric form that is not positive definite is called indefinite. The Lorentz form)

(8.2.1 )) (X, Y) = XIYl + X2Y2 + X3Y3
-

X4Y4)

is an indefinite symmetric form on \"space- time\" }R4, where X4 is the' 'time\" coordinate, and

the speed of light is normalized to 1. Its matrix with respect to the standard basis of \0374 is)

1)

(8.2.2))
1)

1)

-1)

As an introduction to the study of symmetric forms, we ask what happens to dot

product when we change coordinates.The effect of the change of basis from the standard
basisE to a new basis B' is given by Proposition 8.1.7. If B' = EP, the matrix I of dot product
changes to A' = pt I p = pt P, or in terms of the form, if PX' = X and PY' = Y, then)

(8.2.3)) Xty = x,tA,y' where A' = ptP.,)

If the change of basis is orthogonal, then pt P is the identity matrix, and (X . Y) = (X' . Y').
But under a general change of basis, the formula for dot product changes as indicated.

This raises a question: Which of the bilinear forms XtA Yare equivalent to dot product,
in the sense that they represent dot productwith respect to some basis of \037n? Formula

(8.2.3) gives a theoretical answer:)

Corollary 8.2.4The matrices A that represent a form (X, Y)
= XtA Y equivalent to dot

product are thosethat can be written as a product ptP, for some invertible matrix P. 0)

This answer won't be satisfactory until we can decide which matrices A can be writ-

ten as such a product. One condition that A must satisfy is very simple: It must be)))
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symmetric, because ptp is always a symmetric matrix. Another condition comes from the
fact that dot product is positive definite.

In analogy with the terminology for symmetric forms, a symmetric real matrix A is
called positive definite if XtAX > 0 for all nonzero column vectors X. If the form XtA Y is

equivalent to dot product, the matrix A will be positive definite.
The two conditions, symmetry and positive definiteness, characterize matricesthat

represent dot product.)

Theorem 8.2.5 The following properties of a real n X n matrix A are equivalent:

(i) The form XtA Y represents dot product, with respect to some basis of}Rn .

(ii) There is an invertible matrix P such that A == pt p.

(iii) The matrix A is symmetric and positive definite.)

We have seenthat (i) and (ii) are equivalent (Corollary8.2.4)and that (i) implies (Hi).
We will prove that (iii) implies (i) in Section 8.4 (see (8.4.18\302\273.)

8.3 HERMITIAN FORMS)

The most useful way to extend the concept of symmetric forms to complex vector spaces is
to Hermitian forms. A Hermitian form on a complex vector spaceV is a map V X V \037 <C,

denoted by (v, w)', that is conjugate linear in the first variable, linear in the second variable,
and Hermitian symmetric:)

(8.3.1)) (CVI, WI) == C (Vl, WI)

(Vl, CWl) == C(Vl, Wl)

(WI, VI))

and

and)

(VI + V2, WI) == (VI, Wl) + (V2, WI)

(VI, WI +W2) == (VI, WI) + (VI, W2)

(Vl, WI))

for all Vi and UJi in V, and all complex numbers c, where the overline denotes complex

conjugation. As with bilinear forms (8.1.2), this condition can beexpressedin terms of linear

combinations in the variables:)

(LXi Vi , w)
==

L Xi (Vi, w)

(V, LWj Yj)
==

L(V, Wj)Yj

for any vectors Vi and Wj and any complex numbers Xi and Yj. Because of Hermitian

symmetry, (v, v) = (v, v), and therefore (v, v) is a real number, for all vectors v.

The standard Hermitian form on en is the form)

(8.3.2))

(8.3.3)) (X, Y)
== X*Y == X IYI + ... + xn Yn,)

where the notationX* stands for the conjugatetranspose(X l, . . . , X n ) of X = (Xl, . . . .,xn)t.

When working with en, one always assumes that the form is the standard Hermitian form,

unless another form has been specified.
The reasonthat the complication caused by complex conjugation is introduced is that

(X, X) becomes a positive real number for every nonzero complex vector X. If we use
the bijective correspondence of complex n-dimensional vectors with real 2n-dimensional

vectors, by)))
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(8.3.4)) (Xl,..., Xn)t \037 (aI, bl ,..., an, bn)t,)

where Xv = a v + bvi, then X v = a v
- bvi and)

(X, X) == X lXl + ... + Xn X n ==
ai + bi + ... + a\037 + b\037.

Thus (X, X) is the square length of the corresponding real vector, a positive real number.

For arbitrary vectors X an d Y, t he symmetry property of dot productis replacedby

Hermitian symmetry: (Y, X) = (X, Y). Bear in mind that when X,* Y, (X, Y) is likely to
be a complexnumber, whereas dot product of the corresponding real vectors would be
real.Though elements of en correspond bijectively to elementsof R

2n
, as above, these two

vector spacesaren't equivalent, because scalar multiplication by a complex number isn't
defined on ]R2n.

The adjoint A *of a complexmatrix A = (aij) is the complex conjugate of the transpose
matrix At, a notation that was used above for column vectors. Sothe i, j entry of A * is aj i.

[

1 l+i
]

*

[

1 2

]
For example, 2 i

=
1- i -i \302\267)

Here are some rules for computing with adjoint matrices:)

(8.3.5)) (cA)*==cA*, (A+B)*==A*+B*, (AB)*==B*A*, A**==A.)

A square matrix A is Hermitian (or self-adjoint) if)

(8.3.6)) A* == A.)

The entries of a Hermitian matrix A satisfy the relation aji == a ij' Its diagonal entries are
real and the entries below the diagonal are the complexconjugates of those above it:)

rl aij

(8.3.7) A== ri E R, aij E C.

aij r n)

For example,
[_\037 \037]

is a Hermitian matrix. A real matrix is Hermitian if and only if it is

symmetric.
The matrix of a Hermitian form with respect to a basis B == (Vl, ..., v n ) is defined as

for bilinear forms.It isA ==
(aij), where aij =

(Vi, Vj). The matrix of the standard Hermitian
form on en is the identity matrix.)

Proposition 8.3.8 Let A be the matrix of a Hermitian form ( , ) on a complexvector space

V, with respect to a basisB. If X and Yare the coordinate vectors of the vectors v

and w, respectively, then (v, w) = X*AY and A is a Hermitian matrix. Conversely, if A

is a Hermitian matrix, then the form on en defined by (X, Y) = X*A Y is a Hermitian
form.)

The proof is analogous to that of Proposition 8.1.5.) D)))
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Recall that if the form is Hermitian, (v, v) is a real number. A Hermitian form is

positive definite if (v, v) is positive for every nonzero vector v, and a Hermitian matrix
is positive definite if X* AX is positive for every nonzero complexcolumn vector X. A

Hermitian form is positive definite if and only if its matrix with respect to an arbitrary basis
is positive definite.

The rule for a change of basis B
'

== BP in the matrix of a Hermitian form is determined,

as usual, by substituting PX
'

== X and pY' == Y:

X*AY = (PX')*A(PY') == X'*(P*AP)Y'.)

The matrix of the form with respect to the new basis is)

(8.3.9)) A' == p* AP.)

Corollary 8.3.10

(a) Let A be the matrix of a Hermitian form with respect to a basis. The matrices that

represent the same form with respect to different bases are those of the form A' == P* AP,

where P can be any invertible complex matrix.

(b) A change of basisBf
== EP in en changes the standard Hermitian form x*y to X'* A'Y',

where A' = P* P. D)

The next theorem gives the first of the many special properties of Hermitian matrices.)

Theorem 8.3.11 The eigenvalues, the trace, and the determinant of a Hermitian matrix A

are real numbers.)

Proof Since the trace and determinant can be expressed in terms of the eigenvalues, it

suffices to show that the eigenvalues of a Hermitian matrix A are real. Let X be an eigenvector

of A with eigenvalue A. Then)

X* AX == X* (AX) == X* (AX) == AX* X.)

We note that (AX)* = AX*. Since A* = A,

X*AX == (X*A)X = (X*A*)X == (AX)*X == (AX)*X == AX *X.)

So AX*X == AX* X. Since X* X is a positive real number, it is not zero. Therefore A == A,

which means that A is real. 0)

Please go over this proof carefully. It is simple, but so tricky that it seems hard to trust. Here
is a startling corollary:)

Corollary 8.3.12 The eigenvaluesof a real symmetric matrix are real numbers.)

Proof When a real symmetric matrix is regarded as a complex matrix, it is Hermitian, so

the coroJIary followsfrom the theorem. D

This corollary would be difficult to prove without going over to complexmatrices,though it

can be checked directly for a real symmetric 2 x 2 matrix.)))
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A matrix P such that)

(8.3.13)) p* P = I, (
or P* = r 1

))

is called a unitary matrix. A matrix P is unitary if and only if its columns PI, . . . , Pn are

orthonormal with respect to the standard Hermitian form, i.e., if and onl y if p*: p. == 1 andl l

Pi Pj
= 0 when i =t= j. For example, the matrix

\037
[\037 -\037]

is unitary.

The unitary matrices form a subgroupof the complex general linear group called the
unitary group. It is denoted by Un:)

(8.3.14)) Un == {P I p*p == I}.I)

We have seen that a change of basis in \037n preserves dot product if and only if the

change of basismatrix is orthogonal 5.1.14. Similarly, a change of basis in en preserves
the standard Hermitian form x*y if and only if the change of basis matrix is unitary. (see

(8.3.10)(b) ).)

8.4 ORTHOGONALITY)

In this section we describe,at the same time, symmetric (bilinear) forms on a real vector

space and Hermitian forms on a complexvector space. Throughout the section, we assume
that we are given either a finite-dimensionalreal vector space V with a symmetric form,
or a finite-dimensional complex vector space V with a Hermitian form. We won't assume

that the given form is positive definite. Reference to a symmetric form indicates that V is a

real vector space, while reference to a Hermitian form indicates that V is a complex vector
space. Though everything we do applies to both cases,it may be best for you to think of a

symmetric form on a real vector space when reading this for the first time.

In order to include Hermitian forms, bars will have to be put over some symbols. Since

complex conjugation is the identity operation on the real numbers, we can ignore barswhen

considering symmetric forms. Also, the adjoint of a real matrix is equal to its transpose.
When a matrix A is reaL A

*
is the transpose of A.

We assume given a symmetric or Hermitian form on a finite-dimensional vector space
V. The basic concept used to study the form is orthogonality.)

. Two vectors v and ware orthogonal (written v.iw) if)

(v, w) == o.)

This extends the definition given before when the form is dot product. Note that v.lw if and

only if w.i v.

What orthogonality of real vectors means geometrically depends on the form and also
on a basis.One peculiarthing is that, when the form is indefinite, a nonzero vector v may
be self-orthogonal: (v, v) == O. Rather than trying to understand the geometric meaning of
orthogonality for each symmetric form, it is best to work algebraically with the definition of

orthogonality, (v, w) == 0, and let it go at that.)))
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If W is a subspaceof V, we may restrict the form on V to W, which means simply that

we take the same form but look at it only when the vectors are in W. It is obvious that if the

form on V is symmetric, Hermitian, or positive definite, then its restriction to W will have

the same property.
. The orthogonal space to a subspace W of V, often denoted by W.i, is the subspaceof

vectors v that are orthogonal to every vector in W, or symbolically, such that vi. W:)

(8.4.1 )) w.i ==
{v

E V I (v, w) == 0 for all w in
W}

.)

\302\267An orthogonal basis B = (VI,..., v n ) of V is a basis whose vectors are mutually

orthogonal: (Vi, Vj)
= 0 for all indices i and j with i =1= j. The matrix of the form with respect

to an orthogonal basis will be a diagonal matrix, and the form will be nondegenerate (see

below) if and only if the diagonal entries (Vi, Vi) of the matrix are nonzero (see(8.4.4)(b)).
\302\267A nul/ vector v in V is a vector orthogonal to every vector in V, and the nul/space N of
the form is the set of null vectors. The nullspace can be described as the orthogonal space to

the whole space V:)

N =
{v I vi. V}

= V.i.)

\302\267The form on V is nondegenerate if its nullspace is the zero space {Ole This means that

for every nonzero vector v, there is a vector v' such that (v, v') =1= o. A form that isn't

nondegenerate isdegenerate.Themost interesting forms are nondegenerate.

\302\267The form on V is nondegenerate on a subspaceW if its restriction to W is a nondegenerate
form, which means that for every nonzero vector w in W, there is a vector w', also in W,
such that (w, w') * O. A form may be degenerate on a subspace, though it is nondegenerate
on the whole space,and vice versa.)

Lemma 8.4.2 The form is nondegenerateon W if and only if W n Wl. =
{Ole) o)

There is an important criterion for equality of vectors in terms of a nondegenerate
form.)

Proposition 8.4.3 Let ( , ) be a nondegeneratesymmetric or Hermitian form on V, and let
v and v' be vectors in V. If (v, w) = (v', w) for all vectors w in V, then v = v'.)

Proof If (v, w) = (v', w), then v - v' is orthogonal to w. If this is true for all w in V, then

v - v' is a null vector, and because the form is nondegenerate,v - v' = o. 0)

Proposition8.4.4Let ( , ) be a symmetric form on a real vector space or a Hermitian form
on a complexvector space, and let A be its matrix with respect to a basis.

(a) A vector v is a null vector if and only if its coordinate vector Y solves the homogeneous

equation A Y = O.

(b) The form is nondegenerateif and only if the matrix A is invertible.)

Proof Via the basis, the form corresponds to the form X* A Y, so we may as wellwork with

that form. If Y is a vector such that A Y = 0, then X*A Y = 0 for all X, which means that Y)))
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is orthogonal to every vector, i.e., it is a null vector. Conversely, if AY*O, then AY has a

nonzero coordinate. The matrix product ei A Y picks out the ith coordinate of A Y. So one of

those products is not zero, and therefore Y is not a null vector. This proves(a).BecauseA is

invertible if and only if the equation A Y = 0 has no nontrivial solution, (b) follows. 0)

Theorem 8.4.5 Let ( , ) be a symmetric form on a real vector space V or a Hermitian form
on a complexvector space V, and let W be a subspaceof V.

(a) The form is nondegenerate on W if and only if V is the direct sum WEB W.l.

(b) If the form is nondegenerateon V and on W, then it is nondegenerate on W l..)

When a vector space V is a direct sum WI $ \302\267. . EB Wk and Wi is orthogonal to
Wj

for

i =1= j, V is said to be the orthogonal sum of the subspaces. The theorem assertsthat if the

form is nondegenerate on W, then V is the orthogonal sum of Wand wl..

Proof of Theorem 8.4.5. (a) The conditions for a direct sum are W n wl. =
{OJ and

V = W + wl. (3.6.6)(c).The first condition simply restates the hypothesis that the form

be nondegenerate on the subspace.So if V is the direct sum, the form is nondegenerate.

We must show that if the form is nondegenerate on W, then every vector v in V can be
expressedasa sum v = W + u, with win Wand u in W.l.

We extend a basis(Wl, ..., Wk) of W to a basisB =
(WI, ..., Wk; VI, ..., Vn-k) of

V, and we write the matrix of the form with respect to this basis in block form)

(8.4.6)) M=
[\037 gJ.)

where A is the upper left k X k submatrix.

The entries of the block A are (Wi, W j) for i, j = 1, . . . , k, so A is the matrix of the
form restricted to W. Since the form is nondegenerateon W, A is invertible. The entries of
the block B are (Wi, Vj)

for i = 1, . . . , k and j = 1, . . . , n - k.Ifwe can choose the vectors

VI, . . . , Vn-k so that B becomes zero,those vectors will be orthogonal to the basis of W,

so they will be in the orthogonal space W.l. Then since B is a basis of V, it will follow that

V = W + Wl., which is what we want to show.

To achieveB = 0,we change basis using a matrix with a block form)

(8.4.7)) p=
[\037 f].)

where the block Q remains to be determined.The new basis H' = BP will have the form

(WI, . . . , Wk; v\037,
. . . , v\037_k)' The basis of W will not change. The matrix of the form with

respect to the new basis will be)

(8.4.8)) M' = P*MP =
[J* \037] [\037 g] [\037 \037]

=

[\037

AQ

,+
B]

.)

We don't need to compute the other entries.When we set Q = -A- IB, the upper right block

of M' becomes zero, as desired.)))
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(b) Suppose that the form is nondegenerate on V and on W. (a) shows that V = WEB W-.L.
If we choosea basis for V by appending bases for Wand W 1., the matrix of the form on V

will be a diagonal blockmatrix, where the blocks are the matrices of the form restricted to

Wand to W1.. The matrix of the form on V is invertible (8.4.4), so the blocks are invertible.

It follows that the form is nondegenerate on W.l. 0)

Lemma 8.4.9If a symmetric or Hermitian form is not identically zero, there is a vector v in

V such that (v, v) =#=O.)

Proof If the form is not identically zero, there will be vectors x and y such that (x, y) is not
zero. If the form is Hermitian, we replace y by cy where c is a nonzero complexnumber, to

make (x, y) real and still not zero. Then (y, x) = (x, y). We expand:)

(x+ y,x+ y) = (x, x) +2(x, y) + (y, y).)

Since the term 2(x, y) isn't zero,at least one of the three other terms in the equation isn't

zero. 0)

Theorem 8.4.10Let ( 'I ) be a symmetric form on a realvector space V or a Hermitian form
on a complexvector space V. There exists an orthogonal basis for V.)

Proof Case 1: The form is identicallyzero.Thenevery basis is orthogonal.)

Case 2: The form is not identically zero. By induction on dimension,we may assume that

there is an orthogonal basis for the restriction of the form to any proper subspace of V.
We apply Lemma 8.4.9and choose a vector VI with (VI, VI) *0 as the first vector in our

basis. Let W be the span of (VI). The matrix of the form restricted to W is the 1 X 1 matrix

whose entry is (VI, VI)' It is an invertible matrix, so the form is nondegenerate on W. By

Theorem 8.4.5, V == W ED W-.L. By our induction assumption, W-.L has an orthogonal basis,

say (V2, . . . , v n ). Then (Vl, V2, . . . , v n ) will be an orthogonal basis of V. 0)

Orthogonal Projection

Suppose that our given form is nondegenerate on a subspaceW. Theorem 8.4.5 tells us that

V is the direct sum W E9 W-.L. Every vector V in V can be written uniquely in the form
v = w + u, with w in Wand u in W.l. The orthogonalprojection from V to W is the map
n: V \037 W defined by JT(v) == w. The decomposition v == w + u is compatible with sums of

vectors and with scalar multiplication, so 1T:is a linear transformation.

The orthogonal projection is the unique linear transformation from V to W such that

new) == w if w is in Wand n(u) == 0 if u is in W.l.

Note: If the form is degenerate on \037subspace W, the orthogonal projection to W doesn't

exist. The reason is that W n Wl. will contain a nonzero element x, and it will be impossible
to have both 7l'(x)= x and n(x) = O. 0)

The next theorem providesa very important formula for orthogonal projection.)))
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Theorem 8.4.11 Projection Formula. Let ( , ) be a symmetric form on a real vector space V

or a Hermitian form on a complexvector space V, and let W be a subspaceof V on which

the form is nondegenerate. If (Wl, . . . , Wk) is an orthogonal basis for W, the orthogonal

projection n : V -+ W is given by the formula n( v) =
WI Cl + . . . + WkCk, where)

(Wi, v)

Ci = .
( UJ i, Wi))

Proof Because the form is nondegenerate on Wand its matrix with respect to an orthogonal
basisis diagonaL (Wi, Wi) =I- O. The formula makes sense. Given a vector v, let W denote the
vector 11,'1Cl + . . . + UJkCk, with Ci as above.This is an element of W, so if we show that

v - W = u is in W.l, it will follow that 7l'(v) = 1)), as the theorem asserts. To show that u is

in W.l, we show that (11)i, u) = 0 for i = 1, . . . ,k.We remember that (Wi, Wi) = 0 if i =1= j.

Then)

( Wi, u)' = (w i, v)
- (w i, w) = (wi, v)

-
(( Wi, UJ I ) CI + . . . + (w i, W k ) C k )

= (Wi, v) -
(Wi, Wi)Ci = O. D.)

Warning: This projection formula is not correct unless the basis is orthogonal.)

Example 8.4.12 Let V be the space }R3 of column vectors, and let (v, w) denote the dot

product form. Let W be the subspacespanned by the vector WI whose coordinate vector is
(1,1,l)t.Let (Xl, X2, X3)t be the coordinate vector of a vector v. Then (W1, v) = Xl +X2+X3.
The projection formula reads ;rev) = WIC, where C = (Xl+ X2 + x3)/3. 0)

If a form is nondegenerate on the whole space V, the orthogonal projection from V to

V will be the identity map. The projection formula is interesting in this case too, becauseit

can be used to compute the coordinates of a vector v with respect to an orthogonal basis.)

Corollary 8.4.13 Let ( , ) be a nondegenerate symmetric form on a real vector space V

or a nondegenerate Hermitian form on a complex vector space V, let (VI, . . . , v n ) be an

orthogonal basisfor V, and let v be any vector. Then v = VIC1 + . . .+ VnC n , where)

(Vi, v)
Ci = .

(Vi, Vi)

Example 8.4.14 Let B = (V1, V2, V3) be the orthogonal basis of 1R
3

'
whose coordinate vectors

are)

o)

U],[-\037],[jl)

Let v be a vector with coordinate vector (Xl, X2, X3)t. Then v = VlC1 + V2 C 2 + V3C3and)

C1 = (Xl + X2 + X3) /3, C2 =
(Xl

- X2) /2, C3= (Xl + X2
- 2X3) /6.

Next, we considerscaling of the vectors that make up an orthogonal basis.)

o)))
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Corollary 8.4.15 Let ( , ) be a symmetric form on a real vector space V or a Hermitian form
on a complexvector space V.

(a) There is an orthogonal basisB = (VI, . . . , v n ) for V with the property that for each i,

(Vi, Vi) is equal to 1, -1, or o.
(b) Matrix form: If A is a real symmetric n X n matrix, there is an invertible real matrix P

such that ptAP is a diagonal matrix, each of whose diagonal entries is 1, -1, or o.If A

is a complex Hermitian n X n matrix, there is an invertible complex matrix P such that

P*AP is a diagonal matrix, each of whose diagonal entries is 1,-1, or O.)

Proof (a) Let (VI, . . . , v n ) be an orthogonal basis. If v is a vector, then for any nonzero

real number c, (cv, cv) = c2
(v, v), and c2 can be any positive real number. So if we multiply

Vi by a scalar, we can adjust the real number (Vi, Vi) by an arbitrary positive real number.
This proves (a). Part (b) follows in the usual way, by applying (a) to the form X*AY. 0

If we arrange an orthogonal basis that has been scaled suitably, the matrix of the form
will have a block decomposition)

(8.4.16)) A =

[l

p
-1m

Ozl)

where p, m, and z are the numbers of l's, -l's, and O's on the diagonal, and p + m + z = n.
The form is nondegenerate if and only if z = O.

If the form is nondegenerate, the pair of integers (p, m) is called the signature of the

form. Sylvester's Law (see Exercise4.21)asserts that the signature does not depend on the
choiceof the orthogonal basis.

The notation I
p,m

is often used to denote the diagonal matrix)

(8.4.17)) 1 p
,m=[l

p
-1 m ]')

With this notation, the matrix (8.2.2)that represents the Lorentz form is ]3,1'
The form is positive definite if and only if m and z are both zero.Thenthe normalized

basis has the property that (Vi, Vi) == 1 for each i, and (Vi, Vj)
= 0 when i\"* j. This is called

an orthonormal basis, in agreement with the terminology introduced before, for bases of]Rn

(5.1.8). An orthonormal basisBrefersthe form back to dot product on]Rn or to the standard

Hermitian form on <en.That is,if v = BX and w = BY, then (v, w) = X*Y.An orthonormal

basis exists if and only if the form is positive definite.

Note: If B is an orthonormal basis for a subspace W of V, the projection from V to W is

given by the formula 1l'(v)
= WI Cl +. . .

WkCk, where Ci = (Wi, v). The projectionformula is

simpler because the denominators (Wi, Wi) in (8.4.11) are equal to 1.However, normalizing

the vectors requires extracting a squareroot, and because of this, it is sometimes preferable
to work with an orthogonal basis without normalizing. 0

The proof of the remaining implication (iii) =} (i) of Theorem 8.2.5 follows from this

discussion:)))
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Corollary 8.4.18 If a realmatrix A is symmetric and positive definite, then the form XtA Y

represents dot product with respect to some basis of \037n .)

When a positive definite symmetric or Hermitian form is given, the projection formula

provides an inductive method, called the Gram-Schmidt procedure\037 to produce an orthonor-
mal basis, starting with an arbitrary basis (VI, . . , , v n ). The procedure is as follows:Let Vk

denote the space spanned by the basis vectors (Vl, . . . , Vk). Suppose that, for some k < n,
we have found an orthonormal basis (WI, . . . , Wk-l) for Vk-l. Let TC denote the orthogonal

projection from V to Vk-I' Then TC(Vk) =
WICI + ... + Wk-lCk-l, where Ci =

(Wi, Vk),

and Wk =
Vk

- TC(Vk) is orthogonal to Vk-I' When we normalize (Wk, Wk) to 1, the set
(WI, . . . , Wk) will be an orthonormal basis for Vk. 0

The last topic of this section is a criterion for a symmetric form to be positive definite
in terms of its matrix with respect to an arbitrary basis. Let A =

(aij) be the matrix of a
symmetric form with respect to a basis B = (VI, . . . , v n ) of V, and let Ak denote the k x k
minor made up of the matrix entries aij with i, j < k:)

[

all a 12

]
Al = [all] , A2 = , ... , An = A.

a2I a22)

Theorem 8.4.19 The form and the matrix are positive definite if and only if det Ak > 0 for

k=l,...,n.
We leave the proof as an exercise. 0)

For example,the matrix A =

[i \037]

is positive definite, because det [2]and detA are

both positive.)

8.5 EUCLIDEAN SPACES AND HERMITIAN SPAC\037S)

When we work in }Rn, we may wish to change the basis.But if our problem involves dot

products - if length or orthogonality of vectors is involved - a changeto an arbitrary

new basis may be undesirable, because it will not preserve length and orthogonality. It
is best to restrict oneself to orthonormal bases, so that dot products are preserved. The

concept of a Euclidean space provides us with a framework in which to do this. A real

vector space together with a positive definite symmetric form is called a Euclideanspace,
and a complex vector space together with a positive definite Hermitian form is calleda
Hermitian space.

The space }Rn, with dot product, is the standard Euclidean space. An orthonormal
basis for any Euclidean space will refer the space back to the standard Euclideanspace.
Similarly, the standard Hermitian form (X, Y)

= X* Y makes en into the standard Hermitian

space, and an orthonormal basis for any Hermitian space will refer the form back to the
standard Hermitian space.The only significant difference between an arbitrary Euclidean
or Hermitian space and the standard Euclidean or Hermitian spaceis that no orthonormal

basis is preferred. Nevertheless, when working in such spaces we always use orthonormal

bases, though none have been picked out for us. A change of orthonormal baseswill be

given by a matrix that is orthogonal or unitary, according to the case.)))
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Corollary 8.5.1 Let V be a Euclidean or a Hermitian space,with positive definite form

( , ), and let W be a subspace of V. The form is nondegenerate on W, and therefore
V==WEBW..L.)

Proof If w is a nonzero vector in W, then (w, w) is a positive real number. It is not zero,
and therefore w is not a null vector in V or in W. The nullspaces are zero. 0

What we have learned about symmetric forms allows us to interpret the length of a

vector and the anglebetweentwo vectors v and w in a Euclidean space V. Let's set asidethe
specialcasethat these vectors are dependent, and assume that they span a two-dimensional

subspace W. When we restrict the form, W becomes a Euclidean space of dimension 2.
So W has an orthonormal basis (Wl, W2), and via this basis, the vectors v and w will

have coordinate vectors in }R2. We'll denote these two-dimensional coordinate vectors by

lowercase letters x and y. They aren't the coordinate vectors that we would obtain using an

orthonormal basis for the whole space V, but we will have (v, w) = xty, and this allows us

to interpret geometric properties of the form in terms of dot productin \0372.

The length Ivl of a vector v is defined by the formula Ivl
2 == (v, v). If x is the coordinate

vector of v in}R2, then Ivl
2 == Xl x. The law of cosines (x .

y)
= IxllYI cos () in }R2 becomes)

(8.5.2)) (v, w) =
Ivllwl cose,)

where () is the angle between x and y. Since this formula expresses cos()in terms of the form,
it defines the unoriented angle(} between vectors v and w. But the ambiguity of sign in the

angle that arises because cos() == cos (-() can't be eliminated. When one views a plane in

\0373 from its front and its back, the anglesoneseesdiffer by sign.)

8.6 THE SPECTRALTHEOREM)

In this section, we analyze certain linear operatorson a Hermitian space.

Let T: V --+ V be a linear operator on a Hermitian spaceV, and let A be the matrix of

T with respect to an orthonormal basisB.The adjoint operator T* : V --+ V is the operator
whose matrix with respect to the same basis is the adjoint matrix A *.

If we change to a new orthonormal basis H', the basechange matrix P will be unitary,

and the new matrix of T will have the form A' == P* AP = p-lAP. Its adjoint will be

A'* == P* A *
P. This is the matrix of T* with respect to the new basis.So the definition of T*

makes sense: It is independent of the orthonormal basis.

The rules (8.3.5)for computing with adjoint matrices carryover to adjoint operators:

(8.6.1) (T + U)* == T* + U*, (TU)* = U*T*, T** = T.

A normal matrix is a complexmatrix A that commutes with its adjoint: A
* A = AA *.

In itself, this isn't a particularly important class of matrices,but is the natural class for which

to state the Spectral Theorem that we prove in this section, and it includes two important
classes: Hermitian matrices (A* ='A) and unitary matrices (A* = A- l

).)

Lemma 8.6.2 Let A be a complexn X n matrix and let P be an n x n unitary matrix. If A is

normal, Hermitian, or unitary, so is P* AP. 0

A linear operator T on a Hermitian spaceis callednormal, Hermitian, or unitary

if its matrix with respect to an orthonormal basis has the same property. So T is normal)))
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if T*T = 17'*, Hermitian if T* = T, and unitary if T*T = I. A Hermitian operator is
sometimes called a self-adjoint operator, but we won't use that terminology.

The next propositioninterprets these conditions in terms of the form.)

Proposition 8.6.3 Let T be a linear operatoron a Hermitian space V, and let T* be the
adjoint operator.

(a) For all v and w in V, (Tv, w) = (v, T*w) and (v, Tw) = (T*v, w)
(b) T is normal if and only if, for all v and w in V, (Tv, Tw) = (T*v, T*w).
(c) T isHermitian if and only if, for all v and w in V, (Tv, w) = (v, Tw).
(d) T is unitary if and only if, for all v and w in V, (Tv, Tw) = (v, w).)

Proof (a) Let A be the matrix of the operator T with respect to an orthonormal basis B.
With v = BX and w = BY as usual, (Tv, w) = (AX)*Y = X*A*Y and (v, T*w) = X*A*Y.

Therefore (Tv, w) = (v, T*w). The proof of the other formula of (a) is similar.)

(b) We substitute T*v for v into the first equation of (a): (IT*v, w)
= (T*v, T*w). Similarly,

substituting Tv for v into the second equation of (a): (Tv, Tw) = (T*Tv, w). So if T is

normal, then (Tv, Tw) =
(T*v, T*w). The converse follows by applying Proposition 8.4.3

to the two vectors T*Tv and IT*v. The proofs of (c) and (d) are similar. 0

Let T be a linearoperatoron a Hermitian space V. As before, a subspace W of V is

T -invariant if TW c W. A linear operator T will restrict to a linear operator on aT-invariant

subspace, and if T is normal, Hermitian, or unitary, the restricted operator will have the
same property. This follows from Proposition 8.6.3.)

Proposition 8.6.4 Let T bealinearoperatoronaHermitian space V and let W be a subspace
of V. If W is T-invariant, then the orthogonal spaceW

1. is T* -invariant. If W is T* -invariant

then W1. is T-invariant.)

Proof. Supposethat W is T-invariant. To show that W1. is T*-invariant, we must show that

if u is in Wi., then T*u is also in Wi., which by definition of Wi. means that (w, T*u) = 0
for all w in W. By Proposition 8.6.3, (w, T*u) = (Tw, u). Since W is T-invariant, Tw is in

W. Then since u is in W1., (Tw, u) = o. So (w, T*u)= 0,asrequired.Since T** = T, one
obtains the secondassertion by interchanging the roles of T and T*. 0

The next theorem is the main place that we use the hypothesis that the form given on
V be positive definite.)

Theorem 8.6.5 Let T be a normal operator on a Hermitian space V, and let v be an

eigenvector of T with eigenvalue A. Then v is also an eigenvector of T*, with eigenvalue A.)

Proof Case 1.' A = O. Then Tv = 0, and we must show that T*v = O. Since the form is

positive definite, it suffices to show that (T*v, T*v) = O. By Proposition 8.6.3,(T*v, T*v) =

(Tv, Tv) = (0,0) = O.

Case 2.' A is arbitrary. Let S denotethe linear operator I - AI.Then v is an eigenvector for
S with eigenvalue zero: Sv = O.Moreover, S*= T* - AI. You can check that S is a normal)))
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operator. By Case 1, v is an eigenvector for S* with eigenvalue 0: S*v = T*v - A V = O. This
shows that v is an eigenvector of T* with eigenvalue A . 0)

Theorem 8.6.6 SpectralTheoremfor Normal Operators

(a) Let T be a normal operator on a Hermitian space V. There is an orthonormal basis of
V consisting of eigenvectors for T.

(b) Matrix form: Let A be a normal matrix. There is a unitary matrix P such that P* AP is

diagonal.)

Proof (a) We choose an eigenvector VI for T, and normalize its length to 1.Theorem8.6.5
tells us that VI is also an eigenvector for T*. Therefore the one-dimensional subspace W

spanned by VI i\037T*-invariant. By Proposition 8.6.4, W..Lis T-invariant. We also know that

V = W EB W..L. The restriction of T to any invariant subspace, including W..L, is a normal
operator.By induction on dimension, we may assume that W..L has an orthonormal basis of
eigenvectors,say (V2, . . . , v n ). Adding VI to this set yields an orthonormal basis of V of

eigenvectors for T.)

(b) This is proved from (a) in the usual way. We regard A as the matrix of the normal
operator of multiplication by A on en. By (a) there is an orthonormal basis B consisting of

eigenvectors.The matrix P of change of basis from E to B is unitary, and the matrix of the
operatorwith respect to the new basis, which is P* AP, is diagonal. D

The next corollariesare obtained by applying the Spectral Theorem to the two most

important types of normal matrices.)

Corollary8.6.7SpectralTheoremfor Hermitian Operators.

(a) Let T be a Hermitian operator on a Hermitian space V.

(i) There is an orthonormal basis of V consisting of eigenvectors of T.

(ii) The eigenvaluesof T are real numbers.

(b) Matrix form.'Let A be a Hermitian matrix.

(i) There is a unitary matrix P such that P* A P is a real diagonal matrix.

(ii) The eigenvalues of A are real numbers.)

Proof Part (b)(ii) has been proved before (Theorem 8.3.11) and (a)(i) follows from the

Spectral Theorem for normal operators. The other assertionsare variants. D)

Corollary 8.6.8 Spectral Theorem for Unitary Matrices.

(a) Let A be a unitary matrix. There is a unitary matrix P such that P*AP is diagonal.
(b) Every conjugacy class in the unitary group Un contains a diagonal matrix. 0)

To diagonalize a Hermitian matrix M, one can proceed by determining its eigen-
vectors.If the eigenvalues are distinct, the corresponding eigenvectors will be orthogonal,

and one can normalize their lengths to 1. This follows from the Spectral Theorem.For)))
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example, VI'
=

[ _li ]

and v2 =
[\037 ]

are eigenvectors of the Hermitian matrix M =

[:i ; ],
with eigenvalues 3 and 1, respectively. We normalize their lengths to 1 by the factor 1/-J2,

obtaining the unitary matrix P =
\037

[_li \037].

Then P* M P =
[

3
1].

However, the Spectral Theorem asserts that a Hermitian matrix can be diagonalized even

when its eigenvalues aren't distinct. For instance, the only 2 x 2 Hermitian matrix whose

characteristic polynomial has a double root A is AI.

What we have proved for Hermitian matrices has analogues for real symmetric

matrices. A symmetric operator T on a EuclideanspaceV is a linear operator whose matrix

with respect to an orthonormal basis is symmetric. Similarly, an orthogonal operator T on a
EuclideanspaceV is a linear operator whose matrix with respect to an orthonormal basis is
orthogonal.)

Proposition 8.6.9 Let T be a linear operatorona EuclideanspaceV.

(a) T is symmetric if and only if, for all v and w in V, (Tv, w) =: (v, Tw).
(b) T is orthogonal if and only if, for all v and w in V, (Tv, Tw) =: (v, w).) D)

Theorem 8.6.10 Spectral Theorem for Symmetric Operators.

(a) Let T be a symmetric operator on a Euclidean space V.

(i) There is an orthonormal basis of V consisting of eigenvectors of T.

(ii) The eigenvaluesof T are real numbers.

(b) Matrix form: Let A be a real symmetric matrix.

(i) There is an orthogonal matrix P such that pt A P is a real diagonal matrix.

(ii) The eigenvalues of A are real numbers.)

Proof We have noted (b)(ii)before(Corollary 8.3.12), and (a)(ii) follows. Knowing this,
the proof of (a)(i) follows the pattern of the proof of Theorem 8.6.6. 0)

The Spectral Theorem is a powerful tool. When faced with a Hermitian operatoror a
Hermitian matrix, it should be an automatic response to apply that theorem.)

8.7 CONICS AND QUADRICS

Ellipses, hyperbolas, and parabolas are calledconics.They are loci in JR2 defined by quadratic

equations f =:0, where)

(8.7.1)) I(Xl, X2) =: all xI + 2a12xlx2+ a22x\037 + b1Xl + b2X 2 + c,)

and the coefficients aij, hi, and c are realnumbers. (The reason that the coefficient of XIX2

is written as 2a12 will be explained presently.) If the locus f = 0 of a quadratic equation is

not a conic,we call it a degenerate conic. A degenerate conic can be a pair of lines, a single
line, a point, or empty, depending on the equation. To emphasize that a particular locus is)))
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not degenerate, we may sometimes refer to it as a nondegenerateconic.Theterm quadric is

used to designate an analogous locus in three or more dimensions.
We propose to describethe orbits of the conics under the action of the group of

isometries of the plane.Two nondegenerate conics are in the same orbit if and only if they
are congruent geometricfigures.

The quadratic part of the polynomial I(XI, X2) is called a quadratic form:)

(8.7.2)) q(XI,X2) =
allxi + 2al2xlx2 + a22x\037,)

A quadratic form in any number of variables is a polynomial, each of whose terms has

degree 2 in the variables. It is convenient to expressthe quadratic form q in matrix notation.
To do this, we introduce the symmetric matrix

A =

[

all a 12

]al2 a22)
(8.7.3))

Then if X = (Xl, X2)t, the quadratic form can be written as q(XI, X2) = XtAX. We put

the coefficient 2 into Formulas 8.7.1and 8.7.2in order to avoid some coefficients
\037

in this

matrix. If we also introduce the 1X 2 matrix B = [bl b2],the equation I = 0 can be written

compactly in matrix notation as)

(8.7.4)) XtAX + BX + c = O.)

Theorem 8.7.5 Every nondegenerate conic is congruent to one of the following loci, where
the coefficientsall and a22 are positive:)

Ellipse: allxi + a22x\037
-1 = 0,

Hyperbola: allxI -
a22x\037

-1 = 0,

Parabola.. 2 -X2 = O.allX I)

The coefficients all and a22 are determinedby the congruence class of the conic,exceptthat

they can be interchanged in the equation of an ellipse.)

Proof We simplify the equation (8.7.4) in two steps, first applying an orthogonal transfor-
mation to diagonalize the matrix A and then applying a translation to eliminate the linear

terms and the constant term when possible.

The Spectral Theorem for symmetric operators(8.6.10)asserts that there is a 2 X 2

orthogonal matrix P such that ptAP is diagonal. We make the change of variable PX' = X,
and substitute into (8.7.4):)

(8.7.6)) x,tA,x' + B'X'+ c = 0)

where A' = ptAP and B' = BP.With this orthogonal change of variable, the quadratic form

becomes diagonal, that is, the coefficient of
x\037x2

is zero. We drop the primes. When the

quadratic form is diagonal, f has the form

I(XI, X2) = allxt + a22x\037 + blXI + b 2X 2 + c.)))
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To continue, we eliminate bi by \"completing squares,\" with the substitutions)

(8.7.7))
(

, hi

)
Xi =

Xi
-

2a\"
\302\267

. II)

This substitution corresponds to a translation of coordinates. Dropping primes again, I
becomes)

(8.7.8)) I(Xl,X2)
=

allxI + a22x\037 + c = 0,)

where the constant term c has changed. The new constant can be computed when needed.
When it is zero, the locus is degenerate. Assuming that c =1= 0, we can multiply f by a scalar
to changec to-1.Ifau are both negative, the locus is empty, hence degenerate. So at least
one of the coefficients is. positive, and we may assume that all> O. Then we are left with the

equations of the ellipses and the hyperbolasin the statement of the theorem.

The parabolaarisesbecausethe substitution made to eliminate the linear coefficient
bi requiresau to be nonzero.Since the equation f is supposed to be quadratic, these

coefficients aren't both zero, and we may assume all =1= O. If a22 = 0 but b2 =1= 0, we eliminate

hI and use the substitution

.)

(8.7.9)) X2 = Xz
- c/ b2)

to eliminate the constant term. Adjusting f by a scalar factor and eliminating degenerate

cases leaves us with the equation of the parabola. 0)

Example8.7.10LetI be the quadratic polynomial xI + 2XIX2
-

x\037 + 2XI + 2X2 - 1.Then

A =

D
_

n,
B = [2 2], and c = -l.

The eigenvalues of A are ::l: J2. Setting a = J2 - 1and b = J2 + 1, the vectors)

VI =

[\037J.
V2 =

[

-

\037
])

are eigenvectors with eigenvalues .J2 and -.J2, respectively. They are orthogonal, and when
we normalize their lengths to 1, they will form an orthonormal basis B such that [B]-l A[B]
is diagonal. Unfortu nately, t he square length of VI is 4 - 2J2. To normalize its length to 1,

we must divide by J 4 - 2J2. It is unpleasant to continue this computation by hand.
If a quadratic equation I(Xl, X2) = 0 is given, we can determine the type of conic that

it represents most simply by allowing arbitrary changes of basis, not necessarilyorthogonal
ones.A nonorthogonal change will distort an ellipse but it will not change an ellipse into a

hyperbola,a parabola,or a degenerateconic.If we wish only to identify the type of conic,

arbitrary changes of basisarepermissible.
We proceed as in (8.7.6), but with a nonorthogonal change of basis:)

p=[l -\037],)

pt AP =
[

1

] [
1 1

] [
1 -1

]
=

[

1

]
,-1 1 1 -1 1 -2)

BP = [2 0].)))
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Dropping primes, the new equation becomesxi -
2x\037

+ 2XI
- 1 = 0, and completing the

square yields xi
-

2x\037
- 2 = 0, a hyperbola.Sothe original locus is a hyperbola too.

By the way, the matrix A is positive or negative definite in the equation of an ellipse
and indefinite in the equation of a hyperbola.The matrix A shown above is indefinite. We
could have seen right away that the locus we have just inspected was either a hyperbola or a
degenerateconic. 0)

The method used to describe conicscanbe applied to classify quadrics in any dimension.
The general quadratic equation has the form f = 0, where)

(8.7.11)) I(XI, \302\267\302\267\302\267, x n ) =
L aiix\037 + L 2aij x iX j + L biXi + C.

i i <j i)

Let matrices A and B be defined by)

all al n)

A=) B = [b i) b n ] .)

ai n ann)

Then)

(8.7.12)) I(Xl, . . . , X n ) == XtAX + BX + c.)

The associatedquadratic form is)

(8.7.13)) q (X 1, . . . , X n) == X
tAX.)

According to the SpectralTheoremfor symmetric operators, the matrix A can be diagonalized

by an orthogonal transformation P. When A is diagonal, the linear terms and the constant

term may be eliminated, so far as possible, as above. Here is the classification in three

variables:)

Theorem 8.7.14 The congruenceclassesof nondegenerate quadrics in ]R3 are represented
by the following loci, in which au are positivereal numbers:)

Ellipsoids:

One-sheeted hyperboloids:

Two-sheeted hyperboloids:

Ellipticparaboloids:
Hyperbolic paraboloids:)

aIl x i + a22x\037 + a33x\037
- 1

aIlxI + a22x\037
-

a33x\037
- 1

2 2 2 1allx 1 -
a22 x 2

- a33x
3

-

all x I + a22x\037
- X3

2 2
a11Xl

-
a22X2

-
X3)

= 0,

== 0,

= 0,

= 0,)

= O.) D)

A word is in order about the case that Band c are zero in the quadratic polynomial

I(Xl, X2, X3) (8.7.12), i.e, that I is equalto its quadratic form q (8.7.13). The locus {q== O})))
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is considereddegenerate,but is interesting. Let's call it Q. Since all of the terms aijXiXjthat

appear in q have degree 2,)

(8.7.15)) q(AXl, AX2, AX3) = A
2

q(Xl, X2, X3).)

for any real number A. Consequently, if a point X =1= 0 lies on Q, i.e., if q(X) = 0, then

q(AX)
= 0 too, so AX lies on Q for every real number A. Therefore Q is a union of lines

through the origin, a double cone.
For example,suppose that q is the diagonal quadratic form

222allX l + a22X2
- X3 ,)

where aii are positive. When we intersectthe locus Q with the plane X3 = 1, we obtain an

ellipse allxi + a22x\037
== 1 in the remaining variables. In this case Q is the union of lines

through the origin and the points of this ellipse.)

(8.7.16)) Hyperboloids Near to a Cone.)

Notice that q(x) is positive in the exterior of the double cone, and negative in its interior.

(The value of q(x) changessign only when one crosses Q.) SOfor any r > 0, the locus

allxI + a22x\037
-

x\037
- r = 0 lies in the exterior of the double cone. It is a one-sheeted

hyperboloid, while the locus all XI + a22x\037
- xj + r == 0 lies in the interior, and is a

two-sheeted hyperboloid.

Similar reasoning can be applied to any homogeneous polynomial g(Xl, . . . , Xn), any

polynomial in which all of the terms have the same degree d. If g is homogeneousof degree

d, g(Ax) = Ad g(x), and because of this, the locus {g = O} will also be a union of lines
through the origin.)

8.8 SKEW-SYMMETRIC FORMS)

The descriptionof skew-symmetric bilinear forms is the same for any field of scalars, so in

this section we allow vector spaces over an arbitrary field F. However, as usual, it may be

best to think of real vector spaces when going through this for the first time.)))
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A bilinear form ( , ) on a vector space V is skew-symmetric if it has either one of the

following equivalent properties:)

(8.8.1)) ( v, v) = 0 for all v in V, or)

(8.8.2)) (u, v) = -(v, u) for all u and v in V.)

To be more precise,these conditions are equivalent whenever the field of scalarshas

characteristic different from 2. If F has characteristic 2, the first condition (8.8.1) is the
correct one. The fact that (8.8.1) implies (8.8.2) is proved by expanding (u + v, u + v):)

(u + v, u + v) = (u, u) + (u, v) + (v, u) + (v, v),)

and using the fact that (u, u) = (v, v) = (u + v, u + v) = O. Conversely, if the second
condition holds, then setting u == v gives us (v, v) = -(v, v), hence 2(v, v) = 0, and it follows

that (v, v) = 0, unless2 = O.

A bilinear form ( , ) is skew-symmetric if and only if its matrix A with respect to an

arbitrary basis is a skew-symmetricmatrix, meaning that aji = -aij and aii = 0, for all i and

j. Except in characteristic 2, the condition aii = 0 follows from aji
= -aij when one sets

l = J.
The determinant form (X, Y) on JR2, the form defined by

(X, Y)
= det

[

Xl Yl

]

= XIY2 -
X2Yl,

X2 Y2)
(8.8.3))

is a simple example of a skew-symmetricform. Linearity and skew symmetry in the columns

are familiar properties of the determinant. The matrix of the determinant form (8.8.3)with

respect to the standard basis of JR2 is)

(8.8.4 ))

I:=[_11].)

We will see in Theorem 8.8.7 below that every nondegenerate skew-symmetric form looks

very much like this one.

Skew-symmetric forms also come up when one counts intersectionsof paths on a

surface. To obtain a count that doesn't change when the paths are deformed,onecan adopt

the rule used for traffic flow: A vehicle that enters an intersection from the right has the

right of way. If two paths X and Y on the surface intersect at a point p, we define the

intersection number (X, Y) p at p as follows: If X enters the intersection to the right of

Y, then (X, Y}p = 1, and if X enters to the left of Y, then (X, Y)p = -1. Then in either

case, (X, Y) p = -(Y, X)p' The total intersection number (X, Y) is obtained by adding these
contributions for all intersection points. In this way the contributions arising when X crosses
Y and then turns back to cross again cancel. This is how topologists define a product in

\"homology.
\)
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y)

(8.8.5)) Oriented Intersections (X, Y).)

Many of the definitions given in Section 8.4 can be used also with skew-symmetric

forms. In particular, two vectors v and ware orthogonal if (v, w) =: O. It is true oncemore
that v.lw if and only if w..Lv, but there is a difference:When the form is skew-symmetric,
every vector v is self-orthogonal: v...L v. And since all vectors are self-orthogonal, there can
be no orthogonal bases.

As is true for symmetric forms, a skew-symmetric form is nondegenerate if and only if

its matrix with respect to an arbitrary basis is nonsingular.The proof of the next theorem is
the same as for Theorem 8.4.5.)

Theorem 8.8.6 Let ( , ) be a skew-symmetric form on a vector space V, and let W be a
subspaceof V on which the form is nondegenerate. Then V is the orthogonal sum W ED W

1- .

If the form is nondegenerate on V and on W, it is nondegenerate on Wi. too. 0)

Theorem 8.8.7

(a) Let V be a vector space of positive dimension m over a field F, and let ( , ) be a

nondegenerate skew-symmetric form on V. The dimension of V is even, and V has a

basis B such that the matrix So of the form with respect to that basis is made up of

diagonal blocks, where all blocks are equal to the 2 X 2 matrix S shown above (8.8.4):)

1:)

So ==)

b)

(b) Matrix form: Let A be an invertible skew-symmetric m X m matrix. There is an invertible
matrix P such that ptAP = Sois as above.)

Proof (a) Since the form is nondegenerate, we may choose nonzero vectors V1 and V2 such

that (V1, V2) = c is not zero. We adjust V2 by a scalar factor to make c == 1. Since (VI, V2) =1= 0

but (VI, Vl) = 0, these vectorsare independent.Let W be the two-dimensional subspace with

basis (VI, V2). The matrix of the form restricted to W is :E.Since this matrix is invertible, the

form is nondegenerate on W, so V is the direct sum W 6) Wl., and the form isnondegenerate
on W l.. By induction, we may assume that there is a basis (V3, .-. . , v n ) for W l. such that

the matrix of the form on this subspace has the form (8.8.7). Then (VI, V2, V3, . . . , v n ) is the
requiredbasis for V. 0)))
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Corollary 8.8.8 If A is an invertible m Xm skew-symmetricmatrix, then m is an even integer.
o)

Let ( , ) be a nondegenerate skew-symmetricform on a vector space of dimension 2n.
We rearrange the basis referred to in Theorem 8.8.7 as (Vi, V3, . . . , V2n -1; V2, V 4,

. .. , V2n).
The matrix will be changed into a block matrix made up of n X n blocks)

(8.8.9)) s =
[_\037 bJ.)

8.9 SUMMARY)

We collect some of the terms that we have used together here.They are used for a symmetric
or a skew-symmetricform on a real vector space and alsofor a Hermitian form on a complex
vector space.

orthogonal vectors: Two.vectors v and ware orthogonal (written v-1w) if (v, w) = O.

orthogonal space to a subspace: The orthogonal space W-L to a subspace W of V is the set
of vectors v that are orthogonal to every vector in W:)

W.l =
{v

E V
I (v, W) =

o}
.)

null vector: A null vector is a vector that is orthogonal to every vector in V.

nullspace: The nullspace N of the given form is the set of null vectors:)

N =
{v I (v, V) =

o}
.)

nondegenerate form: The form is nondegenerate if its nullspace is the zero space {OIl This
means that for every nonzero vector V, there is a vector v' such that (v, v') =1= O.

nondegeneracy on a subspace: The form is nondegenerate on a subspace W if its restriction

to W is a nondegenerateform, or if W n W-L = {OJ. If the form is nondegenerate on a
subspaceW, then V = W ffi W-L.

orthogonal basis: A basis B =
(Vi, . . . , v n ) of V is orthogonal if the vectors are mutually

orthogonal, that is, if (Vi, Vj)
= 0 for all indices i and j with i =1= j. The matrix of the form

with respect to an orthogonal basis is a diagonal matrix. Orthogonal bases exist for any

symmetric or Hermitian form, but not for a skew-symmetric form.

orthonormal basis:A basis B = (Vi, . . . , v n ) is orthonormal if (Vi, V
j)

= 0 for i =1= j and

(Vi, Vi)
= 1. An orthonormal basis for a symmetric or Hermitian form exists if and only if

the form is positive definite.

orthogonal projection:If a symmetric or Hermitian form is nondegenerate on a subspace
W, the orthogonal projection to W is the unique linear transformation TC:V -+ W such that:

TC(V) = V if V is in W, and TC(V) = 0 if V is in the orthogonal space W-L.)))
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If the form is nondegenerate on a subspace Wand if (WI, . . . , Wk) is an orthogonal
basis for W, the orthogonal projection is given by the formula 7l'(v) == WICI + ... WkCk,
where)

(Wi, v)
Ci == .

1 (Wi, Wi))

Spectral Theorem:

. If A is normal, there is a unitary matrix P such that P*AP is diagonal.,

. IfA is Hermitian, there is a unitary matrix P such that P*AP is a real diagonal matrix.

. In the unitary group Un, every matrix is conjugate to a diagonal matrix.

. If A is a real symmetric matrix, there is an orthogonal matrix P such that p t
AP is diagonaL

The table below comparesvarious concepts used for real and for complexvector

spaces.)

Real Vector Spaces) Complex Vector Spaces)

forms)

symmetric

(v, w) == (w, v))

Hermi tian

(v, w) == (w, v))

matrices)

symmetric
At ==A

orthogonal
AtA == I)

Hermitian

A* ==A

uni tary

A* A == I

normal

A*A==AA*)

operators)
symmetric

(Tv, w) == (v, Tw)

orthogonal
(v, w) == (Tv, Tw))

Hermitian

(Tv, w) == (v, Tw)

unitary
(v, w) == (Tv, Tw)

normal

(Tv, Tw) == (T*v, T*w)

arbitrary

(v, Tw) == (T*v, w))

In helping geometry, modern algebra ;shelping itself above all.

-Oscar Zariski)))
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EXERCISES)

Section 1 Real Bilinear Forms

1.1. Show that a bilinearform ( , ) on a real vector space V is a sum of a symmetric form and

a skew-symmetric form.)

Section 2 Symmetric Forms

2.1. Prove that the maximal entries of a positive definite, symmetric, real matrix are on the

diagonal.

2.2. Let A and A' be symmetric matrices related by A' = ptAP, where P is invertible. Is it

true that the ranks of A and of A' are equal?)

Section3 Hermitian Forms

3.1. Is a complex n X n matrix A such that X* AX is real for all X Hermitian?

3.2. Let ( , ) be a positive definite Hermitian form on a complex vector space V, and let { , }
and [ , ] be its real and imaginary parts, the real-valued forms definedby)

(v, w) == {v, w} + [v, w]i.)

Prove that when V is made into a real vector space by restricting scalars to IR, { , } is a

positive definite symmetric form, and [, ] is a skew-symmetric form.

3.3. The set of n x n Hermitian matrices forms a real vectorspace.Find a basis for this space.
3.4. Prove that if A is an invertible matrix, then A

*A is Hermitian and positivedefinite.

3.5. Let A and B be positive definite Hermitian matrices. Decide which of the following
matrices are necessarilypositive definite Hermitian: A 2, A-I, AB, A + B.

3.6. Use the characteristic polynomial to prove that the eigenvalues of a 2 X 2 Hermitian

matrix A are real.)

Section4 Orthogonality

4.1. What is the inverse of a matrix whose columns are orthogonal?

4.2. Let ( , ) be a bilinear form on a real vector space V, and let v be a vector such that

(v, v) =1=O. What is the formula for orthogonalprojection to the space W = v1- orthogonal

to v?

4.3. Let A be a real m X n matrix. Prove that B = A tA is positive semidefinite, i.e., that

XtBX > 0 for all X, and that A and B have the same rank.

4.4. Makea sketch showing the positions of some orthogonalvectors in IR2, when the form is
(X, Y) == xIYl

-
X2Y2.

4.5.

;\037:[;n
:rrog;:)arriro; j\037

form on \037n whose matrix is

4.6. Extend the vectorXl = !(1,-1,1, 1)
t to an orthonormal basis for IR

4
.)))



Exercises 255)

4.7. Apply the Gram-Schmidt procedureto the basis (1,1, O)t, (1,0, 1)t, (0,1, l)t ofJR3.

4.8. Let A =
[\037

\037
].

Find an orthonormal basis for JR2 with respect to the form X t
A Y.

4.9. Find an orthonormal basisfor the vector space P of all real polynomials of degree at most
2, with the symmetric form defined by

Cf, g) =
1

1
f(x)g(x)dx.

-1)

4.10. Let V denote the vector space of real n X n matrices. Prove that (A, B) = trace (A
t
B)

defines a positive definite bilinear form on V, and find an orthonormal basisfor this form.

4.11. Let WI, W2 be subspaces of a vector space V with a symmetric bilinear form. Prove
(8) (WI + W2)1. = wt n Wi, (b) We WJ..J.., (c) If tV I C W2, then wt :) wt.

4.12. Let V = IR
2X2 be the vector space of real 2X 2 matrices.

(8) Determine the matrix of the bilinearform (A, B) = trace(AB) on V with respect to
the standard basis{eij }.

(b) Determine the signature of this form.

( c) Find an orthogonal basisfor this form.

(d) Determine the signature of the form traceAB on the space IR
nXn of real nXn matrices.)

*4.13.(a) Decidewhether or not the rule (A, B) =
trace(A*B) defines a Hermitian form on

the spacec nxn
of. complex matrices, and if so, determine its signature.

(b) Answer the same question for the form definedby (A, B) = trace( A B).

4.14. The matrix form of Theorem 8.4.10 asserts that if A is a real symmetric matrix, there

exists an invertible matrix P such that ptAP is diagonal. Prove this by row and column
operations.

4.15. Let W be the subspace of]R3 spanned by the vectors (1, 1, O)t and (0, 1,l)t. Determine

the orthogonal projection of the vector (1,0, O)t to W.

4.16. Let V be the real vector space of3X 3 matrices with the bilinear form (A, B) = trace At B,

and let W be the subspaceof skew-symmetric matrices. Compute the orthogonal projec-
tion to W with respect to this form, of the matrix

[
\037 \037 \037

]

.

130)

4.17. Use the method of (3.5.13) to compute the coordinatevector of the vector (Xl, X2, X3)t

with respect to the basis B describedin Example 8.4.14, and compare your answer with

the projection formula.

4.18. Find the matrix of a projection 1[:}R3\037 JR.2 such that the image of the standardbasesof

}R3 forms an equilateral triangle and n(el) points in the direction of the x-axis.

4.19. Let W be a two-dimensional subspace of ]R3 , and consider the orthogonal projectionn of

]R3 onto W. Let (ai, bi)t be the coordinate vector of n(ei), with respect to a chosen or-
thonormal basis of W. Prove that (aI, a2, a3) and (h1, b2,b3)are orthogonal unit vectors.)))
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4.20. Prove the criterion for positivedefiniteness given in Theorem 8.4.19. Does the criterion
carryover to Hermitian matrices?

4.21. Prove Sylvester'sLaw (see 8.4.17).

Hint: Begin by showing that if WI and W2 are subspaces of V and if the form is positive
definite on WI and negative semi-definiteon W 2 , then WI and W2 are independent.)

Section 5 Euclidean Spacesand Hermitian Spaces

5.1. Let V be a Euclidean space.

(a) Prove the Schwarz inequality I(v, w)1 <
Ivllwl.

(b) Prove the parallelogram law Iv + wl
2 + Iv

- wl
2 == 21vl

2 + 21w1
2.

(c) Prove that if Ivl == Iwl, then (v + w)-1.(v - w).
5.2.Let W be a subspace of a Euclidean space V. Prove that W == W..L..L.

*5.3. Let w E \037n be a vector of length 1, and let U denote the orthogonalspacew..L. The

reflection rw about U is definedas follows: We write a vector v in the form v = cw + u,
where U E U. Then rw(v) = -cw + u.

(a) Prove that the matrix P = I - 2ww
t

is orthogonal.

(b) Prove that multiplication by P is a reflectionabout the orthogonal space U.

(c) Let u, v be vectors of equal length in JRn. Determine a vector w such that Pu = v.)

5.4. Let T be a linear operator on V = JRn whose matrix A is a real symmetric matrix.)

(a) Prove that V is the orthogonal sum V = (ker 1) EB (im 1).

(b) Prove that T is an orthogonal projection onto im T if and only if, in addition to being
symmetric, A

2 = A.)

5.5. Let P be a unitary matrix, and let XI and X 2 be eigenvectors for P, with distinct

eigenvalues Al and AZ, Prove that Xi and X 2 are orthogonalwith respect to the standard
Hermitian form on en .

5.6. What complex numbers might occur as eigenvalues of a unitary matrix?)

Section 6 The Spectral Theorem

6.1. Prove Proposition 8.6.3(c), (d).

6.2. Let T bea symmetric operator on a Euclidean space. Using Proposition8.6.9,prove that

if v is a vector and if T2 v = 0, then Tv = O.

6.3. What does the SpectralTheorem teU us about a real 3x 3 matrix that is both symmetric
and orthogonal?

6.4.What can be said about a matrix A such that A *
A is diagonal?

6.5. Prove that if A is a real skew-symmetric matrix, then i A is a Hermitian matrix. What

does the Spectral Theorem tell us about a real skew-symmetric matrix?

6.6. Prove that an invertible matrix A is normal if and only if A
*A -1 is unitary.

6.7. Let P be a real matrix that is normal and has real eigenvalues. Prove that P IS

symmetric.)))
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6.8. Let V be the space of differentiable complex-valuedfunctions on the unit circle in the

complex plane, and for f, g E V, define

(j, g) =
1

2Jf

f(O)g(O)dO,

(a) Show that this form is Hermitian and positive definite.
(b) Let W be the subspace of V of functions f(e

i
{}), where f is a polynomial of degree

< n. Find an orthonormal basis for W.

(c) Show that T == i Ie is a Hermitian operator on V, and determine its eigenvalues
on W.

6.9. Determine the signature of the form on JR2 whose matrix is
[1

1
]
, and determine an

orthogonal matrix P such that pt AP is diagonal.

6.10. Provethat if T is a Hermitian operator on a Hermitian space V, the rule {v, w} = (v, Tw)

defines a second Hermitian form on V.

6.11. Prove that eigenvectors associated to distinct eigenvalues of a Hermitian matrix A are
\037

orthogonal.

6.12. Find a unitary matrix P so that P*AP is diagonal, when A =
[_\037 :],

6.13. 5. Find a real orthogonal matrix P so that ptAP is diagonal, when A IS the

matrix)

(3)
[\037

i l)
(b)

[:)

1
1
1) :}) [

1 0 1

]

'

(c) 0 1 0 .
100)

6.14.Prove that a real symmetric matrix A is positive definite if and only if its eigenvalues are
positive.

6.15.Prove that for any square matrix A, ker A == (imA *)J.., and that if A is normal,
ker A == (imA)l..

*6.16. Let \037
== e 2ni / n

, and let A be the n X n matrix whose entries are ajk ==
\037jk/ -Jfi. Prove that

A is unitary.

*6.17. Let A, B be Hermitian matrices that commute. Prove that there is a unitary matrix P such
that P*AP and P* BP are both diagonal.

6.18. Usethe Spectral Theorem to prove that a positive definite real symmetric n X n matrix A

has the form A == ptp for some P.

6.19. Prove that the cyclic shift operator)

o 1
o 1)

1)

1

o)

is unitary, and determine its diagonalization.)))
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6.20. Prove that the circulant, the matrix below, is normal.)

Co Cl Cn
Cn Co . . . Cn-l)

Cl C2 Co)

6.21. What conditions on the eigenvalues of a normal matrix A imply that A is Hermitian?

That A is unitary?

6.22. Prove the Spectral Theorem for symmetric operators.)

Section 7 Conics and Quadrics

7.1. Determine the type of the quadric x2
+ 4xy + 2xz + Z2 + 3x + z - 6 = O.

7.2. Suppose that the quadratic equation(8.7.1)represents an ellipse. Instead of diagonalizing
the form and then making a translation to reduce to the standard type, we could make
the translation first. How can one determine the required translation?

7.3. Give a necessary and sufficient condition, in terms of the coefficients of its equation, for

a conic to be a circle.
7.4.Describe the degenerate quadrics geometrically.)

Section 8 Skew-Symmetric Forms

8.1. Let A be an invertible, real, skew-symmetric matrix. Prove that A2 is symmetric and
negativedefinite.

8.2. Let W be a subspaceon which a real skew-symmetric form is nondegenerate.Find a

formula for the orthogonal projection1'(:V --+ W.

8.3. Let Sbe a real skew-symmetric matrix. Prove that I +S is invertible, and that (I -S) (I +S)-l
is orthogonal.

*8.4.Let A be a real skew-symmetric matrix.

(a) Prove that det A 2: O.

(b) Prove that if A has integer entries, then det A is the square of an integer.)

Miscellaneous Problems

M.l. According to Sylvester'sLaw, every 2x2 real symmetric matrix is congruent to exactlyone
of six standard types. List them. If we considerthe operation of G L2 on 2 X 2 matrices by
p * A = P Apt, then Sylvester's Lawassertsthat the symmetric matrices form six orbits.
We may view the symmetric matrices as points in }R3, letting (x, y, z) correspondto the

matrix
[; \037].

Describe the decomposition of]R3 into orbits geometrically, and make a

clear drawing depicting it.

Hint: If you don't get a beautiful result, you haven't understood the configuration.

M.2. Describethe symmetry of the matrices AB + BA and AB - BA in the following cases.

(a) A, B symmetric, (b) A, B Hermitian, (c) A, B skew-symmetric,

(d) A symmetric, B skew-symmetric.)))
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1\\1.3. With each of the following types of matrices, describe the possible determinants and

eigenvalues.

(a) real orthogonal, (b) unitary, (c) Hermitian, (d) real symmetric, negative
definite, (e) real skew-symmetric.

M.4. Let E be an m X n complex matrix. Prove that the matrix
[

_ \037 7* ]
is invertible.

M.S. The vector cross product is xXy =
(X2Y3-X3Y2, x3YI-XIY3, XIY2-X2Yl)t. Let v be a fixed

vector in]R3, and let T be the linear operator T(x) == (x X v) Xv.

(a) Show that this operator is symmetric. You may use general properties of the scalar

triple product det [xIYlz]
= (x X y) . z, but not the matrix of the operator.

(b) Compute the matrix.)

M.6. (a) What is wrong with the following argument? Let P be a real orthogonal matrix.

Let X be a (possiblycomplex)eigenvector of P, with eigenvalue A. Then xtptx ==

(PX)tx = AXtX. On the other hand, xtptx = X t
(p-l X) == A-I XtX. Therefore

A = A-I, and so A = ::i: 1.

(b) State and prove a correct theorem based on the error in this argument.

*M.7. Let A be a real m X n matrix. Prove that there are orthogonal matrices P in Om, and Q\037

in On such that PA Q is diagonal, with non-negative diagonal entries.

M.S.(a) Show that if A is a nonsingular complex matrix, there is a positivedefinite Hermitian

matrix B such that B2 = A *
A, and that B is uniquely determined by A.

(b) Let A be a nonsingular matrix, and let B be a positive definite Hermitian matrix such
that B

2 = A *A. Showthat AB-
1 is unitary.

(c) Prove the Polar decomposition: Every nonsingular matrix A is a product A == UP,

where P is positive definite Hermitian and U is unitary.

(d) Prove that the Polar decomposition is unique.

(e) What does this say about the operation of left multiplication by the unitary group Un

on the group G Ln ?

*M.9.Let V be a Euclidean space of dimension n, and let S == (VI, . . . , Vk) be a set of vectors

in V. A positive combination of S is a linear combination PI VI + . . . + Pk Vk in which all

coefficients Pi are positive. The subspace U = {vi (v, w) = O} of V of vectors orthogonal
to a vector w is called a hyperplane. A hyperplane divides the space V into two half

spaces {vi(v, w) > O} and {vi (v, w) < OJ.

(a) Prove that the following are equivalent:
. S is not contained in any half space.
. For every nonzero vector w in V, (Vi, w) < 0 for some i = 1, . . ., k.

(b) Let Sf be the set obtainedby deleting Vk from S. Prove that if S is not contained in a

half space, then Sf spans V.

(c) Prove that the following conditions are equivalent:

(i) S is not containedin a half space.

(ii) Every vector in V is a positive combination of S.
(iii) S spans V and 0 is a positive combination of S.)))
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Hint: To show that (i) implies (ii) or (iii), I recommend projecting to the space U
orthogonalto Vk. That will allow you to use induction.

M.I0. The row and column indices in the n Xn Fourier matrix A run from 0 to n -1, and the i, j
entry is {ij, with { == e

2rri / n . This matrix solves the following interpolation problem: Given

complexnumbersb o, ..., bn - 1, find a complex polynomial J(t) == CO+Cll+.. '+Cn_lt
n - 1

such that I( \037V)
== b v .

(a) Explain how the matrix solves the problem.
(b) Prove that A is symmetric and normal, and computeA

2
.

*(c) Determine the eigenvalues of A.)

M.ll. Let A be a real n X n matrix. Prove that A defines an orthogonal projection to its image
W if and only if A

2 == A == AlA.

M.ll. Let A be a real n X n orthogonal matrix.

(a) LetX bea complex eigenvector of A with complex eigenvalue A. Prove that X tX = o.
Write the eigenvector as X == R + Si where Rand S are real vectors.Show that

the space W spanned by Rand S is A-invariant, and describe the restrictionof the

operator A to W.

(b) Prove that there is a real orthogonalmatrix P such that p t
AP is a block diagonal

matrix made up of 1 x 1 and 2 x 2 blocks, and describe thoseblocks.

M.13.Let V = jRn, and let (X, Y) == Xl A Y, where A is a symmetric matrix. Let W be the

subspace of V spanned by the columns of an n X r matrix M of rank r, and let n : V \037 W

denote the orthogonal projection of V to W with respect to the form ( , ). One can

compute j( in the form Jr(X) == MY by setting up and solving a suitablesystem of linear

equations for Y. Determine the matrix of Jr explicitly in terms of A and M. Checkyour

result in the case that r == 1 and ( , ) is dot product. What hypotheses on A and Mare

necessary?

M.14. What is the maximal number of vectors Vi in JRn such that (Vi' Vj) < 0 for all i =/:: j?

M.15. 1This problem is about the space V of real polynomials in the variables x and y. If J is
a polynomial, a f will denote the operator f( a\037' a\037

)' and a f (g) will denote the result of

applying this operator to a polynomial g.

(a) The rule (f, g) == a f(g)O defines a bilinear form on V, the subscript 0 denoting
evaluation of a polynomial at the origin. Prove that this form is symmetric and

positive definite, and that the monomials xi yj form an orthogonal basisof V (not an
orthonormal basis).

(b) We also have the operator of multiplication by f, which we write as m f' So
m f(g) == fg. Prove that a f and m f are adjoint operators.

(c) When f == x
2 + y2, the operator af is the Laplacian, which is often written as

\037. A polynomial h is harmonic if \037h == O. Let H denote the space of harmonic

polynomials. Identify the space H1- orthogonalto H with respect to the given form.)

1
Suggested by Serge Lang)))



CHAPTER 9)

Linear Groups)

In these days the angel of topologyand the devil of abstract algebra

fight for the soulof every individual discipline of mathematics.

-Hermann Weyl')

9.1 THE CLASSICAL GROUPS)

Subgroups of the general linear group G Ln are calledlinear groups, or matrix groups. The
most important ones are the special linear, orthogonal, unitary, and symplectic groups

- the
classicalgroups.Someof them will be familiar, but let's review the definitions.

The real speciallinear group SL n is the group of real matrices with determinant 1:)

(9.1.1)) SL n =
{p E GLn(JR) I

detP ==
I}.)

The orthogonal group On is the group of real matrices P such that pt = p- 1
:)

(9.1.2)) On = {p E GLn(}R) I
ptp =

I}.)

A change of basisby an orthogonal matrix preserves the dot productXty on \nn.

The unitary group Un is the group of complex matricesP such that P* = p- 1
:)

(9.1.3)) Un = {PE GLn(C) I
P*P= f}.)

A change of basis by a unitary matrix preserves the standard Hermitian' product X*Y

on en .

The symplectic group is the group of real matrices that preserve the skew-symmetric
form X

t Sy on \n2n , where)

s =
[_\n \n],)

(9.1.4)) SP2n = {p E GL2nOR) I
ptsp = s}.)

1This quote is taken from Morris Kline's book Mathematical Thought from Ancient to Modern Times.)

261)))
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There are analogues of the orthogonal group for indefinite forms. The Lorentz group
is the group of real matrices that preserve the Lorentz form (8.2.2))

(9.1.5)) 03,1= {pE GLn I ptI3,lP
= 13,1}.)

The linear operators representedby these matrices are called Lorentz transformations. An

analogous group Op,m can be defined for any signature p, m.

The word specialis added to indicate the subgroup of matrices with determinant 1:

Special orthogonal group SOn: real orthogonal matrices with determinant 1,

Special unitary group SUn: unitary matrices with determinant 1.

Though this is not obvious from the definition, symplectic matrices have determinant 1,so
the two uses of the letter S do not conflict.

Many of these groups have complexanalogues,defined by the same relations. But
except in Section 9.8, GLn, SL n , On, and SP2n stand for the real groups in this chapter.
Note that the complex orthogonal group is not the same as the unitary group. The defining

properties of these two groups are pt P = I and P* P = I, respectively.

We plan to describegeometricpropertiesof the classical groups, viewing them as
subsetsof the spaces of matrices. The word \"homeomorphism\" from topology will come

up. A homeomorphism cp : X \037 Y is a continuous bijective map whose inverse function

is also continuous [Munkres, p. 105].Homeomorphicsets are topologically equivalent. It

is important not to confuse the words \"homomorphism\" and \"homeomorphism,\" though,
unfortunately, their only difference is that \"homeomorphism\" has one more letter.

The geometry of a few linear groups will be familiar. The unit circle,

x6+ xI=1,
for instance, has several incarnations as a group, all isomorphic. Writing (Xo, Xl) =

(cosO,sinO) identifies the circle as the additive group of angles. Or, thinking of it as

the unit circle in the complex plane by e iO
, it becomes a multiplicative group, the group of

unitary 1 X 1 matrices:)

(9.1.6)) Vi
= {p E ex

I p p = I}.)

The unit circle can also be embedded into JR2X2 by the map

.

[

cos() - sin ()

]
(9.1.7) (cos (), SIn 0) \037 .

() \302\243}'
sIn cos 0

It is isomorphic to the special orthogonal group S02, the group of rotations of the plane.

These are three descriptions of what is essentially the same group, the circlegroup.
The dimension of a linear group G is, roughly speaking, the number of degrees of

freedom of a matrix in G. The circlegroup has dimension 1.The group SL2 has dimension

3, because the equation detP = 1 eliminates one degree of freedom from the four matrix

entries. We discuss dimension more carefully in Section 9.7, but we want to describe some

of the low-dimensional groups first. The smallest dimension in which really interesting
nonabelian groupsappear is 3, and the most important ones are SU2,S03,and SL2. We

examine the special unitary group SU2 and the rotation group 803 in Sections9.3and 9.4.)))
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9.2 INTERLUDE: SPHERES

By analogywith the unit sphere in \0373, the locus

{x5 + xi + . . .+ x\037
= I}

in ]Rn+l is called the n-dimensionalunit sphere, or the n-sphere, for short. We'll denote it by
sn. Thus the unit sphere in ]R3 is the 2-sphere S2,and the unit circle in ]R2 is the I-sphere Sl.
A space that is homeomorphic to a spheremay sometimes be called a sphere too.

We review stereographic projection from the 2-sphere to the plane,becauseit can be

used to give topologicaldescriptionsof the sphere that have analogues in other dimensions.

We think of the xo-axisas the vertical axis in (xo, Xl, X2)-space }R3. The north pole on the

sphere is the point p = (1,0,0).We also identify the locus {xo = O} with a plane that we
call V, and we label the coordinates in V as Vl, V2. The point (V1, V2) of V corresponds to
(0, V1, V2) in }R3.

Stereographic projection n:S 2
--+ V is defined as follows:To obtain the image n(x) of

a point X on the sphere, one constructs the line f that passes through p and x. The projection
n(x) is the intersection of f, with V. The projection is bijective at all points of S2 except the
north pole, which is \"sent to infinity.\

1t(x))

--. ,
......-......)

(9.2.1 )) Stereographic Projection.)

One way to construct the spheretopologically is as the union of the planeV and a single

point, the north pole. The inverse function to TC does this. It shrinks the plane a lot near

infinity, because a small circleabout p on the sphere corresponds to a large circle in the plane.

Stereographic projection is the identity map on the equator. It maps the southern
hemispherebijectively to the unit disk {vI + v\037

< I} in V, and the northern hemisphereto
the exterior {vi + V\037

> 1} of the disk, except that the north pole is missing from the exterior.
On the other hand, stereographic projection from the south pole would map the northern

hemisphere to the disk.Both hemispheres correspond bijectively to disks. This providesa
secondway to build the sphere topologically, as the union of two unit disks glued together
along their boundaries. The disks need to be stretched,like blowing up a balloon, to make
the actual sphere.

To determinethe formula for stereographic projection, we write the line through p

and x in the parametric form q(t) = p + t(x- p) = (1 + t(xQ - 1), tXl, txz).The point q(t)

is in the plane V when t =
l!xo

. So

(
Xl X2

)
7r(X) = (VI, V2) =

1
'

1
\302\267

- XQ
-

XQ)
(9.2.2))))
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Stereographic projection Jr from the n-sphere to n-space is defined in exactly the
same way. The north pole on the n-sphere is the point p == (1, 0, . . . , 0), and we identify

the locus {xo == O} in }Rn+l with an n-space V. A point (VI, . . . , v n ) of V corresponds to
(0, VI, . . . , v n ) in JRn+l. The imagen(x) of a point x on the sphere is the intersectionof the

line l through the north pole p and x with V. As before, the north pole p is sentto infinity,

and 1( is bijective at all points of sn exceptp. The formula for JT is)

(9.2.3))
(

Xl X n

)
n(x) =

1 ' . . . , 1 .-
XQ

-
Xo)

This projection maps the lower hemisphere {xQ < O} bijectively to the n-dimensional
unit ball in V, the locus {vi + ... + v\037

< I}, while projection from the south polemaps the

upper hemisphere {xo >
OJ to the unit ball. So, as is true for the 2-sphere, the n-sphere can

be constructed topologically in two ways: as the union of an n-space V and a single point
p, or as the union of two copies of the n-dimensional unit ball, glued together along their

boundaries, which are (n - I)-spheres,and stretched appropriately.

Weare particularly interested in the three-dimensional sphere S;3, and it is worth making
some effort to becomeacquainted with this locus. Topologically, S3can be constructed either

as the union of 3-space V and a single point p, or as the union of two copies of the unit

ball {vi + v\037 + vj
< I} in }R3, glued together along their boundaries (which are ordinary

2-spheres) and stretched. Neither construction can be made in three-dimensional space.
We can think of V as the space in which we live. Then via stereographic projection,

the lower hemisphere of the 3-sphere 83
corresponds to the unit ball in space. Traditionally,

it is depicted as the terrestrial sphere, the Earth. The upper hemispherecorrespondsto the

exterior of the Earth, the sky.
On the other hand, the upperhemispherecanbe madeto correspondto the unit ball

via projection from the south pole. When thinking of it this way, it is depicted traditionally as
the celestialsphere.(Thephrases \"terrestial ball\" and \"celestial ball\" would fit mathematical

terminology better, but they wouldn't be traditional.))

(9.2.4)) A Model of the Celestial Sphere.)))
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To understand this requires some thought. When the upper hemisphere is represented
as the celestial sphere, the center of the ball correspondsto the north pole of S3, and to
infinity in our space V. While looking at a celestial globe from its exterior, you must imagine

that you are standing on the Earth, looking out at the sky. It is a common mistaketo think

of the Earth as the center of the celestial sphere.)

Latitudes and Longitudes on the 3-Sphere)

The curves of constant latitude on the globe, the 2\037sphere {x6 + xi + x\037
= I}, are the

horizontal circles Xo
= c, with -1 < c < 1, and the curves of constant longitude are the

vertical great circles through the poles. The longitude curves can be described as intersections
of the 2-sphere with the two-dimensional subspacesof R

3 that contain the pole (1, 0,0).
When we go to the 3-sphere {x6+ xI + x\037

+
x\037

= I}, the dimension increases, and one
has to make some decisions about what the analogues should be. We use analoguesthat will

have algebraic significance for the group SU2that we study in the next section.
As analoguesof latitude curves on the 3-sphere, we take the \"horizontal\" surfaces,

the surfaces on which the xo-coordinate is constant. We call these loci latitudes. They are
two-dimensional spheres, embedded into }R4 by

(9.2.5) Xo = c, xt +x\037 +x\037
= (1- c2), with -1 < c < 1.

The particular latitude defined by Xo = 0 is the intersectionof the 3-sphere with the

horizontal space V. It is the unit 2-sphere {vi + v\037 + v\037
= I} in V. We call this latitude the

equator, and we denote it by lE.

Next, as analogues of the longitude curves, we take the great circles through the north

pole (1,0, 0, 0). They are the intersections of the 3-sphere with two-dimensional subspaces

W of}R4 that contain the pole. The intersection L = W n 8 3
will be the unit circle in W, and

we call L a longitude. If we choose an orthonormal basis (p, v) for the space W, the first

vector being the north pole, the longitude will have the parametrization)

(9.2.6)) L: f ((J)
= cos (J p + sin (Jv.)

This is elementary, but we verify it below.

Thus, while the latitudes on \0373 are 2-spheres, the longitudes are I-spheres.)

Lemma 9.2.7 Let (p, v) be an orthonormal basis for a subspaceW of }R4, the first vector

being the north pole p, and let L be the longitude of unit vectors in W.

(a) L meets the equator 1E in two points. If v is one of thosepoints, the other one is -v.

(b) L has the parametrization (9.2.6). If q is a point of L, then replacing v by -v if necessary,
one can expressq in the form f(O) with e in the interval 0 < () < Jr, and then this

representation of a point of L is unique for all e=l= 0, Jr.

(c) Except for the two poles, every point of the sphere S3 lies on a unique longitude.)

Proof We omit the proof of (a).

(b) This is seen by computing the length of a vector ap + bv of W:

lap + bvl
2

== a
2

(p. p) + 2ab(p. v) + b
2

(v. v) == a
2

+ b 2
.)))
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So ap + bv isa unit vector if and only if the point (a, b) lies on the unit circle, in which case
a = cos()and b = sin () for some ().)

(c) Let x be a unit vector in ]R4, not on the vertical axis. Then the set (p, x) is independent,
and therefore spans a two...dimensional subspace W containing p. So x lies in just one such

subspace, and in just one longitude. 0)

9.3 THE SPECIALUNITARY GROUP SU2

The elements of SU2are complex2 X 2 matrices of the form)

(9.3.1)) p =
[_: :J. with a a + b b = 1.)

Let's verify this. Let P =
[: \037]

be an element of SU2, with a, b, u, v in c.. The equations

that define SU2 are P* = p- 1 and detP = 1.When detP = 1, the equation P* = p-l
becomes)

[
\037 \037]

= p* = p-l =
[_\037

-: ]
.)

Therefore v = a , U = -b, and then det P = aa + bb= 1. 0

Writing a = XQ + xli and b =
X2 + X3i defines a bijective correspondence of SU2 with

the unit 3-sphere {x6+ xI + x\037
+

x\037
= 1} in ]R4.)

(9.3.2))

SU2 +----1> 8
3

P =
[

xQ+ xli. X2 + X3i
.
]

( )+----1> XQ,Xl,X2,X3
-X2 + X31 xQ -

xli)

This gives us two notations for an element of SU2. We use the matrix notation as much as

possible, because it is best for computation in the group, but length and orthogonality refer
to dot product in }R4.

Note: The fact that the 3-sphere has a group structure is remarkable.Thereis no way to

make the 2-sphere into a group. A famous theorem of topologyassertsthat the only spheres
on which one can define continuous group laws are the I-sphere and the 3-sphere. 0

In matrix notation, the north pole eo = (1,0,0,0)on the sphere is the identity matrix I.

The other standard basis vectors are the matrices that define the quaternion group (2.4.5).
We list them again for reference:)

(9.3.3))
.

[
i 0

]
.

[
0 1

]
k

[

0
I =

0 -i ' J = -1 0 ' =

i)
\037]

\037 el, e2. e3.)

These matrices satisfy relations such as ij = k that were displayed in (2.4.6). The real vector

space with basis (1, i, j, k) is called the quaternion algebra. So SU2can be thought of as the

set of unit vectors in the quaternion algebra.)))
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Lemma 9.3.4 Except for the two special matrices -:t.I, the eigenvalues of P (9.3.2)are
complexconjugate numbers of absolute value 1.)

Proof The characteristic polynomial of P is t2 - 2xot + 1,and its discriminant D is 4x5
- 4.

When (xo, Xl, X2, X3) is on the unit sphere, xo is in the interval-l < Xo < 1, and D < O.(In
fact, the eigenvalues of any unitary matrix have absolutevalue 1.) 0)

We now describe the algebraicstructures on SU2 that correspond to the latitudes and
longitudeson S3 that were defined in the previous section.)

Proposition9.3.5 The latitudes in SU 2 are conjugacyclasses.Fora given c in the interval
-1 < c < 1,the latitude {xo == c} consists of the matrices P in SU2 such that trace P = 2c.
The remaining conjugacy classes are {I} and {-I}.They make up the center of SU2.)

The propositionfollows from the next lemma.)

Lemma 9.3.6 LetPbe an element of SU2 with eigenvalues A and A. There is an element Q
in SU2 such that Q*PQ is the diagonalmatrix A with diagonal entries A and A. Therefore all

elements of SU2 with the same eigenvalues, or with the same trace, are conjugate.)

Proof Onecanbasea proof of the lemma on the Spectral Theoremfor unitary operators,
or verify it directly as follows: Let X = (u, v)

t
be an eigenvector of P of length 1, with

eigenvalue A, and let Y = (- v , u )t. You will be able to check that Y is an eigenvector of P

with eigenvalue A , that the matrix Q =
[\037

-\037 ]

is in SU2, and that PQ = QA. 0

The equator 1E of SU2 is the latitude definedby the equation trace P = 0 (or Xo = 0).
A point on the equator has the form

A
[

xli X2+X3 i

]
e

+
-

+ k= . . == xII X2J X3.
-X2+X31 -XIl)

(9.3.7))

Notice that the matrix A is skew-Hermitian: A* == -A, and that its trace is zero.We haven't

run across skew-Hermitian matrices before, but they are closely related to Hermitian
matrices:a matrix A is skew-Hermitian if and only if iA is Hermitian.

The 2 x 2 skew-Hermitian matrices with trace zero form a real vector space of

dimension 3 that we denote by '0/, in agreement with the notation used in the previous

section. The space V is the orthogonal space to I. It has the basis (i, j, k), and IE is the unit

2-sphere in V.)

Proposition 9.3.8 The following conditions on an element A of SU2 are equivalent:
. A is on the equator, i.e., traceA == 0,

. the eigenvalues of A are i and - i,

. A
2 = -I.)

Proof The equivalence of the first two statements follows by inspection of the characteristic

polynomial t2 - (traceA)t+ 1.For the third statement, we note that -[ is the only matrix)))
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.)

in SU2 with an eigenvalue -1. If A is an eigenvalue of A, then A 2 is an eigenvalue of A
2

. So

A = :f:i if and only if A2 has eigenvalues-1, in which case A 2 = -I. 0

Next, we consider the longitudes of SU2,the intersectionsof SU2 with two-dimensional

subspaces of]R4 that contain the pole I. We use matrix notation.)

Proposition 9.3.9 Let W be a two-dimensional subspace of]R4 that contains I, and let L be
the longitude of unit vectors in W.

(a) L meets the equator JE in two points. If A is one of them, the other one is-A.Moreover,

(I, A) is an orthonormal basis of W.

(b) The elements of L can be written in the form Pe = (cosB)I+ (sinB)A, with A on IE

and 0 < () < 2]'(.When P* 1: I, A and () can be chosen with 0 < () < ]'(, and then the
expression for P is unique.

(c) Every element of SU2 except 1: I lies on a unique longitude.The elements -f:. I lie on

every longitude.
(d) The longitudes are conjugate subgroups of SU2.)

Proof When one translates to matrix notation, the first three assertions become Lemma
9.2.7. To prove (d),we first verify that a longitude L isa subgroup. Let c, sand c ' , s' denote
the cosine and sine of the angles ex and a', respectively, and let fJ

= a + a'a Then because
A

2 = -I, the addition formulas for cosine and sine show that)

(c! + sA) (c
'! + Sf A) = (ee' - ss')! + (cs'+ sc')A = (cos f3)! + (sin f3)A.)

So L is closed under multiplication.It isalsoclosedunder inversion.

Finally, we verify that the longitudes are conjugate. Say that L is the longitude
Pe = eI + sA, as above. Proposition 9.3.5 tells us that A is conjugate to i, say i = QAQ*.
Then QPeQ* = cQIQ* + sQAQ* = cI + si.SoL isconjugate to the longitude cI + si. 0)

Examples9.3.10
\302\267The longitude eI + si, with c = cos e and s = sin (), is the group of diagonal matrices

in SUz. We denote this longitude by T. Its elements have the form)

[

1
] [

i
] [

ei()

]

e
1

+ s
-i . e-ie .)

. The longitude cI + sj is the group of real matrices in SU2, the rotation group S02.
The matrix cl + si represents rotation of the plane through the angle -().)

c
[1 1]

+s
[-1 1]

=

[-\037
\037l)

We haven't run across the the longitude cI + sk before.) D)

The figure below was made by Bill Schelter. It shows a projection of the 3-sphere SU2
onto the unit disc in the plane. The elliptical discshown is the image of the equator. Just
as the orthogonal projection of a circle from }R3 to }R2 is an ellipse, the projection of the)))
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2-sphere E from R 4 to \0373 is an ellipsoid, and the further projection of this ellipsoid to the
plane maps it onto an elliptical disc. Every point in the interior of the disc is the image of

two points of E.)

J)

Diagonal
matrices)

Trace-zero
matrices)

k)

SU 2)

(9.3.11 )) Some Latitudes and Longitudes in SU2.)

9.4 THE ROTATION GROUP 503

Sincethe equator 1E of SU2 is a conjugacyclass,the group operates on it by conjugation.
We will show that conjugation by an element P of SU2, an operation that we denote by yp,
rotates this sphere. This will allow us to describe the three-dimensional rotation group S03

in terms of the special unitary group SU2.

The poles of a nontrivial rotation of JE are its fixed points, the intersections of JE with

the axis of rotation (5.1.22).IfA is on JE, (A, a) will denote the spin that rotates IE with angle
a about the pole A. The two spins (A, a) and (-A,-a) represent the same rotation.)

Theorem 9.4.1

(a) The rule P \037 yp defines a surjective homomorphism y: SU2 \037 S03, the spin homo-

morphism. Its kernelis the center { :f: I} of SU2.

(b) Suppose that P = cos ()/ + sin OA, with 0 < () < Tl and with A on E. Then yp rotatesE
about the pole A, through the angle 20. So yp is represented by the spin (A, 2(}).)

The homomorphism y described by this theorem is called the orthogonal representation of

SU2. It sends a matrix P in SU2, a complex 2 X 2 matrix, to a mysterious real 3 X 3 rotation

matrix, the matrix of yp. The theorem tells us that every element of SU2 except ::f: I can

be described as a nontrivial rotation together with a choice of spin.Becauseof this, SU 2 is

often called the spingroup.
We discuss the geometry of the map y beforeproving the theorem. If P is a point of

SU2, the point -P is its antipodal point. Sincey is surjective and since its kernel is the center)))
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z = {:f:I},S03 is isomorphic to the quotient group SU2/ Z, whose elements are pairs of

antipodal points, the cosets { ::I: P} of Z. Because y is two-to-one, SU2 is calleda double

covering of 503.
The homomorphism JL : S02 -4 S02 of the l-sphere to itself defined by Po \037 P20

is another, closely related, example of a double covering. Every fibre of JL consists of two

rotations, Po and PO+n.

The orthogonal representation helps to describe the topological structure of the
rotation group. Sinceelementsof S03 correspond to pairs of antipodal pointsof SU2, we

can obtain 503 topologicallyby identifying antipodal points on the 3-sphere. The space
obtained in this way is called (real)projective 3-space, and is denoted by p3.)

(9.4.2)) S03 is homeomorphic to projective3-spacep3.)

Points of JP'3 are in bijective correspondence with one-dimensional subspaces of JR4.Every
one-dimensionalsubspacemeetsthe unit 3-sphere in a pair of antipodal points.

The projective space p3 is much harder to visualize than the sphere S3. However, it is

easy to describe projective I-space pI, the set obtained by identifying antipodal points of

the unit circle Sl. If we wrap SI around so that it becomes the lefthand figure of (9.4.3),the
figure on the right will be }pl. Topologically, pI is a circle too.)

.)

(9.4.3 )) A Double Covering of the I-Sphere.)

We'll describe pl again, in a way that one can attempt to extend to higher dimensional
projective spaces.Exceptfor the two points on the horizontal axis,every pair of antipodal

points of the unit circle contains just one point in the lower semicircle. So to obtain pI, we

simply identify a point pair with a single point in the lower semicircle.But the endpointsof

the semicircle, the two points on the horizontal axis, must still be identified.So we glue the

endpoints together, obtaining a circleasbefore.
In principle, the same method can be usedto describeJP>2. Except for points on the

equator of the 2-sphere, a pair of antipodal points contains just one point in the lower

hemisphere. So we can form W
2 from the lower hemisphere by identifying opposite points of

the equator. Let's imagine that we start making this identification by gluing a short segment
of the equator to the opposite segment. Unfortunately, when we orient the equator to keep

\037track, we see that the opposite segment gets the opposite orientation. So when we glue the
two segments together, we have to insert a twist. This gives us, topologically, a Mobiusband,
and JP2 contains this Mobius band. It is not an orient able surface.

Then to visualize p3 , we would take the lower hemisphere in S;3 and identify antipodal

points of its equator lE. Or, we could take the terrestial ball and identify antipodal points of

its boundary, the surface of the Earth. This is quite confusing. 0)))
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We begin the proof of Theorem 9.4.1now. We recall that the equator JE is the unit

2-sphere in the three-dimensional space V of trace zero, skew-Hermitianmatrices(9.3.7).
Conjugation by an element P of SU2 preservesboth the trace and the skew-Hermitian
property, so this conjugation, which we are denoting by yp, operates on the whole space V.

The main point is to show that yp is a rotation. This is done in Lemma 9.4.5 below.

Let (U, V) denote the form on V that is carried over from dot product on JR.3.

The basis of V that corresponds to the standard basis of ]R3 is (i, j, k) (9.3.3). We write
U = uli + uzj + U3k and use analogous notation for V. Then)

(U, V) =
UlVl + U2 V2 + U3V3.)

Lemma 9.4.4 \\Vith notation as above, (U, V) =
-!trace(UV).)

Proof We compute the product UV using the quaternion relations (2.4.6):

UV = (uli + u2j + U3 k )(v l i + v2-i + V3k)

=-(UIVl+U2V2+U3V3)I + uxV,)

where U X V is the vector cross product

U X V = (U2 V3
- U3 v2)i + (U3VI

- UI V3)j + (UIV2
- U2 V l)k.)

Then because trace] = 2, and becausei,j, k have trace zero,)

trace(UV) = -2(Ul Vl + U2V2 + U3V3)
= -2( U, V}.) o)

Lemma 9.4.5 The operatoryp is a rotation of JE and of V.)

Proof For review, yp is the operator definedby ypU= PUP*.The safest way to prove that

this operator is a rotation may be to compute its matrix. But the matrix is too complicated to

give much insight. It is nicer to describey indirectly. We will show that yp is an orthogonal
linear operator with determinant 1. Euler's Theorem 5.1.25 will tell us that it is a rotation.

To show that yp is a linear operator, we must show that for all U and V in V and

all real numbers r, yp(U+ V)
= ypU + ypV and yp(rU) = r(ypU). We omit this routine

verification. To prove that yp is orthogonal, we verify the criterion (8.6.9)for orthogonality,

which is)

(9.4.6)) (ypU, ypV) = (U, V).)

l\037his follows from the previous lemma, because trace is preservedby conjugation.

(ypU, yp V) =
-\037 trace\302\253ypU)(yp V\302\273

=
-! trace (PUP* PVP*)

=
-\037 trace(PUVP*) =

-\037 trace(UV) = (U, V).

Finally, to show that the determinant of yp is 1, we recall that the determinant of any

orthogonal matrix is :f: 1. Since SU2 is a sphere, it is path connected, and since the
determinant is a continuous function, only one of the two values :l: 1 can be taken on by
det yp. When P = I, yp is the identity operator, which has determinant 1. So det yp

= 1 for

every P. 0)))
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We now prove part (a) of the theorem. Because YP is a rotation, Y maps SU2 to S03.
The verificationthat Y is a homomorphism is simple: YPYQ

= YPQ because)

Yp(YQU) = P(QUQ*)P* = (PQ)U(PQ)*= YPQU.)

We show next that the kernel of Y is \037I. If P is in the kernel, conjugation by P fixes
every element of E, which means that P commutes with every such element. Any element of

SU2 can be written in the form Q = cI + sBwith B in E. Then P commutes with Q too. So P
is in the center { 1: I} of SU2.The fact that Y is surjective will follow, once we identify 28 as
the angle of rotation, because every angle ex has the form 28, with 0 < 8 < Jr.

Let P be an element of SU2, written in the form P = cos 81+ sin OA with A in E. It is
true that ypA = A, so A is a pole of yp. Let ex denote the angle of rotation of yp about the

pole A. To identify this angle, we show first that it is enough to identify the angle for a single
matrix P in a conjugacy class.

Say that P' = QPQ*(= YQP) is a conjugate,whereQ is another element of SU2. Then
P' = cos01+ sin OA', where A' =

YQA
= QAQ*. The angle 0 has not changed.

Next, we apply Corollary 5.1.28,which asserts that if M and N are elementsof 503, and

if M is a rotation with angle ex about the pole X, then the conjugate M' = NM\037l is a rotation

with the same angle ex about the pole NX. Since Y is a homomorphism, YP'
=

YQ YPyQl.
Since yp is a rotation with angle a about A, YP' is a rotation with angle ex about A' =

YQA.

The angle ex hasn't changed either.
This beingso,we make the computation for the matrix P = cos01+ sin ai, which is the

diagonal matrix with diagonal entries e i ()
and e-;(). We apply YP to j:)

(9.4.7))
. . *

[

e i (}

] [

1

] [

e-i(}

] [
e2i(}

]
YpJ = PJP =

e-iO -1 eiB
=

_e-2i(}

= cos 20 j + sin 20k.)

The set (j, k) is an orthonormal basisof the orthogonal space W to i, and the equation above

shows that YP rotates the vector j through the angle 2e in W. The angle of rotation is 2(), as

predicted. This completesthe proof of Theorem (9.4.1). D)

9.5 ONE-PARAMETER GROUPS)

In Chapter 5, we usedthe matrix-valued function

fA I
tA t2A

2 t 3A 3
e =

+1T+2!+3\"!+'\(9.5.1))

todescribesolutions of the differential equation \037\037
= AX. The same function describes the

one-parametergroupsin the general linear group - the differentiable homomorphisms from

the additive group IR+ of real numbers to G Ln.)

Theorem 9.5.2

(a) LetA be an arbitrary real or complexmatrix, and let G Ln denote G Ln OR) or G Ln (C).
The map qJ:jR+ \037 G Ln defined by qJ(t) = etA is a group homomorphism.)))
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(b) Conversely, let cp:1R+ \037 G Ln be a differentiable map that is a homomorphism, and let
A denote its derivative cp'(0) at the origin.Then cp(t) = etA for all t.)

Proof. For any real numbers rand s, the matrices rA and sA commute. So (see (5.4.4\302\273)

(9.5.3)) e(r+S)A = erAesA
.)

This shows that etA is a homomorphism. Conversely,let cp:JR+ \037 G Ln be a differentiable
homomorphism.Then cp(\037t + t) = cp(\037t)cp(t)and cp(t) =

cp(O)cp(t), so we can factor cp(t)
out of the difference quotient:)

q;(\037t + t) -
((J(t) _ cp(\037t)

- cp(O)
( )

\037t

-
\037t

cp t .

Taking the limit as b.t -* 0, we see that cp' (t) = cp'(O)cp(t) =
Acp(t). Therefore cp(t) is a

matrix-valued function that solves the differential equation)

(9.5.4))

(9.5.5))
dcp- =

Acp.
dt)

The function etA is another solution, and when t = 0, both solutions take the value [.

Therefore ({J(t) = etA (see (5.4.9\302\273). D)

Examples 9.5.6

(a) Let A be the 2X2 matrix unit e12. ThenA 2 = O. All but two terms of the series expansion
for the exponential are zero, and etA = [ + e12t.

If A =

[\037
\037l

then etA =

[1 \037l

(b) The usual parametrization of 502 is a one-parameter group.

If A =

[

0 -1

]
then etA =

[
C?S

t - sin t

]

.
1 0' SIn t cos t

(c) The usual parametrization of the unit circle in the complex plane is a one-parameter
group in Ul.

If a is a nonzero real number and ex = ai, then eta = [cosat + i sin at]. 0)

If ex is a nonreal complexnumber of absolute value *1, the image of eta in <ex will be a

logarithmicspiral.If a isa nonzero real number, the image of eta is the positive real axis,

and if a = 0 the image consistsof the point 1 alone.
If we are given a subgroup H of G Ln, we may also ask for one-parameter groups

in H, meaning one-parameter groups whose images are in H, or differentiable homo-

morphisms cp : JR+ \037 H. It turns out that linear groups of positive dimension always
have one-parametergroups, and they are usually not hard to determinefor a particular

group.
Since the one-parameter groups are in bijective correspondence with n X n matrices,

we are asking for the matrices A such that etA is in H for all t. We will determine the

one-parameter groups in the orthogonal, unitary, and special linear groups.)))
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(9.5.7)) Images of Some One-ParameterGroups in C
X

== G L1 (C).)

Proposition 9.5.\037

(a) If A is a real skew-symmetricmatrix (At = -A), then eA is orthogonal. If A is a complex
skew-Hermitianmatrix (A* = -A), then eA is unitary.

(b) The one-parameter groups in the orthogonal group On are the homomorphismst -v-+ etA,

where A is a real skew-symmetricmatrix.

(c) The one-parameter groups in the unitary group Un are the homomorphisms t\037 etA,

where A is a complexskew-Hermitianmatrix.)

Proof We discuss the complex case.
The relation (eA)* == e(A*) follows from the definition of the exponential,and we know

that (\302\2430)-1 == e-
A

(5.4.5). So if A is skew-Hermitian, i.e., A
* = -A, then (eA)* = (eA )-1,

and eA is unitary. This proves (a) for complex matrices.
Next, if A is skew-Hermitian, so is fA, and by what was shown above, etA is unitary

for all t, so it is a one-parameter group in the unitary group. Conversely, suppose that etA is

unitary for all t. We write this as e tA*
== e-

tA
. Then the derivatives of the two sides of this

equation, evaluated at t == 0, must be equal, so A
* == -A, and A is skew-Hermitian.

The proof for the orthogonal group is the same, when we interpret A * as At. 0

We consider the special linear group SLn next.)

Lemma 9.5.9 For any square matrix A, etraceA == det eA .)

Proof An eigenvector X of A with eigenvalue A is also an eigenvector of eA with eigenvalue
eA. So, if AI, . . . , An are the eigenvalues of A, then the eigenvalues of eA are e Ai . The trace
of A is the sum A1 + . . . + An, and the determinant of eA is the product eA.l . . .eAn

(4.5.15).

Therefore etraceA == e Al +.\"+An == e Al . . . e An = det eA. 0)))
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Proposition 9.5.10 The one-parameter groups in the special linear group SL n are the

homomorphisms t'V'-7 etA, where A is a real n x n matrix whose trace is zero.)

Proof Lemma 9.5.9shows that if traceA =: 0, then det etA == ettraceA == eO == 1 for all t, so
etA is a one-parameter group in SLn. Conversely, if det etA == 1 for all t, the derivative of

e
t trace A

, evaluated at t == 0, is zero. The derivative is traceA. 0)

The simplestone-parametergroup in SL2 is the one in Example 9.5.6(a). The one-

parameter groups in SU2 are the longitudes described in (9.3.9).)

9.6 THE LIE ALGEBRA)

The space of tangent vectors to a matrix group G at the identity is called the Lie algebra of
the group.We denote it by Lie( G). It is called an algebra because it has a law of composition,
the bracket operation that is defined below.

For instance, when we represent the circle group as the unit circle in the complex plane,
the Liealgebraisthe spaceof real multiples of i.

The observation from which the definition of tangent vector is derived is something
we learn in calculus: If cp(t) == (CPl (t), . . . , CPk(t\302\273is a differentiable path in \037k, the velocity

vector v == cP' (0) is tangent to the path at the point x == cp(O). A vector v is said to be tangent

to a subset S of \037k at a point x if there is a differentiable path cp(t), defined for sufficiently

small t and lying entirely in S, such that cp(O) == x and cp' (0) == v.

The elements of a linear group G are matrices,so a path cp(t) in G will be a matrix-

valued function. Its derivative q/ (0) at t == 0 will be represented naturally as a matrix,

and if q;(0)
== I, the matrix cp'(O) will be an element of Lie(G). For example,the usual

parametrization (9.5.6)(b) of the group S02 showsthat the matrix
[\037

-

\037]

is in Lie(S02)'

We already know a few paths in the orthogonal group On: the one-parameter

groups cp(t) == eAt, where A is a skew-symmetricmatrix (9.5.8). Since (eAt)t=o == I and

( \037eAt)t=O
== A, every skew-symmetric matrix A is a tangent vector to On at the identity

- an
element of its Lie algebra.We show now that the Lie algebra consistsprecisely of those

matrices. Since one-parameter groups are very special, this isn't completely obvious. There
are many other paths.)

Proposition 9.6.1 The Lie algebra of the orthogonal group On consists of the skew-

symmetric matrices.)

Proof We denote transposeby \037.If cp is a path in On with cp(O) == I and cp'(0) == A, then

cp( t)
*
cp(t) == I identically, and so

ft (cp( t)
*

cp( t)) == O. Then)

d
(

*
) (

dcp
*

* dq;

)

* 0-
d cp cp t=O

== -
d cp + cp

-
d

== A + A == .
t t t t=O) o)

Next, we consider the special linear group SLn. The one-parametergroups in SL n

have the form cp(t) == eAt, where A is a trace-zero matrix (9.5.10). Since (eAt)t=o == I and

( ft eAt)t=O
== A, every trace-zero matrix A is a tangent vector to SL n at the identity

- an
element of its Lie algebra.)))
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Lemma 9.6.2 Let ep be a path in G Ln with cp(O) = I and (,0'(0) = A. Then (jt (det(,0) )t=o
=

trace A.)

Proof We write the matrix entries of (,0 as 'Pij, and we compute jt det (,0 using the complete

expansion (1.6.4) of the determinant:

det ep
=

L (sign p) (,Ol,pl
. . .

(,On,pn.

PESn)

By the product rule,

d n

(9.6.3)
d/ CPl,pl

\302\267\302\267\302\267
CPn, pn)

= L CPl,pl
. \302\267.

CP\037,pi
. . \302\267

CPn,pn.

i=l)

We evaluate at t = O. Since (,0(0) = I, (,Oij(O)= 0 if i =f:. j and (,Ou(O) = 1. So in the sum
(9.6.3),the term <Pl,pl

. . \302\267

<Pl,pi
. . .

<Pn,pn evaluates to zero unless p j = j for all j =f:. i, and

if p j = j for all j =I=-i, then since p is a permutation, pi = i too,and therefore p is the

identity. So (9.6.3) evaluates to zero except when p = 1, and when p = 1, it becomes

Li ep\037i(O)
= traceA. This is the derivative of det cpo 0)

Proposition 9.6.4 The Lie algebra of the special linear group SL n consists of the trace-zero
matrices. 0)

Proof If cp is a path in the special linear group with (,0(0) = I and cp' (0) = A, then
det (cp(t\302\273

= 1 identically, and therefore
ft

det (ep(t\302\273
= O. Evaluating at t = 0, we obtain

traceA = O. 0)

Similar methods are used to describethe Lie algebras of other classical groups. Note
also that the Lie algebras of On and SLn are real vector spaces, subspaces of the space

of matrices. It is usually easy to verify for other groups that Lie( G) is a real vector
space.
TheLieBracket

The Lie algebrahas an additional structure, an operation called the bracket, the la.w of

composition definedby the rule)

(9.6.5)) [A, B] = AB - BA.)

The bracket is a version of the commutator: It is zero if and only if A and B commute. It isn't
an associative law, but it satisfies an identity called the Jacobi identity:)

(9.6.6)) [A, [B, C]] + [B,[C,A]] + [C, [A, B]] = O.)

To show that the bracket is defined on the Lie algebra, we must check that if A and

B are in Lie(G), then [A, B] is also in Lie(G). This can be done easily for any particular

group. For the special linear group, the required verification is that if A and B have trace

zero, then AB-BA also has trace zero,which is true because traceAB = trace BA.The Lie)))
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algebra of the orthogonal groupisthe spaceof skew-symmetric matrices. For that group, we
must verify that if A and B are skew-symmetric, then [A, B] is skew-symmetric:)

[A, B]t =
(AB)t

- (BA)t = BtA t - AtB t = (-B)(-A) - (-A)(-B)= -[A,B].)

The definition of an abstract Lie algebraincludes a bracket operation.)

Definition 9.6.7 A Lie algebraV is a real vector space together with a law of composition
V X V -+ V denoted by v, w \037

[v, w] and called the bracket, which satisfies these axioms

for all u, v, w in V and all c in JR.:)

bilinearity: [Vl + V2, w] =
[VI, w] + [V2, w] and lev, w] = c[v,w],

[v, Wi + W2] = [v, WI] + [v, W2] and [v, cw] = c[v,w],

skew.symmetry: [v, w] = -[w, v], or [v, v]
= 0,

Ja\037obi identity: [u, [v, w]] + [v, [w,u]] + [w, [u, v]]
= o.)

Lie algebras are useful because,being vector spaces, they are easier to work with

than linear groups. And, though this is not easy to prove'lmany linear groups, including the
classical groups, are nearly determined by their Lie algebras.)

9.7 TRANSLATION IN A GROUP

Let P be an element of a matrix group G. Left multiplication by P is a bijectivemap from G

to itself:)

(9.7.1))
c!!!l;,.o
X\037PX.)

Its inverse function is left multiplication by p-l. The maps mp and m p-l are continuous

because matrix multiplication is continuous.Thus mp is a homeomorphism from G to G
(not a homomorphism). It is also called left translation by P, in analogy with translation in

the plane, which is left translation in the additive group ]R2+.
The important property of a group that is implied by the existence of these maps is

homogeneity. Multip1ication by P is a homeomorphism that carries the identity element 1
to P. Intuitively, the group looks the same at P as it does at 1'1 and since P is arbitrary, it

looks the same at any two points. Th_is is analogous to the fact that the plane looks the same

everywhere.
Left multiplication in the circle group S02 rotates the circle,and left multiplication

in SU2 is also a rigid motion of the 3-sphere. But homogeneity is weakerin other matrix

groups. For example, let G be the group of real invertible diagonal 2 X 2 matrices. If we

identify the elements of G with the points (a, d) in the plane and not on the coordinateaxes,
multiplication by the matrix)

p -
[
2 O

J

-
0 1)

.
(9.7.2))

dis.torts the group G, but it does this continuously.)))
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\037)

\037)

(9.7.3)) Left Multiplication in a Group.)

Now the only geometrically reasonable subsets of JRk that have such a homogeneity
property are manifolds. A manifold M of dimension d is a set in which every point has a

neighborhood that is homeomorphic to an open set in ]Rd (see [Munkres], p. 155). It isn't
surprising that the classical groups are manifolds, though there are subgroups of G Ln that

aren't. The group G Ln (Q) of invertible matrices with rational coefficients is an interesting
group, but it is a countable dense subset of the spaceof matrices.

The following theorem gives a satisfactory answer to the question of which linear

groups are manifolds:)

Theorem 9.7.4 A subgroup of GLn that is a closed subsetof GLn is a manifold.)

Proving this theorem here would take us too far afield,but we illustrate it by showing
that the orthogonal groups are manifolds. Proofs for the other classical groups are similar.)

Lemma 9.7.5 The matrix exponential A \037 eA maps a small neighborhood U of 0 in ]RnXn

homeomorphically to a neighborhoodV of I in G Ln (JR).)

The fact that the exponential seriesconvergesuniformly on bounded sets of matrices implies
that it is a continuous function ([Rudin] Thm 7.12).To prove the lemma, one needs to show
that it

\037as
a continuous inverse function for matrices sufficiently near to I. This can be proved

usingthe inverse function theorem, or the series for log(1 + x):)

(9.7.6)) 10g(1 + x) = x -
\037x2

+
\037x3

- . .. .)

The series loge! + B) converges for small matrices B, and it inverts the exponentiaL 0)

\037)

exponential
))

\037)

G)

(9.7.7)) The Matrix ExponentiaL)))
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Proposition 9.7.8 The orthogonal group On is a manifold of dimension!n(n -1).)

Proof. We denote the group On by G, and its Lie algebra,the spaceof skew-symmetric

matrices, by L. If A is skew-symmetric, then eA is orthogonal (9.5.8).So the exponential

maps L to G. Conversely,supposethat A is near O. Then, denoting transpose by *, A
*

and

-A are also near zero,and eA* and e- A are near to I. If eA is orthogonal, i.e., if eA* = e- A
,

Lemma (9.7.5) tells us that A
* = -A, so A is skew-symmetric. Therefore a matrix A near 0

is in L if and only if eA is in G. This shows that the exponential defines a homeomorphism
from a neighborhoodV of 0 in L to a neighborhoodU of I in G. Since L is a vector space,

it is a manifold. The condition for a manifold is satisfied by the orthogonal group at the

identity. Homogeneity implies that it is satisfied at all points. Therefore G isa manifold, and

its dimension is the same as that of L, namely \037n(n
- 1). 0

Here is another application of the principle of homogeneity.)

Proposition 9.7.9 Let G bea path-connected matrix group, and let H be a subgroupof G

that contains a nonempty open subsetU of G. Then H = G.)

Proof A subset of \037n is path connected if any two points of S canbejoinedby a continuous

path lying entirely in S (see [Munkres, p. 155] or Chapter2,ExerciseM.6).
Since left multiplication by an element g is a homeomorphism from G to G, the set

gU is also open, and it is contained in a single coset of H, namely in g H. Since the translates
of U coverG, the ones contained in a coset C cover that coset. So ooch coset is a union

of open subsets of G, and therefore is open itself. Then G is partitioned into open subsets,
the cosets of H. A path-connected set is not a disjoint union of proper open subsets(see
[Munkres, p. 155]). Thus there can be only one coset, and H = G. 0

We use this proposition to determine the normal subgroupsof SU2.)

Theorem 9.7.10

(a) The only proper normal subgroup of SU2 is its center {:f:I}.
(b) The rotation group 503 is a simple group.)

Proof (a) Let N be a normal subgroup of 5U2 that contains an element P=/= :1 I. We must
show that N is equal to SU2. SinceN is normal, it contains the conjugacy class C of P, which

is a latitude, a 2-sphere.
We choose a continuous map pet) from the unit interval [0, 1] to C such that P(O) = P

and P(l) =/=P, and we form the path Q(t) = P(t)P-1. Then Q(O) = I, and Q(l) =1=1, so this

path leads out from the identity I, as in the figure below. Since N is a group that contains

P and pet), it also contains Q(t) for every t in the interval [0,1]. We don't need to know

anything else about the path Q(t).
We note that trace Q < 2 for any Q in SU2, and that I is the only matrix with trace equal

to 2. Therefore trace Q(D)= 2 and trace Q(1) = T < 2. By continuity, all values between T
and 2 are taken on by trace Q(t). SinceN isnormal, it contains the conjugacy class of Q(t)
for every t. Therefore N contains all elements of SU2 whose traces are sufficiently near to 2,)))
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and this includes all matrices near to the identity. So N contains an open neighborhood of

the identity in SU2. Since SU2is path-connected,Proposition 9.7.9 shows that N = SU2.)

(b) There is a surjective map cp : SU2 \037 S03 whose kernel is {:I: I} (9.4.1).By the

Correspondence Theorem 2.10.5, the inverse image of a normal subgroup in 503 is a normal

subgroup of SU2 that contains {1:f}.Part (a) tells us that there are no proper subgroups of

SU2 except { :I:I}, so S03 contains no proper normal subgroup at all. 0

Onecan apply translation in a group G to tangent vectors too. If A is a tangent vector

at the identity and if P is an element of G, the vector PAis tangent to G at P, and if A isn't

zero, neither is PA. As P rangesover the group, the family of these vectors forms what is

called a tangent vector field. Now just the existenceof a continuous tangent vector field that is

nowhere zero puts strong restrictionson the spaceG.It is a theorem of topology, sometimes
called the \"Hairy Ball Theorem,\" that any tangent vector field on the 2-sphere must vanish

at some point (see [Milnor]).This is onereasonthat the 2-sphere has no group structure.
But sincethe3-sphereis a group, it has tangent vector fields that are nowhere zero.)

9.8 NORMAL SUBGROUPSOF SL2

Let F be a field.The centerof the group SL2(F} is {::i:I}.(This isExercise8.5.)The quotient

group SL2(F) / {:I:I}iscalledthe projective group, and is denoted by PSL2(F). Itselements
arethe cosets { :I: Pl.)

Theorem 9.8.1 Let F be a field of order at least four.

(a) The only proper normal subgroup of SL2(F) is its center Z = {f:I}.
(b) The projective group PSL2(F) is a simple group.)

Part (b) of the theorem follows from (a) and the Correspondence Theorem 2.10.5,
and it identifies an interesting class of finite simple groups: the projective groups PSL2 (F)
when F is a finite field. The other finite, nonabelian simplegroupsthat we have seen are the

alternating groups (7.5.4).
We will show in Chapter 15 that the order of a finite field is always a power of a

prime,that for every prime power q = pe, there is a field JFq of order q, and that JFq has

characteristic p (Theorem 15.7.3).Finite fields of order 2e have characteristic2. In those

fields, 1 = -1 and I = -I. Then the center of SL2CF q) is the trivial group. Let's assume these
facts for now.)))
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We omit the proof of the next lemma. (See Chapter 3, Exercise4.4 for the case that q
is a prime.))

Lemma9.8.2 Letqbea power of a prime. The order of SLz(Fq)isq3 -q. If q is not a power
of 2, the order of PSL2(JFq) is !<q3- q).If q is a power of 2, then PSL2(JF q ) \037

SL2('F q ),

and the order of PSL2(1Fq ) is q3
- q. 0)

Theordersof PSL2 for small q are listedbelow,a]ongwith the orders of the first three

simple alternating groups.

IFf 4 5 7 8 9 11 13 16 17 19

I PSL2 I 60 60 168 504 360 660 1092 4080 2448 3420)

n

IAni)

5 6

60 360)
7

2520)

The ordersof the ten smallest nonabelian simple groups appearin this list. The next smallest
would be PSL3(f'3), which has order 5616.

The projective group isnot simple when IFI = 2 or 3. PSL2(IF2)is isomorphic to the

symmetric group S3and PSL2(1F3)is isomorphic to the alternating group A4.
As shown in these tables, PSL2(F4), PSL2(JFS), and As have order60.Thesethree

groups happen to be isomorphic. (This isExercise8.3.)The other coincidences among orders
are the groupsPSL2('F9)and A6, which have order 360. They are isomorphictoo. 0

For the proof, we will leave the cases I FI = 4 and 5 aside, so that we can use the next
lemma.)

Lemma 9.8.3 A field F of ordergreaterthan 5 contains an element r whose squareis not

0, 1, or -1.)

Proof The only element with square 0 is 0, and the elementswith square 1 are f: 1. There
are at most two elements whose squares are -1: Ifa2 = b

2 = -1, then (a - b)(a + b)
= 0, so

b = :i:a. 0)

ProofofTheorem 9.8.1. We assume given the field F, we let SL2 and PSL2 stand for
SL2(F) and PSL2(F), respectively, and we denote the spaceF2 by V. We choose a nonzero
element r of F whose square s is not :I:1.

LetN bea normal subgroup of SL2 that contains an element A * :i: I. We must show

that N is the whole group SL2.SinceA is arbitrary, it is hard to work with directly. The

strategy is to begin by showing that N contains a matrix that has eigenvalue s.

Step 1:Thereis a matrix P in SL2 such that the commutator B = APA- lp-l isin N, and has

eigenvalues sand s-l.

This is a nicetrick.We choose a vector Vt in V that is not an eigenvector of A and we

let V2 = AV1. Then Vl and V2 are independent, so B = (VI,V2) is a basis of V. (It is easy to

check that the only matrices in SL2 for which every vector is, an eigenvector are I and -I.)
LetR be the diagonal matrix with diagonal entries rand r- l . The matrix P = [B]R[B]-l

has determinant 1, and VI and V2 are eigenvectors, with eigenvalues rand r- l
, respectively)))
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(4.6.10). Because N is a normal subgroup, the commutator B = APA-1p-1 is an element of

N (see (7.5.4)). Then)

BV2 = APA-
1p-1 V2 = APA-1(rv2) = rAPvl = ,2AVI

= SV2.

Therefore s is an eigenvalue of B. Because det B = 1, the other eigenvalue is s-l.

Step 2.' The matrices having eigenvalues sand s-1 form a single conjugacy class C in SL2,
and this conjugacy class is contained in N.

The elements sand s-l are distinct because s=l= ::i: 1. Let S be a diagonal matrix with

diagonal entries sand s-1. Every matrix Q with eigenvalues sand s-1 is a conjugate of S in

G L2(F) (4.4.8)(b), say Q = LSL -1. Since S is diagonal, it commutes with any other diagonal
matrix. We can multiply L on the right by a suitable diagonal matrix, to make detL = 1,
while preserving the equation Q = LSL-1.SoQ is a conjugate of S in SL2. This shows that
the matrices with eigenvalues sand s-l form a single conjugacy class. By Step 1, the normal
subgroupN contains one such matrix. So C c N.

Step 3: The elementary matrices E =
I \037 \037]

and E t =

[; \037],
with x in F, are in N.

For any element x of F, the terms on the left side of the equation)

[
S-l 0

] [
s

s\037

]

=

[

1 X

]

= E
Os Osl 01)

arein C and in N, so E is in N. One sees similarly that E
t is in N.)

Step 4:The matrices E and E
t
, with x in F, generate SL2. Therefore N = SL2.)

The proof of this is Exercise 4.8 of Chapter2 .) o)

As is shown by the alternating groups and the projective groups,simple groups arise

frequently, and this is one of the reasons that they have been studied intensively. On the
other hand, simplicity is a very strong restriction on a group.Therecouldn't be too many of
them. A famous theorem of Cart an is one manifestation of this.

A complex algebraic group is a subgroupof the complex general linear group G Ln (C)
which is the locus of complex solutions of a finite system of complex polynomial equations
in the matrix entries. Cartan's theorem lists the simplecomplexalgebraicgroups.In the
statement of the theorem, we use the symbolZ to denotethe center of a group.)

Theorem 9.8.4

(a) Thecentersof the groups SL n (C), SOn (C), and SP2n (C) are finite cyclic groups.

(b) For n > 1, the groupsSLn(C)/Z, SOn(C)/Z,and SP2n(C)/Z are path-connected

complex algebraic groups. Exceptfor S02(C)/ Z and S04(C)/ Z, they are simple.)))
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(c) In addition to the isomorphismclassesof these groups, there are exactly five isomorphism

classes of simple, path-connected complex algebraicgroups, called the exceptional

groups.)

Theorem 9.8.4isbasedon a classification of the corresponding Lie algebras. It is too hard to
prove here.

A large project, the classification of the finite simple groups, was completed in 1980.

The finite simple groups we have seen are the groups of prime order,the alternating groups

An with n > 5, and the groups PSL2(F) when F is a finite field of order at least 4. Matrix

groups playa dominant role in the classification of the finite simple groups too. Each of the
forms (9.8.4) leads to a whole series of finite simple groups when finite fields are substituted

for the complex field. There are alsosomefinite simple groups analogous to the unitary

groups. All of these finite linear groups are said to be of Lie type. In addition to the groups
of prime order, the alternating groups, and the groups of Lie type, there are 26 finite simple

groups called the sporadic groups. The smallestsporadicgroup is the Mathieu group Mll,
whoseorderis7920.The largest, the Monster, has order roughly 10

53
.)

It seems unfair to crow about the successesofa theory

and to sweep all its failures under the rug.

-Richard Brauer)

EXERCISES)

Section 1 The Classical Linear Groups

1.1. (a) Is GLn (C) isomorphic to a subgroup of G L2n (IR)?

(b) Is S02(<C) a boundedsubsetof C
2X2?

1.2. A matrix P is orthogonalif and only if its columns form an orthonormal basis. Describe

the properties of the columns of a matrix in the Lorentz group 03,1,

1.3. Prove that there is no continuous isomorphism from the orthogonal group 04 to the
Lorentz group 03,1'

1.4.Describeby equations the group OLI and show that it has four path-connected
components.

1.5. Prove that SPz = 5L2, but that SP4,*SL4.

1.6. Prove that the following matrices are symplectic, if the blocks are n X n:

[I -I], [At A_1],[I \037lWhereB=BtandAiSinvertible.)

*1.7.Prove that

(a) the symplectic group SP2n operates transitively on 1R
2n

,

(b) SP2n is path-connected, (c) symplectic matrices have determinant 1.)))
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Section 2 Interlude: Spheres

2.1. Compute the formula for the inverse of the stereographicprojection JT: S;3 \037 ]R3.

2.2. One can parametrize proper subspacesof \0372 by a circle in two ways. First, if a subspace
W intersects the horizontal axis with angle (), one can use the double angle ex == 20. The
double angle eliminatesthe ambiguity between 0 and O+1r. Or,one can choose a nonzero
vector (Yl, yz) in W, and use the inverse of stereographic projection to map the slope
A == yz/ Yl to a point of S;l.Comparethese two parametrizations.

2.3. (unit vectors and subspacesin C
z

) A proper subspace W of the vector space (:2 has
dimension 1. Its slope is defined to be A == Y2/Yl, where (Yl, Y2) is a nonzero vector in

W. The slope can be any complex number, or when Yl
== 0, A == 00.

!

(a) Let z == VI + vzi. Write the formula for sterographic projection1r (9.2.2)and its

inverse function a in terms of z.

(b) The function that sends a unit vector (Yl, yz) to a(Y2/Yt) defines a map forID the
unit sphere S;3 in C Z

to the two-sphere S2. This map can be used to parametrize

subspaces by points of S2.Compute the function a(Y2/ Yl) on unit vectors (Yt, yz).

(c) What pairs of points of S;2 correspond to pairs of subspacesWand W' that are

orthogonal with respect to the standard Hermitian form on C 2
?)

Section 3 The Special Unitary Group SU2

3.1. Let P and Q be elements of SU2, represented by the real vectors (XO, Xl, X2, X3)
and (Yo, Yl, Y2, Y3), respectively. Compute the real vector that corresponds to the

product PQ.

3.2. Prove that U2 is homeomorphic to the product S;3 X Sl.

3.3. Prove that every great circle in SU2 (circle of radius 1) is a coset of one of the longitudes.

3.4. Determine the centralizer ofj in SU2.)

Section 4 The Rotation GroupS03
4.1.Let W be the space of real skew-symmetric 3 X 3 matrices. Describe the orbits for the

operation P * A == P Apt of S03 on W.

4.2. The rotation group S03 may be mapped to a 2-sphere by sending a rotation matrix to its

first column. Describe the fibres of this map.

4.3. Extend the orthogonal representationq;:SU2 -+ S03 to a homomorphism
<t>: Uz -+ S03, and describe the kernel of <1>.

4.4. (a) With notation as in (9.4.1), compute the matrix of the rotation yp, and show that its

trace is 1 + 2cos2().
(b) Prove directly that the matrix is orthogonal.

4.5. Prove that conjugation by an element of SUzrotates every latitude.

4.6. Describe the conjugacy classesin S 0 3 in two ways:

(a) Its elements operate on JR.3 as rotations. Which rotations make up a conjugacy

class?)))
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(b) The spin homomorphism SU2-+ S03can be used to relate the conjugacy classesin

the two groups. Do this.

(c) The conjugacy classes in SU2 are spheres. Describe the conjugacy classes in S03
geometrically. Be careful.

4.7. (a) Calculate left multiplication by a fixed matrix P in SU2 explicitly, in terms of the
coordinatevector (XO, Xl, X2, X3). Prove that it is given as multiplication by a 4 x 4
orthogonalmatrix Q.

(b) Prove that Q is orthogonal by a method similar to that used in describing the
orthogonal representation:Expressdot product of the vectors (Xo, Xl, X2, X3) and

(x o' x\037, x;, x\037)
that correspond to matrices P and P' in SU2, in matrix terms.

4.8. Let W be the real vector space of Hermitian 2 X 2 matrices.

(a) Prove that the rule p. A = PAP* definesan operation of SL2(C) on W.

(b) Prove that the function (A, A') = det(A + A')
- detA - detA

' is a bilinear form on
W, and that its signature is (3, 1).

(c) Use(a)and (b) to define a homomorphism cp:SL2((;) -+ 03,1,whose kernel is {:f::I}.)

*4.9. (a) Let Hi be the subgroup of S03 of rotations about the xi-axis, i = 1,2, 3.Prove that

every element of S03 canbe written as a product ABA', where A and A' are in H 1 and
B is in H2. Prove that this representation is unique unless B = I.
(b) Describethe double cosets H1 Q HI geometrically(seeChapter 2, Exercise M.9).)

Section 5 One-ParameterGroups
5.1.Can the image of a one-parameter group in G Ln cross itself?

5.2.' Determinethe one-parameter groups in U2.

5.3. Describe by equations the images of the one-parameter groups in the group of real,
invertible, 2 X 2 diagonal matrices, and make a drawing showing some of them in the

plane.

5.4. Find the conditions on a matrix A so that etA is a one-parametergroup in

(a) the special unitary group SUn, (b) the Lorentz group 0 3 ,1.

5.5. Let G be the group of real matrices of the form
[x i ],

with x > o.

(a) Determine the matricesA such that etA is a one-parameter group in G.

(b) Compute etA explicitly for the matrices in (a).

(c) Make a drawing showing some one-parameter groups in the (x, y)-ptane.

5.6. Let G be the subgroup of G L2 of matrices
[x \037-1]

with x > 0 and y arbitrary.

Determine the conjugacy classes in G, and the matrices A such that etA is a one-
parameter group in G.

5.7. Determine the one-parametergroups in the group of invertible n x n upper triangular
matrices.

5.8. Let cp(t)
= etA be a one-parameter group in a subgroup G of G Ln. Prove that the cosets

of its image are matrix solutions of the differential equation dX / dt = AX.)))
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5.9. Let ({J:JR+ -+ G Ln be a one-parametergroup. Prove that kercp is either trivial, or an

infinite cyclic group, or the wholegroup.
5.tO.Determine the differentiable homomorphisms from the circle group S02 to GLn.)

Section 6 The Lie Algebra

6.1. Verify the Jacobi identity for the bracket operation [A, B] = AB - BA.

6.2. Let V be a real vector space of dimension 2, with a law of composition [v, w] that is

bilinear and skew-symmetric (see (9.6.7\302\273. Prove that the Jacobi identity holds.

6.3. The group SL2 operatesby conjugation on the space of trace-zeromatrices.Decompose
this space into orbits.

6.4. Let G be the group of invertible real matrices of the form

[a :;].
Determine the Lie

algebra L of G, and compute the bracketon L.

6.5. Show that the set definedby xy
= 1 is a subgroup of the group of invertible diagonal 2 x 2

matrices, and computeits Lie algebra.

6.6. (a) Show that 02 operates by conjugation on its Lie algebra.

(b) Show that this operation is compatible with the bilinear form (A, B) = ! traceAB.

(c) Use the operation to define a homomorphism O 2 -+ 02, and describe this homo-

morphism explicitly.

6.7. Determine the Lie algebrasof the following groups.

(a) Un, (b) SUn, (c)03,1,(d) SOn (C).

6.8. Determine the Lie algebraof SP2n, using block form M =
[\037I\037J.

6.9. (a) Show that the vector crossproduct makes JR.3 into a Lie algebra L 1.
(b) Let L2 = Lie(SU2), and let L3 = Lie(S03)' Prove that the three Lie algebras

L1, L2 and L3 are isomorphic.

6.10. ClassifycomplexLie algebrasof dimension < 3.

6.11. Let B be a realn x n matrix, and let ( , ) be the bilinear form Xl BY. The orthogonal
group G of this form is defined to be the group of matrices P such that ptBP = B.
Determine the one-parameter groups in G, and the Lie algebraof G.)

Section 7 Translation in a Group

7.1. Prove that the unitary group Un is path connected.

7.2. Determine the dimensions of the following groups:

(a) Un, (b) SUn, (c) SOn (C), (d) 03,1, (e) SP2n.

7.3. Usingthe exponential, find all solutions near I of the equation p2 = I.

7.4. Find a path-connected, nonabelian subgroup of GL2 of dimension 2.)))
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*7.5. (a) Prove that the exponential map defines a bijectionbetween the set of all Hermitian
matrices and the set of positive definite Hermitian matrices.

(b) Describe the topological structure of G L2(C) using the Polar decomposition
(Chapter 8, ExerciseM.8)and (a).

7.6. Sketch the tangent vector field P A to the group ex, when A = 1 + i.

7.7. LetH bea finite normal subgroup of a path connected group G. Prove that H is contained
in the center of G.)

Section 8 Normal Subgroups of SL2

8.1. Prove Theorem 9.8.1 for the cases F = 1F4 and 1Fs.

8.2. Describe isomorphisms PSL2(IF2) \037S3 and PSL2( IF 3) \037A4.

8.3. (a) Determine the numbers of Sylow p-subgroups of PSL2(1Fs), for p = 2,3,5.
(b) Prove that the three groups As, PSL2(IF4),and PSL2(IFS) are isomorphic.

8.4. (a) Write the polynomial equations that define the symplecticgroup.
(b) Show that the unitary group Un can be defined by real polynomial equations in the

real and imaginary parts of the matrix entries.

8.5. Determine the centers of the groups SL n (IR) and SL n (C).

8.6. Determine all normal subgroups of GL2 (R) that contain its center.

8.7. With Z denoting the center of a group, is PSL n (C) isomorphic to G Ln(C)/ Z? Is

PSL n (JR.) isomorphic to G Ln OR)/ Z?
8.8.(a) Let P be a matrix in the center of SOn, and let A be a skew-symmetric matrix. Prove

that PA = AP.

(b) Prove that the center of SOn is trivial if n is odd and is { :f: I} if n is even and n > 4.
8.9.Compute the orders of the groups

(a) S02(1F3),(b)S03(1F3),(c) S02(1F5), (d) S03(1F5).

*8.10. (a) Let V be the space V of complex 2 X 2 matrices, with the basis (ell, el2,eZl, e22)'

Write the matrix of conjugation by A =

[\037 \037]

on V in block form.

(b) Prove that conjugation defines a homomorphism q;:SLz(C) -+ GL4(C), and that
the image of cp is isomorphic to PSL2(C).

(c) Prove that PSL2(C) is a complex algebraic group by finding polynomial equations
in the entries

Yij
of a 4 X 4 matrix whose solutions are the matricesin the image of cpo)

Miscellaneous Exercises

M.I. Let G = SL2(JR),let A =

[: \037]

be a matrix in G, and let t be its trace. Substituting

t - x for w, the condition detA = 1 becomesx(t -
x)

- yz = 1. For fixed trace t, the

locus of solutionsof this equation is a quadric in x, Y, z-space. Describe the quadrics that

arise this way, and decompose them into conjugacy classes.

*M.2. Which elements of SLz (\037) lie on a one-parameter group?
M.3. Are the conjugacy classes in a path connected group G path connected?)))
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M.4. Quaternions are expressionsof the form a = a + bi + cj+ dk,where a, b, c, d are real
numbers (see (9.3.3)).

(a) Let a = a - bi - cj - lik. Computeaa.
(b) Prove that every a * 0 has a multiplicative inverse.

(c) Prove that the set of quaternions a such that a
2 + b2 + c2

+ d 2 = 1 forms a group

under multiplication that is isomorphic to SU2 .)

M.5. The affine group An is the group of transformations of JRn generated by G Ln and the
group Tn of translations: ta(x) = x + a. Prove that Tn is a normal subgroup of An and

that An/Tn is isomorphic to GLn.
M.6.(Cayley transform) Let U denote the set of matrices A such that I + A is invertible, and

define A' = (I -A)(I +A)-l.
(a) Prove that if A is in U, then so is A', and that (A')' = A.

(b) Let V denote the vector space of real skew-symmetric n X n matrices. Prove that the

rule A \037 (I
- A)(I + A)-l defines a homeomorphism from a neighborhood of 0 in

V to a neighborhood of I in SOn.

(c) Is there an analogous statement for the unitary group?

(d) Let S =
[_\037 b].

Show that a matrix A in U is symplectic if and only if (A')t S = -SA'.

M.'. Let G == SL2. A ray in]R2 is a half line leading from the origin to infinity. The rays are in

bijective correspondence with the points on the unit I-sphere in JR2.

(a) Determine the stabilizer H of the ray {re1lr > OJ.

(b) Prove that the map f: HXS02 \037 G defined by f(P, B) = PB is a homeomorphism

(not a homomorphism).
(c) Use(b) to identify the topological structure of SL2.)

M.8.Two-dimensional space-time is the space of real three-dimensional column vectors, with
the Lorentz form (Y, Y') = ytI2,1 Y' ==

Y1Y\037 + Y2Y;
-

Y3Y\037'

The space W of real trace-zero2 X 2 matrices has a basis B = (WI, W2, W3), where)

Wl =
[

1
-1]. W2 =

[1 1],
W3 =

[-1
1

J.)

Show that if A = BY and A' = BY'are trace-zero matrices, the Lorentz form carries
over to (A, A') =

YIYl + Y2Y\037
-

Y3Y; ==
! trace(AA').

The group SL 2 operatesby conjugation on the space W. Use this operation to define

a homomorphism q;:SL2\037 02, I whose kernel is {:f:I}.
Prove that the Lorentz group 02,1 has four connected components and that the

image of q; is the component that contains the identity.

M.9. The icosahedral group is a subgroup of index 2 in the group G I of all symmetries of
a dodecahedron,including orientation-reversing symmetries. The alternating group As
is a subgroup of index 2 of the symmetric group G2 = S5. Finally, consider the spin

homomorphism cp:SU2 \037 S03. Let G3 be the inverse imageof the icosahedral group in

SU2. Are any of the groups Gi isomorphic?)

(a))

(b))

*(c))))
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*M.I0. Let P be the matrix (9.3.1) in SU2, and let T denote the subgroup of SU2 of diagonal
matrices.Prove that if the entries Q, b of P are not zero, then the double coset TPT
is homeomorphicto a torus, and describe the remaining double cosets(seeChapter 2,

Exercise M.9).

*M.ll. The adjoint representationof a linear group G is the representation by conjugation on its
Lie algebra: G X L -+ L defined by P, A \037 PArI. The form (A, A') = trace(AA

'
) on

L is called the Killing form. For the following groups, verify that if P is in G and A is in

L, then P Ar l is in L. Prove that the Killing form is symmetric and bilinear and that the

operation is compatible with the form, i.e., that (A, A) = (pAr 1, PA' r 1
).

(a) Un, (b) 03,1, (C) SOn (C), (d) SP2n.

*M.12. Determine the signature of the Killing form (ExerciseM.ll) on the Lie algebra of

(a) SUn, (b)SOn, (c) SLn.

*M.13. Use the adjoint representation of SL2 (C) (Exercise M.ll) to define an isomorphism
SL2(C)/{ f:I} \037S03(C),)))
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Group Representations)

A tremendous effort has been made by mathematicians

for more than a century to clearup the chaos in group theory.

Still, we cannot answersomeof the simplest questions.

-Richard Brauer)

Group representations arise in mathematics and in other sciences when a structure with

symmetry is being studied. If one makes all possible measurements of some sort (in
chemistry, it might be vibrations of a molecule) and assemblesthe results into a \"state

vector,\" a symmetry of the molecule will transform that vector. This produces an operation
of the symmetry group on the space of vectors, a representationof the group, that can help
to analyze the structure.)

10.1 DEFINITIONS

In this chapter, G Ln denotes the complex general linear group GLn (C).

A matrix representation of a group G is a homomorphism

(10.1.1) R: G -+ GLn,
from G to one of the complex general linear groups.The number n is the dimension of the
representation.

We use the notation Rg instead of R(g) for the image of a group element g. Each
Rg

is an invertible matrix, and the statement that R is a homomorphism reads

(10.1.2) Rgh
==

RgRh.

If a group is given by generators and relations, say (Xl, . . . , X n I rl, . . . , rk), a matrix

representation can be defined by assigning matrices R
X1 , . . . , RXn that satisfy the relations.

For example, the symmetric group 53 can be presented as (x,y I x3, y2, xyxy), so a

representation of 83 is dCl1ned by matrices Rx and Ry such that Ri = I,
R\n

= I, and

RxRyRxRy == I. Some relations in addition to these requiredonesmay hold.

Because 53 is isomorphic to the dihedral group D3, it has a two-dimensional matrix

representation that we denote by A. We place an equilateral triangle with its center at

the origin, and so that one vertex is on the el -axis.Then its group of symmetries will be

generated by the rotation Ax with angle 2n /3 and the reflectionA y about the el-axis. With
c == cos 2n /3 and s == sin 2n /3,)

290)))
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(10.1.3))
[ ] [

.
]

c -s 1 0
Ax =

s c' Ay
=

0 -1
\302\267)

We call this the standard representationof the dihedral group D3 and of S3.
. A representation R is faithful if the homomorphism R: G -+ G Ln is injective, and there-

fore maps G isomorphicallyto its image, a subgroupof G Ln. The standard representation
of S3is faithful.

Our second representation of S3 is the one-dimensional sign representation L. Its value
on a group element is the 1 X 1 matrix whose entry is the sign of the permutation:)

(10.1.4)) \037x=[l], \037y=[-l].)

This is not a faithful representation.

Finally, every group has the trivial representation, the one-dimensional representation
that takes the value 1 identically:)

(10.1.5)) Tx=[l], Ty=[l].)

Thereare other representations of S3, including the representation by permutation
matrices and the representationas a group of rotations of }R3.But we shall see that every

representation of this group can be built up out of the three representations A, :E,and T.

Because they involve several matrices, each of which may have many entries, repre-
sentations are notationally complicated. The secret to understanding them is to throw out

most of the information that the matrices contain, keeping only one essential part, its trace,
or character.
. The character XR of a matrix representation R is the complex-valued function whose
domain is the group G, defined by XR (g) = trace Rg.

Characters are usually denoted by X ('chi'). The characters of the three representations
of the symmetric group that we have defined are displayed below in tabular form, with the

group elements listedin their usual order.)

(10.1.6))
XT

XI:

XA)

1 X x 2
y

1 1 1 1
1 1 1-1
2 -1 -1 0)

xy x 2
y

1 1
-1 -1
o 0)

Several interesting phenomena can be observed in this table:

. The rows form orthogonal vectors of length equal to six,which is also the order of 53.The
columnsare orthogonal too.

These astonishing facts illustrate the beautiful Main Theorem10.4.6on characters.)))
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Two other phenomena are more elementary:
.

XR(l) is the dimension of the representation, alsocalledthe dimension of the character.

Since a representationis a homomorphism, it sends the identity in the group to the identity

matrix. So XR(l) is the trace of the identity matrix.

. The characters are constant on conjugacy classes.

(The conjugacy classesin 53 are the sets {I}, {x,x2
}, and {y, xy, x2y}.)

This phenomenonis explained as follows: Let g and g' be conjugateelementsof a

group G, say g' = hgh- I.Becausea representation R is a homomorphism, Rgf
=

RhRgRlzl.
So

Rgf
and Rg are conjugate matrices. Conjugate matrices have the same trace.

It is essential to work as much as possible without fixing a basis, and to facilitate this,

we introduce the concept of a representationof a group on a vector space V. We denote by)

(10.1.7)) GL(V))

the group of invertible linear operatorson V, the law of composition being composition of

operators. We always assume that V is a finite-dimensional complex vector space,and not

the zero space.

\302\267A representation of a group G on a complexvector space V is a homomorphism)

(10.1.8)) p:G -+ GL(V).)

So a representation assigns a linearoperatorto every group element. A matrix representation
can be thought of as a representation of G on the spaceof column vectors.

The elements of a finite rotation group (6.12) are rotations of a three-dimensional
Euclidean space V without reference to a basis,and these orthogonal operators give us what

we call the standard representation of the group. (We use this term in spite of the fact that,

for D3, it conflicts with (10.1.3).) We also use the symbol P for other representations, and

this will not imply that the operators Pg are rotations.

If p is a representation,we denote the image of an element g in G L (V) by Pg rather
than by peg), to keep the symbolg out of the way. The result of applying Pg to a vector v
will be written as)

Pg(V) or as Pgv.)

Since p is a homomorphism,)

(10.1.9)) Pgh
==

PgPh.)

The choice of a basis B =
(VI, . . . , v n ) for a vector space V defines an isomorphism

from GL(V) to the generallineargroup GLn:

GL(V) --+ GLn

T \037 matrix of T,)
(10.1.10))

and a representation p definesa matrix representation R, by the rule)

(10.1.11)) Pg
\037 its matrix =

Rg.)))
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Thus every representation of G on a finite-dimensional vector space can be made into a
matrix representation, if we are willing to choose a basis. We may want to choose a basis in

order to make explicit calculations, but we must determine which properties are independent
of the basis, and which bases are the goodones.

A change of basis in V by a matrix P changes the matrix representation R associated

to p to a conjugate representation R
' = p- 1RP, i.e.,)

(10.1.12))
I -1

Rg
= P RgP,)

with the same P for every g in G. This follows from Rule 4.3.5for a change of basis.

\302\267An operation of a group G by linear operators on a vector space V is an operation on the
underlying set:)

(10.1.13)) Iv = v and (gh)v = g(hv),)

and in addition every group element acts as a linear operator.Writing out what this means,
we obtain the rules)

(10.1.14)) g(v + v') = gv + gv'
and g(cv) = cgv,)

which, when added to (10.1.13),give a complete list of axioms for such an operation. We can

speak of orbits and stabilizersasbefore.
The two concepts \"operation by linear operators on V\" and \"representation on V\"

are equivalent. Given a representation p of G on V, we can define an operation of G on

Vby)

(10.1.15)) gv = Pg(v).)

Conversely, given an operation, the same formula can be used to define the operator Pg.
We now have two notations (10.1.15)for the operation of g on v, and we use them

interchangeably. The notation gv is more compact, so we use it when possible, though it is

ambiguous because it doesn't specify p.

\302\267An isomorphism from one representation p : G -+ GL(V) of a group G to another
representation p' : G -+ GL (V') is an isomorphism of vector spacesT: V -+ V', an

invertible linear transformation, that is compatible with the operations of G:)

(10.1.16)) T(gv) =
gT(v))

for all v in V and all g in G. If T : V -+ V'is an isomorphism, and if Band B' are
corresponding bases of V and V', the associated matrix representations Rg and

R\037
will be

eq ual.

The main topic of the chapter is the determination of the isomorphism classes

of complex representations of a group G, representations on finite-dimensional,nonzero
complexvector spaces. Any real matrix representation, suchas one of the representations of

S3 described above, can be usedto define a complex representation, simply by interpreting
the real matrices ascomplexmatrices.We will do this without further comment. And except
in the last section,our groupswill be finite.)))
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10.2 IRREDUCIBLE REPRESENTATIONS

Let p be a representation of a finite group G on the (nonzero,finite-dimensional) complex

vector space V. A vector v is G-invariant if the operation of every group element fixes the
vector:)

(10.2.1)) gv
= v or Pg(v) = v, for all g in G.)

Most vectors aren't G-invariant. However, starting with any vector v, one can producea
G-invariant vector by averaging over the group. Averaging is an important procedure that

will be used often. We used it once before, in Chapter 6, to find a fixed point of a finite group

operation on the plane. The G-invariant averaged vector is)

(10.2.2))
- 1 \037V =

TGi \037 gv.

gEG)

The reason for the normalization factor
,b ,

is that, if v happens to be G-invariant itself, then

v = v.
We verify that v is G-invariant: Since the symbolg is used in the summation (10.2.2),

we write the condition for G-invariance as h v = v for all h in G. The proof is based on
the fact that left multiplication by h defines a bijective map from G to itself. We make the
substitution g' = hg. Then as g runs through the elements of the group G, g' doestoo,
though in a different order, and)

hv =h
1b, Lgv= ,b, Lg'v= ,b, Lgv=

v.

gEG gEG gEG

This reasoning can be confusing when one sees it for the first time, so we illustrate it

by an example, with G = 53. We list the elements of the group as usual:g = 1,X, x
2

,

y, xy, x2y. Leth =
y. Then g' = hg lists the group in the order g' = y, x2

y, xy, 1, x 2, x. So

L g'V = yv + x 2
yv + xyv + 1v + x

2 v + xv = L gv
gEG geG

The fact that multiplication by h is bijective implies that g' will always run over the group in

some order. Please study this reindexing trick.

The averaging process may fail to yield an interesting vector. It ispossiblethat v = O.

Next, we turn to G-invariant subspaces.

\302\267Let p be a representation of G on V.A subspace W of V is called G-invariant if gw is in

W for all w in Wand g in G. So the operation by a group elementmust carry W to itself:

For all g,)

(10.2.3))

(10.2.4 )) gWC W, or pgWC W.)

This is an extension of the conceptof T -invariant subspace that was introduced in Section4.4.
Herewe ask that W be an invariant subspace for each of the operators Pg.

When W is G-invariant, we can restrict the operationof G to obtain a representation
of G on W.

Lemma 10.2.5 If W is an invariant subspace of V, then gW = W for all g in G.)))
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Proof. Sincegroup elements are invertible, their operations on V are invertible. So g Wand
W have the same dimension. If g W C W, then g W = W. D

\302\267If V is the direct sum of G-invariant subspaces, say V = WI E9 W2, the representation p
on V is called the direct sum of its restrictionsto WI and W2, and we write)

(10.2.6)) p = ex ffi 13,)

where ex and 13denote the restrictionsof p to WI and W2, respectively.Supposethat this

is the case, and let B = (Bl,B2) be a basis of V obtained by listing bases of WI and W2 in

succession. Then the matrix of Pg will have the block form)

_.
[

A g 0

]
Rg -

0 Bg'
where Ag is the matrix of ex and Bg is the matrix of fJ, with respect to the chosen bases. The
zerosbelow the block Ag reflect the fact that the operation of g does not spillvectors out of

the subspace WI, and the zeros above the block Bg reflect the analogous fact for W2.

Conversely, if R is a matrix representation and if all of the matrices
Rg

have a block

form (10.2.7), with Ag and B g square, we say that the matrix representation R is the direct
sum A EB B.

For example, since the symmetric group 53 is isomorphic to the dihedral group D3 ,

it is a rotation group, a subgroupof S03. We choose coordinates so that x acts on JR3 as a

rotation with angle 2n /3 about the e3 -axis, and y acts as a rotation by Tt about the el -axis.
This gives us a three-dimensional matrix representation M:)

(10.2.7))

(10.2.8)) Mx =

[\037

-;

1]
My =

[1
-1

-1].)
with c = cos 2n /3 and s = sin 2Tt /3. We see that M has a block decomposition, and that it is

the direct sum A EB b of the standard representation and the sign representation.

Even when a representation P is a direct sum, the matrix representation obtained

using a basis will not have a block form unless the basisis compatible with the direct sum

decomposition. Until we have made a further analysis, it may be difficult to tell that a

representation is a directsum, when it is presented using the wrong basis.But if we find such

a decomposition of our representationp, we may try to decompose the summands ex and fJ

further, and we may continue until no further decomposition is possible.
. Ifp is a representation of a group G on V and if V has no proper G-invariant subspace, p

is called an irreducible representation. If V has a proper G-invariant subspace,P is reducible.)

The standard representation of S3 is irreducible.
Supposethat our representation p is reducible, and let W be a proper G-invariant

subspace of V. Let ex be the restriction of p to W. We extend a basis of W to a basis of V,

say B = (WI, . . . , Wk; Vk+l, . . . Vd). The matrix of Pg will have the block form)

(10.2.9))
[

A g
*

]
Rg =

0 Bg')))
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where A is the matrix of ex and B g is some other matrix representation of G. I think of the

block indicated by * as \"junk.\" Maschke's theorem, which is below, tells us that we can get
rid of that junk. But to do so we must choose the basis more carefully.)

Theorem 10.2.10Maschke'sTheorem. Every representation of a finite group G on a
nonzero, tinite-dimensional complex vector space is a direct sum of irreducible representa-

tions.)

This theorem will be proved in the next section. We'll illustrate it here by one more

example in which G is the symmetric group S3.We consider the representation of S3 by the
permutation matrices that correspond to the permutations x == (123) and y = (12). Let's
denotethis representation by N:)

(10.2.11 ))

[

0 0 1

]
N x == 1 0 0 ,

010) [

0 1 0

]
Ny

== 1 0 0 .
001)

There is no block decomposition for this pair of matrices. However, the vector
WI == (1,1, l)t is fixed by both matrices, so it is G-invariant, and the one-dimensional

subspace W spanned by Wl is also G-invariant. The restriction of N to this subspace is the

trivial representation T. Let'schangethe standard basis of C 3 to the basisB == (Wl, e2, e3).
With respect to this new basis, the representation N is changed as follows:)

1 \302\2600

P ==
[B]

= 1 1 0
1 0 1)

1 0 1

P-lNxP = 0 0 -1
o 1 -1)

1 1 0

P-INyP = 0 -1 0
o -1 1)

The upper right blocks aren't zero, so we don't have a decomposition of the representation
as a direct sum.

Thereis a better approach: The matrices Nx and
Ny

are unitary, so N g is unitary

for all g in G. (They are orthogonal, but we are considering complex representations.)
Unitary matrices preserve orthogonality. Since W is G-invariant, the orthogonal space Wl.

is G-invariant too (see (10.3.4\302\273. If we form a basis by choosing vectors W2 and W3 from

W 1..,the junk disappears. The permutation representation N is isomorphicto the directsum

T E9 A. We'll soon have techniquesthat make verifying this extremely simple, so we won't
botherdoing so here.

This decomposition of the representationusing orthogonal spaces illustrates a general
method that we investigate next.)

10.3 UNITARY REPRESENTATIONS)

Let V be a Hermitian space- a complexvector space together with a positive definite
Hermitian form ( , ). A unitary operator T on V is a linear operator with the property)

(10.3.1)) (Tv, Tw) = (v, w))

for all v and w in V (8.6.3). If A is the matrix of a linear operator T with respect to an

orthonormal basis, then T is unitary if and only if A is a unitary matrix: A
* == A-i.)))
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\302\267A representation p : G \037 G L (V) on a Hermitian space V is called unitary if Pg is a

unitary operator for every g. We can write this condition as)

(10.3.2)) (gv, gw) =
(v, w) or (pgv, Pgw) = (v, w),)

for all v and w in V and all g in G. Similarly, a matrix representation R : G \037 G Ln
is unitary if Rg is a unitary matrix for every g in G. A unitary matrix representation is a
homomorphism from G to the unitary group:)

(10.3.3)) R:G \037 Un.)

A representation P on a Hermitian spacewill be unitary if and only if the matrix represen-
tation obtained using an orthonormal basisis unitary.)

Lemma 10.3.4 Let P be a unitary representation of G on a Hermitian spaceV, and let W be
a G-invariant subspace.The orthogonal complement W.l is also G-invariant, and P is the
direct sum of its restrictions to the Hermitian spacesWand W..L. These restrictions are also
unitary representations.)

Proof. It is true that V = W ED W.l (8.5.1). Since P is unitary, it preserves orthogonality: If

W is invariant and u -1 W, then gu -1gW = W. This means that if U E W -1, then gu E W -1. 0

The next corollary follows from the lemma by induction.)

Corollary 10.3.5 Every unitary representation p: G \037 G L(V) on a Hermitian vector space
V is an orthogonal sum of irreducible representations. 0)

The trick now is to turn the condition (10.3.2)for a unitary representation around, and
think of it as a condition on the form instead of on the representation. Supposewe are given

a representation p: G \037 G L (V) on a vector space V, and let ( , ) be a positive definite
Hermitian form on V. We say that the form is G-invariant if (10.3.2) holds. This is exactly
the sameas saying that the representation is unitary, when we use the form to make V into

a Hermitian space. But if only the representation P is given, we are free to choosethe form.)

Theorem 10.3.6 Let p: G \037 G L (V) be a representation of a finite group on a vector space
V. There exists a G-invariant, positive definite Hermitian form on V.)

Proof. We begin with an arbitrary positive definiteHermitian form on V that we denote by
{, }.Forexample,we may choose a basis for V and use it to transfer the standardHermitian

form X*Y on en over to V. Then we use the averaging process to construct another form.
The averaged form is defined by)

(10.3.7)) (v, w) =
,b , L {gv, gw}.

gEG)

We claim that this form is Hermitian, positive definite, and G-invariant. The verifications of
thesepropertiesare easy. We omit the first two, but we will verify G-invariance. The proof
is almost identical to the one used to show that averaging produces an G-invariant vector)))
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(10.2.3), except that it is based here on the fact that right multiplication by an element h of
G defines a bijective map G \037 G.

Let h be an element of G. We must show that (hv, hw) = (v, w) for all v and
w in V (10.3.2). We make the substitution g' = gh. As g runs over the group, so
doesg'.Then)

(hv, hw) =
,b , L{ghv, ghw} =

,b , L{g'v, g'w} ='
,b , L{gv, gw} = (v, w). 0

g g g
Theorem10.3.6has remarkable consequences:)

Corollary 10.3.8

(a) (Maschke's Theorem):Every representation of a finite group G is a direct sum of

irreducible representations.

(b) Let p: G \037 GL(V) be a representation of a finite group G on a vector space V. There
exists a basis B of V such that the matrix representation R obtained from p using this

basis is unitary.

(c) Let R: G \037 G Ln be a matrix representation of a finite group G. There is an invertible

matrix P such that
R\037

= p-l RgP is unitary for all g, i.e., such that R' is a homomorphism
from G to the unitary group Un.

(d) Every finite subgroup of G Ln is conjugate to a subgroupof the unitary group Un.)

Proof (a) This follows from Theorem 10.3.6 and Corollary 10.3.5.)

(b) Given 'p, we choose a G-invariant positive definite Hermitian form on V, and we take
for B an orthonormal basis with respect to this form. The associated matrix representation

will be unitary.)

(c) This is the matrix form of (b), and it is derived in the usual way, by viewing R as a

representation on the space en and then changing basis.)

(d)This is obtained from (c) by viewing the inclusion of a subgroupH into G Ln as a matrix
representation of H. 0

This corollary provides another proof of Theorem 4.7.14:)

Corollary 10.3.9 Every matrix A of finite order in G Ln (<C) is diagonalizable.)

Proof The matrix A generates a finite cyclic subgroup of G Ln. By Theorem 10.3.8(d), this

subgroup is conjugate to a subgroup of the unitary group. Hence A is conjugate to a unitary

matrix. The Spectral Theorem 8.6.8 tellsus that a unitary matrix is diagonalizable. Therefore
A is diagonalizable. 0)

10.4 CHARACTERS)

As mentioned in the first section, one works almost exclusively with characters, one reason

being that representations are complicated. The character X of a representation p is the)))
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complex-valuedfunction whose domain is the group G, defined by)

(10.4.1 )) X(g) = trace Pg.)

If R is the matrix representation obtained from P by a choice of basis, then X is also
the character of R. The dimension of the vector space V is called the dimension of the

\037

representation P, and also the dimension of its cha,racter X. The character of an irreducible

representation is called an irreducible character.

Here aresomebasicpropertiesof the character.)

Proposition 10.4.2 Let X be the character of a representation P of a finite group G.

(a) X(l) is the dimension of X.

(b) The character is constant on conjugacy classes: If g' = hgh- 1, then X(g') = X(g).

(c) Let g be an element of G of order k. The roots of the characteristic polynomial of Pg
are powersof the k-th root of unity \037

= e2Jrilk. If P has dimension d, then X(g) is a sum
of d suchpowers.

(d) X(g-l)is the complex conjugate X(g) of X(g).
(e) The character of a direct sum P ED P' of representations is the sum X + X' of their

characters.

(1) Isomorphicrepresentations have the same character.)

Proof Parts (a) and (b) were discussed before, for matrix representations (see (10.1.6\302\273.

(c) The trace of Pg is the sum of its eigenvalues. If A is an eigenvalue of P, then A
k is an

eigenvalue of
p\037,

and if gk = 1, then
p\037

= I and Ak = 1. So A is a power of \037.

(d) The eigenvalues A1, . . . , Ad of Rg have absolute value 1 because they are roots of

unity. For any complex number A of absolute value 1, A-I = A . Therefore X(g-l) =
-1 -1 - -

Al
+... + Ad == A1 +... + Ad ==

X(g).)

Parts (e) and (1) are obvious.) o)

Two things simplify the computation of a character X. First, since X is constant on

conjugacyclasses,we need only determine the value of X on one element in each class - a
representative element. Second, since trace is independent of a basis,we may select a

convenient basis for eachindividual group element to compute it. We don't needto usethe
samebasis for all elements.

There is a Hermitian product on characters, defined by)

(10.4.3)) (x, X') ==
,b, L X(g)X'(g).

g)

When X and X' are viewed as vectors, as in Table 10.1.6, this is the standard Hermitian

product (8.3.3),scaledby the factor
,hi

')))
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It is convenient to rewrite this formula by grouping the terms for eachconjugacy class.

This is permissible because the charactersare constant on them. We number the conjugacy
classesarbitrarily, as C 1, . . . , Cr, and we let Ci denote the order of the classCi . We also

choose a representative elementgi in the class Cia Then)

(10.4.4))

r

(X, X') =
,b, LCi X(gi)X'(gi).

i=1)

We: go back to our usual example:LetG be the symmetric group 83. Its class equation
is 6 = 1+ 2+ 3, and the elements 1, x, y represent the conjugacyclassesof orders 1,2,3,

respectively. Then)

(x. X') = i (X(l)X'(l)+ 2X(x) X' (x)
+3X(Y)X'(Y\302\273).)

Looking at Table 10.1.6, we find)

(10.4.5)) (XA, XA) =
\037(4 + 2 + 0) = 1 and (XA, X\037)

=
\037(2 + -2 + 0) = O.)

The characters XT, XI:, XA are orthonormal with respect to the Hermitian product ( , ).

These computations illustrate the Main Theorem on characters. It is one of the most

beautiful theorems of algebra, both becauseit is so elegant, and because it simplifies the

problem of classifying representations somuch.)

Theorem 10.4.6 Main Theorem. Let G be a finite group.

(a) (orthogonality relations) The irreducible charactersof G are orthonormal: If Xi is the

character of an irreducible representation Pi, then (Xi, Xi) = 1. If Xi and Xj are the
characters of nonisomorphicirreduciblerepresentations Pi and Pj, then (Xi, Xj)

= O.

(b) There are finitely many isomorphism classes of irreducible representations, the same
number as the number of conjugacy classesin the group.

(c) Let PI, . . . , Pr representthe isomorphism classes of irreducible representations of G,
and let Xl, . . . , Xr be their characters. The dimension di of Pi (or of Xi) divides the
order IGI of the group, and IGI = dr + . ..+d;.)

This theorem is proved in Section 10.8,exceptwe won't prove that di divides IGI.

One should compare (c) with the class equation. Let the conjugacy classes be

Cl, . .. , Cr and let Ci = ICil. Then Ci divides IGI, and IGI = Cl +... + Cr.

The Main Theorem allows us to decompose any character as a linear combination of
the irreduciblecharacters,using the formula for orthogonal projection (8.4.11).Maschke's
Theoremtells us that every representation P is isomorphicto a direct sum of the irreducible

representations PI, . . . , Pro We write this symbolically as)

(10.4.7)) P ';::j n 1 Pi EB . . . EB n r Pr ,)

where ni are non-negative integers, and niPi standsfor the direct sum of ni copies of Pi.)))
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Corollary 10.4.8 Let P1,. .., Pr represent the isomorphism classes of irreducible repre-
sentations of a finite group G, and let P be any representation of G. Let Xi and X be the
characters of Pi and P, respectively,and let ni = (X, Xi). Then

(a) x=nlXl+...+nrXr,and
(b) p is isomorphic to n1Pl E9 . . . E9 nrPr.

(c) Two representations P and p' of a finite group G are isomorphic if and only if their
characters are equal.

Proof Any representation P is isomorphic to an integer combination mlPl EB . . . ED mrPr

of the representations Pi, and then X = mlXl + . . . + mrXr (Lemma 10.4.2). Since the
characters Xi are orthonormal, the projection formula shows that mi = nil This proves (a)
and (b), and (c) follows. D)

Corollary 10.4.9 For any characters X and X', (X, X') is an integer.) D)

Note also that, with X as in (10.4.8)(a),

(10.4.10) (X, X)
=

ni + . . . + n;.)
Someconsequences of this formula are:

(X, X)
= 1 \037 X is an irreducible character,

(X, X) = 2 \037 X is the sum of two distinct irreduciblecharacters,
(X, X) = 3 \037 X is the sum of three distinct irreducible characters,

(X, X) = 4 \037 X is either the sum of four distinct irreducible characters, or

X
= 2Xi for some irreducible character Xi. D

A complex-valued function on the group, such as a character, that is constant on each

conjugacy class, is calleda classfunction. A class function cp can be given by assigning
arbitrary values to each conjugacy class. So the complex vector space 11 of class functions

has dimension equal to the number of conjugacy classes. We use the same product as(10.4.3)
tomake 1-l into a Hermitian space:)

(cp, 1/f) =
,b, L cp(g)1/f(g).

g

Corollary 10.4.11The irreducible characters form on orthonormal basis of the space 1-l of

class functions.)

This follows from parts (a) and (b) of the Main Theorem. The characters are independent
because they are orthonormal, and they span 1-lbecause the dimension of 1-l is equal to the
number of conjugacy classes. 0

Using the Main Theorem, it becomes easy to see that T, 1:, and A represent all of the
isomorphismclassesof irreducible representations of the group S3 (seeSection10.1).Since

there are three conjugacy classes, there are three irreduciblerepresentations.We verified

above (10.4.5) that (XA, XA) = 1, so A is an irreducible representation. The representations
T and 1: are obviously irreducible because they are one-dimensional. And, these three

representations are not isomorphic because their characters are distinct.)))
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The irreducible characters of a group can be assembled into a table, the character
table of the group. It is customary to list the values of the character on a conjugacy class

just once. Table 10.1.6, showing the irreduciblecharactersof 83, gets compressed into
three columns. In the table below, the three conjugacy classes in 53 are described by the
representative elements1,x, y, and for reference, the orders of the conjugacy classes are

given above them in parentheses. We have assigned indices to the irreducible characters:

XT = Xl, X'E
= X2, and XA

= X3.)

conjugacy
class

(1) (2) (3) orderof the class

1 x y representative element
irreducible Xl 1 1 1

character
X2 1 1 -1

value of the
character

X3 2
.

-1 0)

(10.4.12)) Character table of the symmetric group 53)

In such a table, we put the trivial character, the character of the trivial representation,

into the top row. It consists entirely of 1's. The first column lists the dimensionsof the

representations (10.4.2)(a).

We determine the character table of the tetrahedral group T of 12rotational symmetries

of a tetrahedron next. Let x denoterotation by 2]'(/3 about a face, and let z denoterotation

by ]'( about the center of an edge, as in Figure 7.10.8. The conjugacy classes are C(l),

C(x), C(x 2), and C(z), and their orders are 1,4,4, and 3, respectively.So there are four

irreducible characters; let their dimensionsbedi.Then 12 ==
dr + . . . + d\037.

The only solution

of this equation is 12 == 1
2 + 12 + 12

+ 3 2
, so the

di\037ensions
of the irreducible representations

are 1, 1,1,3.We write the table first with undetermined entries:)

(1) (4) (4) (3)
1 x x2

Z

Xl 1 1 1 1
X2 1 a b c

X3 1 a' b' c'

X4 3 * * *)

and we evaluate the form (10.4.4) on the orthogonal characters Xl and X2.)

(10.4.13)) (Xl, X2) = l2 (1 + 4a + 4b + 3c)
== o.)

Since X2 is a one-dimensionalcharacter,X2 (z) == c is the trace of a 1X 1 matrix. It is the

unique entry in that matrix, and since Z2 == 1, its square is 1. Soc is equal to 1 or -1. Similarly,
sincex3 = 1, X2 (x) = a will be a power of w = e2Tri /3 . So a is equal to 1,w, or w 2 . Moreover,

b = a 2
. Looking at (10.4.13), one sees that a = 1 is impossible. The possiblevalues are)))
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a = w or (J)2, and then c = 1.The samereasoningapplies to the character X3. Since X2

and X3 are distinct, and since we can interchange -them, we may assume that a == (J) and

a' = (J)2.It is natural to guessthat the irreducible three-dimensional character X4 might be

the character \037f the standard representation of T by rotations, and it is easy to verify this by

computing that character and checking that (X, X) == 1. Since we know the other characters,
X4 is also determined by the fact that the characters are orthonormal. The character table is)

(1) (4) (4) (3)
1 x x2

Z

Xl 1 1 1 1
X2 1 (J) w 2 1

X3 1 (J)2 w 1

X4 3 0 0 -1)

(10.4.14)
.)

Character table of the tetrahedral group)

The columns in these tables are orthogonal. This is a generalphenomenon,whose

proof we leave as Exercise 4.6.)

10.5 ONE-DIMENSIONAL CHARACTERS)

A one-dimensional character is the character of a representation of G on a one-dimensional
vector space. If p is a one-dimensional representation,then Pg is represented by a 1x 1
matrix Rg, and X(g) is the unique entry in that matrix. Speaking loosely,)

(10.5.1)) x(g) -:=
Pg

-:=
Rg.)

A one-dimensional character X is a homomorphism from G to GL1 -:= (Cx, because)

X(gh) -:=
Pgh

= PgPh == X(g)X(h).)

If X is one-dimensional and if g is an element of G of order k, then X(g) is a powerof the

primitive root of unity \037
= e 21fi / k

. And since (CX is abelian, any commutator is in

the kernel of such a character.
Normal subgroups are among the many things that can be determined by looking at a

character table.The kernelof a one-dimensional character X is the union of the conjugacy
classesC(g) such that X(g) == 1. For instance, the kernel of the character X2 in the character
table of the tetrahedral group T is the union of the two conjugacyclassesC(l) U C(y). It is

a normal subgroup of order four that we have seen before.

Warning: A character of dimension greater than 1 is not a homomorphism. The values taken

on by such a character are sumsof roots of unity.)

Theorem 10.5.2 Let G be a finite abelian group.

(a) Every irreducible character of G is one-dimensional. The number of irreduciblecharac-
tersisequalto the order of the group.

(b) Every matrix representation R of G is diagonalizable: There is an invertible matrix P

such that p-l RgP is diagonal for all g.)))
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Proof In an abelian group of order N, there will be N conjugacy classes, each contain-
ing a single element. Then according to the main theorem, the number of irreducible
representationsis also equal N. The formula N = di + \302\267. \302\267+ d\037

shows that di = 1
for all i. D

A simple example: The cyclicgroup C3 == {1, X, x2} of order 3 has three irreducible
charactersof dimension 1. If X is a one of them, then X(x) will be a power of w = e2TCi / 3

, and

X(x
2) == X(x)2. Since there are three distinct powers of wand three irreducible characters,

Xi (x) must take on all three values.The character table of C3 is therefore

(1) (1) (1)
1 x x2

XIII 1

X2 1 W w 2

X3 1 w 2
(J))

(10.5.3)) Character table of the cyclic group C3)

10.6 THE REGULAR REPRESENTATION

Let 5 = (Sl,. .., sn) be a finite ordered set on which a group G operates, and let
Rg

denote

the permutation matrix that describes the operation of a group elementg on S. If g operates
on S asthe permutation p, i.e., if gSi = Spi, that matrix is (see (1.5.7)))

(10.6.1)) Rg
=

L epi,i,
i)

and Rgei
= epi. The map g\037Rg defines a matrix representation R of G that we call a

permutation representation, though that phrase had a different meaning in Section 6.11. The

representation (10.2.11) of 53 is an example of a permutation representation.
The orderingof S is used only so that we can assemble Rg into a matrix. It is nicer

to describea permutation representation without reference to an ordering. To do this we

introduce a vector space Vs that has the unordered basis {es}indexedby elements of S.

Elements of Vs are linear combinations L g cge g, with complex coefficients c g . If we are
given an operation of G on the set S, the associated permutation representation P of G on
V s is defined by)

(10.6.2)) Pg(e s ) ==
eg s .)

When we choose an ordering of 5, the basis {es} becomes an ordered basis, and the matrix

of Pg has the form described above.
Thecharacterof a permutation representation is especially easy to compute:)

Lemma 10.6.3 Let P be the permutation representationassociatedto an operation of a

group G on a nonempty finite set S. For all g in G, X(g) is equal to the number of elements

of S that are fixedby g.)

Proof We order the set 5 arbitrarily. Then every element S that is fixed by g, there is a 1on
the diagonal of the matrix

Rg (10.6.1), and for every element that is not fixed, there is a O. D)))
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When we decompose a set on which G operates into orbits, we will obtain a decom-

position of the permutation representationp or R as a direct sum. This is easyto see.But

there is an important new feature: The fact that linear combinations are available allowsus
to decomposethe representationfurther. Even when the operation of G on S is transitive,

p will not be irreducible unless S isa set of one element.)

Lemma 10.6.4 Let R be the permutation representation associated to an operation of G on
a finite nonempty ordered set S. When its character X is written as an integer combination
of the irreducible characters, the trivial character Xl appears.)

Proof The vector Lg egof Vs, which corresponds to (1, 1, . . . , l)t in <en, is fixed by every
permutation of S, so it spans a G-invariant subspaceof dimension 1 on which the group
operatestrivially. 0)

Example 10.6.5 Let G be the tetrahedral group T, and let S be the set (VI. . . . , V4) of vertices
of the tetrahedron. The operation of G on S defines a four-dimensional representation of
G. Let x denotethe rotation by 21T /3 about a face and z the rotation by 11: about an edge, as
before (see 7.10.8).Thenx acts as the 3-cycle (234) and z acts as (13)(24).The associated

permutation representation is)

1 0 0 0 0 0 1 0

(10.6.6) Rx =
0 0 0 1

Rz
=

0 0 0 1
0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0

Itscharacter is

(10.6.7)
I

1 x x 2
Z

X
vert 4 1 1 0

.)

The character table (10.4.14) shows that X
vert = Xl + X4. By the way, another way to

determine the character X4 in the character table is to checkthat (X
vert

, X
vert

) = 2. Then
X

vert is a sum of two irreducible characters.Lemma 10.6.4 shows that one of them is the
trivial character Xl. So X

vert - Xl is an irreducible character. It must be X4. 0)

. The regular representation pre
g of a group G is the representation associated to the

operation of G on itself by left multiplication. It is a representationon the vector space VG
that has a basis {eg} indexed by elements of G. If h is an element of G, then)

(10.6.8))
reg ( )Pg eh =

egh')

This operation of G on itself by left multiplication isn't particularly interesting, but the
associatedpermutation representation pre

g is very interesting. ItscharacterX
reg is simple:)

(10.6.9)) xreg(l) = IGI, and Xreg(g) = 0, if g=#=l.)

This is true because the dimensionof X
reg is the order of the group,andbecausemultiplication

by g doesn't fix any element of G unlessg = 1.)))
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This simple formula makes it easy to compute (Xreg , X) f or any character x:

(10.6.10) (X
reg

, X) =
,b , LXreg(g)X(g)

=
Ib 1

x
re

g(I)X(I) = X(I) = dim X-

g)

Corollary 10.6.11 Let Xl, - . . , Xr be the irreducible characters of a finite group G, let Pi be
a representationwith character Xi, and let di = dim Xi.Then X

reg = d l Xl + . . . + drXr ,

and peg is isomorphic to d1P1EB . . . E9 drPr.)

This follows from (10.6.10) and the projection formula. Isn't it nice? Counting
dimensions,)

r r

IGI =dimx reg =
LdidirnXi

=
Ldt.

i=1 i=l
This is the formula in (c) of the MainTheorem.Sothat formula follows from the orthogonality
relations (10.4.6)(a).

Forinstance, the character of the regular representation of the symmetric group 53 is

1

1 x y

X
reg 6 0 O'

Looking at the character table (10.4.12)for 53, one sees that X
reg = Xl + X2 + 2X3, as

expected.
Still one more way to d\037termine the last character X4 of the tetrahedral group (see

(10.4.14)is to usethe relationX
reg = Xl + X2 + X3 + 3X4.

We determine the character table of the icosahedral group I next. As we know, I is
isomorphic to the alternating group As (7.4.4).The conjugacy classes have been determined
before (7.4.1).They are listed below, with representative elements taken from As:

class representative)

(10.6.12))

Cl = {I} (1)
C2= 15edge rotations, angle n (12)(34)

C3 = 20 vertex rotations, angles :i: 2Jr 13 (123)
C4= 12face rotations, angles -J: 2Tt /5 (12345)

C 5 = 12 face rotations, angles -J: 47l'1 5 (13524)

Since there are five conjugacy classes, there are five irreducible characters. The
character table is)

(10.6.13))

(1) (15) (20) (12) (12)
0 Jr 2n 13 2Jr 15 47l'15 angle

Xl 1 1 1 1 1
X2 3 -1 0 a fJ

X3 3 -1 0 f3 a

X4 4 0 1 -1 -1
Xs 5 1 -1 0 0)

(10.6.14 ))
Character table of the icosahedral group I)))
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The entriesex and fJ are explained below. One way to find the irreducible characters is
to decomposesomepermutation representations. The alternating group As operates on the

set of five indices. This givesus a five-dimensional permutation representation; we'll call it

p'. Its character X' is)

I

0 TC 2n 13 2TC /5 4TC15

X' 5 1 2 0 0

Then (X',X')
=

6\037(1

. 52 + 15 . 12
+ 20 . 22

)
= 2. ThereforeX' is the sum of two distinct

irreducible characters.Sincethe trivial representation is a summand, X' - Xl is an irreducible

character, the one labeled X4 in the table.

Next, the icosahedral group I operateson the set of six pairs of oppositefaces of the

dodecahedron; let the correspondingsix-dimensionalcharacterbe X\". A similar computation
shows that X\"

- Xl is the irreducible character Xs.
We also have the representation of dimension3 of I as a rotation group. Its character

is X2. To compute that character, we rememberthat the trace of a rotation of }R3 with angle

() is 1 + 2 cos (),which is also equal to 1 + eif) + e-if) (5.1.28). The second and third entries for

X2 are 1 + 2cosTC == -1 and 1 + 2cos2TC 13
== O. The last two entries are labeled)

angle)

ex = 1 +2cos(2TCf5) == 1 + \037+ \037 and fJ = 1 +2cos(4TCI5) == 1 + \0372+ \0373,

where \037
== e 27ri / S

. The remaining character X3 can be determined by orthogonality, or by
using the relation)

Xreg =
Xl + 3X2 + 3X3 + 4X4 + 5Xs.)

10.7 SCHUR'S LEMMA)

Let p and p' be representations of a group G on vector spaces V and V'. A linear
transformation T: V' -+ V is called G-invariant if it is compatible with the operation of G,
meaning that for all g in G,)

(10.7.1)) T(gv') == gT( v'), or T 0
p\037

=
Pg 0 T,)

as indicated by the diagram)

(10.7.2)) V'

p\037

1)

T> V

lpg
T> V)V')

A bijective G-invariant linear transformation is an isomorphism of representations (10.1.16).
It is useful to rewrite the condition for G-invariance in the form)

T(v') ==
g-l T(gv'), or

p\037lTp\037
== T.)

This definition of a G-invariant linear transformation T makes sense only when the

representations p and p' are given. It is important to keep this in mind when the ambiguous
group operationnotation T(gv')

== gT( v') is used.
.)))
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If bases Band B'
for V and V' are given, and if Rg, R\037,

and M denote the matrices of

Pg, P\037,
and T with respect to these bases,the condition (10.7.1) becomes)

(10.7.3)) MR\037
=

RgM or
R\037lMR\037

= M)

for all g in G. A matrix M is called G-invariant if it satisfies this condition.)

Lemma 10.7.4Thekerneland the image of a G-invariant linear transformation T: V' \037 V

are G-invariant subspaces of V' and V, respectively.)

Proof The kernel and image of any linear transformation are subspaces. To show that the

kernel is G-invariant, we must show that if x is in ker T, then gx is in ker T, i.e., that if

T(x) = 0, then T(gx) = O. This is true: T(gx) = gT(x) =
gO

= O. If Y is in the image of T,
i.e.,y

= T(x) for some x in V', then gy = gT(x) = T(gx),so gy is in the image too. 0

Similarly, if p is a representation of G on V, a linear operator on V is G-invariant if)

(10.7.5)) T(gv) = gT(v), or PgoT = Topg, for all g in G,)

which means that T commutes with each of the operators Pg. The matrix form of this

condition is

RgM =
MRg

or M =
R\037l MRg, for all g in G.

Because a G-invariant linear operator T must commute with all of the operators Pg,
invariance is a strong condition. Schur's Lemma showsthis.)

Theorem 10.7.6 Schur's Lemma.

(a) Let p and p' be irreducible representations of G on vector spaces V and V', respectively,
and let T: V' \037 V be a G-invariant transformation. Either T is an isomorphism, or else

T= O.

(b) Let p be an irreducible representation of G on a vector space V, and let T: V \037 V be

a G-invariant linear operator. Then T is multiplication by a scalar: T = cIa)

Proof. (a) Supposethat T is not the zero map. Sincep' is irreducible and since ker T is
a G-invariant subspace, ker T is either V' or {OJ. It is not V' because T i= O. Therefore

ker T = {OJ,and T is injective. Since p is irreducible and im T is G-invariant, im T is either
{OJ or v: It is not {OJbecause T =/:. O. Therefore im T = V and T is surjective.)

(b) Suppose that T is a G-invariant linear operator on V. We choose an eigenvalue A

of T. The linear operator S = T - AI is also G-invariant. The kernel of S isn\037t zero

because it contains an eigenvector of T. ThereforeS is not an isomorphism. By (a),
S = 0 and T = AI. 0)

Supposethat we are given representations p and p' on spacesV and V'. Though
G-invariant linear tranformations are rare,the averaging process can be used to create a)))
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G-invariant transform\037tion from any linear transformation T: V' \037 V. The average is the
linear

transformati\037n
T defined by)

(10.7.7)) T(v') =
,b, L g-l(T(gv'\302\273,

geG)

T
-

1\" -I T 'or =
TGi \037 Pg Pg'

gEG)

Similarly, if we are given matrix representations Rand R', of G of dimensionsnand m,and

if M is any m X n matrix, then the averaged matrix is)

(10.7.8))

- 1\" -1 ,M=
iGi \037 Rg MRg.

geG)

Lemma 10.7.9 With the above notation, T is a G-invariant linear transformation, andM is a
G-invariant matrix. If T is G-invariant, then t = T, and if M is G-invariant, then M = M.)

Proof Since compositions and sums of linear transformations are linear, T is a linear
transformation, and it is easy to see that t = T if T is invariant. To show that t is invariant,
we let h be an element of G and we show that t = h-lTh. We make the substitution

gl = gh. Reindexing as in (10.2.3),)

h-
1fh = h- 1

(ibT Lg-1Tg) =
Ihl L(gh)-lT(gh)

g g
1 ,, -IT 1\" -I

T T
-

=
jGj \037 gi gl =

iGi \037 g g = .

g g)

The proof that M is invariant is analogous.) D)

The averaging process may yield T = 0, the trivial transformation, though Twas

not zero. Schur's Lemma tells us that this must happen if P and P' are irreducible and not
isomorphic.This fact is the basis of the proof given in the next section that distinct irreducible

characters are orthogonal. For linear operators,the average is often not zero, because trace
is preserved by the averaging process.)

Proposition 10.7.10 Let p be an irreducible representation of G on a vector space V.

Let T: V \037 V be a linear operator, and let t be as in (10.7.7), with P' = p. Then
trace t = traceT.If trace T * 0, then t * o. 0)

10.8 PROOF OF THE ORTHOGONALITY RELATIONS

We will now prove (a) of the Main Theorem. We use matrix notation. Let M denote the
spacec mXn

of m X n matrices.)

Lemma10.8.1LetA and B be m X m and n X n matrices respectively, and let F be the linear

operator on M defined by F(M) = AMB. The trace of F is the product (traceA) (trace B).)))
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Proof Thetraceof an operator is the sum of its eigenvalues.Letal, . ..am and f3l, . . . , f3n
be the eigenvalues of A and B t

respectively. If Xi is an eigenvector of A with eigenvalue ai,
and Y j is an eigenvector ofBt

with eigenvalue fJ j, the mXn matrix M == Xi Yj
is an eigenvector

for the operatorF, with eigenvalue aifJ j. Since the dimension of Mis mn, the mn complex
numbers ai f3 j are all of the eigenvalues, provided that they are distinct. If so, then

trace F ==
L ai{J j ==

(L ai)( L,B j) == (trace A) (trace B).
l,J i j

In general, there will be matrices A' and B' arbitrarily close to A and B such that the products
of their eigenvalues are distinct, and the lemma follows by continuity (see Section 5.2). 0

Let p' and p be representations of dimensions m and n, with characters X' and X

respectively, and let R' and R be the matrix representations obtained from p' and p using
somearbitrary bases. We define a linear operator <I> on the space M by

1 \037 -1 , -

(10.8.2) <t>(M) ==
TGT \037Rg MRg ==M.

g

In the last section,we saw that M is a G-invariant matrix, and that M == M if M is invariam.
Therefore the image of <t> is the space of G-invariant matrices.We denote that space by M.

Parts (a) and (b) of the next lemma compute the trace of the operator <P in two ways.
The orthogonality relations are part (c).)

Lemma 10.8.3 With the above notation,

(a) trace<I> == (X, X').
,......

(b) trace <t> == dim M.

(c) If. p is an irreducible representation, (X, X) == 1, and if p and p' are non-isomorphic
irreducible representations, (X, X') == O.)

Proof (a) We recall that X(g-l) == X(g) (10.4.2)(d). Let Fg denote the linear operatoron
M defined by Fg(M)

==
Rg1 MR\037.

Since trace is linear, Lemma 10.8.1showsthat

trace<P ==
,hi LgtraceF g ==

Ihl Lg(trac eR\037l )(traceR\037)

==
,b, L g X(g-l)X'(g) ==

,b, L g x(g)x'(g) == (x, x').)
(10.8.4))

I\"o.J

(b) Let N be the kernel of <1>. If M is in the intersection M n N, then <I>(M)
== M and also

<t>(M)== 0, so M == O. The intersection is the zero space. Therefore M is the direct sum
'\" '\"

M EB N (4.3.1)(b). We choose a basis for M by appending bases of M and N. SinceM== M
'\"

if M is invariant, <t> is the identity on M. So the matrix of <I> will have the block form)

[1 0].)
,...... ,......

where I is the identity matrix of size dim M. Its trace is equal to the dimension of M.)))
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tf'Oo,J

(c) We apply (a) and (b): (X, X') == dim M. If P' and P are irreducibleand not isomorphic,
Schur's Lemma tells us that the only G-invariant operator is zero, and so the only G-

tf'Oo,J

invariant matrix is the zero matrix. Therefore M =
{OJ and (X, X') == O. If P' == P, Schur'stf'Oo,J

Lemma says that the G-invariant matrices have the form cIa Then M has dimension1,
and (X, X') == 1. 0)

We go over to operatornotation for the proof of Theorem 10.4.6(b),that the number

of irreducible characters is equalto the number of conjugacy classes in the group. As before,
1t denotesthe spaceof class functions. Its dimension is equal to the number of conjugacy

classes (see (10.4.11)). Let C denote the subspace of 1t spanned by the characters. We

show that C == 1t by showing that the orthogonal space to C in 1t is zero. The next lemma
doesthis.)

Lemma 10.8.5

(a) Let q; be a classfuncti on on G that is orthogonal to every character. For any represen-
tation P of G, Ib,L g q;(g)Pg is the zero operator.

(b) Letpreg be the regular re,presentation of G. The operatorsp;e
g

with g in G are lineally
independent.

(c) The only class function q; that is orthogonal to every character is the zero function.)

Proof (a) Since any representation is a direct sum of irreducible representations, we may
assume that P is irreducible. Let T ==

,b , L g q;(g)Pg. We first show that T is a G-invariant

operator,i.e.,that T =
p--,/ TPh for every h in G. Let g\" == h- 1

gh. Then as g runs over the

group G, so does g\". SinceP is a homomorphism, Ph 1p g Ph ==
Pg\",

and because q; is a class
function, cp(g)

==
cp(g\.") Therefore)

P,/TPh
==

,&, LCP(g)pgII
==

1&1 Lq;(g\Pg/f")
==

,b l Lq;(g)Pg
== T.

g g g)

Let X be the character of p. Thetrace of Tis
181 L g q;(g)x(g) ==

(q;, x). The trace is

zero because q; is orthogonal to X. Since P is irreducible, Schur'slemma tells us that T is

multiplication by a scalar, and since its trace is zero,T = O.)

(b) We apply Formula 10.6.8 to the basiselementel of VG: p;eg(el)
==

ego Then since the

vectors eg are independentelementsof Va, the operators p;e
g are independent too.)

(c) Let q; be a classfunction orthogonal to every character. (8) tellsus that L g q;(g)p;e
g = 0

isa linearrelati on am ong the operators p;e
g, which are independent by (b). Therefore all of

the coefficients cp(g) are zero, and cp is the zero function. D)

10.9 REPRESENTATIONS OF SU2

Remarkably, the orthogonality relations carryover to compact groups, matrix groups that

are compact subsetsof spaces of matrices, when summation over the group is replaced by)))
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an integral. In this section, we verify this for some representations of the specialunitary

group SU2.

We begin by defining the representations that we will analyze. Let Hn denote the
complexvectorspaceof homogeneous polynomials of degree n in the variables u, v, of

the form)

(10.9.1)) }i( ) n
+

n-l n-l n
u, V = Co U Cn -l U v + ... + Cn-lUV + Cn V .)

We define a representation)

(10.9.2)) Pn :SU2 --+ GL(H n ))

as follows: The result of operating by an elementP of SU2 on a polynomial f in Hn will be

another polynomial that we denote by [PI]. The definition is)

(10.9.3))
[

a -b

]
[Pf](u, v) = f(ua + vb, -ub + v a ), where P =

b a .)

In words, P operates by substituting (u, v)P for the variables (u, v). Thus

[Puiv
j

] = (ua + vb)i(-ub + va )j.)

It is easy to compute the matrix of this operator when P is diagonal.Let ex = e iO
, and let)

(10.9.4 )) AO =

[e

ifJ

e-
iO

]
=

[a a ]
=

[a a-I].)
Then (A(Juiv

j
] = (ua)i(v cx )j = uivjai-J.SoA8actsonthebasis(un, un-Iv,..., uv n - 1

, v n
)

of the spaceHn as the diagonal matrix)

an)
n-2a)

-n
ex)

The character Xn of the representation Pn is defined as before: Xn (g)
= trace Pn ,g\037

It

is constant on the conjugacyclasses,which are the latitudes on the sphere SU2.Becauseof

this, it is enough to compute the charactersXn on one matrix in each latitude, and we use
A(J. To simplify notation, we write Xn (0) for Xn (A8). The character is)

xo\302\253(J)
= 1

Xl(8)=a+a-
1

X2(B) = a 2
+ 1 + a- 2)

(10.9.5))

\302\267\302\267\302\267

a n+1 _ a-(n+l)
Xn(8)=a n

+a
n - 2 +...+a- n =

-1
'

(X-a)))
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(10.9.6))

The Hermitian productthat replaces (10. 4.3) is

(Xm, Xn)
=

,b ,
L

Xm(g)Xn(g) dV.)

In this formula G stands for the group SU2,the unit 3-sphere, IGI is the three-dimensional
volume of the unit sphere, and dV stands for the integral with respect to three-dimensional
volume. The characters happen to be real-valued functions, so the complex conjugation that

appears in the formula is irrelevant.)

Theorem 10.9.7Thecharactersof SU2 that are defined above are orthonormal: (Xm, Xn) = 0

if m=i=n, and (Xn, Xn) = 1.)

Proof Since the characters are constant on the latitudes,wecan evaluate the integral (10.9.6)

by slicing, as we learn to do in calculus. We use the unit circle Xo = cos 0, Xl
= sin 0, and

X2 = . . \302\267= X n = 0 to parametrize the slices of the unit n-sphere sn : {x5+ xi +. ..+ x\037
= I}.

So () = 0 is the north pole, and () = 1f is the south pole(seeSection 9.2). For 0 < () < TC, the

slice of the unit n-sphere is an (n -I)-sphere of radius sin ().

To compute an integral by slicing,we integrate with respect to arc length on the unit

circle. Let voin (r) denote the n-dimensionalvolume of the n-sphere of radius r. SoVOll (r)

is the arc length of the circle of radius r, and voI2(r) is the surface area of the 2-sphere of

radius r. If f is a function on the unit n-sphere sn that is constant on the slices () = c, its

in te gral will be)

(10.9.8))
( f dV n = r

c

f(O) VOl n -l(sinO) dO,
1sn 10)

where dV n denotes integration with respect to n-dimensional volume, and f({}) denotes the
value of f on the slice.

Integration by slicing provides a recursive formula for the volumes of the spheres:)

(10.9.9)) voln (1) = ( ldV n = r
c

VOl n -l (sin 0) dO,
1sn 10)

and vol n (r) - ,.nvol n (1). The zero-sphere x5 = ,.2 consistsof two points. Its zero-
dimensional volume is2.So)

(10.9.10))

volt (r) = r
!o1C

voIo(sinO)dO= r
!o1C

2dO = 21Tr,

voI2(r) =?-
i

1C

voh(sinO)dO =?-
i

1C

21fsinOdO = 41f?-,

volJ(r) =?
i

1C

voh(sinO)dO =?
i

1C

41Tsin
2 OdO = 27i2?)

To evaluate the last integral, it is convenient to usethe formula sinO = -i(a - a- 1)/2.)

(10.9.11)) val2 (sin 0) = 4Jr sin 2 0 = -]f(a - a-I
)2.)))
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Expanding, VOl2 (sin e) = n(2 - (a + a-I\302\273. The integral of a 2 + a- 2
is zero:

[;rr k _k [2:rr k

I

0 if k > 0

10
(a + a )dO

=

10
a dO =

2n if k = O.)
(10.9.12))

We now compute the integral (10.9.6).The volume of the group SU2 is)

(10.9.13)) VOl3 (1) = 2n 2
.)

The latitude sphere that contains Ae has radius sinB.Sincethe characters are real, integration
by slicing gives)

(10.9.14)

1

i

1f

(Xm, Xn) =
\037 Xm(8)Xn(8)vo12(sin8)d82n 0

1

i

1f

(

am+l - a-(m+l)

) (
an+1 - a-(n+l)

)
= -

(-]T(a
- a- I

)2) dB
2n 2

0 a - a-I a - a-I
1

\037

;rr
1

\037

;rr

= -- (a
m + n +2 + a-(m+n+2))dO+ - (am - n + a n - m

) dO
2n 0 2n 0

This evaluates to 1 if m = n and to zero otherwise (see (10.9.12)).The characters Xn are

orthonormal. 0)

We won't prove the next theorem, though the proof follows the case of finite groups

fairly closely. If you are interested, see [Sepanski].)

Theorem 10.9.15 Every continuous representation of SU2is isomorphic to a direct sum of
the representationsPn (10.9.2).)

We leave the obvious generalizationsto the reader.

-IsraelHerstein)

EXERCISES)

Section 1 Definitions

1.1. Show that the image of a representation of dimension 1 of a finite group is a cyclicgroup.
1.2.(a) Choose a suitable basis for:i.3 and write the standard representation of the octahedral

group 0 explicitly. (b) Do the same for the dihedral group Dn.)

Section2 IrreducibleRepresentations

2.1. Prove that the standard \037hree-dimensional representation of the tetrahedral group T is
irreducibleas a complexrepresentation.)))
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2.2. Consider the standard two-dimensionalrepresentation of the dihedral group Dn. For
which n is this an irreducible complexrepresentation?

2.3. Suppose given a representation of the symmetric group S3 on a vectorspaceV. Let x

and y denote the usual generators for S3.

(a) Let u be a nonzero vector in V. Let v = u + xu + x 2
u and w = u + yu. By

analyzing the G-orbits of v, w, show that V contains a nonzero invariant subspace

of dimension at most 2.
(b) Prove that all irreducible two-dimensional representations of G are isomorphic, and

determine all irreducible representations of G.)

Section3 Unitary Rep\037esentations

3.1. Let G be a cyclic group of order 3. The matrix A =
[

-
i

-
\037]

has order 3, so it defines

a matrix representation of G. Use the averaging process to produce a G-invariantform

from the standard Hermitian product x*y on ((:2.

3.2. Let p: G \037 G L (V) be a representationof a finite group on a real vector space V. Prove
the following:

(a) There existsa G-invariant, positive definite symmetric form ( , ) on V.

(b) p is a direct sum of irreducible representations.

(c) Every finite subgroup of G Ln OR) is conjugate to a subgroup of On.

3.3.(a) Let R: G \037 SL2(I\037) be a faithful representation of a finite group by real 2X2

matrices with determinant 1. Use the results of Exercise 3.2 to prove that G is a

cyclic group.
(b) Determine the finite groups that have faithful real two-dimensional representations.

(c) Determine the finite groups that have faithful real three-dimensional representations
with determinant 1.

3.4. Let ( , ) be a nondegenerate skew-symmetric form on a vector space V, and let p be
a representation of a finite group G on V. Prove that the averaging process (10.3.7)
produces a G-invariant skew-symmetric form on V, and show by example that the form
obtained in this way needn't be nondegenerate.

3.5. Let x be a generator of a cyclic group G of orderp. Sending x -v-t

[1 \037]

defines a

matrix representation G \037 G L2(1F p). Prove that this representation is not the direct
sum of irreducible representations.)

Section 4 Characters
4.1.Find the dimensions of the irreducible representations of the octahedral group, the

quaternion group, and the dihedral groups D4, D5,and D6.

4.2. A nonabelian group G has order55.Determine its class equation and the dimensions of
its irreducible characters.

4.3. Determine the character tablesfor)

(a) the Klein four group,
(b) the quaternion group,)))
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(c) the dihedral group D4,
(d) the dihedral group D6,

(e) a nonabeliangroup of order 21 (see Proposition 7.7.7).

4.4. Let G be the dihedral group Ds, presentedwith generators x, y and relations x5 = 1,

y2 = 1, yxy-l = x-l, and let X be an arbitrary two-dimensional character of G.

(a) What does the relation x 5 = 1 tell us about X(x)?
(b) What does the fact that x and x-I are conjugate tell us about X(x)?
(c) Determinethe character table of G.

(d) Decompose the restriction of each irreducible character of Ds into irreducible

characters of C5.

4.5. Let G = (x,y I x
5

, y4, yxy-l x- 2). Determine the character table of G.

4.6. Explain how to adjust the entries of a character table to produce a unitary matrix, and

prove that the columns of a character table are orthogonal.

4.7. Let 7r:G -+ G' = G/ N be the canonical map from a finite group to a quotient group,
and let p' be an irreducible representation of G'. Prove that the representation p = p' o1r
of G is irreducible in two ways: directly, and using Theorem 10.4.6.

4.8. Find the missing rows in the character table below:)

(1) (3) (6) (6) (8)

Xl 1 1 1 1 1
X2 1 1 -1 -1 1

X3 3 -1 1 -1 0

X4 3 -1 -1 1 0)

*4.9. Below is a partial character table.Oneconjugacy class is missing.)

(1) (1) (2) (2) (3)
1 u v w X

Xl 1 1 1 1 1

X2 1 1 1 1 -1

X3 1 -1 1 -1 l

X4 1 -1 1 -1 -I

X5 2 2 -1 -1 0)

(a) Complete the table.

(b) Determinethe orders of representative elements in each conjugacy class.

(c) Determine the normal subgroups.

(d) Describe the group.

4.10.(a) Find the missing rows in the character tablebelow.
(b) Determine the orders of the elements a, b, c,d.
(c) Show that the group G with this character table has a subgroup H of order 10, and

describe this subgroup as a union of conjugacyclasses.)))
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(d) Decide whether His C10or Ds.
(e) Determine all normal subgroups of G.

(1) (4) (5) (5) (5)

1 a b c d
Xl 1 1 1 1 1

X2 1 1 -1 -1 1

X3 1 1 -i i -1

X4 1 1 l -l -1)

*4.11.In the character table below, w == e
2Jfi /3 .)

(1) (6) (7) (7) (7) (7) (7)
1 a b c d e f

Xl 1 1 1 1 1 1 1
X2 1 1 1 (J) (f) (JJ (J)

X3 1 1 1 w w w W

X4 1 1 -1 -lJ) -(J) w W

X5 1 1 -1 -(1) -l1J w W

X6 1 1 -1 -1 -1 1 1
X7 6 -1 0 0 0 0 0

(a) Show that G has a normal subgroup N isomorphic to D7.

(b) Decompose the restrictions of each character to N into irreducible N -characters.
(c) Determine the numbers of Sylow p-subgroups, for p = 2,3,and 7.

(d) Determine the orders of the representative elements c, d, e, f.
(e) Determine all normal subgroups of G.)

4.12.Let H be a subgroup of index 2 of a group G, and let u:H -+ GL(V) be a represen-
tation. Let a be an element of G not in H. Define a conjugate representationa' :H -+

G L(V) by the rule a'(h) == a(a-1ha). Prove that

(a) a' is a representationof H.

(b) If a is the restriction to H of a representation of G, then (1' is isomorphic to a.

(c) If b is another element of G not in H, then the representation 0'''(h) = a(b-1hb)is
isomorphic to (J\".)

Section 5 One-Dimensional Charaders

5.1. Decompose the standard two-dimensional representation of the cyclic group Cn by

rotations into irreducible (complex) representations.
5.2. Prove that the sign representation p \037 sign p and the trivial representation are the only

one-dimensional representationsof the symmetric group Sn.

5.3. Supposethat a group G has exactly two irreducible characters of dimension 1, and let X

denote the nontrivial one-dimensional character. Prove that for all g in G, X(g) = :f: 1.)))
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5.4. Let X be the character of a representation P of dimension d. Prove that Ix(g)1 < d for

all g in G, and that if I X (g) I = d, then p(g) =
\037I, for some root of unity \037.Moreover, if

X(g) = d, then Pg is the identity operator.
5.5. Prove that the one-dimensional characters of a group G form a group under multiplication

of functions. This group is
called\"

the character $roup of G, and is often denoted by G.

Prove that if G is abelian, then I G I =
I G I and G \037G.

5.6. Let G be a cyclic group of order n, generated by an element x, and let S= e2Jri / n .

(a) Prove that the irreducible representations are Po, . . . ,Pn-l,where Pk: G \037 ex is

defined by Pk(X) =
\037k.

(b) Identify the character group of G (seeExercise5.5).
5.7.(a) Let qJ: G -+ G' be a homomorphism of abelian groups. Define an induced homo-

morphism {p: G' -+ G between their character groups (see Exercise 5.5).

(b) Prove that if qJ is injective, then (p is surjective, and conversely.)

Section6 The Regular Representation

6.1. Let Rreg denote the regular matrix representation of a group G. Determine L g R;e
g

.

6.2. Let P be the permutation representation associated to the operation of D3 on itself by

conjugation. Decompose the character of P into irreducible characters.

6.3. Let X
e denote the character of the representationof the tetrahedral group T on the six

edges of the tetrahedron. Decompose this character into irreducible characters.

6.4. (a) Identify the five conjugacy classes in the octahedral group 0, and find the orders of
its irreducible representations.

(b) The group 0 operates on these sets:
. six faces of the cube,

. three pairs of opposite faces,

.
eight vertices,

. four pairs of oppositevertices,

\302\267six pairs of opposite edges,
. two inscribed tetrahedra.

Decompose the corresponding charactersinto irreducible characters.

(c) Compute the character table for O.

6.5. The symmetric group Sn operates on en by permuting the coordinates. Decompqsethis

representation explicitly into irreducible representations.
Hint: I recommend against using the orthogonality relations. This problem is closely
related to Exercise M.l from Chapter 4.

6.6. Decomposethe characters of the representations of the icosahedralgroup on the sets of

faces, edges,and vertices into irreducible characters.

6.7. The group Ss operates by conjugation on its normal subgroup As. How does this action

operate o\037
the isomorphism classes of irreducible representationsof As?)))
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6.8. The stabilizerin the icosahedral group of one of the cubes inscribed in a dodecahedron
is the tetrahedralgroup T. Decompose the restrictions to T of the irreducible characters

of I.

6.9. (a) Explain how one can prove that a group is simple by looking at its character
table.

(b) Usethe character table of the icosahedral group to prove that it is a simple group.
6.10. Determine the character tables for the nonabelian groups of order 12

(see (7.8.1)).

6.11. The character table for the group G = PSL2Ci'7)is below, with y =
\037(-1 + .J7i),

y = !(-1 - v7i).)

(1) (21) (24) (24) (42) (56)
1 a b c d e

Xl 1 1 1 1 1 1
X2 3 -1 Y y' 1 0

X3 3 -1 Y y 1 0

X4 6 2 -1 -1 0 0
Xs 7 -1 0 0 -1 1
X6 8 0 1 1 0 -1)

(a) Useit to give two proofs that this group is simple.
(b) Identify, so far as possible, columns that corresponds to the conjugacy classes of the

elements)

[1 \037J. [2 4].)

and find matrices that represent the remaining conjugacy classes.

(c) G operates on the set of eight one-dimensional subspacesof
1F\037.Decompose the

associated character into irreducible characters.)

Section 7 Schur's Lemma
7.1. Prove a converse to Schur's Lemma: If p is a representation, and if the only G-invariant

linearoperatorson V are multiplications by scalars, then p is irreducible.

7.2. Let A be the standard representation (10.1.3) of the symmetric group 83, and let

B =
[1

1
J

Use the averaging process to produce a G-invariant linear operator from

left multiplication by B.

[

1 1 -1

] [

-1 -1

]
7.3. The matrices Rx = 1 , Ry

= -1 1 define a representation R of the

1 -1 -1

group 83. Let q; be the linear transformation Cl
\037 C

3 whose matrix is (1,0, O)t.Usethe

averaging method to produce a G-invariant linear transformation from cp, using the sign
representation I: of (10.1.4)onC1

and the representation R on C3
.)))
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7.4. Let p be a representation of G and let C be a conjugacy class in G. Show that the linear

operator T = LgECPg
is G-invariant.

7.5. Let p be a representation of a group G on V, and let X be a characterof G, not necessarily
the character of p. Prov\037 that the linear operator T = L g X(g)Pg on V is G-invariant.

7.6. Compute the matrix of the operator F of Lemma 10.8.1, and use the matrix to verify the

formula for its trace.)

Section8 Representations of SU2

8.1. Calculate the four-dimensional volume of the 4-ball ]R4 of radius r in }R4, the locus
x6 + ...+ x\037

< ,.z, by slicing with three-dimensional slices. Check your answer by

differentiating.

8.2. Verify the associative law [Q[P J]] = [(QP) f] for the operation(10.9.3).
8.3.Prove that the orthogonal representation (9.4.1) SU2-+ S03 is irreducible.

8.4. Left multiplication defines a representation of SU2 on the space IR
4 with coordinates

xo, . . . , X3, as in Section 9.3. Decompose the associatedcomplex representation into

irreducible representations.

8.5. Use Theorem10.9.14to determine the irreducible representations of the rotation group
S03.

8.6. (representations of the circle group) All representations here are assumed to be differen-
tiable functions of f). Let G be the circle group {eiO

}.

(a) Let p be a representation of G on a vector space V. Show that there exists a positive
definite G-invariant Hermitian form on V.

(b) ProveMaschke'sTheorem for G.

(c) Describe the representations of G in terms of one-parameter groups, and use that

description to prove that the irreducible representationsare one-dimensional.

( d) Verify the orthogonality relations, using an analogue of the Hermitian product
(10.9.6).)

8.7.Using the results of Exercise 8.6, determine the irreducible representations of the

orthogonal group 02.
MiscellaneousProblems

M.l. The representations in this problem are. real. A molecule M in 'Flatland' (a two-
dimensionalworld) consists of three like atoms al, a2, a3 forming a triangle. The triangle
is equilateral at time to, its center is at the origin, and al is on the positive x-axis.Thegroup
G of symmetries of M at time to is the dihedral group D3- We list the velocities of the
individual atoms at to and call the resulting six-dimensional vector v = (Vl, V2, V3)t the

state of M. The operation of G on the space V of state vectors defines a six-dimensional
matrix representation S. For example, the rotation p by 2Jr /3 about the origin permutes

the atoms cyclically, and at the same time it rotates them.

(a) Let r be the reflection about the x-axis. Determine the matricesSpand Sr.

(b) Determine the space W of vectors fixed by Sp, and show that W is G-invariant.

(c) Decompose Wand V explicitly into direct sums ofirreducibleG-invariant subspaces.

(d) Explain the subspaces found in ( c) in terms of motions and vibrations of the molecule.)))
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M.2. What can be said about a group that has exactly three irreducible characters, of dimensions

1, 2, and 3, respectively?
M.3. Let p bea representation of a group G. In each of the following cases, decide whether or

not p' is a representation, and whether or not it is necessarily isomorphic to p.

(a) x is a fixed element of G, and
p\037

=
Pxgx-l

(b) cp is an automorphism of G, and
P\037

=
Pcp(g)'

(c) a is a one-dimensional representationof G, and
p\037

= a g Pg.

M.4. Prove that an element z of a group G is in the center of G if and only if for all irreducible
representations p, p(z) is multiplication by a scalar.

M.5. Let A, B be commuting matrices such that some positive power of each matrix is the

identity. Prove that there is an invertible matrix P such that PArI and PBr l
\037re both

diagonal.

M.6. Let P be an irreducible representation of a finite group G. How unique is the positive
definite G-invariant Hermitian form?

M.7. Describe the commutator subgroup of a group G in terms of the character table.
M.8.Prove that a finite simple group that is not of prime order has no nontrivial representation

of dimension 2.

*M.9. Let H bea subgroup of index 2 of a finite group G. Let a be an elementof G that is not
in H, so that Hand aH are the two cosets of H.

(a) Given a matrix representation S : H \037 G Ln of the subgroup H, the induced
representation ind S : G \037 G L2n of the group G is definedby)

(indS)h =

[

S
O

h

]\037a-lha
') (ind S)g

=
[ \037 _ \037ga

]a 19)

for h in Hand g in aH. Prove that ind S is a representationof G, and describe its
character.
Note:The element a-1ha will be in H, but because a is not in H, it needn't be a
conjugateof h in H.

(b) If R:G \037 GLn is a matrix representation of G, we may restrict it to H. We denote

the restriction by res R: H \037 G Ln. Prove that res(ind S) \037S E9 S', where S' is the

conjugate representationdefined by Sh
= Sa-lha'

(c) ProveProbenius reciprocity: (XindS, XR) = (XS, XresR).

(d) Let S be an irreducible representationof H. Use Probenius reciprocity to prove that if

S not isomorphic to the conjugate representationS', then the induced representation
ind S is irreducible,and on the other hand, if Sand S' are isomorphic, then ind S is a
sum of two non-isomorphic representations of G.)

*M.I0. Let H bea subgroup of index 2 of a group G, and let R be a matrix representation of G.
Let R' denote the representation defined by R\037

=
Rg if g E H, and

R\037
=

-Rg otherwise.

(a) Show that R' is isomorphic to R if and only if the character of R is identically zero on

the coset g H not equal to H.
(b) UseProbenius reciprocity (Exercise M.9) to show that ind(res R) \037R Ef) R'.)))
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(c) Suppose that R is irreducible. Show that if R is not isomorphic to R', then res R is

irreducible, and if these two representations are isomorphic, then res R is a sum of
two irreducible representations of H.

*M.l1. Derive the character table of Sn using induced representations from An, when

(a) n = 3, (b) n = 4, (c)n = 5.

*M.12. Derive the character table of the dihedral group Dn, using induced representations
from Cn.

M.13. Let G bea finite subgroup of G Ln (C). Prove that if
Lg

trace g = 0, then L g g = O.

M.14. Let p: G \037 GL(V) be a two-dimensional representatIon <?f
a finite group G, and

assume that 1 is an eigenvalue of Pg for every g in G. Prove that p is a sum of two

one-dimensional representations.

M.15. Let p :G \037 G Ln (C) be an irreducible representation of a finite group G. Given a
representation a: G Ln \037 G L(V) of G Ln, we can consider the composition a 0 p as a
representation of G.

(a) Determine the character of the representation obtained in this way when (]' is left

multiplication of G Ln on the space V of n X n matrices. Decompose a 0 pinto

irreducible representations in this case.

(b) Determine the character of a 0 p when a is the operation of conjugationon c nXn
.)))
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Rings)

Bitte vergiB alles, was Du auf der Schulegelernthast;

denn Du hast es nicht gelernt.

-Edmund Landau)

11.1 DEFINITION OF A RING)

Rings are algebraic structures closedunder addition, subtraction, and multiplication, but not
under division.The integersform our basic model for this concept.

Before going to the definition of a ring, we look at a few examples, subrings of the

complex numbers. A sub ring of C is a subset which is closed under addition, subtraction and
multiplication, and which contains 1.

\302\267The Gauss integers, the complex numbers of the form a + bi, where a and b are integers,
form a subring of C that we denote by Z[i]:)

(11.1.1)) Z[i] = {a+ bi
I a, b E Z}.)

Its elements are the points of a squarelattice in the complex plane.

We can form a subring Z[ex] analogous to the ring of Gauss integers, starting with any

complex number a: the subring generatedby a. This is the smallest subring of C that contains

ex, and it can be described in a general way. If a ring contains a, then it contains all positive
po\ners of ex because it is closed under multiplication. It also contains sums and differences
of such powers, and it contains 1. Therefore it contains every complex number f3 that can

be expressed as an integer combination of powers of a, or, saying this another way, can be
obtained by evaluating a polynomial with integer coefficients at a:)

(11.1.2)) f3
= anex

n
+ . . . + ala + ao, where ai are in Z.)

On the other hand, the set of all such numbers is closed under the operations+, -, and x,

and it contains 1. So it is the subring generated by a.

In most cases, Z[a] will not be represented as a lattice in the complex plane. For

example, the ring Z[ \n] consists of the rational numbers that can be expressed as a polynomial
in

\n
with integer coefficients. These rational numberscan bedescribedsimply as those whose

denominators are powers of 2. They form a dense subset of the real line.)

323)))
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. A complex number ex is algebraic if it is a root of a (nonzero) polynomial with integer
coefficients- that is, if some expression of the form (11.1.2)evaluates to zero. If there is no
polynomial with integer coefficients having ex as a root, ex is transcendental. The numberse
and Jr are transcendental, though it isn't very easy to prove this.

When ex is transcendental, two distinct polynomial expressions (11.1.2)representdistinct

complex numbers. Then the elements of the ring Z[ex] correspond bijectively to polynomials
p(x) with integer coefficients, by the rule p(x) \037 p(a). When ex is algebraic there will be

many polynomial expressions that represent the same complex number. Some examplesof

algebraic numbers are: i + 3, 1/7, 7 +\037,and.J3+ yC5.

The definition of a ring is similar to that of field (3.2.2).The only difference is that

multiplicative inverses aren't required:)

Definition 11.1.3 ( +, -, x, 1) A ring R is a set with two laws of composition + and x, called
addition and multiplication, that satisfy these axioms:

(a) With the law of composition +, R is an abelian group that we denote by R+; its identity

is denoted by o.

(b) Multiplicationis commutative and associative, and has an identity denoted by 1.

(c) distributive law: For all a, b, and e in R, (a + b)c = ac + be.
A subring of a ring is a subsetthat is closed under the operations of addition, subtraction,
and multiplication and that contains the element 1.)

Note: There is a relatedconcept,of a noncommutative ring - a structure that satisfies all

axioms of (11.1.3) except the commutative law for multiplication. The set of all real n x n
matrices is oneexample.Since we won't be studying noncommutative rings, we usethe word

\"ring\" to mean \"commutative ring.\" 0

Aside from subrings of <C, the most important rings are polynomialrings.A polynomial

in x with coefficients in a ring R is an expression of the form)

(11.1.4)) an xn + . . . + at X + ao,)

with ai in R. The set of these polynomialsforms a ring that we discuss in the next section.

Another example: The set R of continuous real-valued functions.. of a real variable x
forms a ring, with addition and multiplication of functions: [I + g](x) = f(x} + g(x) and

[fg](x) = j(x)g(x).)

There is a ring that contains just one element, 0; it is called the zero ring. In the
definition of a field (3.2.2), the set F X

obtained by deleting 0 is a group that contains the

multiplicative identity 1. So 1is not equal to 0 in a field. The relation 1 = 0 hasn't been ruled

out in a ring, but it occurs only once:)

Proposition 11.1.5 A ring R in which the elements 1 and 0 are equal is the zero ring.)

Proof. We first note that Oa = 0 for every element a of a ring R. The proof is the sameas
for vector spaces: 0 = Oa - Oa = (0 - O)a = Oa.Assumethat 1 = 0 in R, and let a be any

element. Then a = la = Oa = O. The only element of R is O. 0)))
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Though elementsof a ring aren't required to have multiplicative inverses, a particular
element may have an inverse, and the inverse is unique if it exists.

\302\267A unit of a ring is an element that has a multiplicative inverse.

The units in the ring of integers are 1 and -1, and the units in the ring of Gauss integers
are :f: 1 and :f: i. The units in the ring IR[ x] of real polynomials are the nonzero constant

polynomials. Fields are rings in which 0* 1 and in which every nonzero element is a unit.

The identity element 1 of a ring is always a unit, and any reference to \"the\" unit
element in R refers to the identity element. The ambiguous term \"unit\" is poorly chosen,
but it is too late to change it.)

11.2 POLYNOMIAL RINGS)

\302\267A polynomial with coefficients in a ring R is a (finite) linear combination of powers of the
variable:)

(11.2.1))
\037

( )
n n-l

J I X = anx + an-Ix + . . .+ alX + ao,)

where the coefficients ai are elementsof R. Such an expression is sometimescalleda formal

polynomial, to distinguish it from a polynomial function. Every formal polynomial with real
coefficientsdeterminesa polynomial function on the real numbers. But we use the word

polynomial to mean formal polynomial.
The set of polynomials with coefficients in a ring R will be denoted by R[x]. Thus Z[x]

denotestheset of polynomials with integer coefficients - the set of integer polynomials.
The monomialsxi areconsideredindependent. So if)

.

(11.2.2)) g(x) = bmx
m + bm_1xm - 1

+ . . . + btx + ho)

is another polynomial with coefficients in R, then I(x) and g(x) are equal if and only if

ai = bi for all i = 0, 1, 2, . . ..
\302\267The degree of a nonzero polynomial,which may be denoted by deg I, is the largestinteger
n such that the coefficient an of X n is not zero. A polynomial of degreezerois calleda
constant polynomial. The zero polynomial is alsocalleda constant polynomial, but its degree
will not be defined.

The nonzero coefficientof highest degree of a polynomial is its leading coefficient, and

a monic polynomial is one whose leading coefficient is 1.

The possibility that some coefficients of a polynomial may be zero creates a nuisance.
We have to disregardterms with zero coefficient, so the polynomial I(x) can be written

in more than one way. This is irritating because it isn't an interesting point. One way to

avoid ambiguity is to imagine listing the coefficients of all monomials, whether zero or not.
This allows efficient verification of the ring axioms. So for the purpose of defining the ring

operations, we write a polynomial as)

(11.2.3)) f(x) = ao + alX + atx2+ . ..
,)))
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where the coefficientsai are all in the ring R and only finitely many of them are different
from zero. This polynomial is determined by its vector (or sequence)of coefficients ai:)

(11.2.4)) a = (ao, aI, \302\267. .),)

where ai are elements of R, all but a finite number zero. Every such vector corresponds to a
polynomial.

When R is a field, these infinite vectors form the vector space Z with the infinite

basis ei that was defined in (3.7.2). The vector ei correspondsto the monomial xi, and the

monomials form a basisof the space of all polynomials.

The definitions of addition and multiplication of polynomials mimic the familiar

operations on polynomial functions. If f(x) and g(x) are polynomials, then with notation

as above, their sum is)

(11.2.5)) f(x) + g(x) = (ao + ho)+ (al + b1)x + ... =
L(ak + bk)X

k
,

k)

where the notation (ai + bi) refersto addition in R. So if we think of a polynomial as a
vector, addition is vector addition: a + b =

(ao + bo, al + bl, . . .).
The product of polynomials f and g is computedby expanding the product:)

(11.2.6)) f(x)g(x) = (ao+alx+...)(bo+blx+...) = Laibjx
i+ j

,)

i ,j)

where the products aibj are to be evaluated in the ring R. There will be finitely many
nonzero coefficients aibj. This is a correctformula, but the right side is not in the standard
form (11.2.3),becausethe same monomial x n

appears several times - oncefor each pair i, j
of indicessuch that i + j = n. So terms have to be collected on the right side. This leads to
the definition)

f(x)g(x) = Po + Plx + P2x2 + ... ,
Pk

=
L aibj,

i+j=k

Po = aobo, Pl =
aObl + alba, P2 = a O b2 + alb l + a2bo,

Each Pk is evaluated using the laws of compositionin the ring. However, when making
computations, it may be desirable to defer the collection of terms temporarily.)

(11.2.7))

with)

Proposition 11.2.8 There is a unique commutative ring structure on the set of polynomials
R[x] having these properties:

. Addition of polynomials is defined by (11.2.5).

.
Multiplication of polynomials is defined by (11.2.7).

. The ring R becomes a subring of R[x] when the elements of R are identified with

the constant polynomials.)))
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Since polynomial algebra is familiar and since the proof of this proposition has no interesting
features, we omit it. D

Division with remainder is an important operation on polynomials.)

Proposition 11.2.9 Division with Remainder. Let R be a ring, let f be a monic polynomial
and let g be any polynomial, both with coefficients in R. There are uniquely determined
polynomialsq and r in R[x] such that)

g(x) = f(x)q(x) + rex),)

and such that the remainder r, if it is not zero, hasdegreelessthan the degree of f. Moreover,
f dividesg in R[x] if and only if the remainder r is zero.)

The proof of this proposition follows the algorithm for division of polynomials that one
learns in school.' 0

Corollary 11.2.10 Division with remainder can be donewhenever the leading coefficient of

f is a unit. In particular, it can be done whenever the coefficient ring is a field and f =I=-O.)

If the leading coefficient is a unit u, we can factor it out of f. 0

However, one cannot divide x 2 + 1 by 2x + 1 in the ring Z[x] of integer polynomials.

Corollary 11.2.11 Let g(x) be a polynomial in R[x], and let ex be an element of R. The
remainderof division of g(x) by x - ex is g(ex). Thus x - ex divides g in R[x] if and only if

g(a) = O.)

This corollary is proved by substituting x = ex into the equation g(x) = (x-
ex)q(x) + rand

noting that r is a constant. 0

Polynomials are fundamental to the theory of rings, and we will also want to use

polynomials in several variables. There is no major change in the definitions.

. A monomial is a formal product of some variables Xl, . . . , X n of the form)

Xl
i1

X2
i2 .. .x n

in
,)

where the exponents iv are non-negative integers. The degreeof a monomial, sometimes

called the total degree, is the sum il +... + in.
An n-tuple (il, . .. , in) is calleda multi-index, and vector notation i = (ii, . .., in)

for multi-indices is convenient. Using multi-index notation, we may write a monomial

symbolically as xi:)

(11.2.12))
i i 1 i 2 inX =

Xl X2
... Xn .)

The monomial xO, with 0 = (0, . . .,0),is denoted by 1. A polynomial in the variables

Xl, . . . , xn , with coefficients in a ring R, is a linear combination of finitely many monomials,)))
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with coefficients in R. With multi-index notation, a polynomial f(x)
= f(x], .. . .., x n ) can

be written in exactly one way in the form)

(11.2.13)) fC\037)
=

L a;x
i
,

I)

where i runs through all multi-indices (i1, . . . , in),the coefficients ai are in R, and only

finitely many of these coefficients are different from zero.

A polynomial in which all monomials with nonzero coefficients have (total) degree d
iscalleda homogeneouspolynomial.

Using multi-index notation, formulas (11..2.5) and (11.2.7)define addition and multi-

plication of polynomials in several variables, and the analogue of Proposition11.2.8istrue.
However, division with renlainder requires more thought. We will come back to it below

(see Corollary 11.3.9).
The ring of polynomials with coefficients in R is usually denoted by one of the symbols)

(11.2.14)) R[Xl, .. . . , Xn] or R{x],)

where the symbolx is understood to refer to the set of variables {Xl,. . . , xn}. When no set

of variables has beenintroduced,R[x]denotes the polynomial ring in one variable.)

11.3 HOMOMORPHISMSAND IDEALS)

\302\267A ring homomorphisnl cp:R \037 R' is a map from one ring to another which is compatible
with the laws of composition and which carries the unit element 1 of R to the unit element 1

in R' - a map such that, for all a and b in R,)

(11.3.1)) cp(a + b) = cp(a)+ q;(b), cp(ab)
= cp(a)cp(b), and (,0(1) = 1.)

The map

(11.3.2)) cp:Z\0371Fp)

that sends an integer to its congruence classmodulo p is a ring homomorphism.
An isomorphism of rings is a bijective homomorphism, and if there is an isomorphism

from R to R', the two rings are said to be iS011l0rphic. We often use the notation R \037R' to

indicate that two rings Rand R! are isomorphic.
A word about the third condition of (11.3.1):The assumption that a homomorphism q;

is compatible with addition implies that it is a homomorphism from the additive gToup R+
of R to the additive group R'+. A group homomorphism carries the identity to the identity,
so cp(O)= O. But we can't conclude that (,0(1) = 1 from compatibility with multiplication,

so that condition must be listedseparately. (R is not a group with respect to x.) For example,
the zero nlap R \037 R' that sends all elements of R to zerois compatible with + and x, but

it doesn't send 1 to 1 unless1= 0 in R
I

. The zero map is not called a ring homomorphism

unless R' is the zero ring (see (11.1.5\302\273.

The most important ring homomorphisms are obtained by evaluating polynomials.

Evaluation of real polynomials at a real number a defines a homomorphism)

(11.3.3)) 1R[xl -+ JR., that sends p(x) 'V'-t p(a).)))
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One can also evaluate real polynomials at a complex number such as i.. to obtain a

homomorphism 1R[x] -+ C that sends p(x) \037 p(i).

The general formulation of the principleof evaluation of polynomials is this:)

Proposition 11.3.4 Substitution Principle. Let q;:R \037 R' be a ring homomorphism, and let
R[x]be the ring of polynomials with coefficients in R.

(8) Let a be an elementof R'. There is a unique homomorphism cJ>: R[x] -+ R' that agrees
with the map qJ on constant polynomials, and that sends x \037 lx.

t

(b) More generally, given elements aI, . . . , an of R', there is a unique homomorphism
4>:R[Xl, . . . , xn] \037 R', from the polynomial ring in 11 variables to R', that agrees with

<p on constant polynomials and that sends Xv \037 a v , for v = 1, . . . , n.)

Proof (8) Let us denote the image cp(a)of an element a of R by a'a Using the fact that

<I> is a homomorphism that restricts to cp on R and sends x to a, we see that it acts on a
polynomial f(x) = L aix

i
by sending)

(11.3.5)) <I>(Laixi) = L<P(ai)<I>(x)i= La/a
i

.)

In words, <I> acts on the coefficients of a polynomial as lfJ, and it substitutes a for X. Since this

formula describes <1>, we have proved the uniqueness of the substitution homomorphism.

To prove its existence, we take this formula as the definition of <1>, and \\ve show that <f> is a

homomorphism R[x] \037 R'. It is clear that 1 is sent to 1, and it is easy to verify compatibility
with addition of polynomials. Compatibility with multiplication is checked using formula
(11.2.6):)

tI>(fg)= tI>(Laibjxi+j)= L tI>(aibjx

i + j ) = Laibjol+
j

i,j)

=
(2: ai ai ) (2: bja

i
) =

tI>(f)<P(g).

i j)

With multi-index notation, the proof of (b)becomesthe same as that of (a).) o)

Here is a simple example of the substitution principle in which the coefficient ring
R changes. Let 1/1:R \037 S be a ring homomorphism. Composing 1/f with the inclusion of
S as a subring of the polynomial ring S[x], we obtain a homomorphism q; : R -+ S[x].
The substitution principle assertsthat there is a unique extension of cp to a homomorphism
<I> : R[x] \037 S[x] that sends x \037 x. This map operates on the coefficients of a polynomial,
while leaving the variable x fixed. If we denote 1fr(a) by a', then it sends a polynomial
anxn

+ . \302\267\302\267+ alX + ao to
a\037xn + . \302\267. +

a\037x
+ a\037.

A particularly interesting case is that cp is the homomorphism Z \037 ]If
p that sends an

integer a to its residuea modulo p. This map extends to a homomorphism cI> :Z[x] \037 IF p[x],
defined by)

(11.3.6)) f(x) = anx
n

+ \302\267\302\267\302\267+ ao \037 an x
n + \302\267\302\267\302\267+ ao = f(x),)))
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where a i is the residue class of ai modulo p. It is natural to call the polynomial f(x) the

residue of I(x) modulo p.
Another example: Let R be any ring, and let P denote the polynomial ring R[x]. One

can use the substitution principle to construct an isomorphism)

(11.3.7)) R[x, y] -+ P[y] ==
(R[x])[y].)

This is stated and proved belowin Proposition 11.3.8. The domain is the ring of polynomials
in two variables x and y, and the range is the ring of polynomials in y whose coefficients
are polynomials in x. The statement that these rings are isomorphic is a formalization of the

procedure of collecting terms of likedegreein y in a polynomial f(x, y). Forexample,
x4

y + x 3 - 3x2
y + y2 + 2 == y2 + (x

4 - 3x2
)y + (x

3 + 2).)

Thisprocedurecanbe useful. For one thing, one may end up with a polynomial that is monic
in the variable y, as happens in the example above. If so, one can do division with remainder

(see Corollary 11.3.9 below).)

Proposition11.3.8Letx = (Xl, . . . , x m ) and y ==
(Yl, . . . , Yn) denote sets of variables.

There is a unique isomorphism R[x, y] \037 R[x][y], which is the identity on R and which
sends the variables to themselves.)

This is very elementary, but it would be boring to verify compatibility of multiplication in

the two rings directly.

Proof We note that since R is a subring of R[x] and R[x] is a subring of R[x][y], R is also a

subring of R[x][y]. Let cp be the inclusion of R into R[x][y].The substitution principle tells

us that there is a unique homomorphism <t>: R[x, y] -+ R[x][y], which extends cp and sends

the variables xJL
and Yv wherever we want. So we can send the variables to themselves.

The map <I> thus constructed is the required isomorphism.It isn't difficult to see that <t> is

bijective. One way to show this would be to use the substitution principle again, to define

the inverse map. 0)

Corollary 11.3.9 Let f(x, y) and g(x, y) be polynomials in two variables, elements of

R[x, y]. Supposethat, when regarded as a polynomial in y, f is a monic polynQmial
of degree n:t. There are uniquely determined polynomials q(x, y) and rex, y) such that

g
= fq + r, and such that if rex, y) is not zero, its degree in the variable y is less than m.)

This follows from Propositions 11.2.9and 11.3.8. D

Another case in which one can describe homomorphismseasilyis when the domain is

the ring of integers.)

Proposition 11.3.10 Let R be a ring.Thereis exactly one homomorphism cp: Z -+ R from
the ring of integers to R. It is the map defined, for n > 0, by cp(n) == 1 + ... + 1 (n terms)
and cp(-n) = -cp(n).)

Sketch of Proof. Let cp : Z --+ R be a homomorphism. By definition of a homomorphism,

cp(l) == 1 and cp(n + 1) ==
cp(n) + cp(l). This recursive definition describes cp on the natural)))
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numbers, and togetherwith q;( -n) = -cp(n) if n > 0 and ({J(O)
= 0, it determines cp uniquely.

So it is the only map Z \037 R that could be a homomorphism,and it isn't hard to convince
oneself that it is one. To prove this formally, one wouldgo backto the definitions of addition

and multiplication of integers (seeAppendix). 0

Proposition (11.3.10) allows us to identify the image of an integer in an arbitrary ring R.
We interpet the symbol3, for example, as the element 1 + 1+ 1 of R.

\302\267Let qJ: R \037 R' be a ring homomorphism. The kernelof ({J is the set of elements of R that

map to zero:)

(11.3.11 )) kerqJ = {s E R
I cp(s) =

OJ.)

This is the same as the kernelobtained when one regards cp as a homomorphism of additive

groups R+ \037 R'+. So what we have learned about kernels of group homomorphisms

applies. For instance, ({J is injective if and only if ker cp = {O}.
As you wiH recall, the kernel of a group homomorphism is not only a subgroup, it

is a normal subgroup. Similarly, the kernel of a ring homomorphism is closed under the

operation of addition, and it has a property that-is stronger than closure under multiplication:)

(11.3.12)) If s is in kerq:;, then for every element r of R, rs is in kercp.)

For, if q;(s) = 0, then ((J(rs) = cp(r)cp(s)= cp(r)O
= O.

This property is abstracted in the conceptof an ideal.)

Definition 11.3.13 An ideal I of a ring R is a nonempty subsetof R with these properties:

\302\267I is closed under addition, and
. Ifsisin I and r is in R., then rs is in I.)

The kernel of a ring homomorphism is an ideal.
The peculiar term \"ideal\" is an abbreviation of the phrase \"idealelement\" that was

formerly used in number theory. We will see in Chapter 13 how it arose. A good way,
probably a better way, to think of the definition of an ideal is this equivalent formulation:

I is not empty, and a linear combination ris1 + . \302\267. + rksk
of elements Si of I with coefficients ri in R is in I.)(11.3.14))

. In any ring R, the multiples of a particular element a form an ideal called the principal
idealgeneratedby a. An element b of R is in this ideal if and only if b is a multiple of a,

which is to say, if and only if a divides b in R.

Thereareseveral notations for this principal ideal:)

(11.3.15)) (a) = aR = Ra = {ra IrE R}.)

The ring R itself is the principal ideal (1), and because of this it is called the unit ideal.

It is the only ideal that contains a unit of the ring. The set consisting of zero alone is the

principal ideal(0),and is called the zero ideal. An ideal I is proper if it is neither the zero

ideal nor the unit ideal.)))
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Every ideal I satisfies the requirements for a subring,exceptthat the unit element 1 of
R will not be in I unless I is the whole ring. Unless I is equal to R, it will not be what we call
a subring.)

Examples 11.3.16

(a) Let cp be the homomorphism JR[x] \037 R defined by substituting the real number 2 for x.

Its kernel, the set of polynomials that have 2 as a root, can be describedas the set of

polynomials divisible by x - 2.This is a principal ideal that might be denoted by (x - 2).
(b) Let <I>:R[x, y] \037 JR(t] be the homomorphism that is the identity on the real numbers,and

that sends x \037 t
2

, Y \037 t
3 . Then it sends g(x, y) \037

g(t
2

, t 3). The polynomial I(x, y) =

y2
- x 3 is in the kernel of <1>. We'll show that the kernel is the principal ideal (I)

generated by I, i.e., that if g(x, y) is a polynomial and if g(t
2

, t3) = 0, then f
divides g. To show this, we regard f as a polynomial in y whose coefficients are
polynomials in x (see (11.3.8\302\273. It is a monic polynomial in y, so we can do division
with remainder: g = fq + r, where q and r are polynomials, and where the remainder
r, if not zero, has degree at most 1 in y. We write the remainder as a polynomial in

y : rex, y) = r1(x)y + ro(x).Ifg(t2
, (3) = 0, then both g and fq are in the kernel of <:1>,

so r is too: r(t 2, t
3

) = r1 \302\253(2)t
3

+ ro(t
2) = O. The monomials that appear in ro\302\253(2)have

even degree, while those in r1 \302\253(2)(3have odd degree. Therefore, in order for r(t
2, t3) to

bezero,ro(x)and r1 (x) must both be zero. Sincethe remainder is zero, I dividesg. 0)

Thenotation (a) for a principal ideal is convenient, but it is ambiguous because the ring

isn't mentioned. For instance, (x - 2) could stand for an ideal of 1R[x]or of Z[x], depending
on the circumstances. When several rings are being discussed, a different notation may be

preferable.

. TheidealI generated by a set of elements {a1,. . . , an} of a ring R is the smallest ideafthat

contains those elements. It can be describedas the set of alllinea'r combinations)

(11.3.17)) r1a1 + . . .+ rnan)

with coefficients ri in the ring. This ideal is often denoted by (al, . . . , an):)

(11.3.18)) (a1,...,a n ) = {rtal+...+rnan Iri ER }.)

For instance, the kernel K of the homomorphism cp: Z[x] \037 1Fp that sends I(x) to
the residue of j(O) modulo p is the ideal(p, x) of Z[x] generated by p and x. Let'scheck
this. First, p and x are in the kernel, so (p, x) c K. To show that K C (p, x), we let
j(x) = anxn

+ \302\267. . + a1x + ao be an integer polynomial. Then j(O) = ao. If ao == 0 modulo p,

sayao = bp, then I is the linear combinationbp + (anxn - 1 + . . . + al)x of p and x. So f
is in the ideal (p, x).

The number of elements required to generate an ideal can be arbitrarily large.

The ideal (x
3

, x2
y, xy2, y3) of the polynomial ring C[x, y] consists of the polynomials

in which every term has degree at least 3. It cannot be generated by fewer than four

elements.

In the rest of this section, we describe ideals in some simple cases.)))
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Proposition 11.3.19

(a) The only ideals of a field are the zero ideal and the unit ideal.

(b) A ring that has exactly two ideals is a field.)

Proof If an ideal J of a field F contains a nonzero element a, that element is invertible.

Then I containsa-1a = 1,and is the unit ideal. The only ideals of Fare (0) and (1).
Assume that R has exactly two ideals. The propertiesthat distinguish fields among

rings are that 1 * 0 and that every nonzero element a of R has a multiplicative inverse. We

have seen that 1 = 0 happens only in the zero ring. The zero ring has only one ideal, the zero
ideal.Sinceour ring has two ideals, 1* 0 in R. The two ideals (1) and (0) are different, so

they are the only two ideals of R.
To show that every nonzero element a of R has an inverse, we consider the principal

ideal (a). It is not the zero ideal because it contains the element a. Therefore it is the unit

ideal. The elements of (a) are the multiples of a, so 1 is a multiple of Q, and therefore a is

invertible. 0)

Corollary 11.3.20 Every homomorphism cp:F --+ R from a field F to a nonzero ring R is

injective.)

Proof. The kernel of cp is an ideal of F. So accordingto Proposition 11.3.19, the kernel is
either (0) or (1). If ker q; were the unit ideal (1), cp would be the zero map. But the zero
map isn't a homomorphism when R isn't the zero ring. Therefore kercp = (O), and cp is

injective. 0)

Proposition 11.3.21 The idealsin the ring of integers are the subgroupsof Z+ , and they are

principal ideals.)

An ideal of the ring Z of integers will be a subgroup of the additive group Z+.It was proved

before (2.3.3) that every subgroup of Z+ has the form 'Ln. 0

The proof that subgroups of Z+ have the form tln can be adapted to the polynomial
ring F[x].)

Proposition 11.3.22 Every ideal in the ring F[x] of polynomials in one variable x over a
field F is a principal ideal. A nonzero ideal I in F[x] is generated by the unique monic
polynomial of lowest degree that it contains.)

Proof. Let I be an ideal of F[x]. The zero ideal is principal,so we may assume that I is not
the zeroideal.The first step in finding a generator for a nonzero subgroup of 7l is to choose
its smallest positive element. The substitute here is to choosea nonzeropolynomial f in I

of minimal degree. Since F is a field,we may choose f to be monic. We claim that I is the

principal ideal (f) of polynomial multiples of f. Since f isin I, every multiple of f is in I,
so (I) C I. Toprove that I C (I), we choosean element g of I, and we use division with

remainder to write g = fq + r, where r, if not zero, has lower degreethan f. Since g and f
are in I, g

- fq = r is in I too. Since f has minimal degree among nonzero elements of I,
the only possibility is that r = O.Thereforef divides g, and g is in (f).)))
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If fl and 12 are two monic polynomials of lowest degree in I, their difference is in I

and has lower degree than n, so it must be zero. Therefore the monic polynomial of lowest

degree is unique. D)

Example 11.3.23 Let y == \037 be the real cube root of 2, and let <I> : Q[x] \037 C be the

substitution map that sends x \037 y. The kernel of this map is a principal ideal, generated by
the monic polynomial of lowest degree in Q[x] that has yas a root (11.3.22).The polynomial

x
3 - 2 is in the kernel, and because \037 is not a rational number, it is not the product

f == gh of two nonconstant polynomials with rational coefficients. So it is the lowestdegree
polynomial in the kernel, and therefore it generates the kernel.

We restrict the map <I> to the integer polynomial ring Z[x], obtaining a homomorphism
<1>':Z[x] \037 C. The next lemma shows that the kernel of <1>' is the principal ideal of Z[x]
genetatedby the same polynomial f.)

Lemma 11.3.24 Letf beamonic integer polynomial, and let g be another integer polynomial.
If f divides g in Q[x], then f divides g in Z[x].)

Proof Since f is monic, we can do division with remainder in Z[x]: g == fq + r. This

equation remains true in the ring (Q[x], and division with remainder in (Q[x] gives the same
result.InQ[x],f divides g. Therefore r == 0, and f divides g in Z[x]. 0)

The proof of the following corollary is similar to the proof of existenceof the greatest

common divisor in the ring of integers \302\2532.3.5), see also (12.2.8)).)

Corollary 11.3.25 Let R denotethe polynomial ring F[x] in one variable over a field F,

and let f and g be elementsof R, not both zero. Their greatestcommon divisor d(x) is the

unique monic polynomial that generates the ideal (f, g). It has theseproperties:

(a) Rd == Rf + Rg.

(b) d divides f and g.

(c) If a polynomial e == e(x) divides both f and g, it also divides d.

(d) There are polynomials p and q such that d == P f + qg.) D)

The definition of the characteristic of a ring R is the same as for a field. It is the

non-negative integer n that generates the kernel of the homomorphism cp:Z \037 R (11.3.10).

If n == 0, the characteristic is zero, and this means that no positive multiple of 1 in R is equal
to zero. Otherwise n is the smallestpositive integer such that \"n times 1\" is zero in R. The

characteristic of a ring can be any non-negative integer.)

11.4 QUOTIENT RINGS)

Let I be an ideal of a ring R. rfhe cosets of the additive subgroup 1+ of R+ a re the subsets
a + I. It follows from what has been proved for groupsthat the set of cosets R == R/ I is a

group under addition.It isalsoa \037ing:)))
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Theorem 11.4.1Let I be an ideal of a ring R. There is a unique ring structure on the set
R of additive cosets of I such that the map TC: R --+ R that sends a \037 a = [a + I] is a ring

homomorphism. The kernel of TC is the ideal I.

As with quotient groups, the map TC is referred to as the canonical map, and R iscalled
the quotient ring. The image a of an element a is called the residue of the element.

Proof This proof has already been carried out for the ring of integers (Section 2.9).We

want to put a ring structure on R, and if we forget about multiplication and consider only
the addition law, I becomesa normal subgroup of R+, for which the proof has been given
(2.12.2).What is left to do is to define multiplication, to verify the ring axioms, and to prove
that TC is a homomorphism. Let a = [a +_1]

and b = [b + I] be elementsof R . We would

like to define the productby the setting a b = [ab + I]. The set of products

P = (a + 1)(b+ 1) = {rs IrE a + I, S E b + I})

isn't always a coset of I. However,as in the case of the ring of integers, P is always contained
in the coset ab + I. If we write r = a + u and s = b + v with u and v in I, then)

(a + u)(b + v) = ab + (av + bu + uv).)

Since I is an ideal that contains u and v, it contains av + bu + uv. This is all that is needed

to define the productcoset:It is the coset that contains the set of products.That coset is

unique because the cosets partition R.

The proofs of the remaining assertionsfollow the patterns set in Section 2.9. 0

As with groups, one often drops the bars over the letters that represent elements of a
quotient ring R , remembering that \"a = b in R

\"
means a = b .

The next theoremsare analogous to ones that we have seen for groups:)

Theorem 11.4.2 Mapping Property of Quotient Rings.Let f :R -+ R' be a ring homomor-

phism_ with kernel K and let I be another ideal. Let TC: R -+ R be the canonical map from

R to R = R/ I. _ _ _
(a) If Ie K, there is a unique homomorphism f: R -+ R' such that fn == f:)

f
> R'

.1(
/

/
f/

R = R/ I)

R

\037)

(b) (First Isomorphism Theorem) If f is surjective and I = K, f isan isomorphism. 0)

The First Isomorphism Theorem is our fundamental method of identifying quotient

rings. However, it doesn't apply very often. Quotient rings will be new rings in most cases,and
this is one reason that the quotient constructionis important. The ring C[x, y]/ (y2 - x3

+ 1),

for example, is completely different from any ring we have seen up to now. Its elementsare
functions on an elliptic curve (see [Silverman]).)))
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The Correspondence Theorem for rings describes the fundamental relationship be-
tween idealsin a ring and a quotient ring.)

Theorem 11.4.3 Correspondence Theorem. Let ep:R --+ R be a surjective ring homomor-
phism with kernel K. There is a bijectivecorrespondeflcebetween the set of all ideals of R
and the set of ideals of R that contain K:)

{ideals of R that contain K} \037 {ideals of R}.

This correspondenceis defined as follows:)

\302\267If I is a ideal of R and if K c I, the corresponding idealof R is ep(!).

. If I is a ideal of R, the corresponding ideal of R is ep-l (I).)

If the ideal I of R corresponds to the ideal I of R, the quotient rings RI I and RII are
naturally isomorphic.)

Note that the inclusion K C I is the reverse of the one in the mapping property.)

Proof of the Correspondence Theorem. We let I be an ideal of R and we let I be an ideal

of R that contains K. We must check the following points:)

\302\267
q;( I) is an ideal of R.

.
ep-l (I) is an ideal of R, and it contains K.

.
ep(ep-l (I\302\273

= I, and ep-l (ep(l) = I.
\302\267If ep(l) = I, then R/ I \037

RII.)

We go through these points in order, referring to the proof of the Correspondence Theorem

2.10.5 for groups when it applies. We have seen before that the image of a subgroup is a
subgroup.Soto show that ep(/) is an ideal of R, we need only prove that it is closed under

multiplication by elements of R. Letr be in R and let x be in q;(/). Then x = ep(x) for some
x in I, and because ep is surjective, r =

ep(r) for some r in R. Since I is an ideal, rx is in I,
and rx = ep(rx),sorxisin ep( l).

Next, we verify that ep-l (I) is an ideal of R that contains K. This is true whether or
not ep is surjective. Let's write cp(a) = a. By definition of the inverse image, a is in ep-l (I)
if and only if a is in I. If a is in cp-l (I) and r is in R, then ep(ra) = ra is in I because I is
an ideal, and hencera is in cp-l (I). The facts that cp-l (I) is closed under sums and that it

contains K were shown in (2.10.4).

The third assertion, the bijectivity of the correspondence,follows from the case of a

group homomorphism.
Finally, suppose that an ideal I of R that contains K corresponds to an ideal I of R,

that is, I = cp(l)and 1= ep-l(I). Let ic:R \037 RII be the canonical map, and let f denote
the composed map irep: R \037 R --+ RII. The kernel of f is the set of elements x in R such

that irep(x) = 0, which translates to q;(x) E I, or to x E ep-l(I)
= I. Th\037kernel of f is I.

The mapping property, applied to the map f, give s us a homomorphism f : Rj I \037 RjI,

and the First IsomorphismTheoremasserts that f is an isomorphism.
.

0)))
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To apply the CorrespondenceTheorem,it helps to know the ideals of one of the rings.
The next examples illustrate this in very simple situations, in which one of the two rings is

C[t]. We will be able to use the fact that every ideal of C[t] is principal (11.3.22).

ExamplelL4.4 (a) Let tp:C[x, y] \037 C[t] be the homomorphism that sends x \037 ( and

y \037 (2. This is a surjective map, and its kernelK is the principal ideal of C[x, y] generated
by y

- x 2. (The proofof this is similar to the one given in Example 11..3.16.)
The Correspondence Theorem relatesidealsI of C[x, y] that contain y - x2

to ideals

J of C[t], by J = cp(l)and I = cp-i(J). Here J will be a principal ideal, generated by
a polynomial p(t). Let II denote the ideal of C[x, y] generated by y - x2

and p(x).
Then II contains K, and its image is equal to J. The Correspondence Theorem asserts

that II = I. Every ideal of the polynomial ring C[x, y] that contains y - x2
has the form

I = (}'- x2
, p(x), for some polynomial p(x).

(b) We identify the ideals of the quotient ring R' = C[t]/(t
2 - 1) using the canonical

homomorphism 1r : C[t] \037 R'. The kernel of 1r is the principal ideal (fl - 1).Let I be an
ideal of Crt] that contains t 2 - 1. Then I is principal, generated by a monic polynomial f,
and the fact that i2 - 1 is in I means that .f divides (2 - 1. The monic divisors of [2 - 1 are:
1, t - 1,t + 1and t

2 - 1. Therefore the ring oR' contains exactly four ideals. They are the
principal ideals generated by the residues of the divisors of fl - 1. 0)

Adding Relations)

We reinterpret the quotien!!ing construction when the ideal I is principal, say I = (a). In

this situation, we think of R = R/ I as the ring obtained by imposing the relation a = 0
on R, or of killing the element a. For instance,the field JF7 will be thought of as the ring
obtainedby killing 7 in the ring Z of integers.

Let'sexamine the collapsing that takes place in the map 1'C : R -+ R . Its kernelis the
idealI, soa isin the kernel: n(a) = O.If b is any element of R, the elements that have the

same image in R as b are those in the coset b + I, and sinceI = (a) those elements have

the form b + ra. We see that imposing the relation a = 0 in the ring R forces us also to set
b = b + ra for all band r in R, and that these are the only consequences of killing a.

Any number of relations al = 0, . .., an = 0 can be introduced, by working modulo

the ideal I generated by ai, . . ., an, the set of linear combinations rlal + ... + rna n , with

coefficients rj in R. The quotient ring R = R/ I isviewed as the ring obtained by killing the

n elements. Two elements band b' of R have the same image in R if and only if h' has the
form b + r1al+ ...+ rna n for some ri in R.

The more relationswe add, the more collapsing takes place in the map n. If we add
relations carelessly,the worst that can happen is that we may end up with I = Rand R = 0\"

All relations a = 0 become true when we collapse R to the zero ring.
Here the CorrespondenceTheoremasserts something that is intuitively clear: Intro-

ducing relationsoneat a time or all together leads to isomorphicresults.To spellthis out,

let a and b be elementsof a ring R, and let R = R/(a) be the result of killing a in R. Let b

be the residue of b in R . The Correspondence Theoremtellsus that the principal ideal (b)
of R corresponds to the ideal (a, b) of R, and that R/(a, b) is isomorphicto R/ (b) . Killing
a and b in R at the same time givesthe sameresult as killing b in the ring R that is obtained

by killing a first.)))
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Example 11.4.5 We ask to identify the quotient ring R ==
Z[i]j (i - 2), the ring obtained from

the Gauss integers by introducing the relation i - 2 == o. Instead of analyzing this directly,

we note that the kernel of the map Z[x] \037 Z[i] sending X'V'-t i is the principal idealof Z[x]

generated by f == x
2

+ 1. The First IsomorphismTheoremtells us that Z[x]j (f) \037
Z[i]. The

image of g = x - 2 is i - 2, so R can alsobe obtained by introducing the two relations f = 0
and g = 0 into the integer polynom ial ring. Let I = (f, g) be the idealof Z[x] generated by
the two polyn omials f and g. Then R \037

Z[x]j I.

To form R, we may introduce the two relations in the opposite order, first killing g_

then f. The principal ideal (g) of Z[x] is the kernel of the homomorphism Z[x] -+ Z that

sends X'V'-t 2. So when we kill x - 2 in Z[x], we obtain a ring isomorphic to Z, in which the
residue of x is 2. Then the residueof f == x

2
+ 1 becomes 5. So we can also obtain R by

killing 5 in Z, and therefore R \037JF5.

The rings we have mentioned are summed up in this diagram:)

(11.4.6))

kill

x-2
Z[x] > Z

kill I \037

1

kill
x2

+1t \037
5

Z [ i ] :> 1F5
kill

i-2) D)

11.5 ADJOINING ELEMENTS)

In this section we discuss a procedureclosely related to that of adding relations: adjoining

new elements to a ring. Our model for this procedure is the construction of the complex

number field from the real numbers. That construction is completely formal: The complex
number i has no properties other than its defining property: i 2 == -1. We will now describe
the generalprinciplebehind this construction. We start with an arbitrary ring R, and consider
the problem of building a bigger ring containing the elements of R and alsoa new element,

which we denote by a. We will probably want a to satisfy some relation such as (X2 + 1 = O.

A ring that contains another ring as a subring is calleda ring extension. So we are looking
for a suitable extension.

Sometimesthe element a may be available in a ring extension R' that we already know.

In that case, our solution is the subring of R' generatedby R and a, the smallest subring
containing Rand a. The subring is denoted by R[a]. We described this ring in Section 11.1 in

the case R = Z, and the description is no different in general: R[a] consists of the elements
fJ of R' that have polynomial expressions)

f3
== rn cxn + ... + rIa + ro)

with coefficients ri in R.
But as happenswhen we construct C from R, we may not yet have an extension

containinga. Thenwe must construct the extension abstractly. We start with the polynomial

ring R[x]. It is generated by Rand x.Theelementx of satisfies no relations other than those

implied by the ring axioms, and we will probably want our new element a to satisfy some

relations. But now that we have the ring R[x] in hand, we can add relations to it using the)))
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procedure explainedin the previous section on the polynomial ring R[x]. The fact that R is
replacedby R[x] complicates the notation, but aside from this, nothing is different.

For example,we construct the complex numbers by introducing the relation x2
+ 1 == 0

into the ring P ==
JR[x] of real polynomials. We form the quotient ring P == P/(x

2 + 1), and
the residue of x becomes our element i. The relation x

2
+ 1 == 0 holds in P because the map

TC: P \037 P is a homomorphism and becausex2
+ 1 is in its kernel. So P is isomorphic to C.

In general, say that we want to adjoin an element a to a ring R, and that we want ex to

satisfy the polynomial relation f(x) == 0, where)

(11.5.1))
-F,

( )
n n-I

J' X == anx + an-IX + . . .+ alx+ ao,) with ai in R.)

The solution is R' ==
R[x]/(f), where (f) is the principal idealof R[x] generated by f.

We let ex denote the residue x of x in R'. Then because the map TC: R[x] \037 R[x]/(f)
is a homomorphism,)

(11.5.2)) n(f(x)) == f(x) = an cxn
+ . . . + a o == O.)

Here a i is the image in R' of the constant polynomial ai. So, dropping bars, a satisfiesthe
relation I(a) == O. The ring obtained in this way may be denoted by R[a] too.

An example: Let a be an element of a ring R. An inverse of a is an element ex that

satisfies the relation)

(11.5.3)) aex- 1= O.)

So we can adjoin an inverse by forming the quotient ring R' ==
R[x]/(ax

- 1).

The most important case is that our element a isa root of a monic polynomial:)

(11.5.4 )) f( )
n n-l

X == X + an-IX + . . .+ alX + ao,) with ai in R.)

We can describethe ring R[ ex] precisely in this case.)

Proposition 11.5.5 Let R be a ring, and let f(x) be a monic polynomial of positive degree n
with coefficients in R. Let R[ex]denote the ring R[x]/(f) obtained by adjoining an element

satisfying the relation I(a) == O.

(a) The set (1, a, . . . ,an-I)isa basis of R[a] over R: everyelementof R[a] can be written

uniquely as a linear combination of this basis, with coefficients in R.

(b) Addition of two linear combinations is vector addition.

(c) Multiplication of linear combinations is as follows:Let f31 and f32 be elements of R[ex],
and let gl (x) and g2(X) be polynomials such that fJ1 ==

gi (ex) and
f37

== g2(a). One

divides the product polynomial glg2 by f, say gIg2 ==
fq + r, where the remainder

rex), if not zero, has degree <no Then 131,82
== rea).)

The next lemma should be clear.)

Lemma 11.5.6 Let f be a monic polynomial of degree n in a polynomial ring R[x]. Every

nonzero element of (I) has degreeat least n. 0)))
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Proof of the proposition. (a) SinceR[a] is a quotient of the polynomial ring R\037x], every

element fJ of R[a] is the residue of a polynomial g(x), i.e., fJ = g(a). Sincef ismonic, we

can perform division with remainder: g(x) = f(x)q(x) + r(x), where r(x) iseitherzeroor
else has degree less than n (11.2.9). Then sinceI(a) = 0,fJ

= g(a) = r(a). In this way, fJ is

written as a combination of the basis. The expression for fJ is unique because the principal
ideal (I) contains no element of degree <no This alsoproves (c), and (b) follows from the
fact that addition in R[ x] is vector addition. 0)

Examples 11.5.7 (a) The kernelof the substitution map Z[x] \037 C that sends x \037 Y = \037
is the principal ideal (x3 - 2) of Z[x] (11.3.23).SoZ[y] is isomorphic to Z[x]j(x

3 - 2). The
proposition shows that (1, y, y) is a Z-basisfor Z[y]. Its elements are linear combinations
ao + alY + a2y2, where ai are integers. If fJI

= (y - y) and /32
= (y2 + 1), then)

fJlfJ2
= y4 - Y + Y -

y
= f(y)(y -1) + (y + y

- 2) = Y + Y
- 2.)

(b) Let R' be obtained by adjoining an element 8 to 1Fs with the relation 82 - 3 = O. Here 8

becomes an abstract square root of 3. Proposition 11.5.5 tells us that the elements of R' are
the 25linear expressionsa + b8with coefficients a and b in 1Fs.

We'll show that R' is a field of order 25 by showing that every nonzero element a + b8
of R' is invertible. To see this, consider the product c = (a+ b8)(a- b8)= (a

2 - 3b2). This
isis an element of JF5, and because 3 isn't a squarein JF5, it isn't zero unless both a and bare

zero. So if a + b8 * 0, c is invertible in 1F5. Then the inverse of a + b8is (a - b8)c-l.
(c) The procedure used in (b) doesn't yield a field when it is applied to 1FII'The reasonis
that JF11 already contains two square roots of 3, namely ::J: 5. If R' is the ring obtained by

adjoining 8 with the relation 82 - 3 = 0,we are adjoining an abstract square root of 3, though

JFI1 already contains two square roots. At first glance one might expect to get JFI1 back. We

don't, because we haven't told 8 to be equalto 5or -5.We've told 8 only that its square is 3.
So8 - 5 and 8 + 5 are not zero, but (8 + 5)(8 - 5) = 82 - 3 = O.This cannot happen in a

field. 0)

It is harder to analyze the structure of the ring obtained by adjoining an element when
.the polynomialrelation isn'tmonic.
. There is a point that we have suppressedin our discussion, and we consider it now:

When we adjoin an element a to a ring R with some relation f(a) = 0, will our original

R be a subring of the ring R' that we construct? We know that R is contained in the

polynomialring R[x], as the subring of constant polynomials,and we alsohave the canonical

map TC: R[x] \037 R' = R[x]/(f). Restricting Jr to the constant polynomials gives us a

homomorphism R \037 R', let's call it 1/1.Is 1/1 injective? If it isn't injective, we cannot identify

R with a subring of R'.
The kernelof 1/1' is the set of constant polynomials in the ideal:)

(11.5.8)) ker 1/1
= R n (I).)

It is fairly likely that ker1/l is zero because f will have positive degree. There will have to

be a lot of cancellation to makea polynomial multiple of f have degree zero. The kernel)))



Section 11.6) Product Rings 341)

is zero when a is required to satisfy a monic polynomial relation. But it isn't always zero.
For instance,let _R be the ring Z/(6) of congruence classesmodulo 6, and let f be the
polynomial2x+ 1 in R[x]. Then 31 = 3. The kernelof the map R \037 R/(f) is not zero.)

11.6 PRODUCT RINGS

The product G X G
' of two groups wasdefined in Chapter 2. It is the product set,and the law

of composition is componentwise: (x, x')(y, y)
= (xy, x'y'). The analogous construction

can bemadewith rings.)

Proposition 11.6.1 Let Rand R' berings.

(8) The product set R X R' is a ring called the product ring, with component-wise addition

and multiplication:

(x, x') + (y, y') = (x + y, x' + y') and (x, x')(y, y') = (xy, x'y'),)

(b) The additive and multiplicative identities in R X R
' are (0, 0) and (1, 1),respectively.

(c) The projections 1f: R X R' -+ Rand 1f' : R X R' \037 R' defined by 1l'(x, x') = x and

n'(x, x') = x' are ring homomorphisms. The kernels of J'(and 7('are the ideals{OJ X R'

and R X (OJ, respectively, of R x R'.
(d) The kernel R X {OJ of lr' is a ring\037 with multiplicative identity e = (1, 0). It is not a

subring of R X R' unless R' is the zeroring. Similarly, {OJ X R' is a ring with identity

e' = (0, 1). It isnot a subring of R X R' unless R is thezeroring.)

The proofs of these assertions are very elementary. We omit them, but see the next
propositionfor part (d). 0

To determine whether or not a given ring is isomorphic to a productring,onelooks
for the elements that in a product ring would be (1, 0) and (0, 1). They are idempotent

elements.

. An idempotent element e of a ring S is an element of S such that e
2 = e.)

Proposition 11.6.2 Lete be an idempotent element of a ring S.

<a> The element e' = 1 - eisalso idempotent, e + e' = 1, and ee' = O.

(b) With the laws of composition obtainedby restriction from S, the principal ideal eS is
a ring with identity element e, and multiplication by e defines a ring homomorphism
S -+ eS.

(c) The ideal eS is not a subring of Sunlesse is the unit element 1 of Sand e' = O.

(d) The ring S is isomorphic to the productring eS X e'S.)

Proof. (8) e,2 = (1-
e)2 = 1 - 2e + e = e', and ee' = e(l - e) = e - e = O.

(b) Every ideal I of a ring S has the propertiesof a ring except for the existence of a

multiplicative identity. In this case, e is an identity element for eS, because if a is in eS,
say a = es, then ea = e2

s = es = a. The ring axioms show that multiplication by e is a

homomorphism: e(a + b) = ea+eb,e(ab)= e
2ab =:(ea)(eb), and el = e.)))
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(c) To be a subring of S; eS must contain the identity 1 of S. If it does, then e and 1 will both

be identity elements of1eS, and sincethe identity in a ring is unique, e == 1 and e' == O.)

(d) The rule cp(x) == (:ex, e' x) defines a homomorphism cp : S \037 eS X e'S, because both
of the maps x 'V'-t ex and x \037 e' x are homomorphisms and the laws of compostition in the

product ring are componentwise. We verify that this homomorphism is bijective. First, if

cp(x) == (0,0), then ex.= 0 and e'x = O. If so, then x == (e + e')x == ex + e'x = 0 too. This
showsthat cp is injective. To show that cp is surjective, let (u, v) be an element of eS X e'S,

say u = ex and v == e'y. Then cp(u + v) == (e(ex + e'y), e'(ex + e'y\302\273
= (u, v). So (u, v) is

in the image, and therefore cp is surjective. 0)

Examples 11.6.3 (a) We go back to the ring R' obtained by adjoining an abstract square
root of 3 to 1Fll. Its elements are the 11

2
lin\037ar combinations a + b8, with a and b in 1Fll and

8 2 == 3. We saw in (11.5.7)(c) that this ring is not a field, the reason being that JFl1 already

contains two square roots :!:5 of 3. The elements e = 8 - 5 and e' == -8 - 5 are idempotents
in R', and e + e' == 1. Therefore R' is isomorphic to the producteR'X e'R'. Since the order
of R' is 112

, leR'1 == le'R'1 = 11. The rings eR' and e'R' are both isomorphic to IFl1, and R'
is isomorphicto the productring F 11 X JF 11.

(b) We define a homomorphism <p: <C[ x, y] -+ C[x] X C[y] from the polynomial ring in two

variables to the product ring by <p(f(x, y\302\273
= (f(x, 0), f(O, y). Its kernel is the set of

polynomials f(x, y) divisible both by y and by x, which is the principal ideal of C[x, y]

generated by xy. The map isn't quite surjective. Its image is the subring of the product
consisting of pairs (p(x), q(y\302\273 of polynomials with the same constant term. Sothe quotient

C[x, y]/(xy) is isomorphic to that subring. 0)

11.7 FRACTIONS)

In this section we consider the use of fractions in rings other than the integers. For instance,
a fraction p / q c. polynomials p and q, with q not zero, is calleda rational function.

Let's review the arithmetic of integer fractions. In order to apply the statements below
to other rings, we denote the ring of integers by the neutral symbol R.

\302\267A fraction is a symbol aj b, or E' where a and b are elements of Rand b is not zero.

\302\267Elements of R are viewed as fractions by the rule a == all.

\302\267Two fractions a1 / bi and a21b2 are equivalent, al I bi ';:::;
a21 b2, if the elements of R

that are obtained by \"cross multiplying\" are equal, i.e., if al b2 == a2bl.

a e ad + be a e ae
\302\267Sums and products of fractions are given by

b
+

d
==

bd
and

b d
==

bd
')

We use the term \"equivalent\" in the third item because, strictly speaking, the fractions aren't

actually equal.

A problem arises when one replaces the integers by an arbitrary ring R: In the
definition of addition, the denominator of the sum is the product bd. Sincedenominators

aren't allowed to be zero, bd had better not be zero. Since band d are denomi\037ators, they

aren't zero individually, but we need to know that the product of nonzero elements of R is

nonzero. This turns out to be the only problem, but it isn't always true. For example,in the)))
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ring Z/ (6) of congruence classesmodulo 6, the classes 2 and 3 are not zero, but 2 . 3 == O. Or,
in a product R X R' of nonzero rings, the idempotents (1,0) and (0, 1) are nonzero elements
whoseproductiszero.One cannot work with fractions in those rings.

\302\267An integral domain R, or just a domain for short, is a ring with this property: R is not the
zero ring, and if a and b are elementsof R whose product ab is zero, then a == 0 or b == O.

Any subring of a field is a domain, and if R is a domain, the polynomial ring R[x] is also a
domain.

An element a of a ring is called a zero divisor if it is nonzero, and if there is another
nonzero elementb such that ab == O. An integral domain is a nonzero ring which contains

no zero divisors.
An integral domain R satisfies the cancellationlaw:)

(11.7.1)) If ab == ac and a:;t:O, then b == c.)

For, from ab == ac it follows that a(b - c) == 0. Then since a:;t:O and since R is a domain,
b - c == O. D)

Theorem 11.7.2 Let F be the set of equivalence classes of fractions of elements of an

integral domain R.

(a) With the laws defined as above, F is a field, called the fraction field of R.

(b) R embeds as a subring of F by the rule a \037 all.

(c) Mapping Property: If R isembeddedasa subring of another field F, the rule a/ b == ab-
l

embeds F into F too.)

The phrase\"mapping property\" is explained as follows: To write the property carefully, one
should imagine that the embedding of R into F is given by an injective ring homomorphism
cp : R -* F. The assertion is then that the rule <P(a/ b) ==

cp(a)cp(b)-l extends cp to an

injective homomorphism <1>:F -+ F.
The proof of Theorem 11.7.2 has many parts. One must verify that what we call

equivalence of fractions is indeed an equivalence relation, that addition and multiplication
are well-defined on equivalence classes,that the axioms for a field hold, and that sending

a \037 a/I is an injective homomorphism R -+ F. Then one must check the mapping property.
All of these verifications are straightfoward.

If we werethe first people who wished to use fractions in a ring, we'd be nervous and
would want to go carefully through each of the verifications. But they have beenmademany

times. It seems sufficient to check a few of them to get a sense of what is involved.

Let us check that equivalence of fractions is a transitive relation. Suppose that

al / b] \037
a2/ b2 and also that a2/ b2 \037a3 I b3 Then al b2 = a2bl and a2 b 3 == a3b2. We multiply

by b3 and hl :)

a 1 b2 b 3 == a2 b l b 3 and a2b3 b l == a3b2bl.

Therefore alb2b3 ==
a3b2bl. Cancelling bz, a3 bl == a l b3. Thus al/b l \037

a3/ b 3' Since we
used the cancellation law, the fact that R is a domain is essentialhere.

Next, we show that addition of fractions is well-defined.Supposethat a/b
\037a' /b'

and cld \037c' /d'. We must show that alb + c/d \037
a'lb' + c' /d', and to do that, we cross)))
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multiply the expressions for the sums. We must show that u = (ad + be)(b'd')isequal to

v = (a' d' + b'c')(bd).The relations ab' = a' b and cd' = e'd show that)

u = adb'd' + bcb'd' = a'dbd'+ be'b'd = v.)

Verification of the mapping property is routine too. The only thing worth remarking is
that, if R is contained in F and if al b is a fraction, then b\"* 0, so the rule al b = ab-1makes

sense.

As mentioned above, a fraction of polynomials is called a rational function, and the
fraction field of the polynomial ring K[x], where K is a field, is calledthe field of rational

functions in x, with coefficients in K. This field is usually denoted by K(x):

K ( ) -
!

equivalence classes of fractions II g, where f and g

I

x -
are polynomials, and g is not the zero polynomial

\302\267)(11.7.3))

The rational functions we define here are equivalence classes of fractions of the formal
polynomials that were defined in Section 11.2. If K = JR, evaluation of a rational function

I(x) I g(x) defines an actual function on the real line, wherever g(x) #; O. But as with

polynomials, we should distinguish the formally defined rational functions, which are

fractions of formal polynomials,from the functions that they define.)

11.8 MAXIMAL IDEALS)

In this section we investigate the kernelsof surjective homomorphisms)

(11.8.1)) q;: R \037 F)

from a ring R to a field F.

Let cp be such a map. The field F has just two ideals, the zero ideal (0) and the unit

ideal (1) (11.3.19). The inverse image of the zero ideal is the kernell of cp, and the inverse

image of the unit ideal is the unit ideal of R.TheCorrespondenceTheoremtellsus that the

only ideals of R that contain I are I and R. Becauseof this, I is called a maximal ideal.

\302\267A maximal ideal M of a ring R is an ideal that isn't equal to R, and that isn't contained in

any ideal other than M and R: If an ideal I contains M, then I = M or I = R.)

Proposition 11.8.2

(a) Let q; : R \037 R' be a surjective ring homomorphism, with kernel I. The image R' is a
field if and only if I is a maximal ideal.

(b) An ideal I of a ring R is maximal if and only if R == R I I is a field.

(c) Thezeroidealof a ring R is maximal if and only if R is a field.)

Proof (a) A ring is a field if it contains precisely two ideals (11.3.19),sothe Correspondence
Theoremasserts that the image of cp is a field if and only if there are two precisely ideals that

contain its kernel I. This.will be true if and only if I is a maximal ideal.)

Parts (b) and (c) follow when (a) is applied to the canonicalmap R \037 RI I.) o)))
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Proposition 11.8.3 The maximal ideals of the ring Z of integers are the principal ideals
generatedby prime integers. 0)

Proof Every ideal of Z is principal. Consider a principal ideal (n), with n > O. If n is a
prime, sayn = p, then 7l/ (n) = IF p, a field. The ideal (n) is maximal. If n is not prime, there
are three possibilities:n = 0, n = 1, or n factors. Neither the zero idealnor the unit ideal

is maximal. If n factors, say n = ab, with 1 < a < n, then 1 \037 (a), a \037 (n), and n E (a).
Therefore (n) < (a) < (1).The ideal (n) is not maximal. 0)

\302\267A polynomial with coefficients in a field is called irreducible if it is not constant and if is
not the product of two polynomials, neither of which is a constant.)

Proposition 11.8.4

(a) Let F bea field. The maximal ideals of F[x] are the principal ideals generated by the
monic irreduciblepolynomials.

(b) Let cp: F[x] \037 R' be a homomorphism to an integral domain R', and let Pbe the kernel
of cpo Either P is a maximal ideal, or P =

(0).)

The proof of part (a) is analogous to the proof just given. We omit the proof of (b). 0)

Corollary 11.8.5 There is a bijective correspondence between maximal ideals of the
polynomial ring C[x] in one variable and points in the complex plane. The maximal ideal
Ma that corresponds to a point a of C is the kernel of the substitution homomorphism
sa:C[x] -+ C that sends x\037a. It is the principal ideal generatedby the linear polynomial
x -a.)

Proof. The kernel Ma of the substitution homomorphism Sa consists of the polynomials

that have a as a root, which are those divisible by x-a. So Ma = (x
- a). Conversely, let

M be a maximal ideal of C[x]. Then M is generatedby a monic irreducible polynomial. The
monic irreduciblepolynomials in C[x] are the polynomials x-a. 0

The next theorem extends this corollary to polynomialsrings in several variables.)

Theorem 11.8.6 Hilbert's Nullstellensatz.! The maximal ideals of the polynomial ring

C[Xl, . . . , x n ] are in bijective correspondence with points of complexn-dimensionalspace.
A point a = (aI, . . . , an) of en corresponds to the kernel Ma of the substitution map
Sa : C[Xl, . . . , xn] -+ C that sends Xi \037 ai. The kernel Ma is generated by the n linear
polynomials Xi

-
ail)

Proof Let a be a point of en, and let Ma be the kernel of Sa.SinceSa is surjective and since
e is a field, Ma is a maximal ideal. To verify that Ma is generated by the linear polynomials
as asserted,we first consider the case that the point a is the origin (0, . . . ,0).We must show

that the kernel of the map Sothat evaluates a polynomial at the origin is generatedby the

variables xl, . . . , X n . Well, 1(0, . . . , 0) = 0 if and only if the constant term of f is zero. If

so, then every monomial that occurs in f is divisible by at least one of-the variables, so f can)

,)

IThe German word Nullstellensatz is a combination of three words whose translations are zero,places,theorem.)))
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be written as a linear combination of the variables, with polynomial coefficients. The proof
for an arbitrary point a canbe madeusing the change of variable Xi =

X\037+ ai to move a to
the origin.

It is harder to prove that every maximal ideal has the form Ma. Let M be a maximal

ideal, and let :F denote the field C[XI, ... , x n ]/ M. We restrict the canonical map (11.4.1)
n: C[Xt, . . . , xn] -+ :F to the subring C[XI]of polynomials in in the first variable, obtaining
a homomorphism CPt :C[Xt] -+ F. Proposition 11.8.4 shows that the kernel of cP is either the

zero ideal, or one of the maximal ideals (Xl - at) of C[Xl]' We'll show that it cannot be the

zero ideal. The samewill be true when the index 1 is replaced by any other index, so M will

contain linear polynomials of the form Xi
- ai for each i. 1'hiswill show that M contains one

of the ideals Ma, and since Ma is maximal, M will be equal to that ideal.

In what follows, we drop the subscript from Xl. We suppose that ker cP = (0). Then

qJ maps C[x] isomorphically to its image, a subring of :F. The mapping property of fraction
fields shows that this map extends to an injective map C(x) \037 :F, where C(x) is the field of

rational functions - the field of fractions of the polynomial ring C[x]. So :F contains a field

isomorphic to C(x). The next lemma shows that this is impossible. Therefore kercp:;e(O).)

Lemma 11.8.7)

(a) Let R be a ring that contains the complex numbers C as a subring. The laws of

composition on R can be usedto makeR into a complex vector space.
(b) As a vector space, the field F ==

C[Xl, . . . , x n ]/ M is spanned by a countable set of

elements.

(c) Let V be a vector space over a field, and suppose that V is spanned by a countable set
of vectors. Then every independent subset of V is finite or countably infinite.

(d) When C(x) is made into a vector space over C, the uncountable set of raiional functions

(x - ex)-l, with ex in C, is independent.)

Assume that the lemma has been proved. Then (b) and (c) show that every independent set
in F is finite or countably infinite. On the other hand, F contains a subring isomorphic to

C(x), so by (d), :F contains an uncountable independent set. This is a contradiction. D

Proofof the Lemma. (a) For addition, one uses the addition law in R. Scalar multiplication
ca of an element a of R by an element c of C is defined by multiplying these elements in R.
The axioms for a vector space follow from the ring axioms.)

(b) The surjective homomorphism n: C[Xl,. . . , xn] -+ F defines a map C -+ F, by means

of which we identify <C as a subring of F, and make F into a complex vector space. The
countable set of monomials

X\037l
. . .

x\037n forms a basis for C[Xl, . . . ,xn ], and since n is

surjective, the images of these monomials span F.)

(c) Let Sbea countable set that spans V, say S =
{VI, V2, . . .}. It could be finite or infinite.

Let Sn be the subset(Vl, . . . , vn) consisting of the first 1J elements of S, and let V n be the

span of Sn. If S is infinite, there will be infinitely many of these subspaces.SinceS spans V,

every element of V is a linear combination of finitely many elements of S, so it is in one of

the spaces V n . In other words, U V n = V.)))
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Let L be an independent set in V, and let Ln = L n V n . Then Ln is a linearly
independentsubset of the space Vn , which is spanned by a set of n elements. So ILn I

< n

(3.4.18). Moreover, L = U Ln because V = U Vn . The union of countably many finite sets

is finite or countably infinite.

(d) We must remember that linear combinations can involve only finitely many vectors. So

we ask: Can we have a linear relation)

k

L
Cv

= 0,
x-a v

v==1

where aI, . . . , ak are distinct complex numbers and the coefficients Cv aren't zero? No. Such
a linear combination of formal rational functions defines a complexvalued function except
at the points x = avo If the linear combination were zero, the function it defines would be

identicallyzero.But (x
- al)-l takes on arbitrarily large values near al, while (x - av)-l

is bounded near al for v = 2, . . . ,k.Sothe linear combination does not define the zero
function. 0)

11.9 ALGEBRAIC GEOMETRY

A point (aI, . . . , an) of en is caned a zero of a polynomial I(Xl, . . . , xn ) of n variables

if I(al, . . . , an)
= O. We also say that the polynomial I vanishes at such a point. The

common zeros of a set {II, . . . , j\037} of polynomials are the points of en at which all of them
vanish - the solutions of the system of equations 11= ... = Ir = o.

. A subset V of complex n-space Cn
that is the set of common zerosof a finite number of

polynomials in n variables is called an algebraic variety, or just a variety.

For instance, a complexline in the (x, y)-plane CC
2

is, by definition, the set of solutions

of a linear equation ax + by + c = O. This is a variety. So is a point. The point (a, b) of e 2

is the set of common zeros of the two polynomials x - a and y
- b. The group SL2(C) is a

variety in C 2x2
. It is the set of zerosof the polynomial XllX22 -

X12X2l
- 1.

The Nullstellensatz provides an important link between algebra and geometry. It tells
us that the maximal ideals in the polynomial ring C[ xl, . . . , xn] correspond to points in

en. This correspondence alsorelatesalgebraicvarieties to quotient rings of the polynomial
rIng.)

Theorem 11.9.1 Let I be the ideal of C[Xl, . . . , xn] generated by some polynomials
11, \302\267. . /r, and let R be the quotient ring C[Xl, . . . , x n ]/ T.Let V be the variety of (common)
zeros of the polynomials 11,.\", Ir in C

n . The maximal ideals of R are in bijective

correspondence with the points of V.)

Proof The maximal ideals of R correspondto the maximal ideals of e[Xl, . . . , xn] that

contain I (Correspondence Theorem). An ideal of CC[Xl, . . . , xn] will contain I if and only

if it contains the generators 11, . . ., Ir of I. Every maximal ideal of the ring C[Xl' \302\267\302\267. , xn]

is the kernel Ma of the substitution map that sends Xi
'V'4 ai for some point a == (al, \302\267\302\267. , an)

of en, and the polynomials 11, . . . , Ir are in Ma if and only if 11 (a) = . . . = Jr(a)
.

0,
which is to say, if and only if a is a point of V. 0)))
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As this theorem suggests, algebraic properties of the ring R = C[x]j I are closely related
to geometricpropertiesof the variety V. The analysis of this relationship is the field of
mathematicscalledalgebraicgeometry.)

A simple question one might ask about a set iswhether or not it is empty. Is it possible

for a ring to have no maximal ideals at all? This happens only for the zero ring.)

Theorem 11.9.2 Let R be a ring. Every ideal I of R that is not R itself is contained in a

maximal ideal.)

To find a maximal ideal, one might try this procedure: If I is not maximal, choose a proper
ideal I' that is larger than I. Replace I by I', and repeat. The proof follows this line of

reasoning, but one may have to repeat the procedure many times, possibly uncountably
often. Because of this, the proof requiresthe Axiom of Choice, or Zorn's Lemma (see the
Appendix). The Hilbert Basis Theorem, which we will prove later (14.6.7), shows that for

most rings that we study, the proof requires only a weak countable version of the Axiom of
Choice. Rather than enter into a discussion of the Axiom of Choice here, we defer further
discussionof the proof to Chapter 14. 0)

Corollary 11.9.3 The only ring R having no maximal ideals is thezeroring.)

This follows from the theorem, because every nonzero ring R contains an ideal different
from R: the zero ideal. 0)

Putting Theorems 11.9.1 and 11.9.2 together givesus another corollary:)

Corollary 11.9.4 If a system of polynomial equations 11 = . . . = fr = 0 in n variables has
no solution in Cn

, then 1 is a linear combination 1 = L gi Ii with polynomial coefficients gi.)

Proof If the system has no solution, there is no maximal ideal that contains the ideal
I = (11,. ..,Ir).So I is the unit ideal, and 1 is in I. 0)

Example 11.9.5 Most choices of three polynomials 11, 12, 13 in two variables have no

common solutions.Forinstance,the idealof C[t, x] generated by)

(11.9.6)) /1 = t2 + x2 - 2, 12 = tx - 1, 13= f3 + 5tx 2 + 1)

is the unit ideal. This can be proved by showing that the equations 11 = 12= 13= 0 have

no solution in ((:2. 0)

It isn't easy to get a clear geometricpicture of an algebraic variety in <en, but the

general shape of a variety in C 2 can be described fairly simply, and we do that here. We

work with the polynomial ring in the two variables t and x.)

Lemma 11.9.7 Let f(t, x) be a polynomial, and let ex be a complex number. The following

are equivalent:)))



Section 11.9) Algebraic Geometry 349)

(a) f(t, x) vanishes at every point of the locus {t == a} in C 2
,

(b) The one-variable polynomial f(a, x) is the zero polynomial,
(c) t - a divides fin C[t, x].)

Proof If I vanishes at every point of the locus t == a, the polynomial f(a, x) is zero for

every x. Then since a nonzero polynomial in one variable has finitely many roots, f(a, x) is
the zero polynomial.This showsthat (a) implies (b).

A change of variable t == t' + a reduces the proof that (b) implies (c) to the case that

a == O. If 1(0, x) is the zero polynomial, then t divides every monomial that occurs in f, and
t divides f. Finally, the implication (c) implies(a)isclear. 0

Let F denote the field of rational functions C (t) in t, the field of fractions of the ring
C[t]. The ring C[t, x] is a subring of the one-variable polynomial ring F[x]; its elements are

polynomialsin x,)

(11.9.8)) f(t, x) == an (t)x
n + . . . + al (t)x + ao(t),)

whose coefficients ai (t) are rational functions in t. It can be helpful to begin by studying
a problem about C[t, x] in the ring F[x], because its algebra is simpler. Division with

remainder is available, and every ideal of F[x] is principal.)

Proposition 11.9.9 Let h(t, x) and f(t, x) be nonzero elements of C[t,x]. Suppose that h

is not divisible by any polynomial of the form t - a. If h divides fin F[x], then h divides f
in C [t, x].)

Proof We divide by h in F[x], say f ==
hq, and we show that q is an element of Crt, x].

Sinceq isan element of F[x], it is a polynomial in x whose coefficients are rational functions
in t. We multiply both sides of the equation I ==

hq by a monic polynomial in t to clear

denominators in these coefficients. This gives us an equation of the form)

u (t) f(t, x) == h (t, X)Ql (t, x),)

where u(t) is a monicpolynomial in t, and ql is an element of C[t,x].We use induction on

the degree of u. If u has positive degree, it will have a complex root a. Then t - a divides

the left side of this .equation, so it divides the right side too. This means that h(a, X)ql (a, x)
is the zero polynomial in x. By hypothesis, t - ex does not divide h, so h(a, x) is not zero.

Since the polynomial ring C[x] is a domain, Q1(a, x) == 0, and the lemma shows that t - ex

divides ql (t, x). We cancel t - a from u and q1.Induction completes the proof. 0)

Theorem 11.9.10 Two nonzero polynomials J(t, x) and get, x) in two variables have

only finitely many common zeros in C2
, unless they have a common nonconstant factor

in <C [ t, x].)

If the degrees of the polynomials f and g are m and n respectively,the number

of common zeros is at most mn. This is known as the Bezout bound. For instance, two)))
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quadratic polynomials have at most four common zeros. (The analogue of this statement for

real polynomials is that two conics intersect in at most four points.) It is harderto prove the

Bezout bound than the finiteness. We won't need that bound, so we won't prove it.

Proof of Theorem 11.9.10. Assume that f and g have no common factor. Let I denote the
ideal generatedby I and g in F[x], where F = C(t), as above.This is a principal ideal,
generated by the (monic) greatest common divisor h of f and g in F[x].

If h =1= 1, it will be a polynomial whosecoefficients may have denominators that are
polynomials in t. We multiply by a polynomial in t to clear these denominators, obtaining
a polynomial hI in Crt, x]. We may assume that hI isn't divisible by any polynomial t - a.
Since the denominators are units in F and since h divides I and g in F[x], hI also divides
f and g in F[x]. Proposition 11.9.9 shows that hI divides f and g in C[t, x]. Then f and g
have a common nonconstant factor in C[t, x]. We're assuming that this is not the case.

So the greatestcommon divisor of f and g in F[x] is 1, and 1 = rf + sg,where rand

s are elements of F[x]. We clear denominators from rand s, multiplying both sides of the

equation by a suitable polynomial u(t). This gives us an equation of the form)

u (t) = rl (t, x)I(t, x) + SI (t, x)g(t, x),)

where all terms on the right are polynomials in Crt, x]. This equation showsthat if (to, xo)
is a common zero of f and g, then to must be a root of u. But u is a polynomial in t, and

a nonzero polynomial in one variable has finitely many roots. So at the common zeros of

I and g, the variable t takes on only finitely many values. Similar reasoning shows that

x takes on only finitely many values. This gives us only finitely many possibilities for the
common zeros. 0)

Theorem11.9.10suggests that the most interesting varieties in ((:2 are those defined as
the locus of zeros of a single polynomial J(t, x).
. The locus X of zeros in C

2 of a polynomial f(t, x) iscalledthe Riemann surface of J.
It is also calleda plane algebraiccurve - a confusing phrase. As a topologicalspace,the

locus X has dimension two. Calling it an algebraic curve refers to the fact that the points
of X depend only on one complex parameter. We give a rough description of a Riemann
surface here. Let's assume that the polynomial f is irreducible - that it is not a product of
two nonconstant polynomials, and also that it has positive degree in the variable x. Let)

(11.9.11)) x = let,x) E c
2

I f(t, x) ==
O})

be its Riemann surface, and let T denote the complex t-plane. Sending (t, x) \037 t defines a

continuous map that we call a projection)

(11.9.12)) n:X \037 T.)

We will describe X in terms of this projection. However, our description will require that a

finite set of \"badpoints\"be removed from X. In fact, what is usually called the Riemann
surface agreeswith our definition only when suitable finite subsets are removed. Tht? locus

{f == O} may be \"singular\" at some points, and someotherpoints of X may be \"at infinity.\"

The points at infinity are explained below (see (11.9.17).)))
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The simplest examples of singular points are nodes, at which the surface crosses itself,
and cusps.The locusx2 = t 3 - t

2
has a node at the origin, and the locusx2 = t 3 has a cusp

at the origin. The real points of theseRiemann surfaces are shown here.)

a node a cusp)

(11.9.13) Some Singular Curves)

To avoid repetitionof the disclaimer \"except on a finite set,\" we write X' for the
complement of an unspecified finite subset of X, which is allowed to vary. Whenever
a construction runs into trouble at some point, we simply delete that point. Essentially
everything we do here and when we come back to Riemann surfacesin Chapter 15 will be
valid only for X'. We keep X on hand for reference.

Our descriptionof the Riemann surface will be as a branched covering of the complex
t-plane T. The definition of covering space that we give here assumes that the spaces are Haus-
dorff spaces ([Munkres]p.98).You can ignore this point if you don't know what it means.

The sets in which we are interestedareHausdorff spaces because they are subsets of ee
2

.)

Definition 11.9.14 Let X and T be Hausdorff spaces. A continuous map ]f: X -+ T is an

n-sheeted covering space if every fibre consists of n points, and if it has this property: Let

Xo be a point of X and let 1l'(xo) = to. Then 1rmaps an open neigborhood U of Xo in X

homeomorphically to an open neighborhood V of to in T.

A map 1'(from X to the complexplaneT is an n-sheeted branched covering if X contains
no isolatedpoints, the fibres of 1'(are finite, and if there is a finite set \037 of points of T called
branchpoints,such that the map (X -

1'(-1\037) -+ (T -
\037) is an n-sheeted covering space.

For emphasis,a covering space is sometimes called an unbranched covering.)

Figure 11.9.15below depicts the Riemann surface of the polynomial x2 - t, a two-

sheeted covering of T that is branched at the point t = O. The figure has been obtained by
writing t and x in terms of their real and imaginary parts, t = to + IIi and x = Xo + xli,

and dropping the imaginary part Xl of X, to obtain a surface in three-dimensional space. Its
further projection to the plane is depicted using standard graphics.

The projected surface intersects itself along the negative to-axis, though the Riemann
surface itself does not. Every negative real number t has two purely imaginary square roots.

The real parts of these square roots are zero, and this produces the self-crossing in the

projected surface.)))
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VI c- \037

V2 \037

\0373 \037

Vn\037

!

C-\037 J U)

7t- 1
( U))

(11.9.14)) Part of an unbranched covering.)

Xo)

to) t 1)

(11.9.15)) The Riemann surface x2 == t.)))
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Given a branchedcovering X -* T, we refer to the points in the set \037 as its branch

points, though this is imprecise: The defining property continues to hold when we add any
finite set of pointsto \037. So we allow the possibility that some points of \037 don't need to be
included - that they aren't \"true\" branch points.)

Theorem 11.9.16 Let I(t, x) be an irreducible polynomial in Crt, x] which has positive
degreen in the variable x. The Riemann surface of I is an n-sheeted branched covering of

the complex plane T.)

Proof The main step is to verify the first condition of (11.9.14), that the fibre]f-l (to)consists

of precisely n points except on a finite subset \037.

The points of the fibre ]f-l (to) are the points (to, xo) such that Xo is a root of the
one-variable polynomial I(to, x). We must show that, except for a finite set of values t = to,
this polynomial has n distinct roots. We write J(t, x) as a polynomial in x whose coefficients
are polynomials in t, say f(x) = an(t)x n

+... + ao(t), and we denote ai(to) by a? The

polynomial I(to, x) =
a\037xn + . . . + a\037x + ag has degree at most n, so it has at most n roots.

Therefore the fibre n- 1
(p) contains at most n points. It will have fewer than n points if

ei ther)

(11.9.17)

(a) the degree of J(to, x) is less than n, or

(b) J(to, x) has a multiple root.)

The first case occurs when to is a root of an (t). (If to is a root of an (t), one of the roots

of f(t1, x) tends to infinity as t1 \037 to.) Since an(t) is a polynomial,there are finitely many

such values.

Consider the second case. A complex number Xo is a multiple root of a polynomial
h (x) if (x -

xO)2 divides h (x), and this happens if and only if XQ is a common root of h (x)
and its derivative h'(x) (see Exercise 3.5).Herehex)= J(to,x).The first variable is fixed,

so the derivative is the partial derivative
\037\037

. Going back to the polynomial J(t, x) in two

variables, we see that the second case occurs at the points (to, xo) that are common zeros of

f and
\037t

. Now f cannot divide its partial derivative, which has lower degree in x. Since f is

assumed to be irreducible,f and
\037\037

have no common nonconstant factor. Theorem 11.9.10
tells us that there are finitely many common zeros.

We now check the second condition of (11.9.14). Let to be a point of T such that the

fibre 1l'-1 (to) consists of n points,and let (to, xo) be a point of X in the fibre. Then Xo is

a simple root of I(to, xY, and therefore
\037\037

is not zero at this point. The Implicit Function
Theorem A.4.3 impliesthat one can solve for x as a function x(t) of t in a neighborhood of
to, such that x(to) = Xo. The neighborhood U referred to in the definition of covering space
is the graph of this function. D)

Tome algebraicgeometry ;s algebra with a kick.

-Solomon Lefschetz)))
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EXERCISES)

Section 1 Definition of a Ring

1.1. Prove that 7 + .ifi and ,J3 + J=5 are algebraic numbers.

1.2. Prove that, for n #: 0, cos(2n j n) is an algebraicnumber.

1.3. Let Q[a, ,8] denote the smallestsubring of C containing the rational numbers Q and the

elements a = \037 and {3 = ,J3. Let y = a + {3. Is Q[a, (3] = Q[y]? Is Z[a, ,8]
= /E[y]?

1.4. Let a =
\037

i. Prove that the elements of Z[a] are dense in the complex plane.

1.5. Determineall subrings of 1R that are discrete sets.

1.6. Decidewhether or not S is a subring of R, when

(a) S is the set of all rational numbers aj b, whereb is not divisible by 3, and R = Q,
(b) S is the set of functions which are linear combinations with integer coefficients of the

functions {I, cos nt, sin nt}, nEZ, and R is the set of all real valued functions of t.)

1.7. Decide whether the given structure forms a ring. If it is not a ring, determine which of the

ring axioms hold and which fail:

(a) U is an arbitrary set, and R is the set of subsetsof U. Addition and multiplication of
elementsof Rare dt!fined by the rules A + B = (A u B) -

(A n B) and A . B = An B.

(b) R is the set of continuous functions IR -+ IR. Addition and multiplication are defined
by the rules [f + g](x) = f(x) + g(x)and [f 0 g](x) =

f(g(x\302\273.

1.8. Determine the units in: (a) Zj12Z, (b) Zj8Z, (c) ZjnZ.

1.9. Let R be a set with two laws of composition satisfying all ring axioms except the
commutative law for addition. Use the distributive law to prove that the commutative law

for addition holds, so that R is a ring.)

Section 2 Polynomial Rings

2.1. For which positive integers n does x2+x + 1dividex
4

+ 3x 3 +x 2 + 7x + 5 in [Zj(n)][x]?

2.2. Let F be a field. The set of all formal powerseriesp(t) = ao + al t + a2t2 + . . ., with ai

in F, forms a ring that is often denoted by F[[t]]. By formal power series we mean that

the coefficients form an arbitrary sequence of elements of F. There is no requirement of

convergence. Prove that F[[t]] is a ring, and determine the units in this ring.)

Section 3 Homomorphisms and Ideals

3.1. Prove that an ideal of a ring R is a subgroup of the additive group R+.
3.2. Prove that every nonzero ideal in the ring of Gauss integers containsa nonzero integer.

3.3. Find generators for the kernels 'pf the following maps:

(a) \037[x, y] -+ \037defined by f(x, y) \037 f(O, 0),

(b) JR[x] -+ C defined by f(x) \037 f(2 + i),

(c) Z[x] -+ IR defined by f(x) \037 f(l + \037),)))
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(d) Z[x] -+ C defined by x \037 J2 + v'3.

(e) C[x, y, z] -+
Crt] defined by x \037 t, Y \037 t

2
, Z \037 t

3
.

3.4. Let cp:C[x, y] -+
Crt] be the homomorphism that sends x \037 t+ 1 and y \037 t

3 -1. Determine
the kernel K of <fJ, and prove that every ideal I of C[x, y] that contains K canbegenerated

by two elements.

3.5. The derivative of a polynomial f with coefficients in a field F is defined by the calculus

formula (anx
n

+ . . . + alx + ao)' = nanx n - 1 + . .. + 1al. The integer coefficients are

interpreted in F using the unique homomorphism Z -+ F.

(a) Prove the product rule (fg)' = f' g + fg' and the chain rule (f 0 g)' = (f' 0 g)g'.

(b) Let a be an elementof F. Prove that a is a multiple root of a polynomial f if and only
if it is a common root of f and of its derivative f'.)

3.6. An automorphism of a ring R is an isomorphism from R to itself. Let R be a ring,

and let fey) be a polynomial in one variable with coefficients in R. Prove that the map
R[x, y] -+ R[x, y] defined by x \037 x + fey), y \037 y is an automorphism of R[x, y].

3.7.Determine the automorphisms of the polynomial ring Z[x] (see Exercise 3.6).

3.8. Let R be a ring of prime characteristicp. Prove that the map R -+ R definedby x \037 x P is
a ring homomorphism. (It is called the Probenius map.)

3.9.(a)An element x of a ring R is called nilpotent if some power is zero. Prove that if x is

nilpotent, then 1 + x is a unit.

(b) Suppose that R has prime characteristicp =I- O. Prove that if a is nilpotent then 1 + a is

unipotent, that is, some power of 1+ a is equaJ to 1.

3.10. Determine all idealsof the ring F[[t]] of formal powerserieswith coefficients in a field F

(see Exercise2.2).
3.11.Let R be a ring, and let I be an ideal of the polynomial ring R[x]. Let n be the lowest

degreeamong nonzero elements of I. Prove or disprove:I contains a monic polynomial of

degr\037e
n if and only if it is a principal ideal.

3.12. Let I and J be ideals of a ring R. Prove that the set I + J of elements of the form x + y,
with x in I and y in J, is an ideal. This idealiscalledthe sum of the ideals I and J.

3.13.Let I and J be ideals of a ring R. Prove that the intersection I n J is an ideal. Showby

example that the set of products{xyI
x E I, Y E J} need not be an ideal, but that the set

of finite sums L XvYv of products of elements of I and J is an ideal. This ideal is called
the product ideal, and is denoted by I J. Is there a relationbetweenIJ and In J?)

Section 4 QuotientRings

4.1. Consider the homomorphism Z[x] -+ Z that sends x \037 1. Explain what the Correspon-
denceTheorem, when applied to this map, saysabout ideals of Z[x].

4.2. What does the CorrespondenceTheorem tell us about ideals of Z[x] that contain x 2 + I?

4.3. Identify the following rings: (a) Z[x!l(x
2 - 3,2x+ 4), (b)Z[i]j(2+ i),

( c) Z[ x] / (6, 2x - 1), (d) Z[ x] / (2x - 4, 4x - 5), (e) Z[ x] / (x 2 + 3, 5).
4.4.Are the rings Z[x]j(x

2 + 7) and Z[x]j(2x2
+ 7) isomorphic?)))
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Section 5 Adjoining Elements

5.1. Let I = X
4

+ X3 + X
2

+ x + 1 and let a denote the residue of x in the ring R = Z[x]j (f).
Express(a3

+ a 2 + a)(a
5 + 1) in terms of the basis (1, a, a 2

, ( 3
) of R.

5.2. Let a be an element of a ring R. If we adjoin an element a with the relation ex = a, we

expect to get a ring isomorphic to R. Prove that this is true.

5.3. Describe the ring obtained from Zj12Z by adjoining an inverse of2.
5.4.Determine the structure of the ring R' obtained from Z by adjoining an element a satisfying

each set of relations.

(a) 2a = 6,6a= 15, (b) 2a - 6 = 0,a - 10= 0, (c) a 3 + a 2
+ 1 = 0, a 2 + a = O.

5.5. Are there fields F such that the rings F[x]j (x
2) and F[x]j (x2 - 1) are isomorphic?

5.6. Leta be an element of a ring R, and let R' be the ring R[x]j (ax -1) obtainedby adjoining

an inverse of a to R. Let a denote the residue of x (the inverseof a in R').

(a) Show that every element f3 of R' can be written in the form fJ
= akb, with b in R.

(b) Prove that the kernel of the map R \037 R' is the set of elementsb of R such that
an b = 0 for some n > O.

(c) Prove that R' is the zero ring if and only if a is nilpotent (see Exercise 3.9).

5.7. Let F be a field and let R = F[t] be the polynomial ring. Let R' be the ring extension

R[x]j(tx
- 1) obtained by adjoining an inverse of t to R. Prove that this ring can be

identified as the ring of Laurent polynomials, which are finite linear combinations of

powers of t, negative exponents included.)

Section 6 Product Rings

6.1. Let cp: JR[ x] \037 C X C be the homomorphism definedby cp(x) = (1, i) and cp(r) = (r, r)
for r in IR. Determine the kernel and the image of cpo

6.2. Is Zj(6) isomorphic to the product ring Zj(2) XZj(3)? Is Zj(8) isomorphic to Zj(2) X

Zj (4)?

6.3. Classify rings of order 10.

6.4. In each case, describethe ring obtained from the field IF2 by adjoining an element a
satisfying the given relation:

(a) a 2 + a + 1=0, (b) a
2 + 1 = 0 , (c)a2

+ a = O.)

6.5. Suppose we adjoin an element a satisfying the relation a 2 = 1 to the real numbers IR.

Prove that the resulting ring is isomorphic to the product IR X JR.

6.6. Describe the ring obtained from the product ring IR X IR by inverting the element (2,0).
6.7. Prove that in the ring Z[x], the intersection(2)n (x) of the principal ideals (2) and (x)

is the principal ideal (2x),and that the quotient ring R = Z[x]/(2x) is isomorphic to the

subring of the product ring JF2[X] X Z of pairs (/(x), n) such that 1(0) =n modulo 2.

6.8. Let I and J be ideals of a ring R such that I + J = R.

(a) Prove that I J = In J (seeExercise3.13).
(b) Prove the Chinese Remainder Theorem:For any pair a, b of elements of R, there is an

element x such that x == a modulo I and x == b modulo J. (The notation x == a modulo

I means x - a E I.))))
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(c) Prove that if I J = 0, then R is isomorphic to the product ring (R/ l) x (R/1).
(d) Describethe idempotents corresponding to the product decompositionin (c).

Section 7 Fractions

7.1. Prove that a domain of finite order is a field.
7.2.Let R be a domain. Prove that the polynomial ring R[x] is a domain, and identify the units

in R[x].

7.3. Is there a domain that contains exactly 15elements?
7.4.Prove that the field of fractions of the formal power series ring F[[x]] overa field F can be

obtained by inverting the element x. Find a neat description of the elements of that field

(see Exercise 11.2.1).

7.5. A subset S of a domain R that is closed under multiplication and that does not contain 0 is
called a multiplicative set. Given a multiplicative set S, define S-fractions to be elements of
the form aj b, where b is in S. Show that the equivalence classesof S-fractions form a ring.)

Section 8 Maximal Ideals

8.1. Which principal ideals in Z[ x] are maximal ideals?

8.2. Determine the maximal ideals of each of the following rings:

(a) JRXJR, (b) JR[x]j(x
2), (c) JR[x]/(x2 -3x+2), (d) JR[x]j(x

2 +x+l).
8.3. Prove that the ring 1F2[X]j(X3+ x + 1)is a field, but that 1F3 [x]j (x

3 + x + 1) is not a field.

8.4. Establish a bijective correspondence between maximal ideals of R[x] and points in the

upper half plane.)

Section 9 Algebraic Geometry

9.1. Let I bethe principal ideal of e[ x, y] generatedby the polynomial y2 + x3-17. Which of the

following sets generate maximal ideals in the quotient ring R = e[x, y]j I? (x - 1,Y
- 4),

(x + 1, Y + 4), (x
3 - 17,y2).

9.2.Let /1, . . . , Ir be complex polynomials in the variables Xl, . . . , xn , let V be the variety
of their commonzeros,and let I be the ideal of the polynomial ring R = C[Xl, . . . ,xn ]

that they generate. Define a homomorphism from the quotient ring R = Rj I to the ring
R of continuous, complex-valued functions on V.

9.3. Let U = {fi(XI,. . .,x m ) = OJ, V = {gj(YI, . . . , Yn)
= O} be varieties in em and en,

respectively.Show that the variety defined by the equations {fi(x) = 0,gj(Y)
== O} in

x, y-space e m + n is the product set UX V.

9.4. Let U and V be varieties in en. Prove that the union U U V and the intersection U n V

are varieties. What does the statement U n V = 0 mean algebraically? What about the
statement U U V = cn?

9.5. Prove that the variety of zeros of a set {/1,. .., fr} of polynomials depends only on the
ideal that they generate.

9.6. Prove that every variety in e 2 is the union of finitely many points and algebraic curves.

9.7.Determine the points of intersection in ((:2 of the two loci in each of the following cases:

(a) y2
- x 3 + x2 = 1, x + y

= 1, (b) x 2 + xy + y2
== 1, x 2 + 2y == 1,

(c) y2 = x3, xy = 1, (d) x + y2 = 0, y + x2
+ 2 xy

2 + y4
= O.)))
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9.8. Which ideals in the polynomial ring C[x, y] contain x2 + y2
- 5 and xy - 2?

9.9. An irreducible plane algebraic curve C is the locus of zeros in C 2 of an irreducible
polynomial f(x, y). A point p of C is a singular point of the curve if f = af/ax =
afl ay

== 0 at p. Otherwise p is a nonsingular point. Prove that an irreducible curvehas
only finitely many singular points.

9.10. Let L be the (complex) line {ax + by + c = O} in ((:2, and let C be the algebraic curve

{f(x, y) == O}, where f is an irreducible polynomial of degree d. Prove C n L contains at

most d points unless C == L.

9.11. Let Cl and C2 be the zeros of quadratic polynomials 11 and 12 respectively that don't

have a common linear factor.

(a) Let p and q be distinct points of intersection of Cl and C2,and let L be the (complex)
line through p and q. Prove that there are constants Cl and C2,not both zero, so that

g = C1 f1 + C2f2 vanishes identically on L. Prove also that g is the product of linear
polynomials.

Hint: Force g to vanish at a third point of L.
(b)Prove that Cl and C2 have at most 4 points in common.

9.12. Proveintwowaysthatthethreepolynomialsfl = t
2

+x
2

-2, 12 = tx-I, 13= t
3

+5tx
2

+1

generate the unit ideal in C[x, y]: by showing that they have no common zeros, and also

by writing 1 as a linear combination of 11,12,13,with polynomial coefficients.

*9.13. Let qJ : CC[x, y] \037 C[t] be a homomorphism that is the identity on C and sends x \037 x(t),

y \037 y(t), and such that x(t) and y(t) are not both constant. Prove that the kernel of qJ is a

principal ideal.

Miscellaneous Exercises

M.1.Prove or disprove: If a 2 == a for every a in a nonzero ring R, then R has characteristic 2.

M.2. A semigroup S is a set with an associative law of composition having an identity element.
Let S be a commutative semigroup that satisfies the cancellation law: ab == ac implies
b == c. Prove that S can be embeddedinto a group.

M.3. Let R denote the set of sequences a == (aI, a2, a3, . . .) of real numbers that are eventually
constant: an == a n +1 == ... for sufficiently large n. Addition and multiplication are

componentwise, that is, addition is vector addition and multiplication is defined by

ab == (a1b 1 , a2b2, . . .). Prove that R is a ring, and determine its maximal ideals.

M.4. (a) Classify rings R that contain C and have dimension2 as vector space over C.

(b) Do the same for rings that have dimension 3.

M.5. Define qJ:C[x, y] \037 C[x] XC[y] XC[t] by I(x, y) \037 (f(x, 0),/(0, y), J(t, t)). Determine
the image of this map, and find generators for the kernel.

M.6. Prove that the locus y == sin x in }R2 doesn't lie on any algebraic curve in (:2.

*M.7. Let X denote the closedunit interval [0, 1], and let R be the ring of continuous functions

X --* IR.)

(a) Let 11, . . . , in befunctions with no common zero on X. Provethat the ideal generated

by these functions is the unit ideal.

Hint: Consider J1 + . ..+ IJ.
(b) Establish a bijective correspondence between maximal ideals of R and points on the

interval.)))



C HAP T E R 12)

Factoring)

You probably think that one knows everything about polynomials.

-Serge Lang)

12.1 FACTORINGINTEGERS)

We study division in rings in this chapter, modeling our investigation on propertiesof the

ring of integers, and we beginby reviewing those properties. Some have been usedwithout

comment in earlier chapters of the book,and some have been proved before.

A property from which many others followis division with remainder: If a and bare
integersand a is positive, there exist integers q and r so that)

(12.1.1)) b = aq + r, and 0 < r < a.)

We've seensomeof its important consequences:)

Theorem 12.1.2

(a) Every ideal of the ring Z of integers is principal.
(b) A pair a, b of integers, not both zero,has a greatest common divisor, a positive integer

d with these properties:

(i) Zd = Za + Zb,
(ii) d divides a and d divides b,

(iij) if an integer e divides a and b, then e divides d.
(iv) There are integers rand s such that d = ra + sb.

(c) If a prime integer P divides a product ab of integers, then p dividesa or p divides b.

(d) Fundamental Theorem of Arithmetic: Every positive integer a =I- 1 can be written as
a product a = Pl ...

Pk, where the Pi are positive prime integers,and k > O. This

expression is unique except for the orderingof the prime factors.)

The proofs of these facts will be reviewed in a more general setting in the next section.)

359)))
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12.2 UNIQUE FACTORIZATION DOMAINS)

It is natural to ask which rings have properties analogous to those of the ring of integers,
and we investigate this question here. There are relatively few rings for which all parts of
Theorem 12.1.2can be extended,but polynomial rings over fields are important cases in

which they do extend.

When discussingfactoring, we assume that the ring R is an integral domain, so that the

Cancellation Law 11.7.1 is available, and we excludethe element zero from consideration.
Here is some terminology that we use:)

(12.2.1 )) u is a unit)

a divides b

a is a proper divisor of b

a and b are associates
a is irreducible)

P is a prime element)

if u has a multiplicative inverse in R.

if b = aq for someq in R.

if b = aq and neither a norq is a unit.

if each divides the other, or if b = ua, and u is a unit.
if a is not a unit, and it has no proper divisor-

its only divisors are units and associates.

if p is not a unit, and whenever p dividesa productab,
then p divides a or p divides b.)

These concepts can be interpreted in terms of the principal ideals generated by the elements.
Recallthat the principal ideal (a) generated by an element a consists of all elements of R
that are are divisible by a. Then)

(12.2.2)) u is a unit)

a divides b

a is a proper divisor of b

a and b are associates
a is irreducible)

P is a prime element)

\037 (u) = (1).

\037 (b) C (a).

\037 (b) < (a) < (1).
\037 (a) = (b).

\037 (a) < (1), and there is no principal ideal(c)
such that (a) < (c) < (1).

\037 ab E (p) implies a E (p) or b E (p).)

Before continuing, we note one of the simplest examples of a ring element that has

more than one factorization. The ring is R = Z[.J=5].It consists of all c.omplex numbers of
the form a + b,J=5,where a and b are integers. We will use this ring as an example several
times in this chapter and the next. In R, the integer 6 can be factored in two ways:)

(12.2.3)) 2 . 3 = 6 = (1+ J=5)(1- J=5).)

It isn't hard to show that none of the four terms 2, 3, 1+ .J=5,1-
.J=5 can be factored

further\037 they are irreducible elements of the ring.

We abstract the procedure of division with remainder first. To make sense of division

with remainder, we need a measure of size of an element. A size function on an integral

domain R can be any function a whose domain is the set of nonzero elements of R, and)))
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whoserange is the set of nonnegative integers. An integral domain R isa Euclidean domain

if there is a size function a on R such that division with remainder is possible, in the following
sense:)

Let a and b be elementsof R, and suppose that a is not zero.
.

(12.2.4) There are elements q and r in R such that b = aq + r,
and either r = 0 or else O'(r)< O'(a).

The most important fact about division with remainder is that r is zero, if and only if a

divides b.)

Proposition 12.2.5

(a) The ring Z of integers is a Euclidean domain, with size function a(ex) = lal.

(b) A polynomial ring F[x] in one variable over a field F is a Euclidean domain, with

a(f) = degree of f.
(c) The ring Z[i] of Gauss integers is a Euclideandomain, with O'(a) = lal

2
.)

The ring of integers and the polynomial rings were discussed in Chapter 11. We show
here that the ring of Gauss integers is a Euclideandomain. The elements of Z[i] form a
squarelattice in the complex plane, and the multiples of a given nonzero element ex form

the principal ideal (a), which is a similar geometric figure. If we write ex = re iO
, then (ex) is

obtained from the lattice Z[i] by rotating through the angle () and stretching by the factor r,

as is illustrated below with a = 2 + i:
. . * . . . * .

* . . . * . . .

. . . * . . . *

. * . . . * . .
. . *

. . * . . . * .

* . . . * . . .

. . . * . . . *

. * . . . * . .)

(12.2.6)) A Principal Ideal in the Ring of Gauss Integers.)

For any complex number f3, there is a point of the lattice (ex) whose square distance from f3

is less than lal
2. We choose such a point, say y = aq, and let r = f3

- y. Then f3
= aq + r,

and Irl
2 < lal

2
, as required. Hereq is in Z[i], and if f3 is in Z[i], so is r.

Division with remainder is not unique: There may be as many as four choices for the
elementy.

0

. An integral domain in which every ideal is principal is called aprincipalidealdO,main.)))
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Proposition 12.2.7 A Euclidean domain is a principal idealdomain.)

Proof We mimic the proof that the ring of integers is a principal idealdomain once more.

Let R be a Euclideandomain with size function a, and let A be an ideal of R. We must

show that A is principal. The zeroidealis principal, so we may assume that A is not the zero
ideal. Then A contains a nonzero element. We choose a nonzero elementa of A such that

a(a) is as small as possible, and we show that A is the principal ideal (a) of multiples of a.

Because A is an ideal and a is in A, any multiple aq with q in R is in A. So (a) C A. To
show that A C (a), we take an arbitrary element b of A. We use division with remainder to

write b == aq + r, where either r == 0, or a(r) < a(a). Then band aq arein A, so r == b - aq
is in A too. Since a(a) is minimal, we can't have a(r) < a(a), and it follows that r == O. This

shows that a divides b, and hence that b is in the principal ideal (a). Since b is arbitrary,

A C (a), and therefore A == (a). 0)

Let a and b be elementsof an integral domain R, not both zero. A greatest common

divisor d of a and b is an element with the following properties:

(a) d divides a and b.

(b) If an element e dividesa and b, then e divides d.

Any two greatest common divisors d and d' are associateelements.The first condition tells

us that both d and d' divide a and b, and then the second one tells us that d' divides d and
also that d divides d'.

However, a greatest common divisor may not exist. There will often be a common
divisor m that is maximal, meaning that aim and b 1m havenoproperdivisor in common. But

this element may fail to satisfy condition (b). For instance, in the ring Z[ J=5] considered
above (i2.2.3), the elements a == 6 and b == 2 + 2J=5 are divisible both by 2 and by
1 + \037. These are maximal elements among common divisors, but neither one divides

the other.
One casein which a greatest common divisor does existis that a and b have no common

factors except units. Then 1 is a greatest common divisor. When this is so, a and b are said

to be relatively prime.

Greatest common divisors always exist in a principal ideal domain:)

Proposition 12.2.8 Let R be a principal ideal domain, and let a and b be elementsof R,

which are not both zero. An element d that generates the ideal (a, b) == Ra + Rb is a
greatest common divisor of a and b. It has theseproperties:
(a) Rd == Ra + Rb,

(b) d dividesa and b.

(c) If an element e of R divides both a and b, it also divides d.

(d) There are elementsrand sin R such that d == ra + sb.)

Proof This is essentially the same proof as for the ring of integers. (a) restates that d

generates the ideal (a, b). (b) states that a and b are in Rd, and (d) states that d is in the

ideal Ra + Rb.For (c), we note that if e divides a and b then a and b areelementsof Re.

In that case, Re contains Ra + Rb == Rd, so e divides d. 0)))
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Corollary 12.2.9 Let R be a principal ideal domain.

(a) If elementsa and b of R are relatively prime, then 1 is a linear combination ra + sh.
(b) An element of R is irreducible if and only if it is a prime element.
(c) The maximal ideals of R are the principal idealsgeneratedby the irreducible elements.)

Proof (a) This follows from Proposition 12.2.8(d).

(b) In any jntegral domain, a prime element is irreducible. We prove this below, in Lemma
12.2.10. Suppose that R is a principal ideal domain and that an irreducible element q of R
dividesa product ab. We have to show that if q does not divide a, then q dividesb. Letd be
a greatest common divisor of a and q. Sinceq is irreducible, the divisors of q are the units

and the associates of q. Sinceq doesnot divide a, d is not an associate of q. Sod isa unit, q

and a are relatively prime,and 1 == ra+sq with rand s in R. We multiply by b: b = rab+sqb.
Both terms on the right side of this equation are divisible by q, so q divides the left side, b.

(c) Let q be an irreducible element. Its divisors are units and associates. Therefore the only
principal ideals that contain (q) are (q) itself and the unit ideal (1) (see (12.2.2\302\273. Since

every ideal of R is principal, theseare the only ideals that contain (q). Therefore (q) is a
maximal ideal. Conversely, if an element b has a proper divisor a, then (b) < (a) < (1) , so
(b) is not a maximal ideal. D)

Lemma 12.2.10 In an integral domain R, a prime element is irreducible.)

Proof: Supposethat a prime element p is a product, say p == ab. Then p divides one of the
factors, say a. But the equation P == ab shows that a divides P too.Soa and p are associates

and b is a unit. The factorization is not proper. 0)

What analogy to the Fundamental Theorem of Arithmetic 12.1.2(d) could one hope for
in an integral domain? We may divide the desiredstatement of uniqueness of factorization
into two parts. First, a given element should be a product of irreducibleelements,and

second, that product should be essentiallyunique.
Units in a ring complicate the statement ofuniqueness.Unit factors must be disregarded

and associate factors must be considered equivalent. The units in the ring of integers are
:f:l,and in this ring it is natural to work with positive integers. Similarly, in the polynomial
ring F[x] over a field, it is natural to work with monic polynomials. But we don't have a
reasonableway to normalize elements in an arbitrary integral domain; it is best not to try.

We say that factoring in an integral domain R is unique if, whenever an element a of
R is written in two ways as a product of irreducible elements, say

(12.2.11) Pl . . .
Pm

== a == ql
. . .

qn,

then m == n, and if the right side is rearranged suitably, qi is an associate of Pi for each i. So

in the statement of uniqueness,associatefactorizations are considered equivalent.
For example, in the ring of Gauss integers,

(2 + i)(2- i) == 5 == (1 + 2i) (1 - 2i).)

Thesetwo factorizations of the element 5 are equivalent because the terms that appear on
the left and right sides are associates: -i(2 + i) == 1 - 2i and i(2 - i) == 1 + 2i.)))
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It is neater to work with principal ideals than with elements, becauseassociatesgenerate
the same principal ideal. However, it isn't too cumbersome to use elements and we will stay

with them here. The importance of ideals will become clear in the next chapter.
When we attempt to write an element a as a product of irreducible elements, we always

assume that it is not zero and not a unit. Then we attempt to factor a, proceedingthis way: If

a is irreducible, we stop.If not, then a has a proper factor, so it decomposes in some way as
a product, say a = albl, where neither al nor hI is a unit. We continue factoring al and hI,
if possible, and we hope that this procedure terminates; in other words, we hope that after a

finite number of steps all the factors are irreducible. We say that factoring terminates in R if
this is always true, and we refer to a factorization into irreducible elements as an irreducible
factorization.

An integral domain R is a unique factorization domain if it has these properties:)

(12.2.12)
\302\267

Factoring terminates.

. The irreducible factorization of an element a is unique in the sense described above.)

The condition that factoring terminates has a useful description in terms of principal
ideals:)

Proposition 12.2.13 Let R be an integral domain. The following conditions' are equivalent:
.

Factoring terminates.

\302\267R does not contain an infinite strictly increasing chain (al) < (a2) < (a3)< \302\267.. of

principal ideals.)

Proof If the processof factoring doesn't terminate, there will be an element al with a

proper factorization such that the process fails to terminate for at least one of the factors.
Let's say that the proper factorization is al = a2b2,and that the process fails to terminate
for the factor we call a2. Since a2 is a proper divisor of al, (al) < (a2) (see (12.2.2\302\273. We

replace al by a2 and repeat. In this way we obtain an infinite chain.

Conversely, if there is a strictly increasing chain (al) < (a2) < \302\267\302\267\302\267, then none of the
ideals (an) is the unit ideal, and therefore a2 is a proper divisor of al, a3 is a proper divisor

of a2, and so on (12.2.2).This gives us a nonterminating process. D)

We will rarely encounter rings in which factoring fails to terminate, and we will prove
a theorem that explains the reason later (see (14.6.9\302\273, so we won't worry much about it

here. In practice it is the uniqueness that gives trouble. Factoring into irreducible elements
will usually be possible, but it will not be unique, even when one takes into account the

ambiguity of associate factors.

Goingback to the ring R = Z[vCS], it isn't hard to show that all of the elements 2, 3,
1+ vCS and 1 - vCS are irreducible,and that the units of Rare 1 and -1. So2 is not an

associate of 1 + vCSor of 1- vCS. Therefore 2.3 = 6 = (1+ vCS)(l-.J=5)are essentially

different factorizations: R is not a unique factorization domain.)))
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Proposition 12.2.14

(a) LetR be an integral domain. Suppose that factoring terminates in R. Then R isa unique

factorization domain if and only if every irreducible element is a prime element.
(b) A principal ideal domain is a unique factorization domain.

(c) The rings Z, Z[i] and the polynomial ring F[x] in one variable over a field F are unique
factorization domains.)

Thus the phrases irreducible factorization and prime factorization are synonymous in

unique factorization domains, but most rings contain irreducible elements that are not prime.
In the ring Z[ .J=5], the element 2 is irreducible.It is not prime because, though it divides the

product (1 + .J=5)(1 -
.J=5), it does not divide either factor.

The converseof (b) is not true. We will see in the next section that the ring Z[x] of

integer polynomialsis a unique factorization domain, though it isn't a principal idealdomain.

ProofofProposition (12.2.14). First of all, (c) followsfrom (b) because the rings mentioned
in (c) are Euclidean domains, and therefore principal idealdomains.

(a) Let R be a ring in which every irreducible element is prime, and supposethat an element

a factors in two ways into irreducible elements, s\037y PI
.. . Pm = a = qi .. .

qn, where m < n.
If n = 1, then m = 1 and PI = qi. Supposethat n > 1. Since PI is prime,it divides one of

the factors ql, . . . , qn, say qi. Since qi is irreducible and sincePI isnot a unit, qi and PI are
associates,say PI

= uQl, where u is a unit. We move the unit factor over to q2,replacing
ql by uQl and q2 by u- 1q2. The result is that now PI = ql. Then we cancelPI and use

induction on n.

Conversely, suppose that there is qn irreducible element P that is not prime. Then

there are elementsa and b such that p divides the productr = ab, say r = pc, but p
does not divide a or b. By factoring a, b, and c into irreducible elements, we obtain two

inequivalent factorizations of r.

(b) Let R be a principal ideal domain. Since every irreducible element of R is prime (12.2.8),
we need only prove that factoring terminates (12.2.14).We do this by showing that R

contains no infinite strictly increasing chain of principal ideals. We suppose given an infinite

weakly increasing chain)

(al) C (a2) C (a3) C . . . ,)

and we prove that it cannot be strictly increasing.)

Lemma 12.2.15 Let II C12C13C. ..be an increasing chain of ideals in a ring R. The union
J = U In is an ideal.

Proof If u and v are in J, they are both in In for some n. Then u + v and ru, for any r in

R, are also in In, and therefore they are in J. This shows that J is an ideal. D

We apply this lemma to our chain of principal ideals, with Iv = (av), and we use the
hypothesis that R is a principal ideal domain to conclude that the union J is a principal
ideal,say J = (b). Then sinceb is in the union of the ideals (an), it is in one of those ideals.)))
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But if b is in (an), then (b) C (an). On the other hand, (an) C (an+l) C (b).Therefore
(b)

== (an) == (a n +l)' The chain is not strictly increasing. 0)

One can decide whether an element a divides another element b in a unique factorization

domain, in terms of their irreducible factorizations.)

Proposition 12.2.16Let R be a unique factorization domain.

(a) Let a ==
PI

. . .
Pm and b = ql . . .

qn be irreducible factorizations of two elements of
R. Thena divides b in R if and only if m < n and, when the factors qj are arranged
suitably, Pi is an associate of qi for i == 1, . . . , m.

(b) Any pair of elementsa, b, not both zero, has a greatest common divisor.)

Proof. (a) This is very similar to the proof of Proposition 12.2.14(a). The irreducible factors

of a are prime elements. If a dividesb, then PI divides b, and therefore PI dividessomeqi,
say qi. Then PI and qi are associates.The assertion follows by induction when we cancel PI
from a and ql from b. We omit the proof of (b). D)

Note: Any two greatest common divisors of a and b are associates. But unless a unique
factorization domain is a principal ideal domain, the greatest common divisor, though it

exists, needn't have the form ra + sh.The greatest common divisor of 2 and x in the unique

factorization domain Z[x] is 1, but we cannot write 1 as a linear combination of those

elements with integer polynomialsas coefficients. D

We review the results we have obtained for the important case of a polynomial ring

F[x] over a field. The units in the polynomial ring F[x] are the nonzero constants.We can

factor the leading coefficient out of a nonzero polynomial to make it monic, and the only
monic associateof a monic polynomial f is f itself. By working with monic polynomials,
the ambiguity of associate factorizations can be avoided. With this taken into account, the

next theorem followsfrom Pr\"oposition 12.2.14.)

Theorem 12.2.17 Let F[x] be the polynomial ring in one variable over a field F.

(a) Two polynomials f and g, not both zero, have a unique monic greatest common divisor

d, and there are polynomials rand s such that r f + sg = d.
(b) If two polynomials f and g have no nonconstant factor in common, then there are

polynomials rand s such that r f + sg = 1.
(c) Every irreducible polynomial p in F[x] is a prime element of F[x]: If p divides a

product fg, then p divides f or p dividesg.
(d) Unique factorization: Every monic polynomial in F[x] can be written as a product

PI ...
Pk, where Pi are monic irreducible polynomials in F[x] and k > O.This factor-

ization is unique except for the orderingof the terms. D)

In the future, when we speak of the greatest common divisor of two polynomials with

coefficients in a field, we will mean the unique monic polynomial with the properties (a)

above. This greatest common divisor will sometimes be denoted by gcd(f, g).
The greatestcommon divisor gcd(f, g) of two polynomials f and g, not both zero,

with coefficients in a field F can be found by repeated division with remainder, the process)))
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called the Euclidean algorithm that we mentioned in Section 2.3 for the ring of integers:

Suppose that the degree of g is at least equal to the degree of f. We write g ==
fq + r where

the remainder r, if it is not zero, has degree lessthan that of f. Then gcd(f, g) ==
gcd(f, r).

If r == 0, gcd(j', g) ==
f. If not, we replace I and g by rand f, and repeat the process.

Sincedegreesare being lowered, the process is finite. The analogousmethod can be usedto
determinegreatestcommon divisors in any Euclidean domain.

Over the complex numbers, every polynomial of positive degree has a root ex, and

therefore a divisor of the form x - cx. The irreducible polynomials are linear, and the
irreduciblefactorization of a monic polynomial has the form)

( 12.2.18)) I(x) == (x
- (Xl) . . . (.x- an),)

where ai are the roots of f(x), with repetitions for multiple roots. The uniqueness of this

factorization is not surprising.
When F = }R, there are two classes of irreduciblepolynomials:linear and quadratic.A

real quadratic polynomial x 2 + bx + c is irreducible if and only if its discriminant b 2 - 4c
is negative, in which case it has a pair of complex conjugate roots. The fact that every
irreducible polynomial over the complexnumbers is linear implies that no real polynomial

of degree > 2 is irreducible.)

Proposition 12.2.19 Let ex be a complex, not real, root of a real polynomial f. Then the
complexconjugatea is also a root of f. The quadratic polynomial q == (x

- a)(x - a ) has

real coefficients, and it divides .f. D)

Factoring polynomials in the ring Q[ x] of polynomials with rational coefficients is more

interesting, because there existirreduciblepolynomials in Q[ x] of arbitrary degree. This is
explainedin the next two sections. Neither the form of

th\037
irreducible factorization nor its

uniqueness are intuitively clear in this case.
For future reference, we note the following elementary fact:)

Proposition 12.2.20 A polynomial f of degreen with coefficients in a field F has at most n

roots in F.)

Proof An element ex is a root of f if and only if x -.ex divides f (11.2.11).If so,we can

write f(x) = (x - ex)q(x),where q(x) is a polynomial of degree n - 1.Let fJ be a root of

f different from cx. Substituting x ==
f3, we obtain 0 =

(f3
-

ex)q(f3). Since f3 is not equal
to ex, it must be a root of q. By induction on the degree, q has at most n - 1 roots in F.

Putting those roots together with ex, we see that f has at most n roots. D)

12.3 GAUSS'S LEMMA)

Every monic polynomial I(x) with rational coefficients can be expressed uniquely in the

form PI . . .Pk, where Pi are monic polynomials that are irreducible elements in the ring
Q[x]. But suppose that a polynomial f(x) has integer coefficients,and that it factors in Q[x].
Can it be factored without leaving the ring Z[x] of integer polynomials? We will see that it

can, and also that Z[ x] is a unique factorization domain.)))
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Here is an example of an irreducible factorization in integer polynomials:

6x3
+ 9x

2
+ 9x + 3 = 3(2x+ 1)(x2

+ x + 1).)

As we see, irreduciblefactorizations are slightly more complicated in Z[x] than in Q[x].
Prime integers are irreducibleelementsof Z[x], and they may appear in the factorization of a

polynomial. And, if we want to stay with integer coefficients, we can'trequiremonicfactors.

We have two main tools for studying factoring in Z[x]. The first is the inclusion of the

integer polynomial ring into the ring of polynomials with rational coefficients:)

Z[x] C Q[x].)

This can be useful because algebra in the ring Q[x] is simpler.
The second tool is reduction modulo some integer prime p, the homomorphism)

(12.3.1)) 1/fp : Z[x] \037 IF p[x])

that sends x \037 x (11.3.6). We'll often denote the image 1frp(J)of an integer polynomial by

f, though this notation is ambiguous because it doesn't mention p.
The next lemma should be clear.)

Lemma 12.3.2 Let f(x) = anx n
+ \302\267\302\267. + alx + ao be an integer polynomial, and let p be an

integer prime. The following are equivalent:
\302\267.

p divides every coefficient ai of f in Z,

\302\267
P divides fin Z[x],

\302\267f is in the kernel of 1fr p' 0)

The lemma shows that the kernel of 1/1 p can be interpreted easily without mentioning

the map. But the facts that 1/1p is a homomorphism and that its image 1F
p[x] is an integral

domain make the interpretation as a kernel useful.

\302\267A polynomial f(x) = anx n
+ \302\267. \302\267+ al x + ao with rational coefficients is called primitive if it

is an integer polynomial of positivedegree,the greatestcommmon divisor of its coefficients

ao, . . . , an in the integers is 1, and its leading coefficient an is positive.)

Lemma 12.3.3 Let f be an integer polynomial f of positive degree, with positive leading

coefficient. The following conditions are equivalent:

\302\267f is primitive,
\302\267f is not divisible by any integer prime p,
\302\267for every integer prime p, 1frp(J)*0. 0)

Proposition12.3.4

(a) An integer is a prime element of Z[x] if and only if it is a prime integer. So a prime
integer p divides a product fg of integer polynomials if and only if p divides f or p
divides g.

(b) (Gauss's Lemma) The product of primitive polynomials is primitive.)))
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Proof (a) It is obvious that an integer must be
\037rime

if it is an irreducible element of Z[x].

Let 1J be a prime integer.We use bar notation: j' = 1/tp(f). Then p divides fg if and only if

fg = 0..and since JF p[x] is a domain, this is true if and only if f = 0 or g = 0,i.e.,if and only
if J} divides j' or p divides g.)

(b) Suppose that / and g are primitive polynomials. Since their leading coefficients are

positive, the leading coefficient of jg isalsopositive. Moreover, no prime p divides .f\037or g,
and by (a), no primedivides fg. So fg is primitive. 0)

Lemma 12.3.5 Every polynomial I(x) of positive degree with rational coefficients can be
written uniquely as a product f(x) = cfo(x), where c is a rational number and Jo(x) is a
primitive polynomial. Moreover, c is an integer if and only if .f is an integer polynomial. If
f is an integer polynomial, then the greatest common divisor of the coefficients of f is ::f:c.)

Proof To find /0, we first multiply / by an integer d to clear the denominators in its

coefficients. This wil1 give us a polynomial df = .fl with integer coefficients. Then we factor
out the greatest common divisor of the coefficients of il and adjust the sign of the leading
coefficient. The resulting polynomial fo is prin1itive, and f = cfo for some rational number

c. This proves existence.
If f is an integer polynomial,we don't needtoclearthe denominator. Then c will be

an integer, and up to sign,it is the greatest common divisor of the coefficients, as stated.

The uniqueness of this product is important, so we check it carefully. Suppose given
rational nUlnbers c and c! and primitive polynomials /0 and f6 such that cio = c' foe We
will show that fo =

f\037.
Since Q[x] is a domain.. it will follow that c = c'.

We multiply the equation c/o = c'/ o by an integer and adjust the sign if necessary, to

reduce to the case that c and c' are positive integers. If c* 1,we choose a prime integer p
that divides c. Then p divides c'

foe Proposition 12.3.4(a) shows that p divides one of the

factors c' or foe Since fa is primitive, it isn't divisible by p, so p divides c' _ We cancel p
from both sides of the equation. Induction reduces us to the case that c = 1, and the same
reasoning showsthat then c' = 1. So fo = 10. D)

Theorem 12.3.6

(a) Let /0 be a primitive polynomial, and let g be an integer polynomial.If /0 divides g in

Q[x], then fo dividesg in Z[x].

(b) If two integer polynomials f and g have a common nonconstant factor in Q[x], they

have a common nonconstant factor in Z[x].)

Proof: (a) Say that g =
\037foq where q has rational coefficients. We show that q has integer

coefficients. We write g = ego,and q = c' qo, with go and qo primitive. Then ego = c'/Oqo.

Gauss's Lemma tells us that foqo is primitive. Therefore by the uniqueness assertionof
Lemma 12.3.5, c = c' and go =

/Oqo. Since g is an integer polynomial,c is an integer. So

q = cqo is an integerpolynomial.

(b) If the integer polynomials f and g have a common factor h in Q[x] and if we write

h = cho, where ho is primitive, then ho also divides f and g in Q[x], and by (a), ho divides
both / and g in Z[x]. 0)))
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Proposition 12.3.7

(a) Let f be an integer polynomial with positive leading coefficient.Then f is an irreducible

element of Z[x] if and only if it is either a prime integer or a primitive polynomial that

is irreducible in Q[ x].

(b) Every irreducible element of Z[x] is a prime element.)

Proof Proposition12.3.4(a)proves (a) and (b) for a constant polynomial. If f is irreducible
and not constant, it cannot have an integer factor different from :i:1, so if its leading coefficient
is positive, it will be primitive. Suppose that f is a primitive polynomial and that it has a

proper factorization in Q[x], say f ==
gh. We write g ==

ego and h == e'ho, with go and ho
primitive. Then goho is primitive. Since f is also primitive, f ==

goho. Therefore f has a

proper factorization in Z[x] too. So if f is reducible in Q[x], it is reducible in Z[x]. The fact

that a primitive polynomial that is reducible in Z[x] is also reducible in Q[x] is clear. This

proves (a).
Let f be a primitive irreducible polynomial that divides a product gh of integer

polynomials. Then f is irreducible in Q[x]. Since Q[x] is a principal ideal domain, f is a

prime element of Q[x] (12.2.8). So f divides g or h in Q[x]. By (12.3.6) f divides g or h in

Z[x]. This shows that f is a prime element,which proves (b). 0)

Theorem 12.3.8 The polynomial ring Z[x] is a unique factorizationdomain.Every nonzero

polynomial I(x) E Z[x] that is not:i:l can be written as a product

f(x) ==
:t.Pl

. . .
PmQl (x) . . .

qn (X),)

where Pi are integer primes and qj(x) areprimitive irreducible polynomials. This expression
is unique exceptfor the order of the factors.)

Proof It is easy to see that factoring terminates in Z[x], so this theorem follows from

Propositions 12.3.7and 12.2.14. D

The results of this section have analogues for the polynomial ring F[t, x] in two
variables over a field F. To set up the analogy, we regard F[t,x] as the ring F[t][x] of

polynomials in x whose coefficients are polynomials in t. The analogue of the fieldQ will be

the field F( t) of rational functions in t, the field of fractions of F[ t]. We'll denote this field

by F. Then F[t, x] is a subring of the ring F[x] of polynomials

.f == an (t)x
n + . . . + al (t)x + ao(t))

whose coefficients ai (t) are rational functions in t. This can be useful because every ideal of

F[x] is principal.
The polynomial f is called primitive if it has positive degree, its coefficients ai (t) are

polynomials in F[t] whose greatest common divisor is equal to 1, and the leading coefficient
an(t) ismonic.A primitive polynomial will be an element of the polynomial ring F[t, x].

It is true again that the product of primitive polynomials is primitive, and that every

element f(t, x) of F[x] can be written in the form c(t)fo(t, x), where fo is a primitive

polynomial in F[t, x] and e is a rational function in t, both uniquely determined up to
constant factor.)))
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The proofs of the next assertion'sare almost identical to the proofs of Proposition 12.3.4
and Theorems 12.3.6 and 12.3.8.)

Theorem 12.3.9 Let F[t] be a polynomial ring in one variable over a field F, and let

F == F(t) be its field of fractions.

(a) The product of primitive polyn0t?ials in F[ t, x] is primitive.
(b) Let fo be a primitive polynomial, and let g be a polynomial in F[t, x]. If fo dividesg in

F[x], then fo divides g in F[t, x].

(c) If two polynomials f and g in F[t, x] have a common nonconstant factor in F[x], they
have a common nonconstant factor in F[t, x].

(d) Let f be an element of F[t, x] whose leading coefficient is monic. Then f is an
irreducible element of F[ t, x] if and only if it is either an irreducible polynomial in t

alone, or a primitive polynoI1lialthat is irreducible in F[x].

(e) The ring F[t, x] is a unique factorization domain. D)

The results about factoring in Z[ x] also have analogues for polynomials with coefficients

in any unique factorization domain R.)

Theorem 12.3.10 If R is a unique factorization domain, the polynomial ring R[Xl, . . . ,xn ]

in any number of variables isa unique factorization domain.)

Note: In contrast to the caseof one variable, where every complex polynomialisa product of

linear polynomials, complex polynomials in two variables are often irreducible, and therefore
prime elements,of Crt, x]. 0)

12.4 FACTORINGINTEGER POLYNOMIALS)

We pose the problem of factoring an integer polynomial)

(12.4.1)) f(x) == anx
n

+ . . . + alx + ao,)

with an =1=O. Linear factors can be found fairly easily.)

Lemma 12.4.2

(a) If an integer polynomial b1x + bo divides fin Z[x], then b i divides an and bo
dividesao.

(b) A primitive polynomial b1x + bo divides f in Z[x] if and only if the rational number

-bo/ hI is a root of f.

(c) A rational root of a monic integer polynomial f is an integer.)

Proof. (a) The constant coefficient of a product (biX + bO)(qn_Ixn
- 1 + . . . + qo) is boqo,

and if qn-l =1= 0, the leading coefficient is b1qn-l.

(b) According to Theorem 12.3.10(c), bix + bo divides fin Z[x]if and only if it divides fin

Q[x], and this is true if and only if x + bo/bi divides f, i.e., -bo/b 1 is a root.)))
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(c) If ex == ajb is a root, written with b > 0, and if gcd{a, b) == 1, then bx - a is a primitive

polynomial that divides the monic polynomial f, sob == 1 and ex is an integer. D

The homomorphism 1frp
: Z[x] -+ IF

p[x] (12.3.1) is useful for explicit factoring, one

reason being that there are only finitely many polynomials in]F p[x] of eachdegree.)

Proposition12.4.3Letf{x) == anx
n

+ . . . + ao be an integer polynomi al, and let p be a
prime integer that does not divide the leading coefficient an. If the residue f of f modulo p

is an irreducible element of Fp[x],then f is an irreducible element of Q[x].)

Proof We prove the contrapositive, that if f is reducible, then f is reducible. Supposethat

f ==
gh is a proper factorization of f in Q[x]. We may assume that g and h are in Z[x]

(12.3.6). Since the factorization in Q[x] is proper, both g and h have positive degree,and, if

deg f denotes the degree of f, then deg f d eg g + degh. _
Since 1/fp is a homomorphism, f ==

g h, so deg f ==
deg g + degh. For any integer

pol yno mial p, deg p < degp. Our assumption on the leading coefficient of f tells us that

deg f == deg f. Th is being so we must have deg g . ==
deg g and deg h ==

deg h. Therefore

the factorization f ==
g h is proper. D

If p divides the leading coefficient of f, then f has lower degree,and using reduction

modulo p becomes harder.

If we suspectthat an integer polynomial is irreduc ible, we can try reduction modulo p
for a small prime, p == 2 or 3 for instance, and hope that f turns out to be irreducibleand of

the same degree as f. If so, f will be irreducible too. Unfortunately, there exist irreducible

integer polynomials that can be factored modulo every prime p. Thepolynomial x
4 -10x 2+ 1

is an example. So the method of reduction modulo p may not work. But it does work

quite often.

The irreducible polynomials in IF p[x] can be found by the \"sieve\" method. The sieve
of Eratosthenesis the name given to the following method of determining the prime integers
less than a given number n. We list the integers from 2 to n. The first one, 2, is prime because
any proper factor of 2 must be smaller than 2, and there is no smaller integer on our list.We

note that 2 is prime, and we crossout the multiples of 2 from our list.Exceptfor 2 itself,

they are not prime. The first integer that is left, 3, is a prime becauseit isn't divisible by any
smaller prime. We note that 3 is a prime and then cross out the multiples of 3 from our list.
Again, the smallest remaining integer, 5, is a prime,and so on.)

2 3 ;t' 5 X 7 )(\037 \037 11 M 13 J4 \037 \037 17 \037 19 ...)

The same method will determine the irreducible polynomials in JFp[x]. We list the
monic polynomials, degree by degree, and cross out products. For example,the linear

polynomials in 1F2[X] are x and x + 1.They are irreducible. The polynomials of degree 2 are
x2

, x
2

+ x, x2 + 1, and x
2

+ x + 1.The first three have roots in JF2, so they are divisibleby x
or by x + 1. The last one, x2

+ x + 1, is the only irreducible polynomial of degree 2 in IF2[X].)))
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(12.4.4) The irreducible polynomials of degree < 4 in IF2[X]:

x, x + 1; x2
+ x + 1; x3 + x2

+ 1, x 3 + x + 1;)

x
4 + x 3 + 1, x4

+ x + 1, x4 + x3
+ x 2

+ x + 1.)

By trying the polynomials on this list, we can factor polynomials of degree at most 9 in

1F2[X]. For example, let's factor f(x) = x5
+ x 3 + 1 in JF2[X]. If it factors, there must be an

irreducible factor of degree at most 2. Neither 0 nor 1 is a root, so f has no linear factor.

There is only one irreduciblepolynomial of degree 2, namely p = x2
+ x + 1. We carry out

division with remainder: f(x) = p(x)(x 3
+ x 2 + x) + (x + 1).Sop doesn't divide f, and

therefore f is irreducible.
Consequently, the integer polynomial x 5 - 64x4

+ 127x 3 - 200x+ 99isirreduciblein

Q[x], because its residue in JF2[X] is the irreducible polynomial x5
+ x 3 + 1.)

(12.4.5) The monic irreduciblepolynomials of degree 2 in 1F3[X]:

x2 + 1, x2
+ x-I, x 2 - x-I.)

Reduction modulo p may help describe the factorization of a polynomial also when the
residue isreducible.Consider the polynomial I(x) = x3 + 3x2

+ 9x + 6. Reducing modulo
3, we obtain x

3 . This doesn't look like a promising tool.However, suppose that I(x) were
reducible in Z[x], say I(x) = (x+a)(x 2+bx +c). Thenthe residue of x+a would divide x3

in JF3 [x], which would imply a = 0 modulo 3. Similarly, we could conclude c == 0 modulo 3. It
is impossibleto satisfy both of these conditions because the constant term ac of the product
is supposed to be equalto 6.Therefore no such factorization exists, and I(x) is irreducible.

The principle at work in this example is called the EisensteinCriterion.)

Proposition 12.4.6 Eisenstein Criterion. Let I(x) = anxn
+. . . +ao be an integer polynomial

and let p bea prime integer. Suppose that the coefficients of I satisfy the following conditions:

\302\267
p does not divide an;

\302\267p divides all other coefficients an-I, . . . ,ao;
.

p2 does not divide ao.

Then f is an irreducible element of (Q[x].)

For example, the polynomial x 4 + 25x 2 + 30x + 20is irreducible in Q[x].

Proof of the Eisenstein Criterion. Assume that I satisfie\037the conditions, and let I denote
the residueof j' modulo p. The hypotheses imply that I = a nx n

and that a n =I=-O. If I is
reducible in Q[x], it will factor in Z[x] into factors of positive degree, say I = gh,where

g(x)
= brx

r + . \302\267\302\267+ ba and h (x) = csxs + . ..+co.Then g divides a nxn, so g has the form

brx
r

. Every coefficient of g exceptthe leading coefficienfis divisible by p. The same is true
of h. The constant coefficient aa of I will be equal to boca, and since p divides ba and co,

p2 must divideao.This contradicts the third condition. Therefore I is irreducible. D)))
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One application of the Eisenstein Criterion is to prove the irreducibility of the

cyclotomic polynomial <I>(x) = x p - 1 + w\"tp
- 2

+ . .. + x + 1,where p is a prime. Its roots are
the pth roots of unity, the powers of \037

= e 21!i/ P different from 1:)

(12.4.7)) (r\"t
- 1) <I>(x) == x P - 1.)

Lemma 12.4.8 Let p bea prime integer. The binomial coefficient
(\037)

is an integer divisible

exactly once by p for every r in the range 1 < r < p.)

Proof The binomial coefficient
(\037)

is)

(

p

)
==

pCp
- 1) . . . (p - r +1).

r r( r - 1) \302\267\302\267\302\2671)

When r < p, the terms in the denominator are all less than p, so they cannot cancel the
singlep that is in the numerator. Therefore

(\037)
is divisible exactly once by p. 0)

Theorem 12.4.9 Let p be a prime.The cyclotomic polynomial <I> (x) == x p - 1
+ x P -'2 + . . .+

x+ 1isirreducible over Q.)

Proof We substitute x == y + 1 into (12.4.7) and expand the result:

y<t>(y+ 1) = (y+ 1)P -1 =
yP +

(f)YP-l

+... +
(p

p
1)Y+

1- 1.)

We cancel y. The lemma shows that the Eisenstein Criterion applies, and that <t>(y + 1) is
irreducible. It foHowsthat <I> (x) is irreducible too. 0)

Estimatingthe Coefficients

Computer programs factor integer polynomials by factoring modulo powersof a prime,

usually the prime p = 2.Thereare fast algorithms, the Berlekamp algorithnlS, to do this.
The simplest case is that f is a monic integer polyno

mial\037hose
residue modulo p is the

product of relatively prime monic polynomials, say f == g h in IF p[x]. Then there will be a

unique way to factor f modulo any power of p. (We won't take the time to prove this.)
Let's suppose that this is so, and that we (or the computer) have factored modulo the powers
p, p2,p3,... If f factors in Z[x], the coefficients of the factors modulo pk will stabilize

when they are represented by integers between - pk /2 and pk/2, and this will produce the

integer factorization. If f isirreduciblein Z[x], the coefficients of the factors won't stabilize.
When they get too big, one can concludethat the polynomial is irreducible.

The next theorem of Cauchy can be used to estimate how big the coefficients of the

integer factors could be.)

Theorem 12.4.10 Let j(.x) = xn
+ an_lX

n - 1 + .. .+alx+ ao be a monic polynomial with

complex coefficients, and let r be the maximum of the absolute values laj I of its coefficients.

The roots of .f have absolute value less than r + 1.)))
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Proof of Theorem 12.4.10. The trick is to rewrite the expression for I in the form)

n
f (

n-l
)

X = - an-IX + . . .+ alx+ aD)

and to use the triangle inequality:)

Ixl
n < If(x) I + lan_Illxl

n - 1 +... + laIllxl+ laol

Ixl
n -1

< I/(x)1 + r(lxl
n - 1

+ . . . + Ixl + 1)
= If(x)1 + r .

Ixl-l

Leta be a com p lex number with absolute value la l
> r+ 1. Then

r < 1.We substitute-
lal - 1 -

x = a into (12.4.11):)

(12.4.11))

lain 1
lain

< Ij(a)1 + r
lal-l

< Ij(a)1 + lain -1.

Therefore I/(a)1 > 1, and a is not a root of f.) \037)

We give two examples in which r = 1.)

Examples 12.4.12 (a) Let f(x) = x
6

+ x 4 + x3
+ x 2

+ 1. The irreducible factorization

modulo 2 is)

x
6

+ x 4 + x3
+ x

2
+ 1 = (x2

+ x + 1)(x
4 + x3

+ x
2

+ x + 1).)

Sincethe factors are distinct, there is just one way to factor I modulo 22
, and it is)

x 6 + x4
+ x

3 + x2 + 1= (x2 - x + 1)(x
4 + x3

+ x
2

+ x + 1), modulo 4.)

The factorizations modulo 23 and modulo 24
are the same. If we had made these computa-

tions, we would guess that this is an integer factorization, which it is.

(b) Let f(x) = x6 - x 4 + x3
+ x 2 + I., This polynomial factors in the same way modulo 2. If

f werereduciblein Z[x], it would have a quadratic factor x
2 + ax + b, and b would be the

product of two roots of f. Cauchy's theorem tells us that the roots have absolutevalue less

than 2, so Ihl < 4. Computing modulo 24,

x6 - x
4 + x3

+ x
2

+ 1 = (x
2

+ x - 5)(x
4 - x3

+ 5x
2

+ 7x + 3), modulo 16.)

The constant coefficient of the quadratic factor is -5. This is toobig,so f isirreducible.
Note: It isn't necessary to use Cauchy'sTheoremhere.Since the constant coefficient of I is
1,the fact that -5 \037::!:1 modulo 16 also proves that I is irreducible. 0)

The computer implementations for factoring are interesting, but they are painful to

carry out by hand. It is unpleasant to determine a factorization modulo 16 such as the one
above by hand, though it can be done by linear algebra.We won't discuss computer methods

further. If you want to pursue this topic, see [LL&L].)))
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12.5 GAUSS PRIMES

We have seen that the ring Z[i] of Gauss integers is a Euclideandomain. Every element that

is not zero and not a unit is a product of prime elements.In this section we describe these

prime elements, calledGauss primes, and their relation to integer primes.
In Z[i],5 = (2+ i)(2- i),and the factors 2 + i and 2 - i are Gauss primes. On the

other hand, the integer 3 doesn'thave a proper factor in Z[i]. It is itself a Gaussprime.These
examplesexhibit the two ways that prime integers can factor in the ring of Gauss integers.

The next lemma follows directly from the definition of a Gaussinteger:)

Lemma 12.5.1)

. A Gauss integer that is a real number is an integer.

. An integer d divides a Gauss integer a + bi in the ring Z[i] if and only if d divides both a
and b in Z. D)

Theorem 12.5.2

(a) Let 1T be a Gauss prime, and let 1T be its complex conjugate. Then 1T 1T is either an integer
prime or the square of an integer prime.

(b) Letp bean integer prime. Then p is either a Gaussprime or the product 1C1Cof a Gauss
prime and its complexconjugate.

(c) The integer primes p that are Gauss primesare thosecongruent to 3 modulo 4:

p=3, 7,11,19, ...
(d) Let p be an integer prime. The following are equivalent:

(i) p is the product of complex conjugate Gauss primes.

(ii) P is congruent 1 modulo 4, or p = 2: p = 2,5,13,17, . . .

(iii) P is the sum of two integer squares: p = a 2 + b2
.

(iv) The residue of -1 isa square modulo p.)

Proof of Theorem 12.5.2 (a)Let TC be a Gauss prime, say TC = a + bi. We factor the positive
integer Jr 1T == a

2 + b 2
in the ring of integers: JrTC = PI

. . . Pk. This equation is alsotrue in the

Gauss integers, though it is not necessarily a prime factorization in that ring. We continue

factoring eachPi if possible, to arrive at a prime factorization in Z[i]. Because the Gauss

integers have unique factorization, the prime factors we obJain must be associates of the two
factors Jr and Jr . Therefore k is at most two. Either TC 1T is an integer prime, or else it is the

product of two integer primes. Supposethat Jr TC = PI P2, and say that 1C is an associate of
the integer prime PI, i.e.,that TC ==

-.1::.PI or -.1::.iPl. Then TC is also an associate of PI, so is 7r , so

d
- 2

PI
= P2, an JrJr ==

Pl'

(b) If P is an integer prime, it is not a unit in Z[ i]. (The units are -.1::.1,xi.) So p isdivisible by

a Gauss prime Jr. Then Jr divides P , and P = p. So the integer TC 7r divides p2 in Z[i] and
also in Z. Therefore 1T n is equal to p or p2. If TeTe = p2, then 1f and p are associates,so p is
a Gauss prime.

Part (c) of the theorem follows from (b) and (d), so we neednot consider it further, and we
turn to the proof of (d). It is easy to see that (d) (i) and (d)(iii) are equivalent: If p = TC TC)))
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for someGauss prime, say TC = a + bi, then p = a2
+ b 2 is a sum of two integer squares.

Conversely, if p
= a 2 + b2

, then p factors in the Gauss integers: p = (a - bi)(a+ hi),and

(a) shows that the two factors are Gaussprimes. 0

Lemma 12.5.3 below shows that (d)(i) and (d)(iv) are equivalent, because (12.5.3)(a)
is the negation of (d)(i)and (12.5.3)(c) is the negation of (d)(iv).)

Lemma 12.5.3 Let p be an integer prime. The following statements are equivalent:

(a) p isa Gauss prime;

(b) the quotient ring R = Z[i]j (p) is a field;
(c) x2

+ 1 is an irreducible element of JFp[x] (12.2.8)(c).)

Proof The equivalence of the first two statements follows from the fact that Z[i]j (p) is a
field if and only if the principal ideal (p) of Z[i] is a maximal ideal, and this is true if and

only if p is a Gauss prime (see (12.2.9)).
What we are really after is the equivalence of (a) and (c), and at a first glance these

statements don't seem to be related at all. It is in order to obtain this equivalence that we

introduce the auxiliary ring R = Z[i]j (p). This ring can be obtained from the polynomial
ring Z[x] in two steps: first killing the polynomial x 2 + 1, which yields a ring isomorphic to
Z[i], and then killing the prime p in that ring. We may just as well introduce theserelations
in the opposite order. Killing the prime p first gives us the polynomial ring JFp[x], and then

killing x
2 + 1 yields R again,asis summed up in the diagram below.)

(12.5.4)) Z[x]
kill I

x 2 + 1t

Z[i])

kill

P
> 1F

p[X]

I kill

t
x2 + 1

> R
kill
P)

We now have two ways to decide whether or not R is a field.First, R will be a field if

and only if the ideal (p) in the ring Z[i] is a maximal ideal, which will be true if and only if p

is a Gauss prime. Second, R will be a field if and only if the ideal (x2 + 1) in the ring 1Fp [x]
is a maximal ideal, which will be true if and only if x2 + 1 is an irreducible element of that

ring (12.2.9). This shows that (a) and (c) of Theorem 12.5.2are equivalent. D

To complete the proof of equivalence of (i)-(iv) of Theorem 12.5.2(d), it suffices to

show that (ii) and (iv) are equivalent. It is true that -1 is a square modulo 2. We look at the

primes different from 2.The next lemma does the job:)

Lemma 12.5.5 Let p be an odd prime.

(a) The multiplicative group JF\037
contains an element of order 4 if and only if p == 1

modulo 4.

(b) The integer a solves the congruence x 2= -1 modulo p if and only if its residue a is an

element of order 4 in the multiplicative group IF\037.)))
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Proof. (a) This follows from a fact mentioned before, that the multiplicative group JF\037
is a

cyclic group (see (15.7.3\302\273. We give an ad hoc proof here.Theorderof an element divides the
order of the group.Soif a has order 4 in

IF\037,
then the order of

IF\037,
which is p

- 1,is divisible

by 4. Conversely, suppose that p
- 1 is divisible by 4. We consider the homomorphism

cp :
JF\037

-+
JF\037

that sends x \037 x
2 . The only elements of

JF\037
whose squares are 1 are :i:1(see

(12.2.20\302\273. So the kernel of cp is {:i:l}. Therefore its image, call it..H,has even order (p - 1)/2.
The first Sylow Theorem shows that H contains an element of order 2. That element is the

square of an element x of order 4.

(b) The residue a has order4 if and only if a
2 has order 2. There isjust oneelementin JFp of

order 2, namely the residue of -1. So a has order4 if and only if a 2 = -I. 0
This competes the proof of Theorem 12.5.2. 0)

You want to hit home run without going into spring training?

-Kenkichi Iwasawa)

EXERCISES)

Section 1 Factoring Integers

1.1. Prove that a positive integer n that is not an integer squareis not the square of a rational
number.

1.2. (partial fractions)

(a) Write the fraction 7j24 in the form a/8 + bj3.
(b) Prove that if n = uv, where u and v are relatively prime, then every fraction.

q = mjn can be written in the form q = aju + bjv.
1.3.(Chinese Remainder Theorem)

(a) Let nand m be relatively prime integers, and let a and b be arbitrary integers. Prove

that there is an integer x that solves the simultaneous congruence x == a modulo m
and x = b modulo n.

(b) Determine all solutions of these two congruences.)

1.4. Solve the following simultaneous congruences:

(a) x=3 modulo 8,x=2modulo 5,

(b) x == 3 modulo 15, x = 5 modulo8,x=2modulo 7,

(c) x = 13 modulo 43,x=7 modulo 71.

1.5. Let a and b be relatively prime integers. Prove that there are integersm and n such that
am + bn = 1 modulo ab.)))
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Section 2 Unique FactorizationDomains

2.1. Factor the following polynomials into irreducible factors in IF p[x].

(a) x 3 + x2 + x + 1,P == 2, (b) x 2 - 3x - 3,P = 5, (c) x
2

+ 1, P = 7

2.2. Compute the greatest common divisor of the polynomials x6
+ x 4 + x 3 + x2

+ x + 1 and
x 5

+ 2x 3 + x 2 + x + 1in Q[x].

2.3. How many roots does the polynomial x 2 - 2 have,modulo 8?

2.4. Euclid proved that there are infinitely many prime integers in the following way: If

Pi, . \302\267\302\267, Pk are primes, then any prime factor P of (Pl' . .Pk)+ 1must be different from
all of the Pi. Adapt this argument to prove that for any field F there are infinitely many

monic irreducible polynomials in F[x].

2.5. (partial fractions for polynomials)

(a) Prove that every element of C(x) x can be written as a sum of a polynomial and a

linear combination of functions of the form 1/ (x - a)i.
(b) Exhibit a basis for the field C(x) of rational functions as vector space over C.)

2.6. Prove that the following rings are Euclidean domains.

(a) Z[w], w == e
21ri / 3

, (b) Z[yC2].
2.7. Let a and b be integers. Prove that their greatest common divisor in the ring of integers

is the same as their greatest common divisor in the ring of Gauss integers.

2.8. Describe a systematic way to do division with remainder in Z[i]. Use it to divide 4 + 36i
by 5 + i.

2.9. Let F be a field. Prove that the ring F[x, x- 1] of Laurent polynomials (Chapter 11,
Exercise 5.7)is a principal ideal domain.

2.10. Prove that the ring 1R[[t]] of formal powerseries(Chapter 11, Exercise 2.2) is a unique
factorization domain.)

Section 3 Gauss's Lemma

3.1. Let cp denote the homomorphism Z[x] \037 JR defined by

(a) cp(x) == 1 + J2, (b) cp(x) ==
1 + J2.

Is the kernel of cp a principal ideal? If so, find a generator.

3.2. Prove that two integer polynomials are relatively prime elementsof Q[x] if and only if

the ideal they generate in Z[x] contains an integer.

3.3. State and prove a version of Gauss's Lemmafor Euclidean domains.

3.4. Let x, y, z, w bevariables. Prove that xy - zw, the determinant of a variable 2X2 matrix,
is an irreducible elementof the polynomial ring C[x, y, z, w].

3.5.(a) Consider the map 1/1':C[x, y] \037 C[t] defined by f(x, y) \037 f(t
2

, t3). Prove that its

image is the set of polynomials pet) such that
\037 (0) == O.

(b) Consider the map <p:C[x,y]
-+ Crt] defined by f(x, y) \037 (t

2 - t, t
3 - (2). Prove that

ker cp is a principal ideal, and find a generator g(x, y) for this ideal. Prove that the

image of cp is the set of polynomials pet) such that p(O) == pel). Give an intuitive

explanation in terms of the geometry of the variety {g == O} in (:2.)))
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3.6. Let a be a complex number. Prove that the kernel of the substitution map Z[x] \037 C that

sends x \037 a is a principal ideal, and describeits generator.)

Section 4 Factoring Integer Polynomials
4.1. (a)Factor x

9 - x and x9 - 1 in JF3[X]. (b) Factor x16 - x in IF2[X].

4.2. Prove that the following polynomials are irreducible:

(a) x2
+ 1, in IF 7 [x], (b) x 3 - 9, in JF 31 [x].

4.3. Decide whether or not the polynomial x
4 + 6x 3

+ 9x + 3 generates a maximal ideal

in Q[x].

4.4. Factor the integerpolynomial x
5

+ 2x 4 + 3x3
+ 3x + 5 modulo 2, modulo 3, and in Q.

4.5. Which of the following polynomials are irreduciblein Q[x]?

(a) x 2 + 27x+ 213, (b) 8x
3 - 6x + 1, (c)x3

+ 6x 2 + 1, (d) x5 - 3x 4 + 3.
4.6. Factor x

5
+ 5x + 5 into irreducible factors in Q[x] and in 1F2[X].

4.7. Factor x 3 + x + 1in IFp[x], when p = 2,3, and 5.

4.8. How might a polynomial f(x) = x 4+ bx2
+ c with coefficients in a field F factor in F[x]?

Explain with reference to the particular polynomials x4
+ 4x 2 + 4 and x4 + 3x2

+ 4.

4.9. For which primes p and which integers n is the polynomial x
n - p irreduciblein Q[x]?

4.10. Factor the following polynomials in Q[x]. (a) x2 + 2351x+ 125, (b) x
3

+ 2x 2 + 3x + 1,
(c) x

4 + 2x 3
+ 2x2 + 2x + 2, (d)x4

+ 2x 3 + 3x 2 + 2x + 1,(e) x
4 + 2x 3

+ x 2 + 2x + 1,
(I)x4

+2x2 +x + 1, (g) x8
+x

6 +x
4 +x 2+ 1,(h)x6 - 2x 5 - 3x2

+ 9x - 3, (j) x4
+x2 + 1,

(k) 3x5
+ 6x 4 + 9x 3

+ 3x 2 - 1, (I) x5
+ x 4 + x 2 + x + 2.

4.11.Use the sieve method to determine the primes <100,and discuss the efficiency of the
sieve: How quickly are the nonprimes filtered out?

4.12. Determine:)

(a) the monic irreducible polynomials of degree3 over IF3,

(b) the monic irreduciblepolynomials of degree 2 over IF 5,

(c) the number of irreduciblepolynomials of degree 3 over the field IF 5.

4.13. Lagrange interpolation formula:

(a) Letao, . . . , ad be distinct complex numbers. Determine a polynomial p(x) of degree
n, which has a1, . . . , an as roots, and such that p(ao) = 1.

(b) Let ao, . . . , ad and bo, . . . , bd be complex numbers, and suppose that the ai are
distinct. There is a unique polynomial g of degree < d such that g(ai) = hi for each
i = 0, . . . ,d.Determine the polynomial g explicitly in terms of ai and bi.

4.14. By analyzing the locus x 2 + y2
= 1, prove that the polynomial x2

+ y2
- 1 is irreducible

in C[x, y].

4.15. With reference to the Eisensteincriterion, what can one say when

(a) f is constant, (b) f = xn
+ bx n-l?

4.16. Factor x14
+ 8x 13 + 3 in Q[x], using reduction modulo 3 as a guide.

4.17.Using congruence modulo 4 as an aid, factorx4
+ 6x 3 + 7x2 + 8x + 9 in Q[x].)))
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*4.18. Let q == pe with p prime, and let r = pe-l. Prove that the cyclotomic polynomial
(xq - 1) j (xr - 1)is irreducible.

4.19. Factor x 5 - x4 - x 2 - 1modulo 2, modulo 16, and over Q.)

Section5 GaussPrimes

5.1. Factor the following into primes in Z[i]: (a) 1 - 3i, (b) 10, (c) 6 + 9i, (d) 7 + i.
5.2.Find the greatest common divisor in Z[i] of (a) 11 + 7i, 4 + 7i, (b) 11 + 7i, 8 + i,

(c)3 +4i, 18 - i.

5.3. Find a generator for the ideal of Z[i] generated by 3 + 4i and 4 + 7i.
5.4.Make a neat drawing showing the primes in the ring of Gauss integers in a reasonable

SIze range.

5.5. Let Jr be a Gauss prime. Prove that Jr and Jr are associates if and only if Jr is an associate
of an integer prime, or JrJr == 2.

5.6. Let R be the ring Z[ .J=3]. Prove that an integer prime p is a prime element of R if and

only if the polynomial x2 + 3 is irreducible in JF p[x].

5.7. Describe the residue ring Z[i]j(p) for each prime p.
5.8. Let R == Z[w], where w == e

2;ri/3. Make a drawing showing the prime elements of absolute
value < 10 in R.

*5.9. Let R == Z[w], where w == e 2Jri / 3 . Let p be an integer prime #= 3. Adapt the proof of
Theorem 12.5.2 to prove the following:

(a) The polynomial x 2 + x + 1has a root in JF p if and only if p
= 1 modulo 3.

(b) (p) is a maximal ideal of R if and only if p == -1 modulo 3.

(c) p factors in R if and only if it can be written in the form p == a
2 + ab + b2, for some

integers a and b.

5.10. \037a) Let a be a Gauss integer. Assume that a has no integer factor, and that aa is a

square integer.Prove that a is a square in Z[i].

(b) Let a, b, c be integers such that a and b are relatively
frime

and a 2 + b2 = c 2 . Prove

that there are integersm and n such that a == m
2 - n , b == 2mn, and c = m2 + n2

.)

Miscellaneous Problems

M.l. Let S be a commutative semigroup
- a set with a commutative and associativelaw

of composition and with an identity element (Chapter 2, Exercise M.4). Suppose the

Cancellation Law holds in S: If ab == ac then b == c. Make the appropriate definitions

and extend Proposition 12.2.14(a) to this situation.

M.2. Let VI, . . . , V n be elements of Z2, and let S be the semi group of all combinations

al VI + . . . + an Vn with non-negative integer coefficientsai, the law of composition being
addition (Chapter 2, ExerciseM.4).Determine which of these semigroups has unique

factorization (a) when the coordinates of the vectors Vi are nonnegative, and (b) in

general.

Hint: Begin by translating the terminology (12.2.1)into additive notation.)

1
Suggested by Nathaniel Kuhn.)))
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M.3. Let p be an integer prime, and let A be an n X n integer matrix such that A P = I but

A*I. Prove that n > p
- 1. Give an example with n = p -1.

*M.4. (a) Let R be the ring of functions that are polynomials in cos t and sin t, with real

coefficients. Prove that R is isomorphic to JR[x, y]/(x
2 + y2 -1).

(b) Prove that R is not a unique factorization domain.

(c) Prove that S = C[x, y]/ (x2+ T - 1)is a principal ideal domain and hence a unique

factorization domain.

(d) Determine the units in the rings Sand R.
Hint: Showthat S is isomorphic to a Laurent polynomial ring C[ u, u -1].,

M.5. For which integers n does the circlex2
+ y2 = n contain a point with integer coordinates?

M.6. Let R be a domain, and let I be an ideal that is a product of distinct maximal ideals in
two ways, say I = P1 . . .Pr = Ql...Qs. Prove that the two factorizations are the same,

except for the ordering of the terms.

M.7. Let R = Z[x].

(a) Prove that every maximal ideal in R has the form (p, j), where p is an integer prime
and f is a primitive integer polynomial that is irreducible modulop.

(b) Let I be an ideal of R generated by two polynomials f and g that have no common
factor other than :1:1. Prove that R/ I is finite.

M.S. Let u and v be relatively prime integers, and let R' be the ring obtained from Z by
adjoining an element a with the relation va = u. Prove that R' is isomorphic to Z[ \037]

and also to Z[ i].
M.9. Let R denote the ring of Gauss integers, and let W be the R-submodule of V = R 2

generated by the columns ofa 2X2 matrix with coefficients in R. Explain how to determine
the index[V:W].

M.IO. Let f and g be polynomials in C[x, y] with no common factor. Prove that the ring
R = C[x, y]/(f, g) is a finite-dimensional vector space overC.

M.II. (Berlekamp's method) The problem here is to factor efficiently in IF2[X]. Solving linear

equations and finding a greatest common divisor are easycomparedwith factoring. The

derivative f' of a polynomial f is computed using the rule from calculus, but working

modulo 2. Prove:)

(a) (squarefactors) The derivative f' is a square,and f' = 0 if and only if f is a square.
Moreover, gcd(f, f') is the product ofpowersof the square factors of f.

(b) (relatively prime factors) Let n be the degree of f. If f = uv, where u and v are

relatively prime, the ChineseRemainder Theorem shows that there is a polynomial
g of degree at most n such that g2

- g = Omodulo f, and g can be found by solving

a system of linear equations. Either gcd(f, g) or gcd(f, g - 1) will be a proper
factor of f.

(c) Usethis method to factor x 9 + x6
+ x 4 + 1.)))



C HAP T E R 13)

Quadratic Number Fields)

Rien n'est beau que Ie vrai.

-Hermann Minkowski)

In this chapter, we see how ideals substitute for elements in some interesting rings. We will

use various facts about plane lattices, and in order not to break up the discussion,we have

collected them together in Section 13.10 at the end of the chapter.
\302\267)

13.1 ALGEBRAIC INTEGERS)

A complex number ex that is the root of a polynomial with rational coefficients is called an
algebraicnumber. The kernel of the substitution homomorphism q;: Q[x] \n C that sends x

to an algebraic number ex is a principal ideal, as are all ideals of Q[x]. It is generated by the
monic polynomial of lowest degree in Q[x] that has ex as a root. If ex is a root of a product
gh of polynomials, then it is a root of one of the factors. So the monic polynomial of lowest

degree with root ex is irreducible. We call this polynomial the irreducible polynomial for ex

over Q.

\302\267An algebraic number is an algebraic integer if its (monic) irreducible polynomial over Q
has integer coefficients.

The cube root of unity (J) = e 2TCi / 3 = ! (-1 + H) is an algebraic integer because its

irreducible polynomialover Q is x 2 + x + 1,while ex =
\n (-1 + .J3) is a root of the irreducible

polynomial x 2 - x -
\n

and is not an algebraic integer.)

Lemma13.1.1A rational number is an algebraic integer if and only if it is an ordinary integer.)

This is true because the irreducible polynomial over Q for a rational number a is x-a. D

A quadratic number field is a field of the form Q[ Jd], where d is a fixed integer,

positive or negative, which is not a square in Q. Its elements are the complex numbers)

(13.1.2)) a + b-Jd, with a and b in Q,)

The notation Jd stands for the positive real square root if d > 0 and for the positive
imaginary square root if d < O.The field Q[ Jd] is a real quadratic number field if d > 0, and
an imaginary quadratic number field if d < O.)

383)))
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If d has a square integer factor, we can pull it out of the radical without changing the

field. So we assumed square-free.Thend canbe anyone of the integers)

d = - 1,:i:2,::i:3,:i:5,:f:6,:i:7 , :f:10, . . .)

We determine the algebraic integers in a quadratic number field Q[Jd] now. Let \037

denote Jd, let ex = a + b\037 be an element of Q[\037] that is not in Q, that is, with b * 0, and let
a' = a - b\037. Then ex and a' are roots of the polynomial)

(13.1.3)) (x - ex')(x - a) = x
2 - 2ax + (a2 - b 2

d),)

which has rational coefficients. Since ex is not a rational number, it is not the root of a linear
polynomial. So this quadratic polynomial is irreducible over Q.It is therefore the irreducible

polynomial for a over Q.)

Corollary 13.1.4 A complex number a = a + b\037 with a and b in Q is an algebraic integer if

and only if 2a and a 2 - b2
d are ordinary integers. 0)

This corollary isalsotrue when b = 0 and ex = a.

The possibilities for a and b dependoncongruencemodulo 4. Since d is assumed to be
square free, we can't have d == 0, so d == 1, 2, or 3 modulo 4.)

Lemma 13.1.5 Let d be a square-freeinteger,and let r be a rational number. If r'2d is an

integer, then r is an integer.)

Proof The square-freeintegerd cannot cancel a square in the denominator of ,.1. 0

A half integer is a rational number of the form m + i, where m is an integer.)

Proposition 13.1.6 The algebraic integers in the quadratic field Q[\037], with \0372 = d and d

square free, have the form a = a + b8,where:
\302\267If d == 2 or 3 modulo 4, then a and b are integers.
\302\267If d == 1 modulo 4, then a and b are eitherboth integers, or both half integers.

The algebraicintegersform a ring R, the ring of integers in F.)

Proof We assume that 2a and a 2 - b2
d are integers, and we analyze the possiblitiesfor a

and b. There are two cases:Eithera is an integer, or a is a half integer.

Case1:a isan integer. Then b 2d must be an integer. The lemma shows that b is an integer.

Case 2: a = m + ! is a half integer. Then a 2 = m
2

+ m + \037
will be in the set Z + l. Since

a2 - b 2d is an integer, b 2d is also in Z + !. Then 4b2
d is an integer and the lemma shows

that 2b is an integer. So b isa half integer, and then b 2d is in the set Z + ! if and only if d == 1

modulo 4.)

The fact that the algebraic integers form a ring is proved by computation.) o)))
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The imaginary quadratic case d < 0 is easier to handle than the real case, so we
concentrate on it in the next sections. When d < 0,thealgebraicintegersform a lattice in the

complex plane. The lattice is rectangular if d = 2 or 3 modulo 4, and \"isoscelestriangular\" if

d = 1 modulo 4.
When d == -1, R is the ring of Gauss integers, and the lattice is square.When d == -3,

the lattice is equilateral triangular. Two other examplesare shown below.)

. . . . . . . . . .)

. . . . . + + + +)

. . \037 . . . . . . .)
. . . . . . . 4 . .)

. . . . \" .. .. + It)

. . . . . . . . . .) . . . . . . . . . .)

. . . . . . . . .)

. . . . . . . + . .)

\037 . + - . . . . . .)

. . . . . . . . .)

. . . . . . . + + .)

d == -5) d=-7)

(13.1.7)) Integers in Some Imaginary Quadratic Fields.)

Being a lattice is a very special property of the rings that we consider here, and the geometry
of the lattices helps to analyze them.

When d == 2 or 3 modulo 4, the integers in Q[ 8] are the complex numbers a + b8, with

a and b integers. They form a ring that we denote by Z[\302\2435].A convenient way to write all the

integerswhen d == 1 modulo 4 is to introduce the algebraic integer)

(13.1.8)) 1] = i (1 + \302\2435).)

It is a root of the monic integer polynomial)

(13.1.9)) x
2 - x + h,)

where h = (1 - d)/4. Thealgebraicintegersin (Q[8] are the complex numbers a + b1],with

a and b integers. The ring of integers is Z [1]].)

13.2 FACTORING ALGEBRAIC INTEGERS

The symbol R will denote the ring of integers in an imaginary quadratic number field Q[8].
To focus your attention, it may be best to think at first of the case that d is congruent 2 or 3
modulo 4,so that the algebraic integers have the form a + b8,with a and b integers.)))



386 Chapter 13) Quadratic Number Fields)

When possible, we denote ordinary integers by Latin letters a, b, . . ., elements of R

by Greek letters a, fJ, . . ., and ideals by capital letters A, B, . . . We work exclusively with

nonzero ideals.
If a = a + b8is in R, its complex conjugate a = a - b8is in R too. These are the roots

of the polynomial x 2 - 2ax + (a2 - b 2d) that was introduced in Section 13.1.

\302\267The norm of a = a + b8 is N(a) = a a.

The norm is equalto lal2
and also to a 2 - b2

d. It is a positive integer for all ex =1= 0, and it has
the multiplicative property:)

(13.2.1)) N(f3y)
= N(fJ)N(y).)

This property givesus somecontrolof the factors of an element. If a =
fJy, then both terms

on the right side of (13.2.1) are positive integers. To checkfor factors of ex, it is enough to
look at elements fJ whose norms divide the norm of ex. This is manageable when N(a) is
small.For onething, it allows us to determine the units of R.)

Proposition 13.2.2 Let R be the ring of integers in an imaginary quadratic number field.

. An element ex of R is a unit if and only if N(a) = 1. If so, then a-l = a .
\302\267The units of Rare {:i:l}unlessd = -1 or -3.

\302\267When d = -1, R is the ring of Gauss integers, and the units are the four powers of i.
. When d = -3, the units are the six powers of e2 -rri/6 =

\037(1
+ J=\"3).)

Proof If a is a unit, then N(a)N(a-
1

) = N(l) = 1. SinceN(a) and N(a-
1

) are positive
integers, they are both equalto 1.Conversely, if N(a) = a a = 1, then ex is the inverse of a,
soa is a unit. The remaining assertions followby inspectionof the lattice R. 0)

Corollary 13.2.3 Factoring terminates in the ring of integers in an imaginary quadratic
number field.)

This follows from the fact that factoring terminates in the integers. If ex = fJy is a proper
factorization in R, then N(a) = N(fJ)N(y) isa properfactorization in Z. D)

Proposition 13.2.4 Let R be the ring of integers in an imaginary quadratic number field.
Assumethat d == 3 modulo 4. Then R is not a unique factorization domain except in the case
d == -1, when R is the ring of Gauss integers.)

Proof This is analogous to what happens when d = -5. Suppose that d == 3 modulo 4 and
that d < -1. The integers in R have the form a + b8 which a, b E Z, and the units are :i:l. Let

e = (1 - d)/2. Then)

2e = 1 - d = (1+ 8)(1- 8).)

The element 1 - d factors in two ways in R. Since d < -1, there is no element a + b8 whose
norm is equal to 2. Therefore 2, which has norm 4, is an irreducible element of R. If R were

a unique factorization domain, 2 would divide either 1 + 8 or 1 - 8 in R, which it does not:

i (1f:8) is not an element of R when d == 3 modulo 4. 0)))
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There is a similar statement for the case d = 2 modulo 4. (This is Exercise 2..2.) But
note that the reasoning breaks down when d == 1 modulo 4. In that case, i (1 + 8) is in R, and

in fact there are morecasesof unique factorization when d = 1modulo 4.A famous th eorem

enumerates these cases:)

Theorem13.2.5The ring of integers R in the imaginary quadratic field Q[Jd] is a u.nique

factorization domain if and only if d is one of the integers -1, -2,-3,-7,-11,-19,-43, -67, -163.)

Gauss proved that for these values of d, R has unique factorization. We will learn how to do
this.Healsoconjecturedthat there were no others. This much more difficult part of the theo-
rem was finally proved by Baker, Heegner, and Stark in the middle of the 20th century, after

people had worked on it for more than 150 years. We won't be ableto prove their theorem.)

13.3 IDEALS IN Z[ ,..j 5]

Before going to the general theory, we describe the ideals in the ring R = Z[vCS] as lattices
in the complex plane, using an ad hoc method.)

Proposition 13.3.1 Let R be the ring of integers in an imaginary quadratic number field.
Every nonzero ideal of R is a sublattice of the lattice R. Moreover,

. Ifd == 2 or 3 modulo 4, a sublattice A is an ideal if and only if 8A c A.

. Ifd= 1modulo 4, a sub lattice A is an ideal if and only if 17A C A (see (13.1.8\302\273.)

Proof A nonzero ideal A contains a nonzero elementa, and (a, (8) is an independent set
over JR. Also, A is discrete beca\037se it is a subgroup of the lattice R. ThereforeA is a lattice

(Theorem 6.5.5).
To be an ideal, a subset of R must be closed under addition and under multiplication

by elements of R. Every sublattice A is closed under addition and multiplication by integers.

If A is also closed under multiplication by 8, then it is closed under multiplication by an

element of the form a + b8,with a and b integers. This includes all elements of R if d == 2 or

3 modulo 4. So A is an ideal. The proof in the case d== 1 modulo 4 is similar. 0

We describe ideals in the ring R = Z[8], when 82 = -5.)

Lemma 13.3.2 Let R = Q[8]with 8
2 = -5. The lattice A of integer combinations of 2 and

1+ 8is an ideal.)

Proof The lattice A is closed under multiplication by 8, because 8 . 2 and 8 . (1+ 8) are

integer combinations of 2 and 1+ 8. 0)

Figure 13.3.4 shows this ideal.)

Theorem 13.3.3Let R = Z [8], where 8 = vCS,and let A be a nonzero ideal of R. Let ex be

a nonzero element of A of minimal norm (or minimal absolute value). Then either

. Theset (a, aeS) is a lattice basis for A, and A is the principal ideal (a), or

. The set (a, 1(a + a8\302\273 is a lattice basis for A, and A is not a principal ideal.)))
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l\037his theorem has the following geometric interpretation: The lattice basis (ex, (8)
of the principal ideal (a) is obtained from the lattice basis (1, 8) of the unit ideal R by

multiI>lying by a. If we write a in polar coordinates a == re
i

(), then multiplication by a
rotate s the complexplane through the angle () and stretches by the factor r. So all principal
ideals are similar geometric figures. Also, the lattice with basis (a, ! (ex + (8)) is obtained
from the lattice (2, 1 + 8) by multiplying by \037a.

All ideals of the second type are geometric
figures similar to the one shown below (see alsoFigure13.7.4).)

. * . * . * . * . * .)

* . * . * . * . * . *)

. * . * . * . * . * .)

* . * . * . * . * . *)

. * . * . * . * . * .)

(13..3.4 )) The Ideal (2, 1 + 8) in the Ring Z[ J=5].)

Similarity classesof ideals are called ideal classes, and the number of ideal classes is the
classnumber of R. The theorem asserts that the class number of Z[J=5] is two. Idealclasses
for other quadratic imaginary fields are discussedin Section 13.7.

Theorem 13.3.3 is based on the following simple lemma about lattices:)

Lemma 13.3.5 Let A be a lattice in the complex plane, let r be the minimum absolute value

among nonzero elements of A, and let y be an element of A. Let n be a positive integer.
The interior of the disk of radius k r about the point \037y

contains no element of A other than

the center k y. The centermay lie in A or not.)

Proof If fJ is an element of A in the interior of the disk, then IfJ
-

k YI < kr, which is to
say, InfJ

-
YI < r. Moreover, nfJ

- Y is in A. Since this is an element of absolutevalue less

than the minimum, n fJ -
Y

= O. Then fJ = * Y is the center of the disk. 0

Proofof Theorem 13.3.3. Let a be a nonzero element of an ideal A of minimal absolute value

r. Since A contains a, it contains the principal ideal (a), and if A = (a) we are in the first case.

Suppose that A contains an element f3 not in the principal ideal (a). The ideal(a) has

the lattice basis B = (a, (8), sowe may choose fJ to lie in the parallelogram neB) of linear
combinationsra + sa8 with 0 < r, s < 1. (In fact, we can, choose f3 so that 0 < r, S < 1. See
Lemma 13.10.2.) Because 8 is purely imaginary, the parallelogram isa rectangle.How large)))
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the rectangle is, and how it is situated in the plane, depend on a, but the ratio of the side
lengths is always 1: \037. We'l1 be done if we show that 13 is the midpoint ! (a + (8) of the

rectangle.

Figure 13.3.6 shows disks of radius r about the four vertices of such a rectangle,and

also disks of radius !r about three half lattice points, !a8, !(a + (8), and a + !a8. Notice
that the interiors of these seven diskscover the rectangle. (It would be fussy to check this by

algebra. Let's not bother. A glance at the figure makes it clear enough.)

According to Lemma 13.3.5,the only points of the interiors of the disks that can be

elements of A are their centers.
Sinc\037 13 is not in the principal ideal (a), it is not a vertex of the

rectangle.So13 must be one of the three half latticepoints.If 13
= a + ia8, then since a is in

A, !a8 will be in A too. So we have only two casesto consider:fJ =
\037a8

and 13 =
\037(a + (8).)

This exhausts the information we can get from the fact that A is a lattice. We now use the
fact that A is an ideal. Suppose that

\037a8
is in A. Multiplying by 8 shows that ia82 = -

\037a
is in

A. Then since a is in A, !a is in A too. This contradicts our choice of a as a nonzero element
of minimal absolute value. So f3 cannot be equal to

\037a8.
The remaining possibility is that f3

is the center i (a + (8) of the rectangle. If so, we are in the second case of the theorem. 0)

13.4 IDEAL MULTIPLICATION)

Let R be the ring of integers in an imaginary quadratic number field. As usual, the notation
A = (a, f3, . . . , y) means that A is the the ideal of R generatedby the elements a, 13, . . . , y.

It consists of all linear combinations of thoseelements,with coefficients in the ring.)))
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Since a nonzero ideal A is a lattice, it has a lattice basis (ex, f3) consisting of two

elements. Every element of A is an integer combination of ex and f3. We must be careful to
distinguish between the concepts of a lattice basis and a generating set for an ideal. Any

lattice basis generates the ideal, but the converse is false. For instance, a principal ideal is

generated as an ideal by a singleelement,whereas a lattice basis has two elements.
Dedekind extendedthe notion of divisibility to ideals using the following definition of

ideal multiplication:

\302\267Let A and Bbe ideals in a ring R. The product ideal AB consists of allfinite sums ofproducts)

(13.4.1)) Lexif3i,
with exiinA and f3iinB.

l)

This is the smallest ideal of R that contains all of the products ex f3.

The definition of ideal multiplication may not be quite as simple as one might hope,

but it works well. Notice that it is a commutative and associative law, and that it has a unit

element, namely R. (This is one of the reasonsthat R is called the unit ideal.))

(13.4.2)) AB == BA, A(BC) = (AB)C, AR = RA = A.)

We omit the proof of the next proposition, which is true for arbitrary rings.)

Proposition 13.4.3 Let A and B be idealsof a ring R.

(a) Let {al, . .. , am} and {{31, ..., f3n} be generators for the ideals A and B, respectively.
The product ideal A B is generated as ideal by the mn productsai f3 j: Every element of
AB is a linear combination of these products with coefficients in the ring.

(b) The product of principal idealsis principal: If A = (ex) and B = (fJ), then AB is the

principal ideal (ex f3) generated by the product ex fJ.

(c) Assume that A = (ex) is a principal idealand let B be arbitrary. Then AB is the set of

products exf3 with fJ in B: AB = aB. 0)

We go back to the example of the ring R = Z [8] with 8
2 = -5, in which)

(13.4.4 )) 2 . 3 = 6 = (I + 8)(1-
8).)

If factoring in R were unique, there would be an element y in R dividing both 2 and 1+ 8,
and then 2 and 1 + 8 would be in the principal ideal (y). Thereisno such element. However,

there is an ideal that contains 2 and 1 + 8, namely the ideal (2, 1 + 8) generatedby these two

elements, the one depicted in Figure 13.3.4.

We can make four ideals using the factors of 6:)

(13.4.5)) A=(2,1+8), A=(2,1-8), B=(3,1+8), B=(3,1-8).)
In each of these ideals, the generators that are given happen to form lattice bases.We denote

the last of them by B becauseit is the complex conjugate of B:)

(13.4.6)) B = {{3 I {3 E B}.)))
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It is obtained by reflecting B about the real axis. The fact that R = R implies that the

complex conjugate of an ideal is an ideal. The idealA , the complex conjugate of A, is equal
to A. This accidental symmetry of the lattice A doesn't occur very often.

We now compute some product ideals.Proposition 13.4.3(a) tells us that the ideal A A

is generated by the four products of the generators(2,1-
8) and (2, 1 + 8) of A and A:)

AA = (4,2+28,2-28,6).)

Each of the four generators is divisible by 2, so A A is contained in the principal ideal (2).
(Thenotation (2) stands for the id eal 2R here.)On the oth er hand, 2 is an element of A A

because 2 = 6 - 4.Therefore (2) C AA. This shows that AA = (2).

Next, the product AB is generatedby four products:)

AB= (6,2+28,3+38, (1+8)2).)

Each of these four elements is divisible by 1 + 8, and 1 + 8 is the difference of two of them,
so it is an element of AB. Therefore AB is equal to the principal ideal (1 + 8). One sees

similarly that A B = (1-
8) and that B B = (3).

The principal ideal(6)is the product of four ideals:)

(13.4.7)) (6) =
(2)(3)

= (AA)( B B) = (A B )(AB) = (1 - 8)(1+ 8))

Isn't this beautiful? The ideal factorization (6) = A A B B has provided a common refinement

of the two factorizations (13.4.4).

In the next section,we prove unique factorization of ideals in the ring of integers of

any imaginary quadratic number field. The next lemma is the tool that we will need.)

Lemma 13.4.8 Main Lemma. Let R be the ring of integers in an imaginary quadratic number
field.The product of a nonzero id ea l A of R and its conjugate A is a principal ideal, generated
by a positive ordinary integer n: AA = (n) = nR.)

This lemma would be false for any ring smaller than R, for example, if one didn't include

the elements with half integer coefficients, when d == 1 modulo 4.

Proof. Let
\037a, fJ) be a lattice basis for the ideal A. Then ( a , (3) is a lattice basis for A.

M oreov er, A and A are generated as ideals by these bases, so the four products aa, a f3,

,Ba2-and f3f3 generate the product ideal AA. The three elementsaa , f3f3, and ,Ba + a f3 are

in AA. They are algebraic integersequalto their complex conjugates, so they are rational
numbers,and therefore ordinary integers (13.1.1). Let n be their greatest common divisor in

the ring of integers. It is an integer combination of those elements, so it is also an element of

A A. Therefore (n) C A A.l! we show that n divides each of the four generators of A A in

R, it will follow that (n) = AA, and this will prove the lemma.

By\037onstruction,
n divides a a and fJfJ in Z, hence in R. We have to show that n divides

a f3 and ,Ba. How can we do this? Thereis a beautiful insight here. We us e the definition of

an algebraic integer. If we show that the quotients y = a f3ln and y = f3aln are algebraic

integers, it will follow that the y are elements of the ring of integers, which is R. This will

mean that n divides a f3 and f3a in R.)))
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The elements yand y are roots of the polynomial p(x) == x
2 - (y + y)x + (y y):)

- fJa + a f3

y+y== ,
n)

and y y = f3a af3 = aa f3f3
.

n n n n)

By its definition, n divides each of the three integers fJa + a fJ, a a, and fJfJ. The coefficients
of p(x) are integers, so yand y are algebraicintegers,aswe hoped. (See Lemma 12.4.2 for
the case that y happens to be a rational number.) D

Our first applications of the Main Lemma are to divisibility of ideals. In analogy with

divisibility of elements of a ring, we say that an ideal A divides another ideal B if there is an

ideal C such that B is the product idealAC.)

Corollary 13.4.9 Let R be the ring of integers in an imaginary quadratic number field.

(a) Cancellation Law: Let A, B, C be nonzero idealsof R. Then AB == AC if and only if
B = C. Similarly, AB C AC, if and only if B c C, and AB < AC if and only if B < C.

(b) Let A and B be nonzero ideals of R. Then A :> B if and only if A divides B, i.e.,if and

only if there is an ideal C such that B = A C.)

Proof (a) It is
clea\037that

if B == C, then AB == AC. If AB = AC, then AAB == AAC. By

the Main Lemma, AA = (n), so nB = nC. Dividing by n shows that B = C. The other
assertions are proved in the same way.

(b) We first consider the case that a principal ideal (n) generated by an ordinary integer n
contains an ideal B. Thenn divides every element of B in R. Let C == n- 1 B be the set of

quotients, the set of elements n- 1
fJ with fJ in B. You can checkthat C is an ideal and that

nC = B. Then B is the product ideal(n)C,so (n) divides B.

Now su ppo se that an idea l A contains B. We apply the Main Lemma again: AA = (n).

Then (n) = AA contains AB. By what has been shown, there is an ideal C such that
A B == (n)C = A AC. By the CancellationLaw, B == AC.

Conversely, if A divides B, say B = AC, then B = AC c AR == A. 0)

13.5 FACTORINGIDEALS)

We show in this section that nonzero ideals in rings of.integers in imaginary quadratic fields

factor uniquely. This follows rather easily from the Main Lemma 13.4.8and its Corollary
13.4.9,but before deriving it, we define the conceptof a prime ideal. We do this to be consistent

with standard terminology: the prime ideals that appear are simply the maximal ideals.)

Proposition 13.5.1 Let R be a ring. The following conditions on an ideal P of Rare
equivalent. An ideal that satisfies these conditions iscalledaprimeideal.\302\267

(a) The quotient ring RIP is an integral domain.

(b) P=j::. R, and if a and b are elementsof n such that ab E P, then a E P or b E P.

(c) P=/= n, and if A and B are ideals of R such that AB C P, then A C P or B C P.)

Condition (b) explains the term \"prime.\" It mimics the important property of a prime

integer, that if a prime p divides a product ab of integers, then p divides a or p divides b.)))
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Proof (a) <==> (b): The co nd itions for RIP to be an integral domain are that RIP=1={O}
and ab = 0 implies a = 0 or b = O. These conditions translate to P =I=-Rand ab E P implies
a E P or b E P.)

(b) =} (c): Suppose that ab E P implies a E P or b E P, and let A and B be ideals such that

AB C P. If A ct.. P, there is an element a in A that isn't in P. Let b be any element of B.

Then ab is in AB and therefore in P. But a is not in P, so b is in P. Since b was an arbitrary
element of B, BCP.

(c) => (b): Suppose that P has the property (c), and let a and b be elementsof R such that

ab is in P. The principal ideal (ab) is the product ideal (a)(b).Ifab E P, then (ab) c P,
and so (a) CP or (b) C P. This tells us that a E P or b E P. D)

Corollary 13.5.2 Let R be a ring.
(a) The zero ideal of R is a prime idealif and only if R is an integral domain.
(b) A maximal ideal of R is a prime ideal.
(c) A principal ideal (ex) is a prime idealof R if and only if ex is a prime element of R.)

Proof (a) This follows from (13.5.1)(a),becausethe quotient ring R/ (0) is isomorphic to R.

(b) This also follows from (13.5.1)(a), because when M is a maximal ideal, RIM is a field.
A field is an integral domain, so M is a prime ideal. Finally, (c) restates (13.5.1)(b)for a

principal ideal. 0

This completesour discussion of prime ideals in arbitrary rings, and we go backto the
ring of integers in an imaginary quadratic number field.)

Corollary 13.5.3 Let R be the ring of integers in an imaginary quadratic number field, let A

and B be ideals of R, and let P be a prime idealof R that is not the zero ideal.If P divides

the product ideal AB, then P dividesone of the factors A or B.)

This follows from (13.5.1)(c) when we use (13.4.9)(b)to translate inclusion into divisibility.D)

Lemma 13.5.4 Let R be the ring of integers in an imaginary quadratic number field, and let
B be a nonzeroidealof R. Then

(a) B has finite index in R,

(b) there are finitely many ideals of R that contain B,

(c) B is contained in a maximal ideal, and

(d) B is a prime idealif and only if it is a maximal ideal.)

Proof (a)isLemma 13.10.3(d), and (b) follows from Corollary 13.10.5

(c)Among the finitely many ideals that contain B, there must be at least one that is maximal.

(d) Let P be a nonzero prime ideal.Then by (a), P has finite index in R. So R/ P is a
finite integral domain. A finite integral domain is a field. (This is Chapter11,Exercise7.1.)
Therefore P is a maximal ideal. The converseis (13.5.2)(b). 0)))
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Theorem 13.5.5 Let R be the ring of integers in an imaginary quadratic field F. Every

proper ideal of R is a productof prime ideals. The factorization of an ideal into prime ideals

is unique except for the ordering of the factors.

Proof If an ideal B isa maximal ideal, it is itself a prime ideal.Otherwise, there is an ideal
A that properly contains B. Then A divides B, say B == AC. The cancellation law shows
that C properly contains B too. We continue by factoring A and C. Since only finitely many

ideals contain B, the process terminates, and when it does, all factors will be maximal and

therefore prime.
If Pl'\" Pr = Ql'\" Qs,with Pi and Qj prime, then P l divides QI'\" Qs, and

therefore Pl divides one of the factors, say Ql. Then PI contains Ql, and since Ql is
maximal, PI == Ql. The uniqueness of factorization followsby induction when one cancels

PI from both sidesof the equation. D

Note: This theorem extendsto rings of algebraic integers in other number fields, but it is a

very special property. Mostrings do not admit unique factorization of ideals.Thereasonis
that in most rings, P :::)B doesnot imply that P divides B, and then the analogy between

prime ideals and prime elementsis weaker. 0

Theorem 13.5.6 The ring of integers R in an imaginary quadratic number field is a unique
factorization domain if and only if it is a principal idea] domain, and this is true if and only if
the classgroup C of R is the trivial group.)

Proof A principal ideal domain is a unique factorization domain (12.2.14).Conversely,

suppose that R is a unique factorization domain. We must show that every ideal is principal.
Since the product of principal ideals is principal and since every nonzero ideal is a product
of prime ideals,it suffices to show that every nonzero prime idealis principal.

Let P be a nonzero prime idealof R, and let ex be a nonzero element of P. Then ex is

a product of irreducible elements, and becauseR has unique factorization, they are prime
elements(12.2.14).Since P is a prime ideal, P contains one of the prime factors of ex, say Jr.

Then P contains the principal ideal(Jr).But since JT is a prime element, the principal ideal
(Jr)isa nonzeroprime ideal, and therefore a maximal ideal. SinceP contains (n), P == (n).

So P is a principal ideal. 0)

13.6 PRIME IDEALS AND PRIME INTEGERS)

In Section 12.5,we saw how Gauss primes are related to integer primes.A similar analysis

can be made for the ring R of integers in a quadratic number field, but we should speak of

prime ideals rather than of prime elements. This complicatesthe analoguesof some parts of

Theorem 12.5.2. We consider only those parts that extend directly.)

Theorem 13.6.1 Let R be the ring of integers in an imaginary quadratic number field.

(a) Let P bea nonzero prime ideal of R. Say that P P == (n) where n is a positive integer.
Thenn is either an integer prime or the square of an integer prime.

(b) Let p be\037n integer prime. The principal ideal (p) = pR is either a prime ideal, or the
ptoduct PP of a prime ideal and its conjugate.)))
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(c) Assume that d == 2 or 3 modulo 4. An integer prime p generates a prime ideal(p) of R

if and only if d is not a square modulo p, and this is true if and only if the polynomial
x2 - d is irreducible in IF p [x].

(d) Assume that d = 1 modulo 4, and let h = 1(1- d).An integer prime p generates a

prime ideal(p) of R if and only if the polynomial x 2 - x + h isirreduciblein JF p[x].)

Corollary 13.6.2 With the notation as in the theorem\" any proper ideal strictly larger than

(p) is a prime, and therefore a maximal, ideal. D)

. An integer prime p is said to remain prime if th e principalideal(p) = pR is a prime ideal.

Otherwise, the principal ideal(p) is a product P P of a prime idealand its conjugate, and in

this case the prime p is said to split. If in addition P = P, the prime p is said to ramify.

Going back to the case d = -5, the prime 2 ramifies in Z[J=5] because (2) = A A and

A == A. The prime 3 splits. It does not ramify, because (3) = BB and B* B (see(13.4.5).
Proof of Theorem 13.6.1. The proof follows that of Theorem 12.5.2 closely, so we omit the

proofs of (a) and (b). We discuss (c) in order to review the reasoning. Suppose d = 2 or 3
modulo 4.ThenR =

Z[8] is isomorp}1ic to the quotient ring Z[x]j(x
2 - d). A prime integer

p remains prime in R if and only if R = Rj(p) is a field. (We are using a tilde here to avoid

confusion with complex conjugation.) This leads to the di\037gram)

(13.6.3)) Z[x]

kernel

1(x2 - d)

Z[8])

kernel

(p)
JF [ ]> p x

1
kernel

(x
2 - d)

> R
kernel

(p))

This diagram shows that R is a field if and only if x 2 - d is irreducible in JFp[x].

The proof of (d) is similar. D)

Proposition 13.6.4 Let A, B, C be nonzeroideals with B \037 C. The index [B: C] of C in B

is equal to the index [AB:AC].)

Proof Since A is a product of prime ideals,it suffices to show that [B: C] = [PB:PC]when

P is a nonzero prime ideal.The lemma for an arbitrary ideal A follows when we multiply by

one prime ideal at a time.

There is a prime integer p such that either P = (p) or PP = (p) (13.6.1).IfP is the

principal ideal (p), the formula to be shown is [B: C] = [pB: pC], and this is rather obvious

(see (13.10.3)(c\302\273).

Suppose that (p) = P P. We inspect the chain of ideals B :J PB ::> P PB = pB.
The cancellation law shows that the inclusions are strict, and [B:pB] = p2.Therefore)))
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[B: PB] = p. Similarly, [C: PC] = p (13.10.3)(b).The diagram below, together with the
multiplicative property of the index (2.8.14), shows that [B: C] = [PB: PC].)

B \037 C

u u

PB \037 PC)
o)

13.7 IDEAL CLASSES)

As before, R denotes the ring of integers in an imaginary quadratic number field. We

have seen that R is a principal ideal domain if and only if it is a unique factorization
domain (13.5.6).We define an equivalence relation on nonzero idealsthat is compatible with

multiplication of ideals, and such that the principal ideals form one equivalenceclass.
. Two nonzero ideals A and A' of R are similar if, for some complex number A,)

(13.7.1)) A' = AA.)

Similarity of ideals is an equivalence relation whose geometric interpretation wasmentioned
before:A and A' are similar if and only if, when regarded as lattices in the complex plane, they
are similar geometric figures, by a similarity that is orientation-preserving. To see this, we

note that a lattice looks the sameat all of its points. So a geometricsimilarity can be assumed

to relate the element 0 of A to the element 0 of A'. Then it will be described as a rotation
followed by a stretching or shrinking, that is, as multiplication by a complex number A.

\302\267
Similarity classes of ideals are called idealclasses.The class of an ideal A will be denoted

by (A).)

Lemma 13.7.2 The class(R) of the unit ideal consists of the principal ideals.)

Proof If (A) = (R), then A = 'AR for some complex number 'A. Since 1 is in R, A is an

element of A, and therefore an element of R. Then A is the principal ideal (A). 0

We saw in (13.3.3) that there are two ideal classes in the ring R = Z [8], when 82 = -5.
Both of the ideals A = (2, 1+ 8) and B = (3, 1 + 8) representthe class of nonprincipal
ideals. They are shown below, in Figure 13.7.4. Rectangles have been put into the figure to

help you visualizethe fact that the two lattices are similar geometric figures.
We see below (Theorem 13.7.10)that there are always finitely many ideal classes.The

number of ideal classes in R is called the classnumber of R.)

Proposition 13.7.3 The ideal classes form an abelian group C, the class group of R, the law

of composition being defined by multiplication of ideals: (A) (B) = (AB):

(classof A) (class of B) = (class of A B) .)

Proof Suppose that (A) = (A') and (B) = (B'), i.e.,A' = 'AA and B' = yB for some

complex numbers A and y. Then A' B' =
AyAB, and therefore (AB) = (A' B').This shows

that the law of compositionis welldefined.The law is commutative and associative because)))
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multiplication of ideals is commutative and associative, and the class (R) of the unit ideal is
an identity element that we denote by 1, as usual. The only group axiom that isn't obvious

is that every class (A) has an inverse. But this follows from the Main Lemma, 'which asserts

that A A is a principal ideal (n). Since the class of a principal ideal is 1, ( A ) (A) = 1 and
( A ) = (A)-l. 0)

The classnumber is thought of as a way to quantify how badly uniqu1e factorization

of elc;ments fails. More precise information is given by the structure of Cas a group.As we

have seen, the class number of the ring R = Z[ J=5] is two. The classgroup of R has order
two. One consequenceof this is that the product of any two nonprincipal ideals of R is a
principal ideal.We saw several examples of this in (13.4.7).)

. * . * . * . * . * .) . * . . * . . * . . *)

* . * .) . * . *) * .)

. * . *) *) * . * .) . .)

* .)

. .)

*) * .) . * . *) . *) . *)

. *) * . * . * . *) *) . * .) * . . * .)

(13.7.4)) The Ideals A = (2, 1 + <5) and B = (3, 1 + 8),82 == -5.)

Measuring an Ideal

The Main Lemma tells us that if A is a nonzero ideal, then AA. = (n) is the principal
idealgeneratedby a positive integer. That integer is defined to be the norm of A. It will be

denoted by N(A):)

(13.7.5)) N(A) = n, if n is the positive integer such that A A = (n).)

The norm of an ideal is analogous to the norm of an element. As is true for norms of

elements, this norm is multiplicative.)

Lemma 13.7.6If A and B are nonzero ideals, then N(AB) = lV(A)N(B).Moreover, the

norm of the principal ideal (a) is equal to N(a), the norm of the element a.)

Proof Say that N(A) = m and N(B) = n. This means that .AA = (m) and BB = (n).
Then ( AB )(AB) = (A A)( B B) = (m)(n) = (mn). SoN(AB.')

= mn.

Next, suppose -that A is the principal ideal (a), and le.t n = N(a) (= a a). Then
A A = (a ) (a) = (aa) = (n),soN(A) = n too. 0)))
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We no'w have four ways to measure the size of an ideal A:

\302\267the ntorm N(A),
. the irldex [R:A] of A in R,

. the area \037(A) of the parallelogram spanned by a lattice basis for A,

. the minimum value taken on by the norm N(a), of the nonzero elements of A.)

The relations among these measures are given by Theorem 13.7.8 below. To state that

theorem, we need a peculiar number:)

(13.7.7))

2 \037 ifd = 20r3 (mod4)
/1= V3

\037
if d = 1 (mod 4).)

Theorem13.7.8IJetR be the ring of integers in an imaginary quadratic number field, and
let A be a nonzero ideal of R. Then

\037(A)

(a) N(A) = [R:A.] =
\037(R)

'

(b) If a is a nonzero element of A of minimal norm, N(a) < N(A)/1.)

Themost important JPoint about (b) is that the coefficient J-L doesn't depend on the ideal.

Proof (a) We refer to Proposition 13.10.6 for the proof that [R: A] =
\037\037\037\037

. In outline, the

proof that N(A) =
[l\037: A] is as follows. Reference letters have been put over the equality

symbols.Letn == N(A\\). Then)

21 2
[

-
]

3

[

-

]
4

[
-

]
5 2

n = [R:nR] =: R:AA = [R:A] A:AA == [R:A] R:A ==
[R:A] .)

The equality la be led 1 is Lemma 13.10.3(b), the one labeled 2 is the Main Lemma,which

says that nR = AA, and 3 is t he multiplicati ve property o\302\243!he
index. The equality 4 follows

from Proposition 13.6.4:[A : AA] = [RA : AA]
= [R : A]. Finally, the ring R is equal to

its complex conjugate R, and 5 comesdown to the fact that [R :A ]
= [R: A].

(b) When d == 2, 3 module. 4, R has the lattice basis(1,0), and when d = 1 modulo 4, R has
the lattice basis (1, 1]). Th,e area \037(R) of the parallelogram spanned by this basis is)

(13.7.9)) \037(R) =

I

JJdf
\037f

d = 2 or 3 modulo 4
.

!JJdf Ifd == 1 modulo 4.)

So J1- =
\037

\037(R). The length of the shortest vector in a lattice is estimated in Lemma

13.10.8: N(a) < 1 \037(A). We substitute \037(A) = N(A)\037(R) from part (a) into this

inequality, obtaining N(a) <\037N(A)J-L. 0)))
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Theorem 13.7.10

(a) Every ideal classcontains an ideal A with norm N(A) <
f.-L.

(b) The class group C is generated by the classes of prime ideals P whosenorms are prime

integers p <
f.-L.

( c) The class group Cis finite.)

Proof of Theorem 13.7.10. (a) Let A be an ideal. We must find an ideal C in the class (A)

whose norm is at most f.-L. We choose a nonzero element a in A, with N(a) < N(A)f.-L.Then
A contains the principal ideal (a), so A divides (ex), i.e., (ex) == A C for some ideal C, and
N(A)N(C) = N(a) <

N(A)f.-L. Therefore N(C) <
f.-L. Now since AC is a principal ideal,

(C)= (A)-l
= ( A ). This shows that the cla ss (A ) contains an ideal, namely C, whose norm

is at most f.-L. Then the class (A) contains C, and N( C) = N( C) <
f.-L.)

(b) Every class contains an ideal A of norm N(A) <
f.-L. We factor A into prime ideals:

A = Pl ... Pk. Then N(A) == N(Pl)'\" N(Pk), so N(Pi) <
f.-L for each i. The classes of

prime idealswith norm <
J.L generate C. The norm of a prime ideal P is either a prime

integer p or the squarep2 of a prime integer. If N(P) == p2, then P == (p) (13.6.1). This is
a principal ideal,and its class is trivial. We may ignore those primes.)

(c) We show that there are finitely many ideals A with norm N(A) <
f.-L. If we write such an

ideal as a product of prime ideals, A == Pl
. . .

Pk, and if mi == N(Pi), then ml . . .
mk

<
f.-L.

There are finitely many sets of integersm i, each a prime or the square of a prime, that satisfy
this inequality, and there are at most two prime idealswith norms equal to a given integer
mi. Sothere are finitely many sets of prime idealssuch that N(Pl . . .

Pk) <
J-L. 0)

13.8 COMPUTING THE CLASSGROUP)

The table belowlists a few class groups. In the table, Lf.-L J denotes the floor of f.-L, the largest

integer < /1. If n is an integer and if n <
f.-L, then n <

Lf.-L J.)

d LJ-LJ class group
-2 1 C11

-5 2 C2
-7 1 Cl
-14 4 C4

-21 5 C2 X C2

-23 2 C 3
-47 3 Cs
-71 4 C7

(13.8.1 ) Some Class Groups)

To apply Theorem 13.7.10, we examine the prime integers p <
LJ.lJ. If p splits (or

ramifies) in R, we include the class of one of its two prime ideal factors in our set of)))
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generators for the class group. The classof the other prime factor is its inverse. If p remains

prime, its class is trivial and we discard it.)

Example 13.8.2 d = -163. Since -163= 1modulo 4, the ring R of integers is IE [17], where

1}
==

! (1 + 8), and LJ-iJ
== 8. We must inspect the primesp = 2,3,5, and 7. If p splits, we

include one of its prime divisors as a generator of the class group. According to Theorem
13.6.1,an integer prime p remains prime in R if and only if the polynomial x 2 - x + 41is
irreducible modulo p. This polynomial happens to be irreducible modulo each of the primes
2,3,5, and 7.Sothe class group is trivial, and R is a unique factorization domain. 0)

For the rest of this section, we consider cases in which d == 2 or 3 modulo 4. In these
cases,a prime p splits if and only if x

2 - d has a root in IF p' The table below tells us which

primes need to be examined.)

p <
f.-L)

-d < 2

-d < 6
-d < 17
-d < 35

-d < 89

-d < 123)

2
2,3
2,3,5
2,3,5,7
2,3,5,7,11)

(13.8.3)) Primes Less Than f.-L, When d = 2 or 3 Modulo4)

If d = -lor -2, there areno primes less than J-i, so the class group is trivial, and R is a unique
factorizationdomain.

Let's suppose that we have determined which of the primes that need to be examined
split. Then we will have a set of generators for the class group. But to determineits structure

we still need to determine the relations among these generators. It is best to analyze the

prime 2 directly.)

Lemma 13.8.4 Supposethat d = 2 or 3 modulo 4. The prime 2 ramifies in R. The prime
divisor P of the principal ideal (2) is

. P = (2,1 + 8), if d = 3 modulo 4,

. P == (2,8), if d = 2 modulo 4.

The class(P) has order two in the class group unlessd = -lor -2.In those cases, P is a

principal ideal.In all cases, the given generators form a lattice basis of the ideal P.)

Proof Let P be as in the statement of the lemma. We compute the product ideal P P. If
d =3modulo 4, P P = (2,1- 8)(2,1 + 8)= (4,2+28,2- 28,1- d), and if d=2 modulo

4, p P = (2,-8)(2,8) = (4,28, -d). In both cases, P P == (2). Theorem 15.10.1 tells us that

the ideal (2) is either a prime idealor the product of a prime ideal and its conjugate, so P
must be a prime ideal.)))
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We note also that P == P, so 2 ramifies, (P) == (p)-l, and (P) has order 1 or 2 in the

class group. It will have order 1 if and only if it is a principal ideal.This happens when d == -1

or -2. If d == -1, P == (1 + 8), and if d == -2, P == (8). When d < -2, the integer 2 has no
properfactor in R, and then P is not a principal ideal. 0)

Corollary 13.8.5 If d = 2 or 3 modulo 4 and d < -2, the class number is even.) o)

Example13.8.6d == - 26. Table 13.8 tells us to inspectthe primes p == 2, 3, and 5. The
polynomialx2

+ 26 is reducible modulo 2, 3, and 5, so all of those primes split.Let'ssay that)

(2) == P P, (3) == Q Q, and (5) == SSe

We have three generators (P), (Q), (S)for the class group, and (P) has order2.How

can we determine the other relations among these generators? The secret method is to
compute norms of a few elements, hoping to get someinformation. We don't have to look
far: N(l + 8) == 27 == 3

3 and N(2 + 8) == 30 == 2 . 3 .5.

I.jet ex == 1 + 8. Then a a == 3
3 . Since (3) == Q Q, we have the ideal relation)

(a )(a) == ( Q Q)3.)

Because ideals factor uniquely, the principal ideal (a) is the product of one half of the terms

on the right, and ( ex) is the product of the conjugates of those terms. We note that 3 doesn't

divide a in R. Therefore Q Q == (3) doesn't divide (a). It follows that (a) is either Q3 or

Q3.Which it is depends on which prime factor of (3) we label as Q.
In eithercase,(Q)3

== 1, and (Q) has order 1or 3 in the class group. We check that 3

has no proper divisor in R. Then since Q divides (3), it cannot be a principal ideal. So (Q)
has order 3.

Next, let f3
== 2 + 8. Then f3f3

== 2 . 3 .5, and this gives us the ideal relation)

(f3)(f3)== PPQQSS.)

Therefore the principal ideal (fJ) is the product of one half of th e ideals on the right and (fi)

is the product of the conjugates of those ideals. We know that P == P. If we don't care which

prime factors of (3) and (5) we labelas Q and S, we may assume that (f3)
== PQ S. This

gives us the relation (P)(Q)(5) == 1.

We have found three relations:)

{p)2== 1, (Q)3 == 1, and (P) (Q) (5) == 1.)

These relations show that (Q) = (S)2, (P) == (S)3, and that (5) has order 6.Theclassgroup

is a cyclic group of order 6, generatedby a prime ideal divisor of 5.)

The next lemma explains why the method of computing norms works.)

Lemma 13.8.7 Let P, Q, 5 be prime ideals of the ring R of imaginary quadratic inte-

gers, whose norms are the prime integersp, q,s, respectively. Suppose that the relation)))
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(p)i (Q)j (S)k = 1 holds in the class group C. Then there is an element ex in R with norm

equal to pi qj sk.)

Proof By definition, (p)i(Q)J(S)k = (piQjSk). If {piQjSk)= 1,the ideal pi QjSk is

principal, say pi QjSk = (ex). Then

(a ) (ex) = (p p)i(QQ)j(SS)k
== (p)i(q)j(s)k ==

(piqjsk).)

Therefore N(a) = exex == piqjsk.

We compute one more classgroup.)

D)

Example 13.8.8 d == -74. The primes to in sp ect are 2,1.: 5, and 7.
Here_2 ramifies, 3 and 5

split, and 7 remains prime.Say that (2) = PP, (3) =
QQ\037 and (5) = SS. Then (P), (Q),

and (S) generate the class group, and (P) has order 2 (13.8.4). We note that)

N(l + 8) == 75 = 3 .5 2

N( 4 + 8) == 90 == 2 . 3 2 . 5

N(13 + 8) = 243 == 3 5

N(14 + 8) == 270 == 2 . 3 3 .5)

The norm N(13 + 8) shows that (Q)5 = 1, so (Q) has order 1or 5.Since 3 has no

proper divisor in R, Q isn't a principal ideal. So (Q) has order 5. Next, N(l + 8) shows
that (S)2 = (Q) or (Q ), and therefore (S) has order 10. We eliminate (Q) from our set of

generators. FinaJly, N(4+8) gives us one of the relations (P) (Q)2(S) == lor (P) (Q)2( S )
== 1.

Either one allows us to eliminate (P) from our list of generators. The classgroup is cyclic of

order 10, generated by a prime idealdivisor of (5).)

13.9 REAL QUADRATICFIELDS

We take a brief look at real quadratic number fields, fields of the form Q[Jd], whered isa
square-free positive integer, and we use the fieldQ[J2] as an example. The ring of integers
in this field is a unique factorization domain:)

(13.9.1)) R ==
Z[J2]

== {a + bJ21 a, b E Z}.)

It can be shown that unique factorization of ideals into prime ideals is true for the ring
of integers in any real quadratic number field, and that the class number is finite [Cohn],

[Hasse]. It is conjectured that there are infinitely many values of d for which the ring of

integers has unique factorization.

When d is positive, Q[Jd] is a subfield of the real numbers. Its ring of integersis not

embedded as a lattice in the complex plane. However, we can representR as a lattice in JR2

by associating to the algebraic integer a + bJd the point (u, v) of JR2, where)

(13.9.2)) u == a + b-Jd, v = a - b-Jd.)

The resulting lattice is depicted below for the case d == 2. The reason that the hyperbolas
have been put into the figure will be explained presently.)))
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Recall that the field Q [Jd] is isomorphic to the abstractly constructed field)

(13.9.3)) F ==
Q[x]/(x

2 - d).)

If we replaceQ[Jd] by]?and denote the residue of x in F by 0, then 8 is an abstract square
root of (I rather than the positive real squareroot, and F is the set of elementsa + bo,with

a and b in Q. The coordinates u, v represent the two ways that the abstractly defined field
F can be embeddedinto the real numbers, namely, u sends 0 \037 Jd and v sends 8 \037 -Jd.

For a == a + bo E Q [8], we denote by a
l the \"conjugate\" element a - bo.The nornl

of a is)

(13.9.4)) N(a) == ala == a
2 - b2

d.)

If a is an algebraic integer, then N(a) is an ordinary integer. The norm is multiplicative:)

(13.9.5) N(afJ) == N(a)N(fJ).

However, N(a) is not necessarily positive. It isn'tequalto lal
2 .

. . .. .. . .. . .. .. . .. .. .. . .. . .. .. .. .. .. . .. . .. .. . .. .. .. . . .. . .. .. ..
(13.9.6) The Lattice Z[ J2].)

One significant difference between real and imaginary quadratic fields is that the ring

of integers in a real quadratic field always contains infinitely many units. Since the norm of
an algebraic integer is an ordinary integer, a unit must have norm :f:1, and if N(a) == :f:1,

then the inverse of a is :f::a
l
, so a is a unit. For example,)

(13.9.7)) a = 1+ h, a2 = 3 + 2h, a 3 = 7 + 5h, . . .)

are units in the ring R = Z[ J2]. The element ex has infinite order in the group of units.

The condition N(ex) == a
2 - 2b2 =:f:l for units translates in (u, v)-coordinates to)

(13.9.8)) u v = :f:l.)))
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So the units are the points of the lattice that lie on one of the two hyperbolas u v = 1 and
u v == -1, the ones depicted in Figure 13.9.6. It is remarkable that the ring of integers in a real

quadratic field always has infinitely many units or, what amounts to the samething, that the

lattice always contains infinitely many points on these hyperbolas. This is far from obvious,

either algebraically or geometrically,but a few such points are visible in the figure.)

Theorem 13.9.9 Let R be the ring of integers in a real quadratic number field.The group of

units in R is an infinite group.)

We have arranged the proof as a sequenceof lemmas. The first one follows from
Lemma 13.10.8in the next section.)

Lemma 13.9.10 For every \037o > 0, there exists an r > 0 with the following property: Let L
be a lattice in the (u, v)-plane P, let \037(L) denote the area of the parallelogram spanned
by a lattice basis, and suppose that \037(L) <

\037o. Then 1.J contains a nonzero element y with

IYI < r. D)

Let \037o and r be as above. For s > 0,we denote by Ds the elliptical disk in the (u, v)

plane defined by the inequality s-2u 2 + s2v2 < r 2 . So ])1 is the circular disk of radius r. The
figure below shows three of the disks Ds.)

. . .. .. .. .. . .. .. . .. .. .. . .. .. .. .)

. .
. . .. . .. .. . .. .. .. . .. .. . .. .. . .)

(13.9.11) El1iptical Disks that Contain Points of the Lattice.

Lemma 13.9.12 With notation as above, let L be a lattice that contains no point on the
coordinateaxesexceptthe origin, and such that \037(L) < \037o.

(a) For any s > 0, the elliptical disk Ds contains a nonzero elementof L.

(b) For any point ex = (u, v) in the disk Ds, luvl
< ; .)

Proof (a) The map cp :}R2 \037 }R2 defined by cp(x, y) = (sx, s-l y) maps Dl to Ds. The

inverseimage L' =
cp-l L of L contains no point on the axes except the origin. We note that

cp is an area-preserving map, because it multiplies one coordinate by s and the other by s-l.)))
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Therefore \037(L')
< \037o. Lemma 13.9.10 shows that the circular disk DI contains a nonzero

element of L', say y. Then a == q;(y) is an element of 1-1 in the elliptical disk Ds.

(b) The inequality is true for the circular disk D1. Let cp be the map defined above. If
a == (u, v) is in D,\037\" then cp-l(a) == (s-l u , sv) is in Dl, so luvl == l(s-lu)(sv)1 <

\037
. 0)

Lemma 13.9.13 With the hypotheses of the previous lemma, the lattice L contains infinitely

many points (u, v) with luvl <
\037

.)

Proof We apply the previous lemma.For larges, the disk D.\037,is very narrow, and it contains

a nonzero elcment of [J, say as- The elementsas cannot lie on the el-axis but they must

become arbitrarily close to that axis as s tcnds to infinity. It follows that there are infinitely

many points among them, and if as == (us, vs), then IUsvsl <
\037

. 0

Let R be the ring of integers in a real quadratic field, and let n be an integer. We call
two elements f3i of R congruent modulo n if n divides /3] -

f32 in R. When d == 2 or 3 modulo
4 and f3i

== mi + ni8, this simply means that ml = m2 and nl =
n2 modulo n. The same is

true when d = 1modulo 4, except that one has to write f3i
== mi + n(rJ. In all cases, there are

n2
congrucnce classcs modulo n.

Theorem 13.9.9follows from the next lemma.)

Lemma 13.9.14 Let R be the ring of intcgers in a real quadratic number field.

(a) 1'hereis a positive integer n such that the set S of clements of R with norm n is infinite.

Moreover, there are infinitcly many pairs of elements of S that are congruent modulo n.

(b) If two elemcnts /31 and /32 of R with norm n are congruent modulo n, then f321 f3l is a
unit of R.)

Proof (a) The lattice R contains no point on the axes other than the origin, because u and
v aren't zero unless both a and b are zero.If a is an element of R whose image in the

plane is the point (u, v), then IN(a) I == u v. Lemma 13.9.13,showsthat R contains infinitely

many points with norm in a bounded interval. Sincethere are finitely many integers n in that

interval, the set of elements of R with norm n is infinite for at least one of them. The fact

that there are finitely many congruence classesmodulo n proves the secondassertion.

(b) We show that f321f31 is in R. The same argument will show that f3l1 f32 is in R, hence that

f321f31 is a unit. Since f3l and f32 are congruent, we can write f32 == f3l + ny, with y in R. Let

f3\037
be the conjugate of f3l. So fil f3\037

== n. Then f32I f31
== (f31 + n y) I fi1

== 1 + f3\037y. This is an
element of R, as claimed. 0)

13.10 ABOUT LATTICES

A lattice L in the plane }R2 is generated, or spanned by a set S if every element of L can
be written as an integer combination of elements of S. Every lattice L has a lattice basis

B == (v], V2) consisting of two clements. An element of L is an integer combination of the

lattice basis vectors in exactly one way (see (6.5.5)).)))
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Some notation:)

(13.10.1))

n (B) : the parallelogram of linear combinations rl VI + r2 V2 with 0 < ri < 1.
Its vertices are 0, VI, v2, and VI + v2.

n' (B) : the set of linear combinations rl VI + r2V2 with 0 < ri < 1.It is obtained

by deleting the edges [VI, VI + V2] and [V2, VI + V2] from neB).

t1(L) : the area of neB).

[M: L] : the indexof a sublattice L of a lattice M - the number of additive cosets of L in M.)

We will see that \037(L) is independent of the lattice basis,so that notation isn't ambigu-
ous. The other notation has been introduced before. For reference, we recallLemma 6.5.8:)

Lemma 13.10.2 Let B == (VI, V2) be a basis of JR2, and let L be the lattice of integer

combinations of B. Every vector v in }R2 can be written uniquely in the form V = w + Va,
with win L and Va in n'(B). 0)

Lemma 13.10.3 Let K c L c M be lattices in the plane, and let B be a lattice basis for L.

Then)

(a) [M:K] = [M:L][L:K].
(b) For any positive integer n, [L: nL] = n

2
.

(c) For any positive real number r, [M:L]=
[r M: r L].

(d) [M: L] is finite, and is equal to the number of points of M in the region n' (B).

(e) The lattice M is generated by L together with the finite set M n n' (B).)

Proof (d),(e)We can write an element x of M uniquely in the form v + y, where V is in L

and y is in n' (D). Then v is in M, and so y is in M too. Therefore x is in the coset y + L.
This showsthat the elements of M n n' (B) arc representative elementsfor the cosets of L
in M. Since there is only one way to write x = V + y, these cosets are distinct. SinceM is

discrete and n'(B) is a bounded set,M n n'(B) isfinite.)

.) .) .) . .) .) .) .) .)

. . * .)

. . .) .) .)

.)

. .. .) .)

.)

* . .) .)

. .) . . . .) . . . .)

(13.10.4)) L={.} 3L={*}.)))
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Formula (a) is the nlultiplicative property of the index (2.8.14). (b) follows from (a),
becausethe lattice n L is obtained by stretching L by the factor n, asis illustrated above for

the case that n == 3. (c) is true because multiplication by r stretchesboth lattices by the same
amount. D)

Corollary 13.10.5 Let L C M be lattices in }R2. There are finitely many lattices between L
and M.)

Proof Let B be a lattice basis for L, and let N be a lattice with LeN c M. Lemma
13.10.3(e)shows that N is generated by L and by the set N n O'(B), which is a subset of the
finite set M n 0' (B). A finite set has finitely many subsets. 0)

Proposition13.10.6IfL CM arelattices in the plane, [M: L] =
\037\037

.)

Proof Say that C is the lattice basis (Ul, U2) of M. Let n be a large positive integer, and let

M n denote the lattice with basis Cn
==

(kUl, kU2). Let r' denote the small region 0' (Cn ).

Its area is -\\\037(M).The translates x + i' of i' with x in M n cover the plane without
n

overlap, and there is exactlyoneelementof M n in each translate x + r', namely x. (This is

Lemma 13.10.2.)
Let B be a lattice basis for L. We approximate the area of neB) in the way

that one approximates a double integral, using translates of i'. Let r == [M: L]. Then

[M n : L] ==
[M n : M][ M: L] = n 2

r. Lemma 13.10.3(d) tells us that the region 0' (B) contains
n 2

r points of the lattice Mn . Since the translates of r' cover the plane, the translates by
these n 2r points cover 0 (B)approximately.)

\037(L) \037n2r\037(Mn) = rl::1(M) = [M:L]\037(M).)

'\"rhe error in this approximation comes from the fact that n' (B) is not covered precisely
along its boundary. One can bound this error in terms of the length of the boundary of n (B)
and the diameter of r' (its largest linear dimension). The diameter tends to zeroasn \037 00,

and so does the error. D)

Corollary 13.10.7 The area \037(L)of the parallelogram neB) is independent of the lattice
basis B.)

This follows when one sets M == L in the previous proposition.) o)

Lemma 13.10.8 Let v be a nonzero element of minimal length of a lattice L. Then
Ivl

2 <
\037

\037(L).)

The inequality becomes an equality for an equilateral triangular lattice.

Proof We choose an element VI of L of minimal length. Then VI generates the subgroup
L n .e,where f is the line spanned by Vi, and there is an element V2 such that (VI, V2) is a)))
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lattice basis of L (see the proof of (6.5.5)). A change of scale changes I vll
2 and \037(L) by the

same factor, so we may assume that IVll = 1. We position coordinatesso that VI = (1\" O)t.

Say that V2 == (b 1 , b2)t. We may assume that b 2 is positive. Then f:1(L) = b2 . We may
also adjust V2 by adding a multiple of VI, to n1ake -

\037
< b I <

\037,
so that bi

< !. SinceVI

has minimal length among nonzero elements of L, IV212 = hi + b\037
> IVll2 == 1. Thcrefore

b\037
>

\037.
Thus Ll(L) = b 2 > 1 . and I V 11

2 = 1 < 1 Ll (L). D)

Nul/um vero dubium nobis esse videtur,

quin multa eaque egregia in hoc genere adhuc lateant
in quibus alii vires suas exercere possint.)

-Carl Friedrich Gauss)

EXERCISES)

Section 1 Algebraic Integers

1.1.Is !(1+ .J5) an algebraic integer?

1.2. Prove that the integers in Q[\037] form a ring.

1.3. (a) Let a be a complex number that is the root of a monic integer polynomial, not

necessarily an irreducible polynomial. Prove that a is an algebraic integer.
(b) Let a be an algebraic number that is the root of an integer polynomial f(x) ==

anx
n + an_lX

n - 1 + . . . + ao.Prove that ana is an algebraic integer.
(c) Let a be an algebraic integer that is the root of a monic integer polynomial

x
n + a n _ln

n - 1 + . . .+ alx +ao.Prove that a-I is an algebraic integer if and only if

ao = 1:1.

1.4. Letd and d' be integers. When are the fieldsQ(\037) and Q( N) distinct?)

Section 2 Factoring Algebraic Integers

2.1. Prove that 2, 3, and l:i:.J=5 are irreducible elements of the ring R == Z[.J=5] and that the
units of this ring are 1:1.

2.2. For which negative integers d = 2 modulo 4 is the ring of integers in Q[\037] a unique

factorization domain?)

Section 3 Ideals in Z[ .J 5]

3.1. Let a be an element of R == Z[8], 8 == \037, and let y ==
\037(a + a8). Under what

circumstances is the lattice with basis (a, y) an ideal?

3.2. Let 8 = -vCS. Decide whether or not the lattice of integer combinations of the given
vectors is an ideal: (a) (5,1+ 8), (b) (7, 1 + 8), (c) (4 - 28,2+ 28,6+ 48).)))
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3.3. Let A be an ideal of the ring of integers R in an imaginary quadratic field. Prove that
there is a lattice basis for A, one of whoseelementsis an ordinary positive integer.

3.4. For each ring R listed below, use the method of Proposition 13.3.3 to describe the ideals
in R. Make a drawing showing the possible shapes of the lattices in each case.

(a) R == Z[ v'=3], (b) R == Z[ \037(1 + v'=3)], (c) R ==
Z[ \037],

(d) R == Z[ \037(1 + J=7)], (e) R == Z[ v'-10 ])

Section 4 Ideal Multiplication

4.1. Let R == Z[\037]. Find a lattice basis for the product ideal A B, where A == (2, 8) and
B == (3, 8).

4.2. Let R be the ring Z[8], where 8 = \037, and let A denote the ideal generated by the

elements (a) 3 +58, 2+ 28,(b) 4+8,1+28.Decide whether or not the given,generators
form a lattice basis for A, and identify the ideal AA.

4.3. Let R be the ring 2[8], where 8 == \037, and let A and B be idealsof the form

A == (ex, ! (a + a8) ), B == (fJ, ! (fJ + fJ8)). Prove that A B is a principal ideal by finding a

generator.)

Section 5 FactoringIdeals

5.1.Let R == Z[ \037].

(a) Decide whether or not 11 is an irreducible elementof R and whether or not (11) is a
prime ideal of R.

(b) Factor the principal ideal (14)into prime ideals in Z[8].

5.2. Let 8 == v'=3 and R == Z[8]. This is not the ring of integers in the imaginary quadratic

number field Q[8]. Let A be the ideal (2, 1 + 8).

(a) Prove that A is a maximal ideal, and identify the quotient ring R/ A.

(b) Prove that AA is not a principal ideal,and that the Main Lemma is not true for this

rIng.

(c) Prove that A contains the principal ideal (2) but that A does not divide (2).

5.3. Let f == y2
- x 3 - X.Is the ring C[x, y]/(f) an integral domain?)

Section 6 Prime Ideals and PrimeIntegers
6.1.Let d == -14. For each of the primes p == 2, 3, 5, 7, 11, and 13,decidewhether or not p

splits or ramifies in R, and if so, find a lattice basis for a prime ideal factor of (p).

6.2. Supposethat d is a negative integer, and that d == 1 modulo 4. Analyze whether or not 2
remains prime in R in terms of congruencemodulo 8.

6.3. Let R be the ring of integers in an imaginary quadratic field.

(a) Suppose that an integer prime p remains prime in R. Prove that R/(p) is a field with

p2 elements.

(b) Prove that if p splits but does not ramify, then R / (p) is isomorphic to the product
ring IFp X IF

p')))
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6.4. When d is congruent 2 or 3 modulo 4, an integer prime p remains prime in the ring of

integers of Q[\037]if the polynomial x 2 - d is irreducible modulo p.

(a) Prove that this is also true when d = 1 modulo 4 and p =1=2.

(b) What happens to p = 2 when d = 1 modulo 4?)

6.5. Assume that d is congruent 2 or 3 modulo 4.

(a) Prove that a prime integerp ramifies in R if and only if p == 2 or p divides d.

(b)Let p be an integer prime that ramifies, and say that (p) == p2. Find an explicit lattice
basisfor P. In which cases is P a principal ideal?

6.6. Let d be congrue'nt to 2 or 3 modulo 4. An integer prime might be of the form a
2 - b2d,

with a and b in Z. How is this related to the prime ideal factorizationof (p) in the ring of
integersR?

6.7. Suppose that d== 2 or 3 modulo 4, and that a prime p=I= 2 does not remain prime in R. Let

a be an integer such that a
2 = d modulo p. Prove that (p, a +\037) is a lattice basis for a

prime ideal that divides (p).)

Section 7 Ideal Classes
7.1.Let R == Z[ -J=5], and let B = (3,1+ 8).Find a generator for the principal ideal B2.
7.2. Prove that two nonzero ideals A and A' in the ring of integers in an imaginary quadratic

field are similar if and only if there is a nonzeroidealC such that both AC and A'C are
principal ideals.

7.3. Let d == -26. With each of the following integers n, decide whether n is the norm of an

element ex of R. If it is, find a: n == 75, 250, 375, 56.

7.4. Let R = Z[8], where 82 = -6.

(a) Prove that the lattices P == (2, 8) and Q == (3, 8) are prime ideals of R.
(b) Factor the principal ideal (6) into prime ideals explicitly in R.

(c) Determine the class group of R.)

Section 8 Computing the Class Group

8.1. With reference to Example 13.8.6, since (P) = (S)3and (Q) = (S}2, Lemma 13.8.7
predictsthat there are elements whose norms are 2 . 53 and 3 2 . 52. Find such elements.

8.2. With reference to Example 13.8.8, explain why N(4 + 8) and N(14 + 8) don't lead to

contradictory conclusions.

8.3. Let R = Z[8], with 8 == ../-29 . In each case, compute the norm, explain what conclusions
one can draw about idealsin R from the norm computation, and determine the class

group of R: N(l + 8), N(4 + 8), N(5 + 8), N(9 + 28),N(ll+28).
8.4.Prove that the values of d listed in Theorem 13.2.5 have unique factorization.

8.5. Determine the class group and draw the possible shapesof the lattices in each case:

(a) d == -10, (b) d == -13, (c) d = -14, (d)d = -21.
8.6.Determine the class group in each case:

(a) d == -41, (b) d == -57, (c) d = -61, (d) d == -77, (e) d = -89.)))
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Section9 Real Quadratic Fields

9.1. Prove that 1 + \037 is an element of infinite order in the group of units of Z[\037].

9.2. Determine the solutions of the equation x 2 - y
2d = 1when d is a positive integer.

9.3. (a) Prove that the size function a(a) = IN(a) I makes the ring Z[\037J into a Euclioean
domain, and that this ring has unique factorization.

(b) Make a sketch showing the principal ideal (\037) of R = Z[\037], in the embedding
depicted in Figure 13.9.6.

9.4. Let R be the ring of integers in a real quadraticnumber field. What structures are possible
for the group of units in R?

9.5. Let R be the ring of integers in a real quadraticnumber field, and let Va denote the set
of units of R that are in the first quadrant in the embedding (13.9.2).

(a) Prove that Ua is an infinite cyclic subgroup of the group of units.

(b) Find a generator for Va when d = 3 and when d == 5.

( c) Draw a figure showing the hyperbolas and the units in a reasonable size range for
d = 3.)

Section 10 About Lattices

10.1. Let M be the integer lattice in }R2, and let L be the lattice with basis \302\2532,3)t, (3, 6)t).
Determine the index [M: L].

10.2.Let L c M be latticeswith bases Band C, respectively, and let A be the integer matrix
such that BA = C. Prove that [M: L] = IdetAI.)

Miscellaneous Problems
M.t. Describe the subrings S of C that are lattices in the complex plane.

*M.2.Let R = Z[8], where 8 = \037, and let p be a prime integer.

(a) Prove that if p splits in R, say (p) = P P, then exactly one of the ellipses x2
+ 5 y2 = p

or x2
+ 5y2 = 2p contains an integerpoint.

(b) Find a property that determines which ellipse has an integer point.

M.3. Describethe prime ideals in (a) the polynomial ring C[x, y] in two variables,
(b) the ring Z[ x] of integer polynomials.

M.4.Let L denote the integer lattice Z2 in the plane JR2, and let P be a polygon in the plane
whose vertices are points of L. Pick's Theorem asserts that the area \037(P) is equal to
a + b/2- 1,where a is the number of points of L in the interior of P, and b is the number
of points of L on the boundary of P.

(a) Prove Pick's Theorem.
(b) Derive Proposition 13.10.6 from Pick's Theorem.)))
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Linear Algebra in a Ring)

Be wise! Generalize!

-Picayune Sentinel)

Solving linear equationsis a basic problem of linear algebra. We consider systems AX == B

when the entries of A and B are in a ring R here, and we ask for solutionsX == (Xl, . . . , xn)t

with Xi in R. This becomes difficult when the ring R is complicated, but we will see how it

can be solved when R is the ring of integers or a polynomial ring over a field.)

14.1 MODULES)

l'he analog for a ring R of a vector space over a field is called a module.
. Let R be a ring. An R-module V is an abelian group with a law of composition written +,

and a scalar multiplication R X V -+ V, written r, v \n rv, that satisfy these axioms:)

(14.1.1) 1v == v, (rs)v == r(sv), (r + s)v == rv + sv, and r(v + v') == rv + rv',)

for all rand s in R and all v and v' in V.

These are precisely the axioms for a vector space (3.1.2). However, the fact that elements of

a ring needn't be invertible makes modules more complicated.
Our first examples are the modules R n

of R-vectors, column vectors with entries in the

ring. They are calledfreemodules.The laws of composition for R-vectors are the same as
for vectors with entries in a field:)

at) ht) at + ht) a1) rat)

+) and r)

an) b n) an + b n) an) ran)

But when R isn't a field, it is no longer true that they are the only modules. There will be

modules that aren't isomorphic to any free module, though they are spanned by a finite set.

An abelian group V, its law of composition written additively, can be made into

a module over the integers in exactly one way. The distributive law forces us to set

2v == (1 + l)v == v + v, and so on:)

,,' \"
n v == v + . . . + v == n tImes v)

412)))
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and (-n)v == -(nv), for any positive integer n. It is intuitively plausible this makes V into a
Z-module,and also that it is the only way to do so. Let's not bother with a formal proof.

Conversely, any 7l-module has the structurc of an abeliangroup,given by keeping only
the addition law and forgetting about its scalar multiplication.

(14.1.2) Abelian group and Z - module are equivalent concepts.

We must use additive notation in the abelian group in order to make this correspondence
seem natural, and we do so throughout the chapter.

Abelian groups provide cxamples to show that modulcs over a ring needn't be free.
SinceZn is infinite when 11 is positive, no finite abelian group except the zero group is
isomorphic to a free module.

A submodule W of an R-module V is a nonempty subset that is closcd under addition
and scalarmultiplication. The laws of composition on V make a submodule W into a module.
We've seen submodules in one casc before, namely submodules of the ring R, whcn it is

thought of as the free R-module R
1

.)

Proposition 14.1.3 The submodulcs of the R-module R are the ideals of R.)

By definition, an ideal is a nonempty subset of R that is closed under addition and under
multiplication by elements of R. 0

The definition of a homomorphism cp: V \037 W of R-modules copies that of a linear

transformation of vector spaccs.It isa map compatible with the laws of composition:)

(14.1.4)) cp( v + v') == cp( v) + cp(v') and cp(rv)
== rcp( v),)

for all v and v' in V and r in R. An isomorphism is a bijective homomorphism. The kernel of
a homomorphismcp:V -+ W, the set of clements v in V such that cp(v) == 0, is a submodule
of the domain V, and the image of cp is a submodule of thc range W.

One can extend the quotient construction to modules.Let W be a submodule of an
R-module V. The quotient module V == VI W is the group of additive cosets v == [v + W].
It is made into an R-module by the rule)

(14.1.5)) rv == rv.)

The main facts about quotient modulesarccollectedtogether below.)

Theorem 14.1.6 Let W be a submoduleof an R-module V.

(a) The set V of additive cosets of W in V is an R-module, and the canonicalmap 1f:V -+ V

sending v \037 v ==
[v + W] is a surjective homomorphism of R-modules whose kerncl is

W.

(b) Mapping properly: Let f: V \037 V' be a homomorphism of R-modules whosekernelK'
contains W. There is a unique homomorphism:f :V -+ V' such that f == f 071:.

V
f

> V'

\037 /' f\037

V)))
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(c) First Isomorphism Theorem: Let f: V \037 V' _be a surjective homomorphism of
R-moduleswhose kernel is equal to W. The map f defined in (b) is an isomorphism.

(d) CorrespondenceTheorem:Let f: V \037 V be a surjective homomorphism of R-modules,
with kernel W. There is a bijective correspondencebetween submodules of V and
submodules of V that contain W. This correspondence is defined as follows: If S is

a submodule of V, the corresponding submodule of V is S = 1 1(S) and if S is a
submodule of V that contains W, the corresponding submodule of W is S = f(s). If S
and S are corresponding modules, then V/ S is isomorphic to V / s.)

We have seenthe analogous facts for rings and ideals, and for groups and normal subgroups.
The proofs follow the pattern set previously, so we omit them. D)

14.2 FREE MODULES)

Free modules form an important class,and we discussthem here. Beginning in Section 14.5,
we look at other modules.)

. Let R be a ring. An R-matrix is a matrix whose entries are in R. An invertible R-matrix
is an R-matrix that has an inverse that is also an R-matrix. The n X n invertible R-matrices

form a group calledthegenerallinear group over R:)

(14.2.1 )) G Ln (R) = {n X n invertible R-matrices}.)

The determinant of an R-matrix A = (aij) can be computedby anyone of the rules
described in Chapter 1. The complete expansion (1.6.4), for example, exhibits detA as a

polynomial in the n 2 matrix entries, with coefficients :i:l.)

(14.2.2)) detA = L::f:al,Pl
...

an,pn.

p)

As before, the sum is over all permutations p of the indices {I, . . . , n},and the symbol :i:

stands for the sign of the permutation. When we evaluate this formula on an R-matrix, we
obtain an element of R. Rules for the determinant, such as)

(detA)(detB) = det (AB),)

continue to hold.We have proved this rule when the matrix entries are in a field (1.4.10),
and we discussthe reasonthat such properties are true for R-matrices in the next section.
Let'sassume for now that they are true.)

Lemma 14.2.3 Let R be a ring, not the zero ring.

(a) A square R-matrix A is invertible if and only if it has either a left inverse or a right

inverse, and also if and only if its determinant is a unit of the ring.

(b) An invertible R-matrix is square.)

Proof. (a) If A has a left inverse L, the equation (detL)(detA)= detI= 1 shows that detA

has an inverse in R, so it is a unit. Similar reasoning shows that detA is a unit if A has a right

Inverse.)))
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If A is an R-matrix whose determinant 8 is a unit, Cramer's Rule: A-I == 8-
l

cof(A),
where cof(A) is the cofactor matrix (1.6.7), shows that there is an inverse with coeffi-

cients in R.)

(b) Suppose that an m X n R-matrix P is invertible, i.e., that there is an n X m R-matrix Q
such that PQ == 1m and also QP == In. Interchanging P and Q if necessary, we may suppose
that m > n. If m =1= n, we make P and Q squareby adding zeros:)

[p 0])

Q)
== 1m-)

o)

This does not change the productPQ,but the determinants of these square matrices are
zero,sothey are not invertible. Therefore m == n. 0)

When R has few units, the fact that the determinant of an invertible matrix must be
a unit is a strong restriction. For instance, if R is the ring of integers, the determinant must

be :t1. Most integer matrices are invertible when thought of as real matrices, so they are

in G Ln (}R).But unless the determinant is :1:1, the entries of the inverse matrix won't be

integers: they won't be elementsof G Ln (Z). Nevertheless, when n > 1, there are many

invertible n X n R-matrices. The elementary matrices E == I + aeij, with i =1= j and a in R,
are invertible,and they generate a large group.

We return to the discussion of modules. The concepts of basis and independence

(Section 3.4) are carried over from vector spaces. An ordered set (VI, . . . , Vk) of ele-
ments of a module V is said to generate V, or to span V if every element v is a linear
combination:)

(14.2.4)) v == rlVI +... + rkvk,)

with coefficients in R. If this is true, the elementsVi are called generators. A module V is

finitely generated if there exists a finite set of generators. Most of the moduleswe study will

be finitely generated.
A set of elements(VI, _ _ . , v n ) of a module V is independent if, whenever a linear

combination rl VI + . . . + r n V n with ri in R is zero, all of the coefficients ri are zero. A set
(VI, . - - , v n ) that generates V and is independent is a basis.As with vector spaces, the set
(VI, . . . , v n ) is a basisif every V in V is a linear combination (14.2.4) in a unique way. The
standard basisE = (el,..., ek) is a basis of R n

.

We may also speak of linear combinations and independence of infinite sets, using the
terminology of Section 3.7. Even when S is infinite, a linear combination can involve only
finitely many terms.

If we denote an ordered set (VI, . . . , v n ) of elements of V by B, as in Chapter 3. Then

multiplication by B,)

Xl)

BX == (VI, . . - , V n )) == VIXl + . . . + VnX n ,)

X n)))
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defines a homomorphism of modules that we may also denote by B:)

(14.2.5)) R n
\037 V.)

As before, the scalars have migrated to the right side. This homomorphism is surjective if

and only if B generates V, injective if and only if B is independent, and bijective if and only
if B is a basis.Thus a module V has a basis if and only if it is isomorphic to one of the free

modules R k
, and if so, it is called a free module too. A module is free if and only if it has a

basis.)
Mostmodules have no basis.

A free Z-module is alsocalledafree ab.elian group. Lattices in \0372 are free abelian groups,
while finite, nonzero abelian groups are not free.

Computation with bases of free modules is done in the same way as with bases of vector

spaces. If B is a basisof a free module V, the coordinate vectorof an element v, with respect
to B, is the unique column vector X such that v = BX. If two bases B = (VI,. . . v m ) and

B ' =
(v\037,

. . . , v\037) for the same free module V are given, the basechange matrix is obtained
as in Chapter 3, by writing the elements of the new basis as linear combinations of the old
basis:B'

== BP.)

Proposition 14.2.6 Let R be a ring that is not the zero ring.

(a) The matrix P of a change of basis in a free module is an invertible R-matrix.

(b) Any two bases of the same free module over R have the same cardinality.)

The proof of (a) is the same as the proof of Proposition 3.5.9, and (b) follows from (a)
and from Lemma 14.2.3. 0

The number of elements of a basis for a free module V is called the rank of V. The

rank is analogous to the dimensionof a vector space. (Many concepts have different names

when used for modules over rings.)
As is true for vector spaces, every homomorphism f between free modules Rn and

Rm is given by left multiplication by an R-matrix A:)

(14.2.7)) R n
\037 R m

.)

The jth column of A is f( e j). Similarly, if q; : V \037 W is a homomorphism of free
R-moduleswith bases B = (VI, . . . , v n ) and C == (WI, . . . , w m ), respectively, the matrix of

the homomorphism with respect to B is defined to be A = (aij), where

(14.2.8) q;(v j)
==

L Wiaij.)

If X is the coordinatevector of a vector v, i.e., if v == BX then Y = AX is the coordinate
vector of its image, i.e., cp(v) == CY.)

(14.2.9))
A)

Rm X\037y

\037
Ie \037

:> W V \037q;(v))

\037)

R
n

81
V)

:>)))
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As is true for linear transformations, a change of the bases Band C by invertible R -matrices

P and Q changes the matrix of cp to A' == Q-l AP.)

14.3 IDENTITIES)

Tn this section we address the following question: Why do certain properties of matrices with

entries in a field continue to hold when the entries are in a ring? Briefly, they continue to hold
if they are identities, which means that they are true when the matrix entries are variables.
'fo bespecific, suppose that we want to prove a formula such as the multiplicative property
of the determinant, (detA)(det B) == det (AB), or Cramer's Rule. Suppose we have already

proved the formula for matrices with complex entries. We don't want to do the work again,
and besides,we may have used special properties of C, such as the field axioms, to check
the formula therc. We did use the properties of a field to prove the ones mentioned,so the
proofs we gave will not work for rings.We show here how to deduce such formulas for all

rings, once they have been shown for the complex numbers.
The principlc is quite general, but in order to focus attention, we consider the

multiplicative property (detA)(det B) == det (AB), using the complete expansion (14.2.2)of

the determinant as its definition. We replace the matrix entries by variables. Denoting by

X and Y indeterminate n X n matrices, the variable identity is (det X) (det Y) == det (XY).

Let's write)

(14.3.1)) .{(X, Y) == (det X)(det Y) - det (XY).)

This is a polynomial in the 2n 2 variable matrix entries Xi} and Ykf, an element of the ring

Z[{Xi}}, {Ykf}] of integer polynomials in those variables.

Given matrices A ==
(ai}) and B == (b kf ) with entries in a ring R, there is a unique

homomorphism

.)

(14.3.2)) cp: Z[{Xi}}, {Ykf}] -4 R,)

the substitution homomorphism, that sends
Xi}

\037
ail and Ykf \037 bkf.

Referring back to the definition of the determinant, we see that because cp IS a

homomorphism, it will send)

f(X, Y) \037 f'(A, B) == (detA)(detB)
- det (AB).)

To prove the multiplicative property for matrices in an arbitrary ring, it suffices to prove that

f is the zero element in the polynomial ring Z[ {Xi}},{Ykf}].rfhat is what it means to say that

the formula is an identity. If so, then since cp(O) == 0, it will follow that f(A, B) =- 0 for any

matrices A and B in any ring.

Now: If we were to expandf and collect terms, to write it as a linear combination of

monomials, all coefficients would be zero. However, we don't know how to do this, nor do
we want to. To illustrate this point, we lookat the 2 X 2 case. In that case,)

f(X, Y) = ((XI1X 22
- X12X 21)(YIIY22

-
Y12Y21))

- (Xl1Yl1 +X12Y21) (X21Y12 + X22Y22)

+ (XI1Y12 + X12Y22) (X21Yll + X22Y22).)))
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This is the zero polynomial, but it isn't obvious that it is zero, and we wouldn't want to make

the computation for larger matrices.
Instead,we reason as follows: Our polynomial determines a function on the space of

2n2
complexvariables {Xij,Ykf} by evaluation: If A and B are complexmatricesand if we

evaluate f at {aij, bkf}, we obtain f(A, B) := (detA)(detB) - det (AB). We know that

I(A, B) is equal to zerobecauseour identity is true for complex matrices. Sothe function

that .f determines is identically zero. The only (formal) polynomial that defines the zero
function is the zero polynomiaL Therefore I is equal to zero.

It is possible to formalize this discussion and to prove a generaltheoremabout the

validity of identities in an arbitrary ring. However, even mathematicians occasionallyfeel
that formulating a general theorem isn't worthwhile - that it is easier to considereachcase
as it comes along. This is one of those occasions.)

14.4 DIAGONALIZING INTEGER MATRICES)

We consider the problem mentioned at the beginning of the chapter: Given an m X n integer
matrix A (a matrix whose entries are integers) and a integer column vector B, find the integer
solutions of the system of linear equations)

(14.4.1)) AX == B.)

Left multiplication by the integer matrix A defines a map tl
n \037 7lm . Its kernel is the

set of integer solutions of the homogeneous equation AX == 0, and its image is the set of
integer vectors B such that the equation AX == B has a solution in integers. As usual, all

solutions of the inhomogeneous equation AX == B can be obtained from a particular one by

adding solutions of the homogeneousequation.
When the coefficients are in a field, row reduction is often used to solve linear equations.

These operationsare morerestrictedhere:We should use them only when they are given

by invertible integer matrices - integer matrices that have integer matrices as their inverses.
The invertible integer matrices form the integer genera/linear groupGLn (71) .

The best results will be obtained when we use both row and column operations to

simplify a matrix. So we allow these operations:)

(14.4.2)

. add an integer multiple of one row to another, or add an integer multiple of one
column to another;

.
interchange two rows or two columns;

.
multiply a row or column by -1.)

Any such operation can be made by multiplying A on the left or right by an elementary

integer matrix - an elementary matrix that is an invertible integer matrix. The result of a

sequence of operationswill have the form

(14.4.3) AI == Q-l AP,

where Q and P areinvertible integer matrices of the appropriate sizes.)))
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Over a field, any matrix can be brought into the block form)

A' =

[

1

0])

by row and column operations (4.2.10). We can't hope for such a result when working with

integers: We can't do it for 1 X 1 matrices. But we can diagonalize.
An example:)

=

[\037)

\037
\037]

\037;::
[\037

_; -\037] o;\037t
[\037

o 0

]

row

[

1 0 0

]
col

r
1

-2 -6 oper
>

0 2 6 opef
LO)

o 0

]-2 -6

o 0
]

_
A

,

2 0
-)

(14.4.4))

A _

[

1-
4)

The matrix obtained has the form A'
matrices:)

Q-1AP,where Q and P are invertible integer)

(14.4.5))
Q-l=[\037 -1]

and

p=[l
-\037

_\037])

(It is easy to n1ake a mistake when computing these matrices. To compute Q-l, the
elementary matrices that produce the row operations multiply in reverse order, while to
compute P onemust multiply in the order that the operations are made.))

Theorem 14.4.6 Let A be an integer matrix. There exist productsQ and P of elementary
integer matrices of appropriate sizes, so that A' = Q-1APis diagonal, say

d 1)

A'=)

dk)

o)

where the diagonal entries di are positive, and each one divides the next: dl I d2 I
...

I
d k -)

Note that the diagonal will not lead to the bottom right corner unless A is a square matrix,

and if k is less than both m and n, the diagonal will have some zeros at the end.
We cansumup the information inherent in the four matrices that appear in the theorem

by the diagram)

(14.4.7)) zn
A'

> zm

p! !Q)
zn) :> zm

A)

where the maps are labeled by the matrices that are used to define them.)))
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Proof We assume A -=1=O. The strategy is to perform a sequenceof operations, so as to end

up with a matrix)

(14.4.8))

d} 0 0

: [
M

])

in which d 1 divides every entry of M. When this is done, we work on M. We describe a

systematic method, though it may not be the quickest way to proceed. The method is based
on repeateddivision with remainder.)

Step J: By permuting rows and columns, we move a ,nonzero entry with smallest absolute

value to the upper left corner. We multiply the first row by -1 if necessary, so that this upper
left entry all becomes positive.

Next, we try to clear out the nrst column. Whenever an operation produces a nonzero
entry in the matrix whose absolute value is smaller than all, we go back to Step 1 and start

the whole process over. This will spoil the work we have done, but progress is made because

all decreases. We won't need to return to Step 1 infinitely often.)

Step 2: If the first column contains a nonzero entry ai 1 with i > 1, we divide by all:)

an == all q + r,)

where q and r arc integers, and the remainder r is in the range 0 < r < all. We subtract

q(row 1) from (row i). This changesail tor. If r=l-O, we go back to Step 1. If r == 0, we have

produced a zero in the first column.

Finitely many repetitions of Steps 1 and 2 result in a matrix in which ail == 0 for all

i > 1. Similarly, we may use column operations to clear out the first row, eventually ending

up with a matrix in which the only nonzero entry in the first row and the first column is all.)

Step 3: Assume that all is the only nonzero entry in the first row and column, but that some

entry b of M is not divisible by all. We add the column of A that contains b to column 1.
This producesan entry b in the first column. We go back to Step 2.Division with remainder

produces a smaller nonzero matrix entry, sending us back to Step 1. 0

We are now ready to solve the integer linear systemAX == B.)

Proposition 14.4.9 Let A be an m X n matrix, and let P and Q be invertible integer matrices

such that A' == Q-l AP has the diagonal form described in Theorem 14.4.6.

(a) The integer solutions of the homogeneous equation A' X' == 0 are the integer vectors X'
whosefirst k coordinates arc zero.

(b) The integer solutions of the homogeneous equation AX == 0 are those of the form
X == PX', where A'X' == O.)))
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(c) l'he image W' of multiplication by A' consists of the integer combinations of the vectors

diet,..., dkek.
(d) The image W of multiplication by A consists of the vectors Y == QY', where Y' is in W'.)

Proof (a) Because A' is diagonal, the equation A' X' == 0 reads)

d1x; == 0, d2X;
== 0, . . . , dkXk

== o.)

In order for X' to solve the diagonal system A' X' == 0, we must have
x\037

== 0 for i == 1, . . . , r,

and
x\037

can be arbitrary if i > k,)

(c) The image of the map A' is generated by the columns of A', and because A' is diagonal,
the columnsare especiallysimple:

Aj
== d je j if j

< k, and
A\037i

== 0 if j > k.)

(b),(d) We regard Q and P as matrices of changes of basis in zn and 7l m
, respectively. The

vertical arrows in the diagram 14.4.7 are bijective, so P carriesthe kernel of A' bijectively to
the kcrnel of A, and Q carrics the image of A' bijectively to the image of A. D

We go back to example (14.4.4). Looking at the matrix A' we see that the solutions

of A' X' == 0 are the integer multiples of e3. So the solutions of AX == 0 arc the integcr
multiplcs of Pe3,which is the third column (3, -3, l)t of P. The image of A' consistsof integer

combinations of the vectors el and 2e2,and the image of A is obtain cd by multiplying these

vectors by Q. It happens in this example that Q == Q-l. So the image consists of the integer

combinations of the columns of the matrix)

QA
'

==

[

1 0

] [

1 0

]
==

[

1 0

]
.

4 -1 0 2 4-2)

Of course, the image of A is also the set of integer combinations of the columns of A, but

those columns do not form a Z-hasis.
The solution we have found isn't unique. A different sequence of row and column

operationscouldproducedifferent bases for the kernel and image. But in our example, the

kernel is spanned by one vector, so that vector is unique up to sign.)

Submodules of Free Modules)

The theorcm on diagonalization of integer matrices can be used to dcscribehomomorphisms

between free abelian groups.)

Corollary 14.4.10 Let cp : V \037 W be a homomorphism of free abelian groups.There
existbasesof V and W such that the matrix of the homomorphism has the diagonal
form (14.4.6).

D)

Theorem 14.4.11 Let W be a free abelian group of rank m, and let U be a subgroup of W.

Then U is a free abelian group,and its rank is less than or equal to m.)

Proof We begin by choosinga basis C == (U)l, . . . , w m ) for Wand a set of generators

B == (U1, . . . , un) for U. We write U j
== Li Wiaij, and we let A ==

(aij). The columns of)))
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the matrix A are the coordinate vectors of the generators Uj, when computed with respect to

the basis C of W. We obtain a commutative diagram of homomorphisms of abelian groups)

A
zn > zm

BI Ie
t . t

l
U--\037W

where i denotes the inclusion of U into W. Because C is a basis, the right vertical arrow is

bijective, and becauseB generates U \037the left vertical arrow is surjective.
We diagonalize \0374.With the usual notation A' = Q-lAP, we interpret P as the matrix

of a change of basis for zn , and Q asthe matrix of a change of basis in zm . Let the new bases
be C' and B'. Since our original choices of basisC and the generating set B were arbitrary,
we may replace C, B and A by C', B' and A' in the above diagram. So we may assume that

the matrix A has the diagonal form given in (14.4.6). Then U j = djw j for j == 1, . . . , k.

Roughly speaking, this is the proof, but there are still a few points to consider. First,
the diagonal matrix A may contain columns of zeros. A column of zeros corresponds to a
generatorU j whose coordinate vector with respect to the basis C of W is the zero vector. So
U

j
is zero too. This vector isuselessasa generator, so we throw it out. When we have done

this, all diagonal entries will be positive, and we will have k = nand n < m.
If W is the zero subgroup, we will end up throwing out all the generators. As with

vector spaces, we must agree that the empty set is a basis for the zero module, or else
mention this exceptional case in the statement of the theorem.

We assume that the m X n matrix A is diagonql, with positive diagonal entries

d 1, . . . , dn and with n < m, and we show that the set (Ul, . . . , un) is a basisof U. Since this

set generates U, what has to be proved is that it is independent. We write a linear relation
alUl +... + an Un = 0 in the form a1d1wI +... + andnw n = O. Since (WI, ..., w m ) is a

basis, aidi == 0 for each i, and sincedi > 0,Qi == O.

The final point is more serious:We needed a finite set of generators of U to get started.
How do we know that there is such a set? It is a fact that every subgroup of a finitely

generated abelian group is finitely generated. We prove this in Section 14.6. For the moment,
the theorem is proved only with the additional hypothesis that U is finitely generated. D

Suppose that a lattice L in lR
2 with basis B == (VI, V2) is a sublattice of the lattice M

with the basis C = (UI, U2),and let A be the integer matrix such that B = CA. If we change
basesin Land M, the matrix A will be changed to a matrix A' = Q-l AP, where P and Q are
invertible integer matrices. According to Theorem 14.4.6,basescanbe chosenso that A is

diagonal, with positive diagonal entriesdl and d2. Suppose that this has been done.Then if

B = (VI, V2) and C = (UI,U2), the equation B == CA reads VI == dlUl and V2 = d2U2.)

(14.4.12))

Example 14.4.13Let Q
=

D 1]'
A =

[i -; ]
, p =

U ; J.
A' = Q-IAP =

[1 5]-
Let M be the integer lattice with its standard basis C == (el, e2), and let L be the lattice

with basis B == (VI, V2) ==
(2, 1)t, (-1, 2)t). Its coordinatevectors are the columns ofA. We)))
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interpret P as the matrix of a change of basis in L, and Q as the matrix of change of basis
in M. In coordinate vector form, the new basesare C' == (el, e2)Q ==

(1, 3)t, (0, l)t) and
H' == (v 1, V2) p ==

( 1, 3) t, (0, 5)t)
.

The left-hand figure below shows the squares spanned by the two original bases,
and the figure on the right shows the parallelogramsspanned by the two new bases.
The parallelogram spanned by the new basis for L is filled precisely by five translates
of the shaded parallelogram, which is the parallelogram spanned by the new basis for
M. The index is 5. Note that there are five lattice points in the region n' (Vt, V2). This

agrees with Proposition 13.10.3(d).Thefigure on the right also makes it clear that the ratio
/:),. ( L ) / \037(M) is 5. D)

. . . . * . . .) . . .) . . .)

. . * . . . . *) . . *) . . *)

* . . . . * . .) * . .) * . .)

. . . * . . . .) . . .) . . .)

. * . . . . * .) . * .) . * .)

.) .) .) .) .) .) .) .) .) .)

. .) . *) . . *) . . . *)

* .) . .) * . .) . * . .)

. .) . .) . . .) . . . .)

. * .) .) .) . * .) . * .) .) .) . * .)

(14.4.14)) Diagonalization, Applied to a Sublattice.)

14.5 GENERATORS AND RELATIONS)

In this section we turn our attention to modules that are not free. We show how to describe
a largeclassof modules by means of matrices calledpresentation matrices.

Left multiplication by an m X n R-matrix A defines a homomorphism of R-modules

R n \037 R m
. Its image consists of all linear combinations of the columns of A with

coefficients in the ring, and we may denote the image by AR n
. We say that the quotient

module V = R m
/ ARn is presented by the matrixA. More generally,wecall any isomorphism

a: R m
/ A R n -+ V a presentation of a moduleV, and we say that the matrix A is a presentation

matrix for V if there is such an isomorphism.
For example,the cyclic group Cs of order 5 is presentedas a /l-moduleby the 1 X 1

integer matrix [5], because C s is isomorphic to 2/52.
.We use the canonical map n: Rm -\302\273V == Rm / ARn (14.1.6) to interpret the quotient

module V == R rn
/ A Rn , as follows:)))
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Proposition 14.5.1

(a) V is generated by a set of elements B == (VI, . . . , v rn ), the images of the standard basis
clements of R,n.

(b) If Y == (Y1, . . . , Ym)t is a column vector in R
m

, the element BY == VtYl + . . . + VmYm

of V is zero if and only if Y is a linear combination of the columns of A, with coefficients

in R - if and only if there exists a column vector X with entries in R such that Y == AX.)

Proof The images of the standard basis elemcntsgenerate V because the map T{ is

surjective. Its kernel is the submodule A R
n . This submodule consists precisely of the linear

combinations of the columns of A. 0)

. If a module V is generated by a set 8 == (VI, ..., Vm), we call an element Yof Rm such
that BY == 0 a relation vector, or simply a relation among the generators. We may also refcr

to the equation VI YI + . . . + Vm Ym
== 0 as a relation, meaning that the left side yields 0

when it is evaluated in V. A set S of relations is a complete set if every relation is a linear
combination of S with coefficients in the ring.)

Example 14.5.2 The Z-module or an abelian group V that is generated by three elements
VI, V2, V3 with the completc set of relations)

(14.5.3))

3Vl + 2V2 + V3 - 0
8VI + 4V2 + 2V3 0
7Vl + 6V2 + 2V3 0
9vt + 6V2 + V3 0)

is presented by the matrix)

(14.5.4))

[

3 8 7 9

]
A== 2 4 6 6 .

122 1)

Its columns are the coefficients of the relations (14.5.3):)

(Vi, V2, v3)A == (0,0,0,0).) o)

We now describe a theoretical method of finding a presentation of an R-module V.

The method is very simple: We choose a set of generators 8 == (VI, .. . , v m ) for V. These

generators provide us with a surjective homomorphism R m
\037 V that sends a column vector

Y to the linear combination BY == VI Y1 + . . . + V m Ym. Let us denote the kernel of this map

by W. It is thc module of relations; its clements are the relation vectors.
We repeat the procedure, choosing a set of generators C == (Wi, . . . , w m ) for W, and

we use these generators to define a surjective map R n
-\302\273W. But here the generators W j

are elements of R m
. l'hey are column vectors. We assemble the coordinate vectors A j of W j

into an m X n matrix)

(14.5.5))

A=[+... A:m].)))
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Then multiplication by A defines a map

Rn
\037 R\"l

that sends ej \037 A j
== UJ j. It is the composition of the map R n

\037 W with the inclusion
W c Rm

. By construction, W is its image.. and we denoteit by ARfl.

Since the map R\"l --+ V is surjective.. the First IsomorphismTheoremtellsus that V is

isomorphic to R'n
/ W = R 'n

/ A R\". Therefore the moduleV is presented by the matrix A.
Thus the presentationmatrix A for a nlodule V is determined by

(14.5.6))

\302\267a set of generators for V, and

\302\267a set of generators for the module of relations W.

Unless the set of generatorsforms a basis of V, in which case A is empty, the number of

generators will be equal to the number of rows of A.

1\"his construction depends on two assumptions: We must assume that our module V

has a finite set of generators. Fair enough:We can't expect to describe a module that is too

big, such as an infinite dimensional vector space, in this way. We must also assume that the
module W of relations has a finite set of generators. This is a lessdesireableassumption

because W is not given: it is an auxiliary module that was obtained in the course of the
construction. We need to examine this point more closely,and we do this in the next section
(see(14.6.5).But except for this point\" we can now speak of generators and relations for a
finitely generated R-module V.

Since the presentation matrix depends on the choices (14.5.6)..many matrices present

the same module, or isomorphicmodules.Hereare some rules for manipulating a matrix A

without changing the isomorphism class of the module it presents:)

Proposition 14.5.7 Let A be an m X n presentation matrix for a module V. Ine following

matrices A' present the same module V:

(i) A' = Q-1 A, with Q in G Lm (R);

(ii) A' = AP, with P in G Ln (R);
(iii) At is obtained by deleting a column of zeros;

(iv) the jth column of A is ej.. and A' is obtained from A by deleting (row i) and

(colunln j) .

The operations (iii) and (iv) can alsobe done in reverse. One can add a column of zeros,or
onecan add a new row and columnwith 1 as their common entry, all other entries beingzero.

Proof:We refer to the map R\" \037 R'ft defined by the matrix.

(i) The change of A to Q-l A corresponds to a change of basis in R m
.

(ii) The change of A to AP corresponds to a change of basis in R ll
.

(iii) A column of zeros corresponds10the trivial relation, which can be omitted.

(iv) A column of A equal to ei correspondsto the relation Vi =: O. The zero element is
uselessasa generator,and its appearance in any other relation is irrelevant. So we may
delete Vi from the generating set and from the relations. Doingsochangesthe matrix

A by deleting the ith row and jth column. 0)))
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It may be possible to simplify a matrix quite a lot by these rules. For instance, our

originalexampleof the integer matrix (14.5.4) reduces as follows:)

[

3 8 7 9

] [

0 2 1 6

]
A = 2 4 6 6 -+ 0 0 2 4 --*

[ \037
122 1 122 1

-+ [-4 -8] -+[4 8]-+[4 0]\037 [4].)

;
\037]

-+

[-\037 \037 -\037]-+)

Thus A presents the abelian group Z/4Z.
By definition, an m X n matrix presents a module by means of m generators and n

relations. But as we see from this example, the numbers m and n dependon choices;they

are not uniquely determined by the module.

Another example: The 2 x 1matrix

[ \037]

presents an abelian group V by means of two

generators (VI, V2) and one relation 4VI
= O. We can't simplify this matrix. The abelian

group that it presents is the direct sum Z/4Z EB Z of a cyclic group of order four and an

infinite cyclic group (see Section14.7).On the other hand, as we saw above, the matrix

[4 0 J presents a group with one generator VI and two relations, the secondof which is the

trivial relation. It is a cyclicgroup of order 4.)

14.6 NOETHERIAN RINGS)

In this section we discuss finite generation of the module of relations. For modules over a

nasty ring, the module of relations needn't be finitely generated, though V is. Fortunately
this doesn't occur with the rings we have been studying, as we show here.)

Proposition 14.6.1 The following conditions on an R-module V are equivalent:

(i) Every submodule of V is finitely generated;

(ii) ascending chain condition: There is no infinite strictly increasing chain

WI < W2 < . .. of submodules of V.)

Proof Assume that V satisfies the ascendingchain condition, and let W be a submoduleof

V. We select a set of generatorsof W in the following way: If W = 0, then W is generated by
the empty set. If not, we start with a nonzero element UJI of W, and we let WI be the span of

(WI). If WI = W we stop. If not, we choose an element W2 of W not in Wl, and we let W2
be the span of (WI, W2). Then WI < W2. If W2 < W, we choose an element W3 not in W2,
etc. In this way we obtain a strictly increasing chain WI < W2 < . .. of submodules of W.

Since V satisfies the ascending chain condition, this chain cannot be continued indefinitely.

Therefore some Wk is equal to W, and then (WI, . .. , U)k) generates W.

The proof of the converseissimilar to the proof of Proposition 12.2.13,which states that

factoring terminates in a domain if and only if it has no strictly increasing chain of principal
ideals.Assume that every submodule of V is finitely generated, and let Wl C W2 C . . .
be an infinite weakly increasing chain of submodules of V. We show that this chain is not

strictly increasing. Let U denotethe union of these submodu1es. Then U is a submoduleof

V. The proof is the same as the one given for ideals (12.2.15). So U is finitely generated. Let

(u I, . . . , U r) be a set of generators for U. Each U v is in one of the modules Wi and since the)))
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chain is increasing,there isan i such that lVi contains all of the elements u 1,. . . , U r . Then

Wi contains the module U generatedby (Ul. . . . .. Uk): U C Wi C W i + 1 C U. This shows that

U = Wi = Wi+l = U, and that the chain is not strictly increasing. 0)

Definition 14.6.2 A ring R is noelherian if every ideal of R is finitely generated.)

Coronary 14.6.3 A ring is noetherian if and only if it satisfies the ascending chain condition:
Thereisno infinite strictly increasing chain II < /2 < . .. of ideals of R. 0)

Principal idea] domains are noetherianbecauseevery ideal in such a ring is generated

by one element. So the rings Z,Z[i],and F[x], with jt-. a field'l are noetherian.)

Corollary 14.6.4 IJet R be a noetherian ring. Every proper ideal I of R is contained in a
maximal ideal.)

Proof. If I is not maximal itseJ[ then it is propcrJy contained in a proper ideal [2, and if /2
is not maximal, it is properly contained in a proper ideal ]3, and so on. By the ascending

chain condition (14.6.1), the chain I < /2 < 13' .. must be finite. Therefore lk is maximal for
SOIne k. 0)

The relevance of the conceptof a noetherian ring to the problem of finite generation of a
submodule is shown by the following theorem:)

Tbeorem 14.6.5 Let R be a noetherian ring. Every submodule of a finitely generated
R-module V is finitely generated.)

Proof Case I.' V = Rm
. We use induction on m. A submodu1e of R 1 is an ideal of R

(14.1.3).SinceR is noetherian\" the theorem is true when m = 1.Supposethat m > 1. We
consider the projection)

1C: R
m --+ Rm-l)

given by dropping the last entry: .7r(al, . . . 'I a 1n ) = (at, . . . , am-I).lts kernel is the set of
vectors of Rm

whose first In - 1coordinatesarezero.LetW be a submodule of Rm, and let
cp:W --+ R m - 1.be the restriction of 1'( to W. The image cp(W) is a submodule of Rm-l. It is
finitely generated by induction. Also, \037er cp

= (w n ker 1r) is a submoduleof ker TC, which

is a nlodule isomorphic to Ri . Sokercp is finitely generated. Lemma 14.6.6 shows that W is

finitely generated.)

Case 2: The generalcase.Let V be a finitely generated R-module. Then thereisa surjective

map cp: R m
\037 V from a free module to V. Given a submodu1e W of V, the Correspondence

Theorem tells us that U == qJ-l (W) is a submodule of the module Rm
, so it is finitely

generated, and W = cp(U). Therefore W is finitely generated (14.6.6)(8). 0)

Lemma 14.6.6 Let l{J: V --+ V' be a homomorphism of R -modules.

(a) If V is finitely generated and ifJ is surjective, then V.' is finitely generated.

(b) If the kernel and the image of <p are finitely generated, then V is finitely generated.)))
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(c) Let W be a submoduleof an R-module V. If both Wand V == VI W are finitely

generated, then V is finitely generated. If V is finitely generated, so is V.)

Proof (a) Suppose that q; is surjective and lct (Vl, . . . , v n ) be a set of generatorsfor V.

The set
(v\037,

. . . , v\037), with vi
== cp( Vi), generates V'.

(b) We follow the proof of the dimension formula for linear transformations (4.1.5). We

choose a set of generators(U],. ..,Uk) for the kernel and a set of generators (v\037,
. . . , v\037)

for the image. We also chooseelementsVi of V such that cp(Vi)
==

v\037,
and we show that the

set (u I, . . . , Uk; Vt, . . . , V m ) generates V. Let v be any element of V. Then q:>( v) is a linear
combination of (v; , . . . , v\037), say q;( v) == a] v; + . . . + am v\037. Let x == al VI + . . . + am V rn .

Then q;(x) ==
cp( v), hence v - x is in the kernel of cp. So v - x is a linear combination of

(u], . . . , Uk), say v - x == b 1 Ul + . . . + bkUk, and)

v == at VI + . . . + am V m + b 1Ul + . . . + bk Uk .)

Since v was arbitrary, the set (u], . . . , Uk; VI, . . . , vm) generates.

(c) This iollows from (b) and (a) when we replace q; by the canonical homomorphism
Jr:V-+V. 0)

This theorem completesthe proof of Theorem 14.4.11.

Since principal ideal domainsare noctherian, submodulesof finitely generated modules

over thcse rings are finitely generated. In fact, most of the rings that we have been studying
are noetherian. This follows from another of Hilbert's theorems:)

Theorem 14.6.7Hilbert Basis Theorem. Let R be a noetherian ring. The polynomial ring
R[x] is noetherian.)

The proof of this theorem is below. It shows by induction that the polynomial ring

R[ xl, . . . \037xn] in several variables over a noetherian ring R is noetherian. Therefore the
rings Z[Xl, . . . , xn] and F[x], . . . , xn],with F a field, are noetherian. Also,quotients of

noetherian rings are noetherian:)

Proposition 14.6.8 Let R be a noetherianring, and let I be an ideal of R. Any ring that is

isomorphic to the quotient ring R == R/ I is noetherian.)

Proof Let J be an ideal of R , and let Jr: R -+ R be the canonical map. Let J == T[-l( J ) be

the corresponding ideal of R. Since R is noctherian, J is finitcly generated, and it follows
that J is finitely generated (14.6.6)(a). 0)

Corollary14.6.9 Let P be a polynomial ring in a finite number of variablesover the integers
or over a field. Any ring R that is isomorphic to a quotient ring PI 1 is noetherian. 0)

We turn to the proof of the Hilbert BasisTheoremnow.)

Lemma 14.6.10 Let R be a ring and let I be an ideal of the polynomial ring R[x]. The set A

whose elements are the leading coefficients of the nonzero polynomials in I, together with

the zero clement of R, is an ideal of R, the ideal of leading coefficients.)))
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l\037roof. We must show that if a and f3 are in A, then a+ 13and ra arealsoin A. If anyone of the
three elementsa, f3, or ex + f3 is zero, then a + f3 is in A, so we may assume that these elements
are not zero. l'hen a is the leading coefficient of an clement f of I, and 13 is the leading
coefficient of an element g of I. We multiply I or g by a suitable power of x so that their

degrees become equal. The polynomialweget isalsoin I. Then a+ f3 is the leading coefficient

of j' + g. Since I is an ideal, f + g is in J and a + f3 is in A. The proof that ra is in A is similar. 0

Proof of the Hilbert Basis Theorem. We suppose that R is a noetherian ring, and we let I
be an ideal in the polynomial ring R[.x]. We must show that there is a finite subset S of I

that generates this ideal - a subset such that every clement of I can be expressedasa linear
combination of its clements, with polynomial coefficients.

Let A be the ideal of leading coefficientsof /. Since R is noetherian, A has a finite set
of generators, say (aI, . . . \037ak) . We choose for each i == 1, . . . , k a polynomial Ii in I with

leading coefficient ai, and we multipJy these polynomials by powers of x as necessary, so

that their degrees become equal, say to n.
N ext, let P denote the set consisting of the polynomials in R[ x] of degreeless than

n, together with O. This is a free R-module with basis (1, x, . . . , xn-l). The subset P n I,
which consists of the polynomials of degree lessthan n that are in I together with zero, is an

R-submodule of P. Let'scall this submodule W. Since P is a finitely generated R-module

and since R is noetherian, W is a finitely generated R-module. We choose generators
(h},. ..,hi)for W. Every polynomial in I of degree lessthan n is a linear combination of
(h l , ... ,hi),with coefficients in R.

We show now that the set (/1, . . . , ik; hI, . ..,hi)generates the ideal I. We use
induction on the degree d of g.

Case 1:d < n. In this case, g is an element of W, so it is a linear combination of (hI, . . . , hi)

with coefficients in R. We don't need polynomial coefficientshere.

Case2:d > n. Let f3 be the leading coefficient of g, so g == f3x
d + (lower degree terms).

Then fJ is an element of the ideal A of leading coefficients, so it is a linear combination

f3
== r1 a l + .. . + rkak of the leading coefiicients ai of Ii, with coefficients in R. The

polynomial)
\" d-n F

q ==
\037rix Ji)

is in the ideal generated by (Jl, . . . , Jk). It has degree d, and its leading coefficient is 13.
Therefore the degree of g - q is lessthan d. By induction, g - q is a polynomial combination

of (/1, . . . , fk;hI, ...,hi).Then g == q + (g - q) is alsosuch a combination. 0)

14.7 STRUCTUREOF ABELIAN GROUPS

The Structure Theorem for abelian groups,which is below, asserts that a finite abelian group

V is a direct sum of cyclic groups. The work of the proof has beendone.We know that there

exists a diagonal presentationmatrix for V. What remains to do is to interpret the meaning

of this matrix for the group.
The definition of a direct sum of modules is the sameas that of a direct sum of vector

spaces.)))
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\302\267Let WI, . . . , Wk be submodules of an R-module V. Their sum is the submodule that they

generate. It consists of an elenlents that are sums:)

(14.7.1)) WI + ... + Wk
== {v E V

I
v == WI + ... + Wk, with Wi in Wi}.)

We say that V is the direct sum of the submodules WI, . . . , Wk, and we write
V == WI E9 . . . EB W k, if)

(14.7.2)

\302\267
they generate: V == WI + . . . + Wk, and

\302\267
they are independent: If Wl + . . . + Wk == 0, with Wi in Wi, then UJi == 0 for all i.)

Thus V is the direct sum of the submodulesWi if every element v in V can be written

uniquely in the form v == tVl +. .. + wk, \\vith Wi in Wi. As is true for vector spaces,a module
V is the direct sum WI EB W2 of two submodules WI and \\.-V2 if and only if WI + W2 == V

and WI n W2 == 0 (see (3.6.6\302\273.

The same definitions are used for abelian groups.An abelian group V is the direct sum
WI ffi . . . E9 Wk of the subgroups Wi, . . . , Wk if:

\302\267
Every element v of V can be written as a sum v == WI + . . . + Wk with Wi in Wi, i.e.,
V == WI + . . . + Wk.

\302\267If a sum Wl + . . . + Wk, with Wi in Wi is zero, then Wi == 0 for all i.)

Theorem 14.7.3 Structure Theoremfor Abelian Groups. A finitely generated abelian group
V is a direct sum of cyclicsubgroupsCd1, . . ., Cd k

and a free abelian group L:

V = Cd l Ef) . . . EB Cdk E9 L,

where the order di of Cd; is greater than 1, and di dividesdi + l for i == 1, . . . , k - 1.)

Proof of the Structure Theorem. We choose a presentation matrix A for V, determined by
a set of generators and a complete set of relations.We can do this \"because V is finitely

generated and because Z is a Noetherian ring. After a suitable change of generators and
relations, A will have the diagonal form given in Theorem 14.4.6. We may eliminate any

diagonal entry that is equal to 1, and any column of zeros (see (14.5.7\302\273. The matrix A will

then have the shape)

d 1)

(14.7.4)) A==)

dk)

o

with d l > 1 and dIld21. .. Idk. It will be an m X k matrix, 0 < k < m.Themeaning of this for

our abelian group is that V is generated by a set of m elements B = (VI, ... , vrn), and that)

(14.7.5)) dl VI
== 0, ..., dk Vk

= 0)

forms a complete set of relations among these generators.)))
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Let C j denote the cyclicsubgroupgeneratedby v j, for j = 1, . . . , m. For j < k, C j
is cyclicof order dj, and for j> k, Cj is infinite cyclic. We show that V is the direct sum
of these cyclic groups. Since B generates, V = Cl + . .. + Cm. Suppose given a relation

Wl + . . . + W m = 0 with W j in C j. Since v j generates C j, W
j

== v jY j for some integer Y j.

The relation is BY == VIYl + . . . + vmYm
== O. Since the columns of A form a complete set

of relations, Y = AX for some integer vector X, which means that Yj is a multiple of dj if

j < k and Y j
== 0 if j > k. Since v jd j

== 0 if j < k, W j
= 0 if j < k. The relation is trivial,

so the cyclic groups C j are independent.The direct sum of the infinite cyclic groups Cj with

j > k is the free abelian group L. 0
A finite abelian group is finitely generated, so as stated above, the Structure Theorem
decomposesa finite abelian group into a direct sum of finite cyclic groups, in which the order

of each summand dividesthe next.Thefree summand will be zero.

It is sometimes convenient to decompose the cyclic groups further, into cyclic groups
of prime power order. This decomposition is based on Proposition 2.11.3:If a and bare

relatively prime integers, the cyclic group Cab of order ab is isomorphic to the direct sum
Ca ffi Cb of cyclic subgroups of orders a and b. Combining this with the Structure Theorem
yields the following:)

Corollary 14.7.6 Structure Theorem (Alternate Form). Evcry finite abelian group is a direct
sum of cyclic groups of prime power orders. 0)

It is also true that the orders of the cyclic subgroups that occur are uniquely determined
by the group. If the order of V is a product of distinct primes, there is no problem.For
example, if the order is 30, then V must be isomorphic to C2 EB C3 EB C s and to C30.
But is C2 E9 C2 E9 C4 isomorphic to C4 E9 C4? It isn't difficult to show that it is not, by

counting elements of orders1or2.The group C4 E9 C4 contains four such elements, while
C2 E9 C2 EB C4 contains eight of them. This counting method always works.)

Theorem 14.7.7 Uniqueness for the Structure Theorem. Suppose that a finite abelian group
V is a direct sum of cyclicgroupsof prime power orders d j =

p\037j.
The integers d j are

uniquely determined by the group V.)

Proof Let p be one of the primesthat appear in .the direct sum decomposition of V, and let

Cj denote the number of cyclic groups of order pi in the decomposition. The set of elements
whoseordersdivide pi is a subgroup of V whose order is a power of p, say pli. Let k be the

largest indexsuch that Ck > O. Then

il == Cl + C2 + C3 + . . .+ Ck

f2 = Cl + 2C2+ 2C3 + . . . + 2Ck,

f3 == CI + 2C2 + 3C3+ . . .+ 3Ck)

ik = Cl + 2C2+ 3C3 + . . . + kCk.

The exponents ii determinethe integersCia) D)))
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The integers di are also uniquely determined when they are chosen, as in Theorem 14.7.3,
so that d11. . .Idk .

14.8 APPLICATION TO LINEAR OPERATORS)

l'he classification of abelian groups has an analogue for the polynomial ring R ==
F[t] in one

variable over a field F. Theorem 14.4.6 about diagonalizing integer matricescarriesover

because the key ingredient in the proof of Theorem 14.4.6, the division algorithm,is available

in F[t]. And since the polynomial ring is noetherian, any finitely generated R-module V has

a presentation matrix (14.2.7).)

Theorem 14.8.1 Let R == F[t] be a polynomial ring in one variable over a field F and let

A be an m X n R-matrix. There are products Q and P of elementary R-matrices such that
A' == Q-l AP is diagonal, each nonzero diagonal entry di of A' is a monic polynomial, and

dl I
d 2 I

...
I dk. 0)

Example 14.8.2 Diagonalization of a matrix of polynomials:)

A ==

[

t2 - 3t + 1 t - 2

]
\037

[

t2 - 3t + 1 t - 2

]
\037

(t
- 1)3 t

2 - 3t + 2 t2 - t 0

col

[

- 1 t - 2

]

co)

[

- 1 0
]

row

[

1 0

]
\037

[2 _ [ ()
\037

[2 _ [ [3 _ 3t + 2t
-+

0 (3 - 3t2 + 21 .)

Note: It is not surprising that we ended up with 1 in the upper left corner in this example.

This will happen whenever the greatest common divisor of the matrix entries is 1. 0)

As is true for the ring of integers, Theorem 14.8.1provides us with a method to
determine the polynomial solutions of a system AX == B, when the entries of A and Bare

polynomial matrices (see Proposition 14.4.9).
We extend the structure theorem to polynomialringsnext.To carry along the analogy

with abelian groups, we define a cyclic R-module C, where R is any ring, to be a module
that is generated by a single element v. Then there is a surjective homomorphismq;;:R \037 C

that sends r \037 rv. The kernel of cp, the module of relations, is a submodule of R, an ideal/.

By the First Isomorphism Theor\037m, C is isomorphic to the R-module R/ I.
When R ==

F[t], the ideal I will be principal, and C will be isomorphic to R/(d) for
some polynomial d. The module of relations will be generated by a single element.)

Theorem 14.8.3Structure Theorem for Modules over Polynomial Rings. Let R == F[t] be

the ring of polynomials in one variable with coefficients in a field F.

(a) Let V be a finitely generated module over R. Then V is a direct sum of cyclicmodules
Cl, C2,..., Ck and a free module L, where Ci is isomorphic to R/(di), the elements
d1, . . . ,dk are monic polynomials of positive degree, and dl I d2 I

...
I dk.

(b) The same assertion as (a),exceptthat the condition that di divides d i + 1 is replaced by:
Each di is a powerof a monic irreducible polynomial. 0)))
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It is also true that the prime powers occurring in (b) are unique, but we won't take the time

to prove this.

For example, let R == JR[t], and the R-module V\" presented by the matrix A of Example
14.8.2. It is also presented by the diagonal matrix)

A' ==

[

1 0

]o t3 - 3t2 + 2t
.)

and we can drop the first row and column from this matrix (14.5.7). So V is presented by

the 1 X 1 matrix [g], where get) == t
3 - 3t2 + 2t == t(t

- l)(t - 2). This means that V is a
cyclicmodule,isomorphic to C ==

Rj(g). Since g has three relativelyprime factors, V can

be further decomposed. It is isomorphic to a direct sum of cyclic R-modules:)

(14.8.4)) R / (g) \037
(R j (t\302\273)

EB
(R j (t -

1\302\273)
EB

(R / (t - 2)) .)

We now apply the theory we have developed to study linear operators on vector spaces

ovcr a field. This application providesa goodexampleof how abstraction can lead to new
insights.The method developedfor abelian groups is extended formally to modulesover
polynomial rings, and is then applied in a concrete new situation. This was not the historical

development. The theories for abelian groups and for linear operators were developed
independently and were tied together later. But it is striking that the two cases, abelian
groups and linear operators,canendup looking so different when the same theory isapplied
to them.

The key observation that allows us to proceed is that if we are given a linear operator)

( 14.8.5)) T: V \037 V)

on a vector space over a field F, we can use this operator to make V into a module over the

polynomial ring F[t]. To do so,we must define multiplication of a vector v by a polynomial

f(t) == ant
n + . . . + alt + ao.We set)

(14.8.6)) f(t)v == an Tn (v) + an-l Tn - 1
(v) + . . . + al T(v) + aov)

The right side could alsobe written as [f(1)](v), where f(1) denotes the linear operator
an Tn + an-l T n - 1 + . . . + al T + aol.(The brackets have been added to make it clear that

it is the operator f(1) that acts on v.) With this notation, we obtain the formulas)

(14.8.7)) tv == T(v) and f(t)v ==
[f(1)](v).)

The fact that rule (14.8.6)makesV into an F[t]-module is easy to verify, and the formulas

(14.8.7) may appear tautological. They raise the question of why we need a new symbol t.
But f(t) is a polynomial, while f(1) is a linear operator.

Conversely, if V is an F[t]-module, scalar multiplication of elements of V by a

polynomial is defined.In particular, we are given a rule for multiplying by the constant

polynomials, the elements of F. If we keep the rule for multiplying by constants but forget)))
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for the moment about multiplication by nonconstant polynomials, then the axioms for a
module show that V becomes a vector space over F (14.1.1).Next, we can multiply elements
of V by the polynomial t. Let us denote the operation of multiplication by t on V as T. SoT
is the map)

(14.8.8))
T

V ---+ V, defined by T( v) = tv.)

This map is a linear operator when V is considered as a vector space over F. By the

distributive law, t(v + v') = tv + tv', therefore T(v + v') =
T(v) + T(v'). If c is a scalar,

then tev = etv, and therefore T(ev) = eT(v).So an F[t)-module V provides us with a

linear operator on a vector space.Theruleswe have described, going from linear operators
to modulesand back, are inverse operations.)

Linear operator on an F-vector space and

F[t]-module are equivalent concepts.

We will want to apply this observation to finite-dimensional vector spaces, but we note

in passing the linear operatorthat corresponds to the free F[t]-module of rank 1.When F[t]

is considered as a vector spaceover F, the monomials (1, t, t2, . . .) form a basis, and we
can use this basis to identify F[t] with the infinite-dimensional space Z, the space of infinite

row vectors (ao, al, a2, . . .) with finitely many entries different from zero that was defined

in (3.7.2). Multiplication by t on F[t] corresponds to the shift operator T:)

(14.8.9))

(ao, al, a2, ...) \037 (0, ao, aI, a2, .. .).)

The shift operator on the space Z correspondsto the free F[t]-moduleof rank 1.

We now begin our application to linear operators.Given a linear operator T on a
vector space V over F, we may also view V as an F[t]-module. We suppose that V is

tinite-dimensional as a vector space,say of dimension n. Then it is finitely generated as a
module, and it has a presentation matrix. There is somedangerof confusion here, because

there are two matrices around:the presentation matrix for the module V, and the matrix of
the linear operatorT. The presentation matrix is an r X s matrix with polynomial entries,
where r is the number of chosen generators for the module and s is the number of relations.

The matrix of the linear operatoris an n X n matrix whose entries are scalars,wheren isthe
dimension of V . Both matrices contain the information needed to describe the module and
the linear opera tor.

Regarding V as an F[t]-module, we can apply Theorem14.8.3to conclude that V is a
direct sum of cyclicsubmodules,say)

V = Wl E9 . . . E9 Wk,

where Wi is isomorphic to F[t]/(Ii), Ii being a monic polynomial in F[t]. When V is

finite-dimensional, the free summand is zero.
To interpret the meaning of the direct sum decompositionfor the linear operator T, we

choose basesHi for the subspaces Wi. Then with respect to the basis D = (Dl, . . \037, Bk), the

matrix of T has a blockform (4.4.4), where the blocks are the matrices of T restricted to the

invariant subspaces Wi. Perhaps it will be enough to examine the operatorthat corresponds

to a cyclic module.)))
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Let W be a cyclic F[t]-module, generated as a module by a single elementthat we

label as WOo Since every ideal of F[t] is principal, W will be isomorphic to F[t]/ (f),
where f == t

n + an-I tn - l + . . . + alt + aoisa monic polynomial in F[t]. The isomorphism
F[t]/ (f) \037 W will send 1 \037 WOo 1\037he set (1, t, . . . , tn-I) is a basis of F[t]/ (j) (11.5.5),so
the set (wo, two, t2wo, . . . tn-Iwo) is a basis of W as vector space.

The corresponding linear operatorT: W -\302\273W is multiplication by t. Written in terms

of T, the basis of W is (wo, WI, . .. Wn-l),with wi
== Tiwo. Then

T(wo) == WI, T(WI) == W2 ,..., T(W n -2) == Wn-I, and

[f(1))wo == TnuJo + an_lTn-lwo + ... + alTwO + aowo == o.

== TWn-1 + an-l Wn-l + . . .+ alWI + aowo == O.)

This determines the matrix of T. It has the form illustrated below for small values of n:

[-ao],
[\037 =:\037].

[\037
\037 =::],...,)

(14.8.10))

The characteristic polynomial of this matrix is J(t).)

Theorem 14.8.11 Let T be a linearoperatoron a tinite-dimensional vector space V over a
field F. There is a basis for V with respect to which the matrix of T ismadeup of blocks of

the type shown above. 0)

This form for the matrix of a linear operatoriscalleda rational canonical form. It is the best
available for an arbitrary field.)

Example 14.8.12 Let F == IR. The matrix A shown below is in rational canonical form. Its
characteristic polynomial is t3 - 1. Since this is a product of relatively prime polynomials:
(3 -1 ;= (t - 1)(t2

+ t + 1), the cyclicJR[t]-module that it presents is a direct sum of cyclic

modules. The matrix A' is another rational canonical form that describes the samemodule.
Over the complex numbers, A is diagonalizable. Its diagonal form is A\", where w == e

2Jri / 3
.)

(14.8.13))

[

0 0 1

]

A == 1 0 0 , A' ==

010)

1
I

[

1

]

o -1 , A\" == w

1 -1 w 2)

D)

Various relations between properties of an F[t]-module and the corresponding linear

operator are summed up in the table below.)

(14.8.14) F[t]-module Linear operatorT
multiplication by t operation of T
free module of rank 1 shift operator
submodule T-invariant subspace
directsum of submodules direct sum of T-invariant subspaces

cyclic module generated by w subspace spanned by w, T(w), T2
(w), . . .)))



436 Chapter 14) Linear Algebra in a Ring)

14.9 POLYNOMIAL RINGS IN SEVERAL VARIABLES)

Modules over a ring become increasingly complicated with increasing complication of the

ring, and it can be difficult to determine whether or not an explicitly presented module is
free.In this section we describe, without proof, a theorem that characterizes free modules

over polynomial rings in several variables. This theorem was proved by Quillen and Suslin

in 1976.
Let R ==

C[Xl, . . . , Xk] be the polynomial ring in k variables, and let V be a finitely

generated R-module. Let A be a presentation matrix for V. The entries of A will be

polynomials aij(x), and if A is an m X n matrix, then V is isomorphic to the cokernel

Rm / ARll of multiplication by A on R-vectors.

When we evaluate the matrix entries aij(x) at a point (Cl, . . . , Ck) of C k
, we obtain a

complexmatrix A(e) whose i, j-entry is aij(e).)

Theorem 14.9.1Let V be a finitely generated module over the polynomial ring ([[Xl, . . . , Xk],
and let A be an m x n presentation matrix for V. Denote by A (c) the evaluation of A at a

point e of C
k

. Then V is a free module of rank r if and only if the matrix A (c) has rank m - r
at every point e.)

The proof of this theorem requires too much background to give here. However, we can use
it to determine whether or not a given module is free.For example,let V be the module

over C[x, y] presented by the 4 X 2 matrix)

(14.9.2)) A==)

1 x

y x+3
x y
x2 y2)

So V has four generators, say VI, . . . , V4, and two relations:

VI + YV2 + XV3 + x2V4 == 0 and XVI + (x + 3)V2 + YV3 + y2V4 == O.

It isn't very hard to show that A(e) has rank 2 for every point e in C 2. Theorem 14.9.1tells
us that V is a free module of rank 2.

One can get an intuitive understanding for this theorem by considering the vector

space Wee) spanned by the columns of the matrix A(e). It is a subspace of ([m. As c varies

in the space C k
, the matrix A(e) varies continuously. Therefore the subspace Wee) will also

vary continuously, provided that its dimension does not jump around. Continuous families

of vector spaces of constant dimension,parametrized by a topological space Ck, are called
vector bundles over C k . The module V is free if and only if the family of vector spaces W( c)

forms a vector bundle.)

IIPar une deformation coutumiere aux mathematiciens,
je me'entenais au point de vue trop restreint.

-Jean-louis Verdier)))
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EXERCISES)

Section 1 Modules

1.1.Let R be a ring, and let V denote the R-module R. Determine all homomorphisms
qJ:V \037 V.

1.2. Let V be an abeJian group.Prove that if V has a structure of Q-module with its given law

of composition as addition, then that structure is uniquely determined.

1.3. Let R == Z[a] be the ring generated over Z by an algebraic integercx. Prove that for any

integer m, R/mR is finite, and determine its order.

1.4. A module is called simple if it is not the zero moduleand if it has no proper submodule.

(a) Prove that any simple R-module is isomorphic to an R-moduleof the form R/ M,
where M is a maximal ideal.

(b) Prove Schur's Lemma:Let cp: S \037 S' be a homomorphism of simplemodules.Then

qJ is either zero, or an isomorphism.)

Section 2 Free Modules)
.\"

2.1. Let R == <C[x, y], and let M be the ideal of R generated by the two elements x and y. Is
M a free R-module?

2.2. Prove that a ring R having the property that every finitely generated R-module is free is
eithera field or the zero ring.

2.3. Let A be the matrix of a homomorphisrn qJ: zn \037 Zm of free Z-modules.

(a) Prove that qJ is injective if and only if the rank of A, as a real matrix, is n.

(b) Prove that qJ is surjective if and only if the greatest common divisor of the

determinants of the m X m minors of A is 1.)

2.4. Let I be an ideal of a ring R.

(a) Underwhat circumstances is I a free R-module?

(b) Under what circumstances is the quotient ring R/ I a free R-module?)

Section3 Identities
3.1.Let f denote the function on en defined by evaluation of a (formal) complex polynomial

j'(Xl, . . . , X n ). Prove that if f is the zero function, then f is the zero polynomial.
3.2. It might be convenient to verify an identity only for the real numbers. Would this

suffice?

3.3. Let A and B be m X m and n X n R-matrices, respectively. Use permanence of identities

to prove that trace of the linear operator [(M) == AMB on the space R mxn
is the product

(trace A) (traceB).
3.4.In each case, decide whether or not permanence of identities allows the result to be

carriedover from the complex numbers to an arbitrary commutative ring.

(a) the associative law for matrix multiplication,

(b) the Cayley-Hamilton Theorem,)))
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(c) Cramer's Rule,

(d) the product rule, quotient rule, and chain rule for differentiation of polynomials,

(e) the fact that a polynomial of degree n has at most n roots,

(f) Taylorexpansion of a polynomial.)

Section 4 DiagonalizingIntegerMatrices

4.1.(a) Reduce each matrix to diagonal form by integer row and column operations.

[ - i ; ], [\037
\037 \037l [j -\037 \037\037]

(b) For the first matrix, let V == Z2 and let L == A V. Draw the sublattice L, and find

bases of V and L that exhibit the diagonalization.

(c) Determine integermatrices Q-l and P that diagonalize the secondmatrix.

4.2. Let d 1, d2, . . .bethe integers referred to in Theorem 14.4.6.Prove that dl is the greatest
common divisor of the entries aij of A.

4.3. Determineall integer solutions to the system of equations AX == 0, when

A =
[i \037 \037l

Find a basisfor the space of integer column vectorsB such that AX = B

has a solution.

4.4. Find a basis for the Z-module of integer solutions of the system of equations
x + 2y + 3z == 0, x + 4y + 9z == O.

4.5. Let a, f3, y be complex numbers. Under what conditions is the set of integer linear

combinations {la + mf3 + ny I l, m, n, E Z} a lattice in the complex plane?

4.6. Let cp : Zk \037 Zk be a homomorphism given by multiplication by an integer matrix A.
Showthat the image of cp is of finite index if and only if A is nonsingular and that if so,
then the index is equal to IdetAI.

4.7. Let A = (aI, . . . , an)t be an integer column vector, and let d be the greatest common

divisor of al, . . . ,an. Prove that there is a matrix PEG Ln (Z) such that P A ==

(d, 0,..., O)t.

4.8. Use invertible row and column operations in the ring Z[i] of Gauss integersto diagonalize

the matrix
[2

3
i

2
t

i
1

4.9.Use diagonalization to prove that if L c M are lattices,then [M : L] =
\037\037

.)

Section 5 Generators and Relations

5.1. Let R = Z[o], where 0 = \037.Determine a presentation matrix as R-module for the
ideal (2,1+ 8).

5.2.Identify the abelian group presented by the matrix

[

\037 \037 i l.
2 3

6J)))
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Section 6 Noetherian Rings)

6.1. Let V c en be the locus of common zeros of an infinite set of polynomials 11, 12, 13, . . ..
Prove that there is a finite subset of these polynomials whose zerosdefine the same locus.

6.2. Find an example of a ring R and an ideal I of R that is not finitely generated.

Section 7 Structure of Abelian Groups)

7.1. Find a direct sum of cyclicgroupsisomorphic to the abelian group presented by the matrix

[

\037 \037 \037

]

.

202

7.2. Write the abelian group generated by x and y, with the relation 3x + 4y
= 0 as a direct

sum of cyclic groups.

7.3. Find an isomorphic directproduct of cyclic groups, when V is the abelian group generated
by x, y, z, with the given relations.

(a) 3x+2y+8z=0,2x+4z==0
(b) x + y

= 0, 2x == 0, 4x + 2z = 0, 4x + 2y + 2z = 0

(c) 2x + y
== 0, x -

y + 3z == 0

(d) 7x + 5y + 2z == 0, 3x + 3y == 0, 13x + 11y + 2z == 0

7.4. In each case, identify the abelian group that has the given presentation matrix:)

[i].[\037],[2
0

O],[\037 Ilu \037],[i:],[\037:].[i \037].)

7.5. Determine the number of isomorphism classesof abelian groups of order 400.

7.6. (a) Let a and b be relatively prime positiveintegers.By manipulating the diagonal matrix
with diagonal entries a and b, prove that the cyclic group Cab is isomorphic to the
productCa Ea Cb.

(b) What can you say if the assumption that a and b are relatively prime is dropped?
7.7. Let R == Z[i] and let V be the R-module generatedby elements V1 and V2 with relations

(1 + i)V1 + (2
- i)V2 = 0, 3V1 + 5iv2 == O. Write this module as a direct sum of cyclic

modules.

7.8. Let F == JFp' For which prime integersp doesthe additive group Fl have a structure of
Z[i]-module?How about F2?

7.9. Show that the following concepts are equivalent:

. R-module, where R ==
Z[i],

. abelian group V, with a homomorphism cp:V \037 V such that cp 0 cp
== -identity.)

Section 8 Application to LinearOperators

8.1.Let T be the linear operator on \302\253:2whose matrix is
[\037

\037
].

Is the corresponding

C[t]-module cyclic?)))
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8.2. Let M be a C[t]-module the form C[t]j (t - a)n. Show that there is a C-basis for M, such
that the matrix of the corresponding linear operator isa Jordan block.

8.3.Let R == F[x] be the polynomial ring in one variable over a field F, and let V be the

R-module generated by an element v that satisfies the relation(t3
+ 3t + 2)v == O. Choose

a basis for V as F -vector space, and determine the matrix of the operator of multiplication
by t with respect to this basis.

8.4. L,et V be an F[t]-module, and let B == (VI, . . . , v n ) be a basis for V as F -vector space.
Let B be the matrix of T with respect to this basis. Prove that A == tI - B is a presentation
matrix for the module.

8.5. Prove that the characteristic polynomial of the matrix (14.8.10) is J(t).
8.6. Classify finitely generated modules over the ring C[ E], where E

2 == O.)

Section 9 Polynomial Rings in Several Variables)

9.1. Determine whether or not the modules over C[x, y] presented by the following matrices
are free.)

(a)
[ x 2;: : \037 y x/+ 1].

(b)
[
;1

y

}
2

],

(c))

x-I
y

x

x 2)

x

y+l
y

2y)

9.2. Prove that the module presented by (14.9.2) is free by exhibiting a basis.

9.3. Following the model of the polynomial ring in one variable, describemodules over the

ring C[x, y] in terms of complexvector spaces with additional structure.

9.4. Prove the easy half of the theorem of Quillen and Suslin: If V is free, then the rank of

A(e) is constant.

9.5. Let R = Z[.J=5], and let V be the module presented by the matrix A =
[1 \0378].

Prove

that the residue of A in Rj P has rank 1 for every prime ideal P of R, but that V is not a
free module.)

Miscellaneous Problems

M.1. In how many ways can the additive group Zj57l be given the structure of a module over
the Gauss integers?

M.2. Classify finitely generated modules over the ring tlj (6).

M.3. Let A be a finite abelian group, and let cp:A \037 C
X be a homomorphism that is not the

trivial homomorphism. Prove that LaE:A <p(a) == O.

M.4. When an integer 2x 2 matrix A is diagonalized by Q-l AP, how unique are the matrices

P and Q?
M.S. Which matrices A in G L2(IR)stabilizesome lattice L in JR2?)))
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M.6. (a) Describe the orbits of right multiplication by G == G L2 (Z) on the space of 2 X 2

integer matrices.

(b) Show that for any integer matrix A, there is an invertible integer matrix P such that

A P has the following Hermitian normal form:)

d l 0 0 0
a2 d2 0 0

a3 b3 d3 0)

where the entries are nonnegative, a2 < d2 , a3, b3 < d3 , etc.

M.7. Let S be a subring of the polynomial ring R == C[t] that contains C and is not equal to C.
Prove that R is a finitely generated S-module.

*M.8. (a) Let a bea complex number, and let Z[a] be the subring of C generated by a. Prove
that a is an algebraic integer if and only if Z[a] is a finitely generated abelian group.

(b) Prove that if a and f3 are algebraic integers, then the subring Z[ a, fJ] of C that they

generate is a finitely generated abelian group.

(c) Prove that the algebraic integers form a subring of C.

*M.9. Consider the Euclidean space }Rk, with dot product (v . w). A lattice L in V is a
discrete subgroup of V+ that contains k independent vectors. If L is a lattice, define
L* == {w I (v .

w) E Z for all vEL}.

(a) Show that L has a lattice basis B == (VI, . . . , Vk), a set of k vectors that spans L as

Z-module.

(b) Showthat L
* is a lattice, and describe how one can determine a lattice basis for L *

in terms of B.

(c) Under what conditions is L a sublattice of L*?

(d) Suppose that L C L*.Find a formula for the index [L*
: L].

*M.I0. (a) Prove that the multiplicative group QX of rational numbers is isomorphic to the

direct sum of a cyclicgroup of order2 and a free abelian group with countably many

generators.

(b) Prove that the additive group Q+ of rational numbers is not a direct sum of two

proper subgroups.

(c) Prove that the quotient group Q+ jZ+ is not a direct sum of cyclic groups.)))
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Fields)

Our difficulty is not in the proofs, but in learning what to prove.

-Emil Artin)

15.1 EXAMPLES OF FIELDS

Much of the theory of fields has to do with a pair Fe K of fields,onecontainedin the other.

Given such a pair, K is called a field extension of F, or an extension field. The notation K / F
will indicate that K is a fieldextensionof F.

Here are the three most important classes of fields.)

Number Fields

A number field K is a subfield of C.

Any subfield of C contains'the field Q of rational numbers, so it is a field extension of Q. The
number fields most commonly studied are algebraicnumber fields, all of whose elements are
algebraicnumbers.We studied quadratic number fields in Chapter 13.)

Finite Fields

A finite field is a field that contains finitely many elements.

A finite field contains one of the prime fields IFp, and therefore it is an extension of that field.

Finite fields are described in Section 15.7.)

Function Fields

Extensions of the field F = C(t) of rational functions are called function fields.

A function field canbe defined by an equation f(t, x) = 0,where f is an irreducible complex

polynomial in the variables t and x, such as f(t, x) = x
2 - t3 + t, for example.We may use

the equation f(t, x) = 0 to define x \"implicitly\" as a fun ction x(t) of t, as we learn to do in

calculus. In our example, this function is x( t) = .j t3 - t. The corresponding function field

K consists of the combinations p + qJ t
3 - t, where p and q arerational functions in t. One)

442)))
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can work in this field just as one would in a field such as Q(-J:5). For most polynomials

j\"(t, x), there won't be an explicit expression for the implicitly defined function x(t), but

by definition.. it satisfies the equation f(t, x(t)) = O. We will see in Section 15.9 that x(t)

defines an extension field of F.)

15.2 ALGEBRAIC AND TRANSCENDENTAL ELEMENTS

Let K be an extension of a field F, and let a be an element of K. By analogy with the

definition of algebraic numbers (11.1), a is algebraic over F if it is a root of a monic

polynomial with coefficients in F, say)

(15.2.1 )) ji( )
n 11-1 \302\267

h
.

F
.

x = x + an-IX + . . \302\267+ ao, WIt ai In ,)

and f(a) = O. An element is transcendental over F if it is not algebraic over F - if it is not a
root of any such polynomial.

These properties, algebraic and transcendental, dependon F. The complex number

2ni is algebraic over the field of real numbers but transcendental over the field of rational

numbers. Every element ex of a field K is algebraic over K, because it is the root of the

polynomial x - a, which has coefficients in K.
The two possibilitiesfor a can be described in terms of the substitution homomorphism)

(15.2.2)) cp:F[x] \037 K, defined by x \037 cx.)

An element ex is transcendental over F if cp is injective, and algebraic over F if cp is not

injective, that is, if the kernel of q; is not zero. We won't have much to say about the case
that ex is transcendental.

Suppose that ex is algebraic over F. Since F[x] is a principal ideal domain, the kernel
of cp is a principal ideal, generated by a monic polynomial f(x) with coefficients in F. This

polynomial can be describedin various ways..)

Proposition 15.2.3 Let C/ be an element of an extension field K of a field F that is

algebraic over F. The following conditions on a monic polynomial f with coefficients in

F are equivalent. The unique monic polynomial that satisfies these conditions is called the
irreduciblepolynomial for ex over F .

. f isthe monic polynomial of lowest degree in F[x] that has ex as a root.
\302\267f is an irreducible element of F[x], and ex is a root of f.
. f has coefficients in F, ex is a root of f, and the principal ideal of F[x] that is

generated by f is a maximal ideal.

. a is a root of f, and if g is any polynomial in F[.x] that has a as a root, then f

divides g. 0)

The degreeof the irreducible polynomial for ex over F is called the degreeofa over F.

It is important to keep in mind that the irreducible polynomial f dependson F as
wen as on a, because irreducibility of a polynomial depends on the field. The irreducible)))
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polynomial for vl over Q is x
4

+ 1, but this polynomial factors in the field Q(i). The
irreduciblepolynomial for vl over Q(i) is x2 - i. When there are several fieldsaround, it is

ambiguous to say that a polynomial is irreducible. It is better to say that f is irreducible over
F, or that it is an irreducible element of F[x].

Let K be an extension field of F. The subfield of K generated by an element a of K

will be denoted by F( a):

(15.2.4) F(a) is the smallest subfield of K that contains F and a.

Similarly, if aI, . . . , ak are elements of an extension field K of F, the notation F(al, . . . , ak)

will stand for the smallest subfieldof K that contains these elements and F.
As in Chapter 11, we denote the ring generated by a over F by F[a]. It is the image

of the map cp:F[x] -\302\273K defined above, and it consists of the elements fJ of K that can be

expressed as polynomials in ex with coefficients in F:

(15.2.5) fJ
:= bna

n
+ . . . + bla + ho, bi in F.

The field F(a) is isomorphic to the field of fractions of F[a]. Its elementsare ratios of

elements of the form (15.2.5)(seeSection11.7).
Similarly, if al, . . . , ak are elements of K, the smallest subring of K that contains F

and these elements is denoted by F [aI, . . . , ak]. It consists of the elements fJ of K that can

be expressed as polynomials in the ai with coefficients in F. The field F(al, . . . , ak) is the

field of fractions of the ring F [aI, . . . , ak].
If an element a of F is transcendental over F, the map F[x] \037 F[a] is an isomorphism.

In that case F( ex) is isomorphic to the field F(x) of rational functions. The field extensions.
F(a) areisomorphic for all transcendental elements a.

Things are different when a is algebraic:)

Proposition 15.2.6 Let a be an element of an extension field K / F which is algebraic over

F, and let f be the irreduciblepolynomial for a over F.

(a) The canonical map J?[x]/(f) \037 F[a] is an isomorphism, and F[a] is a field. Thus
F[a] = F(a).

(b) More generally, let aI, . . . , CXk be elements of an extension field K/ F, which are

algebraic over F. The ring F[al, . . . , ak] is equal to the field F(al, . . . , ak)')

Proof (a) Let cp: F[x] \037 K be the map (15.2.2). Since the ideal (f) is maximal, f(x)
generates the kernel, and F[x]/(f) is isomorphic to the image of cp, which is F[a].

Moreover, F[x]/(f) is a field, and therefore F[a] is a field.SinceF(a) is the fraction field

of F[a], it is equal to F[a].

(b) This follows by induction:

F[al,.'\" ak] = F[al,\"', ak-I] [ak] == F(al,'.', ak-l) [ak] = F(al,.\", an). 0)

Thenextproposition is a special case of Proposition 11.5.5.)

Proposition15.2.7Leta be an algebraic element over F, and let I(x) be the irreducible
polynomial for a over F. If f(x) has degree n, i.e.,if a has degree n over F, then

(1, a, . . . , a n --l ) is a basisfor F(a) as a vector space over F.' 0)))
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For instance,the irreducible polynomial for w = e2ni / 3 over Q is x2
+ x + 1. The degree of

(J) over Q is 2, and (1,w) is a basis for Q( ill) over Q.
It may not be easy to ten whether two algebraicelementsa and fJ generate isomorphic

field extensions, though Proposition 15.2.7 provides a necessary condition: They must have

the same degree over F, becausethe degree of a over F is the dimension of F(a) as an

F-vector space. 1\"his is obviously not a sufficient condition. All of the imaginary quadratic
fields studied in Chapter 13 are obtained by adjoining elements of degree 2 over Q, but they

aren't isomorphic.
On the other hand, if ex is a complex root of x3 - X. + 1, then f3 = a + 1 is a root of

.x
3 - 3x2 + 2x+ 1.The fields Q(a) and Q(fJ) are the same.If we were presented only with

the two polynomials..it might take some time to notice how they are related.

What we can describeeasily are the circumstances. under which there is an isomorphism
F(a)-* F(fJ) that fixes I\" and sends ex to fJ. The next proposition, though very simple, is

fundamental to our understanding of field extensions.)

Proposition 15.2.8 Let F be a field.. and let a and fJ be elements of field extensions K / F
and L/ F. Suppose that a and fJ are algebraic over F. There is an isomorphism of fields

a: F(cx)-4 F(f3) that is the identity on F and that sends a 'V'-t
fJ if and only if the irreducible

polynomials for a and f3 over F are equal.)

Prool Since ex is algebraic over F..F[a] = F(a),and similarly, ]?[I3J == f?(f3). Suppose that

the irreducible polynomials for a and for f3 over F are both equal to f. Proposition 15.2.6

tells us that there are isoI110rphisms

F[x]/(\037f)
\037 F[al and F[x]/(f) \037 F[fJ].

The composed map a == 1frcp-l is the required isomorphism F(a) \037 F(f3). Conversely, if

there is an isomorphism a that is the identity on F and that sends a to fJ, and if f(x) is a
polynomial with coefficients in F such that f(a) == 0, then f(fJ) = 0 too. (SeeProposition
15.2.10below.) So the irreducible polynomials for the two elements are equal. 0

For instance,let al denotethe real cube root of 2, and let w = e21ri / 3 be a complex
cube root of 1. The three complcx roots of x3 - 2 are aI, az = wa and a3 = (J)2a. Therefore

there is an isomorphism Q(a1) \037 Q(a2) that sends al to a2. In this case the elements of

Q(al) are real numbers, but CX2 is not a real number. To understand this isomorphism\" we

must look only at the internal algebraic structure of the fields.)

Definition 15.2.9 Let K and K' be extensions of the same field F. An isomorphism

cp:K \037 K' that restricts to the identity on the subfield F is caned 'an F-isomorphism, or an

isomorphism offield extensions.If thereexistsan F-isomorphism cp: K -4 K', K and K' are
isonlorphic extension fields.)

The next proposition wasproved for complex conjugation before (12.2.19).)

Proposition 15.2.10 Let cp: K -* K ' be an isomorphism of field extensions of F, and let .t'
be a polynomial with coefficients in F. Let a be a root of f in K, and let a' =

cp(a) be its

image in K ' .Thena ' isalso a root of f.)))
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Proof Say that f(x) == anxn + . . . + alx + ao. Sinceq; is an F-isomorphism and since ai
are in F, qJ(ai) == ai\" Since qJ is a homomorphism,)

o == q;(O)
==

cp(f(ex\302\273
== q;(ana

n + . . . + ala + ao)

== q;(an)q;(a)n + . . . + q;(al)cp(a)+ cp(ao)
== ana,n + . . . + ala' + ao.)

Therefore a' is a root of f.) D)

15.3 THE DEGREE OF A FIELD EXTENSION)

A field extension K of F can always be regarded as an F-vector space. Addition is the

addition law in K, and scalar multiplication of an element of K by an element of F is
obtainedby multiplying these two elements in K. The dimension of K, when regardedas an

F-vector space, is called the degree of the field extension. This degree, which is denoted by

[K :F], is a basic property of a field extension.)

(15.3.1)) [K: F] is the dimension of K, as an F -vector space.)

For example,C has the IR-basis (1, i), so the degree [C:}R]is 2.
A field extension K / F is a finite extension if its degree is finite. Extensions of degree 2

are quadratic extensions, those of degree 3 are cubic extensions, and so on.)

Lemma 15.3.2

(a) A field extension K/ F has degree 1 if and only if F == K.

(b) An element a of a field extension K has degree lover F if and only if ex is an element
of F.)

Proof (a)If the dimension of K as vector space over F is 1, any nonzero element of K,

including 1, will be an F -basis,and if 1 is a basis, every element -of K is in F.

(b) By definition, the degree of a over F is the degree of the (monic) irreducible polynomial
for ex over F. If ex has degree 1, then this polynomial must be x -

ex, and if x - ex has

coefficients in F, then ex is in F. 0)

Proposition 15.3.3 Assumethat the field F does not have characteristic2, that is, 1 + 1 * 0
in F. Then any extension K of degree2 over F can be obtained by adjoining a square
root: K == F(o), where 82 == d is an element of F. Conversely,if 8 is an element of a field

extension of F, and if 82 is in F but 8 is not in F, then F(8) is a quadratic extensionof F.)

It is not true that all cubic extensions can be obtained by adjoining a cube root. We
learn more about this point in the next chapter (see Section16.11).

ProofWe first show that every quadratic extension K canbe obtained by adjoining a root

of a quadratic polynomial f(x) with coefficients in F. We choose an element a of K that

is not in F. Then (1, a) is a linearly independent set over F. Since K has dimension2 as a
vector space over F, this set is a basisfor K. It follows that ex

2 is a linear combination of)))
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(1, a) with coefficients in F. We write this linear combination as a 2 == -ba - c. Then a isa
root of j(.x.)

== x
2

+ bx + c, and sincea is not in F, this polynomial is irreducibleover F.

This much is also true when the characteristicis2.
Thediscriminant of the quadratic polynomial f isD == b

2 -4c. In a fieldof characteristic

not 2, the quadratic formula i (-b + \037) solves the equation x 2 + bx + c = O. This is proved

by substituting into the polynomial. There are two choices for the square root, let 8 be one
of them. Then 8 is in K, 8 2 is in F, and because a is in the field F(8), 8 generates Kover
F. Conversely, if 8 2 is in F but 8 is not in F, then (1,8) will be an F-basis for F(8), so
[F(8):F] == 2. D)

The term degree comes from the case that K is generated by one algebraic element a:
K = F(a). This is the first important property of the degree:)

Proposition15.3.4

(a) If an element a of an extension field is algebraic over F, the degree [F(a): F] of F(a)

over F is equal to the degree of a over F.

(b) An element a of an extension field is algebraicover F if and only if the degree [F(a) :F]
is finite.)

Proof If a is algebraic over F, then by definition, its degree over F is equalto the degree

of its irreducible polynomial f over F. And if f has degree n, then F(a) \037as the F-basis

(1, a, . . . ,a n - l
) (Proposition 15.2.7),so [F(a) :F] == n. If ex is not algebraic, then F[ ex]and

F(a) have infinite dimension over F. 0

The secondimportant property relates degrees in chains of fieldextensions.)

Theorem15.3.5Multiplicative Property of the Degree. Let F eKe L be fields. Then

[L: F] = [L: K][K: F]. Thereforeboth [L: K] and [K: F] divide [L: F].)

Proof LetB == (fJl. . . . , f3n) be a basis for L asa K-vector space, and let A == (al, . . . , am)
be a basis for K as F -vector space. So [L :K]

= nand [K: F] = m. To prove the theorem,
we show that the set of mn products P ==

{aif3j} is a basis of L as F-vectorspace.The

reasoning in case one of the degreesis infinite is similar.

Let y be an element of L. Since B is a basis for Lover K, y can be expressed uniquely

as a linear combination bi fJl + . . . + b n fJn, with coefficients b j in K. Sjnce A is a basis for

Kover F, each b j can beexpresseduniquely as a linear combination aljal + . . .+ amja m ,

with coefficients aij in F. Then y = Li,j aijaifJ j. This shows that P spans L as an F-vector

space. If a linear combination Li,j aijaifJj is zero, then because B is a basis for L as

K-vector space, the coefficient Li aijai of fJ j is zero for every j. This being so, aij is zero
for every i and every j because A is a basis for Kover F. Therefore P is independent,and

hence it is a basis for Lover F. D)

Corollary 15.3.6

(a) Let F C K be a finite field extension of degree n, and let a be an element of K. Then ex

is algebraic over F, \037nd its degree over F divides n.)))
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(b) Let F c F' C L be fields. If an element a of L is algebraicover F, it is algebraic over
F'. If a has degree d over F, its degree over F' is at most d.

(c) A field extension K that is generated over F by finitely many algebraic elements is a
finite extension. A finite extension is generated by finitely many elements.

(d) If K is an extension field of F, the set of elementsof K that are algebraic over F is a
subfield of K.)

Proof. (a) The element a generatesan intermediate field F C F(a) C K, and the multi-

plicative property states that [K: F] ==
[K: F(a)][ F(a) : F]. Therefore [F(a) :f'] is finite,

and it divides [K: F].

(b)Let f denote the irreducible polynomial for ex over F. Since Fe F', f isalsoan element

of F' [x]. Since a is a root of f, the irreducible polynomial g for a over F' divides f. So the
degree of g is at most equal to the degree of f.

(c) Let aI, . . . , ak be elements that generate K and are algebraicover F, and let F i denote

the field F(al, . . . ,ai) generated by the first i of the elements. These fields form a chain

F == Fo C Fl C . . . C Fk
== K. Since ai is algebraic over F, it is also algebraic over the

larger field Fi-l' Thereforethe degree [Fi : Fi-l] is finite for every i. By the multiplicative
property, [K:F] is finite. The second assertion is obvious.

(d) We must show that if a and f3 are elements of K that are algebraic over F, then a + f3,

af3, etc., are algebraic over F. This follows from (a) and (c) because they are elementsof

the field F( ex, fi). 0)

Corollary 15.3.7Let K be an extension field of F of prime degreep. If an element a of K
is not in F, then a has degree p over F and K == F(a). 0)

Corollary 15.3.8 Let JC be an extension field of a field F, let K and F' be subfieldsof JC that

are finite extensions of F, and let k' denote the subfieldof JC generated by the two fields K
and F' together.Let[K':F] = N, [K: F] == m and [F': F] == n. Then m and n divide N,
and N < mn.)

Proof. The multiplicative property shows that m and n divide N. Next, supposethat F'

is generated over F by one element: F' ==
F(fJ) for some element fi. Then K' == K(fJ).

Corollary 15.3.6(b) shows that the degree of fJ over K, which is equal to [K': K],is at most

equal to the degree of f3 over F, which is n. The multiplicative property shows that N < mn.
The casethat F is generated by several elements follows by induction, when one adjoinsone
elementat a time. 0)

The diagram below sumsup the corollary:)

(15.3.9)) K'

\037/ \037m

K N F'

\037 \037

F)))
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It follows from the corollary that the degree N of K' over F is divisible by the least common

multiple of m and n, and that if m and n are relativelyprime, then N == mn.

It might be tempting to guessthat N divides mn, but this isn't always true.)

Examples 15.3.10

(a) The three complexrootsof x
3 - 2 are a} == a, a2 == wa, and a3 == w

2
a, where a == \037

and w == e2Jrij3. Each of the roots ai has degree3 over Q, but Q(al, a2) = Q(a, w),
and since u) has degree 2 over Q, [Q(al,(2):Ql

== 6.

(b) Let a == \037 and let fJ be a root of the irreducible polynomialx4
+ x + 1 over Q. Because

3 and 4 are relatively prime, Q(a, fJ) has degree 12 over Q. Therefore a is not in the

field Q(f3). On the other hand, sincei has degree 2 over Q, it is not so easy to decide
whether or not i is in Q (fJ). (It is not.)

(c) Let K == Q( -}2, i) be the field generated over Q by -}2 and i. Both i and -}2have degree

2 over Q, and since i is complex,it is not in Q( -}2). SO[Q(-}2,i):Q]
== 4. Therefore the

degree of i over Q( -}2) is 2. Since nand i alsogenerateK,i is not in the field Q[n]
either. 0)

15.4 FINDING THE IRREDUCIBLE POLYNOMIAL)

I\037et Y be an element of an extension field K of F, and assume that y is algebraic over
F. There are two general methods to find the irreducible polynomial f(x) for y over

F. One is to compute the powers of Y and to look for a linear relation among them.

Sometimes, though not very often, one can guess the other roots of f, say Yl, . . . , Yk, with

y == Yl. Then expanding the product will (x
- Yl) . . . (x -

Yk) produce the polynomial.
We'll give an example to illustrate the two methods, in which [/ is the field Q of rational

numbers.)

Example 15.4.1 Let Y
== -}2 + ,)3. We compute powersof y, and simplify when possible:

y2 == 5 + 2,J6, y4 == 49 + 20,J6. We won't need the other powers because we can eliminate
,J6 from these two equations, obtaining the relation y4 -

IOy2 + 1 == O. Thus Y is a root of

the polynomial g(x) == x
4 - 10x2 + 1. D)

Two important elementary observations are implicit here:)

Lemma 15.4.2

(a) A linear dependence relation Cn yn + . . . + Cl Y + Co == 0 among powers of an element Y

means that y is a root of the polynomial cnx
n

+ . . . + CI X + Co.

(b) Leta and f3 be algebraic elements of an extension field of F, and let their degrees over

F be d1and d2, respectively. The d 1d2 monomialsa i
f3J, with 0 < i < d1and 0 < j <d2 ,

span F( a, f3) as F -vector space.)

Proof Though important, (a) is trivial. To prove (b), we note that because a and fJ are

algebraic over F, F(a, f3)
== F[a, f3] (15.2.6). The monomials listed spanF[a, fi]. 0)))
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Example 15.4.3 The alternate approach to Example 15.4.1 is to guessthat the roots of g
might be Yl == J2 +,)3, Y2

== -J2 - ,)3, Y3
= -J2 + ,)3, and Y4

== J2 - ,)3. Expanding
the polynomial with these roots, we find)

(x- Yl)(X- Y2)(X - Y3)(X- Y4)

= (x
2 - (J2 + J3)2)(x2 - (J2-

J3)2)
= x

4 - 10x2 + 1.)

\"fhis is the polynomial that we obtained before.) o)

The lemma shows that one can always produce a polynomial having an element such

as Y
= a + f3 as a root, providedthat the irreducible polynomials for a and f3 are known.

Say that a and f3 have degrees d 1 and d2 over F, respectively. Given any element Y of

F(a, f3), we write its powers 1, Y, y2, . . . , yn as linear combinations of the monomials
a i

f3j with 0 < i < d1 and 0 < j < d2.When n = d l d2, we get n + 1 powers y
V

that

are linear combinations of n monomials. So the powers are linearly dependent. A linear
dependence relation determinesa polynomial with coefficients in F with y as a root.
However, there is a point that complicates matters. The polynomial with root Y that we
find in this way may be reducible. The irreduciblepolynomial for Y over F is the lowest
degreepolynomial with root y. To determine it by this method, we would need a basisfor K

over F.)

Examples 15.4.4

(a) In Example15.4.1,where a = J2, f3
= J3 and d1 = d2 = 2, the elements a i

f3J with

i, j < 2 are 1, J2, J3, and .J6. These elements do form a basis of Kover Q. The

polynomial x4 - 10x2 + 1 is irreducible.

(b) We go backto Example15.3.10(a),in which the three roots of the polynomial x3 - 2

are labeled ai, i == 1,2,3. Let F = Q, L == Q(al) and K = Q(al, (2)' Each of the

roots ai has degree 3 over F. According to the lemma, the nine monomials ai a\037
with

o < i, j < 3 spanKoverF. However, these monomials aren't independent. Since I has

a root al in the field L, it factors in L[x], say I(x) == (x
- al)q(x). Then a2 is a root of

q(x), so a2 has degree at most 2 over L. The set (1, (2) is a basisfor K over the field

L, so the six monomials
aia\037

with 0 < i < 3 and 0 < j < 2 form a basis for Kover F.
If we want a basis of monomials, we should use this one. 0)

15.5 RULER AND COMPASS CONSTRUCTIONS)

Famous theorems assert that certain geometric constructions cannot be done with ruler and

compass alone. To illustrate thesetheorems,we use the concept of degree of a field extension

to prove the impossibility of trisection of an angle.

Here are the rules for ruler and compass construction:)

(15.5.1))

. Two points in the plane are given to start with. These points are constructed.)))
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\302\267If two points Po, PI have been constructed, we may draw the line through them, or

draw a circle with center at Po and passing through Pl. Such lines and circles are
then constructed.

. The points of intersection of constructed lines and circles are constructed.

Points, lines,and circles will be called constructible if they can be obtained in finitely many

steps, using these rules.
Notice that our ruler may be used only to draw lines through constructed points.

We are not allowed to use it for measurement. Sometimes the ruler is referred to as a
\"straight-edge\" to emphasize this point.

We begin with some familiar constructions. In each figure, the lines and circlesare to
be drawn in the order indicated. The first two constructions make use of a point q on \302\243whose

only restriction is that it is not on the perpendicular. Whenever we need an arbitrary point,

we will construct a particular one for the purpose. We can do this because a constructed line
,f, contains infinitely many points that can be constructed.)

Construction 15.5.2 Construct a line through a constructed point p and perpendicular to a
constructedline,f,.

Case 1: p \037\302\243)

f)

Case 2: P E ,f,)

q)

i)))
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Construction 15.5.3 Construct a line parallel to a constructedline ,f, and passing through a
constructed point p.
Apply Cases 1 and 2 above:)

I

I

I

----2------\037------------
I

1:
I
I

I f
I

I

I

I)

Construction 15.5.4 Mark off a length definedby two points onto a constructed line .e,with

endpoint p.

Use the construction of parallels:)

f

4

3 length marked
off on l

1)

We introduce Cartesian coordinates into the plane so that the points that are given at

the start have coordinates (0,0) and (1, 0).)

Proposition 15.5.5

(a) Let Po == (ao, bo) and PI = (aI, hI) be points whose coordinates ai and bi are in a

subfield F of the field of real numbers.Thelinethrough Po and PI is defined by a linear

equation with coefficients in F. The circle with center Po and passingthrough PI is

defined by a quadratic equation with coefficients in F.

(b) Let A and B be lines or circles defined by linear or quadratic equations,respectively,

that have coefficients in a subfield F of the real numbers. Then the points of intersection
of A and B have coordinates in F, or in a real quadratic field extension F' of F.)

Proof (a) The line through (ao, bo) and (aI, hI) is the locus of the linear equation)

(al - ao)(y -
bo)

== (b i - bo)(x -
ao).)))
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1\037he circle with center (ao, bo) and passingthrough (al, hI) is the locus of the quadratic

equation)
,., .., '1 ?

Ct
-

ao)\037 + (y
- bo)- == (aj

-
ao)\037 + (h j

-
bo)\037.)

The coefficients of these equations are in F.

(b) The point of intersection of two lines is found by solving two linear equations with

coefficients in F, so its coordinates are in F. To find the intersection of a line and a circle,
we use the equation of the line to eliminate one variable from the equation of the circle,

obtaining a quadratic equation in one unknown. This quadratic equation has solutionsin

the field F' = F( -J/5), where D is its discriminant. l\037he discriminant is an element of f\037. If

P' =1= F, then the degree of F' over F is 2. If D is negative, there is no real solution to the
equations.Thenthe lineand circle do not intersect.

Consider the intersectionof two circles, say)

(x - Gl)2+ (y
- bl)2 = Cl and (x -

G2)2 + (\037v
- b2)2 = C2,)

where ai, bi, and Ci are in F. In general. the solution of a pair of quadratic equations in two

variables requires solving an equation of degree4. In this case we are lucky: The difference
of the two quadratic equations is a linear equation. We can use that linear equation to
eliminate one variable, as before. l\"he lucky event reflects the fact that, whereas a pair of
conics may intersect in four points, two circles intersect in at most two points. D)

Theorem 15.5.6 Let p bea constructible point. For some integer n, there is a chain of fields)

Q == Fo C Fl C F2 C . . .C Fn = K, such that)

\302\267K is a subfield of the field of real numbers\037

\302\267the coordinates of ]J arc in K;

\302\267for each i == 0,..., n -1, the degree [Fi+l:Fi] is equal to 2.

Therefore the degree [K:Q] is a power of 2.)

Proof We introduced coordinatesso that the points originally given are (0, 0) and (1,0).

These points have coordinates in Q. The process of constructing the point p involves a

sequence of steps, each one of which dravfs a line or a circle.
Supposethat all points constructed by the time we are at the kth step have coordinates

in a field F. The next step constructs a line or circle through two of these points, and
accordingto Proposition15.5.5(a),the line or circle has an equation with coefficients in F.

The field does not change.Thenaccordingto Proposition 15.5.5(b), any point of intersection
of the lines and circles constructed so far will have coordinates, either in f', or in a real

quadratic extension of f\037. The assertion foHows by induction from Proposition 15.5.5and

from the multiplicative property of the degree. 0

. We call a real number a constructible if the point (a,O) is constructible. Since we
can construct perpendiculars,this is the same thing as saying that a is the -,\"(-coordinate
of a constructiblepoint. And since we can mark off lengths, a positive real number a is
constructible if and only if there is a pair p..q of constructible points whose distance apart is a.)))



454 Chapter 15 Fields)

Corollary 15.5.7 Let a be a constructible real number. Then a is an algebraic number, and
its degreeover Q is a power of 2.)

Since a is in a field K that is the end of a chain of fields as in the theorem, and since[K:Q]
isa power of 2, the degree of a isalsoa power of 2 (15.3.6). D

The converse of this corollary is false. There exist real numbers of degree 4 over Q that

aren't constructible. Galois theory provides a way to understand this. (This is Exercise 9.17
of Chapter 16.)

We can now prove the impossibility of certain geometric constructions. The method
is to show that if a certain construction were possible,then it would also be possible to
construct an algebraic number whose degree over Qisnot a power of 2. This wouldcontradict
the corollary. Our example is the impossibility of trisection of the angle, which asks for a
construction of the angle lB when () is given. Now many angles, 45\302\260for instance, can be
trisected. The trisection problemasks for a general method of construction that will work

for any \"given\" angle.

Since it is easy to construct an angle of 60\302\260,we can give this angle to ourselves,using

ruler and compass constructions. If trisection werepossible,we could construct an angle of
20\302\260.We will show that it is impossible to construct that particular angle, and therefore that

there is no general method of trisection.
We'll say that an angle () is constructible if it is possible to construct a pair of lines

meeting with angle B.If we mark off a unit length on one of the lines and drop a perpendicular
to the other line, we will have constructed the real number cosB.Conversely,if cos B is a
constructible real number, we can reversethis process to construct a pair of linesmeeting
with angle ().

The next lemma shows that 20\302\260== T( /9 cannot be constructed.)

Lemma 15.5.8 The real number cos 20\302\260is algebraic over Q and its degree over Q is 3.

Therefore cos 20\302\260is not a constructible number.)

Proof Let ex == 2 cos e == e
iO

+ e- iO
, where e == TC /9. Then e 3iO

+ e- 3iO = 2 cos(n /3) == 1,

and

a 3 = (eiO
+ e- iO

)3 = e3iO
+ 3e iO

+ 3e- iO
+ e- 3iO

== 1 + 3a,

so ex is a root of the polynomialx3 - 3x - 1.This polynomial is irreducible over Q because it

has no integer root. It is therefore the irreduciblepolynomial for ex over Q. SOex has degree

3 over Q, and sodoescos(). 0

One more example: The regular 7-gon cannot be constructed. This is similar to the
above problem, because constructing 20\302\260is equivalent to constructing the 18-gon.We'll vary

the approach slightly. Let e == 2n /7 and let S == e
iO

. Then s is a seventh root of unity, a

root of the irreducible polynomial equation x6
+ x 5 + . . . + 1 (Theorem12.4.9),sos has

degree 6 over Q. If the 7-gonwereconstructible, then cos () and sin ()wouldbe constructible

numbers. They would lie in a real field extension K whosedegreeover Q is a power of 2, say
2k

. CaB this field K, and considerthe extensionK(i) of K. This extension has degree 2, so
[K(i):Q]

== 2k+l. But { == cos e + i sin Bis in K(i). This contradicts the fact that the degree

of { is 6.)))
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The argument we have used is not special to the number 7. It applies to any prime

integer p, provided that p
- 1, the degree of the irreducible polynomial x p - 1+ . ..+ x + 1,

is not a power of 2.)

Corollary 15.5.9 Let p be a prime integer.If the regular p-gon can be constructed with ruler

and compass, then p = 2r + 1for some integer r. 0)

Gauss proved the converse:If a prime has the form 2r + 1, then the regular p-gon can be
constructed.The regular 17-gon,for example, can be constructed by ruler and compass. We
will learn how to prove this in the next chapter (see Corollary 16.10.5).

Tocompletethe discussion, we prove a converse to Theorem 15.5.6.)

Theorem15.5.10Let Q = Fo C Fl C . . . C Fn = K be a chain of subfields of the field }R

of real numbers with the property that for each i == 0, . . . , n-1, [Fi+l : Fi] == 2. Then every
element of K is constructible.)

Since any extension of degree 2 can be obtained by adjoining a square root, the theorem
follows from the next lemma.)

Lemma 15.5.11

(a) The constructible numbers form a subfield of}R.

(b) If a is a positive constructible number, then so is .jQ.)

Proof (a) We must show that if a and b are positive constructible numbers, then a + b, -a,
ab, and a-I (if a =1=0) are also constructible. The closure in case a or b is negative follows

easily. Addition and subtraction are done by marking lengths on a line. For multiplication

and division, we use similar right triangles.)

s)

\037

S')

r) r')

Given one triangle and one sideof a second triangle, the second triangle can be constructed

by parallels. To construct the product ab, we take r == 1, s == a, and r' == b. Then s' == ab. To

construct a-I, we take r == a, S == 1, and r' == 1. Then s' == a-to

(b) We use similar triangles again. We must construct them so that r = a, r' == s, and

s' == 1. Then s == .jQ. How to make the construction is lessobvious this time, but we can
use inscribedtriangles in a circle. A triangle inscribed into a circle, with a diameter as its

hypotenuse,is a right triangle. This is a theorem of high school geometry, and it can be
checked using the equation for a circle and Pythagoras:stheorem.Sowe construct a circle

whose diameter is 1 + a and proceed as in the figure below.)))
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va)

y
a)

o)

15.6 ADJOINING ROOTS)

Up to this point, we have used subfields of the complex numbers as our examples. Abstract
constructions are not needed to create these fields, except that the construction of the

complex number field as an extension of the real number field is abstract.We simply adjoin

complex numbers to the rational numbers as desired,and work with the subfield they
generate. But finite fields and function fields are not subfieldsof a familiar, all-encompassing
field analogous to C, so these fields must be constructed. The fundamental tool for their

construction is the adjunction of elementsto a ring, which was described in Chapter 11. It is

applied hereto the case that the ring we start with is a field.

We review the construction. Given a polynomial f(x) with coefficients in a field F, we

may adjoin a root of f to F. The procedure is to form the quotient ring)

(15.6.1 )) K ==
F[x]/(f))

of the polynomial ring F[x]. This construction always yields a ring K and a homomorphism
F -+ K, such that the residue x of x satisfies the relation f( x ) == 0 (11.5.2). Howevcr, we
want to construct not only a ring, but a field. Here the theory of polynomials over a field

comes into play. It tells us that the principal ideal (I) in the polynomial ring F[x] is a
maximal ideal if and only if 1 is an irreducible polynomial (12.2.8).ThereforeK will be a

field if and only if f is irreducible (11.8.2).)

Lemma 15.6.2Let F bea field, and let 1 be an irreducible polynomial in F[x]. Then the

ring K == F[x]/C.f) is an extension field of F, and the residuex of x is a root of I(x) in K.)

Proof. The ring K is a field because (I) is a maximal ideal, and the homomorphism
F \037 K, which scnds the elements of F to the residues of the constant polynomials, is
injective because F is a field (11.3.20).Sowe may identify F with its image, a subfield of K.

The field K becomes an extension of F by means of this identification. Finally, x satisfies

the equation f( x) == O. It is a root of f (see(11.5.2\302\273. 0)

. A polynomial 1 splitscompletely in a field K if it factors into linear factors in K.)

Proposition 15.6.3 Let F be a field, and let I(x) be a monic polynomial in F[x] of positive
degree. There existsa field extension K of F such that f(x) splits completely in K.)

Proof We use induction on the degree of f. The first case is that f has a root ex in F, so

that I(x) == (x
- a)q(x) for some polynomial q. If so, we replace f by q, and we are done

by induction. Otherwise, we choose an irreducible factor g of j'. By Lemma 15.6.2, there is)))
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a field extension F 1 of F in which g has a root ex.Then a is a root of f too. We replace F
by F 1 , and this reduces us to the first case. 0

As we see, the polynomial ring f'[ x] is an important tool for studying extensions of

a field F. When we are working with field extensions, there is an interplay between the

polynomial rings over the fields.This interplay doesn't present serious difficulties, but instead

of scattering the points that should be mentioned about in the text, we have collected them
into the next proposition.)

Proposition15.6.4Letf and g be polynomials with coefficients in a field F, with f *\" 0, and

let K be an extension field of F.

(a) The polynomial ring K[x] contains F[x] as subring, so computations made in the ring

F[ x] are also valid in K[ x ].

(b) Division with remainder of g by f gives the same answer, whether carried out in F[x]
or in K[x].

(c) f divides g in K[x] if and only if j' divides g in F[x].

(d) The (monic) greatestcommon divisor d of f and g is the same, whether computed in

F[x] or in K[x].

(e) If.f and g have a common root in K, they are not relatively prime in F[x]. If f and

g are not relatively prime in F[x], there exists an extension field in which they have a
common root.

(f) If f is an irreducible element of F[x] and if f and g have a common root in K, then .f
dividesg in [?[x].)

Proof (a) This is obvious.

(b) Carry out the division in f\"lx]: g == fq + r. This equation remains true in the bigger ring

K[x], and sincedivision with remainder in K[x] is unique, carrying the division out in K[x]

leads to the same result.

(c)This is (b) in the case that the remainder is zero.

(d) Let d and d' denote the greatest common divisors of f and g in F[x] and K[x],

respectively. Then d isa common divisor in K[x], and since d' is the greatest common divisor

in K[x], d divides d'. In addition, we know that d has the form d ==
pj' + qg, for some

elements p and q in F[x]. Since d' dividesf and g, d' divides d. Thus d and d' areassociates
in K[x], and since they are monic polynomials, they are equal.

(e) Let ex be a common root of f and g in K. Then x - ex is a common divisor of f and
g in K[x]. So the greatest common divisor of f and g in K[x] isn't 1. By (d), it isn't 1 in

F[x] either. Conversely, if f and g have a common divisor d of positive degree, there is an

extension field of F in which d has a root. This root will be a common root of f and g.

(f) If f is irreducible, its only monic divisors in F[x] arc 1 and f. Part (e) tells us that the

greatest common divisor of f and g in F[x] isn't 1. Therefore it is f. 0

The final topic of this section is the derivative f'ex) of a polynomial f(x). The

derivative is computed using the rules from calculus for differentiating polynomial functions.)))
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In other words, if f(x) == anx
n + an_lX

n - 1 + . . . + alX + ao, then

(15 6 5) f
'( )

n-l
( 1)

n-2.. x ==nanx + n- an-IX +...+aI'

The integer coefficients in this formula are interpreted as the elements 1 + . . . + 1of F. So if

f has coefficients in a field F, its derivative does too. It canbe shown that familiar rules of

differentiation, such as the product rule, hold. (This is Exercise3.5.)
The derivative can be used to recognize multiple roots of a polynomial.)

Lemma 15.6.6 Let f be a polynomial with coefficients in a field F. An element a in an
extension field K of F is a nlultiple root, meaning that (x - a)2 divides f, if and only if it is

a root of f and alsoa root of f'.)

Proof If a is a root of f, then x - a divides f, say f(x) == (x
- a)g(x). Then a is a multiple

root of f if and only if it is a root of g. By the product rule for differentiation,)

f'ex) == (x
- a)g'(x) + g(x).)

Substituting x = a, one sees that f'ea) == 0 if and only if g(a) = o.) o)

Proposition 15.6.7Let f(x) be a polynomial with coefficients in F. There exists a field

extension K of F in which f has a multiple root if and only if f and f' are not relatively

prIme.)

Proof If f has a multiple root in K, then f and f' have a common root in K, so they are
not relatively prime in K or in F. Conversely, if f and j'! are not relatively prime, then they
have a common root in some field extension K, hencef has a multiple root there. D

Here isoneof the most important applications of the derivative to field theory:)

Proposition 15.6.8 Let f be an irreducible polynomial in F[x].

(a) I has no multiple root in any field extension of F unless the derivative I' is the zero
polynomial.

(b) If F is a field of characteristiczero,then f has no multiple root in any field extension of
F.)

Proof (a) We must show that f and f' are relatively prime unless f' is the zero polynomial.
Sinceit is irreducible, f will have a nonconstant factor in common with another polynomial

g only if f divides g. And if f divides g, then unless g == 0, the degree of g will be at least

as large as the degreeof f. If the derivative I' isn't zero,its degree is less than the degree
of f, and then f and f' have no common nonconstant factor.

(b) In a field of characteristic zero, the derivative of a nonconstant polynomial isn't zero. 0

The derivative of a nonconstant polynomial f n1ay be zero when F has prime
characteristic p. This happens when the exponent of every monomial that occurs in f is
divisibleby p. A typical polynomial whose derivative is zero in characteristic 5 is

f(x) == xIS + ax lO
+ bx

S
+ c,)))
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where a, b, c can be any elements of F. Since the derivative of this polynomial is identically
zero, all of its roots in an extension fieldwill be multiple roots.)

15.7 FINITE FIELDS)

In this section, we describe the fields of finite order. The characteristic of a finite field K

cannot be zero, so it is a prime integer (3.2.10), and therefore K will contain one of the prime
fields F == 1Fp' Since K is finite, it will be finite-dimensional when considered as a vector

space over this field.
Let r denotethe degree[K:F].As an F-vector space, K is isomorphic to the space

Fr
of column vectors, which contains pr elements. Sothe orderof a finite field, the number

of its elelnents,is a power of a prime. It is customaryto use the letter q for this order:)

(15.7.1)) IKI == pr ==
q.)

In this section, q will denote a positive power of a prime integer p. Fieldsof order q are

often denoted by JF q . We are going to show that all finite fields of order q are isomorphic,so
this notation isn't too ambiguous, though when r > 1 the isomorphism between two of them

will not be unique.
The simplestexampleof a finite field other than a prime field is the field 1F 4 of order 4.

Let K denotethis field, and let F == 1F2. There is just one irreducible polynomial of degree 2

in F[x], namely x2
+ x + 1 (12.4.4), and K isobtained by adjoining a root a of this polynomial

to F:)

K,;:::;F[x]/ (x2
+ x + 1).

Because the element a, the residue of x, has degree 2, the set (1, ex) forms a basis of Kover

F (15.2.7). The elements of K arethe four linear combinations of the basis,with coefficients

modulo 2:)

(15.7.2)) K == {O, 1, a, 1 + a}.)

The element 1 + a is the other root of f(x) in K. Computation in IF4 is made using the
relations 1+ 1= 0 and a 2 + ex + 1 == O.)

Try not to confuse the field JF 4 with the ring Z / (4), which isn't a field.)

Here are the main facts about finite fields:)

Theorem 15.7.3 Let p bea prime integer, and let q = pr be a positive power of p.

(a) Let K be a field of order q. The elements of K are rootsof the polynomial x q - x.
(b) The irreducible factors of the polynomial xq - x over the prime field F == IF p are the

irreducible polynomials in F[x] whose degrees divide r.

(c) Let K bea field of order q. The multiplicative group KX
of nonzero elements of K is a

cyclicgroup of order q
- 1.

(d) Thereexistsa field of order q'l and all fields of orderq areisomorphic.

(e) A field of order pr contains a subfield of order pk if and only if k divides r.)))
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Corollary 15.7.4 For every positive integer r, there exists an irreduciblepolynomial of degree
r over the prime field F

p')

Proof According to (d), there is a field K of order q ==
pro Its degree [K: F] over F = IF p is

r. According to (c), the multiplicative group K X
is cyclic. It is obvious that a generator a for

this cyclic group will generate K as extensionfield, i.e., that K == F(a). Since [K: F] == r, ex

has degree rover F. So a is the root of an irreducible polynomialof degree r. 0

We examine a few examples in which q is a powerof 2. The irreducible polynomials of
degree at most 4 over JF 2 are listed in (12.4.4).)

Examples 15.7.5

(i) The field F 4 has degree 2 over IF2. Its elements are the roots of the polynomial)

(15.7.6)) x 4 - X == x(x
- 1)(x

2 + x + 1).)

Note that the factors of x2 - x appear,becauseIF4 contains IF2.

Since we are working in characteristic 2, signs are irrelevant:x-I == x + 1.

(ii) The field IF8 of order 8 has degree 3 over the prime field F2. Its elements are the eight

roots of the polynomial x8 - x. The factorization of this polynomial in JF2 is)

(15.7.7)) x
8 - x == x(x

- 1)(x
3 + x + 1)(x3

+ x
2

+ 1).)

The cubic factors are the two irreducible polynomials of degree3 in IF2[X].

To compute in the field JF8, we choose an element f3 in that field, a root of one of

the irreducible cubic factors, say of x3
+ x + 1. It will have degree 3 over JF2. Then

(1, fJ, f32) is a basis of IF8 as a vector space over !F2.The elementsof JFg are the eight
linear combinations of this basis with coefficients 0 and 1:)

(15.7.8)) IF8 == {O, 1, f3 , 1 + ,B, f32, 1 + f32, f3 + f32, 1 + f3 + f32}.)

Computation in lF8 is done using the relations 1 + 1 == 0 and f33 + f3 + 1 == O.

Note that x 2 + x + 1 is not a factor of x8 - x, and therefore IF8 does not contain IF 4. It

couldn't, because [lF8:F2] == 3, [IF4: IF2]
== 2, and 2 does not divide3.

(iii) The field IF16 of order 16 has degree 4 over F2. Its elements are roots of the polynomial

x
16 - x. This polynomial factors in IF2[X] as)

(15.7.9)) X
16 -x == x(x-l)(x

2
+x+ 1)(x

4+x 3+x 2
+x+ 1)(x

4+x 3+ 1)(x4
+x+ 1))

The three irreducible polynomials of degree 4 in IF2[x] appear here. The factors of
x4 - x are also among the factors,becauseIF 16 contains IF 4. 0)

We now begin the proof of Theorem (15.7.3). We let F denote the primefield 1Fp'

Proof of Theorem 15.7.3(a). (the elements of K are roots of xq - x) Let K be a field of order

q. The multiplicative group KX
has order q

- 1.Therefore the order of any element ex of K
X)))
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dividesq - 1,soa(q-l)- 1== 0, which means that a is a root of the polynomial x(q-l) - 1.
The remaining element of K, zero, is the root of the polynomial x. So every element of K is

a root of x(x(q-l) - 1) == x q - x. 0

Proofof Theoretn 15.7.3{c). (the multiplicative group is cyclic) The proof is basedon the
Structure Theorem 14.7.3 for abelian groups, which tells us that K X

is a direct sum of cyclic
groups.

The Structure Theorem was stated with additive notation: A finite abelian group V is a
direct sum C1EfJ . . . EfJ C k of cyclic subgroups of orders d1, . . ., dk, such that each di divides
the next: d1Id21...Idk.Let d == dk. If Wi is a generator for Ci, then diWi == 0, and since di
divides d, dWi == O. Therefore dv == 0 for every element v of V. The order of every element
of V divides d.

Going over to multiplicative notation, KX
is a direct sum of cyclic subgroups,say

HI EB . . . EB Hk, where Hi has order di, and dlld21
. . .

Idk. With d ==
dk as before, the order

of every element a of K X
divides d, which means that ad == 1. Therefore every element of

KX
is a root of the polynomial xd - 1.This polynomial has at most d roots in K (12.2.20),

and therefore IKxl == q -1 < d. On the other hand, IKxl == IHt EB . . . EB Hkl == d 1 . . . d k . So

dl . . . dk
== I KX I == q

- 1 < d. Sinced == dk, the only possiblility is that k == 1 and q - 1 == d.

Therefore K X == HI, and K X
is cyclic. 0

Proof of Theorem 15. 7.3 (d). (existence of a field with q elements) Since we have proved (a),
we know that the elements of a field of order q will be roots of the polynomial xq - x.
There exists a field extension L of F in which this polynomial splits completely (15.6.3).
The natural thing to try is to take such a field L and hope for the best, that the roots of

x q - x in L form the subfield K that we are looking for. This is shown by Lemma 15.7.11

below.)

Lemma 15.7.10 Let F bea field of prime characteristic p, and let q == pr be a positive power
of p.)

(a) The polynomial x q - x has no multiple root in any field extension of F.
(b) In the polynomial ring F[x, y], (x + y)q == x q + yq.)

Proof (a) The derivative of x q - x is qx(q-l)- 1.In characteristic p, the coefficient q
is equal to 0, so the derivative is -1. Since the constant polynomial-1 has no root, x q - x
and its derivative have no common root, and therefore xq - x has no multiple root (Lemma
15.6.6).
(b) We expand (x + y)P in Z[x, y]:

(x + y)P == x P + (f)x
p- 1y + (\037)xp-2y2

+ . . . + (p\037l)xyP-l + yp.)

Lemma 12.4.8tells us that the binomial coefficients (f) are divisibleby p for r in the range
1 < r < .p.Since F has characteristic p, the map Z[x, y] \037 F[x, y] sends these coefficients
to zero,and (x + y)P == x P + yP in F[x, y]. 'The fact that (x + y)q = xq + Y' when q = pT
follows by induction. 0)))
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Lemma 15.7.11 Let p be a prime and let q = pr be a positive power of p. Let L be a field

of characteristic p, and let K be the set of roots of x q - x in L. Then K is a subfield of L.)

Proof Let a and 13be rootsof the polynomial x q - x in L. We have to show that a + 13, -a,
af3, a-I (if a*- 0), and 1 are roots of the same polynomial. So we assume that a q = a and
f3q

== f3. The proofs that af3, a-I, and 1 are roots are obvious enough that we omit them.
Substitution into Lemma 15.7.10(b)shows that (a + fJ)q = a q + fJq

= a + f3.
Finally, we verify that -1 is a root of xq - x. Since products of rootsare roots, it will

follow that -a is a root. If p:f=2, then q is an odd integer, and it is true that (-I)q == -1.

If P = 2, q is even, and (-I)q == 1. But in this case, the characteristic of L is 2, so
1 = -1 in L. 0)

We must still show that two fields K and K' of the same order q == pr are isomorphic.
Let a be a generatorfor the cyclic group K X

. Then K = F(a), so the irreduciblepolynomial

j' for a over F has degreeequalto [K:F] == r. Then f generates the ideal of polynomials

in F[x] with root a, and sincea is also a root of xq - x, f divides x q - x. Sincexq - x splits
completely in K', f has a root a' in K' too. Then F(a) and F(a') are both isomorphic to

F[x]/(f), hence to each other.Counting degrees shows that F(a') == K', so K and K' are
isomorphic. D

Proofof Theorem 15. 7.3 (e). (subfields of JF q ) Let q == pr and q' == pk. Then

[JF q : IF p ] == rand [IFq': IF p ] == k, we can't have
1Fp

C IFq' C
IFq

unless k divides r. Sup-

pose that k divides r, say r == ks. Substitution of y = pk into the equation y - 1 ==

(y
- 1)(ys-I + . . .+ y + 1) shows that q' - 1 divides q

- 1. Since the multiplicative group

K
X is cyclic of order q - 1,and since q'

- 1 dividesq - 1,KX
contains an element f3 of order

q' - 1.The q'
- 1 powers of this element are roots of x(q'-l) - 1 in K. Therefore x q' - x

splits completely in K. Lemma 15.7.11 shows that the roots form a field of orderq'. 0

Proof of Theorem 15.7.3(b). (the irreducible factors of xq - x) Let g be an irreducible

polynomial over F of degree k. The polynomial x q - x factors into linear factors in K

because it has q roots in K. If g divides xq - x, it will also factor into linear factors, so it

will have a root 13in K. The degree of 13over F divides [K: F] == r, and is equal to k. Sok
divides r. Conversely, suppose that k dividesr. Let f3 be a root of g in an extension field of
F. Then [F(fJ):F] == k, and by (e), K contains a subfield isomorphic to F(f3). Therefore g
has a root in K, and so g divides xq - x.

This completes the proof of Theorem 15.7.3. 0)

15.8 PRIMITIVE ELEMENTS

Let K be a field extensionof a field F. An element a that generates K/ F, i.e., such that

K = F(a), is called a primitive ele.ment for the extension. Primitive elements are useful

because computation in F(a) can be done easily, provided that the irreducible polynomial
for ex over F is known.)

Theorem 15.8.1 Primitive Element Theorem. Every finite extension K of a field F of

characteristic zero contains a primitive element.)))
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The statement is true also when F is a finite field, though the proof is different. For an

infinite field of characteristic p =1= 0, the theorem requires an additional hypothesis.Sincewe

won't be studying such fields, we won't considerthat case.

Proof of the Primitive Element Theorem. Since the extension K / F is finite, K is generated

by a finite set. For example, a basis for K as F-vectorspacewill generate Kover F. Say
that K == F(al, . . . , ak)' We use induction on k.Thereis nothing to prove when k == 1. For

k > 1, induction allo\\vs us to assume the theorem true for the field Kl == F(al, . . ., ak-l)
generated by the first k - 1 elementsai\" So we may assume that KI is generated by a
single elementfJ. Then K will be generated by the two elements ak and f3. The proof of

the theorem is thereby reduced to the case that K is generated by two elements. The next
lemma takes care of this case. 0)

Lemma 15.8.2Let F bea field of characteristic zero, and let K be an extension field that is

generated over F by two elements a and fJ. For all but finitely many c in F, Y == f3 + ca is a

primitive element for Kover F.)

Proof Let I(x) and g(x) be the irreducible polynomials for a and f3, respectively, over

F, and let K be a field extension of K in which I and g split completely. Call their roots

aI, . . . , am and fil, . . . , f3n, respectively, with a == al and fJ
= fJI.

Since the characteristic is zero,the rootsai aredistinct, as are the roots f3 j (15.6.8)(b).
Let

Yij
==

fJj + cai, with i == 1, . .., m and j == 1, ... , n. When (i, j) :f::.(k,l), the equation

Yij
==

Ykf holds for at most one e. Sofor all but finitely many elements e of F, the Yij will

be distinct. We will show that if c avoids these \"bad\" values, then Yl1 = fJI + cal will be a

primitive element. We drop the subscript,and write y == fJI + cal\"
Let L == F(y). To show that Y is a primitive element,'it will be enough to show that al

is in L. Then f31
== y

- cal will be in L too, and therefore L will be equal to K. To begin
with, al is a root of I(x). 'fhe trick is to use g to cook up a secondpolynomial with al as a

root, namely hex) == g(y
- ex). This polynomial doesn't have coefficients in F, but because

g is in F[x], c is in F, and Y is in L, the coefficients of g are in L.

We inspect the greatest common divisor d of f and h. It is the same,whether computed

in L[x] or in the extension field K[x] (15.6.4). Since I(x) = (x - al)...(x
- am) in K, d

is the product of the factors x - ai that also divide h, i.e., those such that ai is a common
root of h and I. One common root is al. If we show that this is the only common root, it

will follow that d == x - aI, and because the greatestcommon divisor is an element of L[x]
(15.6.4)(d),that al is an element of L.

So all we have to do is check that ai is not a root of h when i > 1. We substitute:

h(ai) == g(y
- cai). The roots of g are f31,.\", fin, so we must check that y

- cai:f::.f3j
for any j, or that f31 + cal :f::. f3 j + eai. This is true because c has been chosen so that the
elements Yi j are distinct. 0)

15.9 FUNCTIONFIELDS)

In this section we look at function fields, the third class of field extensions mentioned at the
beginning of the chapter. The field C(t) of rational functions in t will be denoted by F. Its)))
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elements are fractions p j q of complex polynomials, with q 1=O. Function fields are finite

field extensions of F.
Let a be a primitive element for an extension field K of F degreen, and let f be the

irreducible polynomial for ex over F, so that K == F(ex) is isomorphic to the field F[x]j (j'),
with ex corresponding to the residue of x. By clearing denominators, we make f into a
primitive polynomial that we write as a polynomial in x:)

(15.9.1)) J(t, x) = an (t)x
n

+ ' , . + Ql(t)x + ao(t).)

The hypothesis that J is a primitive polynomial means that the coefficients Qi(t) are
polynomials in t with greatest common divisor 1, and that an (t) is monic (12.3.9). The
Riemann surface X of such a polynomialwas defined in Section 11.9, as the locus of zeros
{J == O} in complex (t, x)-space ([2. It was shown there that X is an n-sheeted branched
covering of the complex t-plane T (11.9.16).The branch points are the points t == to of T
at which the one-variable polynomial I(to, x) has fewer than n roots, which happens when
I(to, x) has a multiple root, or when to is a root of the leading coefficientan (t) of f (11.9.17).

As before, we use the notation X' for a set obtained by deleting an unspecified finite
subset from X, and instead of saying that some statement is true except at a finite set of
points of X'I we will say that it is true on X'.

An isomorphism of extension fields K and L of F was defined in (15.2.9). It is an

isomorphism of fields cp: K \037 L that restricts to the identity on F:)

(15.9.2)) K 'P> L

r r
F F)

The vertical arrows in this diagram are the inclusions of F as a subfield into K and L, and
the long equality symbolstandsfor the identity map.

\302\267An isomorphism of branched coverings X and Y of T is a continuous, bijective map
TJ : X' -\302\273Y' that is compatible with the projections of these surfaces to T:)

17
> Y'

1)

(15.9.3)) X'

1)

T' T' .)

The primes indicate that we expect to deletefinite sets of points from X and Y in order that

the map 1]be defined and bijective.

Speaking a bit loosely, we call a branched covering17::X \037 T path connected if X' is

path connected, by which we mean that for every finite subset \037 of X, the set X - \037 is path
connected.

The object of this section is to explain the next theorem, which describes function fields

in terms of their Riemann surfaces.)))
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Theorem 15.9.4Riemann Existence Theorem. There is a bijectivecorrespondencebetween
isomorphism classes of function fields of degree n over F and isomorphism classes of con-
nected,n-sheetedbranched coverings of T, such that the class of the field extension K defined
by an irreducible polynomial J(t, x) corresponds to the class of its Riemann surface X.)

This theorem gives us a way to decide when two polynomials of the same degree in

x define isomorphic field extensions. A simple criterion that can often be used is that the

branch points of their Riemann surfaces must match up. However, the theorem fails to tell
us how to find a polynomial with a given branched cover as its Riemann surface.It cannot do

this. Many polynomials define isomorphic field extensions, and finding something is difficult

when there are many choices.

The proof of the theorem is too long to include, but one part is rather easy to verify:)

Proposition 15.9.5 Let J(t, x) and get, y) be irreducible polynomials in C[t, x] and Cft, y],
respectively.Let K ==

F[x]jCf) and L ==
F[y]j(g) be the field extensions they define, and

let X and Y be the Riemann surfaces {j' == O} and {g == O}. If K j F and Lj F are isomorphic

field extensions, then X and Yare isomorphicbranched coverings of T.)

Proof The residue of y in L ==
F[y]j (g), let's call it fJ, is a root of g, i.e.,g(t, f3)

== 0, and

an F-isomorphism cp:K -\302\273L gives U\037a root of gin K, namely y ==
cp-l(f3). So get, y) == O.

As is true for any element of K = P-[x]/(f), y can be representedas the residue modulo

(f) of an element of F[x]. We let u be such an element, and we define the isomorphism

17 : X \037 Y by 1](t, x) == (t, u (t, x)).

We must show that if (t, x) is a point of X, then (t, u) is a point of Y. Since get, y) == 0

in K and since u is an element of F[x] that represents y, get, u) is in the ideal (f). There
is an element h of F[x] such that)

get, u) == fh.

If (t, x) is a point of X, then J(t, x) == 0, and so get, u) == 0 too. Therefore (t, u) is indeed
a point of Y. However, since u and h are elementsof F[x], their coefficients are rational
functions in t that may have denominators. So YJ may be undefined at a finite set of points.

The inverse function to rJ is obtained by interchanging the roles of K and L. 0)

Cut and Paste

\"Cut and paste\" is a procedure to construct or deconstructa branched covering.

We go back to our exampleof the Riemann surface X of the polynomial x
2 - t, and

write x == Xo + Xl i as before. If we cut ...J( open along the double locus of Figure 11.9.15, the

negative real t-axis, it decomposes into the two parts Xo > 0 and Xo < O.Each of these parts

projects bijectively to T, providedthat we disregard what happens along the cut.
Turning this procedure around, we can construct a branchedcovering isomorphic to

X in the following way: We stack two copies 51, 52 of the complexplane over T and cut

them open along the negative real axis. These copies of T will be called sheets. Then we glue
sideA of the cut on 51 to sideR of the cut on 52 and vice versa.(This cannot be done in

three-dimensional space.))))
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side A
side B)

.)

(15.9.6)) Sides A and B.)

Suppose we are given an n-sheeted branched covering X -+ T, and let 8 =
{Pl,\302\267\302\267\302\267, Pk} be the set of its branch points in T. For v = 1,..., k., we choose nonin-

tersecting half lines C v that lead from Pv to infinity. We cut T open along these half lines,

and we also cut X open at all points that lie over them.

We should be specific about what we mean by cutting. Let's agree that cutting T open
means removing all pointsof the half lines C v, including pv, and that cutting X open means

removing an points that lie over those half lines.)

Lemma 15.9.7When X is cut open above the half lines Cv , it decomposes as a union of n
\"sheets\" 81, . . . , Sn, which can be numbered arbitrarily. Each sheet projects bijectively to
the cut plane T.)

This is true because the cut surface X is an unbranched covering space of the cut plane T,
which is a simply-connected set: Any loop, in the cut plane can be contractedcontinuously

to a point. It is intuitively plausible that every unbranched covering of a simply connected

space decomposes completely. The sheet that contains a point p of X consists of all points
that can be joined to p by a path without crossing the cuts. (This is an exercise in [Munkres],

p. 342). D)

C 2)

C 1)

(15.9.8)) The Cut Plane T.)

Now to reconstructthe surface.Xwe take n copies of the cut plane T, we call them

\"sheets\" and label them as S1,. . . , Sn. .We
stack them up over T. Exceptfor the cuts, the

union of these sheetsis our branched covering. We must describe the rule for gluing the

sheets back together along the cuts.On T, we make a loop lv that circles a branch point

pv in the counterclockwise direction, and we call the side of C v we pass through before

crossing C v as \"side A\" and the side we pass through after crossing as \"side B.\" We label
the correspondingsidesof the sheet Si as side Ai and side Bi, respectively. Then the rule)))
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for gluing X amounts to instructions that side Ai is glued to side Bj for some j. This rule is
described by the permutation o\"v of the indices 1, . . . , n that sends i \037

j.

I\037.it f\037ms clear that we can construct a covering using an arbitrary set of permutations
0\" v, eXl\"l;l't that what should happen above the branch points themselves is not clear. To
avoid ambiguity, we simply delete all branch points and all points that lie over them.)

\302\267
Branching Data: For v = 1, . . . , r, a permutation a v of the indices 1, . . . ,n.

\302\267
Gluing Instructions: If av(i) = j, glue sideAi to side B j along the cut C v .

When the gluing is done no cuts remain, and the union of the sheets is our covering.As is
true of the Riemann surface depicted in Figure 11.9.15, four dimensions will be needed to

do the gluing without self crossings.
If 0\" v is the trivial permutation, then each sheet is glued to itself above C v. Then that

cut isn't needed, and we say that Pv is not a true branch point.
The next corollary restates the above discussion.)

Lemma 15.9.9 Every n-sheeted branchedcovering X -\302\273T is isomorphic to one constructed
by the cut-and-paste process. 0)

lVote: The numbering of the sheets is arbitrary, and the concept of a \"top sheet\" has no
intrinsic meaning for a Riemann surface. If there were a top sheet,onecould define x as a

single valued function of t by choosing the value on that sheet. One can do this only after

the Riemann surface has been cut open. Wandering around on X leads from one sheet to
another. D

Exceptfor the arbitrary numbering of the sheets, the permutations o\"v are uniquely

determined by the branched covering X. A change of numbering by a permutation p will

change each O\"v to the conjugate p-10\"vP.)

Lemma 15.9.10 Let X and Y be branched coverings constructed by cut and paste, using the
same points Pv and half lines C v. Let the permutations defining their gluing data be 0\" v and

Tv, respectively. Then X and Yare isomorphic branched coverings if and only if there is a
permutation p such that LV = p-l(J'vp for each v. D)

Lemma 15.9.11 The branched covering X constructed by cut and paste is path connected if
and only if the permutations al, . . . , ar generate a subgroup H of the symmetric group that

operates transitively on the indices 1, . . . , n.)

Proof Each sheet is path connected. If the permutation a v sends the index i to j, the sheets
Si and 5j are glued together along the cut C v . Then there will be a short path across the cut

that leads from a point of Si to a point of Sj, and because the sheets themselves are path

connected, all points of Si lJ S j can be connected by paths. So X is path connected if and
only if, for every pair of indices i, j, there is a sequence of the permutations a v that carries

i == io \037 i l \037 .. . \037 id = j. This will be true if and only if H operates transitively. 0)))
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Example 15.9.12 The simplestk-sheetedpath connected branched coverings of Tare
branched at a single point. Let Y be such a covering, branched only at the origin t == O.

The branching data for Y consists of a single permutation a, the one that corresponds to a

loop around the origin.I'he previous Jemma tens us that, since Y is path connected, a must
operate transitively on the k indices, and the only permutations that operate transitively are

the cyclic permutations of order k. So with suitable numbering of the sheets,a :=: (12 . . . k).
There is, up to isomorphism, exactly one k-sheeted branched covering branched only at the

origin. The Riemann Existence Theorem tells us that there is, up to isomorphism, a unique
field extension with this Riemann surface. It is not hard to guessthis field extension: it is the
one defined by the polynomial yk - t, i.e., K == F(y), where y == ifi. The Riemann surface
Y has k sheets. It is branched only at the origin because each t different from zero has k
complex kth roots.

There are two more things to be said here. First, the theorem assertsthat this is the only
field extension of degree k branched at the single point t == O. This isn't obvious. Second,
the same field extension K == F(y) can be generated by many elements. For most choices of
generators,it would not be obvious that there is only one true branch point. D)

Computing the Permutations

Given a polynomial J(t, x), one wishes to determine the permutations a v that define the

gluing data of its Riemann surface. Two problemspresent themselves. First, the \"local

problem:\" At each branch point p one must determine the permutation a of the sheetsthat

occurs when one circles that point. As we have seen, a dependson the numbering of the

sheets. Second, one must take care to use the same numbering for each branch point. This
is the more difficult problem. A computer has no problem with it, but except in very simple
cases, it is difficult to do by hand.

To compute the permutations, the computer choosesa \"base point\" b in the cut plane
T and computes the n roots of the polynomialf(b, x) numerically, with a suitable accuracy.
It numbers these roots arbitrarily, say Yl, . . . , Yn, and labels the sheets by calling S; the

sheet that contains the root Yi. Then it walks to a point b v in the vicinity of a branch point
Pv, taking care not to cross any of the cuts. The roots Yi vary continuously, and the computer
can follow this variation by recomputing roots every time it takes a small step. This tells it

how to label the sheets at the point bv . Then to determine the permutation (5v, the computer

follows a counterclockwise loop lv around pv, again recomputing roots as it goes' along.
Because the loop crosses the cut C v , the roots will have been permuted by o-v when the path
returns to bv . In this way, the computer determines avo And because the numbering has
been establishedat the base point b, it will be.the same for all of the branch points.

Needlessto say, doing this by hand is incredibly tedious. We find ways to get around
the problem in the examples we present below.

The local problemcan be solved by analytic methods, and we give an incomplete
analysis here. The method is to relate the Riemann surface to one that we know, namely to
the Riemann surface Y of the polynomial yk

- t. Let to be a branch point of the Riemann)))
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surface X: {J(t,x) == OJ, where J is a polynomial of the form (15.9.1). Substituting t == to,

we obtain the one-variable polynomial .fJ(x) ==
f(to, x).)

Lemma 15.9.13 Let Xo be a root of .fJ(x). Suppose that

\302\267Xo is a k-fold root of .fJ(x), and

\302\267the partial derivative at is not zero at the point (to, xo).
Then the permutation of the sheets at the point to contains a k-cycle.

Proof We change variables to move the point (to, xo) to the origin (0,0), so that .fJ(x) ==

f(O, x), and we write J(t, x) == .fJ(x)
- tv(t, x). Then

aa{ (0, 0) == -v(O, 0). Our hypotheses
tell us that v(O, 0) *\" O. Also, since x == 0 is a k-fold root of f) (x), that polynomial has the

form xku (x) where u (x) is a polynomial in x and u (0) =1= O. Then J(t, x) = xku (x) -
tv(t, x).

Let c == u(O)/v(O, 0). We replace t by c-1t. The result is that now u(O)/v(O, 0) == 1.

We restrict attention to a smallneighborhoodV of the origin (0, 0) in (t, x)-space, and write
the equation f == 0 as

xk u/v == t.

For (t, x) in U, ujv is near to 1.Among the kth roots of ujv, one will be near to 1, and that

root, call it w, depends continuously on the point (t, \037t\")in .V. The other kth roots will be

SV 11), where s == e
2ni / k .

Let y == xw. Then in our neighborhood U, the equation f(t, x) == 0 is equivalent with

yk
== t. Therefore there are k sheets of our Riemann surface X that intersect U, and when

we make a loop around the point t == 0, those k sheets will be permuted in the same way as

the sheets of the Riemann surface Y, i.e., cyclically. 0)

We now describe the branching data for a few simple polynomials.We take polynomials
that are monic in x. The branch points will be the points to at which f(to, x) has multiple
roots - the points at which f(to, x) and

\037{(to, x) have a common root. Proposition15.9.13
will be our main tool.)

Examples 15.9.14 (a) J(t, x) == x
2 - (3 + t, :t == 2x, aa{

== -3t
2 + 1.

Here X is a two-sheetedcovering of T. There are three branch points t == 0, t == 1,

and t == -1, and
aa{ *\" 0 at all of them. So the permutation of the sheets at each of thesepoints

contains a two-cycle. Since there are two sheets, each of the permutations is the transposition
(12). We don't need to be careful about the numbering when there are two sheets.

(b) We ask for a path connected, three-sheeted branchedcovering X of T branched at two

points PI and P2,and such that the permutation ai at the point Pi is a transposition.
We may label the sheets so that al == (12). Then because X is path connected,

the permutation <72 must be either (23) or (13) (15.9.11).Switching the sheets called 51
and S2 doesn't affect aI, but it interchanges the two other transpositions,so with suitable)))
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numbering of the sheets, (T1 == (12) and 0'2 == (23). There is just one isomorphism classof

such coverings.

The Riemann Existence theorem tells us that there is, up to isomorphism, a unique
field extension K of F with this covering as its Riemann surface. Of courseK will depend

on the location of the two branch points but they can be moved to any position by a linear

change of variable in t.

How do we find a polynomial J(t, x) whose Rien1annsurface has this form? There is
no generalmethod, so one has to guess, and this case is simple enough that it can be guessed
fairly easily. Since there is very minimal branching, we look for a very simple polynomial

that is cubic in x. It takes a bit of courage to start looking, but one of the first attempts might

be a polynomial of the form x3
+ x + t. This will work, but let's take J(t, x) == x

3 - 3x + t
instead.Then

\037:
== 3x 2 - 3 and d

a{
== 1. Substituting the roots x = :1:1of

\037
into f', one finds

that the branch points are the points t == ::i:2. Since
aa{

is nowhere zero, Proposition 15.9.13

applies.
Thereis a double root at the point PI == (2, -1). So a1 contains 2-cycle,a transposition.

Similarly, 0'2 is a transposition. So apart from the location of the two branch points, the
Riemann surface X of the polynomial I == x

3 - 3x + t has the desired properties, and

F[x]/ (J) defines the field extension with that branching.

(c) I(t, x) == x
3 - t

3
+ t 2

, \037:
== 3x 2

,
d

a{
== -3t

2 + t.

Here X isa three-sheetedcovering of T. The branch points are at t == 0 and t == 1, and

both f(O, x) and 1(1,x) have triple roots. Let (TO and al denote the permutations of the

sheets at the branch points. The partial derivative
(Ja{

is not zero at t == 1, so the three sheets
are permuted cyclically there. With suitable numbering, 0'1will be (123).

The point t == 0 presents problems. First, (Ja{
vanishes there. Second, how can we make

sureto use the same numbering of the sheets fit the two points? In the previous example,
knowing that the Riemann surface must be path connected was enough to determine the
branching. This fact gives us no information here because 0'1operates transitively on the

sheets by itself.
We use a trick that works only in the simplest cases.That is to compute the permutation

that we get by walking around a large circler. A large circular path \\vill cross each of the
cuts once (seeFigure15.9.8),so the sheets will be permuted by the product permutation

aOO'l, or by 0'10'0, depending on where we start. If we can determine that permutation, then
sincewe know 0'1,we will be able to recover 0'0.

The substitution t = u- 1
maps T bijectivelyto the complex u-plane U, except that it

is undefined at the points t == 0 and u == O. Because u \037 0 as t \037 00, the point u == 0 of U is

called the point at infinity of T. Our large circle r in T corresponds to a smaH circle,we'llcall
it L, that circles the origin in U. However, a counterclockwise walk around r corresponds
to a clockwise walk arQund L: If t == re iB

, then u == r- 1e- ie .
We make the substitution t == u- 1 into the polynomial I == x

3 - t
3

+ (2 and clear

denominators, obtainingx3
u

3 - 1 + u. \\Vhen analyzing such a substitution, one usually has

to substitute for x as welL It seems clear here that we should set y == ux. This gives us)

y3
- 1 + u.)))
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Let's call this polynomial g(u, y). The Riemann surfaces X and Y : {g =
O} correspond via

the substitution (x, t) \037 (y, u), which is defined and invertible except above the origins in

the planes T and U. Therefore the permutation of sheets of X defined by a counterclockwise

walk around r will be the same as the permutation of sheets of Y defined by a clockwise

walk around L. That permutation is trivial, because the Riemann surface Y is not branched

at u == O. Therefore aOal == 1, and since al == (123), ao == (321). D)

15.10 THE FUNDAMENTAL THEOREM OF ALGEBRA)

A field F is algebraicallyclosedif every polynomial of positive degree \\vith coefficients in

F has a root in F. The Fundamental Theorem of Algebra assertsthat the field of complex
numbers is algebraicallyclosed.)

Theorem15.10.1Fundamental Theorem of Algebra. Every non constant polynomial with

complex coefficients has a complex root.)

There are several proofs of this theorem, and one of them is particularly appealing.
We present it in outline. We must prove that a nonconstant polynomial)

(15.10.2)) fi( )
n n-l

X == X + an-Ix + . . .+ alx + ao)

with complex coefficients has a complexroot.If ao == 0, then 0 is a root, so we may assume

that ao * O.
The rule y == I(x) defines a function from the complexx-planeto thecomplexy-plane.

Let C r denote a circle of radius r about the origin in the complex x-plane, parametrized as
x == re

iO
, with 0 < 8 < 2Jr.We inspect the image f(C r ) of Cr.

To warm up, we consider the function defined by the polynomial y == x
n == rze

ni
(). As

() runs from 0 to 2n, the point x travels once around the circle of radius r. At the same time,
nO runs from 0 to 21rn. The point y winds n times around the circleof radius .,n.

Now let I be the polynomial (15.10.2). For sufficiently large r, xn
is the dominant term

in [(x). To make this precise, let M be the maximum absolute value of the coefficients ai of

I. Then if Ixl == r > 10nM,

II(x)
- xnl ==

lan_lx
n - 1 +... + alx + aol

< nMlxl
n - 1 < lo ,.n.)

It follows from this inequality that, as f) runs from 0 to 21rand xn
winds n times around

the circle of radius ,.n,I(x) alsowinds around the origin n times. A good way to visualize
this conclusion is with the dog-on-a-Ieash model. If someonewalks a dog n times around a
large circular path, the dog also goes llround n times, though perhaps following a different
path. This will be true provided that the leash is shorterthan the radius of the path. Here xn

represents the position of the person at the time 8, and f(x) representsthe position of the

dog. The radius of the path is ,.n and the length of the leashis
lo

,.n.

We vary the radius r. Sincef is a continuous function, the image J(C r) will vary

continuously with r. When the radius r is very small, f( C r) makes a small loop around the)))
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constant term ao of f. This small loop won't wind around the origin at all. But as we just

saw, J(C r ) winds n times around the origin if r is large enough. The only explanation for

this is that for some intermediate radius r', f( Cr') passesthrough the origin. This means
that for some point ex on the circle Cr', J(a) == O. I'hen ex is a root of f.)

I don't considerthis algebra,

but this doesn't mean that algebraistscan'tdo it.

-Garrett Birkhoff)

EXERCISES)

Section 1 Examples of Fields

1.1.Let R be an integral domain that contains a field F as subring and that is tinite-dimensional
when viewed as vector space over F. Prove that R is a field.

1.2. Let F bea field, not of characteristic 2, and let x2
+ bx + c == 0 be a quadratic equation

with coefficients in F. Prove that if 8 is an element of F such that 8 2 == b
2 - 4c,

x == (-b + 8) j2a solves the quadraticequation in F. Prove also that if the discriminant
b2 - 4c is not a square, the polynomial has no root in F.

1.3. Which subfields of C are densesubsets of C?)

Section 2 Algebraic and TranscendentalElements

2.1.Let a be a complex root of the polynomial x
3 - 3x + 4. Find the inverse of a 2 + a + 1in

the form a + ba + ca2
, with a, b, c in Q.

2.2. Let f(x) = xn - an_lX
n -- 1

+ . . . ::i: ao be an irreducible polynomial over F, and let a be

a root of f in an extension field K. Determine the elementa-I explicitly in terms of a
and of the coefficientsai.

2.3.Let fl == w\037, where w == e
21ri / 3

, and let K == Q(fl). Prove that the equationxI+' .
.+x\037

==

-1 has no solution with Xi in K.)

Section 3 The Degree of a FieldExtension

3.1. Let F be a field, and let a be an element that generates a field extension of F of degree 5.

Prove that a 2 generatesthe same extension.

3.2. Prove that the polynomial x 4 + 3x + 3 is irreducible over the field Q[ \037].

3.3. Let \037n
== e 21ri / n . Prove that \0375fj Q(\0377).

\302\267

3.4. Let {n = e21ri / n . Determine the irreducible polynomial over Q and over Q({3) of
(a) \0374, (b) \0376, (c) {8, (d) {g, (e) (10, (I) \03712.

3.5. Determine the values of n such that {n has degree at most 3 overQ.)))
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3.6. Let a be a positive rational number that is not a square in Q. Prove that \037 has degree 4
over Q.

3.7. (a) Is i in the field Q( \037)? (b) Is \037 in the field Q( \037)?

3.8. Let a and f3 be complex numbers. Prove that if a + fJ and afJ are algebraic numbers,
then a and (3 are also algebraic numbers.

3.9. Let a and f3 be complex roots of irreducible polynomials I(x) and g(x) in Q[x]. Let
K == Q(a) and L == Q({3). Prove that f(x) is irreducible in L[x] if and only if g(x) is

irreducible in K[x].

3.10. A field extension K / F is an algebraic extension if every element of K is algebraic

over F. Let K / F and L / K be algebraicfield extensions. Prove that L / F is an algebraic
extension.)

Section 4 Finding the Irreducible Polynomial

4.1. Let K == <Q(a), where a is a root of x
3 - x -1. Determine the irreducible polynomial for

y == 1 + a 2 over Q.
4.2.Determine the irreducible polynomial for a == ,J3 + -J5 over the following fields.

(a)Q, (b)Q(-J5), (c)Q(00), (d)<Q(\037).
4.3. With reference to Example 15.4.4(b), determine the irreducible polynomial for y ==

al + a2 over Q.)

Section5 Constructions with Ruler and Compass

5.1. Expresscos15\302\260in terms of real square roots.
5.2.Prove that the regular pentagon can be constructed by ruler and compass

(a) by field theory, (b) by finding an explicit construction.

5.3.Dccidewhether or not the regular 9-gon is constructibleby ruler and compass.

5.4. Is it possible to construct a square whosearea is equal to that of a given triangle?
5.5. Referring to the proof of Proposition 15.5.5,supposethat the discriminant D is negative.

Determinethe line that appears at the end of the proof geometrically.

5.6. Thinking of the plane as the complex plane, describe the set of constructible points as

complex numbers.)

Section 6 Adjoining Roots

6.1. Let F be a field of characteristic zero, let f' denote the derivative of a polynomial f in

F[x], and let g be an irreducible polynomial that is a common divisor of f and f'. Prove

that g2 divides f.
6.2.(a) Let F be a field of characteristiczero.Determine all square roots of elements of F

that a quadratic extension of the form F(,Ja) contains.

(b) Classify quadratic extensions of Q.)))
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6.3. Determine the quadratic number fields Q[.Jd] that contain a primitive nth root of unity,
for some integern.)

Section 7 Finite Fields

7.1. Identify the group IF! .

7.2. Determinethe irreducible polynomial of each of the elementsof IF8 in the list 15.7.8

7.3. Find a 13th root of 2 in the field IF 13.

7.4. Determine the number of irreducible polynomials of degree 3 over IF 3 and over IF 5.

7.5. Factor x 9 - x and x
27 - x in IF3.

7.6. Factor the polynomial x16 - x over the fields IF 4 and IF8.

7.7. Let K be a finite field. Prove that the product of the nonzero elements of K is -1.

7.8. The polynomials f(x) = x 3 + x + 1and g(x) = x 3 + x2
+ 1 are irreducible over JF2. Let

K be the field extension obtained by adjoining a root of f, and let L be the extension

obtained by adjoining a root of g. Describe explicitly an isomorphism from K to L, and
determine the number of such isomorphisms.

7.9. Work this problem without appealing to Theorem (15.7.3).Let F = IF p'

(a) Determine the number of monic irreducible polynomials of degree 2 in F[x].

(b) Let f(x) be an irreduciblepolynomial of degree 2 in F[x]. Prove that K = F[x]/ (f)
is a field of orderp2,and that its elements have the form a + bex, where a and bare
in F and ex is a root of f in K. Moreover, every such element with b=f::.O is the root
of an irreduciblequadratic polynomial in F[ x].

(c) Showthat every polynomial of degree 2 in F[x] has a root in K.

(d) Show that all the fields K constructedas above for a given prime p are isomorphic.

*7.10.Let F be a finite field, and let f(x) be a non constant polynomial whose derivative is the
zero polynomial. Prove that f cannot be irreducibleover F.

7.11. Let f = ax 2
+ bx + c with a, b, c in a ring R. Show that the ideal of the polynomial ring

R[x] that is generated by f and ff contains the discriminant, the constant polynomial
b2 - 4ac.

7.12.Let p be a prime integer, and let q = pr and q' = pk. For which values of rand k does
xql - x divide x q - x in Z[x]?

7.13. Prove that a finite subgroup of the multiplicative group of any field F is a cyclicgroup.
7.14.Find a formula in terms of the Euler ifJ function for the number of irreduciblepolynomials

of degree n over the field IF p.)

Section 8 Primitive Elements

8.1. Prove that every finite extension of a finite field has a primitive element.

8.2. Determine all primitive elements for the extension K = Q(\037, ,)3) of Q.)))
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Section 9 Function Fields

9.1. Let I(x) be a polynomial with coefficients in a field F. Prove that if there is a rational
function rex) such that r2 == f, then r is a polynomial.

9.2. Determine the branch points and the gluing data for the Riemann surfaces of the

following polynomials.

(a) x 2 - t
2

+ 1 , (b) x 4 - t - 1, (c) x 3 - 3tx - 4t, (d)x3 - 3x 2 - t ,

(e) x 3 -
t(t

- 1), (f) x 3 - 3tx 2 + t, (g)x4
+ 4x + t, (h) x3 - 3tx - t - t2.

9.3. (a) Determine the number of isomorphism classes of function fields K of degree 3 over
F =:C(t) that are ramified only at the points 1 and -1.

(b) Describe gluing data for the Riemann surfacecorrespondingto each isomorphism
class of fields as a pair of permutations.

(c) For each isomorphism class, find a polynomial f(t, x) such that K = F[t]/(f)
represents the isomorphism class.

*9.4.Prove the Riemann Existence Theorem for quadratic extensions.
flint: Show that up to isomorphism, a quadratic extensionof F is described by the finite

set {Pl, . . . , Pk} of its true branch points.

*9.5. Write a computer program that determines the branch points Pv and the permutations
a v for the Riemann surface of a given polynomial.)

Section 10 The Fundamental Theoremof Algebra

10.1. Prove that the subset of C consisting of the algebraic numbers is algebraically closed.
10.2.Construct an algebraically closed field that contains the prime field IF p.

*10.3. With notation as at the end of the section, a comparison of the imagesJ(Cr) for varying

radii shows another interesting geometric feature: For large r, the curve f( Cr) makes n

loops around the origin. Its total curvature is 2Tln. Assuming that the coefficient al is not
zero, the linear term alZ + ao dominates fez) for small z. Then for small r, J(C r) makes
a single loop around Qo. Its total curvature is only 2TC.Something happensto the loops as
r varies. Explain.

*10.4.Write a computer program to illustrate the variation of J( Cr) with r.)

Miscellaneous Exercises

M.l. Let K == F(a) be a field extension generatedby a transcendental element ex, and let f3

be an element of K that is not in F. Prove that ex is algebraic over the field F(f3).
M.2. Factor x

7
+ x + 1 in 1F7[X].

*M.3. Let f(x) be an irreduciblepolynomial of degree 6 over a field F, and let K be a quadratic
extensionof F. What can be said about the degrees of the irreducible factors of f in

K[x]?)))
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M.4. (a) Let p be an odd prime.Prove that exactly half of the elements of IF;are squaresand

that if ex and f3 are nonsquares, then a f3 is a square.

(b) Prove the same assertion for any finite field of oddorder.
(c) Prove that in a finite field of evenorder,every element is a square.

(d) Prove that the irreducible polynomial for y == \037 + \037 over Q is reducible modulo
p for every prime p.

*M.5. Prove that any element of G L2(Z) of finite order has order 1, 2, 3,4, or 6

(a) by using field theory.

(b) by applying the Crystallographic Restriction.

*M.6. (a) Prove that a rational function jet) that generates the field C(t) of all rational
functions defines a bijective map T' --* T'.

(b) Prove a rational function I{x) generates the field of rational functions C(x) if and

only if it is of the form (ax + b)/(cx + d), with ad - bc=f::.O.

(c) Identify the group of automorphisms of C(x) that are the identity on C.

*M.7. Prove that the homomorphism SL 2(Z) --* SL2(IFp) obtained by reducing the matrix
entries modulo p is surjective.)))



C HAP T E R 16)

Galois Theory)

En un mot les calculs sont impraticables.

-EvaristeGalois)

We have seen that computation in an extension field generated by a single algebraic element
ex can be made simply, by identifying it with the formally constructed field F[x]j(f),
where f is the irreducible polynomomial for a over F. But suppose that f factors into
linear factors in an extension field K. It isn't clear how to compute with all of the roots
at the same time. To do that we need to know how they are related, and that depends
on the particular case.The fundamental discovery that arose through the work of several
people,especially of Lagrange and Galois, is that the relationships between the roots
are best understood indirectly, in terms of symmetry. That symmetry is the topic of this

chapter.

Beginning in Section 16.4, we assume that the fields we are working with have

characteristic zero. The most important consequences of this assumption are:

\302\267The roots of an irreducible polynomial over a field F are distinct (15.6.8).
\302\267A finite extension field K/}' has a primitive element (15.8.1).)

16.1 SYMMETRIC FUNCTIONS)

Let R[u] denote the polynomial ring R[Ul,..., un] in n variables over a ring R.

A permutation a of the indices {t,..., o}operates on polynomials by permuting the
variables:)

(16.1.1)) ! == !(Ul, ..., un) \n f(Ual, ..., uan) == a(f).)

In this way, a defines an automorphism of R[ u] that we denote by a too. Because a acts

as the identity on the constant polynomials,it is called an R-automorphism. The symmetric
group Sn operatesby R-automorphisms on the polynomial ring. A symmetric polynomial
is one that is fixed by every permutation. The symmetric polynomials form a subring of the
polynomial ring R[ u ].

A polynomial g is symmetric if two monomials that are in the same orbit, such as
UIU\n

and U2U\n, have the same coefficientin g. We call the sum of the monomials in an orbit an)

477)))
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orbit sum. The orbit sumsform a basis for the space of symmetric polynomials. The orbit

sums of degree at most 3 in three variables are

1 222
'I Ul+ U2+ U3, U 1 +U 2 +U3' UIU2+ U I U3+ U 2 U3,

UI + uj + U\037, UIU\037 + U2 u f + UIU\037 + U3UI + U2U\037 + U3U\037, UIU2U3.

The elententary symnletric functions are somespecialsymmetric polynomials. When

there are n variables, they are

Sl = L Ui = Ul + U2 + .. .+ Un

i

..\\'2
=

LUi
Uj = Ul U2 + UIU3 + . ..

i<j
S3

=
L UjUjUk = U1 U 2 U3 +...

i<j<k)

Sn= U1 U 2'.' Un =UIU2\"' U n.

Indices have been chosenso that Si is the orbit sum of the monomial UIU2'\" Ui. The

elementary symmetric functions in three variables are shown above in boldface.

The elementary symmetric functions are the coefficients of the polynomial with variable
roots U 1'1 . \302\267\302\267, Un:)

(16.1.2))
P(x) = (.X

- Ul)(X - U2)'\" (x-
un)

n n-l n-2 ...L= X -
Sl.X + S2X

- . . . ...::::Sn.)

When n = 2,)

P(:x:)= (x -
Ul)(X

- U2) = x2 - (Ul+ U2)X + (UtU2)..)

and when n = 3,

P(x) = .x3 - (UI + U2 + U3) x 2 + (UIU2+ UIU3 + U2 U3) x -
(UIU2U3).

The order of the indices in (16.1.2) is the reverse of the onewe have used for the coefficients
of a polynomial previously, and the signs alternate. Because of the way these indices and
signsappear,we will label undetermined coefficients of a polynomial in the analogous form
in this chapter:)

(16.1.3)) f( )
n n-1 n--2 -L.X = x -QIX +a2x -.....La n .)

As before, we say that a polynomial f \037plits completely in a field K if it factors into

linear factors, say)

(16.1.4)) j'(x) = (x -al)'\" (x -an),)

with ai in K. If so, then substituting Ui = ai shows that the coefficients of .f are obtained by
evaluating the symn1etric functions.)))
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Lemma 16.1.5 If (16.1.4) IS a factorization of the polynomial (16.1.3), then ai -
si(al, ...,an). D)

Theorem 16.1.6 Symmetric Functions Theorem. Every symmetric polynomial g(UI, ..., un)
with coefficients in a ring R can be written in a unique way as a polynomialin the elementary

symmetric functions SI, . . . , Sn.)

To be precise: If g(u) is a symmetric polynomial,there is a unique polynomial G(ZI, ..., Zn)
with coefficients in R in another set of variables Z I, . . . , Zn, such that g(u) is obtained by

the substitution Zi \037 Si: g(UI, ..., un) = G(SI, .o.,sn).
We prove the theorem below, but first, some examples:)

Examples 16.1.7 (a) The symmetric polynomial ut + . . . + u\037, because it has degree 2,
is a linear combination

clsI + C2S2. One can use specialvalues of the variables to determine
the coefficients. Substituting u = (1, 0, . . . , 0) shows that CI = 1, and substituting U =

(1, -1, 0, . . . , 0) shows that C2 = -2:)

(16.1.8))
2 2 2 2U I + . . . + un = SI -

S2.)

(b) We use a different method for the symmetric polynomial

(16.1.9) g(u) =
UIU\037 + u2 u I + UIU\037 + u3uI + U2U\037 + U3U\037

in the three variables UI, U2, U3.The first step is to set U3 = O. We obtain the symmetric
polynomial gO

=
UI U2 + U\037UI

in the remaining variables. Let sj denote the elementary

symmetric functions in UI, U2: sl =
UI + U2 and s2 = UIU2.We notice that gO =

s\037s2'

The second step is to compare the polynomial g with the three-variable symmetric
polynomialSIS2:

SIS2
= (UI + U2 + U3)(UIU2+ UIU3 + U2 U3).

We won't expandthe right side explicitly. Instead, we note that the expansion has nine terms,
one of which is UiU2' Since SlS2 is symmetric, the orbit sum g of

UIU2,
which has six

terms, appears. The three remaining terms are equal to UIU2U3 = S3:)

(16.1.10)) g = SIS2-
3S3.)

This computation is an example of a systematic method, and the proof of the Symmetric

Functions Theorem, which we explain next, is based on that method. D)

Proof of the Symmetric Functions Theorem. There is nothing to show when n = 1,because
Ul = SI in that case. Proceedingby induction, we assume the theorem proved for symmetric

functions in n - 1 variables. Given a symmetric polynomial g in Ul, ..., Un, we consider
the polynomial gO obtained by substituting zero for the last variable: gO (UI, . . . , Un-I) =

g(u, . . . , U n -l, 0). We note that gO is symmetric in Ul, . . . , Un-I'So by the induction

hypothesis, gO may be written as a polynomial in the elementary symmetric functions in

Ul,..., Un-I, which we label as Sl\"'\" S\037_I:

S\037
= Ul + U2 + . . .+ Un-I, etc.)))
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There is a symmetricpolynomial Q(Zl, . .., Zn-l) such that gO
=

Q(sl' .. ., s\037_l)')

Lemma 16.1.11 Let g be a symmetric polynomial of degree d in the variables u 1, . . . , Un,

and suppose that gO = Q(s\037,..., s\037_l)'
Then g = Q(Sl,..., Sn-l) + snh, where h is a

symmetric polynomial in Ul, . .., Un of degree d - n.)

Proof Let .p(Ul, . . . , un) = g(Ul,. ..,Un)
- Q(Sl, . . . , Sn-l). This is a difference of sym-

metric polynomials, so it is symmetric, and if we set Un = 0, we obtain P(Ul, . . . , Un-I, 0) =

gO - Q(SO)= O. Therefore Un divides p. Because p is symmetric, every Ui divides p, and
therefore Sn divides p. Writing p = snh, the polynomial h is symmetric. This gives us an

equation of the form claimed by the lemma. D)

We go back to the proof of the Symmetric Functions Theorem. The lemma tells us that

g == Q(s) + snh, where h is symmetric. A second induction, this time on the degree of

a\037symmetric polynomial, allows us to conclude that h is a polynomial in the symmetric
functions. Then so is g.

Onecan show that G is uniquely determined by going over this proof. D)

We give one more exampleof the systematic method. Let g be the orbit sum of

the monomial U 1 u\037,
but this time in four variables U 1, . . . , U 4. Let Sl, . . . , S4 denote the

elementary symmetric functions in four variables. We set U4 == 0, and obtain formula
(16.1.10),written now as gO = sls2

- 3s
3

. Then as in the above lemma,)

g = SlS2 -
3S3 + S4 h .)

Since g has degree 3, h == O. Formula 16.1.10 remains valid when g is the orbit sum of utu2
in any number n > 3 of variables.

Here is an important consequence of the Symmetric Functions Theorem:)

Corollary 16.1.12 Supposethat a polynomial f(x) = x n - alx
n - 1+ . . .:i:an has coefficients

in a field F, and that it splits completely in an extension field K, with roots al\037 . . . , an.

Let g(Ul, . . . , un) be a symmetric polynomial in Ul, . . . , Un with coefficients in F. Then

g(al, . . . , an) is an element of F.)

For instance, a\037 + a\037 + . . . + a\037 will be an element of F.

Proof The Symmetric Functions Theorem tells us that g is a polynomial in the elementary

symmetric functions. Say that g(Ul, . . . , un) = G(Sl, . . . , sn),where G(z) is a polynomial
with coefficients in F. When we evaluate at U = ex, we obtain siCa) = ai (16.1.5).So)

(16.1.13)) g(al, . . . , an) = G(al, . . . , an).)

Because a1, . . . , an are in F and G has coefficientsin F, G(a) is in F.) o)

The next propositionprovides a way to construct symmetric polynomials,starting with

any polynomial.)))
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Proposition 16.1.14 Let PI ==
Pl (UI, . . . , Un) be a polynomial, let {PI, . . . , Pk} be its

orbit for the operation of the symmetric group on the variables, and let w == Wl, . . . , W k
be another set of variables, where k is the number'of polynomials in the orbit of Pl. (Sok
divides the order n! of the symmetric group.) If h (UJl, . . . , UJk) is a symmetric polynomial
in w, then h (p 1, . . . , Pk) is a symmetric polynomial in u.)

Proof Except that it is slightly confusing, this is nearly trivial. A permutation of the variables
Ul, . . . , Un permutes the set {PI, . . . , IJk} because that set is an orbit. And because h is a

symmetric polynomial,a permutation of PI, . . . , Pk carries h(PI, . . . , Pk) to itself. 0)

Example 16.1.15 There are three variables Ul, U2, U3 and PI ==
ut + U2U3. The orbit of PI

consists of three polynomials:

2 + 2 + 2 ,
PI == U I u2 U 3, P2 == U 2 U3 U l, P3 ==

U3 T U1 U 2.

We substitute w ==
P into the symmetric polynomial WI11J2 + Wi W3 + W2W3, obtaining a

symmetric polynonlial in u:)

3 ternl\037 6 terms 3 terms

PI P2 + P2P3 + P3 PI == (u I U
\037+

. . .) + (u? U 3 + . . .) + (u 1U 2 u
\037+

. . . ) .)
o)

16.2 THE DISCRIMINANT)

The most important symmetric polynomial, aside from the elementary symmetric functions,

is the discriminant of the polynomial

P( ) n n-l n-2 .---1-X == X - Sl x + S2X
- . . . ::r: Sn)

with the variable roots Ul, . . . , Un. By definition, the discriminant is)

(16.2.1)) D(u) == (UI
- U2)2(UI -

U3)2
. . .

(Un-I
- U n )2 ==

fl (Ui - U j)2.

i<))

Its main properties are:
.

D(u) is a symmetric polynomial with integer coefficients.

. If a}, . . . , an are elements of a field, then D(a) == 0 if and only if two of the

elements ai are equal.)

The Symmetric Functions Theorem tells us that the discriminant D can be written

uniquely as an integer polynomial in the elementary symmetric functions. Let)

(16.2.2)) \037(z) == \037(Zl , . . . , Zn))

be that polynomial, so that D(u) == \037(s). When n == 2,

(16.2.3) D == (U1
- U2)2 == 51

2 - 452, and \037(z) ==
zi

- 4Z2.

This is the familiar formula for the discriminant of the quadratic polynomial x2 - SiX + S2,
though the fact that D is the square of the difference of the roots wasn't emphasized when I
was in school.)))
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Unfortunately, D and \037 are very complicated when n is larger. I don'tknow what they
are when n > 3. The discriminant of the general cubic polynomial)

(16.2.4)) P(x) = x 3 - S1x2+ S2X
-

S3)

is already too complicated to remember:)

(16.2.5))
D =

(Ul
- U2)2(UI -

U3)2(U2
- U3)2

= -4sf s3 + sis\037 + 18s1S2S3
-

4s\037
-

27s\037,)

\037 =
-4ziz3 + ztz\037 + 18z1Z2Z3

-
4z\037

-
27z\037.

These formulas remain true when substitutions are made for the variables Ui. If we are
given particular elements al, . . . , an in a ring R, and if

(x
- al)(x - (2)'\" (x-

an) = x
n - alx

n - 1
+ a2x

n - 2 -... :ian,)

then, substituting ai for Ui,)

D(al, ..., an) = fl (ai- aj)2
= \037(al, ..., an).

i<j)

Whether or not a polynomial f(x) = x n - alx
n - l + a2Xn-2

- . . .:i: an is a product of linear

factors, its discriminant is defined to be the element\037(al, . . . , an), where \037(z) is the
polynomial (16.2.2). If I has coefficientsin a field F, then \037(z) has coefficients in F and
\037(a) is an element of F.

The discriminant of a cubic becomes simpler when the coefficientof x
2 in f(x) is zero.

Provided that the characteristic is not 3, the quadratic term in the general polynomial (16.2.4)
can be eliminated by a substitution analogous to completingsquares,calleda Tschirnhausen

transformation,)

(16.2.6)) x=y+sl/3.)

If we write a cubicwhosequadratic term vanishes as)

(16.2.7)) I(x) = x 3 + px + q,)

the discriminant is obtained by substituting into (16.2.5):)

(16.2.8)) \037(O, p, -q) = _4 p
3 - 27q2.)

Since the elementary symmetric function Si has degree i in the variables u, it is

convenient to assignthe weight i to the variable Zi, and to define the weighted degree of a

monomial
Z\037lZ\0372

. . .
z\037n to be el + 2e2+. \302\267\302\267+ ne n . Substitution of Si for Zi into a monomial of

weighted degree din z yields a polynomial of ordinary degree d in u 1, . . . , Un. For instance,
ZlZ2 has weighted degree 3, and S1S2= (U1 + ... )(UlU2 + ...) has degree3.If g(u) is a

symmetric polynomial of degree d, and if G(z) is the polynomial such that g(u) = G(s),
then G will have weighted degree d in z.)))



Section 16.3) Splitting Fields 483)

The discriminant of the cubic (16.2.4) is a homogeneous polynomial of degree 6 in u.
There are seven monomials in Z 1, Z2, Z3 of weighted degree 6:)

(16.2.9))
6 4 2 2 3 3 2

Z1' Z1 Z2, Z1 Z2' Z2\" ZI Z3, ZIZ2Z3, Z3')

and \037 is an integer combination of those monomials. We'll determine the coefficients

of the first four of these monomials using the systematic method: We set U3 = 0 in

D = (UI - U2)2(Ul- U3)2(U2
- U3)2, obtaining the symmetricpolynomial (Ul

-
U2)2ufu\037

=

(s1
2 - 4s2)s2

2
in Ul, U2. Therefore D =

sis\037
-

4s\037 + S3h, where h is a symmetric cubic
polynonlial. The coefficients of

s\037
and si S2 are zero. I don't know an easy way to determine

the remaining three coefficients of \037, but one way is to assign somespecialvalues to the

variables U 1, U2, U3.)

16.3 SPLITTING FIELDS)

Let f be a polynomial with coefficients in a field F, not necessarilyan irreducible polynomial.
A splitting field for f over F is an extension field K/ F such that

\302\267f splits completely in K, say I(x) == (x
- at) . . . (x-

an) with ai in K, and
\302\267K is generated by the roots: K = F(al, .. .,an).

The second condition implies that, for every element fJ of K, there is a polynomial
P(Ul, . . ., un) with coefficients in F, such that p(al, . . . , an) = fJ. In fact there will be

many such polynomials: Since the roots are algebraicover F, some polynomials evaluate
to zero.

If our field F is a subfield of the complex numbers C, a splitting field K can be obtained
simply by adjoining the complex roots of f to F, and we may refer to K as the splitting field

of f. But if F is not a subfield of C, we have to construct a splitting field abstractly, as was

explained in the last chapter (Section 15.6).

Lemma 16.3.1

(a) If F c L C K are fields, and 'if K is a splitting field of a polynomial f over F, then K is

also a splitting field of the same polynomial over L.
(b) Every polynomial I(x) in F[ x] has a splitting field.

(c) A splitting field is a finite extension of F, and every finite extension is contained in a

splitting field.)

Proof (a) This is obvious.

(b) Given a polynomial f with coefficients in F, there is a field extension K' of F in which

f splitscompletely(15.6.3).The subfield of K' generated by the roots of f will be a splitting
field.)

(c) A splitting field is generated by finitely many elements that are algebraic over F, so

it is a finite extension of F. Conversely, a finite extension L / f\037 is generated by finitely

many elements, say Y1, . . . , Yk, each of which is algebraic over F. Let gi be the irreducible
polynomial

for Yi over F, and let f bethe product gl
. . .

gk. We may extend the field L to a

splitting field K of f over L, and then K will be a splitting field over F too. 0)))
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We now use symmetric functions to prove an amazing fact:)

Theorem 16.3.2 Splitting Theorem. Let K be an extension of a field F that is a splitting

field of a polynomial f(x) with coefficients in F. If an irreducible polynomial g(x) with

coefficients in F has one root in K, then it splits completely in K.)

This theorem provides a characteristicproperty of splitting fields. A splitting field Kover F
is a finite field extension with this property:

An irreducible polynomial over F with one root in K splits completelyin K.

Which polynomial is used to define K as a splitting field is not important.)

Proof of the Splitting Theorem. Let f and g be as in the statement of the theorem. Weare

given a root fi1 of g in K, and we must show that g splits completely in K. Since g is
irreducible,it is the irreducible polynomial for fi1 over F.

The splitting field K is generated over F by the roots aI, . . . , an of f. Every element

of K can be written as a polynomial in a, with coefficients in F. We choose a polynomial

PI (UI, . . . , un) such that PI (a) == f3l.

Let {PI, . . . , Pk}be the orbit of PI (u) for the operation of the symmetric group Sn

on the polynomial ring }?[ UI, . . . , un], and let f3 j
==

P j(a). So f31, . . . , f3k are elements of

K. We will prove the splitting theorem by showing that the polynomial

hex) == (x
- f31)'\" (x -

f3k))

has coefficients in F. Suppose that this has been proved. Then since f3l is a root of h, it will

follow that the irreducible polynomial for f31 over F, which is g, dividesh, and since h splits

completely in K, g does too.

Say that hex) == xk - bIx
k - 1

+ b2Xk-2 - ... :i:bk. The coefficients bl,..., bk
are obtained by evaluating elementary symmetric functions at f3

== fJl, . . . , /3k. But these are
the elementary symmetric functions in k variables. We introduce new variables WI, . . . , Wk,

and we label the elementary symmetric functions in these variables as
s\037(w), . . . , sk ( w),

using a prime to remind us that the variables are the new ones. Then bj ==
sj(f3).

We evaluate sj
in two steps: First, we substitute w == p, i.e., Wj == P j(u). Because

s'.( w) is symmetricin w, s'.(p) is a symmetric polynomial in u (16.1.14). Next, we substitute} }
Ui == ai\" Because sj(p(u)

is symmetric in u,
sj(p(a\302\273)

is in the field F (16.1.12).On the
otherhand, s'.(p(a\302\273

== s'.(fi) == b j . The coefficients bj are in F. 0
} .J)

16.4 ISOMORPHISMS OF FIELD EXTENSIONS)

For the rest of the chapter, we assume that our fields have characteristic zero, and we won't
mention this assumption again. The field extensions that we consider will be finite extensions.

We need a few definitions:

. LetK and K' be extension fields of F. The conceptof an F -isomorphism a: K \037 K' was

introduced before (see (15.2.9)).It is an isomorphism whose restriction to the subfield F is
the identity map. An F-automorphism of an extension field K is an F-isomorphism from K
to itself.The F-automorphismsof K are the symmetries of the field extension.)))
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\302\267The F-automorphisms of a finite extension K form a group called the Galois group of K
over F, which is often denoted by G (K / F).
\302\267A finite extension K j F is a Galoisextension if the order of its Galois group G(Kj F) is

equal to the degree of the extension: I G (K j F) I == [K: F].

We will see below (16.6.2) that the order of the Galoisgroup always divides the degree
of the extension.)

Example16.4.1The complex number field C is a Galois extensionof the field JR of real

numbers. The Galois group G(CCjJR) is a cyclic group of order two, generated by the

automorphism of complex conjugation. There is an analogous statement for any quadratic

extension K / F. A quadratic extension is obtained by adjoining a square root, say that

K == F(a), where a 2 == a is in F. The Galois group G of Kj F has order two, and the
element T of G different from the identity interchanges the two square roots a and -a.
For instance, if F == Q and K == Q(.J2), there is an F -automorphism T of K that sends
a + b.J2 \037 a - b.J2. We have seenthis automorphism before. D)

Lemma 16.4.2 Let K and K' be extensionsof a field F.

(a) Let I(x) be a polynomial with coefficients in F, and let a be an F-isomorphism from

K to K'. If a is a root of I in K, then a(a) is a root of fin K'.

(b) Suppose that K is generated over F by some elements aI, ..., an. Let a and a' be

F-isomorphisms K -+ K'. If a(ai) == a'(ai) for i == 1, . . . , n, then a == a'. If an

F -automorphism a of K fixes aU of the generators, it is the identity map.

(c) Let I be an irreducible polynomial with coefficients in F, and let a and a' be roots of

fin K and K', respectively.There is a unique F-isomorphism a: F(a) \037 F(a') that

sends ex to a'. If F(a) == F(a'), then a is an F-automorphism.)

Proof (a) was proved in the last chapter (15.2.10).We omit the proof of (b). In (c), the

existence of a was proved in the last chapter(15.2.8),and (b) shows that a is unique. D)

Proposition 16.4.3

(a) Let J\" be a polynomial with coefficients in F. An extension field L / F contains at most

one splitting field of f over F.

(b) Let f be a polynomial with coefficients in F. Any two splitting fields of f over Fare
isomorphic extension fields.)

Proof (a) If L contains a splitting field of f, then I splits completely in L, say I ==

(x
- al) . . . (x -

an) with ai in L. If f3 is any root of f in L, substitution into this product
shows that f3 == (Xi for some i. So I has no other roots in L, and the only splitting field of I
that is contained in L is F( aI, . . . , an).)

(b) Let Kl and K2 be two splitting fields of f over F. The first splitting field K I is a finite

extension of F, so it has a primitive element y. Let g be the irreducible polynomial for y

over F. We choose an extension L of the second field K2 in which g has a root y', and we let

K' denote the subfieldF(y') of L generated by y'. There is an F -isomorphismcp: K I \037 K')))
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that sends y to y', and becauseK' is F-isomorphic to the splitting field Kt, it is also a

splitting field of f. Then both K' and K2 are splitting fields contained in the field L, and (a)
shows that they are equal. Therefore ({J is an F-isomorphism from Kt to K2. 0)

16.5 FIXED FIELDS

Let H be a group of automorphisms of a field K. Thefixedfield of H, which is often denoted
by K

H
, is the set of elementsof K that are fixed by every group element:)

(16.5.1)) K
H

== {ex E K
I a(a) == a for all a in H}.)

It is easy to verify that K H is a subfield of K, and that H is a subgroup of the Galois group

G(Kj KH). The FixedFieldTheorembelow shows that, in fact H is equal to G(Kj KH).)

Theorem16.5.2Let H be a finite group of automorphisms of a field K and let F denote
the fixed field K H. Let fit be an element of K, and let {fi1,. . . fir} be the H -orbit of fil.

(a) The irreducible polynomial for fi1 over F is g(x) == (x
- fi1) . . . (x -

fir).

(b) f31 is algebraic over F, and its degree over F is equal to the order of its orbit. Therefore
the degree of fJ1 over f' divides the order of H.)

Proof Part (b) of the theorem follows from (a). We prove (a). Say that)

r
b

r 1 bg (x) == (x
- 131). . . (x -

fJr)
== x - 1X

-
+...:f: r.)

The coefficients of g are symmetric functions of the orbit {fJ1, . . . , f3r} (16.1.5). Since the

elements of H permute the orbit, they fix the coefficients. Therefore g has coefficients in the

fixed field.

Let h be a po1ynomial with coefficients in F that has f31 as a root. For i == 1, . . . , r,

there is an element a of H such that a(f31) =:
f3i. Because the elements of Hare

F-automorphisms of K and because h has coefficientsin F, fJi is also a root of h (16.4.2)(a).
So x -

fii divides f. Since this is true for every i, g divides fin K[x] and in F[xJ (15.6.4)(b).
This shows that g generates the principal ideal of polynomials in F[ x] with root f31, and
that g is the irreducible polynomial for f31 over F (15.2.3). 0

An extension field K/ F is called algebraic if every element of K is algebraic over F.)

Lemma 16.5.3 Let K be an algebraic extension of a field F that is not a finite extension of
F. Thereexistelements in K whose degrees over F are arbitrarily large.)

Proof We form a chain of intermediate fields F < Fl < F2 < . .. as follows: We choose an

element al of K that is not in F, and we let Fl == F(al)' Then a1 is algebraic over r', so
[F1:F]< 00,and therefore Fl < K. Next\037 we choose an element \302\243X2of K that is not in F 1 ,

and we let F2 == F(al, (2). Then [F2: F) < 00 and F1 < F2 < K. We choose a3 in K, not in

f2, etc. This chain of fields gives us a strictly increasing chain of finite extensions of F. The)))
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degrees [Fi :F] becomearbitrarily large, while remaining finite. Each extension Fi / F has a

primitive element Yi, and the degrees of Yi over F become arbitrarily large too. 0)

Theorem 16.5.4 Fixed FieldTheorem.LetH be a finite group of automorphisms of a field

K, and let F == KH be its fixed field. Then K is a finite extension of F, and its degree[K:F]
is equal to the order I HI of the group.)

Proof. Let F == K
H and let n be the order of H. Theorem 16.5.2 shows that the extension

K/ F is algebraic, and that the degree over F of any element f3 of K divides n. Therefore
the degree [K: F] is finite (16.5.3). Let Y be a primitive element for this extension. Every
element a of H is the identity on F, so if a also fixes Y, it will be the identity map

- the

identity element of H. Therefore the stabilizer of y is the trivial subgroup {I} of H, and the
orbit of Y has order n. Theorem 16.5.2showsthat Y has degree n over F. SinceK ==

F(y),

the degree [K: F] is equal to n too. 0)

Automorphisms of the field C(t) of rational functions in one variable provide examples
that illustrate the Fixed Field Theorem and Theorem16.5.2.)

Example 16.5.5 Let K == C(t), and let a and T be the automorphisms of K that are the
identity on C and such that aCt) == it and T(t) == t-

1
. Then a 4 == 1, '[2 == 1, and Ta == a-IT.

Therefore a and T generate a group of automorphisms H that is isomorphic to the dihedral
group D4.)

Lemma 16.5.6 The rational function u == t 4 + t- 4 is transcendental over C.)

Proof. Let g(x) = xd +Cd_1Xd-1+. . .+cobe a monic polynomial of degree d with complex

coefficients. Then t4d
g(u) is a monic polynomial of degree 8d in t. Since t is transcendental,

t
4d

g(u) =1= 0, and therefore g(u) =1=0.' 0)

It follows from the lemma that the field CC(u) is isomorphic to a field of rational

functions in one variable. We show that it is the fixed field KH. We note that u is fixed by a

and T. SO it is in the fixed field KH, and therefore C(u) C KH.Theorem16.5.2tells us that

the irreducible polynomial for t over K H is the polynomial whose roots form its orbit. The

orbit of t is)

{

. . -1 . -1 -1. -I
}t, it, -t, -It, t , -It , -t , It)

and the polynomial whose roots are the elements of this orbit is

(x
4 - t

4
)(x

4 - t- 4
) == x

8 - ux 4 + 1.)

So t is a root of a polynomial of degree8 with coefficients in C(u), and therefore the
degree[K:C(u)] is at most 8. The Fixed Field Theoremasserts that [K: KH] = 8. Since
C(u) C KH,it follows that C(u) = K H. 0)))
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This example illustrates a famous theorem:)

Theorem 16.5.7 Liiroth's Theorem. Let F be a subfield of the field <e(l) of rational func-

tions that contains C and is not C itself. Then F is isomorphic to a field C(u) of rational

functions. D)

16.6 GALOIS EXTENSIONS)

We come now to the main topic of the chapter: Galois theory.
. If K is an extension field of F, an intermediate field L is a field such that F C L c K. An

intermediate field is proper if it is neither F nor K.

If I.J is an intermediate field, then every L-automorphism of K will be an

F-automorphism, and therefore)

(16.6.1)) G(Kj L) C G(Kj F).)

Lemma 16.6.2
(a) The Galois group G of a finite field extension K/ F is a finite group whose order divides

the degree [K: F] of the extension.

(b) Let H be a finite group of automorphisms of a field K. ThenK is a Galois extension of
its fixed field KH, and H is the Galois group of K/ KH.)

Proof (a) By definition of F-automorphism, the elementsof G act trivially on F, so F is
contained in the fixed field KG. Then Fe KG C K, so [K: KG] divides [K: F]. By the

Fixed Field Theorem, I G I
== [K: KG].

(b) By definition of KH
, the elements of Hare KH-automorphisms. Therefore H is

a subgroup of the Galois group G(Kj KH). Since IG(KjKH)I divides [K: KH] and

IHI == [K: KH], the two groups are equal,and K is a Galois extension of KH. 0

Lemma 16.6.3 Let Yl be a primitive element for a finite extension K of a field F and let

f(x) be the irreducible polynomial for Yl over F. Let Yl, . . . , Yr be the roots of f that are

in K. There is a unique F-automorphism O'i of K such that O'i (Yl) ==
Yi. These are all of the

F-automorphisms of K, so G(Kj F) has order r.

Proof. There is a unique F-isomorphism O'i: F(Yl) \037 F(Yi) that sends Yl
\037 Yi (16.4.2)(c).

We are, given that K == F(Yl), and since F(Yi) has the samedegreeover F, K == F(Yi) too.

Therefore O'i is an F-automorphism of K. Every F-automorphismof K sends Yl to a root
of f, so it is one of the automorphisms O'i. D)

Theorem 16.6.4 Characteristic Properties of GaloisExtensions.LetKj F be a finite exten-

sion and let G be its Galois group. The following are equivalent:

(a) K/ F is a Galois extension, i.e., I G I
== [K: F],

(b) The fixed field KG is equal to F,

(c) K is a splitting field over F.)

Part (b) of the theorem can be usedto show that an element of a Galois extensionK
is actually in the field F, and (c)canbe usedto show that an extension is Galois.)))
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Proof of the Theorem. (a) \037 (b): By the Fixed Field rrheorem, IGI == [K: KG]. Since
F C KG C K, I G I == [K: F] if and only if F == KG.

(a) \037 (c): Let n == [K: Fl. We choose a primitive element Yl for Kover F. Let f be
its irreducible polynolnial over F. Since Yl is a primitive element, the degree of f is n.

Let Yl, . . . , Yr be the roots of .f that are in K. Lemma 16.6.3 tells us that I G I == r. So

I G I == [K: F], i.e., the extension is Galois, if and only if f splits completely in K. Because

K is generated over F by Yl, it is also generated by the set of all the roots of f, so K is a

splitting field over f' if and only if f splits completely in K. 0

If K is the splitting field of a polynomial .f over F, we may also refer to the Galois
group G(Kj F) of the extension Kj f' also as the (;alvis group of f.)

Corollary 16.6.5

(a) Every finite extension K j }' is contained in a Galois extension.

(b) If K j F is a Galois extension, and if L is an intermediate field, then K is also a Galois

extension of L, and the Galois group G(K/L) is a subgroup of the Galois group
G(Kj F).)

Proof Theorem16.6.4allows us to replace the phrasc \"Galoisextension\" by \"splitting

field.\" Then the Corollary foHowsfrom L,emmas 16.3.1 and 16.6.2. 0)

Theorem 16.6.6 Let Kj f' be a Galois extension with Galois group G, and let g be
a polynomial with coefficients in }/ that splits completcly in K. Let its roots in K be

f31, . . . , f3r.)

(a) The group G operates on the set of roots {fJi}.

(b) If K is a splitting field of g over f\037, the operation on the roots is faithful, and by its

operation on the roots,G embedsasa subgroup of the symmetric group Sr.

(c) If g is irreducible over F, the operation on the roots is transitive.

(d) If K is a splitting field of g over F and g is irreducible over f', then G embeds as a
transitive subgroup of Sr.)

Proof (a) is (16.4.2)(a) and (b) is (16.4.2)(b). If g is irreducible, it is the irreducible

polynomial for fJl over F. Since f' is the fixed field of G, Theorem 16.5.2 tells us that the

roots f3i of g form the G-orbitof f3l. So the operation is transitive, as (c)asserts.Finally, (d)

is the combination of (b) and (c). 0)

'Ihis theorem is useful, though it doesn't suffice to determinethe Galois group. Both the

integcr r and the embedding into Sr depend on f, not only on the Galois extension K. Also,
the symmetric group Sr has several transitive subgroups when r > 2.)

16.7 THE MAIN THEOREM)

One of the most important parts of Galois theory is the determination of the intermediate

fields. l'he Main Theoremof Galois theory asserts that when K j F' is a Galois extension, the)))
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intermediate fields are in bijective correspondence with the subgroups of the Galois group.
It will not be immediately clear why this fact is important; we will have to see it used to
understand that.)

Theorem 16.7.1 Main Theorem. Let K be a Galoisextensionof a field F, and let G be its

Galois group. There is a bijectivecorrespondencebetween subgroups of G and intermediate
fields:

{subgroups}+---+ {intermediate fields}.

This correspondence associates to a subgroupH its fixed field, and to an intermediate field L
the Galois group of Kover L. The maps

H\037KH and L\037G(KfL).)

are inverse functions.)

Proof We must show that the composition of the two maps in either order is the identity

map, and the work has been done.Let H bea subgroup of G and let L be its fixed field.

The Fixed Field Theorem tells us that G(Kf L) == H. In the other order, let L be an

intermediate field and let H be the Galois group of Kover L. Then K is a Galoisextension
of L (Corollary 16.6.5(b\302\273). Theorem 16.6.4 tells us that the fixed field of His L. D)

Corollary 16.7.2 (a) The correspondence given by the Main Theorem reverses inclusions:
If Land L' are intermediate fields and if H and II' are the corresponding subgroups, then

L c L' if and only if H :J H'.

(b) The subgroupthat corresponds to the field F is the whole group G(Kf F), and the

subgroup that corresponds to K is the trivial subgroup {I}.

( c) If L corresponds to H, then [K: L] == I H I and [L : F] ==
[G: H].)

In (c), the first equality follows from the facts that K is a Galois extension of Land
that H == G(Kf L). Then the second equality follows,because)

IGI == [K:F] == [K:L][L:Fj and also IG! ==
IHI[G:H].) D)

Corollary 16.7.3 A finite field extension K f F has finitely many intermediate fields

F c L C K.)

Proof This follows from the Main Theorem when K / F is a Galois extension,because
a finite group has finitely many subgroups. Since we can embed any finite extension into

a Galois extension_it is true for any finite extension. 0, '\"

Example 16.7.4 Let F be the field of rational numbers, and let (X == 13 and fJ
== J5, so that

afJ == M. The splitting field K == F(a, f3) of the polynomial (x2 - 3)(x
2 - 5) is a Galois

extensionof F of degree 4. Its Galoisgroup G has order 4, so it is either the Klein four group
or a cyclic group. It is easy to find three intermediate fields of degree 2 over F, namely F(a),

F(f3), and F(af3). Thesethree intermediate fields correspond to three proper subgroups of

G. Therefore G is the Klein four group, which has three elements of order 2, hencethree
subgroups of order 2. The cyclic group of order 4 has only one subgroup of order 2.)))
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The subgroupsof order 2 are the only proper subgroups of G, so the Main Theorem
tells us that there are no proper intermediate fields other than the three we have found.
Consequently, an element y == a + ba + cf3 + dafJ of K, with a, b, c, d in F, has degree 4
over F unlessit is in one of the three properintermediate fields, and this happens only when
at least two of the coefficients b, c, d are zero. D)

Suppose that we are given a chain of fields Fe L C K, and that K is a Galois extension
of f'. Then K is also a Galoisextensionof L. However, L needn't be a Galoisextensionof F.

To complete the picture, we show that the intermediate fields L that are Galois extensions

of F correspond to normal subgroups of G.)

Theorem 16.7.5 Let K/ F be a Galois extension with Galois group G, and let L be the fixed
field L of a subgroup H of G. 1'he extension1-1/F is a Galois extension if and only if H is a
normal subgroupof G. If so, then the Galois group G(L/ F) is isomorphic to the quotient
group G / H.)

r Kl H=G(K/L)

I
r operates on K

G = G(K/F) I I fixing L

operate/) on K \037
L )

1fIxing F ! If H is nornzal,

l
'
j

'>

then G/H = G(L/F)
f operateshere)

Proof Let El be a primitive element for the extension IJ/ F. and let g be the irreducible
polynomial for El over F. This polynomial splits cOlnpletely in the splitting field K; let its
roots be El, . . . .Er. We have the following facts to work \\vith:)

\302\267L / F is a Galois extensionif and only if it is a splitting field, \\vhich happens when all of
the roots Ei are in L.

\302\267If a root \342\202\254iis in L, then L == f'(Ei), because Ei and E1 have the same degree over F and
L == F(El)'

\302\267An element a of G is the identity on L if and only if it fixes E 1. So the stabilizer of E 1 is

equal to H.

\302\267T'he operation of G on the set {E 1 , . . . , Er} is transitive: For any i == 1, . . . , r, there is an

element a of G such that O'(E1) == Ei (16.4.2)(c).)

Let a be an element of G, and say that a( E\"1) == E i. Then F( E i) == L if and only if E i

is in L, and if so, the stabilizer of Ei will be equal to H. On the other hand, the stabilizer
of a(El) is the conjugate group aHa-]. Therefore Kj F is a Galoisextensionif and only if

aHa- 1 == H for all a, i.e., if and only if H is a normal subgroup.
Supposethat L is a Galois extension of F. Then the root\037 Ei are in I-J' An element a

of the Galois group G will map E 1 to another root E i, and therefore it will map L = F( E 1)

to f'(Ei) == L. So restricting a to L defines an F-automorphism of L. This restriction gives)))
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us a homomorphism cp:G \037 G (L IF). The kernel of cp is the set of a that restrict to the

identity on L, which is H. Moreover, IG I HI ==
[G: H] == IG(LI F)I. The First Isomorphism

Theoremtel]sus that G I H is isomorphic to G(LIF). D)

In the next sections, we examinesomeof the most important situations in which Galois

theory can be used.)

16.8 CUBIC EQUATIONS

Let I(x) == x
3 - al x2 + a2x -

Q3 be an irreducible polynomial over f', and let K be a
splitting field of J over F. Say that the roots of f in K are aI, fX2, a3. Then in K[ x],)

(16.8.1)) I(x) == (X- a l)(x- a 2)(x- a 3).)

Since al is in I? and al == at + a2 + a), the third root a3 is in the field generated by the first

two roots. So we have a chain of extension fields)

Fe F(at) c F(al, (2) and F(al, CY2) == F(al, a2, (3) == K.)

Let L denote the field F(al)' SinceI isirreducible over f\037, l L: F] == 3. And since al is in L,

the polynomial f factors in L[x]:)

(16.8.2)) f(x) == (x
- al)q(x),)

where q is the quadratic polynomial whose roots are a2 and a3. So K is obtained from L by

adjoining a root of a quadratic polynomial. l'here are two cases: If q is irreducible over L,
then [K: L] == 2 and [K: F] == 6. If q is reducible over L, then a2 and a3 are in L, L == K,

and [K: F] == 3.)

Examples 16.8.3 (a) I(x) == x
3 + 3x + 1 is irreducibleover Q, and its derivative is nowhere

zero on the real line. Therefore f defines an increasing function of the real variable x that

takes the value zero exactly once: f has one real root. This root does not generate the

splitting field K, which also contains two complex roots. So [K: Q] == 6.

(b) f(x) == x
3 - 3-,\037+ 1 is also irreducible over Q.In this case, it happens that if <Xl is a root

of f, then a2 ==
a\037

- 2 is another root. This can be checkedby substituting into f. So the

splitting field K is equal to Q(al) and [K: CQ]
== 3. 0)

We go back to an arbitrary irreducible cubic. By its operation on the roots, the Galois

group G of KI f' becomes a transitive subgroup of the symmetric group 53 (16.4.2)(c). 'fhe
transitive subgroups are 53 and A3 - a cyclicgroup of order 3. If [K: F] == 3, then G == A3,

and if [K: f'] == 6, then G == 53. To distinguish these two cases, we need to decide whether
or not the quadratic polynomial q(x) that appears in (16.8.2) is irreducible over the field

L == F(al). Working in the field L is painful. We would rather make a computation in the

field F. Fortunately, there is an element that makes it possible to decide, the square root 8
of the discriminant (16.2.5) of f:)

(16.8.4)) 8 == (al
- (2)(al - (3)(a2 -

(3)')))
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Its main properties are:

\302\2678 is an element of K,
\302\2678:# 0 (because the roots ai are distinct), and
\302\267a permutation of the roots multiplies 8 by the sign of the permutation.)

Theorem 16.8.5GaloisTheory for a Cubic. Let K be the splitting field of an irreducible
cubic polynomial f over a field F, let D be the discriminant of f, and let G be the Galois

group of K / F.

\302\267If D is a square in F, then [K: F] == 3 and G is the alternating group A3.
\302\267If D is not a square in F, then [K: F] == 6 and G is the symmetric group S3.

'\"[he discriminant of x 3 + 3x + 1 is -5 .3 3
, not a square, while the discrminant of x 3 - 3x+ 1

is 3
4

, a square (see 16.2.8)).This agreeswith the discussion of the examples above.

Proofof Theorem 16.8.5. A permutation of the roots multiplies 8 by the sign of the permu-
tation. If 8 is in F, it is fixed by every element of G. In that case odd permutations can't be
in G, and therefore G == A3 and [K: F] == 3. If 8 isn't in F then it isn't fixed by G, so G

contains an odd permutation. In that case, G == S3 and [K: F] == 6. 0

The alternating group has no proper subgroups. So if G == A3 there are no proper
intermediate fields.This is obvious, because [K: F] == 3 is a prime. The symmetricgroup 53

has four proper subgroups. With the usual notation, they are the three groups <y), <xy),
< x

2
y) of order 2, and the group <x> of order 3, which is A3. The Main Theorem tells us

that when G == 53, there are four proper intermediate fields.They are F(a3), F(a2), F(al),
and F(8).)

16.9 QUARTIC EQUATIONS

Let I(x) be an irreducible quartic polynomial with coefficients in F, and let the roots of

I in a splitting field Kover F be at, a2, a3, a4. By its operation on the roots, the Galois
group G == G (K / F) is represented as a transitive subgroup of 54 (16.6.6). The transitive

subgroupsare easyto determinebecause54 is isomorphic to the octahedral group, a rotation

group. Any subgroup will be a rotation group too, so it will be one of the groups listed in

Theorem 6.12.1. The transitive subgroups of 54 are)

(16.9.1)) 54, A 4, D4, C4 , D2.)

There are three conjugate subgroupsisomorphic to D4, and three conjugate subgroups
isomorphicto C4. The subgroup D2, the Klein four group, consists of the identity and

the three products of disjoint transpositions. It is a normal subgroupof 54 that we have

seen before (2.5.15).(Someother subgroups of S4 are isomorphic to D2, but they aren't

transitive.) Notice that the order of G, which is equal to the degree [K: F], distinguishes

an of these groups except the last two. Unfortunately, it isn't very easy to determine
the degree.

We begin with a type of quartic polynomial that can be analyzed concretely.I learned
this from Susan Landau [Landau].)))
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Examples 16.9.2 Here F denotesthe field Q of ra tional numbers.

(a) Leta bethe \"nested\" square root a == J 4 + -J5.To determine the irreduc ible po lynomial

for a over F, we guess that its roots might be :to' and :ia', where (x' == J 4 - -J5. Having

made this guess, we expand the polynomial)

I(x) == (x
- a) (x + a) (x -

a')(-,\037 + a') == x
4 - 8x2 + 11.)

It isn't very hard to show that this polynomial is irreducible over F. We '11leave the proof as

an exercise. So it is the irreducible polynomial for ex over P-'. Let K be the splitting field of f.
Then)

F C F(a) C F(a, a') and }?(a, at) == K.

Since f is irreducible\037 [F(a) : F] == 4 and since -J5 is in F(a), a/ == J 4 - -J5 has degree at

most 2 over F(a). We don't yet know whether or not a' is in the field F(a). In any case,

[K: F] is 4 or 8.TheGaloisgroup G of K / F also has order4 or 8, so it is D4, C4,or D2.
Which of the conjugate subgroups D4 might operate depends on how we number the

roots. Let's number them this way:)

I /
al == a, a2 == a, a3 == -a, a4 == -a .)

With this ordering, an automorphism that sends al 'V'-t ai also sends a3 \037 - ai. The

permutations with this property form the dihedral group D4 generatedby)

(16.9.3)) a == (1234) and T == (24).)

Our Galois group is a subgroup of this group. It can be the wholegroup D4,the cyclic group
C 4 generated by a, or the dihedral group D2 generatedby 0'2 and T.

Note: We must be careful: Every element of this group D4 permutes the roots, but we don't

yet know which of these permutations come from automorphisms of K. A permutation that
doesn't come from an automorphism tells us nothing about K. 0

rfhere is one permutation, p == a
2 == (13) (2 4), that is in all three of the groups

D4, C4, and D2, so it extends to an F-automorphism of K that we denote by p too. This
automorphism generates a subgroup N of G of order 2.

To compute the fixed field KN, we look for expressions in the roots that are fixed

by p. It isn't hard to find SOIne: a 2 == 4 + -J5 and aa' == ffi. So K N
contains the field

L == F( -J5, -JIT). We inspect the chain of fields F C L C K'v C K.We have [K: F] < 8,
[L : F] == 4, and [K : KJv] == 2 (Fixed Field Theorem). It follows that L == K

N
, that

[K: F] = 8, an d that G is the dihedral group D4.

(b)Leta == J2 + \037. The irreducible polynomial for a over F\" is x 4 - 4x2 + 2.Its rootsare
a, a' == J 2 -

\037, -a, -a' as before. Here aa' == \037, which is in the field F(a). Therefore
a' is also in that field. The degree [K: f'] is4, and G is either C4 or D2.

Becausethe operation of G on the roots is transitive, there is an element at of G that

sends a -v--t a'. Since a 2 == 2 + \037 and a,2 == 2 - \037, a' sends -J2 \"V'7--J2 and aa' \037 -aa'.)))
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This impliest hat a' \037 -a. So a' == a. The Galois group is the cyclic group C4 .

(c) Let a == ..j 4 + .J7. Its irreducible polynomial over F is x 4 - 8x2
+ 9. Here aa' = 3. Again,

a' is in the field F(a), and the degree[K:F] is 4. If an automorphism a' sends ex \037 a', then

since aa' == 3, it must send a' \037 a. The Galois group is D2.

One can analyze any quartic polynomial of the form x4
+ bx 2 + c in this way. D)

It is harder to analyze a general quartic)

(16.9.4)) fCy) == x
4 - alx

3 + a2x2 - a3X + a4,)

because its roots al, . . . , a4 can rarely be written explicitly in a useful way. The main method
is to lookfor expressions in the roots that are fixed by some, but not all, of the permutations
in 54. The square root of the discriminant D is the first such expression:)

8 = n (ai - aj) == (al
- (2)(al - (3)(al - (4)(a2- (3)(a2- (4)(a3

- (4).

i<j)

Because the roots are distinct, 8 isn't zero, and as is true for cubicequations (16.8.4), a

permutation a of the rootsmultiplies 8 by the sign of the permutation. Even permutations

fix 8 and odd permutations do not fix 8.)

Proposition 16.9.5 Let G be the Galoisgroup of an irreducible quartic polynomial f. The
discriminant D of f is a square in F if and only if G contains no odd permutation. Therefore

\302\267If D is a square in F, then G is A4 or D2 .

. If D is not a square in F, then G is S4, D4, or C4.)

Proof D is a square in F if and only if 8 is in F, which happens when every element of

G fixes 8. The permutations that fix 8 are the even permutations. The last statements are
proved by looking at the list (16.9.1) of transitive subgroups of 54. 0

There is an analogous statement for splitting fields of a polynomial of any degree.)

Proposition 16.9.6 Let K be a splitting field over F of an irreducible polynomial f of

degree n in F[x], and let D be the discriminant of f. The Galois group G(K/ F) is a

subgroup of the alternating group An if and only if D is a square in F. D)

Lagrange found another usefulexpressionin the roots ai, one that is special to quartic

polynomials. Let)

(16.9.7)) f31
= CXla2 + a3 a 4, f32

= ala3 + a2a4, f33
= al CX4 + a2 a 3,)

and let)

g(x) == (x
- {31)(X -

{32)(X
-

{33).)))



496 Chapter 16) Galois Theory)

This polynomial is called the resolventcubicof f. Every permutation of the roots ai
permutes the elements f3 j, so the coefficients of g are symmetric functions in the roots. 'rhey
are elementsof F that can be computed when needed.

By a lucky accident, the fact that the roots of an irreducible quartic are distinct implies
that the elements fJi are also distinct. For instance,)

fil
- f32 == al a 2 + a3 a 4 - ala3

- a2 a 4 == (a I
- (l4)(a2 - (3)')

Sincethe a v are distinct, f31
-

f32 isn't zero. T'he discriminants of the polynomials j\037and g
are actually equal.

Whether or not the resolvent cubic has a root in f' gives us more information about
the Galois group G.)

Proposition 16.9.8 Let G be the Galois group of an irreducible quartic polynomial .lover

f', and let!? be the resolvent cubicof f. \037rhen g is irreducible if and only if the order of G is
divisible by 3. Moreover,

\302\267If g splits completely in F, then G === D2.

\302\267If g has one root in F, then (; == D4 or C 4.
\302\267If g is irreducible over F, then G == S4 or A4.)

Proof The proof of the proposition is simple, but the fact that the three elements f3i

are distinct is an essential point that could easily be overlooked. Let B denote the set

{,81, f32, fJ3}. It has order 3. The operation of the symmetric group 54 on the roots a v

defines a transitive operation on B, and the associated permutation representation is a
homomorphismcp:S4 --* >--\0373that we have seen before (2.5.13).Its kernelis the subgroup D2.
If g splits completely in F, the Galois group operates trivially on B, and therefore G == D2.

If g is irreducible over F, G operatestransitively on B (16.6.6), so its order is divisible
by three. Conversely, if I G I is divisible by three, then G contains an element of order 3,

say p. Sincethe kernel of cp is D 2 , p does not operate trivially on B. It permutes the three
elements cyclically. Therefore G operates transitively on B, and g is irreducible.

The rest of the proposition followsby looking back at the list (16.9.1). D

Thus the polynomials x2 - D, where D is the discriminant, and the resolvent cubic g(x)
nearly suffice to describe the Galois group. The resultsare summed up in this table:)

(16.9.9))
D a square D not a squ are

g reducible

I

G Dz G = D4 or C4
g irreducible G == A4 G == 54)

Unfortunately, there is no simple expressIonIn the roots that removes the remaInIng
ambiguity (see Exercise M.l1).

Note: The proof of Proposition 16.9.8 makes use of the particular formulas (16.9.7) to define

a permutation of the set B in terms of a permutation of the roots avo If a permutation

of the roots comes from an F-automorphism, the permutation of B will be given by that)))
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automorphism. However, if the permutation doesn't come from an F-automorphism, the

permutation of B defined using the formulas has no meaning for the field.

For example, let K be the splitting field of the polynomial x4 - 2 over Q. We index

the roots from 1 to 4 in the order al == ex, a2 == ia, a3 == -a, CX4 == -ia, where ex is the

positive real fourth root of 2. Then f31
== 2i J2, f32 == 0, f33 == - 2i J2. The transposition

E == (12) isn't an element of the Galois group. When we use the formulas 16.9.7to define

how \342\202\254permutes the set B, the operation we obtain switches fJ2 and f33. Since f32
== 0 and

fJ3 =f:. 0, this permutation makes no sense algebraically. 0)

16.10 ROOTS OF UNITY)

In this section, F denotesthe field Q of rational numbers. The subfield of the complex
numbers generated over F by an nth root of unity \037n

== e2nijn is called a cyclotomicfield.
We'll assume that n is a prime integer p. The irreducible polynomial for ( == e

2ni / P over the
rational numbers is)

(16.10.1)) f(x) == x p - l + . . . + x + 1)

(Theorem 12.4.9). Its roots are the powers{,{2,. ..,{p-1,so { generates the splitting field
of f, and therefore K == P({) is a Galois extension of F of degree p

- 1.)

Proposition 16.10.2

(a) Letp be a prime, and let \037
= e 2ni / p. The Galoisgroup of Q(\037) over Q is a cyclicgroup

of order p
- 1. It is isomorphic to the multiplicative group 1F\037

of nonzero elements of
the prime field IF p'

(b) For any subfield P' of C, the Galoisgroup of F' ({) over P' is a cyclicgroup.)

Proof (a) With F == Q, let G be the Galois group of F(\037) over F. An element a of G is

determined by the image a(\037), which can be anyone of the p -1 rootsof f. Let's call ai the

element such that ai (\037)
==

\037i. The exponent i is determined as a nonzero residuemodulo p

because \037p
== 1. So sending ai \037 i defines a bijective map E:G \037

JF\037.
The computation)

aiaj(\037) =
ai(\037j)

== ai(\037)j =
\037ij)

shows that E is a homomorphism, and therefore an isomorphism. The fact that
IF\037

is cyclic is

a part of Theorem 15.7.3.
The elementav that sends {\037\0371J generates G if and only if v is a primitive root

modulo p, a generatorfor the cyclic group IF\037.)

(b) An element a of the Galois group G' == G (F
1

(\037) / F') will also send \037to a power {1J.The

proof above showsthat G' is isomorphic to a subgroup of the cyclic group 1F\037.
Therefore it

is a cyclic group too. 0)

Example 16.10.3 p == 17 and ( = e iB
, where e == 2n /17.

The residue of 3 is a primitive root modulo 17, so the Galois group G == G (K / F) is a

cyclicgroup of order 16, generated by the automorphism a that sends \037
'V'-f

\0373. There are five)))
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subgroups, of orders 16,8,4, 2, and 1, generated by a, a 2, a 4
, a 8

, and 1, respectively. Let the

fixed fields of the subgroups be F == La == \037a>, L 1 == \037a2>, L2 == \037a4>, L3 == \037a8>,

and L4 == K. They form a chain of fieldsLoCL1C L2C L3 C L4, where the degree of each
extensionLi/ Li-I is 2. The Main Theorem tells us that these are the only intermediate fields.)

Lemma 16.10.4The field L3 defined above is generated by cos e, and it has degree 8 over F.)

Proof Let L' == F(cos 8). Since?; + ?;-l == 2 cos 8, cos 8 is in K == F(?;). Moreover, ?; is a root
of the quadratic polynomial (x

- ?;)(x - ?;-l)== x
2 - 2(cose)x + 1,which has coefficients in

L', so [K: L'] < 2 and [L': F] > 8. Therefore L' iseitherL3 or K, and since L' is a subfield

of JR but K is not, L' == L3. 0)

Corollary 16.10.5 The regular 17-goncanbe constructed with ruler and compass.)

Proof The chain FeLl c L2 c L3 shows that we can reach the field L3, which contains

cos 8, by a sequence of three successivesquare root adjunctions, and since L3 is a subfield of

IR, these square roots are real. (See(15.5.10).) 0
The next lemma is useful for describingthe quadratic extension L 1 of F:)

Lemma 16.10.6Leta ==
Cl?; + C2?;2 + . . . + C p-2 ?;p-2 + Cp-l ?;p-l be a linearcombination

with rational coefficients Ci, where \037
== e 2ni / P and p is prime.Ifa is a rational number, then

Cl == C2 == . . . == C p-l, and a == -Cia)

Proof. Since?; is a root of f (16.10.1), we can solve for ?;p-l and rewrite the given linear
combination as a == (-c p-1)1 + (C1 - C p-l)?; +. . . + (Cp -2 - C p _1)?;p-2. Because the powers
1, ?;, . . . , ?;p-2 form a basis for Kover F, this combination is a rational number only if all

coefficients except -c p-1 are equalto zero.If so, then Ci == C p-l for every i and a == -C1, as

asserted. D)

Example 16.10.7 The casep == 17, continued.

The powers of the primitive root 3 modulo 17, listed in order, and with representatives
for the congruence classestaken between -8 and 8, are)

(16.10.8)) 1,3,-8,-7,-4,5,-2,-6,-1,-3,8,7,4,-5,2,6.)

The automorphism a of K == F(?;) that sends ?; to ?;3 generates the Galois group G, and it

runs through the powers of ?;in the corresponding order:

(16.10.9) ?;\037
?;3

\037 ?;-8 \037 ?;-7 \037 .. .)

The G-orbit of ?;consists of the 16powers of ?; different from 1.
Let H denotethe subgroup < a 2 > of order8.The G-orbit of ?; splits into two H -orbits

that are obtained by taking every other term in the sequence of powers (16.10.9):)

{
-8 -4

}?;,?; ,?; ,...) an d
{ ?;3, ?;

-7
, ?;5 ,

. . .
}.)

Let al and a2 denote the sums over these two orbits, respectively:al ==
\037+ \037-8 + . . . .

The set {aI, a2} is a G-orbit.Theorem16.5.2tells us that the elements af have degree2)))
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over the fixed field of G, which is F, and that the irreducible polynomial for ai over F is

(x - al)(x - (2).To determine this polynomial, we need to compute the two symmetric
functions Sl (a) == al + a2 and S2(a) == al a2.

To begin with, we note that Sl (a) is the sum of all powers of \037different from 1, so

Sl (a) == -1 (16.10.6). Next,

S2(a) == a I a 2 ==
(\037 + \037-

8
+ . . . ) (\0373 + \037

-7
+ . . .

).)

Writing ai requires writing \037many times, so we use a shorthand. We write)

(16.10.10)) al = [1, -8, -4, -2,-1,8,4,2], a2== [3, -7,5, -6, -3,7, -5, 6].)

This notation indicates that al is the sum of the powers of \037whose exponents are in the first

bracketed string. To compute s2(a), we must add each of the eight terms in the first string to
those in the second string, modulo p, obtaining 64exponents.Thens2(a)will be the sum of
the correspondingpowersof \037.Let's not do this explicitly. Sinces2(a) is a rational number,

all powers different from \037
== 1 must occur the same number of times (16.10.6).We notice

that we won't get any zeros when we do the addition, becausea residueand its negative are

in the same bracketed sequence.Sothe 64 terms must include four of each of the 16 nonzero

exponents. Therefore s2(a) == -4. The irreducible polynomial for ai over F is)

(16.10.11 )) (x
- al)(x - (2) == x

2
+ x - 4.)

Its discriminant is 17, so L1 == F( \037I7).) o)

One can determine the extensionfield of degree 2 over F that is contained in the

cyclotomic field F({p) for any odd prime p in the same way.)

Theorem 16.10.12 Let p be a prime different from 2, and let L be the unique quadratic

extension of Q contained in the cyclotomic field Q( \037p). If P = 1 modulo 4, then L ==
Q(-JP),

and if p == 3 modulo 4, then L ==
Q(R).

This seems to be an occasion for \"proof by example.\" The case that p
== 1 modulo 4

is illustrated by the prime 17,and the computation is analogous for any such prime. We'll

illustrate the case p == 3 modulo 4 by the prime 11. The residueof 2 is a primitive root
modulo 11.Its powers list the nonzero residue classes modulo 11in the order

1,2,4,-3,5,-1,-2,-4,3,-5.)

Let \037
==

\037ll and let a be the automorphism that sends {\037 {2. With shorthand notation as
above, the orbit sums of a 2

are)

al == [1,4,5, -2,3], el2 == [2, -k, -1, -4, -5].)

Here if k is in the list of exponents for the sum aI, then -k is in the list for a2. Therefore zero
occursfive times among the 25 terms in the list of exponents for ala2, and this contributes

5 to ala2. Since alcx2is in Q, the 20 remaining terms must consist of two of each of the 10
nonzerocongruenceclassesmodulo 11. The sum of these terms contributes -2. Therefore
ala2 == 3. The irreducible polynomial for ai isx2

+ x + 3. Its discriminant is -11. D)))
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Theorem (16.10.12) is a specialcaseof a beautiful theorem of algebraic number theory.)

Theorem 16.10.13 Kronecker-Weber Theorem. Every Galois extensionof the field Q of
rational numbers whoseGalois group is abelian is contained in one of the cyclotomic
fields Q(\037n). 0

16.11 KUMMER EXTENSIONS)

This section is devotedto the following theorem:)

Theorem 16.11.1 Let F be a subfield of C that contains the pth root of unity \037:;:: e 21Ti / P,

P prime, and let Kj F beaGaloisextension of degree p. Then K is obtained by adjoining a

pth root. In other words, K is generated over F by an element f3, with fJP in F.)

Extensions of this type are often called Kummer extensions.The Galoisgroup of a Kummer

extension is a cyclicgroup of prime order.

The theorem is familiar for p = 2:Every extension of degree 2 can be obtainedby

adjoining a square root. But suppose that p = 3 and that F contains the cube root of unity

w = e 2ni / 3 . If the discriminant of the irreduciblecubicpolynomial f (16.2.7) is a square in

F, then the splitting field of f has degree 3 (16.8.5). The theorem asserts that the splitting

field has the form F(;jjj), for some b in F. This isn't obvious.If the discriminant is not a

square, the roots cannot be obtained by adjoining a cube root. (This is Exercise11.1.)
The next proposition completes the picture. Suppose that fJ is the pth root of a

nonzero elementb of F in an extension field K. Then it will be a root of the polynomial

g(x) = x P - b, and if \037is in F, the roots of fin K will be \037vfJ for \\J = 0, 1, . . . , p - 1.Sof3

will generate the splitting field of g over F.)

Proposition 16.11.2 Let p be a prime,let F be a field that contains the pth root of unity

\037
= e 2ni / p , and let b be a nonzeroelementof F. The polynomial g(x) = xP - b is either

irreducible over F, or else it splits completely.

Proof Let K bea splitting field of g over F, and supposethat some root fJ of g is not in

F. Then the degree [K: F] will be greater than 1, so the Galoisgroup G = G (K / F) will

contain an element a different from the identity. Since f3 generates Kover F, u({3) cannot
be equal to f3. So a(f3) =

\037\\Jf3 for some v with a < v < p. We also have a({) = {.Therefore
a2

(f3) =
\037\\J(\037\\JfJ) =

\0372vfJ, and in general, a k
(fJ) =

\037kvf3. Since a < v < p and p is prime, the

multiples of v run through all residues modulo p. This showsthat G operates transitively on

the p roots of g. Therefore g is irreducible over F. D

Proofof Theorern (16.11.1). The proof is nice. We view K as a vector space over F, and we

verify that an element a of the Galoisgroup G is a linear operator on K: If ex and f3 are in

K and c is in F, then a(c) = c. Sincea is an automorphism,

a(a + f3) = a(a) + a(fJ) and a(ca) = CT(c)cr{a) = ca(a),)

We choosea generatora for the cyclic Galois group G. Then a P = 1, so any eigenvalue
A of a must satisfy the relation 'A P = 1, which means that A is a power of \037.These eigenvalues

are in the field F by hypothesis.Moreover, a linear operator of order p has at least one

eigenvalue different from 1. This is because,over the complex numbers, the matrix of a is

diagonalizable (see Theorem 4.7.14 or Corollary (10.3.9)).Its eigenvalues are the entries of)))
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the corresponding diagonal matrix A. If a is not the identity, then A =f::.I, so some diagonal

entry must be different from 1.

Let f3 be an eigenvector of a with eigenvalue A =1= 1, and let b == f3P. Then a(fJ) == Af3,

hence a(b) = (Af3)P == b. Since a generates G, b is in the fixed field, which is F, while f3 is

not in F. Since [K: F] is prime, F(f3) == K. 0)

With notation as in Theorem 16.11.1, say that K is the splitting field over F of an
irreducible polynomial I of degree p. There is a simpleexpressionin the roots of I that

often yields an eigenvector for the operator a. The permutation of the roots al, . . . , a P

of f that is defined by a will be cyclic, so if we number the roots appropriately, a will be the

permutation (12 ... p).LetA be an eigenvalue of a, and let

(16.11.3) f3
== al + Aa2 + . . .+ 'Ap-1a p'

Then cr(fJ) =
lXZ + Act3 . . . + AP-2 ctp-l + AP-1cxl = A-I 13. So unless fJ happens to be zero,

it will be an eigenvector with eigenvalue 'A-I.

Example 16.11.4 Kummer's theorem leadsto a formula for the roots of a cubic polynomial

that was discovered in the sixteenth century by Cardano and Tartaglia. The derivation
that we outline here isn't as short as Cardano's,but it is easier to remember because it

is systematic. We suppose that the quadratic coefficient of the cubic is zero, and to avoid

denolninators in the solution, we write it as

I(x) == x
3

+ 3px + 2q.

Then Sl == 0, S2 ==
3p, S3 == -2q, and the discriminant is D == _223

3
(q2 + p3).

Let the roots be Ul, U2, U3, numbered arbitrarily. With w == e
2ni / 3

, the elements

Z = Ul + WU2 + w2U3 and z' == Ul + W2
U2 + WU3

are eigenvectors for the cyclicpermutation a = (123). Since 1+ w + w 2 == 0,)

I ,
z+z = S1+z+z == U1.

The cubes Z3 and Zl3 are fixed by a, so according to Kummer'sTheoremand Theorem

16.8.5, they can be written in terms of p, q, 8 == J[5, and w. When the c:ubes are written in

this way, Ul = Z + z' will be expressed as a sum of cube roots.

One makes the following computations. Let

A
2 2 2

== U 1 U2 + U2U3 + U3
U t,

B
2 2 2

== U 2 U l + U 3 U2 + U l U 3.)

Then)

A - B = (UI -
U2)(Ul

- U3)(U2 - U3) == 8,

A + B =: 5152- 3S3 = 6q.

Also, uf + u\037 + u\037
=

sf + 3S1S2 + 3S3== -6q.

One solves for A, B and expands Z3 and Zl3 . The result of this computation is Cardano's

formula:

(16.11.5) Ul =
i -q + .jq2 + pi + i -q - .jq

2
+ p3.

For instance, if I(x) = x 3 + 3x + 2, then x == {I- I + ,J2 - ;;-1 - ,J2.)))
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However, the formula is ambiguous. In the term
;j -q + .j q2 + p3, the square root

can take two values, and when a squareroot is chosen,there are three possible values for
the cuberoot,giving six ways to read that term. There are also six ways to read the other

term. But f has only three roots. D)

16.12 QUINTIC EQUATIONS

The main motivation behind Galois'swork was the problem of solving fifth-degreeequations.
A short time earlier, Abel had shown that the quintic equation)

(16.12.1 ))
S 432

X - alx + a2x - a3x + a4x
- as == a)

with variable coefficients ai couldn't be solved by radicals, but no equation with integer

coefficients that couldn't be solved was known. Anyhow, the problem was over 200 years
old, and it continued to interest people. In the meantime Galois'sideashave turned out to

be much more important than the problem that motivated them. It is amazing that Galois

was able to do what he did before the concept of a group was de'veloped.)

Proposition 16.12.2 Let F be a subfield of the complex numbers. The following two
conditions on a complexnumber ex are equivalent, and a is called solvable over F if it

satisfies either one of them:)

(a) There is a chain of subfields F == Fa C Fl C . . . C Fr = K of C such that ex is in K, and

\302\267
j = 1,..., r, Fj ==

Fj-l(fJj), where a power of f3j is in Fj-I'

(b) There is a chain of subfields F == Fa C FI C . . . C Fs == K of C such that Ci is in K, and)

\302\267for j == 1, . . . , r, Fj+l.is a Galois extension of Fj of prime degree.)

The proof of the proposition isn't difficult, but it doesn't have much intrinsic interest, so
we defer it to the end of the section. We need condition (b) in order to be able to use
Galoistheory. It is the more important characterization of solvability, and one can avoid the

technicalityof the proposition by accepting it as the definition.

Condition (a) means that Fj is generated over Fj-l by an nth root for some integer n

(that depends on j). It is similar to the description of the real numbers that can be constructed

by ruler and compass. In that description, only square roots of positive real numbers are

allowed. Theoretically, one could unravel the extensions to write a solvable element ex using

a succession of nested roots. But as with Cardano's solution of the cubic equation, there is
a great deal of ambiguity in a formula involving radicals, because there are n choices for
an nth root. It is useless to write a root explicitly as a complicated expressionin radicals.

Indeed, Cardano's formula is useless.)

Proposition16.12.3Ifex is a root of a polynomial of degree at most four with coefficients in

a field F, then a is solvable over F.)

Proof For quadratic polynomials,the quadratic formula proves this. For cubics, Cardano's
formula 16.11.7 gives the solution. If f(x) is quartic, we begin by adjoining the square root

8 of D. Then we use Cardano's formula to solve for a root of the resolvent cubic g(x), and)))
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we adjoin it. At this point, Table 16.9.9 shows that the Galois group of f over the field

that we obtain is a subgroup of the Klein four group. Therefore f can be solved by a

sequence of at most two more squarerootextensions. 0)

Theorem 16.12.4 Let f be an irreducible polynomial of degree 5 over a subfield F of the

complex numbers, whose Galois group G is either the alternating group As or the symmetric

group LSs. Then the roots of f are not solvable over F.)

Proof If G == Ss, we replace F by the quadratic extension F(8), where 8 is the square root

of the discriminant. If we can solve over F, we can solve over the larger field F(8). So we

may assume that G is the alternating group As, a simplegroup (7.5.4).

Our strategy is as follows:We consider a Galois extension of F' / F of prime degree p,
with Galois group G', a cyclic group of order p, and we show that no progress toward

solving the equation f == 0 is made when one replaces F by F'. We do this by showing that

the Galois group of f over F' is again the alternating group As. BecauseAs contains an

element of order 5, it cannot be the Galois group of a reduciblepolynomial of degree 5. So f
remains irreducibleover F'. Therefore there is no chain of type (16.12.2)(b), and the roots
of f arenot solvable.

We choose such an extension F', and then we have two Galois extensions. The first,

K/ F, is the splitting field of the quintic polynomial f over F. Its Galois group is G == As.

The second, F' / F, has a cyclicGaloisgroup G' of order p, and since it is a Galois extension,
it is the splitting field of some irreduciblepolynomial g over F.

Let K' be the splitting field over F of the product polynomial fg. It is generated by the

complex roots al, . . . , as and f31', . . . , fJ p of f and g, respectively.The rootsai generate

the splitting field K of f, and the roots f3 j generate the splitting field F' of g. The inclusions

among the four fields are shown in the diagram below. Each of the extension fields is a

Galois extension, and the Galoisgroups have been labeled in the diagram.)

K'
H/,\037

K 9 F'
\037 /C'

F)

Since K is a Galoisextensionof F, G is isomorphic to the quotient group 9/ H', and since

F' is a Galois extension of F, G' is isomorphic to the quotient group 9/ H (16.7.5).Our plan

is to show that H is isomorphic to G, i.e., that H is the alternating group As.
The group H' consists of the F-automorphisms of K' that fix the roots ai, and H

consistsof the F-automorphisms that fix the roots fJj. If an F-automorphism of K' fixes the

roots eli and also the roots fJ j,
then since these roots generate K', it is the identity. Therefore

H n H' is the trivial group.

We restrict the canonical map 9 -+ 9/ H \037G' to the subgroup H'. The kernelof this

restriction is the trivial group H n H', so the restrictionis injective. It maps H' isomorphically
to a subgroupof G'. By hypothesis, G' is cyclic of prime order p. So there are only two

possibilities: either H' is the trivial group, or else H' is cyclicof order p.)))
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Case 1: H' is the trivial group. Then the surjective map from 9 to the quotient group

9/ H' \037G is an isomorphism, and 9 is isomorphicto the simple group G = As. This makes
the existence of a surjective map from 9 to the cyclic quotient group 9 / H \037G' impossible.

So this case is ruledout.)

Case 2: H' is cyclic of orderp. Then 191 == IGIIH'I ==
plGI and also 191 == IG'IIHI == pI HI.

Therefore G and H have the same order, 60. We restrict the canonical map 9 \037 Q/ H' \037G

to the subgroup H. The kernelof this restriction is the trivial group H n H', so the restriction
is injective. It maps H isomorphically to a subgroupof G. Since both groups have order 60,
the restriction is an isomorphism, and H \037G == As. 0

We now exhibit an irreducible polynomial of degree 5 over Q, whose Galoisgroup

is Ss. The facts that 5 is a prime integer and that the Galois group G acts transitively on

the roots aI, . . . , as limit the possible Galois groups. Since the action is transitive, I G I is

divisible by 5. Thus G contains an element of order 5. The only elements of order 5 in Ss are
the 5-cycles.We leave the next lemma as an exercise.)

Lemma 16.12.5 If a subgroup G of 55 contains a 5-cycleand alsoa transposition, then

G == 55. 0)

Corollary 16.U.6 Let f(x) be an irreducible polynomial of degree 5 over Q. If f has exactly

three real roots, its Galois group G is the symmetric group, and hence its roots are not

solvable.)

Proof Let the roots be al, . . . ,as,with al, a2, a3 real and a4, as complex,and let K be

the splitting field of f. The only permutations of the roots that fix the first three roots are
the identity and the transposition (45). Since F(al, a2,(3)* K,that transposition must be

in G. Since G operatestransitively on the roots, it contains an element of order5,a 5-cycle.
SoG = 55. 0)

Example 16.12.7 The polynomial x5 - 16x == x(x
2 - 4) (x2

+ 4) has three real roots. Of
courseit is reducible, but we we can add a small constant without changing the number of
real roots.This is seen by looking at the graph of the polynomial. For instance, x S - 16x + 2
also has three realroots,and it is irreducible over Q. Its rootsarenot solvable over Q. 0)

We now prove Proposition16.12.2.)

Lemma 16.U.8 Let K/ F be a Galoisextensionwhose Galois group G is abelian. There is
a chain of intermediate fields F == Fa C Fl C . . . C Fm

== K such that Fi/ Fi-l is a Galois
extensionof prime degree for each i.)

Proof. The abelian group G contains a subgroupH of prime order. This subgroup corre-

spondsto an intermediate field L, and K is a Galoisextensionof L with group H. Because G
isabelian, H is a normal subgroup, and therefore L is a Galois extension of F with abelian Ga-

lois group 6 = G/ H.Since 6 has smaller order than G, induction completes the proof. 0

Proofof Proposition 16.12.2. (a) =} (b) We begin with the chain of fields (a), and we add
more extensionsand more fields to the chain to arrive at a chain having the properties)))
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(b). First, since \037
== {/ \037, we can, at the cost of adding intermediate fields,supposethat

all the roots that occur in our chain are pth roots for various primes p. We make a note of

the primes Pl, . . . , Pk that occur, and set this chain aside for the mom'ent.

We go back to the field F, and to start, we adjoin the pvth roots of unity for
v == 1, . . . , k, one after the other. Each of these extensions is Galois, with a cyclic Galois

group (Proposition 16.10.2(b\302\273). Lemma 16.12.8 shows that each of them contains a chain

whose layers are Galoisextensionsof prime degree.

Let F' be the field we obtain. We continue by adjoining the roots that we were

given, but to F'. By Kummer theory, each of these root adjunctions will now be a Galois
extension with a cyclic Galois group of prime order, unless it becomes a trivial extension.
'\"rhe field K' that we obtain at the end of our new chain will contain the last field K of

\302\267
the chain given to start, so a will be an element of K'. Therefore this new chain is one of
the form (b).)

(b)::::}(a)Supposethat we are given a chain (b), and consideroneof the extensions in the

chain, say Fi-l C ii. ItisaGaloisextension of prime degree, say degree p. Theorem16.11.1
shows that this extension is obtained by adjoining a pth root, provided that the pth roots of

unity are in Fi-l' So we enlarge the chain, beginning by adjoining the required pth rootsof

unity to F. The enlarged chain will satisfy condition (a). 0)

/I parait apres cela qu'i! n'y a aucun fruit a tirer

de la solution que nousproposons.
-EvaristeGalois)

EXERCISES)

Section 1 Symmetric Functions

1.1. Determine the orbit of the polynomial below.If the polynomial is symmetric, write it in

terms of the elementary symmetric functions.)

(a)

(b)

(c)

(d)

(e))

UIU2 + U\037U3 + U\037Ul (n == 3),

(Ul + U2)(U2 + U3)(U]+ U3) (n == 3),

(Ul
- U2)(U2-

U3)(Ul
- U3) (n == 3),

3 3 3 3 3 3
U I U2 + U 2 U 3 + U 3 Ul

-
UIU 2

-
U2U3

-
U3Ul

Ul + U\037+ . . . + U\037.)

(n == 3),)

1.2. Find two bases for the ring of symmetric polynomials, as a moduleover the ring R.

13 L k k* .. et Wk
== u l + . . . + un'

(a) Prove Newton's identities: Wk - 51Wk-l + . . . :i: Sk-l WI =F kSk == O.

(b) Do Wl, . . . , W n generate the ring of symmetric functions?)))
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Section 2 The Discriminant

2.1. Prove that the discriminant is a symmetric function.

2.2. (a) Prove that the discriminant of a real cubicis non-negative if and only if the cubic has
three real roots.

(b) Suppose that a real quartic polynomial hasa positive discriminant. What can you say
about the number of real roots?

2.3. (a) Prove that the Tschirnhausen substitution (16.2.6) does not changethe discriminant

of a cubic polynomial.
(b) Determine the coefficients p and q in (16.2.7) that are obtained from the general

cubic(16.2.4)by the Tschirnhausen substitution.

2.4. Use undeterminedcoefficents to determine the discriminant of the polynomial

(a) x 3 + px + q, (b) x4
+ px + q, (c) x5

+ px + q.

2.5. Use the systematic method on the discriminant in four variables, to determine the
coefficientsin \037(Sl, . . . , S4) of all monomials not divisible by S4.

2.6. Let
u\037

== Ui + t, i = 1,2,3. Compute the derivatives 1r Si(U') and 1r \037(U'), and use your
results to verify Formula 16.2.5 for the discriminant of a cubic.

2.7.There are n variables. Let m ==
UIU\037U\037..' u\037=i

and let p(u) == L a(m). The
aEA n

Sn -orbit of p(u) contains two elements, p and another polynomial q. Prove that

(p
- q)2 == D(u).)

Section 3 Splitting Fields

3.1. Let f be a polynomial of degree n with coefficients in F and let K be a splitting field for

lover F. Prove that [K: F] divides n!.

3.2. Determine the degrees of the splitting fields of the following polynomials over Q:

(a) x 3 - 2, (b) x4 - 1, (c) x
4 + 1.

3.3. Let F == 1F2 (u) be the field of rational functions over the prime field 1F2. Prove that

the polynomial x2 - u is irreducible over F, and that it has a double root in a splitting
field.)

Section 4 Isomorphisms of FieldExtensions

4.1. (a) Determine all automorphisms of the field Q( \037), and of the field Q(\037,w), where

w == e
2ni / 3.

(b) Let K be the splitting field over Q of I(x) == (x
2 - 2x -1)(x 2 -- 2x -7). Determine

all automorphisms of K.)

Section 5 Fixed Fields

5.1. For each of the following sets of automorphisms of the field of rational functions C(t),
determinethe group of automorphisms that they generate, and determine the fixed field

explicitly.

(a) aCt) == t-
1

, (b) aCt) == it, (c) aCt) == -t, T(t) == t-
1

,

(d) aCt) == wt, T(t) == t-
1

, where w == e
2JTi / 3

.)))
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. t + i it - i5.2. Show that the automorphlsms aCt) == ----: and -r(t) == of C(t) generate a groupt-l t+l
isomorphic to the alternating group A4, and determine the fixed field of this group.

5.3. Let F == C(l) be the field of rational functons in t. Prove that every elementof F that is
not in C is transcendental over C.

Section6 GaloisExtensions

6.1. Let a be a complex root of the polynomial x 3 + x + 1 over Q, and let K be a splitting

field of this polynomial over Q. Is .J-31in the field Q(a)? Is it in K?

6.2. Let K == Q(J2, J3, .J5). Determine [K:Q], prove that K is a Galois extension of Q,
and determine its Galois group.

6.3. Let K =:) L =:) F be a chain of extensionfields of degree 2. Show that K can be generated
over F by the root of an irreducible quartic polynomial of the form x4 + bx2

+ c.

Section 7 The Main Theorem
7.1.Determine the intermediate fields of an extension field of the form F(-JQ, \037) without

appealing to the Main Theorem.
7.2. Let K/ F be a Galois extensionsuch that G(K/ F) \037C2 X C12. How many intermediate

fieldsL are there with (a) [L: F] == 4, (b) [L: F] == 9, (c) G(Kj L) \037C4?

7.3. How many intermediate fields L with [L : F] == 2 are there when K j F is a Galois

extension with Galois group (a) the alternating group A4, (b) the dihedral group D4?
7.4.Let F == Q and K == Q( J2, J3, .J5). Determine all intermediatefields.
7.5.Let I(x) be an irreducible cubicpolynomial over Q whose Galois group is S3.Determine

the possible Galois groups of the polynomial (x3 - 1) I(x).

7.6. Let K/ F bea Galois extension whose Galois group is the symmetric group S3.Is K the

splitting field of an irreducible cubicpolynomial over F?

7.7. (a) Determine the irreduciblepolynomial for i + J2 over Q.
(b) Prove that the set (1, i, J2, iJ2) is a basis for Q(i, J2) overQ.

7.8.Let a denote the positive real fourth root of 2. Factor the polynomial x4 - 2 into
irreducible factorsover each of the fields Q, Q(J2), Q(J2, i), Q(a), Q(a,i).

7.9. Let \037== e 2Jfi / 5 . Prove that K == Q(\037) is a splitting field for the polynomial x 5 - 1
over Q, and determinethe degree [K: Q]. Without using Theorem 16.7.1, prove that K is
a Galoisextension of Q, and determine its Galois group.

7.10. Let K / F be a Galois extension with Galois group G, and let H be a subgroup of G.

Prove that there existsan element f3 E K whose stabilizer is equal to H.

7.11. Let ex == \037, fJ
== J3, and y == ex + fJ. Let L be the field Q(a, fJ), and let K be the

splitting field of the polynomial (x3 - 2) (x
2 - 3) over Q.

(a) Determine the irreducible polynomial I for y over Q, and its roots in C.

(b) Determine the Galoisgroup of k/Q.)

Section 8 Cubic Equations

8.1.Let K / F be a Galoisextension whose group G is the Klein four group D2. Prove that K
canbe obtained by adjoining two square roots to F, and explain how G acts on K.)))
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8.2. Determine the Galois groupsof the following polynomials over Q:
(a) x3 - 2, (b) x3 + 3x+ 14, (c)x3 - 3x 2 + 1, (d)x3 - 21x + 7,
(e)x3

+ x 2 - 2x - 1, (I) x
3 + x 2 - 2x + 1.

8.3.Determine the quadratic polynomial q(x) that appears in (16.8.2) explicitly, in terms of

al and the coefficients of f.
8.4.Let K == Q(a), where a is a root of the polynomial x 3 + 2x + 1,and let g(x) == x

3 + x + 1.
Doesg(x)have a root in K?

8.5. Let (Xi be the roots of a cubicpolynomial I(x) == x 3
+ px + q. Find a formula for a second

root a2 in terms of the elements aI, 8, and the coefficients of f.)

Section 9 Quartic Equations

9.1. Let K be a Galoisextension of F whose Galois group is the symmetric group S4.Which

integers occur as degrees of elementsof Kover F?

9.2. With reference to Example16.9.2(a),write the element ex + ex' as a nested square root.
What other ne sted square roots does K contain?

9.3.\" Can J 4 + v0 bewritten in the form y'a + -Jb, with rational numbers a and b?

9.4. (a) Prove that the polynomial x 4 - 8x2
+ 11 is irreducible over Q in two ways: using the

methods of Chapter 12 and computing with its roots.

(b) Do the same for the polynomial x4 - 8x2
+ 9.

(c) Determine all intermediate fields when K is the splitting field of x4 - 8x 2 + 11
over Q.

9.5. Consider a nested square root ex == J r + ,Jt with rand t in a field F. Assume that a has

degree 4 over F, let I be the irreducible polynomial of ex over F, and let K be a splitting
field of f over F.

(a) Compute the irreducible polynomial I(x) for ex over F. Prove that G(K/ F) is one
of the groups D 4, C4, or Dz.

(b) Explain how to determine the Galois group in terms of the element r2 - t.
(c) Assume that the Galois group of K/ F is the dihedral group D4. Determine

generatorsfor all intermediate fields F C L C K.

9.6.Compute the discriminant of the quartic polynomial x4
+ 1, and determine its Galois

group over Q.

9.7. Assume that a n exten sion field K/ F has the form K == F(,Ja, -Jb). Determine all nested

square roots J r + -Iithat are in K, with rand tin F.

9.8. Determine whether or not the following nested radicals can be written in terms of
unnested squareroots, and if so, find an expression.

(a) J 2+\037, (b) J I0 + sy'2, (c) J l1+ 6y'2, (d) J 6 +\037, (e) J l! + \037.

9.9. (a) Determine the discriminant and the resolvent cubic of a polynomial of the form
I(x) == x

4 + rx + s.

(b) Determine the Galois groups of x4 + 8x + 12and x
4 + 8x - 12over Q.

(c) Can the roots of the polynomial x 4 + x - 5 be constructed by ruler and compass?)))
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9.10. (a) What are the possible Galoisgroupsof an irreducible quartic polynomial over Q that

has exactly two real roots?

(b) What are the possible Galois groups over Q of an irreducible quartic polynomial
f(x) whosediscriminant is negative?

9.11. Let F == Q, and let K be the splitting field of the polynomial f(x) == x
4 - 2 over F. The

roots are lX, -a, ia, -ia, with ex == \037.)

(a) Determine the Galois group G == G(Kj F), and the subgroup H == G(Kj F(i)}.

(b) Show how each element of H permutes the roots of f.

(c) Find all intermediate fields.)

9.12. Determine the Galois groups of the following polynomials over Q.

(a) x4 + 4x2
+ 2, (b) x 4 + 2x2

+ 4, (c) x 4 + 1,
(d)x4

+ x + 1, (e) x4
+ x 3 + x 2 + x + 1, (I) x

4 + x 2 + 1.
9.13.Let K be the splitting field over Q of the polynomial x 4 - 2x2 - 1. Determine the Galois

group G of KjQ, find all intermediate' fields, and match them up with the subgroups
of G.

*9.14.Let F == Q(w ), wher e w == e
27ri / 3 . Determine the Galois group over F of the splitting

field of (a) \0372 +\037, (b) J 2 + \037.
.

*9.15. Let K be the splitting field of an irreducible quartic polynomial f(x) over F, and let
the roots of f(x} in K be al, lX2, ex3, a4. Assume that the resolvent cubicg(x) has a

root f31
== ala2 + a3 a 4 in F. Express the root al explicitly in terms of nested square

roots.
9.16.Determine the resolvent cubic of the general quartic polynomial (16.9.4).

9.17. Determine the real numbers ex of degree 4 over Q that can be constructed with ruler and

compass, in terms of the Galois groups of their irreducible polynomials.

9.18. Prove that any Galois extension whose Galois group is the dihedral group D4 is the

splitting field of a polynomial of the form x 4 + bx2
+ C.)

Section 10 Roots of Unity

10.1. Determine the degree of (7 over the field Q(\0373).

10.2. Let \037
==

\03717' Find generators for the intermediate field L2 describedin Example 16.10.3.

10.3. Let \037
== {7. Determine the degree of the following elements over Q.

(a) {+ {5, (b){3+ \037, (c) {3 + {5 + \0376.

10.4. Let { ==
\03713. Determine the degrees of the following elements over Q.

(a) {+ \03712, (b) \037+ \0372, (c) \037+ \0375+ \037, (d) \0372+ \0375+ \037, (e) \037+ \0375+ \037 + \03712,

(f) { + {2 + {5+ {12,(g) { + \0373+ \037 + {9 + {lO + {12.
10.5.Let K == Q( \037p). Determine explicitly all intermediate fields when

(a) p == 5, (b) P == 7, (c) P == 11, (d) P == 13.

10.6. (a) Carry out the proof of Theorem 16.10.12.

(b) Prove the Kronecker-Weber Theoremfor quadratic extensions.)))
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10.7. Let?:n == e
21Ti / n and let K == Q(?;n).

(a) Prove that K is a Galoisextension of Q.

(b) Define an injective homomorphism G(K/Q) \037 U to the group U of units in the

ring 7l/(n).

(c) Prove that this homomorphism is bijective when n == 6, 8, 12. (In fact, this map is

always bijective.)

10.8. Determine the Galois groups of the polynomials x8 - 1, x 12- 1, x9 - 1.

10.9. Let I(x) = (x- al)...
(x

- an).

(a) Prove that the discriminant of I is:i:/' (al) ...I' (an), where I' is the derivative ofI,
and determine the sign.

(b) Use the formula to compute the discriminant of the polynomial x P - 1, and use it to

give another proof of Theorem16.10.12.

10.10.With regard to the eigenvector y described at the end of Section 16.11, show that at least
one of the elements Yi == (Xl + {iCX2 + . . . + {<p-l)i a p isn't zero.)

Section11 Kummer Extensions

11.1. Prove that if the discriminant of an irreducible cubicpolynomial in F[x] is not a square
in F, then the roots cannot be obtained by adoining a cube root to F.

11.2.(a) Prove Proposition 16.11.2 without using Galois theory.
(b) With F arbitrary, prove if x P - a is reduciblein F[x], then it has a root in F.

*11.3. Let F be a subfield of C that contains i, and let K be a Galois extension of F whose

group is C4. Is it true that K has the form F(a), with cx
4 in F?

11.4. Carry out the computation to arrive at Cardano'sformula (16.13.3).

11.5. (a) How does Cardano's formula (16.13.3) express the roots of the polynomials x3
+

3x, x 3 + 2, x3 - 3x + 2 and x3 - 3x + 2?

(b) What are the correct choices of roots in Cardano's formula?)

Section 12 Quintic Equations
12.1.Is every Galois extension of degree 10solvable?

12.2.Determine the transitive subgroups of S5.
12.3. Let G be the Galois group of an irreducible quintic polynomial. Show that if G contains

an element of order 3, then G is either S5 or As.
12.4.Let Sl, . . . , Sn be the elementary symmetric functions in variables u 1, . . . , Un, and let F

be a field.)

(a) Prove that the field F(u) of rational functions in u 1, . . . , Un is a Galois extension of
the field F(ss, . . . , sn), and that its Galois group is the symmetric group Sn.

(b) Suppose that n == 5, and let w == UIU2 + U2U3 + U3U4 + U4US + U5Ul. Determine the
Galoisgroup of F( u) over the field F(s, w).

(c) Let G be a finite group. Prove that there exists a field ]? and a Galois extension K

of F whose Galois group is G.)))
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12.5. Let K be a Galoisextension of Q whose degree is a power of 2, and such that K C JR.

Prove that the elements of K can be constructed by ruler and compass.
12.6. Prove that if the Galois group of a polynomial f is a nonabelian simple group, then the

roots are not solvable.

12.7. Find a polynomial of degree 7 overQ whose Galois group is 57.

12.8. Let p bea prime. Prove that the symmetric group Sp isgeneratedby any p-cycle together
with any transposition.)

Miscellaneous Problems
M.t. Let Fl C F2 be a field extension, and let f be a polynomial with coefficients in Fl, A

splitting field K2 of f over F2 will contain a splitting field K 1of f over Fl' What is the
relation betweenthe Galois groups G(K 1/ Fl) and G(K2/ F2)?

M.2.Let L/ F and K/ L be Galois extensions. Is K/ F necessarily a Galoisextension?

M.3. (Vandermonde determinant)

(a) Prove that the determinant of the matrix)

1 Ul U1
2

1 U2)

n-l
u 1

n-lu
2)

1 Un)
n-l

Un)

is a constant multiple of the square root of the discriminant 8(u) ==
fIi<j(Ui

- U j).

(b) Determine the constant.)

M.4. (a) The non-negative real numbers are those having a real square root. Use this fact to

prove that the field IR has no automorphism except the identity.

*(b) Prove that C has no continuous automorphisms other than complex conjugation and
the identity.

M.S. Let K ==
IFq, where q == pro

(a) Prove that the Frobenius map cp defined by cp(x) == x P is an automorphism of
F == IFp'

(b) Prove that the Galois group G (K / F) is a cyclic group of order r that is generated

by the Frobenius map cpo

(c) Prove that the Main Theoremof Galois theory is true for the extension K/ F.
M.6.1Let K be a subfield of CC, and let G be its group of automorphisms. We can view G as

acting on the point set K in the complex plane. The action will probably be discontinuous,
but nevertheless, we can define an action on line segments [ex,,8]whoseendpoints are in

K by defining g[a, ,8]== [ga, gf3]. Then G also actson polygons whose vertices are in K.)

(b))

Let K == Q(\037) where \037is a primitive fifth root of 1. Find the G-orbit of the regular

pentagon whose vertices are 1, \037,\0372, \0373, \037.

Let Ci be the side length of the pentagon of (a). Show that (X2 is in K, and find the

irreducible equation for a over Q.)

(a))

1In memory of Bruce Renshaw.)))
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*M.7. A polynomial fin F[Ul,..., un] is \037-symmetric if I(Ual, ... u an ) == f(U1, ..., un)
for every even permutation a, and skew-symmetric if f(U a l, . . . , U an ) = (sign a)
feu 1,. . ., Un) for every permutation a.

(a) Prove that the square root of the discriminant 8 ==
ni<j(Ui

- U j) is skew-symmetric.

(b) Prove that every i-symmetric polynomial has the form f + g8,where f', g are

symmetric polynomials.

*M.8. 2Withvariablesuo, Ul, U2, u3,letpi ==
(Ui-Ui+l)(Ui-Ui+2)(Ui+l-Ui+2),indicesread

modulo 4. Determine
3

( ) \"\037 ..!!L- (b ) ,\037\037 \037a Lz=O Pi+l
' Lz=O Pi+l

.

*M.9. Let I(t, x)bean irreducible polynomial in C[t, xl that is monic and cubic when regarded

as a polynomial in x. Assume that for some to, the polynomial f(to, x) has one silupic
root and one doubleroot. Prove that the splitting field K of f(x) over C(l) has degree 6.

*M.I0. Let K be a finite extension of a field F, and let I(x) be in K[x]. Prove that there is a
nonzeropolynomial g(x) in K[x] such that the product j(x)g(x) is in F[x].

*M.l1. Let f(x) be an irreduciblequartic polynomial in F[x] and let al, a2, \302\24313,\302\24314be its roots
in a splitting field K. Assume that the resolvent cubichas a root f3 == ala2 + a3\302\24314in F,
but that the discriminant D is not a square in F. According to (16.9.9), the Galois group
of K/ F is either C 4 or D4.

(a) Determine the subgroup H of the group S4 of permutations of the roots ai, which

st,\\bilizes f3 explicitly. Don't forget to prove that no permutations other than those
you list fix f3.

(b) Let y == ala2
- CX3a4and E == al + a2 - a3 - a4.Prove that y2 and E2 are in F.

(c) Let 8 be the square root of the discriminant. Prove that if y=l= 0, then 8y is a square
in F if and only if G == C4. Similarly, prove that if E\"* 0, then 8E is a square in F if

and only if G == C4.

(d) Prove that y and E can't both be zero.)

*M.U. A finite group G is solvable if it contains a chain of subgroupsG == Ho C H] C . . . C
Hk == {1} such that for every i == 1, . . . , k, Hi is a normal subgroup of Hi--l,and the

quotient group Hi / Hi + 1 is a cyclic group. Let I bean irreducible polynomial over a field

F, and let G be its Galois group. Prove that the roots of I aresolvable over F if and only
if G is a solvable group.

*M.13.3Let K / F be a Galoisextension with Galois group G. If we think of K as an F-
vectorspace,we obtain a representation of G on K. Let X denote the character of this

representation. Show that if F contains enough roots of unity, then X is the character of
the regular representation.)

Wie weit diese Methoden reichen werden, muss erst

die Zukunft zeigen.

-Emmy Noether)

2Suggestedby Harold Stark.

3Suggested by Galyna Dobrovolska.)))
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Background Material)

Historically speaking, it is of course quite untrue

that mathematics is free from contradiction;
non-contradiction appears as a goal to be achieved,

not asa God-given quality that has been granted us once for all.

-Nicolas Bourbaki)

A.1 ABOUT PROOFS)

What mathematicians consider an appropriate way to present a proof is not easy to make
clear.One cannot give proofs that are complete in the sense that every step consists in

applying a rule of logic to the previous step.Writing such a proof would take too long, and
the main points wouldn't be emphasized. On the other hand, all difficult steps of the proof
are supposedto be included.Someonereading the proof should be able to fill in as many
details as needed to understand it. Howto write a proof is a skill that can be learned only by

experIence.

Three general methods used to construct a proof are dichotomy, induction, and

contradiction.

The word dichotomyn1eansdivision into two parts. It is used to subdivide a problem
into smaller, more easily managed pieces. Other names for this procedure are case analysis
and divide and conquer.

Here is an example of dichotomy:By definition, the binomial coefficient (\n) (read n

choose k) is the number of subsets of order k in the set of indices {I, 2, . . . ,o}.For example,

(i)
== 6. The set {l, 2, 3, 4}has sixsubsets of order 2.)

Proposition A.I.! For every integer n and every k < n,
(\n) (r

k 1)
+

(\n= i).)

Proof Let S be a subset of {l, 2, . . . , n} of order k. Then either n is in S or n is not in \nS.

This is our dichotomy..I)

Case 1: n is not in S. In this case, S is actually a subsetof {f, 2, . . . , n - f}. By definition,

there are (n k
1
) of these subsets.)

513)))
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Case 2.'n is in S. Let Sf = S - {n}be the set obtained by deleting the index n from the set S.
Then Sf is a subset of {l, 2, . . . , n - I}, cf order n - 1.Thereare

(\037=i)
such sets Sf. Hence

there are
(\037=i)

subsets of order k that contain n.

This gives us (n;i) + (%=i)
subsets of order k altogether. 0

The remarkablepower of the method of dichotomy is shown here: In eachof the two

cases, n E Sand n \037S, we have an additional fact about our set S.
T.his additional fact can

be used in the proof.
Often a proof will require sorting through several possibilities, examiningeachin turn.

This is dichotomy, or case analysis.It isanalogousto the way Gray's Manual of Botany is used
to determinethespeciesof a plant. The procedure in Gray's Manual leads through a sequence
of dichotomies. A typical one is \"leaves opposite,\"or \"leaves alternate.\" Classification of

mathematical structures will also proceed through a sequence of dichotomies.They need not

be spelled out formally in simple cases, but when one is dealing with a complicated range of

possibilities, careful sorting is needed.
Induction is the main method for proving a sequenceof statements Pn, indexed by

positive integers n. To prove Pn for all n, the principle of induction requires us to do two

things:)

(A.1.2)

(i) prove that Pi is true, and

(ii) prove that if, for some integer k > 1, Pk is true, then Pk+1 is also true.

Sometimesit is more convenient to prove that if, for some integer k > 0, Pk-1 is true, then

P k is true. This is just a change of the index.

Here are some examples of induction. If n is a positiveinteger,then n! (\"n factorial\
is the product 1 .2. ..n of the integers from 1 to n. Also,O! is defined to be 1.

..
A 1 3

(

n

)

n!
Proposition ..

k
=

k!(n - k)!
')

Proof. Let Pr be the statement that
(\037)

=
l!(;\037l)!

for all .e = 1, . . . ,r. You will be able to

check that P1 is true. Assume that Pr-l is true. Then the formula is true when we substitute
n == r - 1 and .e= k and is also true when we substitute n = r - 1and f = k - 1:)

(

r-l

)

(r-l)!
k

-
k!(r-1-k)!

According to Proposition (A.1.1),

(

r-l

) (
r-l

)
(r-l)! (r-l)!

k
+

k-l
==

k!(r-k-l)!
+

(k-l)!(r-k)!

(r-k)(r-l)! k(r-1)! r!
+ =

k!(r-k)! k!(r-k)! k!(r-k)!)

and)

(

r-I

)

(r-1)!
k - 1 -

(k
- 1)! (r - k)!

.)

(\037))

This shows that Pr is true.) o)))
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As another .example,let us prove the \"pigeonhole principle.\" Here I SI denotes the

order, the number of elements, of a set S.)

Proposition A.l.4 If cp: S -+ T is an injective map betweenfinite sets, then T contains at
least as many elements as are in S: I SI <

I TI.)

Proof. We use induction on n = ISI.The assertion is true if n = 0, that is, if S is empty. We

suppose that the theorem has been proved for n == k - 1, and we proceedto checkit for

n = k, where k > o.We suppose that ISI = k, and we choosean element s of S. Let t ==
cp(s)

be the image of s in T. Since cp is injective, s is the only element whose image is t. Therefore
cp maps the set S' = S - {s}obtained by removing s injectively to the set T' == T - {tIe

Obviously, I S'I =
I SI

- 1 == k - 1 and I T' I = I TI
- 1. By the induction assumption, I S' I

<
I T' I,

and so ISI < ITI. 0)

There is a variant of the principle of induction, called complete induction. Here again,
we wish to prove a statement Pn for each positive integer n. The principle of complete
induction asserts that it is enough to prove the following statement:)

If n is a positive integer, and if Pk is true for every

positive integer k < n, then Pn is true.)

When n == 1, there are no positive integers k < n. The hypothesis in the statement is

automatically satisfied when n = 1. So a proof using completeinduction must include a

proof of Pl'
The principleof complete induction is used when there is a procedureto reducePn to

Pk for some smaller integers k, but not necessarily to P n -l. Here is an example:)

Theorem A.l.5 Every integer n greater than 1 is a product of prime integers.)

Proof. Let Pn be the statement that n is a product of primes.We assume that Pk is true
for all k < n, and we must prove that Pn is true, i.e., that n is a product of primes. If
n is prime itself, then it is the product of one prime.Otherwise, n can be written as a
product n = ab of positive integers neither of which is equal to 1. Then a and bare
less than n, so the induction hypothesis tells us that Pa and Pb are both true, that is, a

and b are products of primes. Putting these products side by side gives us the required
factorization of n. 0)

Proofs by contradiction proceed by assuming that the desired conclusion is false and
deriving a contradiction from this assumption. The conclusionmust therefore be true. Such

proofs are often fakes, in the sense that the argument by contradiction is easily turned into a

direct proof. Here is an example:)

Proposition A.l.6 Let cp: S \037 T be an injective map between finite sets. If cp is bijective,

then ISI = ITI.)

Proof Sincewe are given that cp is injective, cp will be bijective if and only if it is surjective.
We assume that ISI == ITI, but that cp is not surjective. Then there is an element tin T, which)))
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is not in the image of 5. This being so, ({J actually maps 5 injectively to the set T' == T - {t}.
Then Proposition A.l.4 tellsus that 151 <

J T'I ==
I TI

- 1 and this contradicts 151 == I TI. 0

Try not to arrange proofsthis way. The assumption made in the proof that 151== I TI is

irrelevant. Put positively, the argument shows that if an injective map ({J isn't bijective, then

ISI < ITI.
If X stands for some statement, we let not X stand for the statement that X is false.

The assertion\"if not B, then not A\" is the contrapositive of the assertion \"if A, then B,\"
and is logically equivalent with it. The argument presented above proves the contrapositive

of the assertion of the proposition.
It isn't easy to find very simple examples of goodproofs by contradiction, but there are

some in the text.)

A.2 THE INTEGERS)

We learn elementary properties of addition and multiplication of integers in elementary
school, but let us look again, to see what would be required in order to prove some of

the properties, such as the associative and distributive laws. Complete proofs require a fair
amount of writing, and we will only make a start here. It is customary to begin by defining

addition and multiplication for positive integers.Negative numbers are introduced later.

This means that several cases have to be treated asonegoesalong, which is boring, or else a
clever notation has to be found to avoid such a caseanalysis. We will content ourselves with

a description of the operations on positive integers. Positive integers are also called natural

numbers.

The set N of natural numbers is characterized by these properties:)

Peano's Axioms

. Theset N contains a particular element 1.

. Successorfunction: There is a map a: N \037 N that sends an integer to another
integer, calledthesuccessoror next integer. This map is injective, and for every n in

N, a(n) =1'=1.

. Induction axiom: Suppose that a subset 5 of N has these properties:

(i) 1 is an element of S, and

(ij) if n is in 5, then a(n) is in S.

Then 5 contains every natural number: 5 == N.

The successor a(n) will turn into n + 1 when addition is defined.At this stage the notation
n + 1 couldbe confusing. It is better to use a neutral notation, and we wiU denote the

successor by n' for now. The successorfunction allows us to use the natural numbers for
counting, which is the basis of arithmetic.

The induction property can be described intuitively by saying that the natural numbers
are obtainedfrom 1 by repeatedly taking the next integer:

N == {l, 1',1\",...} (= {l, 2,3,.. .}).)))
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In other words,counting runs through all natural numbers. This property is the basis of

induction proofs.
Peano's axioms can alsobe usedto make recursive definitions. The phrases recursive

definition, or inductive definition, refer to the definition-- of a sequence of objects Cn indexed

by the natural numbers, in which each object is defined in terms of the preceding one. For
instance, a recursive definition of the function x n

is)

Xl == X and x n
'

== x
n

X.)

The important points are:)

(A.2.1)) Cl is defined,and a rule is given for determining C n ,(== C n + 1 ) from Cn.)

It is intuitively clear that these properties determine the sequence Cn uniquely, though to

give a quick proof of this fact from Peano's axioms isn't easy.We won't carry the proof out.
Given the set of positive integers and the ability to make recursive definitions, we can

define addition and multiplication of positive integers as follows:)

(A.2.2))
Addition: m + 1 == m'

Multiplication: m. 1 == m)

and m +n' == (m +n)'.

and m. n' == m . n + m.)

In these definitions,we take an arbitrary integer m and define addition and multiplication

for that integer m and for every n recursively. In this way, m + nand m . n are defined for

all m and n.
The proofs of the associative, commutative, and distributive laws for the integers are

exercisesin induction that might be called \"Peano playing.\" We will carry out one of the

verifications here as a sample.)

Proof of the associative law for addition. We are to prove that for all a, b, and n in N,

(a + b) + n == a + (b + n). We first check the case n == 1 for all a and b. Three applications

of the definition give)

(a + b) + 1== (a + b)' == a + b' = a + (b + 1).)

Next, assume the associative law true for a particular value of n and for all a, b. Then we

verify it for n' as follows:)

(a + b) + n' == (a + b) + (n + 1)
==((a+b)+n)+l
==(a+(b+n\302\273+l

==a+((b+n)+l)

==a+(b+(n+1\302\273
== a + (b + n'))

(definition)
(casen == 1)

(induction hypothesis)

(case' n = 1)
(casen == 1)

(definition) .) D)

The proofs of other properties of addition and multiplication follow similar lines.)))
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A.3 ZORN'SLEMMA)

At a few places in the text, we refer to Zorn's Lemma, a tool for handling infinite sets. We
now describe it.

\302\267A partial ordering of a set S isa relations < s', which may hold between certain elements
and which satisfies the following axioms for all s, s' , s\" in S:)

(A.3.1)

(i) s < s;
(ii) if s < Sf and Sf < s\", then s < Sll;
(iii) if s < s' and s' < s, then s = s'.

A partial ordering is calleda total ordering if, in addition,

(iv) for all s, Sf in S, either s < Sf or s' < s.)

For example, let S be a set whose elements are sets. If A, B are in S, we may define
A < B if A is a subset of B: A c B. This is a partial ordering on S, called the ordering by

inclusion. Whether or not it is a total ordering depends on the particular case.

An element m of a partially ordered set S is a maximal elementif there is no element s
in S with m < s, except for m itself. A partially ordered set S may contain many different

maximal elements. For example,a subset V of a set U is a proper subset if V is neither the

empty set, nor the whole set U. The set of all proper subsets of the set {l, . . . , n}, ordered

by inclusion, contains n maximal elements, one of which is {2, 3, 4, . . . ,n}.
A nonempty finite partially ordered set S contains at least one maximal element, but

an infinite partially ordered set, such as the set of integers, may contain no maximal element

at all. A totally ordered set contains at most one maximal element.

\302\267If A is a subset of a partially ordered set S, then an upper bound for A is an element b in S

such that for all a in A, a < b. A partially ordered set S is inductive if every totally ordered
subset T of S has an upper bound.

A finite totally ordered set contains a unique maximal. element, and is inductive.)

Lemma A.3.2Zorn'sLemma.An inductive partially ordered set S has at least one maximal

element.)

Zorn's Lemmais equivalent with the axiom of choice, which is known to be independent
of the basic axioms of set theory. We won't enter into a further discussion of this equivalence,

but we will show how Zorn's Lemma can be used to show that every vector space has
a basis.)

PropositionA.3.3 Every vector space V over a field F has a basis.)

Proof. Let S be the set whose elements are the linearly independent subsets of V, partially

ordered by inclusion. We show that S is inductive: Let T be a totally ordered subset of S.)))
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Then we claim that the union of the sets making up T is also linearly independent. This will

sho\\v that it is in S. To verify this, let)

B==UA
AET

be the union. By definition, a relation of linear dependence on B is finite, so it can be written

in the form)

(A.3.4)) ClVI + . . . + Cn Vn == 0,)

with Vi in B. Since B is a union of the sets in T, each Vi is contained in one of these subsets,
callit Ai. The collection {AI, . . . , An} of these subsets is a finite, totally ordered subset of
T. It has a unique maximal element A. Then Vi is in A for every i == 1, . . . , n. But since A is

in S, it is a linearly independentset.Therefore (A.3.4) is the trivial relation. This showsthat

B is linearly independent, hence that it is an element of S.

We have verified the hypothesis of Zorn's Lemma.SoS contains a maximal element

M, and we claim that M is a basis. By definition of S, M is linearly independent. Let

W ==
Span (M). If W < V, then we choose an element V in V, which is not in W. The set

M U {v} will be linearly independent. This contradicts the maximality of M and shows that

W == V, hence that M is a basis. 0)

A similar argument proves Theorem (11.9.2) of Chapter11:)

Proposition A.3.5 Let R be a ring. Every idealI =F R is contained in a maximal ideal. 0)

A.4 THE IMPLICIT FUNCTION THEOREM)

The Implicit Function Theoremfor complex polynomial functions is used a few times in

this book, and for lack of a reference, we derive it here from the theorem for real valued

functions that we state below. The theorem for real valued functions can be found in [Rudin],

Theorem 9.27.)

Theorem A.4.1 Implicit Function Theorem.Let/1(x,Y), . . . , fr (x, y) be functions of n + r
realvariables Xl, . . . , X m , Yl . . . , Yr, which have continuous partial derivatives in an open

set ofJR n + r
containing the point (a, b). Assume that the Jacobian determinant)

a il ai1
aYl aYr)

det)

a fr a fr

aY1 aYr

is not zero at the point (a, b). There is a neighborhood U of the point a in JRn such that

there are unique continuously differentiable functions Y 1(x), . . . , Y rex) on U satisfying)

Ii (x, Y (x)) == 0 for i == 1,
... , r, and Y (a) == b.) D)))
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The partial derivatives of a conlplex polynomial f(x, y) are defined using the rules

of calculus. But we can alsowrite everything in terms of the real and imaginary parts, say
x == .:to + Xl i, Y

== Yo + y1i, where xo, xl, Yo, Y1 are real variables, and 1 ==
10 + Ili,

where Ii == Ii (XO, Xl, Yo, Yl) is a real-valued function of the four real variables.Since1 is a

polynomial in X and y, the real functions Ii are polynomials in the real variables Xi and Yi.

So they have continuous partial derivatives.

Lemma A.4.2 Let f(x, y) be a polynomial in two variables with complex coefficients. Then
with notation as above,

(a)
af = afo + afl i, and

ay ayo ayo)

a/o
(b) ( Cauch y- Riemann equations)

ayo)

a 11
and _ a fa

==
d 11

.,
aYl aYl ayO)

Proof One can use the product rule to verify these formulas. Suppose that I == gh. Then

fo ==
goho

- glh 1 and 11 == goh 1 + gj hOe If the formulas are true for g and h, they follow

for I. SO it is enough to verify the lemma for the functions I == y and I == x, for which they
are obvious. 0)

TheoremA.4.3 Implicit Function Theorem for Complex Polynomials. Let I(x, y) be a

complex polynomial. Suppose that for some (a, b) in 1[:2, f(a, b) = 0 and
\037{

(a, b) *0.

There is a neighborhood U of x in C on which a unique continuous function Vex) exists
having the properties)

I(x, Y(x)) == 0 and yea) == b.)

Proof We reduce the theorem to the real Implicit Function Theorem A.4.1. The same
argument will apply when there are more variables.

With notation as above, we are to solve the pair of equations 10 ==
11

== 0 for Yo and

Yl as functions of Xo and Xl. To do this, we show that the Jacobian determinant

a 10 a 10
ayO aYl

a 11 a 11
a Yo a y 1)

det)

is not zero at (a, b). By hypothesis,fi(ao,at, bo,bl) = 0. Also, since
\037{

(a, b) *0, Lemma

A.4.2(a) tells us that
\037{\037

= do and
\037{\037

= d], are not both zero. Part (b) of the lemma shows

that the Jacobian determinant is)

[

do -d 1

]

2 2det d1 do
== do + d 1 > O.)

This shows that the hypotheses of the Implicit Function Theorem (A.4.1)aresatisfied. D)))
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EXERCISES)

Section A.l About Proofs

A.I. Use induction to find a closed form for each of the following expressions.)

(a) 1 + 3 + 5 + . . . + (2n + 1)

(b) 12
+ 2 2 + 32 + .. .+ n

2)

A.2. Prove that 13 + 23
+... + n 3 = (n(n + 1\302\2732/4.

A.3. Prove that 1/(1 .2) + 1/(2.3) + ...+l/(n(n+ 1\302\273= n/(n + 1).

A.4. Let cp: 5 \037 T be a surjective map betweenfinite sets. Prove by induction that I SI > I TI

and that if 151 = I TI, then cp is bijective.

A.5. Let n be a positive integer. Show that if 2 n - 1 is a prime number, then n is prime.
A.6. Let an = 2 2n

+ 1. Prove that an = aOQl. . .an-l+2.
A.7. A nonconstant polynomial with rational coefficients is called irreducible if it is not

a product of two nonconstant polynomials with rational coefficients. Prove that ev-

ery polynomial with rational coefficients can be written as a product of irreducible
polynomials.)

Section A.2 The Integers

A.8. Prove that every natural number n except 1 has the form m
l

for some natural
number m.

A.9. Prove the following laws for the natural numbers.)

(a) the commutative law for addition,

(b) the associative law for multiplication,

(c) the distributive law,

(d) the cancellation law for addition: if a + b = a + c,then b = c.)

A.tO. The relation < on N can be defined by the rule a < b if b = Q + n for some n. Assume
that properties of addition have been proved.)

(a) Prove that if a < b, then a + n < b + n for all n.
(b) Prove that the relation < is transitive.

(c) Prove that if a and b are natural numbers, then a < b, or a = b,orb < a.)

A.II. Assume that basic properties of the relation < on N are known (see Exercise A.I0). Prove
the principle of complete induction: A subset S of N is equal to N if it has the following
property: If n is an element of N such that m is in S for every m < n, then n is in 5.)))
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Section A.3 Zorn'sLemma

A.12. Let S be a partially ordered set.

(a) Prove that if S contains an upper bound b, then b is unique, and also b is a maximal

elemen t.

(b) Prove that if S is totally ordered, then a maximal element m is an upper bound for S.)

A.13. UseZorn'sLemma to prove that every ideal I of a ring R that is not R itself is contained
in a maximal ideal.)

Section A.4 The Implicit Function Theorem

A.14. Prove Lemma (A.4.2).
A.IS. Let f(x, y) be a complex polynomial. Assume that the equations)

f == 0,)
aj\"- ==0
ax

')
aj

==0
ay

,)

have no common solution in ([:2. Prove that the locus j == 0 is a manifold of dimension 2.)))
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Notation)

(A)

At)

An)

c)

C n

C(x)

cof(A))

Dn

detA)

ei, eij)

F n)

F mxn)

IFp

GLn

I, I)

Imcp

kercp

KG)

\302\24300)

M,M n

N

N(H))

n!)

(\n)

On

03 1,

PSL n)

the class of the ideal A (13.7.2)

the transpose of the matrix A (1.3.1)

the alternating group (2.5.6)

the field of complex numbers (2.2.2)

the cyclicgroup of order n (6.4.1)

the conjugacy class of the element x (7.2.3)

the cofactor matrix of the matrix A (1.6.7)

the dihedral group (6.4.1)
the determinant of the matrix A (1.4.1)

a standard basisvector (1.1.24), a matrix unit (1.1.21)

the spaceof n-dimensional column vectors with entries in F (3.3.6)

the space of m X n matrices with coefficients in F (3.3.6)

the field of integersmodulo p (3.2.4)

the general linear group (2.2.4)
the identity matrix (1.1.11), the icosahedral group (6.12.1)
the imageof the map cp (2.5.4)

the kernel of the homomorphism cp (2.5.5), (4.1.5)

a fixed field (16.5.1)

the spaceof bounded sequences (3.7.2)

the group of isometriesof the plane, of n-space (Section 6.2)

the set of positive integers, also called natural numbers (A.2.1)

the normalizer of the subgroup H (7.6.1)
n factorial: the product of the integers 1, 2, . . .,n.
a binomial coefficient (A.I.I)

the orthogonal group (6.7.3),(9.1.2)
the Lorentz group (9.1.5)

the projective group (9.8.1)) 525)))
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IR

R+)

R
X)

Sn,)

sn)

SL n

SOn

SP2n

SUn

T)

Un)

<x>

z

z

Z(x))

\037n

LJLJ)

(J))

\"-'\"-')

*)

E9)

the field of real numbers (2.2.2)

the additive group of R (2.1.1)

the multiplicative group of invertible elements of R (2.1.1)

the symmetric group (2.2.5)

the n-dimensional sphere (Section9.2)
the special linear group (2.2.11), (9.1.3)

the special orthogonal group (5.1.11), (9.1.3)

the symplectic group (9.1.4)
the special unitary group (9.1.3)

the tetrahedral group (6.12.1)
the unitary group (8.3.14), (9.1.3)

the subgroup generated by the element x (2.4.1)

the center of a group (2.5.12)
the ring of integers (2.2.2)

the centralizer of the element x (7.2.2)

the nth root of unity e 2TCi / n
(12.4.7)

the largest integer <
M: the floor of JL (13.7.7)

the cube root of unity e 2TCi / 3
(10.4.14)

indicates that two structures are isomorphic, as in G \037G
1

(2.6.3)

congruence, as in a = b modulo n (2.9.1),seealso(2.8.2),(2.7.14)
IfA is a complex matrix, then A * is the adjoint matrix A

t

(8.3.5)
In a matrix display,* denotesan undetermined entry.
The starred exercises are someof the more difficult ones.)

direct sum (3.6.5),(14.7.2))

If 5 and T are sets, we use the following notation:)

151

[S])

S E S

SeT)

the number of elements, the order, of the set S

the subset S, when it is regarded as an element of a set of subsets

(2.7.8)

S is an element of S.)

S is a subset of T, or S iscontained in T. In other words, every element
of S is also an element of T.)))
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T :=) S T contains S, which is the same as SeT.

S < T S is a proper subset of T, meaning that it is a subset, and T contains
an element that is not a member of S.

T> S This is the same as S < T.
Sn T the intersection of the sets: the set of all elements in common to Sand

1\037.

S U T the union of the sets: the set of all elements that are contained in at

least one of the sets S or T.
SX T the product set. Its elements are orderedpairs (s, t), with s in Sand t

in T.

cp: S \037 T a map cp from S to T, a function whose domain is S and whose range
is T.

s \037 t This wiggly arrow indicates that the map under consideration sends
the element s to the element t, i.e., that cp(s) == t.

D This symbol indicates that a digression in the text, such as a proof or
an example, has ended, and that the text returns to the main thread. D)))
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A

Abelian groups, 40,81,412-13,421
finite, 431

free, 225

in-finite, 41
Structure Theorem for, 429-30

Abstract symmetry, 176-78, 190-91
Addition

of matrices,2
of relations, 337 -38

vector, 78

Adjoint matrix, 233

Adjoint operator, 242

Adjoint representation, 289

Affine group, 288

Algebraicallyclosedfield, 471

Algebraic element, 443-46, 472
Algebraic extension,473

Algebraic geometry, 347 -53

Algebraic integers, 383-85,408

factoring, 385 -87

Algebraic number, 383
Algebraic number field, 442

Algebraic variety, 347

Alternating group, 49,63
Angle

of rotation, 171

between vectors, 242
Antipodal point, 269

Ascending chain condition, 426
Associative law, 5, 68, 176

for addition, 517
for congruence classes, 61

for scalar multiplication, 90
Augmented matrix, 12

Automorphism, 52, 176

F-automorphism,484
inner, 193)

R-automorphism,477

of ring, 355

Averaging, over a group, 294
i\\xiom of choice, 98, 348, 518. See also

Zorn'sLemma

Axis of rotation, 134)

B)

Basechangematrix, 93-94

Base point, 468

Bases, 86-91, 99-100
changeof, 93-95

computing with, 90-91, 100
defined,88
infinite, 98

lattice, 169, 405
of module, 415
orthogonal, 252

orthonormal, 133, 240, 252
standard, 88,415

Berlekampalgorithms, 374, 382

Bezout bound, 349
Bilateral symmetry, 154

Bilinear form, 229-60
Euclidean space,241-42
Hermitian form, 232-35

Hermitian space, 241-42

orthogonality,235-41
skew-symmetric form, 249-52

spectral theorem and, 242-45
symmetric form, 231-32

Binomial coefficient, 513
Block multiplication, 8-9

Branched covering, 351
cut and paste,465-68
isomorphism of, 464

Branch points, 351, 353
Burnside'sformula, 194)

529)))
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C

Cancellation law, 41-43, 82-83,343, 392

Canonical map, 66, 335, 423
Cardano'sformula, 501

Cartesian coordinates, 452
Case analysis,513
Cauchy-Riemann equations, 520

Cauchy's Theorem, 375
Cayley-Hamiltontheorem,140
Cayley's theorem, 195

Celestial sphere, 264
Center

of group, 196

of p-group, 197
Center of gravity, 166

Centroid, 166. See a/so Centerof gravity

Change of basis, 93-95
Character, 291,298-303

dimension of, 299

Hermitian product on, 299
irreducible,299
one-dimensional,303-4
table,302

Characteristic polynomial, 113-16

of linear opera tor, 115
Characteristic subgroup, 225

Characteristic zero, 83, 484
ChineseRemainderTheorem,73, 356, 378

Circle group, 262, 320
Circulant, 258

Class

congruence, 60

ideal, 388,396-99,410
Class equation, 195-97

of icosahedral group, 198-200
Classfunction, 300

Class group, 399-402, 410
Classnumber, 396
Closurein subgroups, 42-43

Cofactor matrix, 29-31
Column index,1
Column rank, 108

Column space, 87,104
Columnvector, 2
Combination, linear, 7,79,86,97)

Common zeros, 347

Commutative law, 5-6
for congruenceclasses,61

Commutative diagram, 105

Commutator subgroup, 225
Compact groups,311
Completeexpansion, of determinants, 29

Complete induction, 515,521
Completeof relations, 215, 424

Complex algebraic group, 282
Complexline,347

Complex representations, 293

Congruence, 60
Conics,245-49

degenerate,245

nondegenerate,246

Conjugacy class, 196

Conjugate representation, 293
Conjugate subgroups,72,178,203
Conjugation, 52, 195

in symmetric group, 200-203
Connectedcomponent,76
Constructible point, line, circle, 451-54
Construction, ruler and compass,450-55
Continuity, proof by, 138-40

Contradiction, proofs by, 515
Coordinates,90

changeof, 158-59

Coordinate system, 159
Coordinate vectors,78,93,94, 105,416
CorrespondenceTheorem,61-64,336-37,

414
proof of, 63-64, 336

Coset, 56-59
double, 76
left, 49, 56

operation on, 178-80
right, 58-59, 216

Counting formula, 57, 58,62, 180-81,185
Covering space, 351

Cramer's Rule, 415, 417
Crystallographicgroup,187
Crystallographic restriction, 171- 72

Cubic, resolvent, 496
Cubicequations, 492-93, 507-8

Cubic extensions, 446)))
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Cusp, 351
Cut and paste,465-68
Cycle notation, 24

Cyclic group, 46-47,163,183,208
generator for, 84

infinite, 47

of order n, 46
CyclicR-module,432

Cyclotomic polynomial, 374)

Discrete group, 167- 72
Discretesubgroup, 168

Discriminant, 481-83

Distinct, 17
Distributive law, 5, 81, 324

for congruence classes,61
for matrix multiplication, 147

for vector spaces,84
Divide and conquer,513
Divisor

greatest common, 44-45, 334, 359,
362

zero,343

Domain

Euclidean, 361,376

factorization, 360-67, 379,400
integral, 343

principal ideal, 361

unique factorization, 364
Dot product, 132, 229

Double coset, 76)

D)

Definingrelations, 212
Degenerateconic,245

Degree

of field extension, 446-49
of a monomial, 327

multiplicative property of, 447
total, 327
weighted,482

Determinant homomorphism, 49, 56, 62

Determinant, 7,18-24
completeexpansion of, 29

formulas for, 27-31
multiplicative property of, 21- 24

of permutation matrix, 27

recursive definition of, 20
of R-matrix, 414

uniqueness of, 20-21

Vandermonde,511
Diagonal entries,6
Diagonal form, 116-19

Diagonalizable matrix, 117

Diagonalizableoperator,119
Diagonal matrix, 6

Dichotomy, 513
Differential equations, 141-45,151
Dihedral group, 163, 183,316

Dimension, 86-91
of character, 299
of vector space, 90

of linear group, 262
Dimensionformula, 102-4

Direct sums, 95-96, 295
of modules,429

of submodules, 430)

E

Eigenspace, 126
generalized,131

Eigenvalue, 111, 113, 114, 116,234
Eigenvectors, 110-13, 116,124

generalized, 120

positive, 112

Eisenstein criterion, 373-74
Elementary integer matrix, 418

Elementary matrix, 10-12, 77

Elementary row operation,10
Elementary symmetric function, 478

Elements

adjoining, 338-41
algebraic,443-46
inverse image of, 55

irreducible, 444
maximal, 518
norm of, 386

prime, 360

primitive, 462-63
relatively pril11e, 362

representative, 55)))
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Elements (continued)
solvable, 502
stabilizer of, 177 -78

transcendental, 443-46

zero, 417
Ellipse,246

Ellipsoid, 248, 269

Equation, 4

Cauchy-Riemann,520
class,195-97
cubic, 492-93

differential, 141-45

homogeneous, 15,88,92
quartic, 493-97
quintic, 502-5

Equator, 265, 267

Equivalence relation, 52-56
defined, 53

defined by a map, 55-56
reflexive, 53

symmetric, 53

transitive, 53
Euclidean Algorithm, 45, 367

Euclidean domain, 361, 376
Euclideanspace,241-42

standard, 241

Euler's theorem, 137 -38
Exceptional group,283
Expansion by minors, 19, 28

on the ith row, 28

Extension

alge braic, 472
cubie,446

field, 442

finite, 446

Galois, 485,488-89
Kummer, 500-502

ring, 338)

F

Factoring, 359-82
algebraicintegers,385--87

Gauss primes, 376- 78

Gauss's lemma, 367- 71
ideals,392-94,409)

integer polynomials, 371-75, 380-81

integers, 359,378
unique factorization domains, 360-67

Factorization

ideal, 391
irreducible,364, 365

prime, 365

Faithful operation, 182
Faithful representation, 291

F-automorphism, 484
Fermat's theorem, 99
Fibonaccinumbers, 152

Field extension, 442

algebraic, 486
degreeof, 446-49

isomorphism of, 445, 484-86
Fields,80-84,98-99,442-76

adjoining roots, 456-59

algebraically closed, 471
algebraicand transcendentalelements,

443-46
characteristic of, 83

finding irreducible polynomials, 449-50
finite, 442, 459-62

fixed, 486-88

function, 442-43, 463-71
intermediate, 488
number, 442
quadratic number, 383-411

of rational functions, 344
real quadratic, 402-5
ruler and compass constructions,

450-55

splitting, 483-84
tangent vector, 280

Finite abelian group, 431
Finite-dimensionalvector space, 89

dimension of, 90

subspaces of, 95

Finite extension, 446
Finite field,442,459-62

orderof, 459

Finite group, 41

homomorphism of, 58
of orthogonal operators on plane,

163-67)))
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Finitely generated module, 415
Finite simplegroup,283
Finite subgroups of Tot at ion group,183-87
First Isomorphism Theorem, 68-69, 215,

335,414,432,492
Fixed field, 486-88

Fixed Field Theorem, 487-88
Fixedpoint theorem, 166, 198

Fixed vector, 111
Form

Hermitian, 232-35
Killing, 289

Lorentz, 231

matrix of, 230
nondegenerate,236,252
quadratic, 246

rational canonical, 435

signature of, 240
skew-symmetric,230,249-52
symmetric, 230

Fourier matrix, 260

Fractions, 342-44
Free abelian group, 225

Free group, 210-11

mapping property of, 214

Free modules, 412, 437
submodules of, 421-23

Frobenius map, 355, 511
Frobenius reciprocity,321
Function field, 442-43, 463-71

cut and paste,465-68
Functions

rational, 487

successor, 516

symmetric, 477-81
Fundamental domain, 193

Fundamental Theorem
of Algebra, 471
of Arithmetic, 359, 363)

G)

Galois theory, 477-512
for a cubic, 493

cubic equations, 492-93
discriminant, 481-83

fixed fields, 486-88

isomorphisms and field extensions,
484-86

Kummer extensions, 500-502

Main Theorem, 489-92

quartic equations,493-97
quintic equations, 502-5

roots of unity, 497 -500

splitting fields, 483-84
symmetric functions and, 477-81

CJaussinteger,323,386
CJauss prime, 376- 78, 394
Gauss's lemma, 367- 71
Generalized eigenspace, 131

CJeneralized eigenvector, 120
General linear group, 8, 41

integer, 418
over R, 414

Generators,212-16,225-26,423-26,438

Jordan, 122

of a module, 415
Geometry,algebraic,347-53,357-58
Glide reflection. 160

Glide symmetry, 155
Gram-Schmidtprocedure,241
Greatestcommon divisor, 44, 334, 359, 362

Group homomorphism, 48

Group operation, 176- 78

Group representation,290-322
Groups, 37 - 77

abelian, 40,81,412-13,421
affine, 288

alternating, 49, 63

averaging over, 294
centerof, 50, 196

circle, 262

compact, 311
complexalgebraic,282
correspondencetheorem,61-64
cosets, 56-59

crystallographic, 187

cyclic, 46-47, 64,163,183)

Galois extension, 485, 488-89
characteristic properties of, 488-89

Galois group, 485
of a polynomial, 489)))
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Groups (continued)
defined, 40
defining relations for, 42

dihedral, 163, 183
discrete,167- 72

equivalence relations and partitions,
52-56

exceptional,283
finite, 41, 163-67

finite simple, 283
free, 210-11
freeabelian,225

Galois, 485

general linear , 41

homomorphisms,47-51
homophonic, 77

icosahedral, 183

infinite, 41

isomorphic,51
isomorphism of, 51-52

laws of composition, 37-40
linear,261-89
Lorentz, 262

Mathieu, 283

modular arithmetic, 60-61
multiplicative, 84

nonabelian,222

octahedral, 183

one-parameter, 272-75
operationof, 293

opposite, 70

order of, 40
orthogonal, 134,261
p-groups, 197 -98

plane crystallographic, 172- 76
point, 170-71
product group, 64-66

protective, 280

quotient, 66-69, 74-75
representationof, 292

rotation, 137, 269-72

simple, 199
speciallinear, 43, 50

spin, 269

sporadic, 283

surjective,62)

symmetric, 41, 50, 197

symplectic, 261
tetrahedral, 183
translation, 168- 70

translation in, 277-80
triangle, 226

two-dimensional crystallographic,
172

unitary, 235, 261)

H

Half integer, 384
Half space,259
Hausdorff space, 351

Hermitian form, 232-35, 254
standard,232

Hermitian matrix, 233

Hermitian operator, 257.. Hermitian product,299
Hermitian space, 241-42, 256

standard, 241
Hermitian symmetry, 233

Hilbert Basis Theorem, 428-29
Hilbert Nullstellensatz, 345

Homeomorphism, 262

Homogeneity in a group, 277

Homogeneous linear equation, 15,
88,92

Homogeneous polynomial, 328

Homomorphism, 47-51,158
determinant, 49,56,62
group, 48
image of, 48-49

kernel of, 49, 56,62,69,331,
413

restriction of, 61

of modules, 413
of rings,328-34
of R-modules, 427

spin, 269
tri vial, 48

Homophonic group, 77
Hyperbola, 246
Hyperplane,259
Hypervector,86)))
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I

Icosahedral group, 183
classequation of, 198-200

Ideal, 331, 387
factorization,391-94
generatedby a set, 332

of leading coefficients,428
maximal, 344-47, 394

prime, 392, 394-96

principal,331
product, 355, 390

proper, 331

unit, 331

zero, 331

Ideal class, 388,396-99
Idealmultiplication, 389-92

Idempotent, 341

Identities, 5, 417-18
Newton, 505

Identity element, 42

Identity matrix, 6
Image,of homomorphism, 413

Imaginary quadratic number field,
383

Implicit Function Theorem, 522

Inclusion, ordering by, 518
Inclusionmap, 48
Indefinite form, 231

Independence, 87,95,97,415

Independentsubspaces,95
Index, multiplicative property of, 58

Induced law, 42
Induced representation,321
Induction, 513-516

Inductive definition, 517
Inductive set, 518
Infinite basis, 98

Infinite cyclic group, 47
Infinite-dimensional space, 96-98

Infinite group, 41
Infinite order, 47

Infinite set, span of, 97
Inner automorphism, 193

Integer general linear group, 418
Integermatrix

diagonalizing,418-23)

elementary, 418

invertible, 418

Integer polynomials, factoring,

371-75

Integers, 390, 516-17

algebraic,383-85
factoring, 378

Gauss, 323, 386

half, 384
modulo, 66
next, 516 .
norm of, 397

prime, 64, 394-96
ring of, 384

square-free, 384

subgroups of additive group of,

43

successor, 516

Integral domain, 343

Intermediate field, 488

Intersection, 527
Invariant

form, 297

operator, 307

suhspace,110,294
vector,294

Inverse,7, 40

Inverseirnage,55

left, right, 7
Invertible integer matrix, 418

Invertible matrix, 7, 15
Invertible operator,109
Irreducible character, 299

Irreducible element, 444
Irreducible factorization, 364

Irreducible polynomial, 350, 383,
443,458

finding, 449-50

Irreducible representation, 294-96

Isometrix, 156-59
discretegroup of, 167 - 72
fixedpoint of, 162

orientation-preserving, 160

orientation-reversing, 160
of the plane, 159-63

Isomorphic groups, 51)))
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Isomorphism, 51-52
of branched coverings,464
of field extensions, 445, 464, 484-86
of groups,51-52
modules and, 413

of representations, 293, 307
of rings, 328

of vector spaces, 85,91
Isomorphism class of a group, 52)

K

Kaleidoscopeprinciple,167
Kernel

of homomorphism, 49, 56, 62, 413
of ring homomorphism, 331

Killing form, 289
Klein Four Group,47, 65, 490, 493, 503

Kronecker delta, 133
Kronecker-WeberTheorem,500
Kummer extensions, 500-502)

by G, 177
Left translation, 277

Lie algebra, 275-77, 286
Lie bracket,276
Linearalgebra,in ring, 412-41

free modules, 414-17

generators and relations,423-26
linear operators and, 432-35

modules, 412-14
noetherian rings,426-29
polynomial rings in several variables,

436
structure of abelian groups, 429-32

Linear combination, 9,79,86,97
Linearequation, homogeneous, 15, 88, 91
Linear group, 261-89

classical groups, 261-62

dimension of, 262

integer general,418
Liealgebra, 275-77

normal subgroups of SL2, 280-83
one-parametergroups,272-75

rotation group SO).. 269- 72

special unitary group SU2, 266-69

spheres and, 263-66
translation in group, 277-80

Linear operator, 102-31,293,432-35
applicationsof, 132-53

characteristic polynomial of, 113-16,
115

defined, 108-10
dimension formula, 102-4

eigenvectors, 110-13
Jordan form, 120-25
left shift, right shift, 109

triangular and diagonal form.

116-19
Linear relation, 103

among vectors, 87

Linear transformation, 102
matrix of, 104-8

Longitude, 265-66
Lorentz form, 231
Lorentz group, 262
Lorentz transformation, 262

Ltiroth's Theorem, 488)

J

Jacobi identity, 276

Jordan block, 121,148
Jordan form, 120-25, 148
Jordangenerators,122)

L

Lagrange interpolation formula, 17,
380

Lagrange'stheorem,57

Latitude, 265-66

Lattice, 403, 405-8
Lattice basis,169,405

Laurent polynomials, 356

Law of composition,37-40
associative, 37

commutative, 38

identity for, 39
Law of cosines, 242

Leading coefficients, 325
idealof, 428

Left coset, 49, 56
Left multiplication, 195, 277 -78)))



M) positive, 112

presentation, 423
R-matrix,414
rotation, 108, 134

row echelon, 13-15
row reduction of, 10-17

scalar multiplication of, 2

self-adjoint, 233

skew-Hermitian, 267

square, 2, 8
unitary, 235, 244-45

upper triangular, 6

zero, 6
Matrix entries,1
Matrix exponential, 145-50,

278

Matrix multiplication, 2-4
Matrix notation, 4, 86

Matrix of forin, 230
Matrix of transformation, 105

Matrix product, 3
Matrix representation, 290

Matrix transpose, 17-18
t\\:'latrix units, 9-10

Maximal element, 518
Maximalideal,344-47,394

Minors, 19

expansion by, 19
Modular arithmetic, 60-61

ivlodules,412-14

basis of, 415
direct sum of, 429

finitely generated, 415

free, 412,414-17
generators of, 415

homomorphism, 413

isomorphism, 413
rank of, 416

of relations, 424
R-module,412
Structure rrheorem for,

432-35

Monic polynomiaL 325,340
Monomial,325,327
Multi-index,327

Multiple root, 458)

Main Lemma, 392
Main Theoremof Galois theory,

489-92

Manifold, 278

Mappingproperty
of free groups, 214

of quotient groups,214
of quotient modules, 413

of quotient rings, 335,343

Maps
canonical,66,335,423

equivalence relation defined by,
55-56

Frobenius, 355
surjective,

54

well defined, 180

zero, 328
Maschke'stheorem,296.298
Mathieu group, 283

Matrix, 1-36
addition of, 2
adjoint,

233

augmented, 12

basechange, 94
block multiplication,

8-9

cofactor, 29-31

determinant of, 7,18-24
diagonal, 6, 117, 146

diagonal entries in, 6

diagonalizable, 117. 124

elementary, 10-12
elementary integer\037 418

Fourier, 260

Hermitian, 233
identity, 6

integer, 418-23

invertible, 7, 15
of linear transformation, 104-8

multiplication of, 2-3, 78
nonzero,9
normal, 242

orthogonal, 132-38

permutation, 24-27.51
of polynomials,432)

Index 537)))
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Multiplication
block, 8-9
ideal, 389- 92
left, 177, 195, 277 -78
of matrices,78
matrix, 2-4

right, 216

scalar, 2, 5, 78,90
table,38

Multiplicative group, structure of, 84

Multiplicative property
of degree, 447

of index, 58
of the determinant, 21-24

Multiplicative set, 357)

sigma,4
summation, 5, 28

Nullity, 103

Nullspace, 79, 103
Null vector, 236, 252

Number field, 442
algebraic,442)

N)

o

Octahedral group, 183
One-dimensionalcharacter,303-4
One-parameter group, 272-75

Operation
on cosets, 178-80
faithful, 182

of a group, 176- 78,293
partial, 217, 218

on subsets, 181

Operator
adjoint, 242

determinant of, 118

diagonalizable, 117
Hermitian, 244
invertible, 109

linear, 110,293,432-35

normal, 242

nilpotent, 122,127
orientation-preserving, 159

orientation-reversing, 159

orthogonal, 134, 162,245
self-adjoint,243
shift, 109, 434

singular, 109

symmetric, 245
trace of, 118

uni tary, 242

Opposite group, 70
Orbit,166,177,185
Orbit sum, 477

Order

of finite field, 459

of group, 40, 208-10
by inclusion,518
partial, 518

total, 518)

Natural number, 516
n-dimensionalsphere(n-sphere),

263
Negative definite, 231

Negative semidefinite, 231
Newton's identities,505
Nilpotent, 122, 127, 355

Node, 351
Noetherian ring, 426-29

Nonabelian group, 222
Noncommutative ring, 324

Nondegeneracy on a subspace, 252
Nondegenerateform, 236, 252

Nonsingular point, 358
Nonzero, 9
Norm

of an element, 386, 403
of an ideal, 397

Normalizer, 203
Normal matrix, 242

Normal subgroup, 66

generated by a set,212
North pole, 263, 264

Notation

cycle, 24
fraction, 40, 343-44

matrix, 4, 86

power, 40)))



Ordered set, 86

Orientation, 159

Orientation-preserving isometry, 160
Orientation-reversing isometry, 160

Orthogonal basis, 252

Orthogonal group,134,261
Orthogonality, 235-41,254-56

Orthogonality relations, 300

proof of, 309-11
Orthogonal matrix, 132-38

Orthogonal operator, 134, 245
Orthogonal projection,238-41
Orthogonal representation, 269

Orthogonal space, 236
to a subspace,252

Orthogonal sum, 237

Orthogonal vectors, 252
Orthonormal basis,133,240)

p

Parabola, 246

Parallelogram law, 256
for vector addition, 112

Partial operation, 217, 220
Partial ordering, 518

Partition, 52-56, 57
Peano's axioms,516-17
Permutation matrix, 26, 51

determinant of, 27
Permutation representation, 181-83,

304

Permutation, 24-27, 41,50,201
cycle notation, 24

representation, 181-83, 192

symmetric group, 24
transposition, 25

p-group,197-98
Pick's Theorem, 411

Plane algebraic curve, 350
Plane crystallographic group, 172-76, 189-90

Point group, 170-71
Point, 163

base, 468

branch, 351, 353
Polar decomposition,259,287)
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Pole, 184, 186
north, 263,264

Polynomial ring, 325-28, 432-35

in several variables, 436,440
Polynomial, 85, 327

characteristic, 113-16, 197

complex,520
constant, 325
cyclotomic, 374

discriminant of, 481-83

hornogeneous,328
integer, 380-81
irreducible,350,383,443,449-50,458
Laurent, 356

matrix of, 432

monic, 325,340
paths of, 101

primitive, 368, 371

quadratic, 247
quartic, 495

ring, 325-328

roots of, 116
symmetric, 477

Positive combination, 259
Positive definite,229,231,232,234

Positive eigenvector, 112

Positive matrix, 112
Powernotation, 40

Presentation matrix, 423
Prime

Gauss, 376-78,381,394

ramified, 395

split, 395
Prime element, 360
Prime factorization, 365

Prime ideal, 392, 394-96
Prime integer, 64,394-96
Primitive element, 462-63

Primitive Element Theorem, 462-63
Primitive polynomial, 368, 371

Primitive root, 84
Principal ideal,331
Principal ideal domain, 361

Product group, 64-66,74
Product ideal,355,390
Product matrix, 3)))
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Product permutation, 24
Product ring, 341-42

Product rule, 142
Product set, 67,527
Projection,64

orthogonal, 238-41

stereographic, 263

Projective group, 280
Properideal,331
Propersubgroup, 43

Propersubspace,79

Pythagoras'theorern,133)

Q)

Real quadratic field, 402- 5

Recursive definition, 517
of the determinant, 20

Reducible representation, 295

Reflection, 134,160
glide,160

Regular representation, 304- 7

Relations, 212-16,423-26
adding,337-38
completeset of, 215

defining, 212

module of, 424
orthogonality, 309-11

Relation vector, 424

Relatively prime elements,362
Representation

adjoint, 289

complex, 293

conjugate, 293
faithfuL 291

of a group, 290-92
induced,321
irreducible,294-96
isomorphism of, 293, 307

matrix, 290

orthogonal, 269
permutation, 181-83, 304

reducible, 295

regular, 304-7
sign,291
standard, 291

of SU2, 311-14

trivial, 291

unitary, 296- 98

Representative element, 55
Residue,330,335
Resolvent cubic, 496

Restriction, 110, 181

crystallographic,171-72
of homomorphism, 61

Riemann Existence Theorem, 465
Riemann surface, 350, 352, 464

Right coset, 58-59, 216

Right inverse, 7

Right multiplication, 216

Right shift operator, 109)

Quadratic form, 246

Quadratic number field, 383-411
algebraic integer,383-85
classgroup, 396-99

factoring algebraic integers, 385-87
factoring ideals,392-94
idealclass,396-99
ideal multiplication, 389-92

ideals, 387 -89

imaginary, 383

lattices and, 405-8

real, 402-5
Quadric,245-49
Quartic equation, 493--97

Quartic polynomial, 495
Quaternion algebra,266,288
Quaternion group H, 47

Quintic equation, 502-5
Quotient group,66-69,74-75

mapping property of, 214-15

Quotient ring, 334-38

mapping property of, 335, 343)

R)

Ramified prime, 395

Rank, 103
of a free module, 416

Rational canonical form, 435

Rational function, 342, 344, 487
field of, 344

R-automorphism,477)))
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Rings,323-58
automorphism of, 355

characteristic of, 334
extension of, 338

homomorphism of, 328-34
ideals in, 328-34, 387-89
of integers, 384

linear algebra in, 412-41
noetherian, 426-29
noncommutative, 324

polynomial, 325-28, 339, 432-35, 436
product,341-42
quotient, 334-38

unit of, 325

zero, 324,414
R-matrix,414

determinant of, 414

R-module,412

homomorphism of, 427
Root

adjoining, 456-59

multiple, 458
Root of unity, 497-500

Rotation, 134, 160
axis of, 134

Rotational symmetry, 154

Rotation group, 137
finite subgroups of, 183-87

S03, 269- 72
Rotation matrix, 108, 134

Row echelon matrix, 13 -15

Row index, 1
Row operation,10

elementary, 10

Row rank, 108
Row reduction, 10-17
Row vector, 2, 97,108)

Self-adjoint matrix, 233
Self-adjointoperator,243

Semigroup, 75

Sets

independent, 87,95, 97,415
inductive, 518

ordered, 86

product, 527
Sheets, 465
Shift operator, 434

Sieve of Eratosthenes, 372
Sigma notation, 4

Signature of a form, 240
Signrepresentation,291
Simple groups, 199

Singular operator, 109

Singularpoint, 358
Sizefunction, 360

Skew-Hermitian matrix, 267

Skew-symmetric form, 230,249-52
Solvable element, 502

Space

covering, 351
Euclidean, 241-42
Hermitian, 241-42

Span, 86

defined, 91
of infinite set, 97

Special linear group, 43,50
Spectraltheorem,242-45,253

for Hermitian operators, 244
for normal operators,244

for symmetric operators, 245
for unitary matrices, 244-45

Sphere, 263-66

celestial, terrestrial, 264
Spingroup,homomorphism, 269

Split prime, 395

Splitting field, 483-84

Splitting Theorem, 484

Sporadicgroup, 283
Square-freeinteger,384

Square matrix, 2, 8

Square system,16-17
Stabilizer, of element, 177 - 78
Standardbasis,88,415)

S

Scalar multiplication, 2, 5, 78,84,90
associativelaw for, 90

Scalars, 2
Schur's lemma, 307-9
Schwartz inequality, 256

Second Isomorphism Theorem, 227)))
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Standard representation, 291

Stereographicprojection,263
Structure Theorem

for abelian groups, 429-30
for modules,432-35
uniqueness for, 431-32

Subfield, 80

Subgroup, 42
of additive group of integers,

43-46
characteristic,225
commutator, 225

conjugate, 72,178,203

discrete, 168
finite, 183-87
normal, 66

proper, 43

of SL2, 280-83
Sylowp-subgroups,203
trivial, 43

zero, 422

Submodule,413
direct sum of, 430
of free modules, 421- 23

Subring, 323,324
Subsets,operationon,181
Subspace,78-80,85

independent, 95

linear transformation and, 102

nondegenerate on a, 236
orthogonal space to, 252

proper, 79
sum of, 95

Substitution Principle, 329

Successor function, 516
Summation notation, 5, 28
Surjectivemap, 54
Sylowp-subgroups,203
Sylow theorems, 195, 203-7

Sylvester's law, 240, 256,258
Symbolicnotation, 55

Symmetric form, 229, 230

Symmetricfunction, 477 -81

elementary, 478

Symmetric Functions Theorem,
479-81)

Symmetric group, 24, 41, 50, 197

conjugation in, 200-203

Symmetric operator, 245

spectral theorem for, 245

Symmetric polynomial, 477

Symmetry, 154-94
abstract, 176-78
bilateral, 154

glide, 155

Hermitian, 233
of planefigures, 154-56

rotational, 154

translational, 155

Symplecticgroup,261
System, 4

coordinate, 159

square, 16-17)

T)

Tangent vector field, 280

Terrestrial sphere, 264
Tetrahedral group,183
Third Isomorphism Theorem, 227

T-invariant, 110
Todd-Coxeter Algorithm, 206, 216-20

Total ordering, 518
Trace, 116
Transcendental element, 443-46

Transformation

Lorentz, 262
Tschirnhausen,482

Translation, 156, 160

in a group, 277-80, 286-87
left, 277

Translation group, 168-70
Translation vector, 163
Translational symmetry, 155

Transpose, matrix, 17-18
Transposition,25
Triangle group, 226

Triangular form, 116-19
Trivialhomomorphism,48
Trivial representation, 291

Trivial subgroup, 43
Truncated polyhedron,186)))



Tschirnhausen transformation 482,
Two-dimensional crystallographic group,

172)

u)

Unbranched covering, 351

Union, 527
Unipotent,355
Unique factorization domain, 364

Uniqueness of the determinant, 20-21

Unit, of a ring, 325

Unitary group, 235, 261
SU2,266-69,284

Unitary matrix, 235

spectral theorem for, 244-45
Unitary representations, 296-98

Unit ball, 264
Unit ideal, 331

U nit vector, 133
Unity, root of, 497-500

Upper bound, 518
Uppertriangular matrix, 6)

v)

Vandermonde determinant, 511
Variety, 347
Vector

angle between,242

column, 2

coordinate, 78, 90,416
fixed,111
length of, 242

nonzero, 113

null, 236,252

orthogonal, 252)

Index 543)

relation, 424
tangent, 280

translation, 163

unit, 133
Vector addition, 78
Vector bundle,436

Vector space, 78-101, 99
bases and dimension,86-91
computing with bases, 91-95

defined, 84-86
direct sum, 95-96

fields, 80-84

finite-dimensional, 89
infinite-dimensional,96-98
isomorphism of, 85, 91

subspace, 78-80)

W

Weight, weighted degree, 482

Well-defined, 180
Wilson's theorem, 99
Word problem, 213)

z)

Zero

characteristic, 83,484
common,347

Zero divisor, 343

Zero element, 417
Zero ideal, 331
Zeromap, 328

Zero matrix, 6
Zero ring, 324, 414

Zero vector, 126
Zorn's Lemma, 98,348,518-19)))
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