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Preface 

The guiding principle in this book is to use differential forms as an aid in 
exploring some of the less digestible aspects of algebraic topology. Accord
ingly, we move primarily in the realm of smooth manifolds and use the 
de Rham theory as a prototype of all of cohomology. For applications to 
homotopy theory we also discuss by way of analogy cohomology with 
arbitrary coefficients. 

Although we have in mind an audience with prior exposure to algebraic 
or differential topology, for the most part a good knowledge of linear 
algebra, advanced calculus, and point-set topology should suffice. Some 
acquaintance with manifolds, simplicial complexes, singular homology and 
cohomology, and homotopy groups is helpful, but not really necessary. 
Within the text itself we have stated with care the more advanced results 
that are needed, so that a mathematically mature reader who accepts these 
background materials on faith should be able to read the entire book with 
the minimal prerequisites. 

There are more materials here than can be reasonably covered in a 
one-semester course. Certain sections may be omitted at first reading with
out loss of continuity. We have indicated these in the schematic diagram 
that follows. 

This book is not intended to be foundational; rather, it is only meant to 
open some of the doors to the formidable edifice of modern algebraic 
topology. We offer it in the hope that such an informal account of the 
subject at a semi-introductory level fills a gap in the literature. 

It would be impossible to mention all the friends, colleagues, and 
students whose ideas have contributed to this book. But the senior 
author would like on this occasion to express his deep gratitude, first 
of all to his primary topology teachers E. Specker, N. Steenrod, and 

vii 



viii Preface 

K. Reidemeister of thirty years ago, and secondly to H. Samelson, A. Shapiro, 
I. Singer, l-P. Serre, F. Hirzebruch, A. Borel, J. Milnor, M. Atiyah, S.-s. 
Chern, J. Mather, P. Baum, D. Sullivan, A. Haefliger, and Graeme Segal, 
who, mostly in collaboration, have continued this word of mouth education 
to the present; the junior author is indebted to Allen Hatcher for having 
initiated him into algebraic topology. The reader will find their influence if 
not in all, then certainly in the more laudable aspects of this book. We also 
owe thanks to the many other people who have helped with our project: to 
Ron Donagi, Zbig Fiedorowicz, Dan Freed, Nancy Hingston, and Deane 
Yang for their reading of various portions of the manuscript and for their 
critical comments, to Ruby Aguirre, Lu Ann Custer, Barbara Moody, and 
Caroline Underwood for typing services, and to the staff of Springer-Verlag 
for its patience, dedication, and skill. 

F or the Revised Third Printing 

While keeping the text essentially the same as in previous printings, we have 
made numerous local changes throughout. The more significant revisions 
concern the computation ofthe Euler class in Example 6.44.1 (pp. 75-76), the 
proof of Proposition 7.5 (p. 85), the treatment of constant and locally con
stant presheaves (p. 109 and p. 143), the proof of Proposition 11.2 (p. 115), a 
local finite hypothesis on the generalized Mayer-Vietoris sequence for com
pact supports (p. 139), transgressive elements (Prop. 18.13, p. 248), and the 
discussion of classifying spaces for vector bundles (pp. 297-3(0). 

We would like to thank Robert Lyons, Jonathan Dorfman, Peter Law, 
Peter Landweber, and Michael Maltenfort, whose lists of corrections have 
been incorporated into the second and third printings. 

RAOUL BOTT 

LORINOTu 
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Introduction 

The most intuitively evident topological invariant of a space is the number 
of connected pieces into which it falls. Over the past one hundred years or 
so we have come to realize that this primitive notion admits in some sense 
two higher-dimensional analogues. These are the homotopy and cohomology 
groups of the space in question. 

The evolution of the higher homotopy groups from the component con
cept is deceptively simple and essentially unique. To describe it, let 1to(X) 
denote the set of path components of X and if p is a point of X, let 1to(X, p) 
denote the set 1to(X) with the path component of p singled out. Also, corre
sponding to such a point p, let np X denote the space of maps (continuous 
functions) of the unit circle {z E C : I z I = I} which send 1 to p, made into a 
topological space via the compact open topology. The path components of 
this so-called loop space npx are now taken to be the elements of 1tl(X, p): 

1tl(X, p) = 1to(npX, pl. 
The composition of loops induces a group structure on 1tl(X, p) in which 
the constant map p of the circle to p plays the role of the identity; so 
endowed, 1t 1 (X, p) is called the fundamental group or the first homotopy 
group of X at p. It is in general not Abelian. For instance, for a Riemann 
surface of genus 3, as indicated in the figure below: 

1 



2 Introduction 

1t1(X, p) is generated by six elements {Xl' X2, X3, YI, Y2, Y3} subject to the 
single relation 

3 

n[Xi' yJ = 1, 
i", I 

where [x;, y;] denotes the commutator x;y;xjly;-l and 1 the identity. The 
fundamental group is in fact sufficient to classify the closed oriented 
2-dimensional surfaces, but is insufficient in higher dimensions. 

To return to the general case, all the higher homotopy groups 1tt(X, p) 
for k ~ 2 can now be defined through the inductive formula: 

1tk+l(X, p) = 1tt(OpX, p). 

By the way, if p and p' are two points in X in the same path component, 
then 

but the correspondence is not necessarily unique. For the Riemann surfaces 
such as discussed above, the higher 1tt'S for k ~ 2 are all trivial, and it is in 
part for this reason that 1t I is sufficient to classify them. The groups 1tt for 
k ~ 2 turn out to be Abelian and therefore do not seem to have been taken 
seriously until the 1930's when W. Hurewicz defined them (in the manner 
above, among others) and showed that, far from being trivial, they consti
tuted the basic ingredients needed to describe the homotopy-theoretic 
properties of a space. 

The great drawback of these easily defined invariants of a space is that 
they are very difficult to compute. To this day not all the homotopy groups 
of say the 2-sphere, i.e., the space x2 + y2 + Z2 = 1 in IRJ , have been com
puted! Nonetheless, by now much is known concerning the general proper
ties of the homotopy groups, largely due to the formidable algebraic tech
niques to which the "cohomological extension" of the component concept 
lends itself, and the relations between homotopy and cohomology which 
have been discovered over the years. 

This cohomological extension starts with the dual point of view in which 
a component is characterized by the property that on it every locally con
stant function is globally constant. Such a component is sometimes called a 
connected component, to distinguish it from a path component. Thus, if we 
define HO(X) to be the vector space of real-valued locally constant functions 
on X, then dim HO(X) tells us the number of connected components of X. 
Note that on reasonable spaces where path components and connected 
components agree, we therefore hl\ve the formula 

cardinality 1to(X) = dim HO(X). 

Still the two concepts are dual to each other, the first using maps of the unit 
interval into X to test for connectedness and the second using maps of X 
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into III for the same purpose. One further difference is that the cohomology 
group HO(X) has, by fiat, a natural Ill-module structure. 

Now what should the proper higher-dimensional analogue of HO(X) be? 
Unfortunately there is no decisive answer here. Many plausible definitions 
of Hk(X) for k > 0 have been proposed, all with slightly different properties 
but all isomorphic on "reasonable spaces". Furthermore, in the realm of 
differentiable manifolds, all these theories coincide with the de Rham 
theory which makes its appearance there and constitutes in some sense the 
most perfect example of a cohomology theory. The de Rham theory is also 
unique in that it stands at the crossroads of topology, analysis, and physics, 
enriching all three disciplines. 

The gist of the" de Rham extension" is comprehended most easily when 
M is assumed to be an open set in some Euclidean space IIln, with coordi
nates Xl, .•• ,Xn • Then amongst the C'" functions on M the locally constant 
ones are precisely those whose gradient 

df= L af dXI 
aXI 

vanishes identically. Thus here HO(M) appears as the space of solutions of 
the differential equation df = O. This suggests that Hl(M) should also 
appear as the space of solutions of some natural differential equations on 
the manifold M. Now consider a I-form on M: 

(J = L aj dx;, 

where the a/s are C'" functions on M. Such an expression can be integrated 
along a smooth path y, so that we may think of (J as a function on paths y: 

yr-+ i (J. 

It then suggests itself to seek those (J which give rise to locally constant 
functions of y, i.e., for which the integral L (J is left unaltered under small 
variations of y-but keeping the endpoints fixed! (Otherwise, only the zero 
I-form would be locally constant.) Stokes' theorem teaches us that these 
line integrals are characterized by the differential equations: 

aaj -~=O 
aXj aXj 

(written d(J = 0). 

On the other hand, the fundamental theorem of calculus implies that 
L df = f(Q) - f(P), where P and Q are the endpoints of y, so that the 
gradients are trivally locally constant. 

One is here irresistibly led to the definition of Hl(M) as the vector space 
of locally constant line integrals modulo the trivially constant ones. Similarly 
the higher cohomology groups Hk(M) are defined by simply replacing line 
integrals with their higher-dimensional analogues, the k-volume integrals. 
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The Grassmann calculus of exterior differential forms facilitates these exten
sions quite magically. Moreover, the differential equations characterizing 
the locally constant k-integrals are seen to be COO invariants and so extend 
naturally to the class of COO manifolds. 

Chapter I starts with a rapid account of this whole· development, as
suming little more than the standard notions of advanced calculus, linear 
algebra and general topology. A nodding acquaintance with singular hom
ology or cohomology helps, but is not necessary. No real familiarity with 
differential geometry or manifold theory is required. After all, the concept of 
a manifold is really a very natural and simple extension of the calculus of 
several variables, as our fathers well knew. Thus for us a manifold is essen
tially a space constructed from open sets in R" by patching them together in 
a smooth way. This point of view goes hand in hand with the "com
putability" of the de Rham theory. Indeed, the decisive difference between 
the nk's and the Hk'S in this regard is that if a manifold X is the union of 
two open submanifolds U and V: 

X = U u V, 

then the cohomology groups of U, V, Un V, and X are linked by a much 
stronger relation than the homotopy groups are. The linkage is expressed 
by the exactness of the following sequence of linear maps, the Mayer
V ietoris sequence: 

C Hk+l(X)-+ d* 

C Hk(X)-+ Hk(U)~ Hk(V) -+ Hk(U n V)) 

-+ H k - 1(U n V») 
0-+ HO(X)-+··· 

starting with k = 0 and extending up indefinitely. In this sequence every 
arrow stands for a linear map of the vector spaces and exactness asserts 
that the kernel of each map is precisely the image of the preceding one. The 
horizontal arrows in our diagram are the more or less obvious ones induced 
by restriction of functions, but the coboundary operator d* is more subtle 
and uses the existence of a partition of unity subordinate to the cover 
{U, V} of X, that is, smooth functions Pu and Pv such that the first has 
support in U, the second has support in V, and Pu + Pv == 1 on X. The 
simplest relation imaginable between the Hk'S of U, V, and U u V would of 
course be that Hk behaves additively; the Mayer-Vietoris sequence teaches 
us that this is indeed the case if U and V are disjoint. Otherwise, there is a 
geometric feedback from Hk(U n V) described by d*, and one of the hall
marks of a topologist is a sound intuition for this d*. 

The exactness of the Mayer-Vietoris sequence is our first goal once the 
basics of the de Rham theory are developed. Thereafter we establish the 
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second essential property for the computability of the theory, namely that 
for a smoothly contractible manifold M, 

H"(M) = {~ for k = 0, 
for k > O. 

This homotopy in variance of the de Rham theory can again be thought of as 
having evolved from the fundamental theorem of calculus. Indeed, the for
mula 

f(x) dx = d r f(u) du 

shows that every line integral (1-form) on IRI is a gradient, whence 
Hl(lRl) = O. The homotopy invariance is thus established for the real line. 
This argument also paves the way for the general case. 

The two properties that we have just described constitute a verification 
of the Eilenberg-Steenrod axioms for the de Rham theory in the present 
context. Combined with a little geometry, they can be used in a standard 
manner to compute the cohomology of simple manifolds. Thus, for spheres 
one finds 

for k = 0 or n 
otherwise, 

while for a Riemann surface X,I with g holes, 

H~XJ= {~" 
for k = 0 or 2 
for k = 1 
otherwise. 

A more systematic treatment in Chapter II leads to the computability 
proper of the de Rham theory in the following sense. By a finite good cover 
of M we mean a covering U = {U IX}:= 1 of M by a finite number of open sets 
such that all intersections U 1X1 n ... n U l1li: are either vacuous or contract
ible. The purely combinatorial data that specify for each subset 
{O!h ... ,O!,.} of {1, ... "N} which of these two alternatives holds are called 
the incidence data of the cover. The computability of the theory is the 
assertion that it can be computed purely from such incidence data. Along 
lines established in a remarkable paper by Andre Weil [1], we show this to 
be the case for the de Rham theory. Weil's point of view constitutes an 
alternate approach to the sheaf theory of Leray and was influential in 
Cartan's theorie des carapaces. The beauty of his argument is that it can be 
read both ways: either to prove the computability of de Rham or to prove 
the topological invariance of the combinatorial prescription. 

To digress for a moment, it is difficult not to speculate about what kept 
Poincare from discovering this argument forty years earlier. One has the 
feeling that he already knew every step along the way. After all, the homo
topy invariance of the de Rham theory for IR" is known as the Poincare 
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lemma! Nevertheless, he veered sharply from this point of view, thinking 
predominantly in terms of triangulations, and so he in fact was never able 
to prove either the computability of de Rham or the invariance of the 
combinatorial definition. Quite possibly the explanation is that the whole 
COO point of view and, in particular, the partitions of unity were alien to him 
and his contemporaries, steeped as they were in real or complex analytic 
questions. 

De Rham was of course the first to prove the topological invariance of 
the theory that now bears his name. He showed that it was isomorphic to 
the singular cohomology, which is trivially-i.e., by definition-topologically 
invariant. On the other hand, Andre Weil's approach relates the de Rham 
theory to the tech theory, which is again topologically invariant. 

But to return to the plan of our book, the bulk of Chapter I is actually 
devoted to explaining the fundamental symmetry in the cohomology of a 
compact oriented manifold. In its most primitive form this symmetry asserts 
that 

dim Hq(M) = dim Hn-q(M). 

Poincare seems to have immediately realized this consequence of the locally 
Euclidean nature of a manifold. He saw it in terms of dual subdivisions, 
which turn the incidence relations upside down. In the de Rham theory the 
duality derives from the intrinsic pairing between differential forms of arbi
trary and compact support. Indeed consider the de Rham theory of 1R1 with 
compactly supported forms. Clearly the only locally constant function with 
compact support on llil is the zero function. As for I-forms, not every 
I-form 9 dx is now a gradient of a compactly supported function f; this 
happens if and only if f~ oog dx = O. Thus we see that the compactly 
supported de Rham theory of iii 1 is given by 

H~(1R1)={~ fork=O 
~ for k = 1, 

and is just the de Rham theory "upside down." This phenomenon now 
extends inductively to IR" and is finally propagated via the Mayer-Vietoris 
sequence to the cohomology of any compact oriented manifold. 

One virtue of the de Rham theory is that the essential mechanism of this 
duality is via the familiar operation of integration, coupled with the natural 
ring structure of the theory: a p-form e can be multiplied by a q-form 4> to 
produce a (p + q)-form e 1\ 4>. This multiplication is "commutative in the 
graded sense": 

e 1\ 4> = ( -1)Pq4> 1\ e. 
(By the way, the commutativity of the de Rham theory is another reason 
why it is more "perfect" than its other more general brethren, which 
become commutative only on the cohomology level.) In particular, if 4> has 
compact support and is of dimension n - p, where n = dim M, then inte-
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gration over M gives rise to a pairing 

(8, q,) --+ L 8 t\ q" 

which descends to cohomology and induces a pairing 

HP(M) ® H~-P(M)--+ ITt 

A more sophisticated version of Poincare duality is then simply that the 
pairing above is dual; that is, it establishes the two spaces as duals of each 
other. 

Although we return to Poincare duality over and over again throughout 
the book, we have not attempted to give an exhaustive treatment. (There is, 
for instance, no mention of Alexander duality or other phenomena dealing 
with relative, rather than absolute, theory.) Instead, we chose to spend 
much time bringing Poincare duality to life by explicitly constructing the 
Poincare dual of a submanifold N in M. The problem is the following. 
Suppose dim N = k and dim M = n, both being compact oriented. Inte
gration of a k-form'" on Mover N then defines a linear functional from 
Hk(M) to IR, and so, by Poincare duality, must be represented by a coho
mology class in H·-k(M). The question is now: how is one to construct a 
representative of this Poincare dual for N, and can such a representative be 
made to have support arbitrarily close to N? 

When N reduces to a point p in M, this question is easily answered. The 
dual of p is represented by any n-form w with support in the component M P 

of p and with total mass 1, that is, with 

r w = 1. 
JM p 

Note also that such an w can be found with support in an arbitrarily small 
neighborhood of p, by simply choosing coordinates on M centered at p, say 
Xl' ... , X., and setting 

w = A.(x)dxl ... dx. 

with A. a bump function of mass 1. (In the limit, thinking of Dirac's c5-func
tion as the Poincare dual of p leads us to de Rham's theory of currents.) 

When the point p is replaced by a more general submanifold N, it is easy 
to extend this argument, provided N has a product neighborhood D(N) in M 
in the sense that D(N) is diffeomorphic to the product N x D·-t, where 
D·- k is a disk of the dimension iQdicated. However, this need not be the 
case! Just think of the center circle in a Mobius band. Its neighborhoods 
are at best smaller Mobius bands. 

In the process of constructing the Poincare dual we are thus confronted 
by the preliminary question of how to measure the possible twistings of 
neighborhoods of N in M and to correct for the twist. This is a subject in its 
own right nowadays, but was initiated by H. Whitney and H. Hopf in just 
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the present context during the Thirties and Forties. Its trade name is fiber 
bundle theory and the cohomological measurements of the global twist in 
such "local products" as D(N) are referred to as characteristic classes. In the 
last forty years the theory of characteristic classes has grown to such an 
extent that we cannot do it justice in our book. Still, we hope to have 
covered it sufficiently so that the reader will be able to see its ramifications 
in both differential geometry and topology. We also hope that our account 
could serve as a good introduction to the connection between characteristic 
classes and the global aspects of the gauge theories of modern physics. 

That a connection between the equations of mathematical physics and 
topology might exist is not too surprising in view of the classical theory of 
electricity. Indeed, in a vacuum the electromagnetic field is represented by a 
2-form in the (x, y, z, t)-space: 

w = (E" dx + Ey dy + Ez dz)dt + H" dy dz - Hy dx dz + Hz dx dy, 

and the form w is locally constant in our sense, i.e., dw = O. Relative to the 
Lorentz metric in 1R4 the star of w is defined to be 

*w = -(H" dx + Hy dy + Hz dz)dt + E" dy dz - Ey dx dz + Ez dx dz, 

and Maxwell's equations simply assert that both wand its star are closed: 
dw =0 and d*w = O. In particular, the cohomology class of *w is a well 
defined object and is often of physical interest. 

To take the simplest example, consider the Coulomb potential of a point 
charge q at rest in the origin of our coordinate system. The field w gener
ated by this charge then has the description 

CAl = -qd( ~. dt) 
with r = (x 2 + l + Z2)1/2 =F O. Thus w is defined on 1R4 - ~" where IR, 
denotes the t-axis. The de Rham cohomology of this set is easily computed 
to be 

for k = 0,2 
otherwise. 

The form w is manifestly cohomologically uninteresting, since it is d of a 
I-form and so is trivially "closed", i.e., locally constant. On the other hand 
the * of w is given by 

q x dy dz - y dx dz + z dx dy 
*w=-4n r3 , 

which turns out to generate H2. The cohomology class of *w can thus be 
interpreted as the charge of our source. 

In seeking differential equations for more sophisticated phenomena than 
electricity, the modern physicists were led to equations (the Yang-Mills) 
which fit perfectly into the framework of characteristic classes as developed 
by such masters as Pontrjagin and Chern during the Forties. 
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Having sung the praises of the de Rham theory, it is now time to admit 
its limitations. The trouble with it, is that it only tells part of the cohomol
ogy story and from the point of view of the homotopy theorists, only the 
simplest part. The de Rham theory ignores torsion phenomena. To explain 
this in a little more detail, recall that the homotopy groups do not behave 
well under the union operation. However, they behave very well under 
Cartesian products. Indeed, as is quite easily shown, 

1tJ..X x Y) = 1tq(X) EB 1tq(Y). 

More generally, consider the situation of a fiber bundle (twisted product). 
Here we are dealing with a space E mapped onto·a space X with the 
fibers-i.e., the inverse images of points -all homeomorphic in some uni
form sense to a fixed space Y. For fiber bundles, the additivity of 1tq is 
stretched into an infinite exact sequence of Mayer-Vietoris type, however 
now going in the opposite direction: 

... -1tq(Y)-1tq(E)-1tq(X)-1tq _l(Y)- .... 

This phenomenon is of course fundamental in studying the twist we talked 
about earlier, but it also led the homotopy theorists to the conjecture that 
in their much more flexible homotopy category, where objects are con
sidered equal if they can be deformed into each other, every space factors 
into a twisted product of irreducible prime factors. This turns out to be true 
and is called the Postnikov decomposition of the space. Furthermore, the 
"prime spaces" in this context all have nontrivial homotopy groups in only 
one dimension. Now in the homotopy category such a prime space, say with 
nontrivial homotopy group 1t in dimension n, is determined uniquely by 1t 

and n and is denoted K(1t, n). These K(1t, n)-spaces of Eilenberg and Mac
Lane therefore play an absolutely fundamental role in homotopy theory. 
They behave well under the standard group operations. In particular, corre
sponding to the usual decomposition of a finitely generated Abelian group: 

1t = ( ~1t(P») EB l' 

into p-primary parts and a free part (said to correspond to the prime at 
infinity), the K(n, n) will factor into a product 

K(n, n) = (IJ K(n(p), n») . K(Z, n)". 

It follows that in homotopy theory, just as in many questions of number 
theory, one can work one prime at a time. In this framework it is now quite 
easy to explain the shortcomings of the de Rham theory: the theory is 
sensitive only to the prime at infinity! 

After having encountered the Cech theory in Chapter II, we make in 
Chapter III the now hopefully easy transition to cohomology with coeffi
cients in an arbitrary Abelian group. This theory, say with coefficients in the 
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integers, is then sensitive to all the p-primary phenomena in homotopy 
theory. 

The development sketched here is discussed in greater detail in Chapter 
III, where we also apply the ideas to the computation of some relatively 
simple homotopy groups. All these computations in the final analysis derive 
from Serre's brilliant idea of applying the spectral sequence of Leray to 
homotopy problems and from his coining of a sufficiently general definition 
of a twisted product, so that, as the reader will see, the Postnikov decompo
sition in the form we described it, is a relatively simple matter. It remains 
therefore only to say a few words to the uninitiated about what this" spec
tral sequence" is. 

We remarked earlier that homotopy behaves additively under products. 
On the other hand, cohomology does not. In fact, neglecting matters of 
torsion, i.e., reverting to the de Rham theory, one has the Kunnethformula: 

Hk(X X Y) = L HP(X) ® Hq(y). 
p+q=k 

The next question is of course how cohomology behaves for twisted prod
ucts. It is here that Leray discovered some a priori bounds on the extent 
and manner in which the Kiinneth formula can fail due to a twist. For 
instance, one of the corollaries of his spectral sequence is that if X and Y 
have vanishing cohomology in positive dimensions less than p and q re
spectively, then however one twists X with Y, the Kiinneth formula will 
hold up to dimension d < min(p, q). 

Armed with this sort of information, one can first of all compute the 
early part of the cohomology of the K(1t, n) inductively, and then deduce 
which K(1t, n) must occur in a Postnikov decomposition of X by comparing 
the cohomology on both sides. This procedure is of course at best ad hoc, 
and therefore gives us only fragmentary results. Still, the method points in 
the right direction and can be codified to prove the computability (in the 
logical sense) of any particular homotopy group, of a sphere, say. This 
theorem is due to E. Brown in full generality. Unfortunately, however, it is 
not directly applicable to explicit calculations-even with large computing 
machines. 

So far this introduction has been written with a lay audience in mind. 
We hope that what they have read has made sense and has whetted their 
appetites. For the more expert, the following summary of the plan of our 
book might be helpful. 

In Chapter I we bring out from scratch Poincare duality and its various 
extensions, such as the Thom isomorphism, all in the de Rham category. 
Along the way all the axioms of a cohomology theory are encountered, but 
at first treated only in our restricted context. 

In Chapter II we introduce the techniques of spectral sequences as an 
extension of the Mayer-Vietoris principle and so are led to A. Weil's 
Cech-de Rham theory. This theory is later used as a bridge to cohomology 
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in general and to integer cohomology in particular. We spend considerable 
time patching together the Euler class of a sphere bundle and exploring its 
relation to Poincare duality. We also very briefly present the sheaf-theoretic 
proof of this duality. 

In Chapter III we come to grips with spectral sequences in a more 
formal manner and describe some of their applications to homotopy theory, 
for example, to the computation of 1ts(S3). This chapter is less self-contained 
than the others and is meant essentially as an introduction to homotopy 
theory proper. In the same spirit we close with a short account of Sullivan's 
rational homotopy theory. 

Finally, in Chapter IV we use the Grothendieck approach towards char
acteristic classes to give a more or less self-contained treatment of Chern 
and Pontrjagin classes. We then relate them to the cohomology of the 
infinite Grassmannian. 

Unfortunately there was no time left within the scope of our book to 
explain the functorial approach to classifying spaces in general and to make 
the connection with the Eilenberg-MacLane spaces. We had to relegate this 
material, which is most naturally explained in the framework of semi
simplicial theory, to a mythical second volume. The novice should also be 
warned that there are all too many other topics which we have not men
tioned. These include generalized cohomology theories, cohomology oper
ations, and the Adams and Eilenberg-Moore spectral sequences. Alas, there 
is also no mention of the truly geometric achievements of modern topology, 
that is, handle body theory, surgery theory, and the structure theory of 
differentiable and piecewise linear manifolds. Still, we hope that our volume 
serves as an introduction to all this as well as to such topics in analysis as 
Hodge theory and the Atiyah-Singer index theorems for elliptic differenital 
operators. 



CHAPTER I 

de Rham Theory 

§ 1 The de Rham Complex on 1R" 

To start things off we define in this section the de Rham cohomology and 
compute a few examples. This will turn out to be the most important 
diffeomorphism invariant of a manifold. So let Xl> ... , X. be the linear 
coordinates on \ijn. We define 0* to be the algebra over \ij generated by 
dXl> ... , dXn with the relations 

{
(dXi)2 = 0 
dx/ dXj = -dxj dXi> i i= j. 

As a vector space over !R, 0* has basis 

1, dXi' dXidXj' dx/dxjdxk> ... , dXt ... dxn • 

i<j i<j<k 

The CCXJ differential forms on !Rn are elements of 

O*(\ijn) = {COO functions on !Rn} ® 0* . 
iii! 

Thus, if w is such a form, then w can be uniquely written as L /;1 .. , iq 

dx, ... dx/ where the coefficients /;1 .,. I are COO functions. We also write 
1 • q 

W = 'If I dXI' The algebra O*(\ijn) = EEl ;;0 oq(!Rn) is naturally graded, 
where oq(!Rn) consists of the Coo q-forms on !R". There is a differential 
operator 

defined as follows: 

i) iff E OO(!Rn), then df = L of/oxi dXi 
ii) if w = 'If I dXI, then dw = L dfI dXI' 

13 
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EXAMPLE 1.1. If w = X dy, then dw = dx dy. 

This d, called the exterior differentiation, is the ultimate abstract exten
sion of the usual gradient, curl, and divergence of vector calculus on ~3, as 
the example below partially illustrates. 

EXAMPLE 1.2. On ~3, nO(~3) and n3(~3) are each 1-dimensional and nl(~3) 
and n2(~3) are each 3-dimensional over the C'" functions, so the following 
identifications are possible: 

{functions} ~ 

f -
and 

to-forms} 
f 

~ {3-forms} 
- fdx dy dz 

{vector fields} ~ {i-forms} {2-forms} 

x = Uh f2' f3) - fl dx + f2 dy + f3 dz - fl dy dz - f2 dx dz + f3 dx dy. 

On functions, 

af af af 
df= - dx + - dy + - dz. 

ax ay az 

On 1-forms, 

dUl dx + f2 dy + f3 dz) 

= (af 3 _ af 2) dy dz _ (af l _ af 3) dx dz + (af 2 _ afl) dx dy. 
~ & & fu fu ~ 

On 2-forms, 

d f ( afl af2 af 3) 
( I dy dz - f2 dx dz + f3 dx dy) = - + - + - dx dy dz. 

ax ay az 

In summary, 

d(O-forms) = gradient, 

d(l-forms) = curl, 

d(2-forms) = divergence. 

The wedge product of two differential forms, written r 1\ w or r . w, is 
defined as follows: ifr = Lh dXr and w = L g] dx], then 

rl\w = Lhg] dXr dx]. 

Note that r 1\ w = (_1)degt degww 1\ r. 

Proposition 1.3. d is an antiderivation, i.e., 

d(r . w) = (dr) . w + (_1)degt r . dw. 
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PROOF. By linearity it suffices to check on monomials 

t =fl dXI, W = gJ dXJ. 

d(t . w) = d(flgJ) dXI dXJ = (dfl)gJ dXI dXJ + fl dgJ dXr dXJ 

= (dt) . w + (_1)de1t t . dw. 
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On the level of functions d(fg) = (df)g + f(dg) is simply the ordinary prod
~~ 0 

Proposition 1.4. d2 = O. 

PROOF. This is basically a consequence of the fact that the mixed partials 
are equal. On functions, 

2 (Of) o2j d'f= d L;- dx, = L -;--;- dXj dx,. 
; uX; ',i UXj uX, 

Here the factors o2f/oXjOX; are symmetric in i, j while dXj dx; are skew
symmetric in i, j; hence d2f = O. On forms co = fl dXI, 

d2co = d2(fl dX/) = d(dfr dXr) = 0 

by the previous computation and the antiderivation property of d. 0 

The complex n*(R") together with the differential operator d is called the 
de Rham complex on R". The kernel of d are the closed forms and the image 
of d, the exact forms. The de Rham complex may be viewed as a God-given 
set of differential equations, whose solutions are the closed forms. For 
instance, finding a closed 1-formf dx + g dy on R2 is tantamount to solving 
the differential equation og/ox - of/oy = O. By Proposition 1.4 the exact 
forms are automatically closed; these are the trivial or "uninteresting" 
solutions. A measure ofthe size of the space of "interesting" solutions is the 
definition of the de Rham cohomology. 

Definition. The q-th de Rham cohomology of R" is the vector space 

H7,R(Rn) = {closed q-forms}/{exact q-forms}. 

We sometimes suppress the subscript DR and write H4(R"). If there is a need 
to distinguish between a form co and its cohomology class, we denote the 
latter by [co]. 

Note that all the definitions so far work equally well for any open subset 
U of R"; for instance, 

n*(U) = {COO functions on U} ® n*. 
iii 

So we may also speak of the de Rham cohomology H~p(U) of U. 
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EXAMPLES 1.5. 
(a) n = 0 

(b) n = 1 

{ R q=O 
H"-- 0 q > O. 

Since (ker d) n nO(RI) are the constant functions, 

HO(R1) = R-

On nl(RI), ker d are all the I-forms. 
If w = g(x)dx is a I-form, then by taking 

f= r g(u) du, 

we find that 

df= g(x) dx. 

Therefore every I-form on RI is exact and 

HI(RI) = O. 

(c) Let U be a disjoint union of m open intervals on RI. 
Then 

and 

(d) In general 

H*(R") = {R in dim.~nsion 0, 
o otherwise. 

I de Rham Theory 

This result is called the Poincare lemma and will be proved in Section 4. 

The de Rham complex is an example of a differential complex. For the 
convenience of the reader we recall here some basic definitions and results 
on differential complexes. A direct sum of vector spaces C = e qeZ- C" in
dexed by the integers is called a differential complex if there are homomor
phisms 

such that d2 = O. d is the differential operator of the complex C. The coho
mology of C is the direct sum of vector spaces H(C) = E9 qeZ H'(C), where 

Hq( C) = (ker d n Cq)/(im d n CII). 
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A map J: A - B between two differential complexes is a chain map if it 
commutes with the differential operators of A and B : J d .. = dB f. 

A sequence of vector spaces 

If II-I If Ii If 
••• ---to , i-1 ---to 'i ---to '1+ 1 ---to ••• 

is said to be exact if for all i the kernel of It is equal to the image of its 
predecessor It _ 1. An exact sequence of the form 

o ---to A ---to B ---to e ---to 0 

is called a short exact sequence. Given a short exact sequence of differential 
complexes 

I 9 o ---to A ---to B ---to e ---to 0 

in which the maps J and g are chain maps, there is a long exact sequence of 
cohomology groups 

In this sequence J* and g* are the naturally induced maps and d*[cJ, 
c E e', is obtained as follows: 

r I r 
9 

r 
0-- A,+1 - B,+1 - e,+1 ---toO 

I I dl 
9 

dl 
o ---to A' - B' ---to ell -0 

I I I 
By the surjectivity of g there is an element b in B' such that g(b) = c. 
Because g(db) = d(gb) = dc = 0, db = J(a) for some a in A'+ 1. This a is 
easily checked to be closed. d*[cJ is defined to be the cohomology class [aJ 
in H'+ leA). A simple diagram-chasing shows that this definition of d* is 
independent of the choices made. . 

Exercise. Show that the long exact sequence of cohomology groups exists 
and is exact. (See, for instance, Munkres [2, §24].) 

Compact Supports 

A slight modification of the construction of the preceding section will give 
us another diffeomorphism invariant of a manifold. For now we again 
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restrict our attention to iii". Recall that the support of a continuous 
function I on a topological space X is the closure of the set on which I is 

not zero, i.e., Supp I = { P E XII (p ) =1= O} . If in the definition of the 
de Rham complex we use only the Coo functions with compact support, the 
resulting complex is called the de Rham complex O~(IIi") with compact 
supports: 

n:(IR") = {COO functions on IRn with compact support} ® n*. 

The cohomology of this complex is denoted by H:(lRn). 

EXAMPLE 1.6. 

(a) H:(point) = {~ in dimension 0, 
elsewhere. 

IRI 

(b) The compact cohomology 01 IRI. Again the closed O-forms are the 
constant functions. Since there are no constant functions on IRI with com
pact support, 

To compute H:(IR I), consider the integration map 

[ : n:(IRI) ----+ IRI . 
JIRII 

This map is clearly surjective. It vanishes on the exact I-forms df where f 
has compact support, for if the support offlies in the interior of [a,b], then 

i df ib df - dx = - dx = f(b) - f(a) = O. 
IRII dx a dx 

If g(x) dx E n:(IRI) is in the kernel of the integration map, then the function 

f(x) = roo g(u) du 

will have compact support and df = g(x) dx. Hence the kernel of SIRI are 
precisely the exact forms and 

H:(IRI) = n:(IRI) = IRI. 
ker SIRII 

REMARK. If g(x) dx E n:(IRI) does not have total integral 0, then 

f(x) = r }(u) du 

will not have compact support and g(x) dx will not be exact. 
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(c) More generally, 

H:(R") = {~ in dimension n 
otherwise. 

19 

This result is the Poincare lemma for cohomology with compact support and 
will be proved in Section 4. 

Exercise 1.7. Compute H~R(R2 - P - Q) where P and Q are two points in 
R2. Find the closed forms that represent the cohomology classes. 

§2 The Mayer-Vietoris Sequence 

In this section we extend the definition of the de Rham cohomology from 
R" to any differentiable manifold and introduce a basic technique for com
puting the de Rham cohomology, the Mayer-Vietoris sequence. But first we 
have to discuss the functorial nature of the de Rham complex. 

The Functor 0* 

Let Xlo ... , Xm and Ylo ... , Y" be the standard coordinates on Rm and R" 
respectively. A smooth map f: Rm -+ R" induces a pullback map on Coo 
functionsf* : gO(R") -+ gO(Rm) via 

f*(g) = go J. 
We would like to extend this pullback map to all forms f* : g*(R") -+ 

g*(Rm) in such a way that it commutes with d. The commutativity with d 
defines f* uniquely: 

f*(L gr dYll ... dYi.) = L(gr 0 f) dk ... dft., 

where ft = YI 0 f is the i-th component of the functionJ. 

Proposition 2.1. With the above definition of the pullback mapj* onforms,f* 
commutes with d. 

PROOF. The proof is essentially an application of the chain rule. 

df*(gJ dYi 1 ••• dYI.) = d«gr 0 f) dk ... dft.) = d(gr 0 f) dk ... dft •. 

f*d(gr dYI ... dYi ) = f* (t ~gl dYi dYI 1 ••• dYi ) 
! • 1=1 uYi • 

= t ((~gl 0 f) dft ) dk ... dft. 
i=1 UYi 

= d(gr 0 f) dft! ... dft •. o 
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Let Xl' ... , Xn be the standard coordinate system and Uh ... u" a new 
coordinate system on IR", i.e., there is a diffeomorphism f : IR" _ IR" such 
that Uj = Xj 0 f = f*(xj). By the chain rule, if g is a smooth function on IR", 
then 

So dg is independent of the coordinate system. 

Exercise 2.1.1. More generally show that if ro = L g/ du/, then dro = L dg/ 
du/. 

Thus the exterior derivative d is independent of the coordinate system on 
IRn. 

Recall that a category consists of a class of objects and for any two 
objects A and B, a set Hom(A, B) of morphisms from A to B, satisfying the 
following properties. Iffis a morphism from A to Band g a morphism from 
B to C, then the composite morphism g 0 f from A to C is defined; fur
thermore, the composition operation is required to be associative and to 
have an identity lA in Hom(A, A) for every object A. The class of all groups 
together with the group homomorphisms is an example of a category. 

A covariant functor F from a category :K to a category fi' associates to 
every object A in:K an object F(A) in fi', and every morphismf: A - Bin 
:K a morphism F(f): F(A) - F(B) in fi' such that F preserves composition 
and the identity: 

F(g 0 f) = F(g) 0 F(f) 

F(lA) = I F(A)' 

If F reverses the arrows, i.e., F(f) : F(B)- F(A), it is said to be a contra
variant functor. 

In this fancier language the discussion above may be summarized as 
follows: Q* is a contravariant functor from the category of Euclidean spaces 
{1R"}nez and smooth maps: IRm - IR" to the category of commutative differ
ential graded algebras and their homomorphisms. It is the unique such functor 
that is the pullback of functions on QO(lRn). Here the commutativity of the 
graded algebra refers to the fact that 

tro = (_I)deg t deg ro rot. 

The functor Q* may be extended to the category of differentiable mani
folds. For the fundamentals of manifold theory we recommend de Rham 
[1, Chap. I]. Recall that a differentiable structure on a manifold is given by 
an atlas, i.e., an open cover {U II} 11 e A of M in which each open set U 11 is 
homeomorphic to IRn via a homeomorphism f/J11 : U 11 ~ IRn, and on the 
overlaps U 11 n U (I the transition functions 

gl1(1 = f/J11 0 f/Ji 1 : f/J(I(U 11 n U (I) - f/J11(U 11 n U (I) 
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are diffeomorphisms of open subsets of IR"; furthermore, the atlas is re
quired to be maximal with respect to inclusions. All manifolds will be 
assumed to be Hausdorff and to have a countable basis. The collection 
{(U", c/>,,)} «e A is called a coordinate open cover of M and C/>" is the triv
ialization of U". Let Ul> ••• , Un be the standard coordinates on IRn. We can 
write C/>" = (Xl, ... , xn), where X; = U; 0 c/>a are a coordinate system on U". A 
function f on U" is differentiable if f 0 c/>; 1 is a differentiable function on 
IRn. If f is a differentiable function on U", the partial derivative of/ox; is 
defined to be the i-th partial of the pullback function f 0 c/>; 1 on IRn: 

of (P) = o(f 0 c/>; 1) (c/>a(P»' 
OX; oU; 

The tangent space to M at p, written T" M, is the vector space over IR 
spanned by the operators O/OX1(P), •.. , %xn (P), and a smooth vector field 
on U" is a linear combination X" = L Ii %x; where the};'s are smooth 
functions on Ua. Relative to another coordinate system {Yl' .'" Yn), Xa = 
L gj %y; where %x; and %Yj satisfy the chain rule: 

~=L~~. 
OX; OX; oYj 

A Coo vector field on M may be viewed as a collection of vector fields X" on 
U" which agree on the overlaps U .. n Up. 

A differential form w on M is a collection of forms Wu for U in the atlas 
defining M, which are compatible in the following sense: if i and j are the 
inclusions 

UnV .U 

~ 
V 

then i*wu = j*wv in Q*(U n V). By the functoriality of Q*, the exterior 
derivative and the wedge product extend to differential forms on a mani
fold. Just as for IRn a smooth map of differentiable manifolds f : M -+ N 
induces in a natural way a pullback map on forms f* : Q*(N) -+ Q*(M). In 
this way Q* becomes a contravariant functor on the category of differ
entiable manifolds. 

A partition of unity on a manifold M is a collection of non-negative Coo 
functions {POI} .. e I such that 

(a) Every point has a neighborhood in which 'E.P .. is a finite sum. 
(b) 'E.P .. = 1. 

The basic technical tool in the theory of differentiable manifolds is the 
existence of a partition of unity. This result assumes two forms: 

(1) Given an open cover {Ua} .. el of M, there is a partition of unity {P .. }OIEI 

such that the support of Pa is contained in U". We say in this case that 
{POI} is a partition of unity subordinate to the open cover {U a}. 
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(2) Given an open cover {V «L e I of M, there is a partition of unity {PII} II e J 

with compact support, but possibly with an index set J different from 1, 
such that the support of PII is contained in some V«. 

For a proof see Warner [1, p. 10] or de Rham [1, p. 3]. 
Note that in (1) the support of P« is not assumed to be compact and the 

index set of {p«} is the same as that of {V «}, while in (2) the reverse is true. 
We usually cannot demand simultaneously compact support and the same 
index set on a noncompact manifold M. For example, consider the open 
cover of jRl consisting of precisely one open set, namely jRl itself. This open 
cover clearly does not have a partition of unity with compact support 
subordinate to it. 

The Mayer-Vietoris Sequence 

The Mayer-Vietoris sequence allows one to compute the cohomology of the 
union of two open sets. Suppose M = V u V with V, V open. Then there is 
a sequence of inclusions 

vo 
M.-VUVt:VnV 

where vti V is the disjoint union of V and V and 00 and 01 are the 
inclusions of V n V in V and in V respectively. Applying the contravariant 
functor n*, we get a sequence of restrictions of forms 

vt 
n*(M) -+ n*(V) EB n*(V) :4 n*(V n V), 

v~ 

where by the restriction of a form to a submanifold we mean its image 
under the pullback map induced by the inclusion. By taking the difference 
of the last two maps, we obtain the M ayer- Vietoris sequence 

(2.2) 0 -----> n*(M) -+ n*(V) EB n*(V) -+ n*(V n V) -----> 0 
(ro, t) 1-+ t - ro 

Proposition 2.3. The Mayer-Vietoris sequence is exact. 

PROOF. The exactness is clear except at the last step. We first consider the 
case of functions on M = jRl. Letfbe a COO function on V n Vas shown in 
Figure 2.1. We must write f as the difference of a function on V and a 
function on V. Let {Pu, Pv} be a partition of unity subordinate to the open 
cover {V, V}. Note that Pvf is a function on V-to get a function on an 
open set we must multiply by the partition function of the other open set. 
Since 

(Pu f) - ( - Pv f) = J, 
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Figure 2.1 

we see that nO(U) EBnO(V) -+ nO(1R1) is surjective. For a general mani
fold M, if W E nq(U n V), then (- Pv w, Pu w) in nq(U) EB nq(V) maps onto 
~ 0 

The Mayer-Vietoris sequence 

0-+ n*(M) -+ n*(U) EB n*(V) -+ n*(U n V) -+ 0 

induces a long exact sequence in cohomology, also called a Mayer-Vietoris 
sequence: 

CHq+1(M)-+ Hq+1(U)EBHq+l(V)-+ Hq+l(U n V)+.J 

C H'(M) ~ H'(U) GJd:.(V) ~ H'(U n V») 
(2.4) 

We recall again the definition of the coboundary operator d* in this explicit 
instance. The short exact sequence gives rise to a diagram with exact rows 

i i i 
0-+ n q + I(M) -+ n q + 1 (U)EBnq+ I(V) -+ n q+1(U n V) -+0 

di di di 
0-+ nq(M) -+ n q( U) EB n~( V) -+ nq(U n V) -+0 

w w 

~ w dw=O 

Let WE nq(U n V) be a closed form. By the exactness of the rows, there is 
a ~ E nq(U)EBnq(V) which maps to w, namely, ~ = (-Pvw, Puw). By the 
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commutativity of the diagram and the fact that dro = 0, d~ goes to 0 in 
Oq+l(U n V), i.e., -d(pvro) and d(puro) agree on the overlap U n V. Hence 
d~ is the image of an element in oq+ I(M). This element is easily seen to be 
closed and represents d*[ro]. As remarked earlier, it can be shown that 
d*[ro] is independent of the choices in this construction. Explicitly we see 
that the coboundary operator is given by 

(2.5) d*[ro] = {[ -d(pvro)] on U 
[d(pu ro)] on V. 

We define the support of a form w on a manifold M to be Supp w 

= {p E M I w(p) =I' O} . Note that in the Mayer-Vietoris sequence d*w E 

H *( M) has support in Un V. 

EXAMPLE 2.6 (The cohomology of the circle). Cover the circle with two 
open sets U and V as shown in Figure 2.2. The Mayer-Vietoris sequence 
gives 

SI uUV UnV 

H2 0 0 0 

CHI 0 ~ 0 

d* ~$~~ HO ~$~ 
IJ 
~ 

The difference map ~ sends (ro, r) to (r - ro, r - ro), so im ~ is 1-
dimensional. It follows that ker ~ is also 1-dimensional. Therefore, 

HO(SI) = ker ~ = ~ 
HI(SI) = coker ~ = ~. 

We now find an explicit representative for the generator of HI(SI). If 
(X E OO(U n V) is a closed O-form which is not the image under ~ of a closed 
form in OO(U) $ OO(V), then d*(X will represent a generator of HI(SI). As (X 
we may take the function which is 1 on the upper piece of U n V and 0 on 

-\ 
unv 

/ -
Figure 2.2 
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u v 

Figure 2.3 

the lower piece (see Figure 2.3). Now a is the image of( - Pv a, Pu a). Since 
- d(pv a) and dpu a agree on U (') V, they represent a global form on SI; 
this form is d*a. It is a bump I-form with support in U (') V. 

The Functor n: and the Mayer-Vietoris Sequence for Compact 
Supports 

Again, before taking up the Mayer-Vietoris sequence for compactly sup
ported cohomology, we need to discuss the functorial properties of n:(M), 
the algebra of forms with compact support on the manifold M. In general 
the pullback by a smooth map of a form with compact support need not 
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have compact support; for example, consider the pullback of functions 
under the projection M x ~ ....... M. So n: is not a functor on the category of 
manifolds and smooth maps. However if we consider not all smooth maps, 
but only an appropriate subset of smooth maps, then n: can be made into 
a functor. There are two ways in which this can be done. 

(a) n: is a contravariant functor under proper maps. (A map is proper if the 
inverse image of every compact set is compact.) 
(b) n: is a covariant functor under inclusions of open sets. 

If j : U ....... M is the inclusion of the open subset U in the manifold M, then 
i. :n:(U) ....... n:(M) is the map which extends a form on U by zero to a 
form on M. 

It is the covariant nature of n: which we shall exploit to prove Poincare 
duality for noncompact manifolds. So from now on we assume that n: 
refers to the covariant functor in (b). There is also a Mayer-Vietoris se
quence for this functor. As before, let M be covered by two open sets U and 
V. The sequence of inclusions 

M +- ullv t:: U n V 

gives rise to a sequence of forms with compact support 

n:(M). sum n:(u) $ n:(V). I" dn:(U n V) s gnc 
Inclusion 

Proposition 2.7. The Mayer- Vietoris sequence offorms with compact support 

O+- n:(M)+- n:(U) $ n:(V)+- n:(U n V)+- 0 

is exact. 

PROOF. This time exactness is easy to check at every step. We do it for the 
last step. Let co be a form in n:(M). Then co is the image of(puco, Pvco) in 
n:(U)Ef)n:(V). The form puco has compact support because Supp puco 
c Supp Pu n Supp co and by a lemma, from general topology, a closed 
subset of a compact set in a Hausdorff space is compact. This shows the 
surjectivity of the map n:(U)Ef)n:(V) ....... n:(M). Note that whereas in the 
previous Mayer-Vietoris sequence we multiply by Pv to get a form on U, 
here puco is a form on U. 0 

Again the Mayer-Vietoris sequence gives rise to a long exact sequence in 
cohomology: 

(2.8) 

CH~+l(M)+- H~+l(U) $ H~+l(V)+- H~+1(U n V) +-J 

CH~(M) ~ H~U) ~ H~V) ~ H~(U n V) :J 
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Figure 2.4 

EXAMPLE 2.9 (The cohomology with compact support of the circle). Of 
course since Sl is compact, the cohomology with compact support H:(Sl) 
should be the same as the ordinary de Rham cohomology H·(Sl). Nonethe
less, as an illustration we will compute H:(Sl) from the Mayer-Vietoris 
sequence for compact supports: 

Sl ullv UnV 
H2 

c 0 0' ) 
Hi ( IIHElIR , 6 IR EEl IR J c 

HO ( 0 0 c 

Here the map {) sends W = (W1o W2) E H:(U n V) to (-(ju).w, (jy).w) E 

H:(U) EEl H:(V), whereju andjy are the inclusions of U n V in U and in V 
respectively. Since im {) is I-dimensional, 

H?(Sl) = ker {) = IR 

H:(Sl) = coker {) = IR. 

§3 Orientation and Integration 

Orientation and the Integral of a Differential Form 

Let X10 ••• , x" be the standard coordinates on IR". Recall that the Riemann 
integral of a differentiable function/with compact support is 

We define the integral of an n-form with compact support W = / dXl ... dx. 
to be the Riemann integral J R' /1 dx 1 ... dx" I. Note that contrary to the 
usual calculus notation we put an absolute value sign in the Riemann 
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integral; this is to emphasize the distinction between the Riemann integral 
of a function and the integral of a differential form. While the order of 
Xl' ... , Xn matters in a differential form, it does not in a Riemann integral; if 
7t is a permutation of {I, ... , n}, then 

f fdx,,(l) ... dX II(n) = (sgn 7t) f fldxl ... dXnl, 

but 

In a situation where there is no possibility of confusion, we may revert to 
the usual calculus notation. 

So defined, the integral of an n-form on IRn depends on the coordinates 
Xh ..• , X n • From our point of view a change of coordinates is given by a 
diffeomorphism T: IRn~ IRn with coordinates Yh ... , Yn and Xl' ... , Xn re
spectively: 

Xi = Xi 0 T(Yl, ... , Yn) = T~Yh ... , Yn)· 

We now study how the integral fw transforms under such diffeomor
phisms. 

Exercise 3.1. Show that dT l ... dTn = J(T)dYl ... dYn, where J(T) = 
det(oxdoYj) is the Jacobian determinant of T. 

Hence, 

f T*w = f (f 0 T) dTl ... dT" = f (f 0 T)J(T) IdYl··· dYnl 
R" R" R" 

relative to the coordinate system Yh ... , Yn. On the other hand, by the 
change of variables formula, 

Thus 

f T*w = ± f W 

JII" JR" 
depending on whether the Jacobian determinant is positive or negative. In 
general if T is a diffeomorphism of open subsets of IRn and if the Jacobian 
determinant J(T) is everywhere positive, then T is said to be orientation
preserving. The integral on IRn is not invariant under the whole group of 
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diffeomorphisms of IR". but only under the subgroup of orientation
preserving diffeomorphisms. 

Let M be a differentiable manifold with atlas {(U ... q, .. )}. We say that the 
atlas is oriented if all the transition functions g"fI = q, .. 0 q,i 1 are 
orientation-preserving. and that the manifold is orientable if it has an orien
ted atlas. 

Proposition 3.2. A manifold M of dimension n is orientable if and only if it has 
a global nowhere vanishing n{orm. 

PRooF. Observe that T: IR" -+ IR" is orientation-preserving if and only if 
T* dx 1 •• , dx" is a positive multiple of dx 1 ••• dx" at every point. 

( <= ) Suppose M has a global nowhere-vanishing n-form w. Let q, .. : U .. ~ 
IR" be a coordinate map. Then q,: dx 1 ••• dx" = f.. w where f.. is a nowhere
vanishing real-valued function on U ... Thus f .. is either everywhere positive 
or everywhere negative. In the latter case replace CPa by If a = To CPa. where 
T:Rn-+R n is the orientation-reversing diffeomorphism T(X I'X2' ...• Xn ) 

= (- Xl' x 2, ... ,xn ). Since If: dX I ... dx" = cp:T* dXI ... dX n = 
- 4>: dx l ·•· dXn = ( - fa)w. we may assume fa to be positive for all Q. 

Hence. any transition function ;fI;;1: ;,.(U .. 1i UfI) -+ ;fI(U .. 1i UfI) will pull 
dX 1 ••• dx" to a positive multiple of itself. So {(U .. , ;J} is an oriented atlas. 

(~) Conversely. suppose M has an oriented atlas {(U ... q, .. )}. Then 

(q,flq,;l)* (dXl ... dx,,) = A. dXl ... dx" 

for some positive function A.. Thus 

q,; dXl ... dx" = (q,: A.)(q,: dXl ... dx,,). 

Denoting q,: dx 1 •.• dx" by w ... we see that wfl = fw.. where f = q,: A. = A. 0 

q, .. is a positive function on U .. Ii U fl. 
Let w = L P .. w .. where P .. is a partition of unity subordinate to the open 

cover {U .. }. At each point p in M, all the forms w .. , if defined. are positive 
multiples of one another. Since P .. ~ 0 and not all P .. can vanish at a point, 
w is nowhere vanishing. 0 

Any two global nowhere vanishing n-forms wand w' on an orientable 
manifold M of dimension n differ by a nowhere vanishing function: w = fw'. 
If M is connected, then f is either everywhere positive or everywhere nega
tive. We say that wand w' are equivalent iff is positive. Thus on a connec
ted orientable manifold M the nowhere vanishing n-forms fall into two 
equivalence classes. Either class is called an orientation on M, written [M]. 
For example, the standard orientation on IR" 'is given by dXl ... dx". 

Now choose an orientation [M] on M. Given a top form t in n:(M), we 
define its integral by 

[ t = L [ P .. t 
JIM) .. Ju. 
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where JU.Pa t means JlRln(cP;l)*(p" t) for some orientation-preserving triv
ialization cPa : Va ~ IRn; as in Proposition 2.7, Pat has compact support. 
By the orientability assumption, the integral over a coordinate patch Ju. w 
is well defined. With a fixed orientation on M understood, we will often 
write JM t instead of JIM] t. Reversing the orientation results in the negative 
of the integral. 

Proposition 3.3. The definition of the integral JM t is independent of the 
oriented atlas {(Va' cPa)} and the partition of unity {Pal· 

PROOF. Let {Vp} be another oriented atlas of M, and {Xp} a partition of 
unity subordinate to {Vp}. Since Lp XP = 1, 

IIPat=IIPaX/lt. 
a u. a. p U. 

Now PaXpt has support in V" " Vp, so 

Therefore 
1 P"Xpt = [ PaXpt. u. JvP 

L [ p"t = I [ P"Xpt = L [ Xpt. 
" Ju. ",(I JvP P lp o 

A manifold M of dimension n with boundary is given by an atlas {(Va, cP,,)} 
where V" is homeomorphic to either IRn or the upper half space 
W = {(Xl> ... , xn) I Xn ~ O}, The boundary oM of M is an (n - 1)
dimensional manifold. An oriented atlas for M induces in a natural wayan 
oriented atlas for oM. This is a consequence of the following lemma. 

Lemma 3.4. Let T: W --. IHI n be a diffeomorphism of the upper half space 
with everywhere positive Jacobian determinant. T induces a map t of the 
boundary of IHI n to itself. The induced map t, as a diffeomorphism of IRn - 1, 

also has positive Jacobian determinant everywhere. 

PROOF. By the inverse function theorem an interior point of IHI n must be the 
image of an interior point. Hence T maps the boundary to the boundary. 
We will check that t has positive Jacobian determinant for n = 2; the 
general case is similar. 

Let T be given by 

Then t is given by 

Xl = Tl(Yt> Y2) 

X2 = T2(Yl> Y2)' 
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Figure 3.1 

By assumption 

>0. 

Since 0 = Tz (Yl> 0) for all y!, aTz/ay! (y!, 0) = 0; since T maps the upper 
half plane to itself, 

Therefore 

aTz 
-;- (Yl> 0) > O. 
UY2 

aT! 
-;- (Yl> 0) > O. 
uy, o 

Let the upper half space H n = {x n ~ O} in R n be given the standard 
orientation dx 1 ••• dx n. Then the induced orientation on its boundary aH n = 
{xn = O} is by definition the equivalence class of (-l)n dx 1 ••• dX n_1 for 
n ~ 2 and - 1 for n = 1; the sign ( - 1 Y is needed to make Stokes' theorem 
sign-free. In general for M an oriented manifold with boundary, we define 
the induced orientation [aM] on aM by the following requirement: if cp is 
an orientation-preserving diffeomorphism of some open set U in Minto 
the upper half space H n, then 

¢*[alHJ"] = [aM] I au, 

where au = (aM) 11 U (see Figure 3.1). 

Stokes' Theorem 

A basic result in the theory of integration is 

Theorem 3.5 (Stokes' Theorem). If w is an (n - l){orm with compact support 
on an oriented manifold M of dimension n and if aM is given the induced 
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orientation, then 

r dOJ = r OJ. 
JM JaM 

We first examine two special cases. 

SPECIAL CASE 1 (lijn). By the linearity of the integrand we may take OJ to be 
f dXl ... dXn-l' Then dOJ = ± ofloxn dXl ... dxn. By Fubini's theorem, 

1. dOJ = ± f (fXl", !~n dXn) dx 1 ... dXn - 1 • 

But f':'", ofloxn dXn=f(Xl, ... ,Xn-hoo)-f(Xh .. ·,Xn-l, -00)=0 be
cause fhas compact support. Since Iijn has no boundary, this proves Stokes' 
theorem for Iijn. 

SPECIAL CASE 2 (The upper half plane). In this case (see Figure 3.2) 

OJ = f(x, y) dx + g(x, y) dy 

and 

( of Og) 
dOJ = - - + - dx dy. 

oy ax 

Note that 

L, ~~ dx dy = 1'" (t: ~~ dX) dy = f g(oo, y) - g(-oo, y) dy = 0, 

since g has compact support. Therefore, 

f dOJ = -f of dx dy = -f'" (f'" of dY) dx 
1i2 1i2 oy -'" 0 oy 

= - t: (f(x, 00) - f(x, 0)) dx 

= f'" f(x, 0) dx = i 'OJ 
-'" aH' 

Figure 3.2 
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where the last equality holds because the restriction of g(x, y)dy to OlHl2 is o. 
So Stokes' theorem holds for the upper half plane. 

The case of the upper half space in R" is entirely analogous. 

Exercise 3.6. Prove Stokes' theorem for the upper half space. 

We now consider the general case of a manifold of dimension n. Let {V II} 
be an oriented atlas for M and {PII} a partition of unity subordinate to 
{VII}. Write co= L PIiCO. Since Stokes' theorem JM dco = JeMCO is linear in co, 
we need to prove it only for PII co, which has the virtue that its support is 
contained entirely in V II. Furthermore, PII co has compact support because 

Supp PII co C Supp PII n Supp co 

is a closed subset of a compact set. Since V II is diffeomorphic to either R" or 
the upper half space IHI", by the computations above Stokes' theorem holds 
for V II. Consequently 

i dpllco= r dPllco=i Pllco=i p"co. 
M Ju. au. eM 

This concludes the proof of Stokes' theorem in general. 

§4 Poincare Lemmas 

The Poincare Lemma for de Rham Cohomology 

In this section we compute the ordinary cohomology and the compactly 
supported cohomology of R". Let 1t: R" x Rl - R" be the projection on 
the first factor and s : R" _ R" X Rl the zero section. 

n*(R" x Rl) 

,·l1·· 
R" n*(R") 

7t{x, t) = x 
s(x) = (x, 0) 

We will show that these maps induce inverse isomorphisms in cohomology 
and therefore H*(R"+ 1) ~ H*(R"). As a matter of convention all maps are 
assumed to be COO unless otherwise specified. 

Since 1t 0 s = 1, we have trivially s* 0 1t* = 1. However s 0 1t :#: 1 and 
correspondingly 1t* 0 s* :#: 1 on the level of forms. For example, 1t* 0 s* 
sends the functionf(x, t) to f(x, 0), a function which is constant along every 
fiber. To show that 1t* 0 s* is the identity in cohomology, it is enough to 
find a map K on n*(R" x Rl) such that 

1 - 1t* 0 s* = ±(dK ± Kd), 
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for dK ± Kd maps closed forms to exact forms and therefore induces zero 
in cohomology. Such a K is called a homotopy operator; if it exists, we say 
that n* a s* is chain homotopic to the identity. Note that the homotopy 
operator K decreases the degree by 1. 

Every form on IRft x IR is uniquely a linear combination of the following 
two types offorms: 

(I) (n*</»f(x, t), 
(II) (n*c/J)f(x, t) dt, 

where </> is a form on the base IRft. We define K : nq(lRft x IR)-+ 
n q - 1(lRft x IR) by 

(I) (n*</»f(x, t) ~ 0, 
(II) (n*</»f(x, t) dt ~ (n*</» J~ f 

Let's check that K is indeed a homotopy operator. We will use the 
simplified notation aflax dx for L aflaxi dxj, and Jg for Jg(x, t) dt. On forms 
of type (I), 

w = (n*</» . f(x, t), deg w = q, 

(1 - n*s*)w = (n*</» . f(x, t) - n*</> . f(x, 0), 

(dK - Kd)w = -Kdw = -K(dn*</»f + (-1)qn*</> (:~ dx + ~ dt)) 

= (-1)q-1n*</> f: ~ = (-1)q-1 n*</>[f(X, t) - f(x, 0)]. 

Thus, 

(1 - n*s*)w = (_1)q-1(dK - Kd)w. 

On forms of type (II), 

w = (n*</>)f dt, deg w = q, 

dw = (n* d</»f dt + (-l)q-1(n*</» :: dx dt. 

(1 - n*s*)w = w because s*(dt) = d(s*t) = d(O) = O. 

Kdw = (n* d</» If + (-l)q-1(n*</» dx I' af , Jo Jo ax 

dKw = (n* d</» if + (-l)q-1(n*</>{ dX(J: :~) + f dtJ. 

Thus 

(dK - Kd)w = (-1)q-1W • 
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In either case, 

1 - n* 0 s* = (-I)q-1(dK - Kd) 

This proves 

n' 
Proposition 4.1. The maps H*(~n x ~1) f:; H*(~n) are isomorphisms. 

s· 

By induction, we obtain the cohomology of ~n. 

Corollary 4.1.1 (Poincare Lemma). 

. {~ H*(~n) = H*(pomt) = 0 

Consider more generally 

M X ~1 

n 1 r s 
M 

in dimension 0 
elsewhere. 

35 

If {U«} is an atlas for M, then {U« X ~1} is an atlas for M x ~1. Again 
every form on M x ~1 is a linear combination of the two types of forms (I) 
and (II). We can define the homotopy operator K as before and the proof 
carries over word for word to show that H*(M x ~1) ~ H*(M) is an iso
morphism via n* and s*. 

Corollary 4.1.2 (Homotopy Axiom for de Rham Cohomology). Homotopic 
maps induce the same map in cohomology. 

PROOF. Recall that a homotopy between two mapsfand g from M to N is a 
map F : M x ~1 -+ N such that 

{ F(X, t) = f(x) for t ~ 1 

F(x, t) = g(x) for t:S O. 

Equivalently if So and S1 : M -+ M X ~1 are the O-section and I-section 
respectively, i.e., S1(X) = (x, 1), then 

Thus 

f= F 0 S1, 
g = F 0 so. 

f* = (F 0 S1)* = sf 0 F*, 

g* = (F 0 so)* = s~ 0 F*. 

Since sf and s~ both invert n*, they are equal. Hence, 

f* = g*. D 
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Two manifolds M and N are said to have the same homotopy type in the 
COO sense if there are Coo maps f : M -+ Nand g : N -+ M such that g 0 f 
and fog are Coo homotopic to the identity on M and N respectively.· A 
manifold having the homotopy type of a point is said to be contractible. 

Corollary 4.1.2.1. Two manifolds with the same homotopy type have the same 
de Rham cohomology. 

If i : A c M is the inclusion and r : M -+ A is a map which restricts to 
the identity on A, then r is called a retraction of M onto A. Equivalently, 
r 0 i : A -+ A is the identity. If in addition i 0 r : M -+ M is homotopic to 
the identity on M, then r is said to be a deformation retraction of M onto A. 
In this case A and M have the same homotopy type. 

Corollary 4.1.2.2. If A is a deformation retract of M, then A and M have the 
same de Rhcim cohomology. 

Exercise 4.2. Show that r : 1R2 - {O} -+ S1 given by r(x) = xl II x II is a defor
mation retraction. 

Exercise 4.3. The cohomology of the n-sphere SIt. Cover SIt by two open sets 
U and V where U is slightly larger than the northern hemisphere and V 
slightly larger than the southern hemisphere (Figure 4.1). Then U n V is 
diffeomorphic to S,,-1 x 1R1 where S,,-1 is the equator. Using the Mayer
Vietoris sequence, show that 

H.(S") = {IR in dim~nsions 0, n 
o otherwIse. 

We saw previously that a generator of H1(S1) is a bump I-form on S1 
which gives the isomorphism H1(S1) ~ 1R1 under integration (see Figure 

Figure 4.1 

• In fact two manifolds have the same homotopy type in the C'" sense if and only if they have 
the same homotopy type in the usual (continuous) sense. This is because every continuous 
map between two manifolds is continuously homotopic to a C'" map (see Proposition 17.8). 
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Figure 4.2 

4.2). This bump I-form propagates by the boundary map of the Mayer
Vietoris sequence to a bump 2-form on S2, which represents a generator of 
H2(S2). In general a generator of Hft(Sft) can be taken to be a bump n-form 
on Sft. 

Exercise 4.3.1 Volume form on a sphere. Let Sft(r) be the sphere of radius r 

xf + ... + X~+ 1 = r2 

in IRft+1, and let 

1 n+l 
~ . 1 A 

(J) = - t.... (-1)'- Xi dX1 ... dx, ... dxft + l' 
r i=1 

(a) Write sn for the unit sphere sn(I). Compute the integral IS" (J) and 
conclude that (J) is not exact. 

(b) Regarding r as a function on IRft + 1 - 0, show that (dr)· (J) = dX1 ... 
dXn + l' Thus (J) is the Euclidean volume form on the sphere Sft(r). 

From (a) we obtain an explicit formula for the generator of the top 
cohomology of Sft (although not as a bump form). For example, the gener
ator of H2(S2) is represented by 

1 
(1 = 41t (Xl dX2 dX3 - X2 dXl dX3 + X3 dXl dX2)' 

The Poincare Lemma for Compactly Supported Cohomology 

The computation of the compactly supported cohomology H:(IR") is again 
by induction; we will show that there is an isomorphism 

H:+l(lRft x 1R1) ~ H:(lRn). 

Note that here, unlike the previous case, the dimension is shifted by one. 
More generally consider the projection 1t : M x 1R1 -+ M. Since the pull

back of a form on M to a form on M x 1R1 necessarily has noncompact 
support, the pullback map 1t* does not send n:(M) to n:(M x 1R1). How
ever, there is a push-forward map 1t* : n:(M x 1R1)-+ n:-1(M), called inte
gration along the fiber, defined as follows. First note that a compactly 
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supported form on M x /R 1 is a linear combination of two types of forms: 

(I) 7t*4J ·/(x, t), 
(II) 7t*4J ·/(x, t) dt, 

where 4J is a form on the base (not necessarily with compact support), and 
I(x, t) is a function with compact support. We define 7t* by 

(I) 7t*4J ·/(x, t) ~ 0, 

(4.4) 
(II) 7t*4J ·/(x, t) dt ~ 4J t:/(X, t) dt. 

Exercise 4.5. Show that d7t* = 7t*d; in other words, 7t* : n~(M x /R 1)-+ 

n~ -l(M) is a chain map. 

By this exercise 7t", induces a map in cohomology 7t* : H~ -+ H~ -1. To 
produce a map in the reverse direction, let e = e(t) dt be a compactly sup
ported I-form on /R 1 with total integral 1 and define 

e* : n~(M) -+ n~+ l(M x /R 1) 

by 

</>>-+ ('IT*</» /\ e. 

The map e* clearly commutes with d, so it also induces a map in cohomol
ogy. It follows directly from the definition that 7t* 0 e* = 1 on n~(/Rn). Al
though e* 0 7t* :F 1 on the level of forms, we shall produce a homotopy 
operator K between 1 and e* 0 7t* ; it will then follow that e* 0 7t* = 1 in 
cohomology. 

To streamline the notation, write 4J . I for 7t*4J ·/(x, t) and Sf for 
Sf(x, t) dt. The homotopy operator K: n~(M x /R 1) -+ n: -l(M x /R 1) is 
defined by 

(I) 4J . I ~ 0, 

(II) 4J . I dt ~ 4J f <XlI - 4JA(t) t:1 where A(t) = f <Xl e. 

Proposition 4.6. 1 - e*7t* = (_l)q-l(dK - Kd) on n~(M x /Rl). 

PROOF. On forms of type (I), assuming deg 4J = q, we have 

(1 - e* 7t*)4J . 1= 4J . I, 

(dK - Kd)4J . I = 1 K( d4J . 1+ ( - 1 )q4J :~ dx + ( - l)q 4J ~~ dt) 

=(~l)q-l(4Jfl al - 4JA(t)f<Xl aJ\ 
- <Xl at - <Xl at) 

= (-I)q- l4Jf [Here f"'<Xl: =/(x, (0) - I(x, -(0) = o.J 
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So 

1 - e. 1t. = (_l)q-l(dK - Kd). 

On forms of type (II), now assuming deg ¢ = q - 1, we have 

(1 - e. 1t.)¢f dt = ¢f dt - ¢( L:f) /\ e, 

(dK)(r/Jf dt) = (dr/J) It f + ( _l)q-l r/J (It af ) dx + ( -1)q-lr/Jf dt 
-00 -00 ax 

- (d¢)A(t) Loooo f - (_l)q-l¢ [e L:f + A(t)(L: ~DdX ] 

(Kd)(¢fdt) = K((d¢) ·fdt + (_l)q-l¢ ~~ dx dt) 

= (d¢) f oof - (d¢)A(t) L:f 

+ (_l)q-l [r/J(foo !) dx - r/JA(t)(f: !) dx 1 
So 

and the formula again holds. 

This concludes the proof of the following 

Proposition 4.7. The maps 

". H~(M x 1R1)~H~-1(M) . e. 
are isomorphisms. 

Corollary 4.7.1 (Poincare Lemma for Compact Supports). 

H~(lRn) = {IR in dime.nsion n 
o otherwIse. 

o 

Here the isomorphism H~(lRn) ~ IR is given by iterated 1t., i.e., by inte
gration over IRn. 

To determine a generator for H~(lRn), we start with the constant function 
1 on a point and iterate with e •. This gives e(xl) dXl e(x2) dX2 ... e(xn) dxn. 
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So a generator for H~(lR") is a bump n-form oc(x) dXl ... dx" with 

[ oc(x) dXl ". dx" = 1. 
JR' 

The support of oc can be made as small as we like. 

REMARK. This Poincare lemma shows that the compactly supported coho
mology is not invariant under homotopy equivalence, although it is of 
course invariant under diffeomorphisms. 

Exercise 4.8. Compute the cohomology groups H*(M) and Hi(M) of the 
open Mobius strip M, i.e., the Mobius strip without the bounding edge 
(Figure 4.3). [Hint: Apply the Mayer-Vietoris sequences.] 

The Degree of a Proper Map 

As an application of the Poincare lemma for compact supports we intro
duce here a COO invariant of a proper map between two Euclidean spaces of 
the same dimension. Later, after Poincare duality, this will be generalized to 
a proper map between any two oriented manifolds; for compact manifolds 
the properness assumption is of course redundant. 

Let f : IR" ~ IR" be a proper map. Then the pullback f* : H~(IR") ~ 
H~(IR") is defined. It carries a generator of H~(IR"), i.e., a compactly sup
ported closed form with total integral one, to some multiple of the gener
ator. This multiple is defined to be the degree of f If oc is a generator of 
H~(IR"), then 

degf = [ f*a.. 
JR' 

A priori the degree of a proper map is a real number; surprisingly, it turns 
out to be an integer. To see this, we need Sard's theorem. Recall that a 
critical point of a smooth map f: IRm ~ IRm is a point p where the differ
ential (f*)p : Tp IR" ~ TJ(p)lR" is not surjective, and a critical value is the 
image of a critical point. A point of IR" which is not a critical value is called 
a regular value. According to this definition any point of IR" which is not in 
the image off is a regular value so that the inverse image of a regular value 
may be empty. 

tlllllllill 
Figure 4.3 
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Theorem 4.9 (Sard's Theorem for IRn). The set of critical values of a smooth 
map f : IRm --+ IRn has measure zero in IRn for any integers m and n. 

This means that given any 6 > 0, the set of critical values can be covered 
by cubes with total volume less than 6. Important special cases of this 
theorem were first published by A. P. Morse [1]. Sard's proof of the general 
case may be found in Sard [1]. 

Proposition 4.10 Let f: IRn --+ IRn be a proper map. Iff is not surjective, then 
it has degree O. 

PROOF. Since the image of a proper map is closed (why?), iffmisses a point 
q, it must miss some neighborhood U of q. Choose a bump n-form ex whose 
support lies in U. Thenf*ex == 0 so that degf = O. 0 

Exercise 4.10.1. Prove that the image of a proper map is closed. 

So to show that the degree is an integer we only need to look at surjec
tive proper maps from IRn to IR". By Sard's theorem, almost all points in the 
image of such a map are regular values. Pick one regular value, say q. By 
hypothesis the inverse image of q is nonempty. Since in our case the two 
Euclidean spaces have the same dimension, the differential f* is surjective if 
and only if it is an isomorphism. So by the inverse function theorem, 
around any point in the pre-image of q, f is a local diffeomorphism. It 
follows that f -l(q) is a discrete set of points. Since f is proper, f - l(q) is in 
fact a finite set of points. Choose a generator ex of H~(lRn) whose support is 
localized near q. Then f*a is an n-form whose support is localized near the 
points of f - l(q) (see Figure 4.4). As noted earlier, a diffeomorphism pre
serves an integral only up to sign, so the integral of f*ex near each point of 
f -l(q) is ± 1. Thus 

i f*ex = L ± 1. Jw f- l(q) 

This proves that the degree of a proper map between two Euclidean spaces of 
the same dimension is an integer. More precisely, it shows that the number of 

~--
-"-- ~1l A ___ -- --
~-_:/ 

Figure 4.4 
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points, counted with multiplicity ± 1, in the inverse image of any regular value 
is the same for all regular values and that this number is equal to the degree of 
the map. 

Sard's theorem for IR", a key ingredient of this discussion, has a natural 
extension to manifolds. We take this opportunity to state Sard's theorem in 
general. A subset S of a manifold M is said to have measure zero if it can be 
covered by countably many coordinate open sets Ui such that ePiCS n Ui) 
has measure zero in IR"; here ePi is the trivialization on U i' A critical point of 
a smooth map f : M -+ N between two manifolds is a point p in M where 
the differential (f.)p : Tp M -+ Tf(p)N is not surjective, and a critical value is 
the image of a critical point. 

Theorem 4.11 (Sard's Theorem). The set of critical values of a smooth map 
f : M -+ N has measure zero. 

Exercise 4.11.1. Prove Theorem 4.11 from Sard's theorem for IR". 

§5 The Mayer-Vietoris Argument 

The Mayer-Viet oris sequence relates the cohomology of a union to those of 
the subsets. Together with the Five Lemma, this gives a method of proof 
which proceeds by induction on the cardinality of an open cover, called the 
Mayer-Vietoris argument. As evidence of its power and versatility, we derive 
from it the finite dimensionality of the de Rham cohomology, Poincare 
duality, the Ktinneth formula, the Leray-Hirsch theorem, and the Thorn 
isomorphism, all for manifolds with finite good covers. 

Existence of a Good Cover 

Let M be a manifold of dimension n. An open cover U = {Va} of M is 
called a good cover if all nonempty finite intersections Vao () . .. () Va are 
diffeomorphic to R". A manifold which has a finite good cover is said to be 
of finite type. 

Theorem 5.1. Every manifold has a good cover. If the manifold is compact, 
then the cover may be chosen to be finite. 

To prove this theorem we will need a little differential geometry. A 
Riemannian structure on a manifold M is a smoothly varying metric ( , ) 
on the tangent space of M at each point; it is smoothly varying in the 
following sense: if X and Yare two smooth vector fields on M, then 
(X, Y) is a smooth function on M. Every manifold can be given a 
Riemannian structure by the following splicing procedure. Let {U .. } be a 
coordinate open cover of M, ( , ) .. a Riemannian metric on U .. , and {PII} a 
partition of unity subordinate to {Va}' Then < , ) = Epi , )/1. is 
a Riemannian metric on M. 
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PROOF OF THEOREM 5.1. Endow M with a Riemannian structure. Now we 
quote the theorem in differential geometry that every point in a Riemannian 
manifold has a geodesically convex neighborhood (Spivak [1, Ex. 32(f), p. 
491]). The intersection of any two such neighborhoods is again geodesically 
convex. Since a geodesically convex neighborhood in a Riemannian mani
fold of dimension n is diffeomorphic to IRn, an open cover consisting of 
geodesically convex neighborhoods will be a good cover. 0 

Given two covers U = {Ua}aEl and m = {Vp},8EJ> if every Vp is con
tained in some Ua' we say that m is a refinement of U and write U < m. To 
be more precise we specify a refinement by a map cp: J -+ I such that 
Vp C Uf/>(P)' By a slight modification of the above proof we can show that 
every open cover on a manifold has a refinement which is a good cover: simply 
take the geodesically convex neighborhoods around each point to be inside 
some open set of the given cover. 

A directed set is a set I with a relation < satisfying 

(a) (reflexivity) a < a for all a E I. 
(b) (transitivity) if a < band b < c, then a < c. 
(c) (upper bound) for any a, bEl, there is an element c in I such that 

a < c and b < c. 

The set of open covers on a manifold is a directed set, since any two open 
covers always have a common refinement. A subset J of a directed set I is 
cofinal in I if for every i in I there is a j in J such that i <j. It is clear 
that J is also a directed set. 

Corollary 5.2. The good covers are co final in the set of all covers of a 
manifold M. 

Finite Dimensionality of de Rham Cohomology 

Proposition 5.3.1. If the manifold M has afinite good cover, then its cohomol
ogy is finite dimensional. 

PROOF. From the Mayer-Vietoris sequence 

we get 

Hq(U u V) ~ ker rEBim r ~ im d*EBim r. 
Thus, 
(*) if Hq(U), Hq(V) and HQ-l(U n V) are finite-dimensional, then so is 
Hq(Uu V). 

For a manifold which is diffeomorphic to IRn, the finite dimensionality of 
H*(M) follows from the Poincare lemma (4.1.1). We now proceed by induc
tion on the cardinality of a good cover. Suppose the cohomology of any 
manifold having a good cover with at most p open sets is finite dimensional. 
Consider a manifold having a good cover {U 0, ... , Up} with p + 1 open 
sets. Now (U 0 u ... u Up-i) n Up has a good cover with p open sets, 
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namely {Uo" Ul" ... , U,-l,,}. By hypothesis, the qth cohomology of 
Uo u ... U U,-h U, and (Uo u ... u U,-l) ("\ U, are finite dimensional; 
from Remark (*), so is the qth cohomology of U 0 u ... u U,. This com
pletes the induction. 0 

Similarly, 

Proposition 5.3.2. If the manifold M has a finite good cover, then its compact 
cohomology is finite dimensional. 

Poincare Duality on an Orientable Manifold 
A pairing between two finite-dimensional vector spaces 

(,):V®W-R 

is said to be nondegenerate if (v, w) = 0 for all w E W implies v = 0 and 
(v, w) = 0 for all v E V implies w = 0; equivalently, the map v ..... (v, ) 
should define an injection V ~ W * and the map w ..... ( ,w) also defines an 
injection W ~ V * . 
Lemma. Let V and W be finite-dimensional vector spaces. The pairing 
( , >: V ® W - R is nondegenerate if and only if the map v ..... (v, > defines 
an isomorphism V ~ W *. 
PROOF. ( =) Since V ~ W * and W ~ V * are injective, 

dim V s: dim W* = dim W s: dim V* = dim V; 
hence, dim V = dim W * and V ~ W * must be an isomorphism. 
(<=) is left to the reader. 0 

Because the wedge product is an antiderivation, it descends to cohomol
ogy; by Stokes' theorem, integration also descends to cohomology. So for 
an oriented manifold M there is a pairing 

f: Hq(M)® H~-q(M) - R 

given by the integral of the wedge product of two forms. Our first version 
of Poincare duality asserts that this pairing is nondegenerate whenever M is 
orientable and has a finite good cover; equivalently, 

(5.4) 

Note that by (5.3.1) and (5.3.2) both Hq(M) and H(?-q(M) are finite
dimensional. 

A couple of lemmas will be needed in the proof of Poincare duality. 

Exercise 5.5. Prove the Five Lemma: given a commutative diagram of 
Abelian groups and group homomorphisms 

11 12 13 14 
... ----+ A ----+ B -- C --D -- E----+ ... 

. . . ----+ A' ----+ B' ----+ C' ----+ D' -- E' -- ... 
1'. f~ f~ f~ 
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in which the rows are exact, if the maps IX, p, band E are isomorphisms, then 
so is the middle one y. 

Lemma 5.6. The two Mayer- Vietoris sequences (2.4) and (2.8) may be paired 
together to form a sign-commutative diagram 

d 
... ~ H~-q(U u V)~ H~-q(U)EB H~-'(V)---H~-'(U n V)~ H~-'-I(U U V) 

lIuv lI+l lInv lIuv 

Here sign-commutativity means, for instance, that 

I w 1\ d* r = ± I (d*w) 1\ r, 
Ju n v Ju u v 

for w E Hq(U n V), r E H~-q-l(U u V). This lemma is equivalent to 
saying that the pairing induces a map from the upper exact sequence to the 
dual of the lower exact sequence such that the following diagram is sign
commutative: 

~ Hq(UU V) ~ Hq(U)eHq(V) ~ Hq(Un V) ~ 

! ! ! 
~ H;.,-q(Uu V)* ~ H,~-q(U)* e H,~-q(V)* ~ H,~-q(Un V)* ~ 

PROOF. The first two squares are in fact commutative as is straightforward 
to check. We will show the sign-commutativity of the third square. 

Recall from (2.5) and (2.7) that d*w is a form in Hq+ l(U U V) such that 

d*wlu = -d(pv w) 

d*wlv = d(pu w), 

and d* r is a form in H~-q(U n V) such that 

(-(extension by 0 of d* r to U), (extension by 0 of d* r to V» 

= (d(pu r), d(pv r». 

Note that d(py r) = (dpy)r because r is closed; similarly, d(py w) = (dpy)w. 

r wl\d*r= I wl\(dpv)r=(-1)de8 w r (dpv)w1\ r. 
JUnV JUnV JUnV 

Since d*w has support in U n V, 

I d*wl\r = _ r (dpv)wl\r. 
Ju u v Ju n v 
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Therefore, 

r wAd*'t = (_I)dell co+l r d*wA't. 
JUnY Juu Y 

o 

By the Five Lemma if Poincare duality holds for U, V, and U II V, then 
it holds for U u V. We now proceed by induction on the cardinality of a 
good cover. For M diffeomorphic to IRn, Poincare duality follows from the 
two Poincare lemmas 

and 

H*(lRn) = {IR in dimension 0 
o elsewhere 

H*(lRn) = {IR in dimension n 
c 0 elsewhere. 

Next suppose Poincare duality holds for any manifold having a good cover 
with at most p open sets, and consider a manifold having a good cover 
{Uo, ... , Up} with p + 1 open sets. Now (Uo u ... u Up- l) II Up has a 
good cover with p open sets, namely {Uop , U lp' ... , Up-l,p}' By hypothesis 
Poincare duality holds for Uo u ... u Up-to Up, and (UO u ... u Up- l) 
II Up, so it holds for U 0 u ... u Up _ 1 U Up as well. This induction argu
ment proves Poincare duality for any orientable manifold having a finite 
good cover. 0 

REMARK 5.7. The finiteness assumption on the good cover is in fact not 
necessary. By a closer analysis of the topology of a manifold, the Mayer
Vietoris argument above can be extended to any orientable manifold 
(Greub, Halperin, and Vanstone [1, p. 198 and p. 14]). The statement is as 
follows: if M is an orientable manifold of dimension n, whose cohomology is 
not necessarily finite dimensional, then 

Hq(M) ~ (H~-q(M»* , for any integer q. 

However, the reverse implication H~(M) ~ (Hn-"(M»* is not always true. 
The asymmetry comes from the fact that the dual of a direct sum is a direct 
product, but the dual of a direct product is not a direct sum. For example, 
consider the infinite disjoint union 

where the M;'s are all manifolds of finite type of the same dimension n. 
Then the de Rham cohomology is a direct product 

(5.7.1) Hq(M) = n Hq(M j ), 

j 
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but the compact cohomology is a direct sum 

(5.7.2) H~(M) = EB H~(MI)' 
I 

Taking the dual of the compact cohomology H~(M) gives a direct product 

(5.7.3) (H~(M»· = n H~(MI)' 
I 

So by (5.7.1) and (5.7.3), it follows from Poincare duality for the manifolds 
of finite type M;, that 

Corollary 5.S. If M is a connected oriented manifold of dimension n, then 
H~(M) ~ lit In particular if M is compact oriented and connected, 
H"(M) ~ Ilit 

Let f : M - N be a map between two compact oriented manifolds of 
dimension n. Then there is an induced map in cohomology 

f* : H"(N) - H"(M). 

The degree off is defined to be JM j*w, where w is the generator of H"(N). 
By the same argument as for the degree of a proper map between two 
Euclidean spaces, the degree of a map between two compact oriented mani
folds is an integer and is equal to the number of points, counted with 
multiplicity ± 1, in the inverse image of any regular point in N. 

The Kiinneth Formula and the Leray-Hirsch Theorem 

The Kiinneth formula states that the cohomology of the product of two 
manifolds M and F is the tensor product 

(5.9) H*(M x F) = H*(M) ® H*(F). 

This means 

H"(M x F} = E9 HP(M} ® Hq(F} for every nonnegative integer n. 

More generally we are interested in the cohomology of a fiber bundle. 

Definition. Let G be a topological group which acts effectively on a space F 
on the left. A surjection 'fT: E --+ B between topological spaces is a fiber 
bundle with fiber F and structure group G if B has an open cover {U .. } such 
that there are fiber-preserving homeomorphisms 
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and the transitions functions are continuous functions with values in G: 

g«,lx) = ljJ« ljJji 1 I{x) x F E G. 

Sometimes the total space E is referred to as the fiber bundle. A fiber bundle 
with structure group G is also called a G-bundle. If x E B, the set 
Ex = n-1(x) is called the fiber at x. 

Since we are working with de Rham theory, the spaces E, B, and F will 
be assumed to be Coo manifolds and the maps Coo maps. We may also speak 
of a fiber bundle without mentioning its structure group; in that case, the 
group is understood to be the group of diffeomorphisms of F, denoted 
Diff(F). 

REMARK. The action of a group G on a space F is said to be effective if the 
only element of G which acts trivially on F is the identity, i.e., if 9 . Y = Y 
for all y in F, then 9 = 1 E G. In the Coo case, this is equivalent to saying 
that the kernel of the natural map G --. Diff(F) is the identity or that G is a 
subgroup of Diff(F), the group of diffeomorphisms of F. In the definition of 
a fiber bundle the action of G on F is required to be effective in order that 
the diffeomorphism 

ljJ«ljJji11{X)XF 

of F can be identified unambiguously with an element of G. 

The transition functions g«/I : U« (') U /I --. G satisfy the cocycle condi
tion .' 

g«/I . g/ly = g«y. 

Given a cocycle {g«/I} with values in G we can construct a fiber bundle E 
having {g«/I} as its transition functions by setting 

(5.10) E=(llua xF)/(x,y)-(x,9«p(x)y) 

for (x, y) in U /I x F and (x, g«/I(x)y) in U« X F. 

The following proof of the Kiinneth formula assumes that M has a finite 
good cover. This assumption is necessary for the induction argument. 

The two natural projections 

give rise to a map on forms 

w ® ljJ 1-+ n*w 1\ p*ljJ 
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which induces a map in cohomology (exercise) 

y, : H*(M) ® H*(F) - H*(M x F). 

We will show that '" is au isomorphism. 
If M = R m, this is simply the Poincare lemma. 
In the following we will regard M x F as a product bundle over M. Let 

U and V be open sets in M and n a fixed integer. From the Mayer-Vietoris 
sequence 

... -+ H'(U u V) - H'(U) $H'(V) -+ H'(U n V) ... 

we get an exact sequence by tensoring with Hn-'(F) 

... -+ H'(U u V)®Hn-'(F)_ (H'(U)®Hn-'(F»aHH'(V)®H"-'(F» 

- H'(U n V) ® H"-'(F) -+ ... 

since tensoring with a vector space preserves exactness. Summing over all 
integers p yields the exact sequence 

II 

... -+ liB H'(U u V) ® Hn-'(F) 
,=0 

" -+ liB (H'(U) ® Hn-'(F» $ (H'(V) ® Hn-'(F» 
,=0 

n 

-+ liB H'(U n V) ® H"-'(F) -+ 
,=0 

The following diagram is commutative 

p=o 

H"((Uu V) X F)-----+' H"(U x F) ffi H"(V x F) -----+, H"((U n V) x F) 

The commutativity is clear except possibly for the square 

d· 
Hn«u n V) x F) -------+. H,,+l«UU V) x F), 

which we now check. Let w ® cP be in H'( U n V) ® Hn - '(F). Then 

y,d*(w ® cP) = n*(d*w) 1\ p*cP 

d*y,(w ® cP) = d*(n*w 1\ p*cP)· 
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Recall from (2.5) that if {Pu, Pv} is a partition of unity subordinate to 
{U, V} then 

d*w = {-d(PVW) on U 
d(puw) on V. 

Since the pullback functions {n* Pu, n* Pv} form a partition of unity on 
(U u V) x F subordinate to the cover {U x F, V x F}, on (U (') V) x F 

d*(n*w A p*4J) = d«n*pu)n*w A p*4J) 
= (dn*(pu w» A p*4J since 4J is closed 
= n*(d*w) A p*4J. 

So the diagram is commutative. 
By the Five Lemma if the theorem is true for U, V, and U (') V, then it is 

also true for U u V. The Kiinneth formula now follows by induction on 
the cardinality of a good cover, as in the proof of Poincare duality. D 

Let n : E -. M be a fiber bundle with fiber F. Suppose there are coho
mology classes eto ... , e, on E which restrict to a basis of the cohomology 
of each fiber. Then we can define a map 

"': H*(M)® R{eto ... , e,} -. H*(E). 

The same argument as the Kiinneth formula gives 

Theorem 5.11 (Leray-Hirsch). Let E be a fiber bundle over M with fiber F. 
Suppose M has a finite good cover. If there are global cohomology classes 
eto ... , e, on E which when restricted to each fiber freely generate the cohomol
ogy of the fiber, then H*(E) is a free module over H*(M) with basis {el' ... , 
e,}, i.e. 

H*(E) ~ H*(M)@R{eto ... , e,} ~ H*(M)@H*(F). 

Exercise 5.12 Kunneth formula for compact cohomology. The Kiinneth for
mula for compact cohomology states that for any manifolds M and N 
having a finite good cover. 

H:(M x N) = H:(M) ® H:(N). 

(a) In case M and N are orientable, show that this is a consequence of 
Poincare duality and the Kiinneth formula for de Rham cohomology. 

(b) Using the Mayer-Vietoris argument prove the Kiinneth formula for 
compact cohomology for any M and N having a finite good cover. 

The Poincare Dual of a Closed Oriented Submanifold 

Let M be an oriented manifold of dimension nand S a closed oriented 
submanifold of dimension k; here by "closed" we mean as a subspace of M. 
Figure 5.1 is a closed submanifold of R2 - {O}, but Figure 5-2 is not. To 
every closed oriented submanifold i : S,+ M of dimension k, one can associ-
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ate a unique cohomology class ['1s] in Hn-k(M), called its Poincare dual, as 
follows. Let ro be a closed k-form with compact support on M. Since S is 

Figure 5.1 Figure 5.2 

closed in M, SupP(rols) is closed not only in S, but also in M. Now because 
Supp(rols) c (Supp ro) n S is a closed subset of a compact set, i*ro also has 
compact support on S, so the integral Js i*ro is defined. By Stokes's theorem 
integration over S induces a linear functional on H~(M). It follows by 
Poincare duality: (H~(M))* ~ Hn-k(M), that integration over S corresponds 
to a unique cohomology class ['1s] in Hn-k(M). We will often call both the 
cohomology class ['1s] and a form representing it the Poincare dual of S. By 
definition the Poincare dual '1s is the unique cohomology class in Hn-k(M) 
satisfying 

(5.13) Is i*ro = L ro 1\ '1s 

for any ro in H:(M). 
Now suppose S is a compact oriented submanifold of dimension k in M. 

Since a compact subset of a Hausdorff space is closed, S is also a closed 
oriented submanifold and hence has a Poincare dual'1s E Hn-k(M). This'1s 
we will call the closed Poincare dual of S, to distinguish it from the compact 
Poincare dual to be defined below. Because S is compact, one can in fact 
integrate over S not only k-forms with compact support on M, but any 
k-form on M. In this way S defines a linear functional on Hk(M) and so by 
Poincare duality corresponds to a unique cohomology class ['1s] in 
H~-k(M), the compact Poincare dual of S. We must assume here that M has 
a finite good cover; otherwise, the duality (Hk(M))* ~ H~-k(M) does not 
hold. The compact Poincare dual ['1s] is uniquely characterized by 

(5.14) Is i*ro = L ro 1\ '1s, 

for any ro E Hk(M). If (5.14) holds for any closed k-form ro, then it certainly 
holds for any closed k-form ro with compact support. So as a form, '1s is also 
the closed Poincare dual of S, i.e., the natural map H~-k(M) --+ Hn-k(M) 
sends the compact Poincare dual to the closed Poincare dual. Therefore we 
can in fact demand the closed Poincare dual of a compact oriented sub
manifold to have compact support. However, as cohomology classes, ['1s] E 

Hn-k(M) and ['1s] E H~-k(M) could be quite different, as the following 
examples demonstrate. 
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EXAMPLE 5.15 (The Poincare duals of a point P on /Il"). Since H"(/Il") = 0, 
the closed Poincare dual '1P is trivial and can be represented by any closed 
n-form on R", but the compact Poincare dual is the nontrivial class in 
H~(/Il") represented by a bump form with total integral 1. 

EXAMPLE-ExERCISE 5.16 (The ray and the circle in /Il2 - {O}). Let x, y be the 
standard coordinates and r, 0 the polar coordinates on /Il2 - {O}. 

(a) Show that the Poincare dual of the ray {(x, 0) I x> O} in /Il2 - {O} is 
dO/2n in H1(/Il2 - {O}). 

(b) Show that the closed Poincare dual of the unit circle in H1(/Il2 - {O}) 
is 0, but the compact Poincare dual is the nontrivial generator p(r)dr in 
H:(/Il2 - {O}) where p(r) is a bump function with total integral 1. (By a 
bump function we mean a smooth function whose support is contained in 
some disc and whose graph looks like a "bump".) 

Thus the generator of H1(/Il2 - {O}) is represented by the ray and the 
generator of H:(/Il2 - {O}) by the circle (see Figure 5.3). 

REMARK 5.17. The two Poincare duals of a compact oriented submanifold 
correspond to the two homology theories--closed homology and compact 
homology. Closed homology has now fallen into disuse, while compact 
homology is known these days as the homology of singular chains. In 
Example-Exercise 5.16, the generator of Hi, closed (/Il2 - {O}) is the ray, while 
the generator of Hi, compact (/Il2 - {O}) is the circle. (The circle is a boundary 
in closed homology since the punctured closed disk is a closed 2-chain in 
/Il2 - {O}.) In general Poincare duality sets up an isomorphism between 
closed homology and de Rham cohomology, and between compact homol
ogy and compact de Rham cohomology. 

Let S be a compact oriented submanifold of dimension k in M. If 
W c M is an open subset containing S, then the compact Poincare dual of 
Sin W, '1s, w E H~-k(W), extends by 0 to a form '1s in H~-k(M). '1s is clearly 
the compact Poincare dual of S in M because 

Is j*w = L w t\ '1s. w = L w t\ '1s . 

o o 
Figure 5.3 
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Thus, the support of the compact Poincare dual of S in M may be shrunk into 
any open neighborhood of S. This is called the localization principle. For a 
noncom pact closed oriented submanifold S the localization principle also 
holds. We will take it up in Proposition 6.25. 

In this book we will mean by the Poincare dual the closed Poincare dual. 
However, as we have seen, if the submanifold is compact, we can demand 
that its closed Poincare dual have compact support, even as a cohomology 
class in Hn-"(M). Of course, on a compact manifold M, there is no dis
tinction between the closed and the compact Poincare duals. 

§6 The Thorn Isomorphism 

So far we have encountered two kinds of C<XJ invariants of a manifold, de 
Rham cohomology and compactly supported cohomology. For vector bun
dles there is another invariant, namely, cohomology with compact support 
in the vertical direction. The Thorn isomorphism is a statement about this 
last-named cohomology. In this section we use the Mayer-Vietoris argu
ment to prove the Thorn isomorphism for an orientable vector bundle. We 
then explain why the Poincare dual and the Thorn class are in fact one and 
the same thing. Using the interpretation of the Poincare dual of a sub
manifold as the Thorn class of the normal bundle, it is easy to write down 
explicitly the Poincare dual, at least when the normal bundle is trivial. Next 
we give an explicit construction of the Thorn class for an oriented rank 2 
bundle, introducing along the way the global angular form and the Euler 
class. The higher-rank analogues will be taken up in Sections 11 and 12. We 
conclude this section with a brief discussion of the relative de Rham theory, 
citing the Thorn class as an example of a relative class. 

Vector Bundles and the Reduction of Structure Groups 

Let 1t: E -+ M be a surjective map of manifolds whose fiber 1t -1(X) is a 
vector space for every x in M. The map 1t is a C<XJ real vector bundle of rank 
n if there is an open cover {U II} of M and fiber-preserving diffeomorphisms 

tPrz: Elu. = 1t- 1(Urz) ~ Urz x IR" 

which are linear isomorphisms on each fiber. The maps 

tPII 0 tPi l : (Urz n Up) x IR" -+ (Urz n Up) x IR" 

are vector-space automorphisms of IR" in each fiber and hence give rise to 
maps 

gllP: Urz n Up -.:.... GL(n, IR) 

grzp(x) = tPrz tPP-I I{x)( R" • 

In the terminology of Section 5 a vector bundle of rank n is a fiber bundle 
with fiber IRn and structure group GL(n, IR). If the fiber is en and the 
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structure group is GL(n, q, the vector bundle is a complex vector bundle. 
Unless otherwise stated, by a vector bundle we mean a COO real vector 
bundle. 

Let V be an open set in M. A map s: V -. E is a section of the vector 
bundle E over V if 1t 0 s is the identity on V. The space of all sections over 
V is written qv, E). Note that every vector bundle has a well-defined 
global zero section. A collection of sections S1> ••• , Sft over an open set V in 
M is a frame on V if for every point x in V, S1(X), ... , Sft(x) form a basis of 
the vector space E" = 1t -1(X). 

The transition functions {9«/I} of a vector bundle satisfy the cocycle 
condition 

9«/1 0 9/11 = 9«1 on V« ('\ V/I ('\ V 1 • 

The cocycle {9«/I} depends on the choice of the trivialization. 

Lemma 6.1. If the cocycle {9~/I} comes from another trivialization {4>~}, then 
there exist maps l« : V« -. GL(n, ~) such that 

9«/1 = l«9~/llii1 on V« ('\ V/I' 

PROOF. The two trivializations differ by a nonsingular transformation of ~n 

at each point: 

4>« = l« 4>~ , l«: V« -. GL(n, ~). 

Therefore, 
,,/,. ,,/,. - 1 1,,/,.' ,,/,.' - 11 - 1 1 , 1 - 1 

9«/1 = '1'« '1'/1 ="'« '1'« '1'/1 "'/1 ="'« 9«/1"'/1 . o 

Two cocycles related in this way are said to be equivalent. 
Given a cocycle {9«/I} with values in GL(n, ~) we can construct a vector 

bundle E having {9«/I} as its cocycle as in (5.10). A homomorphism between 
two vector bundles, called a bundle map, is a fiber-preserving smooth map 
f : E -. E' which is linear on corresponding fibers. 

Exercise 6.2. Show that two vector bundles on M are isomorphic if and 
only if their cocycles relative to some open cover are equivalent. 

Given a vector bundle with cocycle {9«/I}, if it is possible to find an 
equivalent cocycle with values in a subgroup H of GL(n, ~), we say that the 
structure 9rouP of E may be reduced to H. A vector bundle is orientable if its 
structure group may be reduced to GL+(n, ~), the linear transformations of 
~n with positive determinant. A trivialization {(V«, 4>«)}ul on E is said to 
be oriented if for every ex and {J in I, the transition function 9«/1 has positive 
determinant. Two oriented trivializations {(V«, 4>«)}, {(Yp, "'/I)} are equival
ent if for every x in V« ('\ v" 4>« 0 ("'/I) -1(X) : ~n -. ~n has positive determi
nant. It is easily checked that this is an equivalence relation and that on a 
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connected manifold M it partitions all the oriented trivializations of the 
vector bundle E into two equivalence classes. Either equivalence class is 
called an orientation on the vector bundle E. 

EXAMPLE 6.3 (The tangent bundle). By attaching to each point x in a mani
fold M, the tangent space to M at x, we obtain the tangent bundle of M: 

TM = U T"M. 
"EM 

Let {(Vm' r/lJ} be an atlas for M. The diffeomorphism 

induces a map 

which gives a local trivialization of the tangent bundle TM • From this we 
see that the transition functions of TM are the lacobians of the transition 
functions of M. Therefore M is orientable as a manifold if and only if its 
tangent bundle is orientable as a bundle. (However, the total space of the 
tangent bundle is always orientable as a manifold.) If r/lm = (Xb ••• , xn), then 
fJ/fJx 1, ••• , fJ/fJxn is a frame for TM over Vm. In the language of bundles a 
smooth vector field on VIZ is a smooth section of the tangent bundle over VIZ' 

We now show that the structure group of every real vector bundle E may 
be reduced to the orthogonal group. First, we can endow E with a 
Riemannian structure-a smoothly varying positive definite symmetric 
bilinear form on each fiber-as follows. Let {V .. } be an open cover of M 
which trivializes E. On each V .. , choose a frame for Elu and declare it to be 
orthonormal. This defines a Riemannian structure on Elu. Let ( , ) .. 
denote this inner product on Elu. Now use a partition of ~nity {P .. } to 
splice them together, i.e., form a 

( , ) = Ep..( , ) ... 

This will be an inner product over all of M. 
As trivializations of E, we take only those maps !fI .. that send orthonor

mal frames of E (relative to the global metric ( , » to orthonormal frames 
of R "-such maps exist by the Gram-Schmidt process. Then the transition 
functions g.{J will preserve orthonormal frames and hence take values in 
the orthogonal group O( n). If the determinant of glZ{J is positive, glZ{J will 
actually be in the special orthogonal group SO(n). Thus 

Proposition 6.4. The structure group of a real vector bundle of rank n can 
always be reduced to O(n); it can be reduced to SO(n) if and only if the vector 
bundle is orientable. 
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Exercise 6.5. (a) Show that there is a direct product decomposition 

GL(n, IR) = O(n) x {positive definite symmetric matrices}. 

(b) Use (a) to show that the structure group of any real vector bundle 
may be reduced to O(n) by finding the Aa'S of Lemma 6.1. 

Operations on Vector Bundles 

Apart from introducing the functorial operations on vector bundles, our 
main purpose here is to establish the triviality of a vector bundle over a 
contractible manifold, a fact needed in the proof of the Thorn isomorphism. 

Functorial operations on vector spaces carryover to vector bundles. For 
instance, if E and E' are vector bundles over M of rank nand m respect
ively, their direct sum EEBE' is the vector bundle over M whose fiber at the 
point x in M is ExEBE~. The local trivializations {cPa} and {cP~} for E and E' 
induce a local trivialization for E EB E': 

Hence the transition matrices for E EB E' are 

( gafl ~). 
o gafl 

Similarly we can define the tensor product E ® E', the dual E*, and 
Hom(E, E'). Note that Hom(E, E') is isomorphic to E* ® E'. The tensor 
product E ® E' clearly has transition matrices {gafl ® g~fI}' but the tran
sition matrices for the dual E* are not so immediate. Recall that the dual 
V* of a real vector space V is the space of all linear functionals on V, i.e., 
V* ==: Hom(V, IR), and that a linear map /: V - W induces a map /1 : 
W* - V* represented by the transpose of the matrix of f If 

is a trivialization for E, then 

(cP~)-l : E*!u. ~ Va X (IR")* 

is a trivialization for E*. Therefore the transition functions of E* are 

(6.6) 

Let M and N be manifolds and n : E - M a vector bundle over M. Any 
map/: N - M induces a vector bundle/-IE on N, called the pullback 0/ 
E by f This bundle / -1 E is defined to be the subset of N x E given by 

{(n, e) I /(n) = n(e)}. 
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It is the unique maximal subset of N x E which makes the following di
agram commutative 

N • M. , 
The fiber of f - 1 E over a point y in N is isomorphic to E fly)' Since a 
product bundle pulls back to a product bundle we see thatf- 1E is locally 
trivial, and is therefore a vector bundle. Furthermore, if we have a com
position 

M" II .M' f M ---+. , 

then 

(fo g)-IE = g-I(f-lE). 

Let Vectk(M) be the isomorphism classes of rank k real vector bundles 
over M. It is a pointed set with base point the isomorphism class of the 
product bundle over M. Iff: M -+ N is a map between two manifolds, let 
Vec1t(f) =f- 1 be the pullback map on bundles. In this way, for each 
integer k, Vectk( ) becomes a functor from the category of manifolds and 
smooth maps to the category of pointed sets and base point preserving 
maps. 

REMARK 6.7 Let {U .. } be a trivializing open cover for E and g .. p the tran
sition functions. Then {f -1 U .. } is a trivializing open cover for f -1 E over N 
and (f -1 E) I,-Iu. ~ f -1(E luJ Therefore the transition functions for f -1 E 
are the pullback functions f*g .. p. 

A basic property of the pullback is the following. 

Theorem 6.8 (Homotopy Property of Vector Bundles). Assume Y to be a 
compact manifold. If fo and fl are homotopic maps from Y to a manifold X 
and E is a vector bundle on X, then f olE is isomorphic to f 11 E, i.e., homo
topic maps induce isomorphic bundles. 

PROOF. The problem of constructing an isomorphism between two vector 
bundles V and W of rank k over a space B may be turned into a problem in 
cross-sectioning a fiber bundle over B, as follows. Recall that 
Hom(V, W) = V* ® W is a vector bundle over B whose fiber at each point 
p consists of all the linear maps from Vp to W p' Define Iso(V, W) to be the 
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subset of Hom(V, W) whose fiber at each point consists of all the isomor
phisms from v" to W p. (This is like looking at the complement of the zero 
section of a line bundle.) Iso(V, W) inherits a topology from Hom(V, W), 
and is a fiber bundle with fiber GL(n, IR). An isomorphism between V and 
W is simply a section of Iso(V, W). 

Let f: Y x I - X be a homotopy between fo and fl' and let 
11:: Y x I - Y be the projection. Suppose for some to in I, f,~ 1 E is isomor
phic to some vector bundle F on Y. We will show that for all t near to, 
/,-1 E ~ F. By the compactness and connectedness of the unit interval I it will 
then follow that /,-1 E ~ F for all t in I. 

Over Y x I there are two pullback bundles, f- 1E and 1I:- 1F. Since 
f,~ 1 E ~ F, Iso(f -1 E, 11: -1 F) has a section over Y x to, which a priori is 
also a section of Hom(f - 1 E, 11: -1 F). Since Y is compact, Y x to may be 
covered with a finite number of trivializing open sets for Hom(f -1 E, 11: - 1 F) 
(see Figure 6.1). As the fibers of Hom(f- 1 E, 11:- 1 F) are Euclidean spaces, the 
section over Y x to may be extended to a section of Hom(f- 1E, 1I:- 1F) 
over the union of these open sets. Now any linear map near an isomor
phism remains an isomorphism; thus we can extend the given section of 
Iso(f - 1 E, 11: - 1 F) to a strip containing Y x to. This proves that f ,- 1 E ~ F 
for t near to. We now cover Y x I with a finite number of such strips. 
HencefolE ~ F ~fl1E. 0 

y 

Figure 6.1 

REMARK. If Y is not compact, we may not be able to find a strip of constant 
width over which Iso(f - 1 E, 11: - 1 F) has a section; for example the strip may 
look like Figure 6.2. 

But the same argument can be refined to give the theorem for Y a paracom
pact space. See, for instance, Husemoller [1, Theorem 4.7, p. 29]. Recall that 
Y is said to be paracompact if every open cover U of Y has a locally finite 
open refinement U', that is, every point in Y has a neighborhood which 
meets only finitely many open sets in U'. A compact space or a discrete 
space are clearly paracompact. By a theorem of A. H. Stone, so is every 
metric space (Dugundji [1, p. 186]). More importantly for us, every mani
fold is paracompact (Spivak [1, Ch. 2, Th. 13, p. 66]). Thus the homotopy 
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y 

Figure 6.2 
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property of vector bundles (Theorem 6.8) actually holds over any manifold 
Y, compact or not. 

Corollary 6.9. A vector bundle over a contractible manifold is trivial. 

PROOF. Let E be a vector bundle over M and letfand g be maps 

I 
M +:t point 

II 

such that g 0 f is homotopic to the identity 1M , By the homotopy property 
of vector bundles 

E ~ (g ol)-lE ~f-1(g-1E). 

Since g-l E is a vector bundle on a point, it is trivial, hence so isf- 1(g-1 E). 

o 
So for a contractible manifold M, Vectk(M) is a single point. 

REMARK. Although all the results in this subsection are stated in the differ
entiable category of manifolds and smooth maps, the corresponding state
ments with "manifold" replaced by "space" also hold in the continuous 
category of topological spaces and continuous maps, the only exception 
being Corollary 6.9, in which the space should be assumed paracompact. 

Exercise 6.10. Compute Vectk(Sl). 

Compact Cohomology of a Vector Bundle 

The Poincare lemmas 

H*(M x Rft) = H*(M) 

H:(M x Rft) = H:-n(M) 
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may be viewed as results on the cohomology of the trivial bundle M x ~n 
over M. More generally let E be a vector bundle of rank n over M. The zero 
section of E, s : XH(X, 0), embeds M diffeomorphically in E. Since M x {O} 
is a deformation retract of E, it follows from the homotopy axiom for de 
Rham cohomology (Corollary 4.1.2.2) that 

H*(E) ~ H*(M). 

For cohomology with compact support one may suspect that 

(6.11) 

This is in general not true; the open Mobius strip, considered as a vector 
bundle over S1, provides a counterexample, since the compact cohomology 
of the Mobius strip is identically zero (Exercise 4.8). However, if E and M 
are orientable manifolds of finite type, then formula (6.11) holds. The proof 
is based on Poincare duality, as follows. Let m be the dimension of M. Then 

H~(E) ~ (Hm+n-*(E»* by Poincare duality on E 
~ (Hm+n-*(M»* by the homotopy axiom for de Rham cohomology 
~ H~-n(M) by Poincare duality on M. 

Lemma 6.12. An orientable vector bundle E over an orientable manifold M is 
an orient able manifold. 

PROOF. This follows from the fact that if {(UII' "'II)} is an oriented atlas for 
M with transition functions hllP = "'II 0 '" i 1 and 

<PII: E lu. ~ UII X ~n 

is a local trivialization for E with transition functions gllP' then the com
position 

Elu. ~ UII X ~n ~ ~m X ~n 

gives an atlas for E. The typical transition function of this atlas, 

("'II x 1) 0 <P1I<Pi1 0 ("'i 1 X 1): ~m X ~n -+ ~m X ~n 

sends (x, y) to (hIlP(x), gllP("'; 1(X»Y) and has Jacobian matrix 

( D(hIlP) * ) 
(6.12.1) ./, 1 ) , o gIlP(,/,; (x) 

where D(hIlP) is the Jacobian matrix of hilP . The determinant of the matrix 
(6.12.1) is clearly positive. 0 

Thus, 

Proposition 6.13. If 11: : E -+ M is an orientable vector bundle and M is 
orientable offinite type, then H~(E) ~ H~-I\(M). 
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REMARK 6.13.1. Actually the orientability assumption on M is superfluous. 
See Exercise 6.20. 

REMARK 6.13.2. Let M be an oriented manifold with oriented atlas {(VII' 
"'II)} and n: E -+ M an oriented vector bundle over M with an oriented 
trivialization {(VII' ,pll)} determining the orientation on the vector bundle 
(terminology on pp. 54-55). Then E can be made into an oriented manifold 
with orientation given by the oriented atlas 

{n-'(VII), ("'II x 1) 0 t/JII : n-'(VJ -+ V,. x IAn -+ lAm X IAn}. 

This is called the local product orientation on E. 

Compact Vertical Cohomology and Integration along the Fiber 

As mentioned earlier, for vector bundles there is a third kind of cohomol
ogy. Instead of n:(E), the complex of forms with compact support, we 
consider n:v(E), the complex of forms with compact support in the vertical 
direction, defined as follows: a smooth n-form w on E is in n~v(E) if and 
only if for every compact set K in M, n-'(K) II Supp w is compact. If 
w E n~v(E), then since SuPP(WI .. -I(x» c n-'(x) II Supp w is a closed subset 
of a compact set, SupP(WI .. -I(x» is compact. Thus, although a form in 
n:v(E) need not have compact support in E, its restriction to each fiber 
has compact support. The cohomology of this complex, denoted Hc~(E), is 
called the cohomology of E with compact support in the vertical direction, or 
compact vertical cohomology. 

Let E be oriented as a rank n vector bundle. The formulas in (4.4) extend 
to this situation to give integration along the fiber, n. : n:v(E) -+ n·-n(M), 
as follows. First consider the case of a trivial bundle E = M x IAn. Let 
t 10 ••• , tn be the coordinates on the fiber IAn. A form on E is a real linear 
combination of two types of forms: the type (I) forms are those which do 
not contain as a factor the n-form dt, ... dtn and the type (II) forms are 
those which do. The map n. is defined by 

(I) (n *(P)f(x, tlo ... , tn) dt'l ... dt" 1-+ 0, r < n 

(II) (n*(P)f(x, t l, ... , tn) dt l ... dtn 1-+ rP fIR" j{x, tl' ... , tn) dt l ... dtn, 

where f has compact support for each fixed x in M and t/J is a form on M. 
Next suppose E is an arbitrary oriented vector bundle, with oriented triv
ialization {(V,., t/J~)},.el. Let Xh ••• , Xm and Yh ••• , Ym be the coordinate 
functions on V,. and V fJ' and t 10 ••• , tn, Uh ••• , Un the fiber coordinates on 
E Iv. and E Iv, given by t/J,. and t/JfJ respectively. Because {(V,., t/J,.)} is an 
oriented trivialization for E, the two sets of fiber coordinates t" ... , tn and 
u, ... , Un are related by an element of GL+(n, IA) at each point of V,. II V fJ· 
Again a form w in n:v(E) is locally of type (I) or (II). The map n. is defined 
to be zero on type (I) forms. To define n. on type (II) forms, write w,. for 
w I.-I(v.). Then 

w,. = (n·t/J)f(xh ... , Xm , t" ... , tn) dt, ... dtn 
and 
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Define 

Exercise 6.14. Show that if E is an oriented vector bundle, then 1t* OJa = 
1t*OJ{J' Hence {1t*OJa} a e I piece together to give a global form 1t*OJ on M. 
Furthermore, this definition is independent of the choice of the oriented 
trivialization for E. 

Proposition 6.14.1. Integration along the fiber 1t* commutes with exterior 
differentiation d. 

PROOF. Let {(Va' cPa)} be a trivialization for E, {Pal a partition of unity 
subordinate to {Va}, and OJ a form in n:v(E). Since OJ = L Pa OJ, and both 1t* 

and d are linear, it suffices to prove the proposition for Pa OJ, that is, 
1t* d(Pa OJ) = d1t*(Pa OJ). Thus from the outset we may assume E to be the 
product bundle M x /R •• If OJ = (1t*cP)!(x, t) dt l ... dt. is a type (II) form, 

d1t*OJ = d(cP f !(x, t) dt l ... dt.) 

= (dcP) f f(x, t) dt l ... dt. + (_l)deB 4> cP ~ dx; f :~ (x, t) dt l ... dt. 

and 

1t*dOJ = 1t*«1t*dcP)fdtl'" dt. + (_l)deB 4> 1t*cP L ~f dx; dt l ... dt.) 
'JX; 

= (dcP) f f dt l ... dt. + (_l)deg 4> ~ cP dx; f :~ dt l ... dt •. 

So d1t* OJ = 1t* dOJ for a type (II) form. Next let OJ = (1t*cP)f(x, t) dtil ... dti" 
r < n, be a type (I) form. Then 

and 

1t* dOJ = (_l)deg 4> L 1t*«1t*cP) ~f (x, t) dti dtil .. , dti,) 
i uti 

= 0 if dti dtil ... dti, ¥- ±dtl ... dt •. 

If dti dtil ... dti, = ±dtl ... dtn , then J o!/oti(x, t) dti dtil ... dti, is again 0: 
becausefhas compact support, 

fOO of 
~ (x, t) dt i = f( ... , 00, .. . )-f( ... , - 00, ... ) = o. 

- 00 ut, 
o 

Note that integration along the fiber, 1t*: n:v(E) -. n*-n(M) lowers the 
degree of a form by the fiber dimension. 
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Proposition 6.15 (Projection Formula). (a) Let 1t: E -+ M be an oriented 
rank n vector bundle, t a form on M and OJ a form on E with compact support 
along the fiber. Then 

1t*«1t*t)· OJ) = t· 1t*OJ. 

(b) Suppose in addition that M is oriented of dimension m, OJ E n~v(E), and 
t E n~+II-q(M). Then with the local product orientation on E 

i (1t*t) 1\ OJ = fM t 1\ 1t* OJ. 

PROOF. (a) Since two forms are the same if and only if they are the same 
locally, we may assume that E is the product bundle M x !R". If OJ is a form 
of type (I), say OJ = 1t*4J . f(x, t) dt it ... dtir , where r < n, then 

1t*«1t*t) . OJ) = 1t*(n*(t 4J) . f(x, t) dtil ... dt ir» = 0 = t . n*OJ. 

If OJ is a form of type (II), say OJ = n*4J . f(x, t) dtl ... dill' then 

n*«n*t) . OJ) = t 4J i f(x, t) dtl '" dtll = t . n* OJ. 
R' 

(b) Let {(U~, 4JJ}~eJ be an oriented trivialization for E and {p~}uJ a 
partition of unity subordinate to {U ~}. Writing OJ = L p~ OJ, where p~ OJ has 
support in U ~, we have 

and 
1 (n*t) 1\ OJ = L i (n*t)l\(p~OJ) 

E ~ Elv. 

Here t 1\ n*(p~ OJ) has compact support because its support is a closed subset 
of the compact set Supp t; similarly, (n*-r) 1\ (p" OJ) also has compact sup
port. Therefore, it is enough to prove the proposition for M = U" and E 
trivial. The rest of the proof proceeds as in (a). 0 

The proof of the Poincare lemma for compact supports (4.7) carries over 
verbatim to give 

Proposition 6.16 (Poincare Lemma for Compact Vertical Supports). Inte
gration along the fiber defines an isomorphism 

1t* : H:v(M x !R") -+ H* -II(M). 

This is a special case of 

Theorem 6.17 (Thorn Isomorphism). If the vector bundle n : E -+ M over a 
manifold M of finite type is orientable, then 

H:v(E) ~ H* -II(M) 

where n is the rank of E. 
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PROOF. Let U and V be open subsets of M. Using a partition of unity from 
the base M we see that 

o ---+ O:v(E lu u y) ---+ O:v(E lu) e O:v(E Iy) ---+ O:v(E lu " y) ---+ 0 

is exact, as in (2.3). So we have the diagram of Mayer-Vietoris sequences 

The commutativity of this diagram is trivial for the first two squares; we 
will check that of the third. Recalling from (2.5) the explicit formula for the 
coboundary operator d*, we have by the projection formula (6.15) 

1t* d*OJ = 1t*«1t* dpu) . OJ) = (dpu) . 1t* OJ = d*1t* OJ. 

SO the diagram in question is commutative. 
By (6.9) if U is diffeomorphic to R", then E lu is trivial, so that in this case 

the Thom isomorphism reduces to the Poincare lemma for compact vertical 
supports (6.16). Hence in the diagram above, 1t* is an isomorphism for 
contractible open sets. By the Five Lemma if the Thom isomorphism holds 
for U, V, and U n V, then it holds for U u V. The proof now proceeds by 
induction on the cardinality of a good cover for the base, as in the proof of 
Poincare duality. This gives the Thom isomorphism for any manifold M 
having a finite good cover. D 

REMARK 6.17.1. Although the proof above works only for a manifold of 
finite type, the theorem is actually true for any base space. We will reprove 
the theorem for an arbitrary manifold in (12.2.2). 

Under the Thom isomorphism f/ : H*(M) ~ H:v + "(E), the image of 1 in 
HO(M) determines a cohomology class W in H~v(E), called the Thorn class of 
the oriented vector bundle E. Because 1t* W = 1, by the projection formula 
(6.15) 

1t*(1t*OJ /\ W) = OJ /\ 1t* W = OJ. 

SO the Thom isomorphism, which is inverse to 1t* , is given by 

f/( ) = 1t*( ) /\ W. 

Proposition 6.18. The Thorn class W on a rank n oriented vector bundle E can 
be uniquely characterized as the cohomology class in H~v(E) which restricts to 
the generator of H~(F) on each fiber F. 

PROOF. Since 1t* W = 1, W Iflber is a bump form on the fiber with total in
tegral 1. Conversely if W' in H~v(E) restricts to a generator on each fiber, 
then 
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Hence 7t*( )/\$' must be the Thorn isomorphism fI and $' = fI(l) is the 
Thorn class. 0 

Proposition 6.19. If E and F are two oriented vector bundles over a manifold 
M, and 7t1 and 7t2 are the projections 

EEBF 
7ty \2 

E F 

then the Thom class of E EB F is $(E EB F) = 7tT$(E) /\ 7t!$(F). 

PROOF. Let m = rank E and n = rank F. Then 7tTCll(E) /\ 7t!$(F) is a class in 
H~+n(E EB F) whose restriction to each fiber is a generator of the compact 
cohomology of the fiber, since the isomorphism 

H~ +n(/Rm x /Rn) ~ H~(IR"') ® H~(/Rn) 

is given by the wedge product of the generators. o 
Exercise 6.20. Using a Mayer-Vietoris argument as in the proof of the 
Thorn isomorphism (Theorem 6.17), show that if 7t : E -+ M is an orient
able rank n bundle over a manifold M of finite type, then 

H~(E) ~ H~-n(M). 

Note that this is Proposition 6.13 with the orientability assumption on M 
removed. 

Poincare Duality and the Thorn Class 

Let S be a closed oriented submanifold of dimension k in an oriented 
manifold M of dimension n. Recall from (5.13) that the Poincare dual of Sis 
the cohomology class of the closed (n - k)-form 115 characterized by the 
property 

(6.21) 

for any closed k-form with compact support on M. In this section we will 
explain how the Poincare dual of a submanifold relates to the Thorn class 
of a bundle (Proposition 6.24). To this end we first introduce the notion of a 
tubular neighborhood of S in M; this is by definition an open neighborhood 
of S in M diffeomorphic to a vector bundle of rank n-k over S such that S 
is diffeomorphic to the zero section. Now a sequence of vector bundles 
over M, 

o --+ E --+ E' --+ E" --+ 0, 

is said to be exact if at each point p in M, the sequence of vector spaces 

0--+ E, --+ E~ --+ E; --+ 0 
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is exact, where Ep is the fiber of E at p. If S is a submanifold in M, the 
normal bundle N = N SIM of S in M is the vector bundle on S defined by the 
exact sequence 

(6.22) 

where TM Is is the restriction of the tangent bundle of M to S. The tubular 
neighborhood theorem states that every submanifold S in M has a tubular 
neighborhood T, and that in fact T is diffeomorphic to the normal bundle 
of Sin M (see Spivak [1, p. 465] or Guillemin and Pollack [1, p. 76]). For 
example, if S is a curve in 1R3, then a tubular neighborhood of S may be 
constructed using the metric in 1R3 by attaching to each point of S an open 
disc of sufficiently small radius El > 0 perpendicular to S at the center. The 
union of all these discs is a tubular neighborhood of S (Figure 6.3(a». 

(a) (b) 

Figure 6.3 

In general if A and B are two oriented vector bundles with oriented 
trivializations {(U .. , 4> .. )} and {(U .. , "' .. )}, respectively, then the direct sum 
orientation on A $ B is given by the oriented trivialization {(U .. , 4> .. ffi ", .. )}. 
Returning to our submanifold S in M, we letj: T '+ M be the inclusion of a 
tubular neighborhood T of S in M (see Figure 6.3(b». Since Sand Mare 
orientable, the normal bundle N s, being the quotient of TM Is by Ts, is also 
orientable. By convention it is oriented in such a way that 

has the direct sum orientation. So the Thom isomorphism theorem applies 
to the normal bundle T = N s over S and we have the sequence of maps 

where CI> is the Thom class of the tube T andj. is extension by 0; herej. is 
defined because we are only concerned with forms on the tubular neighbor
hood T which vanish near the boundary of T. We claim that the Poincare 
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dual ofS is the Thom class of the normal bundle ofS; more precisely 

(6.23) '7s=j*(cJ>A1)=j*cJ> in H"-"(M). 

To prove this we merely have to show thatj* cJ> satisfies the defining prop
erty (5.13) of the Poincare dual '7s. Let w be any closed k-form with 
compact support on M, and i: S - T the inclusion, regarded as the zero 
section of the bundle 7t: T - S. Since 7t is a deformation retraction of T 
onto S, 7t* and i* are inverse isomorphisms in cohomology. Therefore on 
the level of forms, wand 7t*i*w differ by an exact form: w = 7t*i*w + d't. 

L wAj*cJ> 

= L w A cJ> because j* cJ> has support in T 

= I (7t*i*w + d't) A cJ> 

= L (7t*i*w) A cJ> 

= i i*w A 7t*cJ> 

= ii*W 

since L (d't) A cJ> = I d('t A cJ» = 0 by Stokes' 

theorem 

by the projection formula (6.15) 

because 7t*cJ> = 1. 

This concludes the proof of the claim. Note that if S is compact, then its 
Poincare dual '7s = j*cJ> has compact support. 

Conversely, suppose E is an oriented vector bundle over an oriented 
manifold M. Then Mis diffeomorphically embedded as the zero section in 
E and there is an exact sequence 

0- TM - (TE)IM- E- 0, 

i.e., the normal bundle of M in E is E itself. By (6.23), the Poincare dual of M 
in E is the Thom class of E. In summary, 

Proposition 6.24. (a) The Poincare dual of a closed oriented submanifold S in 
an oriented manifold M and the Thom class of the normal bundle of S can be 
represented by the same forms. 

(b) The Thom class of an oriented vector bundle 7t: E - M over an 
oriented manifold M and the Poincare dual of the zero section of E can be 
represented by the same form. 

Because the normal bundle of the submanifold S in M is diffeomorphic 
to any tubular neighborhood of S, we have the following proposition. 

Proposition 6.25 (Localization Principle). The support of the Poincare dual of 
a submanifold S can be shrunk into any given tubular neighborhood of S. 
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Figure 6.4 

EXAMPLE 6.26. 

(a) The Poincare dual of a point pin M. 
A tubular neighborhood T of p is simply an open ball around p (Figure 6.4). 
A generator of H~,,(T) is a bump n-form with total integral 1. So the 
Poincare dual of a point is a bump n-form on M. The form need not have 
support at p since all bump n-forms on a connected manifold are cohomol
ogous. Here the dual of p is taken in H~(M), and not in Hft(M). 

(b) The Poincare dual of M. 
Here the tubular neighborhood T is M itself, and H:,,(T) = H*(M). So the 
Poincare dual of M is the constant function 1. 

(c) The Poincare dual of a circle on a torus. 

Figure 6.5 

The Poincare dual is a bump I-form with support in a tubular neighbor
hood of the circle and with total integral 1 on each fiber of the tubular 
neighborhood (Figure 6.5). In the usual representation of the torus as a 
square, if the circle is a vertical segment, then its Poincare dual is p(x) dx 
where p is a bump function with total integral 1 (Figure 6.6). 

Using the explicit construction of the Poincare dual tis = i* cD as the 
Thom class of the normal bundle, we now prove two basic properties of 
Poincare duality. Two submanifolds Rand S in M are said to intersect 
transversally if and only if 

(6.27) 1'xR + 1'xS = 1'xM 
at all points x in the intersection R n S (Guillemin and Pollack [1, pp. 
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Y r--..,.------, 

x 
Figure 6.6 

27-32]). For such a transversal intersection the codimension in M is addi
tive: 

(6.28) codim R n S = codim R + codim S. 

This implies that the normal bundle of R n S in M is 

(6.29) 

Assume M to be an oriented manifold, and Rand S to be closed oriented 
submanifolds. Denoting the Thorn class of an oriented vector bundle E by 
<1>(E), we have by (6.19) 

(6.30) <1>(N RnS) = <1>(N R EE> N s) = <1>(N R) 1\ <1>(N s). 

Therefore, 

(6.31) '1RnS = '1R 1\ '1s; 

i.e., under Poincare duality the transversal intersection of closed oriented 
submanifolds corresponds to the wedge product of forms. 

More generally, a smooth map f: M' -4 M is said to be transversal to 
a submanifold ScM if for every x e j1(S), f*(YxM') + TJ(x)S = TJ(x)M. If 
f: M' -+ M is an orientation-preserving map of oriented manifolds, T is a 
sufficiently small tubular neighborhood of the closed oriented submanifold S 
in M, and f is transversal to Sand T, then f -1 T is a tubular neighborhood 
of f- 1S in M'. From the commutative diagram 

~(T) 

H:v+k(T) 
J. 

H*(S) ----+ H*(M) 

!'l 
tP(f -'T) 

f'j 
J • 

f'j 
H*(f-1S) • H:v+k(f-1T) • H*(M'), 

we see that if w is the cohomology class on M representing the submanifold 
S in M, then f*w is the cohomology class on M' representing f -1(S), i.e., 
under Poincare duality the induced map on cohomology corresponds to the 
pre-image in geometry, i.e., '1J-'(S) = f*'1s. By the Transversality Homotopy 
Theorem, the transversality hypothesis on f is in fact not necessary (Guillemin 
and Pollack [1, p. 70]). 
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The Global Angular Form, the Euler Class, and the Thorn Class 

In this subsection we will construct explicitly the Thorn class of an oriented 
rank 2 vector bundle 1t : E -+ M, using such data as a partition of unity on 
M and the transition functions of E. The higher-rank case is similar but 
more involved, and will be taken up in (11.11) and (12.3). The construction 
is best understood as the vector-bundle analogue of the procedure for going 
from a generator of H,,-1(S"-1) = H,,-1(1R" - {O}) to a generator of H~(IR"). 
So let us first try to understand the situation in IR". 

We will call a top form on an oriented manifold M positive if it is in the 
orientation class of M. The standard orientation on the unit sphere S"-1 in 
IR" is by convention the following one: if (1 is a generator of H"-1(S"-1) and 
1t : IR" - {OJ -+ S,,-1 is a deformation retraction, then (1 is positive on S,,-1 
if and only if dr . 1t*(1 is positive on IR" - {OJ. 

Exercise 6.32. (a) Show that if () is the standard angle function on 1R2, 
measured in the counterclockwise direction, then d() is positive on the circle 
S1. 

(b) Show that if 4J and () are the spherical coordinates on 1R3 as in Figure 
6.7, then d4J A d() is positive on the 2-sphere S2. 

Figure 6.7 

Let (1 be the positive generator of H"- 1(s" -1) and 1/1 = 1t*(1 the corre
sponding generator of H,,-1(1R" - {OJ); '" is called the angular form on 
IR" - {OJ. If p(r) is the function of the radius shown in Figure 6.8, then 
dp = p'(r)dr is a bump form on 1R1 with total integral 1 (Figure 6.9). There
fore (dp) . 1/1 is a compactly supported form on IR" with total integral 1, i.e., 
(dp) . 1/1 is the generator of H~(IR"). Note that because 1/1 is closed, we can 
write 

(6.33) (dp) . 1/1 = d(p . 1/1). 



§6 The Thorn Isomorphism 71 

o 

-\1-..._, 

Figure 6.8 

Now let E be an oriented rank n vector bundle over M, and EO the 
complement of the zero section in E. Endow E with a Riemannian structure 
as in (6.4) so that the radius function r makes sense on E. We begin our 
construction of the Thorn class by finding a global form t/I on EO whose 
restriction to each fiber is the angular form on /R. - {o}. t/I is called the 
global angular form. Once we have the angular form t/I, it is then easy to 
check that <I> = d(p . t/I) is the Thorn class. 

Now suppose the rank of E is 2, and {U«} is a coordinate open cover of M 
that trivializes E. Since E has a Riemannian structure, over each U« we can 
choose an orthonormal frame. This defines on EOlu. polar coordinates r« and 
8«; if Xl' ... , X. are coordinates on U«, then n*x l , ... , n*x., r«, 8« are coordinates 
on EOI U«. On the overlap U« n Up, the radii r« and rp are equal but the angular 
coordinates 8« and 8p differ by a rotation. By the orientability of E, it makes 
sense to speak of the "counterclockwise direction" in each fiber. This allows 

Figure 6.9 
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us to define unambiguously qJap (up to a constant multiple of 2'11') as the 
angle of rotation in the counterclockwise direction from the a-coordinate 
system to the p-coordinate system: 

(6.34) 8p = 8a + 'II'*qJaP' qJap: Ua n Up -+ IR. 

Although rotating from ~ to {J and then from {J to y is the same as 
rotating from ~ to y, it is not true that fP~/I + fP/ly - qJ~y = 0; indeed all that 
one can say is 

fP~/I + fP/ly - fP~y E 27tZ. 

ASIDE. To each triple intersection we can associate an integer 

(6.35) 

The collection of integers {&~/lY} measures the extent to which {fP~/I} fails to 
be a cocyle. We will give another interpretation of {&~/lY} in Section 11. 

Unlike the functions {qJ~/I}' the I-forms {dfP~/I} satisfy the cocycle condi
tion. 

Exercise 6.36. There exist I-forms ~~ on U ~ such that 

I 
27t dfP~/I = ~/I - ~" . 

[Hint: Take ~a=(1/2'11')LyPydqJya' where {Py} is a partition of unity 
subordinate to {Uy }.] 

It follows from Exercise 6.36 that d~~ = d~/I on U ~ n U /I. Hence the d~~ 
piece together to give a global 2-form e on M. This global form e is clearly 
closed. It is not necessarily exact since the ~~ do not usually piece together 
to give a global I-form. The cohomology class of e in H2(M) is called the 
Euler class of the oriented vector bundle E. We sometimes write e(E) instead 
of e. 

Claim. The cohomology class of e is independent of the choice of ~ in our 
construction. 

PROOF OF CLAIM. If {e~} is a different choice of I-forms such that 

then 

is a global form. So de~ and d~~ differ by an exact global form. o 
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By (6.34) and (6.36), on EO Iv.,., Vp' 

(6.36.1) 
dO« _ .): _ ~ _ .): 
2n n .. « - 2n n .. p . 

These forms then piece together to give a global I-form '" on EO, the global 
angular form, whose restriction to each fiber is the angular form (1/2n) dO, 
i.e., if Ip : JR2 -> E is the orthogonal inclusion of a fiber over p, then I p·'" = 
(1/2n) dO. The global angular form is not closed: 

( dO« ) d", = d 2n - n·e« = -n·de« = -n·dep . 

Therefore, 

(6.37) 

When E is a product, '" could be taken to be the pullback of (l/2n) dO 
under the projection EO = M X (JR2 - 0) -> JR2 - O. In this case '" is closed 
and e is O. The Euler class is in this sense a measure of the twisting of the 
oriented vector bundle E. 

The Euler class of an oriented rank 2 vector bundle may be given in 
terms of the transition functions, as follows. Let g«p : U« fl Up -> SO(2) be 
the transition functions of E. By identifying SO(2) with the unit circle in the 
complex plane via (~~~: -c~~:) = e i6, g«fl may be thought of as complex
valued functions. In this context the angle from the fJ-coordinate system to 
the IX-coordinate system is (l/i)log g«p' Thus 

0« - OfJ = n·(I/i)log g«p, 

and 

'IT*CPap = -'IT*(l/i)log gap' 

Since the projection 'IT has maximal rank (i.e., 'IT. is onto), 'IT* is injective, so 
that 

cpap = - (lji)log gap' 

Let {Py} be a partition of unity subordinate to {U y}. Then 

1 
2n dcp«fJ = ell - e«, 

where 

(6.37.1) 

Therefore, 

(6.38) 
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Proposition 6.39. The Euler class is functorial, i.e., iff: N -+ M is a CC1J map 
and E is a rank 2 oriented vector bundle over M, then 

e(f -1 E) = f· e(E) . 

PROOF. Since the transition functions off -1 E aref·g,./I, the proposition is 
an immediate consequence of (6.38). 0 

We claim that just as in the untwisted case (6.33), the Thom class is the 
cohomology class of 

(6.40) <I> = d(p(r) . 1/1) = dp(r) . 1/1 - p(r)1I:·e . 

In this formula although p(r)· '" is defined only outside the zero section of 
E, the form <I> is a global form on E since dp == 0 near the zero section. 
<I> has the following properties: 

(a) compact support in the vertical direction; 
(b) closed: d<l> = - dp(r) . dl/l- dp(r)1I:·e = 0; 
(c) restriction to each fiber has total integral 1: 

C1J 2" 

11:.1;<1> = f f dp{r)· ~: = p(oo) - p{O) = 1 , 

o 0 

where Ip: Ep-+ E is the inclusion of the fiber Ep into E; 
(d) the cohomology class of <I> is independent of the choice of p(r). Sup

pose p(r) is another function of r which is -1 near 0 and 0 near infinity, and 
which defines (j). Then 

<I> - (j) = d«p(r) - p(r» . 1/1) 

where (p(r) - p(r» . 1/1 is a global form on E because p(r) - p(r) vanishes 
near the zero section. 

Therefore <I> indeed defines the Thom class. Furthermore, if s : M -+ E is 
the zero section of E, then 

s·<I> = d(p(O)) . s·1/I - p(O)s· 11:. e = e . 

This proves 

Proposition 6.41. The pullback of the Thom class to M by the zero section is 
the Euler class. 

Let {U,.} be a trivializing cover for E, {p,.} a partition of unity subordi
nate to {U ,.}, and 9,./1 the transition functions for E. Since 
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(cf. (6.36.1) and (6.37.1», we have by (6.40), 

«I» = d( p(r) ~~) + 2~id( p(r)'IT*LPyd log Uya). 
y 

(6.42) 

This is the explicit formula for the Thom class. 

Exercise 6.43. Let 7t : E -+ M be an oriented rank 2 bundle. As we saw in 
the proof of the Thom isomorphism, wedging with the Thom class is an 
isomorphism A «I» : H*(M) ~ H~fJ + 2 (E). Therefore every cohomology class 
on E is the wedge product of «I» with the pullback of a cohomology class on 
M. Find the class u on M such that 

~2 = ~A7t*u in H~fJ(E). 

Exercise 6.44. The complex projective space cpn is the space of all lines 
through the origin in Cn + " topologized as the quotient of cn +, by the 
equivalence relation 

Z "'" A.Z for z eC n+', A. a nonzero complex number. 

Let zo, ... , Zn be the complex coordinates on C" + '. These give a set of 
homogeneous coordinates [zo,"" zn] on cpn, determined up to multi
plication by a nonzero complex number A.. Define U. to be the open subset 
of cpn given by z. #: o. {U 0, ... , Un} is called the standard open cover of 
cpn. 

(a) Show that cpn is a manifold. 
(b) Find the transition functions of the normal bundle NCPI/CP2 relative 

to the standard open cover ofCP'. 

EXAMPLE 6.44.1. (The Euler class of the normal bundle of cpt in CP2). Let 
N = NCPI/CP2 be the normal bundle ofCP' in Cp2. Since cpt is a compact 
oriented manifold of real dimension 2, its top-dimensional cohomology is 
H 2(CP') = IR. We will find the Euler class e(N) as a multiple of the gener
ator in H 2(CP'). 

By Exercise 6.44 the transition function of N relative to the standard 
open cover is go, = z,/zo at the point [zo, z,]. Let z = z,/zo be the coordi
nate of Uo• which we identify with the complex plane C. Let w = zolz, = liz 
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be the coordinate on V 1 ~ IC. Then gOl = z = l/w on Vo II V 1• The Euler 
class of N is given by 

e(N) = - 2~i d (pod log ~) on V 1 (by (6.38)) 

1 
= --2 .d(Pod log z) on Vo II V 1, 

m 

where Po is 1 in a neighborhood of the origin, and 0 in a neighborhood of 
infinity in the complex z-plane Vo ~ C. 

Fix a circle C in the complex plane with so large a radius that Supp Po is 
contained inside C. Let Ar be the annulus centered at the origin whose 
outer circle is C and whose inner circle Br has radius r (Figure 6.10). Note 
that as the boundary of An the circle C is oriented counterclockwise while 
B is oriented clockwise. 

c 

Figure 6.10 

Now 

r e(N) = - -21 . r dpo d log z, 
JCPl nl Jc 
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and 

i d(po dz/z) = lim r d(po dz/z) 
C , .... 0 JA, 

= lim i Po dz/z + r Po dz/z 
r-O C JBr 

by Stokes' theorem 

= lim r dz/z 
r-O JBr 

= -2ni, 

where the minus sign is due to the clockwise orientation on B,. Therefore, 

r e(N) = - ~ ( - 2ni) = 1. JcPI 2m 

Exercise 6.45. On the complex projective space CP" there is a tautological 
line bundle S, called the universal subbundle; it is the subbundle of the 
product bundle CP" X C"+1 given by 

S = {(I, z)lz E I}. 

Above each point I in CP", the fiber of S is the line represented by I. Find 
the transition functions of the universal subbundle S of CP1 relative to the 
standard open cover and compute its Euler class. 

Exercise 6.46. Let S" be the unit sphere in IR" + 1 and i the antipodal map on 
S": 

The real projective space IRP" IS the quotient of S" by the equivalence 
relation 

x'"'" i(x), for 

(a) An invariant form on S" is a form (J) such that i*(J) = (J). The vector 
space of invariant forms on S", denoted n*(s"l, is a differential complex, 
and so the invariant cohomology H*(S")I of S" is defined. Show that 
H*(IRP") ==: H*(S")I. 

(b) Show that the natural map H*(S"l- H*(S") is injective. [Hint: If (J) 
is an invariant form and (J) = dr for some form r on S", then (J) = 
d(r + i*r)j2.] 

(c) Give S" its standard orientation (p. 70). Show that the antipodal map 
i : S" - S" is orientation-preserving for n odd and orientation-reversing for 
n even. Hence, if [0] is a generator of Hn(sn), then [0] is a nontrivial 
invariant cohomology class if and only if n is odd. 
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(d) Show that the de Rham cohomology of RP" is 

R for q = 0, 

0 for 0 < q < n, 
H4(RP,,) = 

R for q = n odd, 

0 for q = n even. 

Relative de Rham Theory 

The Thom class of an oriented vector bundle may be viewed as a relative 
cohomology class, which we now define. Let f : S - M be a map between 
two manifolds. Define a complex (l*(f) = Ea 4 ~ 0 (l4(f) by 

(l4(f) = (l"(M) Ea (l4- 1(S), 

d(ro, 0) = (dro,f*ro - dO). 

It is easily verified that d2 = O. Note that a cohomology class in (l*(f) is 
represented by a closed form ro on M which becomes exact when pulled 
back to S. 

By definition we have the exact sequence 

with the obvious maps tx and (J: tx(0) = (0, 0) and (J(ro, 0) = ro. Clearly (J is a 
chain map but tx is not quite a chain map; in fact it anticommutes with d, 
txd = -dtx. In any case there is still a long exact sequence in cohomology 

(6.47) 
(1'- p. 6-... _ H4- 1(S)_ H4(f)_ H4(M)_ H4(S)_ ... 

Claim 6.48. (j* = f*. 

PROOF OF CLAIM. Consider the diagram 

0- (l4(S) - (l4 + 1(f) _ (l4 + l(M) - 0 

di di di 

0_(l4-1(S)_ (l4(f) - (l4(M) -0 

w w 

(ro, 0) ro 

Let wE Oq(M) be a closed form and (w, 0) any element of oqU) which 
maps to w. Then d(w, 0) = (0, f*w - dO). So .5*[w] = [f*w - dO] = [f*w]. 

o 
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Combining (6.47) and (6.48) we have 

Proposition 6.49. Let f : S ..... M be a differentiable map between two manifolds. 
Then there is an exact sequence 

Exercise 6.50. If f, g: S -+ M are homotopic maps, show that H*(f) and 
H*(g) are isomorphic algebras. 

If S is a submanifold of M and i : S -+ M is the inclusion map, we define 
the relative de Rham cohomology H"(M, S) to be H"(i). 

We now tum to the Thom class. Recall that if x: E ..... M is a rank 2 
oriented vector bundle and EO is the complement of the zero section, then 
there is a global angular form '" on EO such that d", = -x*e, where e 
represents the Euler class of E (6.37). Furthermore, if s : M -+ E is the zero 
section, then e = s*CIl (Proposition 6.41). Hence, (s 0 x)*CIl = -d"', where 
sox: EO -+ E. This shows that (CIl, - "') is closed in the complex O*(s 0 x) 
and so represents a class in H2(S 0 x). Since the map sox: EO ..... E is clearly 
homotopic to the inclusion i: EO ..... E, by Exercise 6.50, H2(S 0 x) = H2(i). 
Hence, (CIl, - "') represents a class in the relative cohomology H2(E, EO). The 
rank n case is entirely analogous and will be taken up in Section 12. 

§7 The Nonorientable Case 
Since the integral of a differential form on IR" is not invariant under the 
whole group of diffeomorphisms of IR", but only under the subgroup of 
orientation-preserving diffeomorphisms, a differential form cannot be inte
grated over a nonorientable manifold. However, by modifying a differential 
form we obtain something called a density, which can be integrated over 
any manifold, orient able or not. This will give us a version of Poincare 
duality for nonorientable manifolds and of the Thom isomorphism for non
orientable vector bundles. 

The Twisted de Rham Complex 

Let M be a manifold and E a vector space. The space of differential forms on 
M with values in E, denoted O*(M, E), is by definition the vector space 
spanned by OJ ® v, where OJ E O*(M), vEE, and the tensor product is over 
IR. This space can be made naturally into a differential complex if we let the 
differential be 

d(OJ ® v) = (dOJ) ® v. 

So the cohomology H*(M, E) is defined. Indeed, if E is a vector space of 
dimension n, then H*(M, E) is isomorphic to n copies of H~R(M). 
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Now let E be a vector bundle. We define the space of E-valued q1orms, 
nq(M, E), to be the global sections of the vector bundle (MTt) ® E. Lo
cally such a q-form can be written as L Wi ® ei' where Wi are q-forms and ei 
are sections of E over some open set U in M, and the tensor product is over 
the COO functions on U. For these vector-valued differential forms, no na
tural extension of the de Rham complex is possible, unless one is first given 
a way of differentiating the sections of E. 

Suppose the vector bundle E has a trivialization {(U~, cf>~)} relative to 
which the transition functions are locally constant. Such a vector bundle is 
called a flat vector bundle and the trivialization a locally constant triv
ialization. For a flat vector bundle E a differential operator on n*(M, E) 
may be defined as follows. Let e!, ... , e: be the sections of E over U ~ 
corresponding to the standard basis under the trivialization cf>~: E Iv. ~ 
U~ x IRn. We declare these to be the standard locally constant sections, i.e., 
de~ = O. Over U~ an E-valued q-form s in nq(M, E) can be written as 
L Wi ® e~, where the Wi are q-forms over U ~. We define the exterior deriva
tive ds over U~ by linearity and the Leibnitz rule: 

d(L Wi ® e~) = L (dWi) ® e~. 

It is easy to show that, because the transition functions of E relative to 
{(U ~, cf>~)} are locally constant, this definition of exterior differentiation is 
independent of the open sets U ~. More precisely, on the overlap U ~ n Up, 
if 

s = L Wi ® e~ = L tj ® e~ 

and e~ = L cijeA, where the Cij are locally constant functions, then 

tj = L CijWi 

and 

d(L tj ® e~) = L (dt)) ® e~ 

= L (Cij dWi) ® e~ 

= I (dWi)®e~ 

= d(I Wi ® e~). 

Hence ds is globally defined and is an element of nq + l(M, E). Because d2 is 
clearly zero, n*(M, E) is a differential complex and the cohomology 
H*(M, E) makes sense. As defined, d very definitely depends on the triv
ialization {(U~, cf>J}, for it is through the trivialization that the locally 
constant sections are given. Hence, d, n*(M, E), and H*(M, E) are more 
properly denoted as dq" n;(M, E), and H;(M, E). 

EXAMPLE 7.1 (Two trivializations of a vector bundle E which give rise to 
distinct cohomology groups H*(M, E)). 
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Let M be the circle SI and E the trivial line bundle SI x IRI over the 
circle. If E is given the usual constant trivialization cp: 

cp(x, r) = r for x e SI and 

then the cohomology H~(SI, E) = IR. 
However, we can define another locally constant trivialization t/I for E as 

follows. Cover SI with two open sets U and Vas indicated in Figure 7.1. 

_----12 

v 
) u 

( v 
Figure 7.1 

Let p(x) be the real-valued function on V whose graph is as in Figure 7.2. 
The trivialization t/I is given by 

t/I(x, r) = t(x)r 
for x e U, r e 1R1, 
forxeV,reIR 1• 

The standard locally constant sections over U and V are eU<x) = (x, 1) and 
ev(x) = (x, l/p(x» respectively. Relative to the trivialization t/I, the cohomol
ogy H~(SI, E) = 0, since the locally constant sections over U and V do not 
piece together to form a global section (except for the zero section). 

It is natural to ask: to what extent is the twisted cohomology H:(M, E) 
independent of the trivialization cp for E? 
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1 
"2 ~---

V 

Figure 7.2 

Proposition 7.2. The twisted cohomology is invariant under the refinement of 
open covers. More precisely, let {(U~, 4>~)}~eI be a locally constant triv
ialization for E. Suppose {VfJ} fJ e J is a refinement of {U~} ~ e I and the coordi
nates maps t/J fJ on Vp c U ~ are the restrictions of 4>~. Then the two twisted 
complexes n;(M, E) and n:(M, E) are identical and so are their cohomology,' 

H;(M, E) = H:(M, E). 

PROOF. Since the definition of the differential operator on a twisted complex 
is local, and 4> and t/J agree on the open cover {VfJ}, we have d.p = d",. 
Therefore the two complexes n;(M, E) and n:(M, E) are identical. 0 

Still assuming E to be a flat vector bundle, suppose {(U~, 4>~)} and 
{(U ~, t/J~)} are two locally constant trivializations which differ by a locally 
constant comparison O-cochain, i.e., if e~ and f~ are the standard locally 
constant sections over U ~ relative to the trivializations 4> and t/J respectively, 
then 

for some locally constant function 

a~ = (a~): U~- GL(n, ~). 

In this case there is an obvious isomorphism 

F: nMM, E)-nMM, E) 

given by 

ei H" aiifi 
C( ~ Gl a" 

i 
It is easily checked that the diagram 

n:(M, E) ~n;+l(M, E) 

IF 1 F 
n:(M, E) ~n:+l(M, E) 
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commutes. Hence F induces an isomorphism in cohomology. Next, suppose 
we are given two locally constant trivializations {(U .. , <P .. )} and {(Vp, "',)} 
for E, with possibly different open covers. By taking a common refinement, 
which does not affect the twisted cohomology (Proposition 7.2), we may 
assume that the two open covers are identical. The discussion above there
fore proves the following. 

Proposition 7.3. (a) Let E be aflat vector bundle over M, and {(U .. , <P .. )} and 
{(Vp, "',)} two locally constant trivializationsfor E. Suppose after a common 
refinement the two trivializations differ by a locally constant comparison 0-
cochain. Then there are isomorphisms 

and 

H:(M, E) ~ H:(M, E). 

This proposition may also be stated in terms of the transition functions 
for E. 

Proposition 7.3. (b) Let E be aflat vector bundle of rank nand {g .. ,} and {h .. ,} 
the transition functions for E relative to two locally constant trivializations <p 
and", with the same open cover. If there exist locally constant functions 

such that 

then there are isomorphisms as in 7.3(a). 

Proposition 7.4. If E is a trivial rank n vector bundle over a manifold M, with 
<p a trivialization of E given by n global sections, then 

n 

H:(M, E) = H*(M, IRn) = EB H*(M). 
j=1 

PROOF. Let e1> ••• , en be the n global sections corresponding to the standard 
basis of IRn. Then every element in n*(M, E) can be written uniquely as 
L (OJ ® e" where (OJ E n*(M) and the tensor product is over the Coo func
tions on M. The map 

L (OJ ® ej t-+ «(01, ... , (On) 

gives an isomorphism of the complexes n:(M, E) and n*(M, IRn). 0 

Now let {(U", <p,,)} be a coordinate open cover for the manifold M, with 
transition functions g", = <p" 0 <Pi I. Define the signfunction on IRI to be 
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{
+1 

sgn(x) = 0 
-1 

for x positive 
for x = 0 
for x negative. 

I de Rham Theory 

The orientation bundle of M is the line bundle L on M given by transition 
functions sgn J(g,./I)' where J(g,./I) is the Jacobian determinant of the matrix 
of partial derivatives of g,./I. It follows directly from the definition that M is 
orientable if and only ifits orientation bundle is trivial. 

Relative to the atlas {(U,., q,,.)} for M with transition functions g,./I' the 
orientation bundle is by definition the quotient 

(U,. x IRl )/(x, v) '" (x, sgn J(g,./I(x»v), 

where (x, v) E U,. X !R l and (x, sgn J(g,.p(x»v) E U /I X !R l • By construction 
there is a natural trivialization q,' on L, 

q,~: L lu. ~ u,. X !Rl , 

which we call the trivialization induced from the atlas {(U,., q,J} on M. 
Because sgn J(g,./I) are locally constant functions on M, the locally constant 
sections of L relative to this trivialization are the equivalence classes of 
{(x, v) I x E U,.} for v fixed in !Rl • 

Proposition 7.5. If q,' and 1/1' are two trivializations for L induced from two 
atlases q, and 1/1 on M, then the two twisted complexes n:,(M, L) and n:,(M, 
L) are isomorphic and so are their cohomology H:,(M, L) and H:,(M, L). 

PROOF. By going to a common refinement we may assume that the two 
atlases q, and 1/1 have the same open cover. Thus on each U,. there are two 
sets of coordinate functions, q,,. and 1/1,. (Figure 7.3.). 

Figure 7.3 
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The transition functions gap and haP for the two atlases <p and !/J respectively 
are related by 

h -1 = /lit 0 ItP 0 /lp , 

sgn J(g"p) = sgn J(/llt)· sgn J(hap)· sgn J(/lp) -1. 

Define a O-chain AIt : Ult ~ GL(1, IR) by AIt(X) = sgn J(/lIt)(!/JIt(x» for x E Ult . 
Since AIt(X) = ± 1, by Proposition 7.3(b) 

n:/(M, L) ~ n:,(M, L). o 
We define the twisted de Rham complex n*(M, L) and the twisted de 

Rham cohomology H*(M, L) to be n:,(M, L) and H:/(M, L) for any triv
ialization <p/ on L which is induced from M. Similarly one also has the 
twisted de Rham cohomology with compact support, H:(M, L). 

REMARK. If a trivialization !/J on L is not induced from M, then H$(M, L) 
may not be equal to the twisted de Rham cohomology H*(M, L). 

The following statement is an immediate consequence of Proposition 7.4 
and the triviality of L on an orientable manifold. 

Proposition 7.6. On an orientable manifold M the twisted de Rham cohomol
ogy H*(M, L) is the same as the ordinary de Rham cohomology. 

Integration of Densities, Poincare Duality, and the 
Thorn Isomorphism 

Let M be a manifold of dimension n with coordinate open cover {(U It , <p,,)} 
and transition functions glt(J. A density on M is an element of n"(M, L), or 
equivalently, a section of the density bundle (A"Tt)®L. One may think of a 
density as a top-dimensional differential form twisted by the orientation 
bundle. Since the transition function for the exterior power NTt is 1/J(gaP), 
the transition function for the density bundle is 
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Let ea be the section of L lu. corresponding to 1 under the trivialization 
of L induced from the atlas {(UIZ' cJ>a)}. If cJ>1Z = (Xh ... , xn) are the coordi
nates on Ua, we define the density Idxl ... dXnl in qUa, (A"Ttt)®L)) to be 

Idxl ... dXnl = ea dXl ... dx n· 

Locally we may then write a density as g(Xh ... , xn) 1 dXl ... dXn 1 for some 
smooth function g. 

Let T : IRn _ IRn be a diffeomorphism of IRn with coordinates x h ... , xn 
and Yh ... , Yn respectively. If w = 9 1 dYl ... dYn 1 is a density on IRn, the 
pullback of w by T is 

T*w = (g 0 T)ld(Yl 0 T) '" d(Yn 0 T)I 

= (g 0 T)IJ(T)lldxl ... dXn I. 

The density 9 1 dYl ... dYn 1 is said to have compact support on IRn if 9 has 
compact support, and the integral of such a density over IRn is defined to be 
the corresponding Riemann integral. Then 

LT*W = L (g 0 T)IJ(T)ll dx l ... dXn 1 

= r 9 1 dYl ... dYn 1 by the change of variable formula 
JUi' 

= r w. 
JUi' 

Thus the integration of a density is invariant under the group of all diffeo
morphisms on IRn. This means we can globalize the integration of a density 
to a manifold. If {Pal is a partition of unity subordinate to the open cover 
{(Ua' cJ>a)} and w E n~(M, L), define 

r w = L r (cJ>;;1)* (Paw). 
JM a JUi' 

It is easy to check that this definition is independent of the choices involved. 
Just as for differential forms there is a Stokes' theorem for densities. We 

state below only the weak version that we need. 

Theorem 7.7 (Stokes' Theorem for Densities). On any manifold M of dimen
sion n, orientable or not, if w E n~ -l(M, L), then 

L dw=O. 

The proof is essentially the same as (3.5). 
It follows from this Stokes' theorem that the pairings 

nq(M) ® n~-q(M, L) - IR 
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and 

given by 

descend to cohomology. 

Theorem 7.8 (Poincare Duality). On a manifold M of dimension n with afinite 
good cover, there are nondegenerate pairings 

Hq(M) ® H~-q(M, L) -+ IR 
iii 

and 

H~(M) ® H"-q(M, L) -+ IR. 
iii 

PROOF. By tensoring the Mayer-Vietoris sequences (2.2) and (2.7) with 
r(M, L) we obtain the corresponding Mayer-Vietoris sequences for twisted 
cohomology. The Mayer-Vietoris argument for Poincare duality on an 
orientable manifold then carries over word for word. 0 

Corollary 7.8.1. Let M be a connected manifold of dimension n having afinite 
good cover. Then 

H"(M) = {IR if M is.compact orientable 
o otherwIse. 

PROOF. By Poincare duality, H"(M) = H~(M, L). Let {Va} be a coordinate 
open cover for M. An element of H~(M, L) is given by a collection of 
constants fa on Va satisfying 

fa = (sgn J(gaP» fp . 

Iffa = 0 for some lX, then by the connectedness of M, we havefa = 0 for all 
lX. It follows that a nonzero element of H~(M, L) is nowhere vanishing. 
Thus, H~(M, L) '# 0 if and only if M is compact and L has a nowhere
vanishing section, i.e., M is compact orient able. In that case, 

H~(M, L) = H~(M) = IR. o 
Exercise 7.9. Let M be a manifold of dimension n. Compute the cohomol
ogy groups H~(M), H"(M, L), and H~(M, L) for each of the following four 
cases: M compact orientable, noncom pact orientable, compact nonorient
able, noncompact nonorientable. 

Finally, we state but do not prove the Thorn isomorphism theorem in all 
orientational generality. Let E be a rank n vector bundle over a manifold 
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M, and let {(UIZ ' 4>1Z)} and glZf/ be a trivialization and transition functions for 
E. Neither E nor M is assumed to be orientable. The orientation bundle of 
E, denoted o(E), is the line bundle over M with transition functions 
sgn J(gIZP)' With this terminology, the orientation bundle of M is simply the 
orientation bundle of its tangent bundle TM • It is easy to see that when E is 
not orientable, integration along the fiber of a form in O:v(E) does not yield 
a global form on M, but an element of the twisted complex O*(M, o(E». 

Theorem 7.10 (Nonorientable Thorn Isomorphism). Under the hypothesis 
above, integration along the fiber gives an isomorphism 

1t* : H:/n(E) ~ H*(M, o(E». 

Exercise 7.11. Compute the twisted de Rham cohomology H*(~pn, L). 



CHAPTER II 

" The Cech-de Rham Complex 

§8 The Generalized Mayer-Vietoris Principle 

Reformulation of the Mayer-Vietoris Sequence 

Let U and V be open sets on a manifold. In Section 2, we saw that the 
sequence of inclusions 

UuV~ullvt::UIIV 

gives rise to an exact sequence of differential complexes 

0- n*(U u V) - n*(U) EEl n*(V) - n*(U 11 V) - 0 

called the Mayer-Vietoris sequence. The associated long exact sequence 

allows one to compute in many cases the cohomology of the union U u V 
from the cohomology of the open subsets U and V. In this section, the 
Mayer-Vietoris sequence will be generalized from two open sets to count
ably many open sets. The main ideas here are due to Weil [1]. 

To make this generalization more transparent, we first reformulate the 
Mayer-Vietoris sequence for two open sets as follows. Let U be the open 
cover {U, V}. Consider the double complex C*(U, n*) = EEl Kp,q = 
EEl cp(u, nq) where 

KO. q = CO(U, n q) = nq(U) EEl nq(V), 

Kl, q = C1(U, n q) = nq(U 11 V), 

KP,q=O, p~2. 

89 
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q 

3 

di 2 g2(U) $ g2(V) g2(U (') V) 0 
1 gl(U) $ gl(V) gl(U (') V) 0 
0 gO( U) $ gO( V) gO(U (') V) 0 

0 1 2 P 

/j 

---. 

This double complex is equipped with two differential operators, the 
exterior derivative d in the vertical direction and the difference operator ~ in 
the horizontal direction. Of course, ~ is 0 after the first column. Because d 
and ~ are independent operators, they commute. 

In general given a doubly graded complex K*' * with commuting differ
entials d and ~, one can form a singly graded complex K* by summing 
along the antidiagonallines 

q 

2 
r.-'''t-+--+-+-

K" = E9 K"'" 1 
,,+,,=n o 

o 1 2 3 p 

and defining the differential operator to be 

D = D' + D" with D' =~, D" = (-l)"d on K"·". 

REMARK ON THE DEFINITION OF D. 

q 

d r ~ 
{j-d 

e • __ e 

~ ~ 

p 

If D were naively defined as jj = d + ~, it would not be a differential oper
ator since jj2 = 2d~ :F O. However, if we alternate the sign of d from one 
column to the next, then as is apparent from the diagram above, 
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In the sequel we will use the same symbol C*(U, 0*) to denote the 
double complex and its associated single complex. In this setup, the Mayer
Vietoris principle assumes the following form. 

Theorem 8.1. The double complex C*(U, 0*) computes the de Rham cohomol
ogyofM: 

HD{C*(U, O*)} ~ HtR(M). 

PROOF. In one direction there is the natural map 

r: O*(M) --+ O*(U) E9 O*(V) c: C*(U, 0*) 

given by the restriction of forms. Our first observation is that r is a chain 
map, i.e., that the following diagram is commutative: 

This is because 

O*(M) ~ C*(U, 0*) 

d lID 
O*(M) ----... C*(U, 0*) . 

r 

Dr = (15 + (-1)1' d)r [here p = 0] 

= dr 

= rd. 

Consequently r induces a map in cohomology 

r* : HZR(M)--+ HD{(C*(U, O*)}. 

q 

p 

A q-cochain IX in the double complex C*(U, 0*) has two components 

By the exactness of the Mayer-Vietoris sequence there exists a fJ such that 
I5fJ = 1X1. With this choice of fJ, IX - DfJ has only the (0, q)-component. Thus, 
every cochain in C*(U, 0*) is D-cohomologous to a cochain with only the top 
component. 
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We now show r* to be an isomorphism. 

Step 1. r* is surjective. 
By the remark above we may assume that a given cohomology class in 

HD{C*(U, O*)} is represented by a cocycle q, with only the top component. 
In this case 

Dq, = 0 

So q, is a global closed form. 

Step 2. r* is injective. 

if and only if 

Suppose r(co) = Dq, for some cochain q, in C*(U,O*). Again by the 
remark above we may write q, = q,' + Dq,", where q,' has only the top 
component. Then 

r(co) = Dq,' = dq,', bq,' = O. 

So co is the exterior derivative of a global form on M. 

-+ 

l' 

¢- ... 

o 

Generalization to Countably Many Open Sets and Applications 

Instead of a cover with two open sets as in the usual Mayer-Vietoris se
quence, consider the open cover U = {UII}II<I of M, where the index set J is 
a countable ordered set. Of course J may be finite. Denote the pairwise 
intersections U II n U _ by U 11_' triple intersections U II n U _ n U 7 by U 11_7' 
etc. There is a sequence of inclusions of open sets 

where OJ is the inclusion which "ignores" the ith open set; for example, 

This sequence of inclusions of open sets induces a sequence of re
strictions of forms 

60 
60 -+ 

O*(M) !.. nO*(Ullo);: n O*(UIIOII.) 1 n O*(UIIOlIllIl) ~ ... 
-. «0<111 -! «0<111 <(12 
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where 00 , for instance, is induced from the inclusion 

00 : U U lI.(ly -+ U (ly 
II. 

and therefore is the restriction 

00: n*(u(ly) -+ n n*(UII.(ly)' 
II. 

93 

We define the difference operator 0 : nn*(UlI.oll. l )-+ nn*(UII.01I.11I.2) to be the 
alternating difference 00 - 01 + 02' Thus 

(c5e)lI.o 11.111.2 = ell. 1 11.2 - ell.O 11.2 + ell.O 11.1' 

More generally the difference operator is defined as follows. 

Definition 8.2. If WE nnq(uII.O ... lI.p), then W has "components" wlI.o ... lI.p E 

nq(U 1I.0 ... lI.p) and ,,+1 

(ow) = '\' (_1)IW 
110· .. «,,+ 1 l..J 110 ... 4i ... 11,,+ l' 

1=0 

where on the right-hand side the restriction operation to UII.O ... II.P+I has been 
suppressed and the caret denotes omission. 

Proposition 8.3. 02 = O. 

PROOF. Basically this is true because in (02W)1I.0 ... II.P+2 we omit two indices 
IX" IX) twice with opposite signs. To be precise, 

(02W)1I.0 ... II.P+2 = L (-1)'(c5w)1I.0 ... <ii ... II.P+2 

=0. 

o 
Convention. Up until now the indices in wlI.o .. • lI.p are all in increasing order 
1X0 < ... < rJ.". More generally we will allow indices in any order, even with 
repetitions, subject to the convention that when two indices are inter
changed, the form becomes its negative: 

w ... II. ... (I ... = - w ... (I ... II. .... 

In particular a form with repeated indices is O. In the following exercise the 
reader is asked to check that this convention is consistent with the defini
tion of the difference operator 0 above. 

Exercise 8.4. Suppose rJ. < p. Then (c5w)",(I ... II. ... may be defined either as 
-(ow)",II. ... (I ... or by the difference operator formula (8.2). Show that these 
two definitions agree. 
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Proposition 8.5. (The Generalized Mayer-Vietoris Sequence). The sequence 

is exact; in other words, the (i-cohomology of this complex vanishes ident
ically. 

PROOF. Clearly n*(M) is the kernel of the first (i since an element of 
nn*(Vao) is a global form on M if and only if its components agree on the 
overlaps. 

Now let {Pal be a partition of unity subordinate to the open cover 
U = {Va}. Suppose OJ E nn*(Vao ... ap) is a p-cocycle. Define a (p - 1)
cochain t by 

t -"'POJ 120 .•• 1%,-1 - ~ a a«o ... l%p-l' 
a 

Then 

«it) = '" (- 1)'t 0 (10 ... «, L... a:O ... (I;I ... l%p , 
= L(-1)'PaOJaao ... a, ... ap. 

i, a 

Because OJ is a cocycle, 

«(iOJ) = OJ + '" (- 1)' + lOJ b = O. (1110·· .a:p 120 •• • tip L." «120 ••• ~i .• . fJp 
i 

So 

«(it) = '" P '" (- 1)'OJ «o ... /J, L." a: L... ««O ... eli ... l2p 
a 1 

=OJ «O ••• Clp • 

This shows that every cocycle is a coboundary. The exactness now follows 
from Proposition 8.3. 0 

In fact, the definition of t in this proof gives a homotopy operator on the 
complex. Write KOJ for t: 

(8.6) 

Then 

(KOJ)ao ... ap_l = L PaOJaao ... ap-l· 
a 

«(iKOJ) = '" (- 1)'(KOJ) ao ... ap L... «0 •• . 12, ••• «p 

- ('" P )OJ + '" ( 1)1 + lp OJ - L... ex 120 • •• l2p L." - IJ (l(lO • .• clto •• lXp 

= OJ - «(iKOJ) ao ... «p /10 ••• «,' 
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Therefore, K is an operator from nO·(U ~o ... ~p) to nO·(U ~O"'~P-l) such that 

(8.7) ~K + K~ = 1. 

As in the proof of the Poincare lemma, the existence of a homotopy oper
ator on a differential complex implies that the cohomology of the complex 
vanishes. 

For future reference we note here that if <P is a cocycle, then by (8.7), 
~Kt/J = t/J. So on cocycles K is a right inverse to ~. Given such t/J, the set of all 
solutions e of ~e = <p consists of K<P + ~-coboundaries. 

The Mayer-Vietoris sequence may be arranged as an augmented double 
complex 

q 

KO. 2 K 1• 2 

KO. 1 K 1• 1 

KO.O K 1• O -, 
p 

where Kp,q = CP(U, oq) = noq(U~o ... ~p) consists of the "p-cochains of the 
cover U with values in the q-forms." The horizontal maps of the double 
complex are the difference operators ~ and the vertical ones the exterior 
derivatives d. As before, the double complex may be made into a single 
complex with the differential operator given by 

D = D' + D" = ~ + ( -l)P d. 

A D-cocycle is a string such as <p = a + b + e with 

da = 0, 

~a = ±db 

~b = ±de 

~e = 0, 

q 

9 
~ ~t 

b f+ t 

e f>0 

p 

(To be precise we should write ~a = -D"b, ~b = - D"e.) So a D-cocycle 
may be pictured as a "zig-zag." 
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A D-coboundary is a string such as tP = a + b + c in the figure below, 
where a = t5al + D"a2' etc. 

q 

g 
at r-~ 

a2 r-~ 
a3 ~~ 

a4 f+0 

p 

The double complex 

C*(U, 0*) = EEl CP(U, 0 9) 

P.9~O 

is called the Cech-de Rham complex, and an element of the Cech-de Rham 
complex is called a tech-de Rham cochain. We sometimes refer to a Cech-de 
Rham cochain more simply as a D-cochain. 

The fact that all the rows of the augmented complex are exact is the key 
ingredient in the proof of the following. 

Proposition 8.8 (Generalized Mayer-Vietoris Principle). The double com
plex C*(U, 0*) computes the de Rham cohomology of M .. more precisely, the 
restriction map r : O*(M) -+ C*(U, 0*) induces an isomorphism in cohomol
ogy: 

PROOF. Since Dr = (t5 + d) r = dr = rd, r is a chain map, and so it induces a 
map r* in cohomology. 

Step 1. r* is surjective. 

q 

'1 .. f->'-H o 

q 

* 
*--0 

p p 

Let tP be a cocycle relative to D. By t5-exactness the lowest component of 
tP is t5 of something. By subtracting D(something) from tP, we can remove 
the lowest component of tP and still stay in the same cohomology class as tP. 
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After iterating this procedure enough times we can move 4J in its cohomol
ogy class to a cocycle 4J' with only the top component. 4J' is a closed global 
form because d4J' = 0 and ~4J' = o. 
Step 2. r* is injective. 

q 

0-+ n(M) ~ 

0-+ n(M) -+ * 

* 
* 

p 

q 

0-+ n(M) ~ 

0-+ n(M) -+ 4J 

o 
o 

p 

If r(w) = D4J, we can shorten 4J as before by subtracting boundaries until 
it consists of only the top component. Then because ~4J is 0, it is actually a 
global form on M. So w is exact. 0 

The proof of this proposition is a very general argument from which we 
may conclude: if all the rows of an augmented double complex are exact, then 
the D-cohomology of the complex is isomorphic to the cohomology of the 
initial column. 

It is natural to augment each column by the kernel of the bottom d, 
denoted C*(U, R). The vector space C'(U, R) consists of the locally constant 
functions on the (p + 1)-fold intersections U 1II0 ... lIIp' 

r q 
o -+ n2(M)--+ 

0-+ nl(M)-+ 

0-+ nO(M)-+ 

The bottom row 

nn2(uIII0) 

nn1(Ulllo) 

Co(U, R).!. C1(U, R).!. C2(U, R) .!. 

is a differential complex, and the homology of this complex, H*(U, R), is 
called the eech cohomology of the cover U. This is a purely combinatorial 
object. Note that the argument for the exactness of the generalized Mayer
Vietoris sequence breaks down for the complex C*(U, R), because here the 
cochains are locally constant functions so that partitions of unity are not 
applicable. 

If the augmented columns of the complex C*(U, n*) are exact, then the 



98 II The Cech,}e Rham Complex 

same argument as in (8.8) will yield an isomorphism between the Cech 
cohomology and the cohomology of the double complex 

H*(U, ~).:. HD{C*(U, O*)}, 

and consequently an isomorphism between de Rham cohomology and Cech 
cohomology 

HZR(M) ~ H*(U, ~). 

Now the failure of the plh column to be exact is measured by the coho
mology groups 

n Hq(U "0 ... "p). 
q;'l 

«0<'" <lZp 

So if the cover is such that all finite nonempty intersections are contractible, 
e.g., a good cover, then all augmented columns will be exact. We have 
proven 

Theorem 8.9. If U is a good cover of the manifold M, then the de Rham 
cohomology of M is isomorphic to the tech cohomology of the good cover 

HZR(M) ~ H*(U, ~). 

Let us recapitulate here what has transpired so far. First, the basic 
sequence of inclusions 

+-
M +- U" 1= U afl t U "fly E ... 

gives rise to the diagram 

differential E 
geometry of 0 --> O*(M) ~ C*(U, 0*) 
forms 

i 
C*(U, ~) 

i 
o 

combinatorics 
of the cover 

Along the left-hand side is the differential geometry of forms on M, along 
the bottom is the combinatorics of the cover U = {U ,,}, and in the double 
complex itself the two are mixed. As the complex is the generalized Mayer
Vietoris sequence, the augmented rows are exact, for any cover. It follows 
that the de Rham cohomology of M is always isomorphic to the cohomol-
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ogy of the double complex: 

HtR(M) ~ HD{C*(U, O*)}. 

If in addition U is a good cover, then by the Poincare lemma the 
augmented columns are exact. In that case the Cech cohomology of the 
cover is also isomorphic to the cohomology of the double complex: 

H*(U, R) ~ H D {C*(U, O*)}. 

Hence there is an isomorphism between de Rham and Cech. This result 
provides us with a way of computing the de Rham cohomology by means 
of combinatorics, since from Section 5 we know that every manifold has a 
good cover. All three complexes here can be given product structures, in 
which case the isomorphisms between them are actually isomorphisms of 
algebras, as will be shown in (14.28). 

A priori there is no reason why different covers of M should have the 
same Cech cohomology. However, i.t follows from Theorem 8.9 that 

Corollary 8.9.1. The tech cohomology H*(U, R) is the same for all good 
covers U of M. 

If a manifold is compact, then it has afinite good cover. For such a cover 
the Cech cohomology H*(U, R) is clearly finite-dimensional. Thus, 

Corollary 8.9.2. The de Rham cohomology HtR(M) of a compact manifold is 
finite-dimensional. 

In fact, 

Corollary 8.9.3. Whenever M has afinite good cover, its de Rham cohomology 
HtR(M) is finite-dimensional. 

Both the proof here and the induction argument in Section 5 of the finite 
dimensionality of the de Rham cohomology rest on the Mayer-Vietoris 
sequence, but they are otherwise independent of each other. 

§9 More Examples and Applications of the 
Mayer-Vietoris Principle 

In the previous section we used the Mayer-Vietoris principle to show the 
isomorphism of the de Rham cohomology of a manifold and the Cech 
cohomology of a good cover; from this, various corollaries follow. In this 
section, after some examples in which the combinatorics of a good cover is 
used to compute the de Rham cohomology, we give an explicit isomor-
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phism from Cech to de Rham: given a Cech cocycle, we construct the 
corresponding global closed differential form by means of a collating for
mula (9.5) based on the homotopy operator K of (8.6). To conclude the 
section, we give as another application of the Mayer-Vietoris principle a 
proof of the Kiinneth formula valid under the hypothesis that one of the 
factors has finite-dimensional cohomology. 

Examples: Computing the de Rham Cohomology from the 
Combinatorics of a Good Cover 

Let U = {U,,} be an open cover of a manifold M. The nerve of U is a 
simplicial complex constructed as follows. To every open set U,,' we associ
ate a vertex IX. If U" () U fI is nonempty, we connect the vertices IX and P 
with an edge. If U" () Ufl () Uy is nonempty, we fill in the face of the 
triangle IXpy. Repeating this procedure for all finite intersections gives the 
nerve of U, denoted N(U). For the basics of simplicial complexes, see Croom 
[1]. 

EXAMPLE 9.1 (The circle). Let U = {Uo, U lo U2 } be the good cover of the 
circle as shown in Figure 9.1. The Cech complex has two terms: 

CO(U, R) = R EB REB R = {(coo, COlo CO2)! CO" is a constant on U,,}, 

Cl(U, R) = R E9 R EEl R = {('10lo '102, '112)! '1"fI is a constant on U"fI}· 

Figure 9.1 

The coboundary ~ : CO ---+ Cl is given by (~co)"fI = cofl - co". Therefore, 

ker ~ = {(coo, COlo CO2)! COo = COl = CO2} = R 

and 

HO(sl) = R. 

Since im ~ = R2, Hl(Sl) = R3/im ~ = R 
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EXAMPLE 9.2 (A nontrivial l-cocycle on the circle). If a l-cocycle " = ("01> 
"02' "12) is a coboundary, then "01 - "02 + "12 = O. So " = (1, 0, 0) is a 
nontriviall-cocycle on the circle. 

EXAMPLE 9.3 (The 2-sphere). Cover the lower hemisphere of Figure 9.2 with 
three open sets as in Figure 9.3. Together with the upper hemisphere U 0, 

this gives a good cover of the entire sphere. The nerve of the cover is the 
surface of a tetrahedron as depicted in Figure 9.4. The Cech complex has 

2 

Figure 9.2 

Figure 9.3 

o 

3 

Figure 9.4 
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three terms: 

IR EB IR EB IR EB IR IR ffi IR EB IR ffi IR EB IR ffi IR IR EB IR EB IR EB IR 
o 1 2 3 01 02 03 12 13 23 012 013 023 123 

ker <50 = {(coo, COb CO2, c(3)lcoo = COl = CO2 = coJ} = IR 

So im <50 = IR J and HO(S2) = IR. If '1 is in ker bb then '1 is completely 
determined by '1010 '102, and '103' Therefore ker b1 = IR J and 

H1(S2) = ker <5dim bo = O. 

Since im b1 = C1/ker b1 = 1R 3, 

H2(S2) = 1R4/im b1 = IR. 

Explicit Isomorphisms between the Double Complex and de Rham 
and Cech 

We saw in Proposition 8.8 that the Cech-de Rham complex C*(U, fl*) 
and the de Rham complex fl*(M) have the same cohomology. Actually, 
what is true is that these two complexes are chain homotopic. To be more 
precise, there is a chain map 

(9.4) f: C*(U, n*)-+ fl*(M) 

such that 

(a) for = 1, and 
(b) r 0 fis chain homotopic to the identity. 

We may think of f as a recipe for collating together the components of a 
Cech-de Rham cochain into a global form. The not very intuitive formulas 
below were obtained, after repeated tries, by a careful bookkeeping of the 
inductive steps in the proof of Proposition 8.8. 

Proposition 9.5 (The Collating Formula). Let K be the homotopy operator 
defined in (8.6). Ifll = L.i'=o Ili is an n-cochain and DIl = P = L.i':J Pi> then 

n n+1 

f(ll) = L. (-D"K)ill/- L. K(-D"K)i-lPiEco(U,fln) 
i=O 1=1 

is a global form satisfying the properties above. The homotopy operator 

L: C*(U, fl*) -+ C*(U, fl*) 

such that 1 - r 0 f = DL + LD is given by 
n-1 

LIl = L. (LIl)p, 
p=O 
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where 
n 

(LO()p = L K(-D"K)i-(p+1)O(i E CP(U, on-l- p). 

i=p+l 

Po 

0(0 PI 

0(1 P2 

0(2 P3 

O(n Pn+ 1 
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REMARK. To strip away some of the mysteries in the expression for f(O(), it 
may be helpful to observe that the operator D" K sends an element of 
CP(U, oq) into Cp-l(U, Oq+l), so that (D"K)iO(i and K(D"Ki-1Pi are col
lections of n-forms on the open sets U". The collating formula says that a 
suitable linear combination of these local n-forms, with ± 1 as coefficients, 
is the restriction of a global form. 

The proof of Proposition 9.5 requires the following technical lemma. 

Lemma 9.6. For i ~ 1, 

o(D"K)i = (D"K)i 0 - (D"K)i- 1D". 

PROOF OF LEMMA 9.6. Since 0 anticommutes with D" and since 
oK + Ko = 1, 

o(D"K)(D"K)i-l = -D"oK(D"K)i-l 

= -D"(1 - Ko)(D"K)i-l 

= (D" K)o(D" K)i - 1. 

So we can commute D"K and 0 until we reach (D"K)i-10(D"K). Then, 

o(D"K)i = (D"K)i-10(D"K) 

= -(D"K)i- 1D"(1 - Ko) 

= _(D"K)i-1D" + (D"K)iO. o 

PROOF OF PROPOSITION 9.5. To show thatf(O() is a global form, we compute 
of(rx). Using the lemma above and the fact that Orxi + D"rxi+l = Pi+h this is 
a straightforward exercise which we leave to the reader. 
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Exercise 9.7. Show that ~f(a.) = o. 
Next we check thatfis a chain map. 

n+1 

f(Da.) =f(P) = L (-1)i(D"K)iPi. 
i=O 

n+1 

df(a.) = D''f(a.) = Po + L (_1)i(D" K)ipi. 
i= 1 

So 

f(Da.) = df(a.). 

The verification of Property (a) is easy, since if a. is a global form, then 
a. = a.o and 

f 0 r(a.) = f(a.) = a.o = a.. 

Property (b) follows from the fact that 

1 - r 0 f = DL + LD. 

As its verification is straightforward and not very illuminating, we shall 
omit it. The skeptical reader may wish to carry it out for himself. Apart 
from the definitions, the only facts needed are Lemma 9.6 and the chain
homotopy formula (8.7). 0 

REMARK. Actually the existence of the chain-homotopy inverse f and the 
homotopy operator L is guaranteed by a general principle in the theory of 
chain complexes (See Spanier [1, Ch. 4, Sec. 2; in particular, Cor. 11, 
p. 167]). 

We can now give an explicit description of the various isomorphisms 
that follow from the generalized Mayer-Vietoris principle. For example, by 
applying the collating formula (9.5), we get 

Proposition 9.8 (Explicit Isomorphism between de Rham and tech). If"l E 

Cn(U, IR) is a Cech cocycle, then the global closed form corresponding to it is 
given by f("I) = (-1)"(D" K)n '1. 

EXAMPLE 9.9. Let U be a good cover of the circle S1. We shall construct 
from a generator of the tech cohomology H1(U, IR) a differential form 
representing a generator of the de Rham cohomology HbR(Sl). 

As we saw in Example 9.2, a nontrivial1-cocycle on S1 is 

'1 = ('101, '102' '112) = (1, 0, 0). 

If {p~} is a partition of unity, then 

K"I = (-Ph Po, 0). 
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So the generator -D"K,., of H1R (S1) is represented by -d(-pd, a bump 
form on U 0 n U 1 with total integral 1. 

Exercise 9.10. The real projective plane IRP2 is obtained by identifying the 
boundary of a disc as shown in Figure 9.5. Find a good cover for IRp2 and 

Figure 9.5 

compute its de Rham cohomology from the combinatorics of the cover. 
One possible good cover has the nerve depicted in Figure 9.6. 

2 

2 
Figure 9.6 

Exercise 9.11. Let Figure 9.7 be the nerve of a good cover U on the torus, 
where the arrows indicate how the vertices are ordered. Write down a 
nontrivial l-cocycle in C1(U, IR). 

The Tic-Tac-Toe Proof of the Kiinneth Formula 

We now apply the main theorems of the preceding section to give another 
proof of the Kiinneth formula. This proof, admittedly more involved in its 
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Figure 9.7 

construction than the Mayer-Vietoris argument of Section 5, is a prototype 
for the spectral sequence argument of Chapter III. It will also allow us to 
replace the requirement that M has a finite good cover by the slightly 
weaker hypothesis that F has finite-dimensional cohomology. 

Before commencing the proof we make some general remarks about a 
technique for studying maps. Let 1t : E - M be a map of manifolds. A 
cover U on M induces a cover 1t- 1U on E, and we have the inclusions .r ~ U·-·V, to U·-· V" l= ... 

M ~ UVa t: UVaP E ... 
In general Van V p t:- 4J is not equivalent to 1t - 1 VII n 1t -1 V p t:- 4J. How
ever, if 1t is surjective, then the two statements are equivalent, so that in this 
case the combinatorics of the covers U and 1t- 1U are the same. The double 
complex of the inverse cover computes the cohomology of E, which can 
then be related to the cohomology of M, because the inverse cover comes 
from a cover on M. This idea will be systematically exploited throughout 
this chapter and the next. 

A quick example of how the inverse cover 1t- 1U may be used to study 
maps is the following. Note that although the inverse image of a good cover 
is usually not a good cover, for a vector bundle 1t: E- M the "goodness" 
of the cover is preserved. Since the de Rham cohomology is determined by 
the combinatorics of a good cover, this implies that 

H~R(E} ~ H~R(M). 

Of course, this also follows from the homotopy axiom for the de Rham 
cohomology (Corollary 4.1.2.2). 

Proposition 9.12 (Kiinneth Formula). If M and F are two manifolds and F 
has finite-dimensional cohomology, then the de Rham cohomology of the prod
uct M x F is 

H*(M x F} = H*(M} ® H*(F}. 
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PROOF. Let U = {U (l} be a good cover for M and n : M x F -+ M the pro
jection onto the first factor. Then n - 1 U = {n - 1 U (l} is some sort of a cover 
for E = M x F, though in general not a good cover. There is a natural map 

C*(n-1U, n*) 

In* 

C*(U, n*) 

which pulls back differential forms on open sets. Choose a basis for H*(F), 
say {[w .. ]}, and choose differential forms W(l representing them. These may 
be used to define a map of double complexes 

C*(n-1U, 0*) 

1n: 
H*(F) ® C*(U, 0*) 

by 

n~([W(l] ® cf» = P*W(l/\ n*cf> 

where p is the projection on the fiber 

M. 

Since H*(F) is a vector space, H*(F) ® C*(U, 0*) is a number of copies of 
C*(U, 0*) and the differential operator D on the double complex C*(U, 0*) 
induces an operator on H*(F) ® C*(U, 0*) whose cohomology is 

H*(F) ® HD{C*(U, O*)} = H*(F) ® H*(M). 

Since the D-cohomology of C*(n-1U, 0*) is H*(E), if we can show that 

C*(n-1U, 0*) 

ln~ 
H*(F) ® C*(U, 0*) 

induces an isomorphism in D-cohomology, the Kiinneth formula will 
follow. 

The proof now divides into two steps: 

Step 1. 
For a good cover U, the map n~ induces an isomorphism in Hd of these 

complexes. 
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Step 2. 
Whenever a homomorphism f: K - K' of double complexes induces 

Hd-isomorphism, it also induces HD-isomorphism. (By a homomorphism of 
double complexes, we mean a vector-space homomorphism which preserves 
bidegrees and commutes with d and b.) 

PROOF OF STEP 1. The plh column CP(n- 1U, fl*) consists of forms on the 
(p + I)-fold intersections IIn- 1 U .. o ...•• and CP(U, fl*) consists of forms on 
IIU .. o ....... The d-cohomology of CP(n- 1U, fl*) is 

(9.12.1) 

the isomorphism being given by the wedge product of pullbacks. So n: 
induces an isomorphism of the d-cohomology of C*(n- 1U, fl*) and 
H*(F) ® C*(U, fl*). o 
Exercise 9.13. Give a proof of Step 2. 

REMARK. This argument for the Kiinneth formula also proves the Leray
Hirsch theorem (5.11), but again instead of assuming that M has a finite 
good cover, we require the cohomology of F to be finite-dimensional. If 
both M and F have infinite-dimensional cohomology, the isomorphism in 
(9.12.1) may not be valid. 

The following example shows that some sort of finiteness hypothesis is 
necessary for the Kiinneth formula or the Leray-Hirsch theorem to hold. 

EXAMPLE 9.14 (Counterexample to the Kiinneth formula when both M and 
F have infinite-dimensional cohomology). Let M and F each be the set l + 

of all positive integers. Then 

HO(M x F) = {square matrices of real numbers (aij), i,j e l+}. 

But HO(M) ® HO(F) consists ofjinite sums of matrices (aij) of rank 1. These 
two vector spaces are not equal, since a finite sum of matrices of rank 1 has 
finite rank, but HO(M x F) contains matrices of infinite rank. 

§10 Presheaves and Cech Cohomology 

Presheaves 

The functor fl*( ) which assigns to every open set U on a manifold the 
differential forms on U is an example of a presheaf. By definition a presheaf 
IF on a topological space X is a function that assigns to every open set U in 
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X an abelian group ~(U) and to every inclusion of open sets 

i~: V - U 

a group homomorphism, called the restriction, 

~(i~) : ~(U) - ~(V) 

satisfying the following properties: 

(a) ~(i~) = identity map 
(b) transitivity: ~(i~) ~(i~) = ~(i:r). 
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The restriction ~(i~) : ~(U) - ~(V) is often denoted p~. A homomorphism 
of two presheaves, f: ~ - <§, is a collection of maps fu : ~(U) - <§(U) 
which commute with the restrictions: 

Iv 
~(U) -+ <§(U) 

p~ ! ! p~ 
~(V) -+ <§(V) 

Iv 

Let Open(X) be the category whose objects are the open sets in X and 
whose morphisms are inclusions of open sets. In functorial language, a 
presheaf is simply a contravariant functor from the category Open(X) to the 
category of Abelian groups, and a homomorphism of two presheaves, 
f: ~ - <§, is a natural transformation from the functor ~ to the functor <§. 

We define the constant presheaf with group G to be the presheaf ~ which 
associates to every open set U the locally constant functions: U .... G, and to 
every inclusion of open sets V c U the restriction of functions: ~(U) .... ~(V). 

EXAMPLE. By abuse of notation, the constant presheaf with group III will also 
be denoted by Ill. 

EXAMPLE 10.1. Let n: E .... M be a fiber bundle with fiber F. Define a presheaf 
;eq on M by ;eq(U) = Hq(n- 1U), and if V c U is an inclusion, let 

p~ : Hq(n- 1U) .... Hq(n- 1 V) 

be the natural restriction map. For U contractible, n- 1U ~ U x F, so by the 
Kiinneth formula 

Moreover, if V c U is an inclusion of contractible open sets, then 
p~ : Hq( n -1 U) .... Hq( n -1 V) is an isomorphism. The presheaf ;eq is an example 
of a locally constant presheaf on a good cover, to be defined in Section 13. 
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Cech Cohomology 

Let U = {U a} a e J be an open cover of the topological space X. The 0-
cochains on U with values in the presheaf § are functions which assign to 
each open set U a an element of §(U a), i.e., Co(U, §) = nIXe J §(U a). Sim
ilarly the l-cochains are elements of 

C1(U, §) = n §(Ua n Up) 
a<P 

and so on. 
The sequence of inclusions 

gives rise to a sequence of group homomorphisms 

n§(Ua):::O§(Uap )::'" . 

We define ~: C p ( U, §) ~ C p + l( U, §) to be the alternating difference of 
the §( ai)'s; for example, 

<5 : Co(U, §) -+ C1(U, §) 
is given by 

In general 

is given by 

<5 = §(oo) - §(od + ... + (-1)P+ l§(Op+ d· 

Explicitly, if W E CP(U, §), then 

(10.2) 

where on the right-hand side the restriction of wao ... ai ... a.+ 1 to U ao ... a.+ 1 is 
suppressed. It follows from the transitivity of the restriction homomorphism 
that 15 2 = 0 (proof as in Proposition 8.3). Thus C*(U, §) is a differential 
complex with differential operator b. The cohomology of this complex, 
denoted by Hd C*(U, &fl) or H*(U, &fl), is called the Cech cohomology of the 
cover U with values in &fl. 

REMARK lO.3. If &fl is a covariant functor from the category Open(X) to the 
category of Abelian groups, and U is an open cover of X, one can define 
analogously a chain complex C *(U, &fl) and its homology H *(U, &fl). Apart 
from the direction of the arrows, the only difference from the case of a 
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presheaf is in the definition of the coboundary operator (j : C p (U, §")-+ 

C p _ 1 (U, §"), which is now given by 

(aw )"o ... ap_l = L:w"ao ... ap_l E$( V"o ... ap_J. 
a 

One verifies easily that this (j also satisfies (j2 = O. The functor Jr~ which 
associates to every open set V on a manifold the compact cohomology 
H~(U) is covariant. 

Because of the antisymmetry convention on the subscripts, in this for
mula there is no sign in the sum. Of course, if we had written each term 
waD ... ap-l with the subscript IX inserted in the i-th place, then there would be 
a sign: Li (-l)iwao ... a ... ap-l' 

Returning to the discussion of the Cech cohomology of a presheaf $, 

recall that the cover I.B = {Vp} P E J is a refinement of the cover U = {Va} a E [, 

written U < m, if there is a map <1>: J ~ I such that Vp C V</>(fJ)' The 
refinement <I> induces a map 

in the obvious manner: 

Lemma 10.4.1. cj)# is a chain map, i.e., it commutes with (j. 

PROOF. «j(cj) # w))(V/lo ... /1.+.) = L< _l)i(cj) # w)(Vpo.P, .. P.J 

= L< -l)iw(U«>(/!o) «>(/!,).,«>(/! •• ,)) 

(cj)# (jw)(Vpo ... fJ.+.) = «(jw)(U «>(po) ... «>(fJ.+ ll) 

= L< - 1 )iW( U «>(Po) ... «>(PI) ... <I>(fJ. + ll)' 

o 

Lemma 10.4.2. Given U = {U a} ae 1 an open cover and m = {Vp}P e J a re
finement, if cj) and tjJ are two refinement maps: J -+ I, then there is a homotopy 
operator between cj) # and tjJ # . 

PROOF. Define K : O(U, §") -+ cq-l(m, §") by 

(Kw)(Vpo ... P._.) = L< -l)iw(U <I>(Po) ... <I>(P,)I/I(/lI) ... 1/1(/1.-) 

Exercise 10.5. Show that 

o 
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A direct system of groups is a collection of groups {G;}; E I indexed by a 
directed set I such that for any pair a < b there is a group homomorphism 
f!: : Ga -. Gb satisfying 

(1) f: = identity, 
(2) g = f.? 0 ft, if a < b < c. 

On the disjoint union UG; we introduce an equivalence relation - by 
decreeing two elements ga in Ga and gb in Gb to be equivalent if for some 
upper bound c of a and b, we have f,~(ga) = fcb(gb) in Gc• The direct limit 
of the direct system, denoted by lim; E I G;, is the quotient of UG; by the 
equivalence relation -; in other words, two elements of UG; represent the 
same element in the direct limit if they are "eventually equal". We make 
the direct limit into a group by defining [gal + [gb] = [f,~(ga) + f,?(gb)]' 
where [gal is the equivalence class of gao 

I t follows from the two lemmas above that if U < m, then there is a 
well-defined map in cohomology 

H*(U, §) -.H*(m, §), 

making {H*( u, §)} u into a direct system of groups. The direct limit of 
this direct system 

H*(X, 9i') = lim H*(U, 9i') 
u 

is the Cech cohomology of X with values in the presheaf 9i'. 

Proposition 10.6. Let IR be the constant presheaf on a manifold M. Then the 
tech cohomology of M with values in IR is isomorphic to the de Rham 
cohomology. 

PROOF. Since the good covers are cofinal in the set of all covers of M 
(Corollary 5.2), we can use only good covers in the direct limit 

H*(M, IR) = lim H*(U, IR). 
u 

By Theorem 8.9, 

H*(U, IR) ~ H~R(M) 

for any good cover of M. Moreover, it is easily seen that this isomorphism is 
compatible with refinement of good covers. Therefore, there is an isomorphism 

H*(M, IR) ~ H~R(M). 
[] 

Exercise 10.7 (Cohomology with Twisted Coefficients). Let 9i' be the presheaf 
on Sl which associates to every open set the group 7L. We define the 
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restriction homomorphism on the good cover U = {U 0, U 10 U 2} (Figure 
10.1) by 

pgl = ptll = 1, 

Pi2 = P~2 = 1, 

P~2 = -1, pg2 = 1, 

where P:j is the restriction from ll; to ll; n~. Compute H *( U, ff). 
(Cf. presheaf on an open cover, p. 142.) 

V, 

Figure 10.1 

§ 11 Sphere Bundles 

Let 7t: E - M be a fiber bundle with fiber the sphere S", n ~ 1. As the 
structure group we normally take the largest group possible, namely the 
diffeomorphism group Diff(S"), but sometimes we also consider sphere bun
dles with structure group O(n + 1). These two notions are not equivalent; 
there are examples of sphere bundles whose structure groups cannot be 
reduced to the orthogonal group. Thus, every vector bundle defines a 
sphere bundle, but not conversely. By the Leray-Hirsch theorem if there is a 
closed global n-form on E whose restriction to each fiber generates the 
cohomology of the fiber, then the cohomology of E is 

H*(E) = H*(M) ® H*(S"). 

It is therefore of interest to know when such a global form exists. 
In Section 6 we constructed the global angular form t/I on a rank 2 

vector bundle with structure group SO(2). This form t/I was seen to have the 
following two properties: 

(a) t/I restricts to the volume form on each fiber, i.e., a generator of H~(fiber) 
(b) dt/l = -7t*e 

where e is the Euler class. Exactly the same procedure defines the angular 
form and the Euler class of a circle bundle with structure group SO(2). 
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Consequently, for such a bundle also, if the Euler class vanishes, then'" is 
closed and satisfies the condition of the Leray-Hirsch theorem. 

We now consider more generally a sphere bundle with structure group 
Diff(sn) or O(n + 1). We will see that the existence of a global form as above 
entails overcoming two obstructions: orientability and the Euler class. 

Orientability 

In this section the base space of the bundle is assumed to be connected. A 
sphere bundle with fiber sn, n ~ 1, is said to be orientable if for each fiber F" 
it is possible to choose a generator [0',,] of Hn(F,,) satisfying the local com
patibility condition: around any point there is a neighborhood U and a 
generator [O'u] of Hn(E lu) such that for any x in U, r O'rTl restricted to the 
fiber F" is the chosen generator [0',,]; equivalently, there is an open 
cover {U,,} of M and generators [O'J of Hn(Elu.) so that [0',,] = [O'p] in 
Hn(E lu. n up)' 

Since a generator of the top cohomology of a fiber is an n-form with 
total integral 1, there are two possible generators, depending on the orienta
tion of the fiber. A priori all that one could say is that [O'J = ± [O'p] on 
U" (") U fl' For an orientable sphere bundle either choice of a consistent 
system of generators is called an orientation of the sphere bundle. A bundle 
with a given orientation is said to be oriented. An SO-bundle over a mani
fold M is a double cover of M; such a bundle over a connected base space 
is said to be orientable if and only if the total space has two connected 
components. 

CAVEAT. The fact that the cohomology classes {[O',,]} agree on overlaps 
does not mean that they piece together to form a global cohomology class. 
A global cohomology class must be represented by a global form; the 
equality of cohomology classes [0',,] = [O'p] implies only that the forms 0'" 
and 0' p differ by an exact form. 

Recall that in Section 7 we called a vector bundle of rank n + 1 orient
able if and only if it can be given by transition functions with values in 
SO(n + 1). We now study the relation between the orientability of a sphere 
bundle and the orientability of a vector bundle. 

Let E be a vector bundle of rank n + 1 endowed with a Riemannian 
metric so that its structure group is reduced to O(n + 1). Its unit sphere 
bundle S(E) is the fiber bundle whose fiber at x consists of all the unit 
vectors in E" and whose transition functions are the same as those of E. 
S(E) is an Sn-bundle with structure group O(n + 1). 

REMARK 11.1. Fix an orientation on the sphere sn. If the linear trans
formation 9 is in the special orthogonal group SO(n + 1) and [0'] is a 
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generator of H"(S") with Iso (1 = 1, then the image g(S") is the sphere S" with 
the same orientation, so that 

1. g*(1 = Lso) (1 = 1. (1 = 1. 

Thus for an orthogonal transformation g, g*(1 and (1 represent the same 
cohomology class if and only if g has positive determinant. 

Proposition 11.2. A vector bundle E is orientable if and only if its sphere 
6iindle S(E) is orientable. 

PROOF. ( ~ ) Fix a generator (1 on S" and fix a trivialization {(U", cf>,,)} for E 
so that the transition functions g,,11 assume values in SO(n + 1). Let 

p,,: U" x S"- S" 

be the projection and let 7t -1(X) be the fiber of the sphere bundle 
7t : S(E)- M at x. Define [(1,,] in H"(S(E) lu.) by 

[0',,] = cf>: P:[(1]. 

To avoid cumbersome notations we will write [0',,] I", and cf>" I", for the re
strictions [0',,] 1 .. ·1(",) and cf>" 1 .. ·1(",) respectively. Then for every x in U", 

ForxeU«nUII, 

[(1,,] I", = (cf>" 1",)*[0']. 

[(111]1", = [0'«]1", 

iff (;/11",)*[0'] = (;«1",)*[(1] 

iff [0'] = «;/11",)*)-1(;«1",)*[(1] 

iff [(1] = g«/I(x)*[(1]. 

Since g"lI(x) has positive determinant, [(1] = g"lI(x)*[O'] by (11.1). Therefore, 
[(111] = [(1J on UII. n U/I and the sphere bundle S(E) is orientable. 
(<=) Conversely, let {U", [O'J} be an orientation on the sphere bundle S(E) 
and let (S", (1) be an oriented sphere in IR"+ 1, where (1 is a nontrivial top 
form on S". Choose the trivializations for S(E) 

in such a way that cf>/J preserves the metric and cf>: P:[(1] = [0',,]. Then at any 
point x in U" nUll' the transition function g"lI(x) pulls [0'] to itself and so 
g"p(x) must be in SO(n + 1). 0 

REMARK 11.3. Since SO(I) = {I}, a line bundle L over a connected base 
space is orientable if and only if it is trivial. In this case the sphere bundle 
S(L) consists of two connected components. 
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Proposition 11.4. A vector bundle E is orientable if and only if its determinant 
bundle det E is orientable. 

PROOF. Let {g"lI} be the transition functions of E. Then the transition func
tions of det E are {det g"II}' An orthogonal matrix g"l1 assumes values in 
SO(n + 1) if and only if det g"l1 is positive, so the proposition follows. 

o 
Whether E is orientable or not, the O-sphere bundle S(det E) is always a 

2-sheeted covering of M. Combining Corollary 11.3 and Proposition 11.4, 
we see that over a connected base space a vector bundle E is orientable if 
and only if S(det E) is disconnected. Since a simply connected base space 
cannot have any connected covering space of more than one sheet, we have 
proven the following. 

Proposition 11.5. Every vector bundle over a simply connected base space is 
orientable. 

In particular, the tangent bundle of a simply connected manifold is 
orientable. Since a manifold is orientable if and only if its tangent bundle is 
(Example 6.3), this gives 

Corollary 11.6. Every simply connected manifold is orientable. 

The Euler Class of an Oriented Sphere Bundle 

We first consider the case of a circle bundle 1t : E --. M with structure group 
Diff(SI). As stated in the introduction to this section, our problem is to find 
a closed global I-form on E which restricts to a generator of the cohomol
ogy on each fiber. As a first approximation, in each U" of a good cover {U ,,} 
of M we choose a generator [0',,] of Hl(Elu.}. The collection {O',,} is an 
element 0'0.1 in the double complex C*(1t- 1U, 0*): 

0'0.1 -I 
0'1.0--I 

I -8 

From the isomorphism between the cohomology of E and the cohomology 
of this double complex, 

HT,R(E) ~ HD {C*(1t- t U, O*)}, 

we see that to find a global form which restricts to the d-cohomology class 
of 0'0,1 it suffices to extend 0'0,1 to a D-cocycle. The first step of the exten
sion requires that (<50'0,1)"11 = 0'11 - 0'" be exact, i.e., [0',,] = [0'11] for all oc, p. 
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This is precisely the orientability condition. Assume the bundle E to be 
oriented with orientation 0'0.1, so that 60'°·1 = dO'l.0 for some 0'1.0 in 
C1(1t- 1U, nO). Then 0'0.1 + 0'1.0 is a D-cocycle if and only if 60'1.0 = 0. Since 

d(60'1.0) = 6(dO'l.0) = 6(60'°·1) = 0, 

60'1.0 actually comes from an element -8 of the cochain group C2(1t- 1U, 
R). Now since the open covers U and 1t- 1U have the same combinatorics, 
i.e., 1t - 1 U .0 .... , is nonempty if and only if U 110 ... 11, is, C*(1t - 1 U, R) = C*(U, R) 
and we may regard 8 as an element of C2(U, R). In fact, because 68 = 0, 8 
defines a tech cohomology class in H2(U, R). By the isomorphism between 
the tech cohomology of a good cover and de Rham cohomology, 8 corre
sponds to a cohomology class e(E) in H2(M). For a circle bundle with 
structure group SO(2), this class turns out to be the Euler class of Section 6, 
as will be shown later. So for an oriented circle bundle E with structure 
group Diff(Sl) we also call e(E) the Euler class. 

The discussion above generalizes immediately to any sphere bundle with 
fiber S", n ;=:: l. Such a sphere bundle is orientable if and only if it is possible 
to find an element 0'0." in CO(1t- 1U, n") which extends one step down 
toward being a D-cocycle: 

0'0. " ~I 
0'1. "-

0'"' ° r-+ 
I 

-1t*8 

There is no obstruction to extending 0'1. "-lone step further, since every 
closed (n - l)-form on Elv.O.o1.02 is exact. In general, extension is possible 
until we hit a nontrivial cohomology of the fiber. Thus for an oriented 
sphere bundle E we can extend all the way down to 0'".0 in such a manner 
that if 

then 
DO' = 60'"'°. 

Since d(60'"' 0) = 6(dO'"' 0) = ± 6(60'"-1.1) = 0, 

DO' = 60'"' ° = i( -8) 

for some 8 in C"+ 1(1t- 1U, R) ~ C"+ l(U, R), where i is the inclusion 
C"+1(1t-1U, R) -+ Cn+1(1t-1U, nO). Clearly 68 = 0, so 8 defines a cohomology 
class e(E) in H"+l(U, R) ~ Hn+1(M), the Euler class of the oriented Sn-bundle E 
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with orientation (10, ", The Euler class of an oriented SO -bundle is defined to 
be O. Note that the Euler class depends on the orientation {[(lJ} of E; the 
opposite orientation would give - e(E) instead. 

If E is an oriented vector bundle, the complement EO of its zero section 
has the homotopy type of an oriented sphere bundle. The Euler class of E is 
defined to be that of EO. Equivalently, if E is endowed with a Riemannian 
metric, then the unit sphere bundle S(E) of E makes sense and we may 
define the Euler class of E to be that of its unit sphere bundle. This latter 
definition is independent of the metric and in fact agrees with the definition 
in terms of EO, since for any metric on E, the unit sphere bundle S(E) has 
the homotopy type of EO. 

In the next two propositions we show that the Euler class is well defined. 

Proposition 11.7. For a given orientation {[(lJ} the Euler class is independent 
oifth h · if jn-j' 0 e c olce 0 (I' , J = , ... , n. 

PROOF. 

T -8 

Let aO,,, be another cochain in CO(n-1U, 0") which represents the orien
tation {[(I .. ]}. Then aO,,, - (10,,, = dT,,-l for some T,,-l in CO(n- 1U, 0,,-1). 
Since d(bT,,-l) and d(a1• ,,-I - (II. ,,-I) are equal, c5T,,-l and ai, ,,-I _ (11, ,,-I 
differ by dT,,-2 for some T,,-2 in C1(n- 1U, 0"- 2). Again, 

d(c5T,,-2) = _d(ii2,,,-2 _ (12.11-2), 

so 
(C5T,,-2) _ (a2,11-2 _ (12.,,-2) = dT,,-3 

for some Tn - 3 in C2( n - 1 U, 0" - 3). Eventually we get 

bTO - (a"' ° - (I'" 0) = iT, T E C"(n- 1U, IR). 

Taking b of both sides, we have 

e - 8 = bT. 

So e and e define the same Cech cohomology class. 
o 

Proposition II.S. The Euler class e(E) is independent o/the choice a/the good 
cover. 
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PROOF. Write Bu for the cocycle in H"+ l(U, IR) which defines the Euler class 
in terms of the good cover U. If a good cover m is a refinement of U, then 
there is a commutative diagram 

H"H(U.~ J'('!l. RI 

H'bt.l{M) 

Bu and 6ti give the same element in H'bt.l(M), because if we choose the 0'0. " 

on n- 1 m to be the restriction of the 0'0." on n- 1U, the cocycle 611 in e"+ l(m, 

IR) will be the restriction of the cocycle 6u in e"+ l(U, IR), so that as elements 
of the Cech cohomology H"+ l(M, IR) they are equal. Given two arbitrary 
good covers U and m, we can take a common refinement m; then 6u = 
6IB = B'll! in H"+ l(M, IR). So the Euler class is independent of the cover. 

o 
If the Euler class e(E) E H" + l(M) vanishes, its representative 6 E e" + l(U, \R) 

is a o-coboundary; this permits one to alter 0'".0 so that DO' = o. The 
D-cocycle 0' then corresponds to a global form which restricts to the d
cohomology class of 0'0.". In sum, then, there is a global form that restricts to 
a generator on each fiber if and only if 

(a) E is orientable, and 
(b) the Euler class e(E) vanishes. 

For E a product bundle, the extension stops at the 0'0." stage so that 
B = O. In this sense the Euler class is a measure of the twisting of an 
oriented sphere bundle. However, as we will see in the proposition below, E 
need not be a product bundle for its Euler class to vanish. 

Proposition 11.9. If the oriented sphere bundle E has a section, then its Euler 
class vanishes. 

PROOF. Let s be a section of E. It follows from nos = 1 that s*n* = 1. We 
saw in the construction of the Euler class that 

-n*B = DO' 

for some D-cochain 0'. Applying s* to both sides gives 

-6 = Ds*O', 

so e is a coboundary in H*(M). o 
The converse of this proposition is not true. In general a cohomology 

class is too "coarse" an invariant to yield information on the existence of 
geometrical constructs. In (23.16) we will show the existence of a sphere 
bundle whose Euler class vanishes, but which does not admit any section. 
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We now show that for a circle bundle n : E -+ M with structure group 
SO(2) the definitions of the Euler class in Section 6 and in this section agree. 
We briefly recall here the earlier construction. If 0" is the angular coordi
nate over U", then [dO,J2n] is a generator of Hl(E luJ Furthermore, 

~ - dO" = n* dljJ"p = n*ep - n*e" for some I-form e" over U". 
2n 2n 2n 

The Euler class of the circle bundle E was defined to be the cohomology 
class of the global form {de"}. 

In the present context these cochains fit into the double complex 
C*(n-1U, Q*) of E as shown in the diagram below. 

Q*(E) dO" n*dljJ"p 
2n 2n 

n*ljJ"p -n*e 
2n 

1-
-n*e 

C*(n-1U, IR) 

By the explicit isomorphism between de Rham and Cech (Proposition 
9.8), the differential form on M corresponding to the Cech co cycle e is 
( - D" K)2e. Since ep - e" = (lj2n) dljJ"p, be = (lj2n) dljJ, so by (8.7), we may 
take e to be (lj2n) KdljJ. Also note that since b(ljJj2n) = - e, 

Hence 

Here 

- Ke = ljJj2n (modulo a b-coboundary). 

(-D"K)2e = -dKdKe 

= dKd«ljJj2n) + br) for some r 

= dKd(ljJj2n) + dKdbr 

= de + dKdbr. 

dKdbr = dKbdr because d commutes with 15 

= d(1 - bK)dr by (8.7) 

= -bdKdr. 

Since Kdr E Ql(M), dKdr is a global exact form, so bdKdr = O. Hence 
( - D" K)2e = de, showing that the two definitions of the Euler class could be 
made to agree on the level of forms. 
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The Global Angular Form 

In Section 6 we exhibited on an oriented circle bundle the global angular 
form 1/1 which has the following properties: 

(a) its restriction to each fiber is a generator of the cohomology of the 
fiber; 

(b) dl/l = -n*e, where e represents the Euler class of the circle bundle. 

Using the collating formula (9.5) we will now construct such a form on any 
oriented Sn-bundle. 

Let U = {U~} be an open cover of M. Recall that the Euler class of E is 
defined by the following diagram: 

lXo 

where lXo E CO(n -1 U, on) is the orientation of E, 

i=O, ... ,n-l, 

and 

Hence 

D(lXo + .. , + IXn) = -n*6. 

Here lXi is what we formerly wrote as O'l,n-I. 
If {p~} is a partition of unity subordinate to the open cover U = {U~}, 

then {n*p~} is a partition of unity subordinate to the inverse cover n- 1U = 
{n-1U~}. Using these data we can define a homotopy operator K on the 
double complex C*(U, 0*) and also one on C*(n- 1U, 0*) as in (8.6). We 
denote both operators by K. Both K satisfy 

~K + K~ = 1. 

Since 

(Kn*w) - ~(n*p )(n*w) Clo ••. lIp-l - i.. II 11110 ... IIp-l 

= (n* Kw)~o ... ~p-l , 

K commutes with n*. 
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Exercise 11.10. If s : M - E is a section, show that Ks* = s* K. 

By the collating formula (9.5), 

" (lUI) I/J = 1: ( - 1 )'(D" K)'a., + ( - 1)" + 1 K(D" K)n( -1t*e) 

is a global form on E. Furthermore, 

dI/J = (_I)n+ldK(D"K)"(-1t*e) 

= -1t*(_I)n+l(D"K)"+le since 1t* commutes with D"K 

(11.12) = - 1t*e by Proposition 9.8. 

In formula (11.11) since the restriction of '11"*« -1)"+lK(D"K)"e) to a fiber 
is 0, the restriction of the global form '" to each fiber is d-cohomologous to 
"01 fiber' hence is a generator of the cohomology of the fiber. The global 
n-form", on the sphere bundle E satisfies the properties (a) and (b) stated 
earlier. We call it the global angular form on the sphere bundle. 

REMARK. 11.12.1. Let (U .. } .. el be an open cover of M which trivializes the 
n-sphere bundle E and let", and e be defined by (11.11) and (11.12). Then 
Supp d!JI C U'1I"-l(U .. o ..... ) and Supp e is contained in the union U U .. o ...... 

of the (n + I)-fold intersections. 

PROOF. By (8.6), Supp(Kw) .. O ..... P_l C U .. Suppw .... O ..... J?_l C U .. U .... O ..... P_ 1• 

Since Supp e C U U .. o ...... ' the remark follows from (11.11) and (11.12). 0 

Exercise 11.13. Use the existence of the global angular form I/J to prove 
Proposition 11.9. 

Euler Number and the Isolated Singularities of a Section 

Let 1t : E - M be an oriented (k - I)-sphere bundle over a compact orien
ted manifold of dimension k. Since H"(M) ==: IR, the Euler class of E may be 
identified with the number JMe(E), which is by definition the Euler number 
of E. The Euler number of the manifold M is defined to be that of its unit 
tangent bundle S(TM ) relative to some Riemannian structure on M. While 
the Euler number of an orientable sphere bundle is defined only up to sign, 
depending on the orientations of both E and M, the Euler number of the 
orientable manifold M is unambiguous, since reversing the orientation of M 
also reverses that of the tangent bundle. 

In general the sphere bundle E will not have a global section; however, 
there may be a section s over the complement of a finite number of points 
Xl, ... , Xq in M. In fact, as we will show in Proposition 11.14, if the sphere 
bundle has structure group O(k), then such a .. partial" section s always 
exists. In this section we will explain how one may compute the Euler class 
of E in terms of the behavior of the section s near the singularities 
Xl' ... , Xq • 
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Proposition 11.14. Let 1t : E -4 M be a (k - I)-sphere bundle over a compact 
manifold of dimension k. Suppose the structure group of E can be reduced to 
O(k). Then E has a section over M - {x 10 ... , x q } for some finite number of 
points in M. 

PROOF. Since the structure group of E is O(k), we can form a Riemannian 
vector bundle E' of rank k whose unit sphere bundle is E. A section s' of E' 
over M gives rise to a partial section s of E : s(x) = s'(x)/ II s'(x) II , where II II 
denotes the length of a vector in E'. Let Z be the zero locus of s'; s is only a 
partial section in the sense that it is not defined over Z. Thus to prove the 
proposition, we only have to show that the vector bundle E' has a section 
that vanishes over a finite number of points. 

This is an easy consequence of the transversality theorem which states 
that given a submanifold Z in a manifold Y, every mapf: X --+ Y becomes 
transversal to Z under a slight perturbation (Guillemin and Pollack [1, p. 
68]). Furthermore, we may assume that a small perturbation of a section t of 
E' is again a section, as follows. Suppose f is a perturbation of t and f is 
transversal to the zero section. Then g = 1t 0 f is a perturbation of 1t 0 t, 
which is the identity. Thus, for a sufficiently small perturbation, g will be close 
to the identity and so must be a diffeomorphism. For such anf, define s'(x) = 
f(g-1(x). Then 1t 0 S' = 1 and s' is transversal to so(M), i.e., S=s'(M) intersects 
So = so(M) transversally. Applying this procedure to the zero section of E', 
i.e., choosing t = so, will yield the desired transversal section s' for E'. Since 

dim S + dim So = dim E', 

S n So consists of a discrete set of points. By the compactness of S, it must 
be a finite set of points. 0 

REMARK 11.15. It follows from the rudiments of obstruction theory that this 
proposition is true even if the structure group of the sphere bundle cannot 
be reduced to an orthogonal group. For a beautiful account of obstruction 
theory, see Steenrod [1, Part III]. 

Suppose s is a section over a punctured neighborhood of a point x in M. 
Choose this neighborhood sufficiently small so that it is diffeomorphic to a 
punctured disc in 1R1 and E is trivial over it. Let Dr be the open neighbor
hood of x corresponding to the ball of radius r in IRk under the diffeomor
phism above. As an open subset of the oriented manifold M, Dr is also 
oriented. Choose the orientation on the sphere S1-1 in such a way that the 
isomorphism E IDr ~ Dr X S1 - 1 is orientation-preserving, where Dr X S1 - 1 

is given the product orientation. (If A and B are two oriented manifolds 
with orientation forms co'" and COB, then the product orientation on A x B is 
given by (prco",) A (Pt COB), where P1 and P2 are the projections of A x B 
onto A and B respectively.) The local degree of the section s at x is defined 
to be the degree of the composite map 

aD .!.. EI- = D x Sk-l !. Sk-l 
r D,. r 

where p is the projection and Dr is the closure of Dr· 



124 II The Cech-de Rham Complex 

Theorem 11.16. Let 1t: E -+ M be an oriented (k - 1)-sphere bundle over 
a compact oriented manifold of dimension k. If E has a section over M - {Xl' 

... , xq}, then the Euler number of E is the sum of the local degrees of s at 
Xl' ... , Xq • 

PROOF. We first show that it is possible to move the support of the Euler 
class away from finitely many points. 

Lemma. Let M be a manifold and {Ua } a E T an open cover of M. Given finitely 
many points x I' ... , x q on M, there is a refinement {Va} a E T of {Ua} a E T such 
that Va C Ua and each x; has a neighborhood W; which is disjoint from all but 
one of the Va's. 

PROOF OF LEMMA. Sup..£.ose XI E UI. Let WI be an open neighborhood of XI 

such that XI E WI C WI CUI' We define a new open cover {Ua'}aET by 
setting Ui = UI and Ua' = Ua - WI for a*- 1. (Check that this is indeed an 
open cover of M.) The neighborhood WI of XI is contained in Ui but 
disjoint from all Ua', a*- 1. 

Next suppose X 2 E U{ Let W2 be an open neighborhood of X2 such that 
x 2 E W2 C W2 C U{. As before define a new open cover { U a"} a E T by setting 
U" = U' and U" = U' - W for a*-2 Since U" c U' the open neighbor-2 2 a a 2 . a a' 

hood WI of XI is disjoint from all Ua", a*- 1. By definition, the open 
neighborhood W2 of X2 is disjoint from all Ua", a*- 2. Repeating this 
process to x 3' ••• , x q in succession yields the open cover {Va} of the lemma. 

o 

N ow let {Ua } a E T be an open cover of M which trivializes E. By the 
lemma we may assume that each x; has a neighborhood W; which is 
contained in exactly one Ua' Construct the global angular form I/; and the 
form e relative to {U .. } .. eI' By Remark 11.12.1, since Supp e c U U .. Q ..... k _ l , 

the form e must vanish on W; for all i = 1, ... , q. So e is supported away 
from the points XI"'" x q • _ 

For each i choose an open ball D; around the point X; so that D; C W;. 
Then 

(11.16.1) f e = f e = f s *77 *e 
M M- UDi M- UDi 

= - f s*dl/; 
M-UDi 

= 1:1_s *1/; 
i aDi 

since s is a global section 
over M- UDi 

because 77 *e = - dl/; 

by Stokes' theorem and 
the fact that iD; has the 
opposite orientation as 
J(M- UD;). 

Although the global angular form is not closed, by our construction 
d I/; = 0 on E I w, so I/; defines a cohomology class in H k - I( E I w), which is 
in fact the generator. Let (J be the generator of Sk-l. Then P*(J 'restricts to 
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the generator on each fiber of EI w' So p*a and the angular form I/; define 
the same cohomology class in Hk-'l(Elw). i.e .• 

I/; - p*a = dT 

for some (k - 2)-form Ton Elw,- Thus on Di• 

s*1/; - s*p*a = s* dT 
and 

1-s * I/; - 1-s *p*a = 1- ds *T = 0 
aD, aD, aD, 

by Stokes' theorem. 

Therefore. 

1_s*1/; = local degree of the section s at Xi' 
aD, 

Together with (11.16.1). this gives 

f e = E(local degree of s at Xi)' 
M i 

o 

This theorem can also be phrased in terms of vector bundles. Let 
1t : E --+ M be an oriented rank k vector bundle over a manifold of dimen
sion k and s a section of E with a finite number of zeros. The multiplicity of 
a zero x of s is defined to be the local degree of x as a singularity of the 
section s/II s II of the unit sphere bundle of E relative to some Riemannian 
structure on E. (This definition of the index is independent of the Rieman
nian structure because the local degree is a homotopy invariant.) Since the 
Euler class e(E) of E is a k-form on M. it is Poincare dual to nP, where 
n = JM e(E) and P is a point on M. Thus we have the following. 

Theorem 11.17. Let 1t : E --+ M be an oriented rank k vector bundle over a 
compact oriented manifold of dimension k. Let s be a section of E with a finite 
number of zeros. The Euler class of E is Poincare dual to the zeros of s, 
counted with the appropriate multiplicities. 

EXAMPLE 11.18 (The Euler class of the unit tangent bundle to S2). Let S(Tsl) 
be the unit tangent bundle to S2. It is a circle bundle over S2: 

SI --+ S(Tsz) 

1 
S2 

Fix a unit tangent vector v at the north pole. We can define a smooth 
vector field on S2_{ south pole} by parallel translating v along the great 
circles from the north pole to the south pole (see Figure 11.1). (Parallel 
translation along a great circle on S2 is prescribed by the following two 
conditions: 

(a) the tangent field to the great circle is parallel; 
(b) the angles are preserved under parallel translation.) 
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Figure 11.1 Figure 11.2 

This gives a section s of S(TS2) over S2-{south pole}. On a small circle 
around the south pole, the vector field looks like Figure 11.2, i.e., as we go 
around the circle 90°, the vectors rotate through 180°; therefore, the local 
degree of s at the south pole is 2. By Theorem 1l.16, the Euler number of 
the unit tangent bundle to S2 is 2. 

Exercise 11.19. Show that the Euler class of an oriented sphere bundle with 
even-dimensional fibers is zero, at least when the sphere bundle comes from 
a vector bundle. 

Since the Euler class is the obstruction to finding a closed global angular 
form on an oriented sphere bundle, by the Leray-Hirsch theorem we have 
the following corollary of Exercise 11.19. 

Proposition 11.20. If 1t : E - M is an orientable S2n-bundle, then 

H*(E) = H*(M) ® H*(s2n). 

Exercise 11.21. Compute the Euler class of the unit tangent bundle of the 
sphere Sk by finding a vector field on Sk and computing its local degrees. 

Euler Characteristic and the Hopf Index Theorem 

In this section we show that the Euler number JM e(TM) is the same as the 
Euler characteristic X(M) = 2) -1)qdim Hq(M) and deduce as a corollary 
the Hopf index theorem. The manifold M is assumed to be compact and 
oriented. 

Let {wJ be a basis of the vector space H*(M), {tj} be the dual basis 
under Poincare duality, i.e., JMWi /\ tj = c)ij, and let 1t and p be the two 
projections of M x M to M: 



§11 Sphere Bundles 127 

By the Kiinneth formula, H*(M x M) = H*(M) ® H*(M) with {7t*WI " 
p*rj} as an additive basis. So the Poincare dual '1A of the diagonal A in 
M x M is some linear combination '1A = L clj 7t*WI "p*r J. 

PROOF. We compute fA 7t*r" "p*w, in two ways. On the one hand, we can 
pull this integral back to M via the diagonal map I : M - A c M x M: 

I 7t*r" " p*w, = fM 1*7t*r"" I*P*W, = fM r,," w, = (_l)(de,'~)(de, ",d <5",. 

On the other hand, by the definition of the Poincare dual of a closed 
oriented submanifold (5.13), 

r 7t*r" " p*w, = r 7t*r" "p*w," '1A 1 JMXM 

Therefore 

= L Ci) r 7t*r" " p*w," 7t*Wj " p*r J 
I.J JMXM 

= L C'J( _l)(del'~+del ",d(del ",,) r 7t*(WI" r,,)p*(w," rJ) 
~J ~xM 

= ( _ 1 )(de. ,~ + do. ",ddel "'~ C",. 

if k::/= I 
if k = I. 

o 

Lemma 11.23. The normal bundle N A of the diagonal A in M x M is isomor
phic to the tangent bundle TA • 

PROOF. Since the diagonal map t: M -+ M x M sends M diffeomorphically 
onto fl, t*TA = T M. It follows from the commutative diagram 

(v, v) 1-+ (v, v) 

0- TA - TMXM!A - NA- 0 

Il Il 

o - TM - TM E9 TM - TM - 0 
V 1-+ (v, v) 

o 
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Recall that the Poincare dual of a closed oriented submanifold S is 
represented by the same form as the Thorn class of a tubular neighborhood 
of S (see (6.23». Thus 

i '14 = i <I>(N 4) where <I>(N A) is the Thorn class of the normal 
bundle N 4 regarded as a tubular neighborhood 
of din M x M 

= i e(TA) 

= L e(TM)' 

since the Thorn class restricted to the zero 
section of the bundle is the Euler class (proved for 
rank 2 bundles in Prop. 6.41 on p. 74; the general 
case will be shown later, in Prop. 12.4 on p. 128.) 

So the self-intersection number of the diagonal d in M x M is the Euler 
number of M. (By Poincare duality, SA '14 = SM x M '1A A '14 is the self
intersection number of d in M x M.) 

Now the right-hand side of Lemma 11.22 evaluated on the diagonal d is 

Therefore, 

i '1A = L(_l)deg Wi i n*wjAp*tj 
A j 4 

= L(-1)deg Wi i WjAtj 
i M 

= L( _1)deg Wi 

j 

q 

= X(M). 

Proposition 11.24. The Euler number of a compact oriented manifold SM e(TM) 
is equal to its Euler characteristic X(M) = D -1)q dim Hq. 

It is now a simple matter to derive the Hopf index theorem. Let V be a 
vector field with isolated zeros on M. The index of V at a zero u is defined 
to be the local degree at u of V / II V II as a section of the unit tangent bundle 
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of M relative to some Riemannian metric on M. By Theorem 11.16 the sum 
of the indices of V is the Euler number of M. The equality of the Euler 
number and the Euler characteristic then yields the following. 

Theorem 11.25 (Hopf Index Theorem). The sum of the indices of a vector 
field on a compact oriented manifold M is the Euler characteristic of M. 

Exercise 11.26 (Lefschetz fixed-point formula). Let f: M --+ M be a smooth 
map of a compact oriented manifold into itself. Denote by Hq(f) the in
duced map on the cohomology Hq(M). The Lefschetz number of f is defined 
to be 

L(f) = L (-I)q trace Hq(f). 
q 

Let r be the graph of f in M x M. 

(a) Show that 

i '1r = L(f). 

(b) Show that if f has no fixed points, then L(f) is zero. 
(c) At a fixed point P of f the derivative (Df)p is an endomorphism of the 

tangent space Tp M. We define the multiplicity of the fixed point P to be 

(1p = sgn det«Df)p - J). 

Show that if the graph r is transversal to the diagonal a in M x M, then 

L(f) = r. (1p, 
p 

where P ranges over the fixed points of f (For an explanation of the 
meaning of the multiplicity (1p, see Guillemin and Pollack [1, p. 121].) 

§12 Thorn Isomorphism and Poincare Duality 
Revisited 

In this section we study the Thorn isomorphism and Poincare duality from 
the tic-tac-toe point of view. The results obtained here are more general 
than those of Sections 5 and 6 in two ways: 

(a) M need not have a finite good cover, 
and 

(b) the orientability assumption on the vector bundle E has been 
dropped. 
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The Thorn Isomorphism 

Let n : E -+ M be a rank n vector bundle. E is not assumed to be orient
able. We are interested in the cohomology of E with compact support in the 
vertical direction, H:v(E) = H*{n:v(E)}. Recall that 

(a) H*(Rn) = {R in dim~nsion n 
c 0 otherwise, 

(b) (Poincare lemma) H!(M x Rn) = H*-n(M). 

Let U be a good cover of the base manifold M. We augment the double 
complex C*(n-1U, n:v) by adding a column consisting of the kernels of the 
first «5: 

Using a partition of unity from the base, it can be shown that all the rows 
of this agumented double complex are exact. The proof is identical to that 
of the generalized Mayer-Vietoris sequence in (8.5) and will not be repeated 
here. From the exactness of the rows of the augmented complex, it follows 
as in (8.8) that the cohomology of the initial column is the total cohomol
ogy of the double complex, i.e., 

H!(E) ~ HD {C*(1t- 1U, n:v)}' 
On the other hand, 

H~·q{C·(1t-1U, n:v)} = HMIJ1t- 1U .. o ..... ) 

= n H~v(1t-1U .. o ..... ) 

= CP(U, .1t'~v), 

where .1t'~v is the presheaf given by 

.1t'MU) = HM1t - 1 U). 

By the Poincare lemma for compactly supported cohomology, if U is con
tractible, then 

.1t'q (U) = {R if q = n 
cv 0 otherwise. 

Therefore Hd and also Hf' qHd = Hf{ C*(U, .1t'~v)} = HP(U, .1t'~v) have entries 
only in the nth row. 

Proposition 12.1. Given any double complex K, ijH6HJK) has entries only in 
one row, then H,Hd is isomorphic to HD • 
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This proposition will be substantially generalized in Section 14, for it is 
simply an example of a degenerate spectral sequence. Its proof is a technical 
exercise which we defer to the end of this section. Combined with the 
preceding discussion, it gives 

H:v(E) = H~ = E9 HP(U, Jft':v) = H'" -"(U, Jft'~v)' 
p+q=", 

This is the Thom isomorphism for a not necessarily orientable vector 
bundle. 

Theorem ll.l (Thorn Isomorphism). For 11: : E - M any vector bundle of 
rank n over M and U a good cover of M, 

H:v(E) ~ H"'-"(U, Jft'~v), 

where Jft'~v is the presheaf Jft'~v(U) = H~v(1I:-l U). 

We now deduce the orientable version of the Thorn isomorphism from 
this. So suppose 11: : E - M is an orientable vector bundle of rank n over M. 
This means there exist forms UIJ on the sphere bundles S(E) lu. which restrict 
to a generator on each fiber and such that on overlaps U 12 n U, their 
cohomology classes agree: [uJ = [u,]. Now choose a Riemannian metric 
on E so that the" radius" r is well-defined on each fiber and any function of 
the radius r is a global function on E. Let p(r) be the function shown in 
Figure 12.1. Then (dp)ulJ is a form on E lu., where we regard UIJ as a form on 
the complement of the zero section. Furthermore, [(dp)uJ E H~v(E lu.) res
tricts to a generator of the compactly supported cohomology of the fiber 
and [(dp)ulJ] = [(dp)u,] on UIJ n U,. Since the fiber has no cohomology in 
dimensions less than n, 17 0• H = {( dp ) a .. } can be extended to a D-cocycle. 
This D-cocycle corresponds to a global closed form ell on E, the Thorn class 
of E, which restricts to a generator on each fiber. Now ~~(U) is generated 
by elli u and for V c U the restriction map from ~~(u) to ~~(V) sends 

------~o~------------------------~~------~r 

-la..--~ 

Figure 12.1 
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~Iu to ~Iv' Hence, via the map which sends ~Iu, for every open set U, to 
the generator 1 of the constant presheaf ~, the presheaf .Jf.,~ is isomorphic to 
R. The Thorn isomorphism theorem then assumes the form 

(12.2.1) 

for an orientable rank n vector bundle E. This agrees with Proposition 6.17. 
It holds in particular when M is simply connected, since by (11.5), every 
vector bundle over a simply connected manifold is orientable. 

From the explicit formula (11.11) for the global angular form on an 
oriented sphere bundle, we can derive a formula for the Thorn class of an 
oriented vector bundle. Letf : EO -. S(E) be a deformation retraction of the 
complement of the zero section in E onto the unit sphere bundle. Ifl/ls is the 
global angular form on S(E), then 1/1 = f*l/Is E H"-1(Eo) is the global angu
lar form on EO. It has the property that 

dl/l = -n:*e, 

where e represents the Euler class of the bundle E. 

Proposition 12.3. The cohomology class of 

~ = d(p(r) . 1/1) E n~v(E) 

is the Thom class of the oriented vector bundle E. 

PROOF. Note that 

(12.3.1) <D = dp(r) . 1/1 - p(r)n:*e. 

For the same reasons as in the discussion following (6.40), ~ is a closed 
global form on E with compact support in the vertical direction. Its re
striction to the fiber at p is dp(r) . I; 1/1, where Ip: Ep -. E is the inclusion 
and I; 1/1 gives a generator of H" - 1 (~" - {O}) = H" - 1(S" - 1). Since 

by (6.18), <D is the Thorn class of E. o 

If s is the zero section of E, then s*dp = 0 and s*p = -1. By (12.3.1), 

s*<D = -(s*p)s*n:*e = e. 

Thus, 

Proposition 12.4. The pullback of the Thom class of an oriented rank n vector 
bundle via the zero section to the base manifold is the Euler class. 
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REMARK 12.4.1. From the formula for the Thom class (12.3), it is clear that 
by making the support of p(r) sufficiently close to 0, the Thom class cJ) can 
be made to have support arbitrarily close to the zero section of the vector 
bundle. 

REMARK 12.4.2. In fact, in Proposition 12.4 any section will pull the Thom 
class back to the Euler class. Let s be a section of the oriented vector bundle 
E and s*: H~u(E)- H*(M) the induced map in cohomology. Note that s* 
can be written as the composition of the natural maps i: H~II(E)- H*(E) 
and s* : H*(E)- H*(M). As a map from Minto E, the section s is homo
topic to the zero section so. By the homotopy axiom for de Rham cohomol
ogy (Cor. 4.1.2), s* = 53. Hence, s* = s~. 

Using the description of the Euler class as the pullback of the Thom 
class, it is easy to prove the Whitney product formula. 

Theorem 12.S (Whitney Product Formula for the Euler Class). If E and F 
are two oriented vector bundles, then e(E EB F) = e(E)e(F). 

PROOF. By Proposition 6.19, the Thorn class of E EB F is 

cJ)(E EB F) = 1tl*cJ)(E) A 1t~cJ)(F) 

where 1tl and 1t2 are the projections of E EB F onto E and F respectively. 
Let s be the zero section of E EB F. Then 11:1 0 sand 11:2 0 S are the zero 
sections of E and F. By Proposition 12.4, 

e(E EB F) = s*cJ)(E EB F) = s*1I:f (E) A s*1I:~cJ)(F) = e(E)e(F). 

o 
Exercise 12.6. Let 11: : E - M be an oriented vector bundle. 

(a) Show that 1I:*e = cJ) as cohomology classes in H*(E), but not in 
H~u(E). 

(b) Prove that cJ) A cJ) = cJ) A 1I:*e in H~u(E). 

Euler Class and the Zero Locus of a Section 

Let 11: : E - M be a vector bundle and So the image of the zero section in E. 
A section s of E is transversal if its image S = s(M) intersects So trans
versally. The purpose of this section is to derive an interpretation of the 
Euler class of an oriented vector bundle as the Poincare dual of the zero 
locus of a transversal section. This is an analogue of Theorem 11.17, but it 
differs from Theorem 11.17 in two ways: (1) there is no hypothesis on the 
rank of E; (2) the section is now assumed to be transversal. 

Proposition 12.7. Let 11: : E - M be any vector bundle and Z the zero locus of 
a transversal section. Then Z is a submanifold of M and its normal bundle in 
Mis NZ/M ~ Elz. 
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Elz 

Figure 12.2 

PROOF. Write S = s(M) for the image of the section s (see Figure 12.2). 
Because S intersects So transversally, S n So is a submanifold of S by the 
transversality theorem (Guillemin and Pollack [1, p. 28]). Under the 
diffeomorphism s : M --+ S, Z is mapped homeomorphically to S n So. So 
Z can be made into a submanifold of M. 

To compute the normal bundle of Z, we first note that because E is 
locally trivial, its tangent bundle on So has the following canonical de
composition 

TE I So = E I So EEl 150 , 

By the transversality of S n So, 

15 + 150 = TE = E EEl 150 on S n So· 

Hence the projection 15 --+ E over S n So is surjective with kernel 15 n 150 , 

Again by the transversality of S n So, 15 n 150 = 15" so' So we have an 
exact sequence over Z ~ S n So: 

o --+ Tz --+ 15 Iz --+ E Iz --+ O. 

Hence NZ/M ~ Elz. o 

In the proposition above, if E and M are both oriented, then the zero 
locus Z of a transversal section is naturally an oriented manifold, oriented 
in such a way that 

Elz EEl Tz = TMlz 

has the direct sum orientation. 

Proposition 12.8. Let 1t : E --+ M be an oriented vector bundle over an oriented 
manifold M. Then the Euler class e(E) is Poincare dual to the zero locus of a 
transversal section. 
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E 

Supp <p111111111.1'~IIIIII;11 M "" So 

Figure 12.3 

PROOF. We will identify M with the image So of the zero section. If S is the 
image in E of the transversal section s : M ---> E, then the zero locus of s is 
Z = S " So. Z is a closed oriented submanifold of M and by Proposition 
12.7, its normal bundle in M is N Z/M = E Iz. Since S is diffeomorphic to M, 
the normal bundle N Z/S of Z in S is also E Iz. The normal bundles N Z/M and 
N Z/S wi}l be identified with the tubular neighborhoods of Z in M and in S 
respectiv~ly, as in Figure 12.3. 

Choose the Thorn class <l> of E to have support so close to the zero 
section (Remark 12.4.1) that <l> restricted to the tubular neighborhood N Z/S 

in S has compact support in the vertical direction. In Figure 12.3 the 
support of <l> is in the shaded region. We will now show that s*<l> is the 
Thorn class of the tubular neighborhood N Z/M in M. 

Let Ez , Sz, and M z be the fibers of E Iz ~ N Z/S ~ N Z/M respectively above 
the point z in Z. Because <l> has compact support in Sz, s*<l> has compact 
support in M %' Furthermore, 

i s*<l> - i <l> by the invariance of the integral under the 
M. - s. orientation-preserving diffeomorphism s : Mz ---> Sz 

= i <l> 
E. 

= 1 

because Ez is homotopic to Sz modulo the region 
in E where <l> is zero 

by the definition of the Thorn class. 

So s*<l> is the Thorn class of N Z/M' By Proposition 12.4, s*<l> = e(E). Since 
by (6.24) the Thorn class of N Z/M is Poincare dual to Z in M, the Euler class 
e(E) is Poincare dual to Z in M. 

o 

A Tic-Tac-Toe Lemma 

In this section we will prove the technical lemma (Proposition 12.1) that if 
HaHd of a double complex K has entries in only one row, then HaHd is 
isomorphic to the total cohomology HD(K). With this tic-tac-toe lemma we 
will re-examine the Mayer-Vietoris principle of Section 8. 



136 II The Cech-de Rham Complex 

PROOF OF PROPOSITION 12.1. 

We first define a map h: H8Hd-+ HD• Recall that D = D' + D" = 8 + 
(-l)Pd. An element [cp] in HC,qHd may be represented by a D-cochain cp 
of degree (p, q) such that 

D"ljJ = 0 

~ljJ = -D"ljJl for some ljJl' 

This is summarized by the diagram 

o 
D"l 

ljJ..! ~ljJ + D"ljJl = 0 

1 D" 
ljJl 

Since HS+ 2 .Q- 1H" = 0, ~ljJl = -D"ljJz for some ljJz. Continuing in this 
manner, we see that ljJ can be extended downward to a D-cocycle ljJ + 
ljJl + ... + ljJn· The map h is defined by sending [ljJJ to [ljJ + ljJl + ... + ljJnJ. 

Next we define the inverse map g : HD --+ H,H". Let co be a cocycle in 
H D' As the image of co we cannot simply take the component of co in the 
nonzero row because d of it may not be zero. Suppose co = a + b + c + ... 
as shown. 

a 

• 

We will move co in its D-cohomology class RO that it has nothing above the 
nonzero row. Since da = 0 and ~a = - D"b, a represents a cocycle in H, H". 
But HIH" = 0 at the position of a, so a is 0 in H,H,,; this implies that 
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a = D"al for some al. Then", - Dal has no components in the first 
column. Thus we may assume", = b + c + .... Again b is 0 in HBHd , so 
that b = 8bl + D"b2, where D"bl = O. Then '" - D(bl + b2) = (c - 8b2 ) 

+ ... starts at the nonzero row. 

o 
t 

t 
b2 - c 

Thus given [w] E HD , we may pick w to have no components above the 
nonzero row of H,HIl , say w = e + .... Then de = 0 and the mapg: H D -

H,HIl is defined by sending [w] to [e]. 
Provided they are well-defined, hand g are clearly inverse to each other. 

Exercise 12.9. Show that hand g are well-defined. 
o 

Using Proposition 12.1 we can give more succinct proofs of the main 
results of Section 8. Let U = {U GI} be an open cover of the manifold M and 
C'(U, ( 4) = n04(U,. .",. ). By the exactness of the Mayer-Vietoris sequence, 
H, of the Cech-de Rha~ complex C·(U, 0·) is 

q 

02(M) 

01(M) 

OO(M) 

0 1 2 p 

so that H"H, is 

q 

H2(M) 

Hl(M) 

HO(M) 

0 1 2 p 



138 II The Cech-de Rham Complex 

Since Hd H" has only one nonzero column, we conclude from Proposition 
12.1 that 

HMC*(U, fl*)} ~ H~Jt(M) 

for any cover U. This is the generalized Mayer-Vietoris principle (Prop
osition 8.8). 

Now if U is a good cover, Hd of the Cech-de Rham complex is 

q 

o 1 2 

q 

Again because H,Hd has only one nonzero row, 

HM C*(U, fl*)} ~ H*(U, R). 

p 

p 

This gives the isomorphism between de Rham cohomology and the Cech 
cohomology of a good cover with coefficients in the constant presheaf R. 

Exercise 12.10. Let CP" have homogeneous coordinates zo, ... , z". Define 
Ui = {Zi =F o}. Then U = {Uo, ... , U,,} is an open cover of CP", although 
not a good cover. Compute H*(CP") from the double complex C*(U, fl*). 
Find elements in C*(U, fl*) which represent the generators of H*(CP"). 

Exercise 12.11. Apply the Thom isomorphism (12.2) to compute the coho
mology with compact support of the open Mobius strip (cf. Exercise 4.8). 

Poincare Duality 

In the same spirit as above, we now give a version of Poincare duality, in 
terms of the Cech-de Rham complex, for a not necessarily orientable mani-
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fold. Let M be a manifold of dimension nand U = {U ,,} any open cover of 
M. Define the coboundary operator 

(j: EB n:(U "0 ... ex,) -. EB n:(U "0 ... ",-1) 

by the formula 

«(jW) - '" W cz:o ••• a.p-l - L. (lIIO···fI.,-1 

" 
where on the right-hand side we mean the extension by zero of w,,"o"'''r 1 to 
a form on U"o ... ",_I' To ensure that each cOll!ponent of (jw has compact 
support, the groups here are direct sums rather than direct products, so that 
W E EB n (U "0 ••• ",) by definition has only a finite number of nonzero com
ponents. 

Proposition 11.11 (Generalized Mayer-Vietoris Sequence for Compact Sup
ports). Suppose the open cover U = {U,,} of the manifold M satisfies the local 
finite condition: 

(*) each open set UIZ intersects only finitely many Ull's. 

Then the sequence 

O-n:(M) ~ EB n:(U"o)- EB n:(U"o"l) 

- "'4- en:(U"o ... ,,) - ... 
is exact. 

PROOF. We first show (j2 = O. Let W be in EB n:(U "0 •.. ",). Then 

«(j2W ),,0 ... ",-2 = ~)(jw)""o ... ",-2 = L L W/lCICIO ... ",-2 
" " II 

= 0, since W"II ... = - WII" .... 

Now suppose (jw = O. We will show that W is a (j-coboundary. Let {p,,} be a 
partition of unity subordinate to the cover U. Define 

p+l 

't' = '" (_I)lp W b • CZO ... lZp+l ~ «, «0 ••• 1&1 ••• 11,+1 
1=0 

Note that 't'lZo"'''p+1 has compact support. Moreover, there are only finitely 
many (P, IXo, •.. , IXp) for which P/lw/Jo ... 11.1' =F 0, since w/Jo ... /Jp =F 0 for finitely 
many (IXo, ... , IX,) and by (*) each UIZO ••• /Jp c: U/Jo intersects only finite
ly many U II' Therefore, 't' has finitely many nonzero components, and 
't' E EBn:(U/JO ... lZp+I)' Then 

«(j-r)"o ... 11., = L 't',,/Jo ... 11., 

II. 

= ~ (p/J W"O ... 11., + ~( _1)1+ 1 P"l W""o ... il .. , 11., ) 

- W + '" (_1)1 + 1 «(jw) - "0 ... 11., t... P"l /JO ... il ... ", 
I 

o 
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Exercise 12.12.1. Show that the definition of or in the proof above provides a 
homotopy operator for the compact Mayer-Vietoris sequence (12.12). More 
precisely, if w is in EBn~(U "0",'') and 

p+l 

(Kw) = ~ (_1)ip W 
tloo .• lZp+l.i..J II, IIO ••• t:t •... clp+l' 

1=0 

then 

~K + K~ = 1. 

Consider the double complex CP(U, n~), where U satisfies the local finite 
condition (*): 

q 

2 

1 

o E9 n~(U "0) +- E9 n~(U "0 "J+'-

o 1 2 p 

In this double complex the ~-operator goes in the wrong direction, so we 
define a new complex 

-2 
" 

By th~'exactness of the rows, H ,(K) is 

q 

-2 -1 

-1 

n~(M) 

n:(M) 

n~(M) 

o 

q 

o p 

p 



§13 Monodromy 141 

Since HdHa has only one nonzero column, it follows from Proposition 
12.1 that 

(12.13) 

On the other hand, ifU is a good cover, then Hd(K) is 

-. ~<~<.,R t t EB R} EBIR 

I 110<<<1 IZO 

-1 0 p 

HiM(K) = CP(U, Jff~) 

where Jff~ is the covariant functor which associates to every open set U the 
compact cohomology H~(U) and to every inclusion i, the extension by zero, 
i*; moreover, 

HiM(K) = 0 for q ::f: n. 

Again by Proposition 12.1, 

(12.14) 

Here Hn_*(U, Jff~) is the (n - *)-th tech homology of the cover U with 
coefficients in the covariant functor Jff~ (cf. Remark 10.3). Comparing 
(12.13) and (12.14) gives 

Theorem 12.15 (Poincare Duality). Let M be a manifold of dimension nand U 
any good cover of M satisfying the local finite condition (*) of Proposition 
12.12. Here M is not assumed to be orientable. Then 

Ht(M) ~ Hn-.(U, Jff~), 

where Jff~ is the covariant functor Jff~(U) = H~(U). 

Exercise 12.16. By applying Poincare duality (12.15), compute the compact 
cohomology of the open Mobius strip (cf. Exercise 4.8). 

§l3 Monodromy 

When Is a Locally Constant Presheaf Constant? 

In the preceding section we saw that the compact vertical cohomology 
H:v(E) of a vector bundle E may be computed as the cohomology of the 
base with coefficients in the presheaf Jff,,~. When the presheaf Jff,,~ is the 
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constant presheaf ~n, H:v(E) is expressible in terms of the de Rham coho
mology of the base manifold (Proposition 10.6). In this case the problem of 
computing H:v(E) is greatly simplified. It is therefore important to determine 
the conditions under which a presheaf such as .tt;,~ is constant. 

First we need to review some basic definitions from the theory of sim
plicial complexes (see, for instance, Munkres [2]). Recall that if an n-simplex 
in an Euclidean space has vertices vo, ... , vn , then its barycenter is the point 
(vo + ... + vn)/(n + 1). For example, the barycenter of an edge is its mid
point and the barycenter of a triangle (a 2-simplex) is its center. The first 
barycentric subdivision of a simplex (f is the simplicial complex· having all 
the barycenters of (f as vertices. By applying the barycentric subdivision to 
each simplex of a simplical complex K, we obtain a new simplicial complex 
K', called the first barycentric subdivision of K. The support of K, denoted 
1 K I, is the underlying topological space of K, and the k-skeleton of K is the 
subcomplex consisting of all the simplices of dimension less than or equal to 
k. The complex K and its barycentric subdivision K' have the same support. 
The star of a vertex v in K, denoted st(v), is the union of all the closed 
simplices in K having v as a vertex. 

Next we introduce the notion of a presheaf on a good cover. Let X be a 
topological space and U = {U,,} a good cover of X. The presheaf IF on U 
is defined to be a functor IF on the subcategory of Open(X) consisting of all 
finite intersections U "O"'''p of open sets in U. Equivalently, if N(U) is the 
nerve of U, the presheaf IF on U is the assignment of an appropriate group 
to the barycenter of each simplex in N(U); for example, the group attached 
to the barycenter of the 2-simplex representing U f"'I V f"'I W is 
IF(U f"'I V f"'I W). Each inclusion, say U f"'I V --. U, becomes an arrow in the 
picture, IF(U)-. IF(U f"'I V), and the transitivity of the arrows says that 
Figure 13.1 is a commutative diagram . 

• f(U) 

.f(v)L-~-~K---" 

.f(W) 

Figure 13.1 
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Two presheaves IF and ~ are isomorphic relative to a good cover U = 
{ U .. } if for each W = U "0 .• '''p there is an isomorphism 

hw : IF(W) -4 ~(W) 

compatible with all arrows. In other words, there is a natural equivalence of 
functors IF -4 ~ where IF and ~ are regarded as functors on the subcate
gory of Open(X) consisting of all finite intersections U .. o ...... of open sets in 
U. The constant presheaf with group G on a good cover U is defined as 
in Section 10; it associates to every open set U .. o ..... p the group of locally 
constant and hence constant functions: U .. o ..... p -. G. Thus, for a constant 
presheaf on a good cover, all the groups are G and all the arrows are 
the identity map. We say that a presheaf IF is locally constant on a 
good cover U if all the groups are isomorphic and all the arrows are 
isomorphisms. 

Of course, if two presheaves IF and ~ are isomorphic on a good cover 
U, then the cohomology groups H*(U, IF) and H*(U, ~} are isomorphic. 

Figure 13.2 

EXAMPLE 13.1 (A locally constant presheaf on U which is not constant). Let 
U = {U 0, U 1, U 2} be a good cover of the circle Sl (see Figure 13.2). Define 
a presheaf IF by 

IF(U) = 7L for all open sets U, 

P81 = pAl = P~2 = PI2 = 1, 

P~2 = -1, P82 = 1. 

IF is locally constant but not constant on U because P~2 is not the identity. 

Let IF be a locally constant presheaf with group G on a good cover 
U = {U .. }. Fix isomorphisms 
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If U a and Up intersect, then from the diagram 

4>" 
§(UJ' - G -
P:p 1 I 

I 
I 

§(U" n Up) I 

P~/I 1 4>/1 
I 
! 

§(Up) -:. G 

we obtain an automorphism of G, namely 4>p(p~p)-1p:/l4>;1. Write Pp: 
§(U ,,)- §(U /I) for the isomorphism (p~p)-1 0 P:/I' Choose some vertex U 0 

as the base point of the nerve N(U). For U 0 U 1 ••• U, U 0 a loop based at U 0 

we get an automorphism of G by following along the edges 

4>0 
§(Uo) - G 

I 

1 I 
4>1 ! 

§(U1) - G 

1 
I 
I 
! 

1 4>0 ! 
§(Uo) -G. 

This gives a map from {loops at U o} to Aut G. We claim that if a loop 
bounds a 2-chain, then the associated automorphism of G is the identity. 
Consider the example of the 2-simplex as shown in Figure 13.3. 

pAl VI 

Figure 13.3 
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(a) (b) 

(c) (d) 

(e) 

Figure 13.4 

The associated automorphism of the loop V 0 VI V 2 is 4Jo(p5P1p?)4Jo 1 so it 
is a matter of showing that P5P1p? is the identity. This is clear from the 
sequence of pictures in Figure 13.4, where we use heavy solid lines to 
indicate maps which, by the commutativity of the arrows, are all equal to 
P5P1p? 
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More generally, the same procedure shows that the map p~ ... pg around 
any bounding loop is the identity. Hence there is a homomorphism 

{loops} 

Theorem 13.2. Let U be a good cover on a connected topological space X 
and N(U) its nerve. If1tl(N(U» = 0, then every locally constant presheaf on U 
is constant. 

PROOF. Suppose 1tl(N(U» = 0, i.e., every loop bounds some 2-chain. For 
each open set V,., choose a path from Vo to V,., say Vo V,.1 ... V,., V,., and 
define 1/1,. = cPo (P:' ... P:~P~I)-l : 3+(V,.) ~ G. 

cPo 
,F(Vo)-=-' G 

! 
3+(V,.) 

1/1,. is well-defined independent of the chosen path, because as we have seen, 
around a bounding loop the map p~ ... p~ is the identity. 

Now carry out the barycentric subdivision of the nerve N(U) to get a 
new simplictal complex K so that every open set V"o .. '''p corresponds to a 
vertex of K. Clearly 1tl(N(U» = 1tl(K). By the same procedure as in the 
preceding paragraph we can define isomorphisms 

I/I,.o ... ,.p :,F(V"o","p)~ G 

for all nonempty V,.o"."p' The maps I/I,.o ... ,.p give an isomorphism of the 
presheaf 3+ to the constant presheaf G on the cover U. 0 

REMARK 13.2.1. If the group G of a locally constant presheaf has no auto
morphisms except the identity, then there is no monodromy. In particular, 
every locally constant presheaf with group Z2 is constant. 

REMARK 13.3. Recall that a simplicial map between two simplicial complexes 
K and L is a map f from the vertices of K to the vertices of L such that if 
vo, ... , Vn span a simplex in K, then f(vo), ... ,J(vn) span a simplex in L. A 
simplicial mapffrom K to L induces a mapf: 1 K I~ 1 LI by linearity: 

f(L A/V/) = L A/Ji(V/). 

By abuse of language we refer to either of these maps as a simplicial map. 
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For the proof of the next theorem we assemble here some standard facts 
from the theory of simplicial complexes. 

(a) The edge path group of a simplicial complex is the same as that of its 
2-skeleton (Seifert and Threlfall [I, §44, p. 167]). 

(b) The edge path group of a simplicial complex is the same as the 
topological fundamental group of its support (Seifert and Threlfall [I, §44. 
p.165]). 

(c) (The Simplicial Approximation Theorem). Let K and L be two sim
plicial complexes. Then every map f: 1 K I- 1 L 1 is homotopic to a sim
plicial map g: 1 Kit) 1_ 1 L 1 for some integer k, where Kit) is the k-th bary
centric subdivision of K(Croom [I, p. 49]). 

Because of (b) we also refer to the edge path group of a simplicial complex 
as its fundamental group. 

None of these facts are difficult to prove. They all depend on the follow
ing very intuitive principle from obstruction theory. 

The Extension Principle. A map from the union of all the faces of a cube into a 
contractible space can be extended to the entire cube. 

ASIDE. With a little homotopy theory the extension principle can be refined 
as follows. Let X be a topological space and It the unit k-dimensional cube. 
If 7t4 (X) = 0 for all q :::;; k - I, then any maps from the boundary of It into 
X can be extended to the entire cube It. 

In section 5 we defined a good cover on a manifold to be an open cover 
{U er} for which all finite intersections U ero n ... n U erp are diffeomorphic to 
a Euclidean space. By a good cover on a topological space we shall mean an 
open cover for which all finite intersections are contractible. 

REMARK. Thus, on a manifold there are two notions of a good cover. These 
two notions are not equivalent. Let us call a noncompact boundaryless 
manifold an open manifold. Then there are contractible open 3-manifolds 
not homeomorphic to III 3. In 1935 J. H. C. Whitehead found the first 
example of such a manifold [J. H. C. Whitehead, A certain n-manifold 
whose group is unity, Quart. J. Math. Oxford 6 (1935). 268-279]. D. R. 
McMillan, Jr. constructed infinitely many more in [D. R. McMillan, Jr., 
Some contractible open 3-manifolds, Transactions of the A. M. S. 102 
(1962), 372-382]. For an open cover on a manifold to be a good cover we 
will always require the more restrictive hypothesis that the finite nonempty 
intersections be diffeomorphic to III n. This is because in order to prove 
Poincare duality, whether by the Mayer-Vietoris argument of Section 5 or 
by the tic-tac-toe game of Section 12, we need the compact Poincare lemma 
(Corollary 4.7), which is not always true for an open set with merely the 
homotopy type of III n. 
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Theorem 13.4. Suppose the topological space X has a good cover U. Then the 
fundamental group of X is isomorphic to the fundamental group 1tl(N(U» of 
the nerve of the good cover. 

PROOF. Write N 2 (U) for the 2-skeleton of the nerve N(U). Let Vi> VI}, and 
V iik be the barycenters of the vertices, edges, and faces of N 2 (U) and let 
N2(U) be its barycentric subdivision. As the first step in the proof of the 
theorem we will define a map f from 1 N2(U) 1 to X. We will then show that 
this map induces an isomorphism of fundamental groups. 

To this end choose a point Pi in each open set VI in U, a point PI} in each 
nonempty pairwise intersection VI}, and a point Pljk in each nonempty 
triple intersection Vlik . Also, fix a contraction CI of VI to PI and a contrac
tion cij of VI} to Pij' These contractions exist because U is a good cover. By 
decree the mapfsends VI, VI}, and V iik to-Pi> Plj' and Pijk respectively. 

Figure 13.5 

Next we define f on the edges of 1 N2(U) I. The contraction CI takes Plj to 
Pi and gives a well-defined path between Pi and PI}' Similarly, the contrac
tion Cj gives a well-defined path between Pj and Plj (see Figure 13.5). 
Furthermore, for each point Pijk the six contractions Ci' ci' Ck, cii' Cik' and 
cik produce six paths in X joining Plik to Pi> Pi' Pk> Pii' Pik' andpik respect
ively (see Figure 13.6). 

Figure 13.6 
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The map f shall send the edges of 1 Ni(U) 1 to the paths just defined; for 
example, the edge U j UI}" is sent to the path joining PI and Pljl<' 

Finally we definef on the faces ofl Ni(U) I. Since each "triangle" PIPI}PIJII 

lies entirely inside the open set UI (such a triangle may be degenerate; i.e., it 
may only be a point or a segment), the triangle may be "filled in" in a 
well-defined manner: to fill in the triangle PI PI} PI}Ie, use the contraction CI to 
contract the edge PIjPI}II to PI (see Figure 13.6). This "filled-in" triangle will 
be the image of the triangle U I U} U I}II under f. In summary, with the choice 
of the points Ph PI}, PI}II and the contractions Ch clj fixed, we have defined a 
mapf: INi(U)I-'X. We will now show that the induced map of funda
mental groups, f.: 1tl( 1 Ni(U) 1)-. 1tl(X) is an isomorphism. 

STEP 1 (Surjectivity of f.). Take Po in U 0 to be the base point of X. Let 
y: Sl-. X be a loop in X based at Po. We would like to deform y to a map 
of the formf.(Y), where j: Sl-.I N 2 (U) 1 is a loop in 1 N 2 (U) 1 based at U 0 • 

Regard Sl as the unit interval 1 with its endpoints identified. To define j, 
we first subdivide the unit interval into equal pieces, so that it becomes a 
simplicial complex K with vertices qo, ... , qn (Figure 13.7). 

• I • I • 
Figure 13.7 

By making the pieces sufficiently small, we can ensure that the star of ql in 
the barycentric subdivision K' of K is mapped entirely into an open set 
U .. (j): 

y(st(qj» c U .. (I)' 

To simplify the notation, write j instead of i + 1, so that qjqj is a 1-
simplex in K. Let qlj be the midpoint of ql q}. Define j: Sl -.1 N 2 (U) 1 by 
sending the segment qlq} to the segment U .. (I) U .. (J); it follows that j(ql) = 

U .. (I) andf.(j)(ql) = P .. (I)· 
Next define a map F on the sides of the square 12 by (see Figure 13.8) 

F I bollom side = F(x, 0) = y(X), 

FltoPside = F(x, 1) =f.j(x), 

and 

F I vertical sides = F(O, t) = F(l, t) = Po. 

The problem now is to extend F: 012-. X to the entire square. Subdivide 
the square by joining with vertical segments the vertices (q" 0), (ql)' 0) on 
the bottom edge to the corresponding vertices on the top edge. Since 
F(q" 0) = y(ql) and F(q" 1) = f.j(ql) = P .. (I)' they both lie in U .. (I)' Since 
U .. (I) is contractible, by the extension principle F can be extended to the 
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Po Po 

'Y 

Figure 13.8 

vertical segment {qj} x I. Similarly, F can be extended to the vertical seg
ment {qij} x I. Thus in Figure 13.8, F is defined on the boundary of each 
rectangle and maps that boundary entirely into a contractible open set U a' 

By the extension principle again, F can be extended over each rectangle. In 
this way F is extended to the entire square 12.. 

STEP 2 (Injectivity off.). Suppose y: 1 -I N 2. (U) 1 is a loop such thatf.(y) is 
null-homotopic in X. This means there is a map H from the square 12. to X 
as in Figure 13.9. 

Po H 

Po 
Figure 13.9 

Po 

By the simplicial approximation theorem we may assume that y is a 
simplicial map from some subdivision L of the top edge of the square to 
1 N 2. (U) I. Now subdivide the square 12. repeatedly to get a triangulation K 
with the property that if qi is a vertex of K and st(qj) is the star of qi in the 
barycentric subdivision K', then 

H(st(qi)) c U a(i) 

for some open set U aH) in U. In the process of the subdivision new vertices 
are introduced on the top edge only by repeated bisection of the edge; 
furthermore, the function IX on the vertices of the top edge may be chosen as 
follows. Consider for example the I-simplex qlq2.' If qk is a new vertex 
to the left of the midpoint ql2.' choose lX(k) = 1X(1); otherwise, choose 
lX(k) = 1X(2). 
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Define 

H: 12 = IKI-+ IN2(U)1 

to be the simplicial map with 

H(ql) = U .. (I)' 

151 

The restriction {3 of H to the top edge of the square agrees with 'l' on the 
vertices of L. Furthermore, by construction {3 is homotopic to 'l' in I N 2 (U) \, 
and H is a null-homotopy for {3. Therefore.!*: n1(1 N 2 (U) 1)--+ n1(X) is in
jective. Since the nerve N(U) and its 2-skeleton N 2 (U) have the same funda
mental group (Remark 13.3 (a», the theorem is proved. 0 

Examples of Monodromy 

EXAMPLE 13.5. Let SI be the unit circle in the complex plane with good 
cover U = {Uo, U1, U2 } as in Figure 13.10. The map n:z --+ Z2 defines a 
fiber bundle n : SI_ SI each of whose fibers consists of two distinct points. 
Let F = {A, B} be the fiber above the point 1. The cohomology H*(F) 
consists of all functions on {A, B}, i.e., H*(F) = {(a, b) E 1R2}. 

Fix an isomorphism H*(n- 1Uo) ~ H*(F). We have the diagram 

H*(n- 1UO) ~ H*(F) 
I 

! I 
I 

H*(n- 1U01 ) 
I 
I 
I 

i I 
I 

H*(n- 1 U 1) 

! 
H*(n - 1 U 12 ) 

i 
H*(n- 1 U2 ) 

! 
H*(n- 1 U02 ) 

i 
+ 

H*(n- 1Uo) ~ H*(F). 

If we start with a generator, say (1, 0), of H*(F) and follow it around the 
diagram, we do not end up with the same generator; in fact, we get (0, 1). In 
general (a, b) goes to (b, a). Therefore the presheaf .n"*(U) = H*(n- 1U) is 
not a constant pre sheaf. 
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• .A 

• .B 
UI ~w 

~w Uo Uo . ) ( • 0 I 

C :> ( UI ) 
U2 ) 

Figure 13.10 

Exercise 13.6. Since H" of the double complex C*(n- 1U, n*) in Example 
13.5 has only one nonzero row, we see by the generalized Mayer-Vietoris 
principle and Proposition 12.1 that 

H*(SI) = H~{C*(n-1U, n*)} = H,H" = H*(U, J't0 ). 

Compute the Cech cohomology H*(U, )fo) directly. 

EXAMPLE 13.7. The universal covering n : Rl_ SI given by n(x) = e2,.b: is a 
fiber bundle with fiber a countable set of points. The action of the loop 
downstairs on the homology H o(fiber) is translation by 1 : x 1-+ x + 1. In 
cohomology a loop downstairs sends the function on the fiber with support 
at x to the function with support at x + 1. (See Figure 13.11.) 

C J 
Figure 13.11 

Exercise 13.8. As in Example 13.5, with U being the usual good cover of SI, 

H*(R l ) = HMC*(n- 1U, n*)} = H,H" = H*(U, J't0 ). 

Compute H*(U, J't0 ) directly. 
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EXAMPLE 13.9. In the previous two examples, the fundamental group of the 
base acts on Ho of the fiber. We now give an example in which it acts on 
Hz· 

The wedge 8m V 8" of two spheres 8m and 8" is the union of 8m and 8" 
with one point identified. Let X be 81 V 8z as shown in Figure 13.12 and 
let it. be the universal covering of X. Note that although H*(X) is finite, 
H*(it.) is infinite. We define a fiber bundle over the circle 81 with fiber it. by 
setting. 

E = X x l/(x, 0) .... (s(x), 1) 

where s is the deck transformation of the universal cover it. which shifts 
everything one unit up. The projection 1t : E ---+ 81 is given by 1t(x, t) = t. 
The fundamental group of the base 1tl(81) acts on Hz(fiber) by shifting each 
sphere one up. 

Exercise 13.10. Find the homotopy type of the space E. 

X= 

X= • o 

Figure 13.12 

• 



CHAPTER III 

Spectral Sequences and Applications 

This chapter begins with the abstract properties of spectral sequences and 
their relation to the double complexes encountered earlier. Then in Section 
15 comes the crucial transition to integer coefficients. Many, but not all, of 
the constructions for the de Rham theory carryover to the singular theory. 
We point out the similarities and the differences whenever appropriate. In 
particular, there is a very brief discussion of the Kiinneth formula and the 
universal coefficient theorems in this new setting. Thereafter we apply the 
spectral sequences to the path fibration of Serre and compute the cohomol
ogy of the loop space of a sphere. The short review of homotopy theory 
that follows includes a digression into Morse theory, where we sketch a 
proof that compact manifolds are CW complexes. In connection with the 
computation of 1t3 (S2), we also discuss the Hopf invariant and the linking 
number and explore the rather subtle aspects of Poincare duality concerned 
with the boundary of a submanifold. Returning to the spectral sequences, 
we compute the cohomology of certain Eilenberg-MacLane spaces. The 
Eilenberg-MacLane spaces may be pieced together into a twisted product 
that approximates a given space. They are in this sense the basic building 
blocks of homotopy theory. As an application, we show that 1ts (S3) = 7L 2 • 

We conclude with a very brief introduction to the rational homotopy 
theory of Dennis Sullivan. A more detailed overview of this chapter may be 
obtained by reading the introductions to the various sections. One word 
about the notation: for simplicity we often omit the coefficients from the 
cohomology groups. This should not cause any confusion, as H*(X) always 
denotes the de Rham cohomology except in Sections 15 through 18, where 
in the context of the singular theory it stands for the singular cohomology. 

154 
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§14 The Spectral Sequence of a Filtered Complex 

By considering the double complex C*(U, 0*) of differential forms on an 
open cover, we generalized in Chapter II the key theorems of Chapter I. 
This double complex is a very degenerate case of an algebraic construction 
called the spectral sequence, a powerful tool in the computation of homol
ogy, cohomology and even homotopy groups. In this chapter we construct 
the spectral sequence of a filtered complex and apply it to a variety of 
situations, generalizing and reproving many previous results. Among the 
various approaches to the construction of a spectral sequence, perhaps the 
simplest is through exact couples, due to Massey [1]. 

Exact Couples 

An exact couple is an exact sequence of Abelian groups of the form 

A .A 

~/ 
B 

where i, j, and k are group homomorphisms. Define d : B -+ B by d = j 0 k. 
Then d2 = j(kj)k = 0, so the homology group H(B) = (ker d)/(im d) is de
fined. Here A and B are assumed to be Abelian so that the quotient H(B) is 
a group. 

Out of a given exact couple we can construct a new exact couple, called 
the derived couple, 

A' j' .A' 

(14.1) 
~/, 

B' 

by making the following definitions. 

(a) A' = i(A); B' = H(B). 
(b) i' is induced from i; to be precise, 

i'(ia) = i(ia), 

(c) If a' = ia is in A', with a in A, thenj'a' = [ja], where [ ] denotes the 
homology class in H(B). To show that j' is well-defined we have to check 
two things: 

(i) ja is a cycle. This follows from d(ja) = j(kj)a = O. 
(ii) The homology class [ja] is independent of the choice of a. 
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Suppose a' = ia for some other a in A. Then because 0 = i(a - a), we have 
a - a = kb for some b in B. Thus 

ja - ja = jkb = db, 

so 

(ja] = (ja]. 

(d) k' is induced from k. Let [b] be a homology class in H(B). Then 
jkb = 0 so that kb = ia for some a in A. Define 

k'[b] = kb E i(A). 

It is straightforward to check that with these definitions, (14.1) is an 
exact couple. We will check the exactness at B' and leave the other steps to 
the reader. 
(i) imj' c ker k': 

k'j'(a') = k'j'(ia) = k'j(a) = kj(a) = O. 
(ii) ker k' c im j': 

Since k'(b) = k(b) = 0, it follows that b = j(a) = j'(ia) E im j'. 

The Spectral Sequence of a Filtered Complex 

Let K be a differential complex with differential operator D; i.e., K is an 
Abelian group and D: K -) K is a group homomorphism such that D2 = O. 
Usually K comes with a grading K = Efhez Ck and D: Ck-) Ck+1 increases 
the degree by 1, but the grading is not absolutely indispensable. A subcom
plex K' of K is a subgroup such that DK' c K'. A sequence of sub com
plexes 

K = Ko ::::> K1 ::::> K2 ::::> K3 ::::> ••• 

is called a filtration on K. This makes K into a filtered complex, with 
associated graded complex 

ao 

GK = E9 Kp/Kp+ l' 
p=o 

For notational reasons we usually extend the filtration to negative indices 
by defining K p = K for p < O. 

EXAMPLE 14.2. If K = E9 KP' q is a double complex with horizontal oper
ator (j and vertical operator d, we can form a single complex out of it in the 
usual way, by letting K = E9 C\ where Ck = E9 p+q=k KP' q, and defining 
the differential operator D: Ck -) Ck + 1 to be D = (j + ( -1)P d. Then the 
sequence of subcomplexes indicated below is a filtration on K: 

Kp = E9 E9 Ki,q 
i"2p Q"20 
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q 

o 1 2 3 p 

1'---- Kl -------

1'---- K z -----

Returning to the general filtered complex K, let A be the group 

A = E9 Kp. 
peZ 

A is again a differential complex with operator D. Define i: A-+ A to be the 
inclusion Kp+ 1 <+ Kp and define B to be the quotient 

(14.3) 
I J 

0-+ A-+ A-+ B-+ O. 

Then B is the associated graded complex GK of K. In the short exact 
sequence (14.3) each group is a complex with operator induced from D. In 
the graded case we get from this short exact sequence a long exact sequence 
of cohomology groups 

... -+ Hl(A) ~ Hl(A) ~ HJ:(B) ~ Hl + l(A) -+ ... , 

which we may write as 

11 

H(A) • H(A) 

\ )1 def. 
= 

H(B) 

where the map i need no longer be an inclusion. We suppress the subscript of 
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i1 to avoid cumbersome notation later. It is not difficult to see that the same 
diagram exists in the ungraded case. Since this diagram is an exact couple, it 
gives rise as in (14.1) to a sequence of exact couples: 

B, 

each being the derived couple of its predecessor. 
For the sake of the exposition consider now the case where the filtered 

complex terminates after K3: 

... = K -1 = Ko ::l K1 ::l K2 ::l K3 ::l O. 

Then A 1 is the direct sum of all the terms in the following sequence 

This is of course not an exact sequence. Next, A2 by definition is the image 
of A 1 under i in A 1 and so is the direct sum of the groups in the sequence 

Note that here the map iH(K 1) c H(K) is an inclusion. Similarly A3 is the 
sum of 

and A4 is the sum of 

Since all the maps become inclusions in A4 , all the A's are stationary after 
the fourth derived couple and we define Aoo to be the stationary value: 

A4 = As = A6 = ... = Aoo· 

Furthermore, since 

A4 • A4 

t\ / 
B4 

is exact and i : A4 -4 A4 is the inclusion, the map k4 : B4 -4 A4 must be the 
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zero map. Therefore, after the fourth stage all the differentials of the exact 
couples are zero and the B's also become stationary, 

B4 = Bs = B6 = ... = Boo· 

In the exact couple 
inclusion i~ 

A", ' A", 

' .. 0\ / 
Boo 

A 00 is the direct sum of the groups 

(14.4) ... = H(K) = H(K) ::;) iH(K 1) ::;) iiH(K2) ::;) iiiH(K3) ::;) 0 

and the inclusion ioo is as in (14.4). Since Boo is the quotient of ioo ' it is the 
direct sum of the successive quotients in i",. If we let (14.4) be the filtration 
on H(K), then Boo is the associated graded complex of the filtered complex 
H(K). 

We now return to the general case. The sequence of sUbcomplexes 

... = K = K ::;) K 1 ::;) K2 ::;) K3 ::;) ... 

induces a sequence in cohomology 

where the maps i are of course no longer inclusions. Let F p be the image of 
H(K p) in H(K). Then there is a sequence of inclusions 

(14.5) 

making H(K) into a filtered complex; this filtration is called the induced 
filtration on H(K). 

A filtration Kp on the filtered complex K is said to have length t if 
Kt* 0 and Kp = 0 for p> t. By the same argument as the special case 
above, we see that whenever the filtration on K has finite length, then A r 

and Br are eventually stationary and the stationary value Boo is the 
associated graded complex (JJ Fp/ Fp + 1 of the filtered complex H( K) with 
filtration given by (14.5). 

It is customary to write Er for Br. Hence, 

El = H(B) with differential d1 = il 0 kl' 

E2 = H(E1) with differential d2 = i2 0 k2' 

E3 = H(E2), etc. 

A sequence of differential groups {Er' dr} in which each Er is the homology 
of its predecessor E'-1 is called a spectral sequence. If E, eventually be-
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comes stationary, we denote the stationary value by Eoo , and if Eoo is equal 
to the associated graded group of some filtered group H, then we say that 
the spectral sequence converges to H. 

Now suppose the filtered complex K comes with a grading: K = 
Ee • e l Kn. To distinguish the grading degree n from the filtration degree p, 
we will often call n the dimension. The filtration {K p} on K induces a 
filtration in each dimension: if K; = Kn n K p, then {K;} is a filtration on 
Kn. 

For the applications we have in mind, the filtration on K need not have 
finite length. However, we can prove the following. 

Theorem 14.6. Let K = Ee. e l Kn be a graded filtered complex with filtration 
{Kp} and let H~(K} be the cohomology of K with filtration given by (14.5). 
Suppose for each dimension n the filtration {K;} has finite length. Then the 
short exact sequence 

0- EeKp+1 - EeKp- EeK"IKp+l- 0 

induces a spectral sequence which converges to H~(K). 

PROOF. By treating the convergence question one dimension at a time, this 
proof reduces to the ungraded situation. To be absolutely sure, we will write 
out the details. As before, 

Ar = Ee ir- 1H(Kp); 

pel 

ifr ~ p + 1, then irH(Kp} = Fp and 

i: i rH(Kp+1}_ irH(Kp} 

is an inclusion. With a grading on each derived couple, i and j preserve the 
dimension, but k increases the dimension by 1. Given n, let t(n) be the 
length of {K;} pel and let r ~ t(n + I} + 1. Then for any integer p, 

i rH n+1(K ) - F"+l p+l - p+l 

and 

i' i'H"+l(K )_ i rH n+1(K ) • p+ 1 p 

is an inclusion. It follows that 

is an inclusion and 

kr : B~_ A~+l 

is the zero map. Therefore, as r- 00, the group B~ becomes stationary and 
we can define B"ex, to be this stationary value. Note that 

An = ffi F" 
00 Q] p 
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and that i", sends F;+l into F; for every n. Because i",: EB Fp+1-' EBFp is 
an inclusion, B", is the associated graded complex EB F "I F p + 1 of H1j(K). 0 

The Spectral Sequence of a Double Complex 

Now let K = EBKp.q be a double complex with the filtration of Example 
14.2. We will obtain a refinement of Theorem 14.6 for this special case by 
taking into account not only the particular filtration in question but also 
the bigrading and the presence of the two differential operators D and d. 
The direct sum A = I£BKp is also a double complex. Here, as always, we 
form a single complex A = I£BAk out of this double complex by summing 
the bidegrees: Ak consists of all elements in A whose total degree is k. There 
is an inclusion i: Ak-. Ak given by 

i: Ak n Kp+1 -. Ak n Kp. 

The single complex A inherits the differential operator D = D + (-l)Pd 
from K. 

Similarly, B = EBKp/K p+1 can be made into a single complex with oper
ator D. Note that the differential operator Don B is (-l)Pd; therefore, 

(14.7) 

Recall that the co boundary operator k1 : H(B) -. H(A) is the coboun
dary operator of the short exact sequence (14.3) and hence is defined by the 
following diagram: 

1 1 1 
(3) 

Ak+ 1 n Kp--+ Bk+1 n K p/K p+1 -. 0 O--+Ak+1n K --+ p+1 

(14.8) ID (2) 1 ID 

(1) 

1 1 r 
Let b in A k n K p represent a cocycle [b] in Bk n K"I K p + 1. This corre
sponds to Step (1) in the diagram. To get kt<[b]), we 

(2) compute Db and 
(3) take its inverse under i. 

Since b represents an element of E1 = HD(B) = Hd(K), db = 0 and 
Db = Db + (-l)Pdb = Db. Thus k1[b] = [Db]; so the differential d1 =i1k1 
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on El is given by ~ (in fact by D, but D = ~ on E1). Consequently 

(14.9) E2 = H6 Hd(K). 

We now compute the differential d2 on E2 • As noted in the proof of 
Proposition 12.1, an element of E2 = H"Hd(K) is represented by an element 
b in K such that 

0 

1 
b---+ 

db =0 r 
~b = -D"c for some c in K, c 

where D" = (-!)Pd. We will denote the class of b in E" if it is defined, by 
[b],. From the definition of the derived couple (14.1), 

d2 [b]2 = h kl [b]2 = i2 k1[b]1' 

To compute h kl[b]h we must find an a such that k1[b]l = i[a]l' Then 
h k2 [b]2 = [ita]2' Since klb is in Ak+ 1 11 K,,+h a is in Ak+ 1 11 K,,+2' To 
find a we use not b but b + c in Ak 11 K" to represent [b]2 in Step (1); this 
is possible since band b + c have the same image under the projection 
K" -+ K,,/K,,+l' Then 

kl(b + c) = D(b + c) = ~c. 

So 

(14.10) 

Thus the differential d2 is given by the ~ of the tail of the zig-zag which 
extends b. It is easy to show that ~c represents an element of H" H d (K) and 
that the definition of d2 [b]2 is independent of the choice of c. 

~ 
6- r-+ t 

I " c-~' 



§14 The Spectral Sequence of a Filtered Complex 163 

Exercise 14.11. Show that if d1 [b]z = 0, then there exist Cl and Cz so that b 
can be extended to a zig-zag as shown: 

~ 
h-f-t 

~ 
Cl- f---+t 

I 

D"b=O 

c5b = -D"CI 
Cz 

We say that an element b in K lives to E, if it represents a cohomology 
class in E,; equivalently, b is a cocycle in E I , Ez , ... , E,-l. From the 
discussion above we see that b lives to Ez if it can be extended to a zig-zag 
of length 2, the length of a zig-zag being the number of terms in it, 

db = 0 o 
i 

c5b = -D"c b-f-+ 

i 
C 

and dz [b]z = [c5c]z ; it lives to E3 if it can be extended to a zig-zag of 
length 3: 

db =0 

c5b = -D"CI 
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To compute d3 [b]3, we use b + Cl + c" in Ali: n K" to represent [b] E 

Bit n (K,IK,,+l) in Step (1) of (14.8), so that k3 [b]3 is given by D(b + 
Cl + C2) = t5C2 and d3 [b]3 = [t5C2]3' In general, parallel to the discussion 
above, an element b in K'" q lives to Er if it can be extended to a zig-zag of 
length r: 

0 
j 
b---j 

Cl- f-+j 
C2- f-. 

l 
Cr -2 -j 

Cr-l 

and the differential dr on Er is given by t5 of the tail of the zig-zag: 

(14.12) 

Thus the bidegrees (p, q) of the double complex K = EeK'" q persist in the 
spectral sequence 

and dr shifts the bidegrees by (r, -r + 1): 

The filtration on H(K) = Ee H"(K): 

H(K) = F ° ;::) F 1 ;::) F 2 ;::) 

induces a filtration on each component H"(K), the successive quotients of 
the filtration being E~", E~"-l, ... , E'!;o: 

(14.13) H"(K) = (F onH") ;::) (F 1 nH") ;::) (F "nH") ;::) 
~~ 

This is best seen pictorially 

E1,,,-1 
co 

;::) (F"nH");::) 0 
~ 

E,!;O 
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E = 00 

EO .• 

E1 •• - 1 

F1 
F2 

E"'o 

165 

In summary, we have proved the following refinement of Theorem 14.6. 

Theorem 14.14. Given a double complex K = E9 p.q ~ 0 KP.' there is a spectral 
sequence {E" d,} converging to the total cohomology HJK) such that each E, 
has a bigrading with 

and 
Er" = Hg· '(K), 

E~·q = HS"H,,(K); 

furthermore, the associated graded complex of the total cohomology is given by 

GH'D(K) = EB E~ f(K). 
p+q-n 

REMARK 14.15. Of course, instead of the filtration in Example 14.2, we could 
just as well have given K the following filtration. 

q ~--~----r---~--~----~ 

4 

3 

2 

1 

o 

p 
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This gives a second spectral sequence {E~, d~} converging to the total 
cohomology HD(K), but with 

and 

E'l = Ha(K), 

E2 = HdHa(K), 

EXAMPLE 14.16 (The Mayer-Vietoris principle and the isomorphism be
tween de Rham and Cech). Let M be a manifold and U a good cover on M. 
Consider the double complex K = EB KP' q, 

KP' q = CP(U, Of} = n oq(U 110 ... II) 
(10<"'<(1, 

Since the rows of K are the Mayer-Vietoris sequences, the E 1 term of the 
second spectral sequence is 

El = Ha = 

Therefore the E2 term is 

E2=Hd Ha= 
H~R(M) 

H~R(M) 

H1R(M) 

HgR(M) 

o 
o 
o 

0 

0 

0 

0 

In general a spectral sequence is said to degenerate at the E, term if d, = 
d,+l = ... = O. For such a spectral sequence E, = E'+l = ... = E<%}. The 
degeneration of the second spectral sequence of the double complex 
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C*(U, Cl*) at the E2 term proves once again the Mayer-Vietoris principle 
(Proposition 8.8): 

(14.16.1) H~R(M) = EB H~ q{ C*(U, Cl*)}. 
p+q=k 

Now consider the first spectral sequence of C*(U, Cl*). Its E1 term is 

{o ifq>O 
Er- q = n Hq(U IIO ... lIp) = CP(U IR) if = 0 

IIO<"'<lIp ,q . 

o 0 
C1(U, IR) C2(U, IR) 

So the E2 term is 

The degeneration of this spectral sequence gives 

Hk(U, IR) = EB E~- q = EB E!; q = HM C*(U, Cl*)}. 
p+q=k p+q=k 

Together with (14.16.1) we get 

H~R(M) = Hk(U, IR) for all integers k ~ O. 

This is the spectral sequence proof of the isomorphism between de Rham 
and Cech (Theorem 8.9). 

REMARK 14.17. The extension problem. Because the dimension is the only 
invariant of a vector space, the associated graded vector space GV of a 
filtered vector space V is isomorphic to V itself. In particular, if the double 
complex K is a vector space, then 

H'b(K) ~ GH'b(K) ~ EB E!; q 

p+q=n 
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However, in the realm of Abelian groups a knowledge of the associated 
graded group does not determine the group itself. For example, the two 
groups Z2 EB Z2 and Z4 filtered by 

Z2 C Z2 EB Z2 

and 

Z2 C Z4 

have isomorphic associated graded groups, but Z2 EB Z2 is not isomorphic 
to Z4. Put another way, in a short exact sequence of Abelian groups 

O-A-B-C-O, 

A and C do not determine B uniquely. The ambiguity is called the extension 
problem and lies at the heart of the subject known as homological algebra. 
For our purpose it suffices to be familiar with the following elementary facts 
from extension theory. 

Proposition 14.17.1. In a short exact sequence of Abelian groups 

f 9 
O-A - B - C-O, 

if C is free, then there exists a homomorphism s : C -+ B such that g 0 s is the 
identity on C. 

PROOF. Define s appropriately on the generators of C and extend linearly. 0 

Corollary 14.17.2. Under the hypothesis of the proposition, 
(a) the map (J, s): A EB C- B is an isomorphism; 
(b) for any Abelian group G the induced sequence 

0- Hom(C, G)- Hom(B, G)- Hom(A, G)- 0 

is exact; 
(c) for any Abelian group G the sequence 

is exact. 

The proof is left to the reader. 

Exercise 14.17.3. Show that if 

is an exact sequence of free Abelian groups and if G is any Abelian group, 
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then the two sequences 

0..- Hom(Ah G)..- Hom(A2' G) +- Hom(A3' G) +- ... 

and 

are both exact. 

Exercise 14.17.4. Show that if 

0-+ A-+ B-+ C-+O 

is a short exact sequence of Abelian groups (which are not necessarily free) 
and G is any Abelian group, then the two sequences 

0-+ Hom(C, G)-+ Hom(B, G)-+ Hom(A, G) 

and 
A®G-+B®G-+C®G-+O 

are both exact. 

The Spectral Sequence of a Fiber Bundle 

Let x : E -+ M be a fiber bundle with fiber F over a manifold M. Applying 
Theorem 14.14 here gives a general method for computing the cohomology 
of E from that of F and M. Indeed, given a good cover U of M, x- 1U is a 
cover on E and we can form the double complex 

KP" = CP(x-lU 0') = n Cl'(x-1U ) , «0 ... «p' 
«o< ... <<<p 

whose E 1 term is 

Ef" = HN" = n H'(x-1U"o ... "p) = CP(U, ,Tf'), 
110< ... <<<" 

where jf'qis the presheaf jf'q(U) = Hq(17- 1U) on M. For emphasis we 
sometimes write the presheaf jf'q as jf'q(F). Since U is a good cover, jf'q 
is a locally constant presheaf on U with group Hq(F) (pp. 142-143). Since 
d 1 = 8 on E1, the E2 term is 

Ef' q = HC( U , jf'q). 

By Theorem 14.14 the spectral sequence of K converges to H~(K), which 
by the generalized Mayer-Vietoris principle (Proposition 8.8) is equal to 
H*(E), because 17- 1 U is a cover on E. 

In case the base M is simply connected and H'(F) is finite-dimensional, 
Theorems 13.2 and 13.4 imply that ,Tf' is the constant presheaf IR e ... 
EB IR on U, consisting of h'(F) copies of IR where h'(F) = dim H'(F). So the 
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E~' q term is isomorphic as a vector space to the tensor product HP(M) ® 
Hq(F), since 

E~' q = HP(U, \R EB ... EB \R) = HP(U, \R) ® Hq(F) 

= HP(M) ® Hq(F), 

where the last equality follows from Theorem 8.9. 
We have proven the following. 

Theorem 14.18 (Leray's Theorem for de Rham Cohomology). Given a fiber 
bundle n : E _ M with fiber F over a manifold M and a good cover U of M, 
there is a spectral sequence {Er} converging to the cohomology of the total 
space H*(E) with E2 term 

E~' q = HP(U, Jf'q), 

where Jf'q is the locally constant presheaf Jf'q(U) = Hq(n-1U) on U. If Mis 
simply connected and Hq(F) is finite-dimensional, then 

Some Applications 

EXAMPLE 14.19 (The Kiinneth formula and the Leray-Hirsch theorem). We 
now give a spectral sequence proof of the Kiinneth formula (5.9). Let M and 
F be two manifolds and U a good cover of M. Suppose F has finite
dimensional cohomology. By Leray's theorem (14.18), the spectral sequence 
of the trivial bundle 

F-MxF 
! 

M 

has E2 term 

Because M x F is a trivial bundle over M, the presheaf Jf'q(F) is constant, 
so that 

By (14.12) the differential dr measures the extent to which an element of 
C*( n - 1 U, n*) that lives to Er fails to be extended one step further to a 
D-cocyde. Since every element of the E2 term is already a global form on 
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M x F, d2 = d3 = ... = O. So E2 = E aJ , which by Theorem 14.18 is 
H*(M x F). Therefore we have the Klinneth formula 

H*(M x F) = H*(M) ® H*(F). 

The proof of the Leray-Hirsch theorem is analogous. 

REMARK 14.20 (Orientability and the Euler class of a sphere bundle). Let 
7t : E --+ M be an Sn-bundle over a manifold M and let U be a good cover of 
M. The spectral sequence of this fiber bundle has 

n 

E~' 9 = H~' 9 = CP(U, Je9(sn» = 

o 
o 1 2 n 

Let (J be the element of E~' n = Co(U, Jen(sn» corresponding to the local 
angular forms on the sphere bundle E. From the description of the differ
ential dr as the ~ of the tail of a zig-zag, we see that E is orientable if and 
only if d1(J = 0 (compare with pp. llCr1l8). For an orientable S"-bundle 
then, such a (J lives to E" : 

n 

o 
o 1 2 n n+l 

Up to a sign dn (J in Hn+ 1(U, Je°(sn» = Hn+ l(M) is the Euler class of the 
sphere bundle. It measures the extent to which (J fails to be extended to a 
D-cocycle, i.e., a global closed n-form on the sphere bundle. 

EXAMPLE 14.21 (Orientability of a simply connected manifold). Let M be a 
simply connected manifold of dimension nand S(TM ) its unit tangent 
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bundle. The spectral sequence of the fiber bundle 

so-1 _ S(TM ) 

has E2 term 

n-l 

o 

! 
M 

This shows that there is an element in CO(1t- 1U, Jt"0-1) which can be 
extended one step down toward being a D-cocycle. Therefore S(TM ) and also 
Mare orient able. This gives an alternative proof of the orientability of a 
simply connected manifold (Corollary 11.6). 

EXAMPLE 14.22 (The cohomology of the complex projective space). Consider 
the sphere 

S20+1 = {(zo, ... , zo)llzol2 + ... + Izol2 = 1} 

in co+ 1. Let S1 act on SZo+1 by 

(zo, ... , zo) 1--+ (AZo, ... , AZo), 

where A in S1 is a complex number of absolute value 1. The quotient of 
SZo + 1 by this action is the complex projective space Cpo. This gives S20 + 1 

the structure of a circle bundle over cpo 

As we will see from the homotopy exact sequence (17.4) to be discussed 
later, Cpo is simply connected. Thus 

E~·q = HP(CpO) ® Hq(S1). 

So E2 has only two nonzero rows, q = 0, 1, and the two rows are identical, 
both being H*(CpO). 

Let n = 2. Then 

IR ~ B Z D 0 

IR A "'B C .... D 0 

o 1 2 3 4 5 
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where the bottom row is the cohomology of the base, H*(CP2), and the O-th 
column is the cohomology of the fiber. HP(CP2) = 0 for p ~ 5 because Cp2 
has dimension 4. Since d3 moves down two steps, d3 = O. Similarly, 

d4 = ds = ... = O. 

So the spectral sequence degenerates at the E3 term and E3 = E4 = ... = 
Eoo = H*(Ss). Therefore 

0 0 0 0 IR 0 

IR 0 0 0 0 0 

o 1 2 3 4 5 

This means 

d2 : IR -. B, B -. D, 

0-. A, A-. C, C-.O 

must all be isomorphisms. It follows that 

Therefore, 

IR 0 IR 0 IR 0 

IR 0 IR 0 IR 0 

o 123 4 5 

H*(CP2) = {olR in dimensions 0, 2, 4 
otherwise. 

Exercise 14.22.1. Show that 

H*(cpn) = {01R in dimensions 0, 2, 4, ... , 2n 
otherwise. 

Exercise 14.23 (Algebraic Kiinneth Formula). Let E and F be graded differ
ential algebras over IR with differential operators lJ and d respectively. 
Define a differential operator D on the tensor product E ® F by 

D(e ®f)=(lJe) ®f+(-l)deg e e ® df 

Prove by a spectral sequence argument that 

HD(E ® F) = H6(E) ® Hd(F). 
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Product Structures 

In this section we define product structures on the Cech-de Rham complex 
C*(U, 0*), the de Rham cohomology, and the Cech cohomology, and show 
that the isomorphism between de Rham and Cech is an isomorphism of 
graded algebras. We also discuss the product structures on a spectral se
quence. 

Let Z be the closed forms and B the exact forms on a manifold M. From 
the antiderivation property of the exterior derivative 

d(w . ,,) = (dw) . " + (_I)de.w W . d", 

it follows that Z is a subring of O*(M) and B is an ideal in Z. Hence the 
wedge product makes the de Rham cohomology H~R(M) = Z/B into a 
graded algebra. 

On the double complex C*(U, 0*), where U is any open cover of M, a 
natural product 

u : CP(U, Of) ® C'(U, 0")-+ CP+'(U, oq+,) 

can be defined as follows. If w is in CP(U, oq) and" is in C'(U, 0"), then 

(14.24) 

where on the right-hand side both forms are understood to be restricted to 
U<zo ... <Zp+r' with the usual convention that (xo < ... < (Xp+,' 

REMARK 14.25. The sign (-I)q, is needed to make the differential operator 
D into an antiderivation relative to the product structure. It makes sense 
that this should be the sign, for in defining the product, p and r are brought 
together, and so are q and s, so the order of q and r in CP(U, oq) ® C'(U, 
OS) are interchanged. It is a useful principle that whenever two symbols of 
degrees m and n are interchanged in a graded algebra, there should be the 
sign ( _I)mn. 

Exercise 14.26. Let w E KP' q and" E K" s. Show that 

I) t5(w u ,,) = (t5w) u " + ( _1)dC' w W u 15" 
2) D"(w u ,,) = (D"W) u " + (_I)dCIW W U D"" 
3) D(w u ,,) = (Dw) u " + (_I)dcIW W u D", 
where deg w = p + q. 

We will often write w . " or even w" for w u fl. 
The inclusion of the Cech complex C*(U, IR) in the Cech-de Rham 

complex induces a product structure on C*(U, IR): if w is a p-cochain and" 
an r-cochain, then 

( 14.27) 
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By Exercise 14.26, ~ is an antiderivation relative to this product. So just as 
in the case of de Rham cohomology this makes the Cech cohomology 
H*(U, IR) into a graded algebra. If !J is a refinement of U, then the res
triction map H*(U, IR) -+ H*(!J, IR) is a homomorphism of algebras. Hence 
the direct limit H*(M, IR) is also a graded algebra. Note that (14.27) also 
makes sense for the Cech complex C*(U, IR) on a topological space X; this 
gives a product structure on the Cech cohomology H*(X, IR) of any topo
logical space X. 

With the product structures just defined, both inclusions 

r: O*(M) -+ C*(U, 0*) 

and 

i : C*(U, IR) -+ C*(U, 0*) 

are algebra homomorphisms. Since as we saw in Proposition 8.8, for a good 
cover these homomorphisms induce bijective maps in cohomology 

H~a(M) ~ H D {C*(U, O*)} 

H*(U, IR) ~ H D {C*(U, O*)}, 

the isomorphism between Hta(M) and H*(U, IR) is an algebra isomorphism. 
Because H*(M, IR) = H*(U, IR) for a good cover U, we have the following. 

Theorem 14.28. The isomorphism between de Rham and eech 

Hta(M) ~ H*(M, IR) 

is an isomorphism of graded algebras. 

If a double complex K has a product structure relative to which its 
differential D is an antiderivation, the same is true of all the groups E, and 
their operators d" since Er is the homology of E, _ 1 and d, is induced from 
D. With product structures, Theorem 14.14 becomes 

Theorem 14.29 Let K be a double complex with a product structure relative 
to which D is an antiderivation. There exists a spectral sequence 

{E d· E"·II -+ E"+'·II-,+l} 
" r· , r 

converging to H D(K) with the following properties: 

1) The E~' II term is Hf' IIH,,(K). 
2) Each E" being the homology of its predecessor E,_ h inherits a product 
structure from E, _ 1. Relative to this product, d, is an antiderivation. 

WARNING. Although both Eoo and HD(K) inherit their ring structures from 
K, they are generally not isomorphic as rings. 
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Exercise 14.30 The product structure on the tensor product A ® B of two 
graded rings A and B is given by 

(a ® b)(c ® tI) = (_1)(de1 b)(de1 c)(ac ® btl), a, c E A, b, dEB. 

Show that if .,,: E - M is a fiber bundle with fiber F over a simply 
connected manifold M and F has finite-dimensional cohomology, then the 
isomorphism of the E2 term of the spectral sequence with H*(M) ® H*(F) 
is an isomorphism of graded algebras. 

REMARK 14.31. Thus in Leray's theorem (Theorem 14.18) each group E, is 
an algebra relative to which d, is an antiderivation; furthermore, if M is 
simply connected, E2 is isomorphic to H*(M) ® H*(F) as a graded 
algebra. 

EXAMPLE 14.32 (The ring structure of H*(CP")). Assume for now that n = 2. 
In example 14.22, by applying the spectral sequence of the fiber bundle 

S1 -+ S5 

l 
Cp2, 

we computed the additive structure of the graded algebra H*(CP2 ). We 
found that the E2 term is 

q 

o 2 3 4 5 p 

The two d2's shown are isomorphisms. Let a be a generator of 

Ef·l "" HO(Cp2) ® Hl(SI) "" Hl(SI). 

Then d2 a = x is a generator of 

Ei'o "" H2(Cp2) ® HO(SI) "" H2(Cp2) 

and x . a is a generator of 
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q 

1 

o 
o 1 2 3 

177 

4 5 p 

Because d2 : E~' 1 ----+ E1'o is an isomorphism, a generator of E1'o = 
H4(Cp2) is 

So as a ring, 

In general, the same argument yields the ring structure of cpn as 

H*(cpn) = R[x]/(xn + 1), 

where x is an element in dimension 2. 

The Gysin Sequence 

The spectral sequence of a fiber bundle is essentially a way of describing the 
complicated algebraic relations among the cohomology of the base space, 
the fiber, and the total space of the bundle, In certain special situations the 
spectral sequence simplifies to a long exact sequence, One such special case 
is the cohomology of a sphere bundle. The resulting sequence is called the 
Gysin sequence, which we now derive, 

Let 7t : E ----+ M be an oriented sphere bundle with fiber Sk, By the orien
tability assumption, for any good cover U on M, the locally constant pre
sheaf Jf{'k has no monodromy and is the constant presheaf R, Therefore the 
E2 term of the spectral sequence is 

k 

o 

Let n be any nonnegative integer. Since nothing in Ei- k , k can get killed 
(that is, nothing there lies in the image of dr for r ~ 2), E~- k, k is the sub-
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group of El- lc , t consisting of those elements with d3 = d4 = ... = O. Hence 
there is an inclusion 

This can be extended to an exact sequence 

H"-t(M) H"+ l(M) 

where the last map, called an edge homomorphism, exists and is surjective 
because every element of El+ 1, 0 survives to E«J' 

Because of the shape of the E2 term, the filtration (14.13) on H"(E) 
becomes 

H"(E) ::I E':.;. 0 ::I 0; 
'---v---' 

E':.o-lc,k 

in other words, there is an exact sequence 

(**) 0-+ E':.;.o -+ H"(E) -+ E':.o-Io:, " -+ O. 

The two sequences (*) and (**) may be combined into a single long exact 
sequence 

This is the Gysin sequence of the sphere bundle. 
It remains to identify the maps in the Gysin sequence. Let U be a good 

cover on M. The map ex is the composition of 

projection " L 

H"(E) .E':.o- ," c El-t , " = H"-lc(1t- 1U, Jf"} 

= H"-"(M) ® H"(S,,} ~ H"-"(M). 

In this sequence of maps the first three are the identity on the level of forms 
and the last one sends a generator of H"(S") to 1 by integration. Therefore ex 
is integration along the fiber. 

Next consider d"+l' Representing an element of 

Ei-"'" = H"-"(M) ® H"(S,,} 

by (1t*w) . (- !/I), where W is a closed form on M and !/I is the angular form 
on E, we see that 

dk+1«1t*W)( -!/I» = d«1t*w)( -!/I» = (-1)"-"(1t*w) d( -!/I) 
= (-l)"-"(1t*w)(1t*e). 



§14 The Spectral Sequence of a Filtered Complex 179 

Hence, up to a sign dk+1 : Hn-"(M) -+ H n+1(M) is multiplication by the Euler 
class e. 

Finally the map (J is the composition 

= E~+1,O projection .E",.,+1,O c: Hn+1(E). 

So (J: H n+1(M) - Hn+1(E) is the natural pullback map x*. 
We summarize this discussion as follows. 

Proposition 14.33. Let x : E - M be an oriented sphere bundle with fiber st. 
Then there is a long exact sequence 

in which the maps x*, 1\ e, and x* are integration along the fiber, multi
plication by the Euler class, and the natural pullback, respectively. 

Exercise 14.33.1. Show that if the sphere bundle comes from a vector 
bundle x : V - M, then the long exact sequence in the proposition may be 
identified with the relative exact sequence of the inclusion i: VO - V, 
where VO is the complement of the zero section in V. (Compare with 
Proposition 6.49.) 

Leray's Construction 

We consider now more generally not a fiber bundle but any map 
x : X _ Y from one manifold to another, and study how the cohomology 
groups of X relate to those of Y. Let U be any cover for Y, not necessarily a 
good cover. Then x- 1U is a cover for X. By the Mayer-Vietoris principle 
(Proposition 8.8 or 14.16) 

H*(X) = HD{C*(X-1U, O*)}. 

By Theorem 14.14, if K is the double complex C*(x- 1U, 0*) on X, then the 
spectral sequence of K has 

Eoo = HD {C*(X- 1U, O*)} 

and 
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K= n nq+1(n-1U ) 
«0 ... tip 

n nq(n- 1U,,0 ... ,,) 
IIO< .•• <a.p 

Here 

HN,q(K) = n Hq(n- 1U"0 ... ,,.) = CP(U,;t'~ 
cZo< ... <<<p 

where ;t'q is the presheaf on Y defined by ;t'q(U) = Hq(n- 1 U). In summary, 
there is a spectral sequence converging to H*(X) with E2 term 

E~' q = HP(U, ;t'q). 

The main difference between this situation and that of a fiber bundle 
(Theorem 14.18) is that the presheaf ;t'q is no longer locally constant on U; 
indeed the groups Hq(n- 1 U) will in general be different for different con
tractible open sets U. 

EXAMPLE 14.34. Consider the vertical projection of a circle S1 onto a seg
ment I. Cover I with three open sets U 0, U 1> U 2 as shown in Figure 14.1. 

vo ! v2 

( • ) • ) 

( ) 
v. 

Figure 14.1 
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The presheaf .tf0 attaches a group to each vertex and each edge of the 
nerve N(U) in the way indicated below 

• • • 

Hd of the double complex C*(n-1U, Q*) is 

= C*(U, .tf0 ) 

with b given by (b, (Cl, C2), d) --+ «CI - b, C2 - b), (d - C1> d - C2»' Thus 
ker b = {(b, (b, b), b)} and Hg·oHd = lIt Since im b is 3-dimensional, 
Hl' °Hd = IR. So HdHd is 

In this case, then, E2 = Eoo and we get the cohomology of SI. 
Let us find a nontrivial 1-cochain in CI(U, .tf0) that represents a gener

ator of HI(SI). A 1-cochain in CI(U, .tf0 ) is given by a 4-tuple «r, s), (t, u». 
Such a 4-tuple is exact if and only if r - s = u - t. Therefore as a generator 
of HI(SI) we may take «1, 0), (0, 0», i.e., the 1-cochain • (see Figure 14.2) 

( ) ( ) 
VOl V 12 

Figure 14.2 
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such that 

-r(U01 ) = (1, 0) 

-r(U 12) = (0, 0). 

Exercise 14.35. Project the sphere Sl to a disc D (Figure 14.3) and compute 
H·(Sl) by Leray's method. 

! 
Figure 14.3 

Exercise 14.36. Let Y be a manifold and U a finite good cover of Y. 
Denote by f3p the number of nonempty (p + I)-fold intersections Uao ... ap 

Show that X(Y) = L( -I)Pf3p' 

Exercise 14.37. Let 11:: X -+ Y be any may and U a finite good cover of Y. 
Show that 

x(X) = L L (_1)P+4 dim H4(1I:- 1U"o"''')' 
'.4 "0<"'<'" 

Deduce that if 11: : X -+ Y is a fiber bundle with fiber F, Yadmits a finite good 
cover and F has finite-dimensional cohomology, then 

x(X) = X(F) x(Y). 

§ 15 Cohomology with Integer Coefficients 

An element in a Z-module is said to be torsion if some integral multiple of it 
is zero. Since the de Rham theory is a cohomology theory with real coeffi
cients, it necessarily overlooks the torsion phenomena. For applications to 
homotopy theory, however, it is essential to investigate the torsion. The 
goal of this section is to replace the differential form functor n· with the 
singular cochain functor S·, define the singular cohomology, and show that 
the preceding results on spectral sequences carryover to integer coeffi
cients. The key as before is the Mayer-Vietoris sequence for countably 
many open sets. The natural setting for the singular theory is the category 
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of topological spaces and continuous maps, rather than the more restrictive 
category of differentiable manifolds and Coo maps of de Rham theory. 
Unless otherwise indicated, from here till the end of Section 18 we will 
work in the continuous category. We begin with a review of the basic 
definitions of singular homology. 

Singular Homology 

Via the map 

(Xl> ... , x") ~ (Xl>"" X"' 0) 

each Euclidean space !R" is naturally included in !R" + 1. Viewing each !R" as a 
subspace of !R"+ 1 in this way we consider the union 

!Roo = U !R". 
n~O 

Denote by Pi the i-th standard basis vector in !Roo; it is the vector whose 
i-th component is 1 and whose other components are all O. Let Po be the 
origin. We define the standard q-simplex Aq to be the set 

Aq = {t tj~l.t tj = 1, tj:2: o}. 
}=o }=o 

If X is a topological space, a singular q-simplex in X is a continuous map 
s: Aq -+ X and a singular q-chain in X is a finite linear combination with 
integer coefficients of singular q-simplices. Collectively these q-chains form 
an Abelian group Sq(X). We define the i-th face map of the standard q
simplex to be the function 

given by (see Figure 15.1) 

Po 
12ililli~~~~~ PI 

05 
Figure 15.1 
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The graded group of singular chains, 

S.(X) = €a S,,(X) 
,,~o 

can be made into a differential complex with boundary operator 

" os = L (_I)'S 0 O~. 
1=0 

It is easily checked that 02 = O. The homology of this complex is the 
singular homology with integer coefficients of X, denoted H .(X) or 
H .(X; l). By taking the linear combination of simplices to be with coeffi
cients in an Abelian group G, we obtain similarly singular homology with 
coefficients in G, H .(X; G). 

The degree of a O-chain L ni Pi is by definition L n" Suppose X is path 
connected. If - P and Q are in a O-chain on X, then any path from P to Q 
is a I-simplex with boundary Q - P. Hence a O-chain on a path-connected 
space is the boundary of a I-chain if and only if it has degree O. This gives 
rise to a short exact sequence 

from which it follows that if X is path connected, Ho(X) = l. In general, 

rank Ho(X) = the number of path components of X. 

The Cone Construction 

The goal of this section is to compute the singular homology of Rn. If s in 
s,,(Rn) is a q-simplex in Rn, we define the cone over s to be the (q + 1)
simplex Ks in S,,+l(Rn) given by 

This is the cone in Rn with vertex the origin and base the simplex s. To 
make sense of the formula, we view the last coordinate tIl + 1 as "time"; as 
time goes from 0 to 1, the cone Ks moves from s to the origin. For the 
singular simplex s pictured in Figure 15.2, the cone Ks is the" tetrahedron" 
and 

oKs = Oth face - 1st face + 2nd face - s 

Kos = Oth face - 1st face + 2nd face. 
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+ 

P3 = Origin 

Figure 15.2 

In general we have the following. 

Proposition IS.I. Let K: S.(Rn)-+ S.+1(Rn) be the cone construction. Then 

oK - Ko = (-1)'+ 1 

PROOF. The geometrical idea is clear from Figure 15.2. The proof itself is a 
routine matter of unravelling the definitions. We leave it to the reader. 0 

In other words, the cone construction K is a homotopy operator between 
the identity map and the zero map on S,(Rn), q ~ 1. Consequently, 

H (Rn) = {O q ~ 1 
q 7L q = O. 

The Mayer-Vietoris Sequence for Singular Chains 

Let U = {U«}«eJ be an open cover of the topological space X. Just as for 
differential forms on a manifold, the sequence of inclusions 

induces a Mayer-Vietoris sequence. However, for technical reasons which 
will become apparent in the proof of Proposition 15.2 (to show the surjec
tivity at one end of the Mayer-Vietoris sequence), we must consider here the 
group S:(X) of U-small chains in X; these are chains made up of simplices 
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each of which lies in some open set of the cover U. The inclusion 

i : S~(X) - S.(X) 

is clearly a chain map, i.e., it commutes with the boundary operator o. 
Indeed, it is a chain equivalence. The proof of this fact is tedious and we 
will omit it (Vick [1, Appendix I, p. 207]), but the idea behind it is quite 
intuitive: to get an inverse chain map, subdivide each chain in X until it 
becomes U-small. In any case the upshot is that to compute the singular 
homology of X it suffices to use U-small chains: H(S.(X)) = H(S!(X)). 

Define the tech boundary operator 

15: EB Sq(Uao .. · ap)- EB Sq(UaO'''ap_I) 
aO<"'<ap (10<"'<<<,-1 

by the" alternating sum formula" 

(t5c)ao"'ap_1 = LCaaO'''ap_I 
a 

Here, as always, we adopt the convention that interchanging two indices in 
Cao ... ap introduces a minus sign. The fact that 15 2 = 0 is proved as in Prop
osition 12.12. The boundary operator 15 on EB Sq(Uao) - Sq(X) is simply 
the sum; we denote this bye. 

Proposition 15.2 (The Mayer-Vietoris Sequence for Singular Chains). The 
following sequence is exact 

Although this sequence bears a formal resemblance to the generalized 
Mayer-Vietor is sequence for compact supports (Proposition 12.12), because 
we do not have partitions of unity at our disposal now, the second half of 
the proof of (12.12) does not apply. 

Lemma 15.3. Let 

O-A-B-C-O 

be a short exact sequence of differential complexes. If two out of the three 
complexes have zero homology, so does the third. 

PROOF. Consider the long exact sequence in homology 

... - Hq(A) - Hq(B) - Hq(C) - Hq_1(A)- o 
PROOF OF PROPOSITION 15.2. For two open sets the Mayer-Vietoris sequence 
is 
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The exactness of this sequence follows directly from the definition. For 
three open sets the sequence is 

The Mayer-Vietoris sequence for two open sets injects into the one for three 
open sets, giving rise to the following commutative diagram with exact 
columns 

o 
! 

o 
! 

o 
! 

o +-- SU(Uo u U,) , S(Uo)(!)S(U,) , S(Uo,) , 0 

! ! ! ! 
o +- sU(Uo u u, u U,) -s(Uo)(!) StU ,)(!) S(U,)-S(Uot! (!) S(Uo,) (!) StU ,,) -S(Uo,,) +- 0 

! ! ! ! 
SU(Uo u U, v U,) 

0+----::---- _--StU,) +-1 ---- S(Uo,)(!)S(U,,) -, --S(Uon! +- 0 
SU(Uo v U,) 

! 
o o o o 

The U in SU(Uo u U1) is the open cover {Uo, Ud, while the U inSu(Uo u 
U 1 U U 2) is the open cover {Uo, U 1, U 2}' So the group 

is generated by the simplices in U 2 which do not lie entirely in U 0 or U 1 

(see Figure 15.3). 

f3 of this is not O. 

f3 of this is O. 

Figure 15.3 
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We now prove the exactness of the rows of the commutative diagram. 
The bottom row is almost the Mayer-Vietoris sequence for the open cover 
{V 02, V 12}; it is exact except possibly at S( V 2)' Clearly f3 0 fJ = O. Now if c 
is in S(V 2) and f3(c) = 0, then c is a chain in V 2 whose simplices lie either in 
V 0 or in VI, i.e., c is in the image of S(U 02) EEl S(V d. Therefore the 
bottom row is exact. Note that each row of the commutative diagram is a 
differential complex and the commutative diagram may be regarded as a 
short exact sequence of differential complexes. Since the top and bottom 
complexes have zero homology, by Lemma 15.3 so does the middle one; 
in other words, the middle row is exact. This proves the exactness of the 
Mayer-Vietoris sequence for a cover consisting of three open sets. In gen
eral the Mayer-Vietoris sequence for r open sets injects into the one for 
r + 1 open sets. By the above technique and induction, one proves the 
Mayer-Vietoris sequence for any finite cover. 

Now consider a countable cover U = {Va}. By the definition of the direct 
sum, an element c of EEl S(Vao ... ap) has only finitely many nonzero com
ponents. These components can involve only finitely many open sets. There
fore if fJc = 0, by the Mayer-Vietoris sequence for a finite cover, we know 
that c = fJb for some b in EEl S(Vao ... ap+ J This proves the exactness of the 
Mayer-Vietoris sequence for countably many open sets. 0 

REMARK 15.4. If the coefficients are in an arbitrary Abelian group G, the 
same proof holds word for word. 

Now suppose the open cover U consists of two open sets V and V. By 
Proposition 15.2, there is a short exact sequence of singular chains 

(15.5) 0--> Sq(V n V)--> Sq(V) EEl Sq(V)--> S:(X)--> O. 

The associated long exact sequence in homology is the usual homology 
Mayer-Vietoris sequence. 

Corollary 15.6 (The Homology Mayer-Vietoris Sequence for Two Open 
Sets). Let X = V u V be the union of two open sets. Then there is a long 
exact sequence in homology 

Herefis the map induced by the signed inclusion ar-+( -a, a) and g is the sum 
(a, b)r-+a + b. 

Singular Cohomology 

A singular q-cochain on a topological space X is a linear functional on the 
Z-module Sq(X) of singular q-chains. Thus the group of singular q-cochains 
is sq(X) = Hom (Sq (X), Z). With the coboundary operator d defined by 
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(dw)(c) = w(oc), the graded group of singular cochains S*(X) = E9 S'(X) 
becomes a differential complex; the homology of this complex is the singu
lar cohomology of X with integer coefficients. Replacing lL with an Abelian 
group G we obtain the singular cohomology with coefficients in G, denoted 
H*(X; G). For the rest of this chapter we will reserve H*(X) for the singular 
cohomology with integer coefficients and write H~R(X) for the de Rham 
cohomology. 

A function", on X is a O-cocycle if and only if "'( ac) = 0 for all paths c 
in x. It follows that such an '" is constant on each path component of X. 
Therefore, HO(X) = 71.. x 71.. x ... x 71.. where there are as many copies of 71.. 
as there are path components of X. 

REMARK. The singular cohomology does not always agree with the Cech 
cohomology. For instance, 

dim H~nl(X) = # path components of X, 

but 

dim H~ech(X) = # connected components of X. 

We now compute the· singular cohomology of JR". Define the operator 
L : S'(JR") - S' - l(JR") to be the adjoint of the cone construction K : if u e 
S'(JR") and c e S,_l(JR"), 

(Lu)(e) = cr(Kc). 

Then for u e sq(JR") and c e Sq(JR"), 

Hence 

«dL - Ld)u)c = (d(Lu»c - (L(du»(c) 

= (Lu)(oc) - (du)(Kc) 

= u(Koc) - u(oKc) 

= u«Ko - oK)c) 

= « -1)q+ lu)e by Proposition 15.1. 

1 = (-I)q+ l(dL - Ld) on sq(JR"), q ~ I, 

i.e., L is a homotopy operator between the identity map and the zero map 
on the q-cochains, q ~ 1. It follows that 

Hq(JR") = {71.., q = 0 
0, q > O. 

Applying the functor Hom( , 71..) to the Mayer-Vietoris sequence for 
singular chains we obtain the M ayer-Vietoris sequence for singular cochains 

SO /jO /jO 

(15.7) 0 -+ St(X) -+ n S*(U«o) -+ n S*(U«oIIIl) -+ •.•• 
«0<411 
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Since the functor Hom( , Z) preserves the exactness of a sequence of free 
Z-modules (see Exercise 14.17.3), the Mayer-Vietoris sequence for singular~ 
cochains is exact. 

Exercise 15.7.1. Show that e* is the restriction map and b* is the alternating 
difference 

p+l 

(b*w).o ... cr,+, = L (_I)i w.'o ... Ii, ...• ,+, 
i=O 

Once we have the Mayer-Vietoris sequence we can set up the double 
complex C*(U, S*). Just as in the de Rham theory the double complex 
C*(U, S*) computes the singular cohomology of X. This is because by the 
exactness of the Mayer-Vietoris sequence, Ha* of this complex has a single 
nonzero column 

r 
S~(X) 0 

r 
H,,* = Sh(X) 0 

r 
S~(X) 0 

0 

so that the spectral sequence degenerates at the E2 term and 

H{ C*(U, S*)} = HdH,,* = H*(X). 

To complete the analogy we will need the existence of a good cover on 
the topological space X. This presents no problem if X admits a triangu
lation, i.e., a homeomorphism with the support of a simplicial complex, 
since the open stars of the vertices of the triangulation form a good cover. 
By taking barycentric subdivisions of the triangulation we can refine its star 
ad infinitum. Hence just as in the case of manifolds, the good covers on 
a triangularizable space X are cofinal in the set of all covers of x. We 
note in passing that this gives an alternative proof of the existence of a 
good cover on a manifold since it is known that every manifold admits a 
triangulation (due to Cairns and Whitney, see Whitney [2, pp. 124-135]). 
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If U is a good cover of a topological space X, then Hd of the double 
complex C*(U, S*) is 

000 

CO(U, Z) C1(U, Z) C2(U, Z) 

and H" H d = H*(U, Z) = H {C*(U, S*)}. So there is an isomorphism between 
the singular cohomology and the Cech cohomology of a good cover with 
coefficients in the constant presheaf Z: 

H*(X) ~ H*(U, Z). 

Suppose X triangularizable. Since the good covers are cofinal in the set of 
all covers of X, 

H*(X, Z) = H*(U, Z) 

where H*(X, Z) is the Cech cohomology of X with coefficients in the 
constant presheaf Z. Therefore, 

Theorem 15.8. The singular cohomology of a triangularizable space X is 
isomorphic to its Cech cohomology with coefficients in the constant presheaf 
Z.lfU is a good cover of X, then 

H*(X) ~ H*(X, Z) ~ H*(U, Z). 

Let n: E ----+ X be a fiber bundle with fiber F over a triangularizable 
topological space X. Just as in Theorem 14.18, from the double complex 
C*(n- 1U, S*) on E we obtain a spectral sequence converging to the singular 
cohomology H*(E) whose E2 term is 

E~' q = HP(U, ,1fq(F)), 

where ,1fQ(F) is the locally constant presheaf ,1fQ(U) = Hq(n-1U). If ,1fQ(F) 
happens to be the constant presheaf Z €!3 ... €!3 Z on U, then 

E~' Q = HP(U, Z) EEl ... EEl HP(U, Z) = HP(X) EEl ... EEl H P(X) 

dim H,(F) terms 

The singular cohomology group H*(X; Z) can be given a product struc
ture as follows. If (Ao .,. AQ) is a q-simplex in X, we say that (Ao ... Ar) is its 
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front r{ace and (Aq-r ... Aq) its back r{ace. Let w be a p-cochain and t'/ a 
q-cochain; by definition their cup product is given by 

(IS.9) (w U t'/)(Ao ... Ap+q) = w(Ao ... Ap) t'/ (Ap ... Ap+q)' 

Exercise 15.10. Show that the co boundary operator d is an antiderivation 
relative to the cup product: 

d(w U t'/) = (dw) U '1 + (_I)deg ro W U d'1. 

By arguments analogous to (IS.2) and (IS.7) there is also a Mayer
Vietoris sequence for singular cochains with coefficients in a commutative 
ring A. Using the cup product (IS.9) in place of the wedge product, the 
spectral sequence of the Cech-singular complex C*(U, S*) can be given a 
product structure just as in (14.24). The arguments in Section 14 carryover 
mutatis mutandis. Hence the results on spectral sequences remain true for 
singular cohomology with coefficients in A. Note however in (14.18) and 
(14.30) the E2 term of a fiber bundle 1t : E -. M with fiber F over a simply 
connected base space M is the tensor product H*(M; A) ® H*(F; A) only 
if the cohomology of F is afree A-module. In summary we have the follow
ing. 

Theorem 15.11 (Leray's Theorem for Singular Cohomology with Coeffi
cients in a Commutative Ring A). Let 1t: E -. X be afiber bundle with fiber 
F over a topological space X and U an open cover of X. Then there is a 
spectral sequence converging to H*(E; A) with E2 term 

Each Er in the spectral sequence can be given a product structure relative to 
which the differential dr is an antiderivation. If X is simply connected and has 
a good cover, then 

E~·q = HP(X, W(F; A)). 

Ifin addition H*(F; A) is afinitely generatedfree A-module, then 

E2 = H*(X; A) ® H*(F; A) 

as algebras over A. 

Exercise 15.12 (Kunneth Formulafor Singular Cohomology). If X is a space 
having a good cover, e.g., a triangularizable space, and Y is any topological 
space, prove using the spectral sequence of the fiber bundle 1t : X x Y -. X 
that 

H"(X x Y) = EB HP(X, Hq(y)). 
p+q=" 
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We examine briefly here how some of the theorems in de Rham theory 
carryover to the singular theory. Both the Mayer-Vietoris argument of 
Section 5 and the tic-tac-toe proof of Section 9 for the Leray-Hirsch the
orem go through for integer coefficients, with the singular complex C*(U, 
S*) in place of C*(U, fl*). However, since there may be torsion in H*(F), the 
Kiinneth formula in the form H*(M x F) = H*(M) ® H*(F) is not true 
with integer coefficients; the Mayer-Vietoris argument fails because ten
soring with H*(F) need not preserve exactness, and the tic-tac-toe proof 
fails because H*(F) ® C*(U, S*) may not be simply a finite number of 
copies of C*(U, S*). These difficulties do not arise in the case of the Leray
Hirsch theorem, since in its hypothesis the cohomology of the fiber H*(F) is 
assumed to be a free Z-module. 

REMARK 15.13. Given any Abelian group A, let F be the free Abelian group 
generated by a set of generators for A and let R be the kernel of the natural 
map p: F -+ A. Then 

(15.13.1) 
I p 

O-+R -+ F -+ A-+O 

is a short exact sequence of Abelian groups. As a subgroup of a free group, 
R is also free (Jacobson [1, §3.6]). An exact sequence such as (15.13.1), in 
which F and R are free, is called afree resolution of A. Let G be an Abelian 
group. By Exercise 14.17.4, the two sequences 

(15.13.2) 

and 

(15.13.3) 

are exact. 

Definition. 

0-+ Hom(A, G)-+ Hom(F, G)~ Hom(R, G) 

R ® G i®I. F ® G---+.A ® G---+.O 

Ext(A, G) = coker i* = Hom(R, G)/im i* . 

Tor(A, G) = ker i ® 1. 

Thus Ext and Tor measure the failure of the two exact sequences 
(15.13.2) and (15.13.3) to be short exact. It is not hard to show that the 
definition of Ext and Tor is independent of the choice of the free resolution. 
For the elementary properties of these two functors see, for instance, 
Switzer [1, Chap. 13]. 

Exercise 15.13.4. If m and n are positive integers, we denote their greatest 
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common divisor by (m, n). Verify the tables 

Ext I I" Tor I Z" 

I 0 0 I 0 0 

I", I", l(",.,,) 
I", 0 l(",.,,) 

For example, 

In terms of these completely algebraic functors, one finds the following 
description of the dependence of the singular theory on its coefficient group. 
For a proof see Spanier [1, pp. 222 and 243]. 

Theorem 15.14 (Universal Coefficient Theorems). For any space X and 
Abelian group G, 

(a) the homology of X with coefficients in G has a splitting: 

H,,(X; G) ~ H,,(X) ® G EB Tor(H,,_1(X), G); 

(b) the cohomology of X with coefficients in G also has a splitting: 

H"(X; G) ~ Hom(H,,(X), G) EB Ext(H,,_1(X), G). 

Applying Part (b) with G = I yields the following formula for the integer 
cohomology in terms of the integer homology. 

Corollary 15.14.1. For any space X for which H .,(X) and H" _ 1 (X) are finitely 
generated I-modules, 

H"(X) ~ F" €a T.-h 
where F" is the free part of H.,(X) and T.-1 is the torsion part of H,,_1(X). 

REMARK. The splittings given by the universal coefficient theorems cannot 
be arranged to be compatible with the induced homomorphisms of maps. 
They are therefore often said to be unnatural splittings. 

EXAMPLE 15.15 (The cohomology of the unit tangent bundle of a sphere). 
The unit tangent bundle S(TS2) to the 2-sphere in 1R3 is a fiber bundle with 
fiber S1: 
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By (15.l1) the E2 term of the spectral sequence is 

E~' q = HP(S2) ® Hq(S1) 

q 

o 
o 1 2 

195 

p 

For dimensional reasons d3 = d4 = ... = 0, so E3 = Eoo. By Remark 14.20 
the differential d2 in the diagram defines the Euler class of the circle bundle 
S(Tsz). Since the Euler class of S(Tsz) is twice the generator of H2(S2) (Exam
ple 11.18), this d2 is multiplication by 2. Thus 

{ 
71. in dimensions 0 and 3 

H*S(Tsz) = 71.2 in dimension 2 

o otherwise. 

Exercise 15.15.1. Compute the cohomology of the unit tangent bundle 
S(Tsk)' 

A point in S(Tsz) is specified by a unit vector in 1R3 and another unit 
vector orthogonal to it. This can be completed to a unique orthonormal 
basis with positive determinant. Therefore S(Tsz) = SO(3) and we have com
puted above the cohomology of SO(3). 

REMARK 15.15.2. The special orthogonal group SO(3) comes in a different 
guise as IRp3, as follows. We can think of SO(3) as the group of all rotations 
about the origin in 1R3. Each such rotation is determined by its axis and an 
angle -1t ;:5; () ;:5; 1t. In this way SO(3) is parametrized by the solid 3-ball D3 
of radius 1t in 1R3: a point in this 3-ball determines a unique axis and a 
unique angle of rotation, the axis being the line through the point and the 
origin, and the angle being the distance of the point from the origin. Since 
rotating through the angle -1t has the same effect as through 1t, any pair of 
antipodal points on the boundary of D3 parametrize the same rotation. So 
SO(3) is homeomorphic to IRp3. 

Exercise 15.16 (The Cohomology of SO(4». The special orthogonal group 
SO(n) acts transitively on the unit sphere Sft -1 in IRft with stabilizer 
SO(n - 1). Therefore SO(n)jSO(n - 1) = Sft-1. A group with a differentiable 
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structure relative to which the group operations, namely multiplication and 
inverse, are smooth is called a Lie group. GL(n, IR) and SO(n) are examples 
of Lie groups (see Spivak [1, Ex. 33, p. 83]). It is a fact from the theory of 
Lie groups that if H is a closed subgroup of a Lie group G, i.e., H is a Lie 
subgroup and a closed subset of G, then 11: : G -+ Gj H is a fiber bundle with 
fiber H (Warner [1, Th. 3.58, p. 120]). Apply the spectral sequence of the 
fiber bundle 

SO(3)-+ SO(4) 

! 
S3 

to compute the cohomology of SO(4). 

Exercise 15.17 (The Cohomology of the Unitary Group). The unitary group 
U(n) acts transitively on the unit sphere s2n -1 in ICn with stabilizer 
U(n - 1). Hence U(n)jU(n - 1) = s2n-1. Apply the spectral sequence of the 
fiber bundle 

U(n - 1)-+ U(n) 

! 

to compute the cohomology of U(n). 

The Homology Spectral Sequence 

Although in this book we are primarily concerned with cohomology, for 
applications to homotopy theory it is frequently advantageous to use the 
homology spectral sequence of a fibering. Since the construction of such a 
spectral sequence is analogous to that for cohomology, the discussion will 
be brief. 

Using the singular chain functor S. in place of the differential form 
functor n· we get a double complex C.(U, S.) with differential operators 0 
and (j. Define D to be (j + ( -1)Po. 

q 

p 
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As in Section 14 this double complex gives rise to a spectral sequence {E'} 
which converges to the total homology HD{ C ... (U, S ... )}. Because of the di
rections of the arrows a and (j, the differential d' goes in the opposite 
direction as the differential of a cohomology spectral sequence; more pre
cisely, 

d': E~.q- E~-,.q+'-l' 

By the exactness of the Mayer-Vietoris sequence (15.2) the spectral sequence 
is degenerate at the E2 term and 

E2 = Ha H6 = H ... (X). 

Hence we have the following. 

Proposition IS.IB. For any cover U of X the double complex C ... (U, S ... ) 
computes the singular homology of X: 

HD{C ... (U, S ... )} = H ... (X). 

To avoid confusion with the cohomology spectral sequence, we write r as 
a superscript and p and q as subscripts in the homology spectral sequence: 
E~.q. 

Now suppose U is a good cover of X. Interchanging the roles of a and (j 
gives another spectral sequence which also converges to HD{ C ... (U, S ... )}. 
This time 

(15.19) E OO = E2 = H6 Ha = H ... (U, Z) 

where Z is the constant presheaf with group Z. Comparing (15.18) with 
(15.19) gives the isomorphism of the singular homology to the Cech homol
ogy H.(U, Z) of a good cover. Along the line of Theorem 14.18, if 
7t : E - X is a fiber bundle with fiber F, and X is a simply connected space 
with a good cover, then there is a spectral sequence converging to the 
singular homology H.(E) with E~.Q = H,,(X, HiF». If in addition Hq(F) is a 
free Z-module, the E2 term is isomorphic to the tensor product 
H p(X) ® HiF) as Z-modules. Unlike the cohomology spectral sequence, 
there is in general no product structure in homology. 

§16 The Path Fibration 

Recall again that through §18 we work in the category of topological spaces 
and continuous maps. Unless otherwise noted all cohomology groups will 
be assumed to have integer coefficients. Let 7t : E - X be a fiber bundle 
with fiber F over a topological space X that has a good cover U. We have 
shown that there is a spectral sequence converging to the cohomology 
H"'(E) of the total space, with E2 term 

E~' q = HP(U, Jrq(F», 
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where .1fQ(F) is the presheaf that associates to every open set U in U the 
group HQ(n- 1 U) ~ HQ(F). Now suppose 1t: E-+ X is simply a map, not 
necessarily locally trivial. One can still obtain a spectral sequence by con
sidering the double complex of singular cochains K = C*(n -1 U, S*) on E. 
As long as the map 1t : E -+ X has the property that 

(16.1) HQ(n- 1 U) ~ HQ(F) for some fixed space F andfor any contractible 
open set U, 

then E2 = H~Hd(K) will be the same as for a fiber bundle. Since the spectral 
sequence is a purely algebraic way of going from H~Hd to HD , which is 
isomorphic to H*(E), the spectral sequence of this double complex will 
again converge to H*(E). An example of such a map is the path fibration. As 
will be seen in the next few sections, Serre's application of the spectral 
sequence in this unexpected setting has far-reaching consequences in homo
topy theory. 

The Path Fibration 

Let X be a topological space with a base point * and [0, 1] the unit interval 
with base point 0. The path space of X is defined to be the space P(X) 
consisting of all the paths in X with initial point *: 

P(X) = {maps JJ.: [0, 1]-+XIJJ.(0) = *}. 

We give this space the compact open topology; i.e., a sub-basic open set in P(X) 
consists of all base-point preserving maps JJ.: [0, 1] -+ X such that 
JJ.(K) c U for a fixed compact set K in [0, 1] and a fixed open set U in X. 
There is a natural projection n: P(X)-+ X given by the endpoint of a path: 
1t(JJ.) = JJ.(1). The fiber at p of this projection consists of all the paths from * to 
p (see Figure 16.1). 

/ 
* 

Figure 16.1 

We now show that the map 1t: P(X)-+ X has the property (16.1). Let U 
be a contractible open set containing p. There is a natural inclusion 

i : 1t - 1(p} -+ 1t -1(U}. 
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Figure 16.2 

(See Figure 16.2.) Using a contraction of U to p, we can get a map 

¢: n-l(U)~ n- 1(p). 

It is readily checked that ¢ and i are homotopy inverses. Furthermore, if p 
and q are two points in the same path component of X, then a fixed path 
from p to q induces a homotopy equivalence n- 1(p) ~ n- 1(q). Thus all 
fibers have the homotopy type of n - 1(*), which is the loop space OX of X: 

OX = {,u: [0, 1]~ XI,u(O) = ,u(I) = *}. 

So the map n: P(X)~ X has the property H*(n- 1U) ~ H*(OX) for any 
contractible U in X. 

A more general class of maps satisfying (16.1) are the fiberings or fibra
tions. A map n : E ~ X is called a fibering or a fibration if it satisfies the 
covering homotopy property,' 

(16.2) given a map f : Y ~ E from any topological space Y into E and a 
homotopy 1, of] = n 0 f in X, there is a homotopy it off in E which 
covers 1,; that is, n 0 it = 1, . 

The covering homotopy property may be expressed in terms of the diagram 

I I /~>/~f· 
, f 

(y, 0) Y x 1 '.X. 

Such a fibering is sometimes called a fibering in the sense of Hurewicz, as 
opposed to a fibering in the sense of Serre which requires only that the 
covering homotopy property be satisfied for finite polyhedra Y. If X is a 
pointed space with base point *, we calln - 1( *) the fiber of the fibering, and 
for any x in X, we call F x = n - l(X) the fiber over x. As a convention we will 
assume the base space X of a fibering to be path-connected. It is clear that the 
map n : PX --> X is a fibering with fiber OX, for a homotopy in X naturally 
induces a covering homotopy in P X. This fibering, called the path fibration 
of X, is fundamental in the computation of the cohomology of the loop 
spaces. Its total space PX can be contracted to the constant path: 
[0, 1]~*. 
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We prove below two basic properties of a fibering, from which it will 
follow that (16.1) holds for a fibering. 

Proposition 16.3.(a) Any two fibers of a fibering over an arc wise-connected 
space have the same homotopy type. 

(b) For every contractible open set U, the inverse image n-lU has the 
homotopy type of the fiber Fa' where a is any point in U. 

PROOF. (a) A path y(t) from a to b in X may be regarded as a homotopy of 
the point a. Let 9 : Fax 1- X be given by (y, t) H y(t), where 1 is the unit 
interval [0, 1]. So we have the situation depicted in Figure 16.3. By the 

y 

T 
(y,O) 

(y, t) 1-1 -----I~~')'(t) 

Figure 16.3 

a~b 
II II 

')'(0) ,),(1) 

covering homotopy property, there is a map g which covers g. The re
striction g 1 = g IF. x {I} is then a map from Fa to F b' Thus a path from a to b 
induces a map from the fiber Fa to the fiber F b • 

We will show that homotopic paths from a to b in X induce homotopic 
maps from Fa to Fb • Let J1. be a path from a to b which is homotopic to y, 
h a covering homotopy of J1., and hi the induced map from Fa to Fb • Define 
Z by (see Figure 16.4) 

Z = Fax 1 X {O} u Fa X j X I, 

where j = {O} u {1}, andf: Z ~ E by 

fiF. x r x (O}(y, s, 0) = y 

fiF. x {OJ x r(y, 0, t) = g(y, t) 

fiF. x {I} x r(y, 1, t) = h(y, t). 

We regard the homotopy between y and J1. in X as a homotopy G of no f 
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f 

'Y 

Figure 16.4 

By the covering homotopy property there is a covering map G from 
Fax 1 X I, which is homotopic to Z X I, into E. The restriction of G to 
Fax 1 X {1} has image in Fb. Since GI,.x{o)X{I) = gl and GI,.x{1)x{1) = 
hb G 1'.XIX{1) is a homotopy in Fb between gl and hi' 

Given two points a and b in X and a path y from a to b, let u: Fa- Fb 
be a map induced by y and v :Fb- Fa a map induced by y-I. Then v 0 u: 
Fa -+ Fa is a map induced by y-1.y• Since y-1y is homotopic to the constant 
map to a, the composition v 0 u is homotopic to the identity on Fa. 
Therefore, Fa and Fb have the same homotopy type. 

(b) Let y : V X I - V be a deformation retraction of V to the point a. By 
the covering homotopy property, there is a map g : x - I V X I _ x - I V such 
that the following diagram is commutative. 

identity 
X-IV --------------+ -I V 

r g_-----. x j -- " ----x-IVxl .VxI .V 
" 

We will show that g gives a deformation retraction of x - I V onto the fiber 
Fa. Let g, be the restriction of g to x - I V X {t}. By identifying x - I V with 
X-IV x {t}, we may regard g as a family of maps g, :x- 1V _ x-tv vary-
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ing with t in the unit interval I. At t = 0, 

go:x-1U x {0}-+x-1U 

is the identity and at t = 1, 

gl: x-1U x {1}-+ x-1U 

has image in the fiber Fa. Hence, gl may be factored as gl = i 0 q,: 

So via 9 the composition i 0 q, is homotopic to the identity. To show that 
q, 0 i: Fa-+ Fa is homotopic to the identity, consider the following diagram 

Note that q, 0 i = 9 0 j IF. x {l} is induced from the constant path 
/-+ {a} E X, since y 0 x 0 j(y, t) = a for all t. (The deformation retraction y 
fixes a at all times.) By the proof of (a), q, 0 i is homotopic to the identity. 0 

REMARK 16.4. If we replace Fa with any space Y, the argument in (a) proves 
that in the covering homotopy property (16.2), homotopic maps in X 
induce homotopic covering maps in E. 

Generalizing the fact that a simply connected space cannot have a con
nected covering space of more than one sheet, we have the following. 

Proposition 16.5. Let x : E -+ X be a fibering. If X is simply connected and E 
is path connected, then the fibers are path connected. 

PROOF. Trivially the Eg·o term of the fibering survives to Eoo. Hence 

Eg·o = E~o = HO(E) = l, 

since E is path connected. On the other hand, 

Therefore HO(F) = l. o 
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The Cohomology of the Loop Space of a Sphere 

As an application of the spectral sequence of the path fibration, we compute 
here the integer cohomology groups of the loop space osn, n ~ 2. 

EXAMPLE 16.6 (The 2-sphere). Since S2 is simply connected, the spectral 
sequence of the path fibration 

has E2 term 

E~,q = H"(S2, Hq(OS2». 

So the zeroth column E~,q = HO(S2, Hq(OS2» = Hq(OS2) is the cohomology 
of the fiber. By Proposition 16.5, HO(OS2) = 7L, so the bottom row H~'o = 
H"(S2, HO(OS2» = HII(S2, 7L) is the cohomology of the base. 

q 

l 7L 

o 1 2 p 

By the universal coefficient theorem (15.14), all columns in E2 except p = 0 
and p = 2 are zero. Hence all the differentials d3 , d4 , ••• are zero and 
E~,q = E':;,q. Because the path space PS2 is contractible, 

E",q = {7L 
<Xl 0 

(p, q) = (0, 0) 

otherwise. 

Thus d2 : E~,l --+ E~'o must be an isomorphism. It follows that Hl(OS2) = 7L. 
But then 

E~' 1 = H2(S2, Hl(OS2» = H2(S2, l) = l. 

Since d2 : E~' 2 --+ E~' 1 is an isomorphism, H2(OS2) = 7L. Working our way 
up, we find Hq(OS2) = 7L in every dimension q. 
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EXAMPLE 16.7 (The 3-sphere). In the E2 term of the fibering 

q 

o 2 3 p 

the nonzero columns are p = 0 and p = 3. For dimension reasons d2 = 0 
and d4 = ds = ... = O. Because the total space is contractible, d3 is an 
isomorphism except at E~' 0. Therefore, 

in even dimensions 

otherwise. 

Similarly we find that in general 

H*(OS") = {~ in dimensions 0, n - 1, 2(n - 1), ... 
otherwise. 

Next we examine the ring structure of H*(OS"). We start with OS2. Let 
u be a generator of E~' ° = H2(S2) and let x be the generator of Hl(OSl) 
which is mapped to u by d2 • For simplicity we occasionally write d for d2 • 

By Example 16.6, the differential d2 is an isomorphism. Note that x com
mutes with u because E2 is the tensor product H*(OS2) ® H*(S2). (x is 
actually x ® 1 and u is 1 ® u.) 

4 2 

3 ex exu 

2 e eu 

x xu 

o 1 u 
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Since dz(xz) = (dz x) . x - x . dz x = ux - xu = 0, we have X Z = O. Thus 
the generator e in HZ(OS2) which maps to xu is algebraically independent of 
x. Since d(ex) = eu, the product ex is a generator in dimension 3. Similarly, 
d(e2) = 2exu so that e2/2 is a generator in dimension 4; d«e2/2)x) = (e2/2)u 
so that (e2/2) . x is a generator in dimension 5. By induction we shall prove 

and 

e" 
is a generator in dimension 2k 

k! 

ek 
k! x is a generator in dimension 2k + 1. 

PROOF. Suppose the claim is true for k - 1. Since 

e" e"-1 ek- 1 
d k! = (k _ I)! de = (k _ I)! xu, 

which is a generator of E~·2k-1, the element ek/k! is a generator of 
H2k(OS2). Similarly, since 

( ek ) ek - 1 ek e" 
d k! x = (k _ I)! xu . x + k! u = k! u, 

which is a generator of E~' 2", the element (ek/k!)x is a generator of 
H2k+ 1(OSZ). 0 

By definition the exterior algebra E(x) is the ring Z[x]/(x2 ) and the 
divided polynomial algebra Zy(e) with generator e is the Z-algebra with 
additive basis {I, e, e2/2!, e3/3!, ... }. Hence 

H*(OS2) = E(x) ® Zie), 

where dim x = 1 and dim e = 2. 
Now consider H*(OS") for n odd. Let u be a generator of H"(S") and e 

the generator of H" -1(osn) which maps to u under the isomorphism d". 
Since dn(e2) = 2eu, e2/2 is a generator in dimension 2(n - 1). In general if 
ek/k! is a generator in dimension k(n - 1), then d"(ek+1/(k + 1)!) = (ek/k!)u 
so that ek+1/(k + I)! is a generator in dimension (k + 1)(n - 1). 

2 

e 

1 
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This shows that for n odd, 

H*(Qsn) = Zie), dime=n-l. 

By a computation similar to that of H*(QS2), we see that for n even, 

H*(Qsn) = E(x) ® Zie), dim x = n - 1, dim e = 2(n - 1). 

§ 17 Review of Homotopy Theory 

To pave the way for later applications of the spectral sequence, we give in 
this section a brief account of homotopy theory. Following the definitions 
and basic properties of the homotopy groups, we compute some low
dimensional homotopy groups of the spheres. The geometrical ideas in this 
computation lead to the homotopy properties of attaching cells. A space 
built up from a collection of points by attaching cells is called a CW 
complex. To show that every manifold has the homotopy type of a CW 
complex, we make a digression into Morse theory. Returning to the main 
topic, we next 4iscuss the relation between homotopy and homology, and 
indicate a proof of the H urewicz isomorphism theorem using the homology 
spectral sequence. The homotopy groups of the sphere, IriS") , q ~ n, are 
immediate corollaries. Finally, venturing into the next nontrivial homotopy 
group, n3(S2), we discuss the Hopf invariant in terms of differential forms. 
Some of the general references for homotopy theory are Hu[I], Steenrod 
[1], and Whitehead [1]. 

Homotopy Groups 

Let X be a topological space with a base point *. For q;;:: 1 the qth 
homotopy group niX) of X is defined to be the homotopy classes of maps 
from the q-cube ]q to X which send the faces jq of ]q to the base point of X. 
Equivalently niX) may be regarded as the homotopy classes of base-point 
preserving maps from the q-sphere sq to X. The group operation on niX) 
is defined as follows (see Figure 17.1). If IX and f3 are maps from [q to X, 
representing [IX] and [f3] in nq(X), then the product [1X][f3] is the homotopy 
class of the map 

We recall here some basic properties of the homotopy groups. 
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pinch 
~ 

Figure 17.1 

Proposition 17.1. (a) 1tq(X x Y) = 1tq(X) X 1tq(Y). 
(b) 1tq(X) is Abelianlor q > l. 

207 

PROOF. (a) is clear since every map from I' into X x Y is of the form 
(fl,/l) where 11 is a map into X and 11 is a map into Y. Furthermore, since 
(fl,fl)(g" gl) = (flgl,flgl), the bijection in (a) is actually a group iso
morphism. To prove (b), let [a] and [fJ] be two elements of 1tiX). We 
represent afJ by 

afJ is homotopic to the map ~ from ]'I to X given by 

~ 
~ 

a{21" 211 - 1, 13 , ... , Iq), 

0S;11S;!, !S;ll s;l, 

~(tl,"" Iq) = fJ(211 - 1,211 , ... , Iq), 

tS;11 s;1, 0S;11S;!, 

• otherwise. 
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b is in turn homotopic to 

and finally to 
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EEl 
IT] 
~, 

o 

Proposition 17.2. 1tq -1(OX) = 1tiX), q ~ 2. 

SKETCH OF PROOF. Elements of 1t2(X) are given by maps of the square P 
into X which send the boundary i2 to the base point", . Such a map may be 
viewed as a pencil of loops in X, i.e., a map from the unit interval into OX. 
Therefore, 1t2(X) = 1t1(OX). The general case is similar; we view a map 
from /q to X as a map from /q-1 to ox. 0 

It is often useful to introduce 1to(X), which is defined to be the set of all 
path components of X. It has a distinguished element, namely the path 
component containing the base point of X. This component is the base 
point of 1to(X). For a manifold the path components are the same as the 
connected components (Dugundji [1, Theorem IV.S.S, p. 116]). 

Recall that a Lie group is a manifold endowed with a group structure 
such that the group operations-multiplication and the inverse operation
are smooth functions. Although 1to(X) is in general not a group, if G is 
a Lie group, then 1to(G) is a group. This follows from the following 
proposition. 

Proposition 17.3. The identity component H of a Lie group G is a normal 
subgroup ofG. Therefore, 1to(G) = G/H is a group. 

PROOF. Let a, b be in H. Since the continuous image of a connected set is 
connected, bH is a connected set having a nonempty intersection with H. 
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Hence bH c H. It follows that abH c aH c H, so ab is in H. Similarly 
a- 1 H is a connected set having a nonempty intersection with H, since 1 is 
in a- 1H; so a- 1H cHand a-I is also in H. This shows that H is a 
subgroup of G. 

Let g be an element of G. Since gHg- 1 is a connected set containing 1, 
by the same reasoning as above, gHg- 1 c H. Thus H is normal. 

Because multiplication by g is a homeomorphism, the coset gH is 
connected. Since distinct cosets are disjoint, GIH consists of precisely the 
connected components of G. Therefore, 1to(G) = GIH. 0 

Let 1t: E - B be a (base-point preserving) fibering with fiber F. Then 
there is an exact sequence of homotopy groups, called the homotopy se
quence of the fibering (Steenrod [1, p. 91]): 

... -+ 1to(E) -+1to(B) -+ O. 

In this exact sequence the last three maps are not group homomor
phisms, but only set maps. The kernel of a set map between pointed sets is 
by definition the inverse image of the base point. Exactness in this context is 
given by the same condition as before: "the image equals the kernel." The 
maps i. and 1t. are the maps induced by the inclusion i : F - E and the 
projection 1t: E - B respectively. Here we regard F as the fiber over the 
base point of B. To describe a we use the covering homotopy property of a 
fibering. For simplicity consider first q = 1. A loop IX : ]1_ B from the unit 
interval to B, representing an element of 1tl(B), may be lifted to a path ~ in 
E with 1i(0) being the base point of F. Then O[IX] is given by 1i(1) in 1to(F). 
More generally let ],-1 c ]' be the inclusion 

(tlo ... , t,-1)I-+(tlo ... , t,-lo 0). 

A map IX : ]' - B representing an element of 1tq(B) may be regarded as a 
homotopy of IX 1,.-1 in B. Let the constant map.: ],-1_ E from ],-1 to 
the base point of F be the map that covers IX 1,.-1 : (t lo ... , tq - lo 0)- B. By 
the covering homotopy property, there is a homotopy upstairs <i : ]' - E 
which covers IX and such that <i 1,.-1 = •. Then O[IX] is the homotopy class of 
the map ~: (t lo ... , tq - lo 1)- F. By Remark 16.4, O[IX] is well-defined. 

EXAMPLE 17.5. A covering space 1t : E - B is a fibering with discrete fibers. 
By the homotopy sequence of the fibering, 

1t,f-E) = 1t,f-B) for q ~ 2 

and 
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WARNING 17.6 (Dependence on base points). Consider the homotopy 
groups 7tq(X, x) and 7tq(X, y) of a path-connected space X, computed rela
tive to two different points x and y. A path y from x to y induces by 
conjugation a map from the loop space ax X to the loop space ay X: 

A 1-+ YAy-1 for any A in axx. 

This in turn induces a map of homotopy groups 

y.: 7tq-l(axX, X)-+ 7tq_1(ay X, .0, 

7tq(X, x) 7tq(X, y) 

where :i and yare the constant maps to x and y. The map y. is clearly an 
isomorphism, with inverse given by (y - 1) •. 

We can describe y. explicitly as follows. Let [IX] be an element of 
7tq(X, x). Define a map F to be IX on the bottom face of the cube Iq+ 1 and y 
on the vertical faces (Figure 17.2 (a)); more precisely, if (u, t) E Iq x 1= 
Iq+1, then 

and 

F(u, 0) = IX(U) for all u in Iq 

F(u, t) = y(t) for all u in OIq. 

" " x" 

y 

I 

1': 
I 

;.----~ 
" 

x 

Figure 17.2(a) 

By the box principle from obstruction theory (which states that a map from 
the union of all but one face of a cube into any space can be extended to 
the whole cube), the map F can be extended to the entire Iq + 1. Its re
striction to the top face represents Y.[IX]. 

One checks easily that y. depends only on the homotopy class of y 
amongst the paths from x to y, so that when we take x = y, the assignment 
yl-+y. may be thought of as an action of7t1(X, x) on 7tiX, x). Only if this 
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action is trivial, can one speak unambiguously of 1Cq (X) without reference to 
a base point. In that case one can also identify the free homotopy classes of 
maps [sq, X] with 1Cq(X); here by a free homotopy we mean a homotopy 
that does not necessarily preserve the base points. In general, however, 
[sq, X] is not a group and its relation to 1tq (X) is given by the following. 

Proposition 17.6.1. Let X be a path-connected space. The inclusion of base
point preserving maps into the set of all maps induces a bijection 

where the notation on the left indicates the equivalence relation [IX] '" Y.[IX] 
for [y] in 1Cl(X, x). 

PROOF. Let h: 1Cq(X, x)- [sq, X] be induced by the inclusion of base 
point preserving maps into the set of all maps. If [IX] E 1Cq (X, x) and 
[y] E 1C 1(X, x), it is laborious but not difficult to write down an explicit free 
homotopy between IX and Y.IX (see Figure 17.2 (b) for the cases q = 1 and 
q = 2). Hence h factors through the action of 1Cl(X, x) on 1Cq (X, x) and 

l' 

l' 

l' 

Figure 17.2(b) 
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~-----

" x 

Figure 17.2(c) 

Since X is path connected, any map in [sq, X] can be deformed to a 
base-point preserving map. So H is surjective. To show injectivity, suppose 
[0(] in 1tq(X, x) is null-homotopic in [sq, Xl This means there is a map 
F: 1q + 1 ---. X such that 

F I top race = 0(, 

F I ;"'ttom race = i, 

and F is constant on the boundary of each horizontal slice (Figure 17.2 (c)). 
Let y be the restriction of F to a vertical segment. Then 0( = y.(i). There
fore, H is injective. 0 

The Relative Homotopy Sequence 

Let X be a path-connected space with base point ., and A a subset of X (See 
Figure 17.3). Denote by n~ the space of all paths from. to A. The endpoint 
map e : n~ -+ A gives a fibering 

nx ---. n~ 
! 
A. 

The homotopy sequence of this fibering is 

••. ---> 1tiA) ---> 1tq_l(nX) ---> 1tq_l(n~) ---> 1tq_l(A) ---> ... 

• • • ---> 1to(n~) ---> 1to(A) ---> O. 
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x 

Figure 17.3 

We define the relative homotopy group 7tq(X, A) to be 7tq_l(n~). Then the 
sequence above becomes the relative homotopy sequence of A in X: 

(17.7) ... -7tq(A) -7tq(X) -7tq(X, A) -7tq_l(A) -'" 

... -7tl(X, A) -7to(A) -0. 

Observe that 7t,,(X, A) is an Abelian group for q ~ 3, 7t2(X, A) is a group 
but in general not Abelian, while 7tl(X, A) is only a set. 

Some Homotopy Groups of the Spheres 

In this section we will compute 7t,,(sn) for q ~ n. Although these homotopy 
groups are immediate from the Hurewicz isomorphism theorem (17.21), the 
geometric proof presented here is important in being the pattern for later 
discussions of the homotopy properties of attaching cells (17.11). 

Proposition 17.8 Every continuous map / : M -+ N between two manifolds is 
continuously homotopic to a differentiable map. 

PROOF. We first note that if / : M -+ R is a continuous function and B a 
positive number, then there is a differentiable real-valued function h on M 
with 1/- hi < B. This is more or less clear from the fact that via its graph,/ 
may be regarded as a continuous section of the trivial bundle M x Rover 
M; in any B-neighborhood of/there is a differentiable section h and because 
the B-neighborhood of / may be continuously deformed onto f, h is con
tinuously homotopic to / (see Figure 17.4). Indeed, to be more explicit, this 
differentiable section h can be given by successively averaging the values of/ 
over small disks. 

Next consider a continuous map / : M -+ N of manifolds. By the Whit
ney embedding theorem (see, for instance, de Rham [I, p. 12]), there is a 
differentiable embedding g : N -+ Rn. If 

go/: M -+ g(N) c: Rn 

is homotopic to a differentiable map, then so is 

/=g-l o (gof):M-+N. 
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T MXG;l 
i 

------------------------------------M 
Figure 17.4 

So we may assume at the outset that N is a submanifold of an Euclidean 
space [R". Then the map f is given by continuous real-valued functions (flo 
... ,f"). As noted above, each coordinate functionfi can be approximated by 
a differentiable function hi to within e, andfi is continuously homotopic to 
hi' Thus we get a differentiable map h : M -+ [R" whose image is in some 
tubular neighborhood T of N. But every tubular neighborhood of N can be 
deformed to N via a differentiable map k : T -+ N (Figure 17.5). This gives 
a differentiable map k 0 h : M -+ N which is homotopic to f. 0 

Figure 17.5 

Corollary 17.8.1. Let M be a manifold. Then the homotopy groups of M in the 
Coo sense are the same as the homotopy groups of M in the continuous sense. 

Proposition 17.9. 1tq(S"} = 0, for q < n. 

PROOF. Letfbe a continuous map from Iq to S", representing an element of 
1tq(S"}. By the lemma above, we may assume f differentiable. Hence Sard's 



§ 17 Review of Homotopy Theory 215 

theorem applies. Because q is strictly less than n, the images of f are all 
critical values. By Sard's theorem f cannot be surjective. Choose a point P 
not in the image off and let c be a contraction of sn - {P} to the antipodal 
point Q of P (Figure 17.6): 

c, : sn - {P} _ sn - {P}, t E [0, 1] 

Co = identity 

c 1 = constant map Q. 

Then c, 0 f is a homotopy between f and the constant map Q. Therefore, 
1tisn) = 0 for q < n. 0 

Figure 17.6 

We will indicate here the main ideas in the geometrical proof of this 
statement, omitting some technical details. 

Recall that to every map from sn to sn one can associate an integer 
called its degree. Since the degree is a homotopy invariant, it gives a map 
deg : 1tn(sn) - 71.. There are two key lemmas. 

Lemma 17.10.1. The map deg: 1tn(sn) - 71. is a group homomorphism; that is, 

deg([f][g]) = deg[f] + deg[g]. 

Lemma 17.10.2 Two maps from sn to sn of the same degree can be deformed 
into each other. 

The surjectivity of deg follows immediately from Lemma 17.10.1, since if 
f is the identity map, then deg(Ur) = k for any integer k; the injectivity 
follows from (17.10.2). 

To prove these lemmas we will deform any map f : sn _ sn into a 
normal form as follows. By the inverse function theorem f is a local diffeo
morphism around a regular point. By Sard's theorem regular values exist. 
Let U be an open set around a regular value so that f -l(U) consists of 
finitely many disjoint open sets, U .. ... , U r' each of which f maps diffeo-
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f 

n = 1 

f 

n=2 

Figure 17.7 

u 

morphically onto U (Figure 17.7). Choose the base point * of sn to be not in 
U. We deform the map / by deforming U in such a way that the com
plement of U goes into *. The deformed / then maps the complement of 
U~= 1 U j to *. Each Ui comes with a multiplicity of ± 1 depending on 
whether / is orientation preserving or reversing on U i' The degree of/ is the 
sum of these multiplicities. Given two maps / and g from sn to sn, we 
deform each as above, choosing U to be a neighborhood of a regular value 
of both / and g. By summing the multiplicities of the inverse images of U, 
we see that deg([J] [g]) = deg[J] + deg[g] (Figure 17.8). This proves 
Lemma 17.10.1. 

To bring a map / : sn ...... sn into what we consider its normal form 
requires one more step. If Ui and Uj have multiplicities + 1 and -1 re
spectively, we join Ui to Uj with a path. It is plausible that / can be 
deformed further so that it maps Ui u Uj to the base point *, since/wraps 
Ui around the sphere one way and Uj the reverse way. For Sl this is clear. 

Figure 17.8 
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The general case is where we wave our hands. The details are quite involved 
and can be found in Whitney [1]. In this way pairs of open sets with 
opposite multiplicities are cancelled out. In the normal form, if/has degree 
± k, then there are exactly k open sets, U h .•• , U t, with all + 1 multi
plicities or all - 1 multiplicities. Hence two maps from S" to S" of the same 
degree can be deformed into each other. 

Attaching Cells 

Let en be the closed n-disk and sn-1 its boundary. Given a space X and a 
map / : sn -1 -+ X, the space Y obtained from X by attaching the n-cell e" 
via / is by definition (see Figure 17.9) 

Y = X vf en = X II en / /(u),.., u, for U E S"-l. 

x 
Figure 17.9 

For example, the 2-sphere is obtained from a point by attaching a 2-cell 
(Figure 17.10): 

Figure 17.10 

It is easy to show that if/and g are homotopic maps from S" -1 to X, 
then Xv f e" and X Vg e" have the same homotopy type (see Bott and 
Mather [1, Prop. 1, p. 466] for an explicit homotopy). The most fundamen
tal homotopy property of attaching an n-cell is the following. 

Proposition 17.11. Attaching an n-cell to a space X does not alter the homo
topy in dimensions strictly less than n - 1. but may kill elements in 1tn-1(X); 



218 III Spectral Sequences and Applications 

more precisely, the inclusion X c. X u en induces isomorphisms 

for q < n - 1 

and a surjection 

PROOF. Assume q ~ n - 1 and let f: sq --t X u e" be a continuous base
point preserving map. We would like first of all to show thatfis homotopic 
to some map whose image does not contain all of en. If f is differentiable 
and X u f en is a manifold, this follows immediately from Sard's theorem. In 
fact, as long as f is differentiable on some submanifold of sq that maps into 
en, the same conclusion holds. As in the proof of Proposition 17.8 this can 
always be arranged by moving the givenfin its homotopy class. So we may 
assume that f does not surject onto en. Choose a point p not in the image 
and fix a retraction Cr of (en - {p}) to the boundary of en. This gives a 
retraction Cr of X u (en - {p}) to X. Via Cr 0 f, the map f is homotopic in 
X u en to a map from sq to X (Figure 17.11). Hence 1tq(X)--t 1tq(X U en) is 
surjective for q ~ n - 1. 

x 

Figure 17.11 

Now assume q ~ n - 2. To show injectivity let f and g be two maps 
representing elements of 1tq(X) which have the same image in 1tq(X U en). 
Let F : sq x I --t X u en be a homotopy in X u en between f and g. Since 
the dimension of sq x I is less than n, again we can deform F so that its 

The homotopy F The homotopy C 1 0 F 

Figure 17.12 



§17 Review of Homotopy Theory 219 

image does not contain all of e". Reasoning as before, we find maps 

c, 0 F : S' x 1 _ X u e" 

such that c 1 0 F : S' x {1} - X is a homotopy between f and g which lies in 
X (Figure 17.12). Therefore [f] = [g] as elements of 1t,(X). 0 

As for homology we have the following: 

Proposition 17.12. Attaching an n-cell to a space X via a map f does not alter 
the homology except possibly in dimensions n - 1 and n. Writing X, for 
X u I en, there is an exact sequence 

0- Hn(X)- H"(X/)-l.~H"_1(X)- H,,_1(X/ )-0 

where f. : H"_1(S"-1)- H,,_1(X) is the induced map. So the inclusion X c+ 
X I induces a surjection in dimension n - 1 and an injection in dimension n. 

PROOF. Let U be X , - {p} where p is the origin ofe", and let V be {x E e"l 
Ilxll < t}. Then U is homotopic to X, V is contractible, and {U, V} is an 
open cover of X I' By the Mayer-Vietoris sequence (15.6), the following is 
exact 

... - H ,(sn-1)_ H,(X) $ H,(V)- H,,(X 1)_ H,_1(S,,-1)_ .... 

So for q f n - lor n, H,(X/ ) = H,(X). For q = n, we have 

0- H,,(X)- H,,(X/ )- H"_1(sn-1)~H"_1(X)_ H,,_1(X/ )-0. 0 

A CW complex is a space Y built up from a collection of points by the 
successive attaching of cells. where the cells are attached in the order of 
increasing dimensions; the topology of Y is required to be the so-called 
weak topology: a set in Y is closed if and only if its intersection with every 
cell is closed. (By a cell we mean a closed cell.) The cells of dimension at 
most n in a CW complex Y together comprise the n-skeleton of Y. Clearly 
every triangularizable space is a CW complex. Every manifold is also a CW 
complex; this is most readily seen in the framework of Morse theory, as we 
will show in the next subsection. 

For us the importance of the CW complexes comes from the following 
proposition. 

Proposition 17.13. Every CW complex is homotopy equivalent to a space with 
a good cover. 

Hence the entire machinery of the spectral sequence that we have developed 
applies to CW complexes. This proposition follows from the nontrivial fact 
that every CW complex has the homotopy type of a simplicial complex (Gray 
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[1, Cor. 16.44, p. 149 and Cor. 21.15, p. 206] or Lundell and Weingram [1, 
Cor. 4.7, p. 131]), for the open stars of the vertices of the simplicial complex 
form a good cover. 

Digression on Morse Theory 

Using Morse theory, it can be shown that every differentiable manifold has 
the homotopy type of a CW complex (see Milnor [2, p. 36]). The goal of 
this section is to prove this for the simpler case of a compact differentiable 
manifold. 

Letfbe a smooth real-valued function on a manifold M. A critical point 
of f is a point p where df = 0; in terms of local coordinates Xl' ... , Xn 
centered at p, the condition df(P) = L. (Of/OXi)(P) dXi = 0 is equivalent to the 
vanishing of all the partial derivatives (Of/OXi)(P). The image f(P) of a critical 
point is called a critical value. Note that the definition of a critical point 
given here is a special case of the more general definition preceding Theo
rem 4.11 for a map between manifolds. A critical point is nondegenerate if 
for some coordinate system Xb ... , Xn centered at p, the matrix of second 
partials, «o2f/oXi ox)(p)), is nonsingular; this matrix is called the Hessian of 
f relative to the coordinate system x 10 ••• , Xn at p. The notion of a nondege
nerate critical point is independent of the choice of coordinate systems, for 
if Yl' ... , Yn is another coordinate system centered at p, then 

and 

~=L.~OXi~+L. of 02X) 
OYk oy, i.) OXi ox) OYk Oy, ) ax) OYk Oy, . 

At p, of/ox) = 0, so that 

In matrix notation 

H(y) = J1H(x)J 

where H(x) is the Hessian off relative to the coordinate system Xb ... , Xn , 

and J is the Jacobian (OXJOYk)' Since the Jacobian is nonsingular, 
det(02poYk oy,) =1= 0 if and only if det(02f/oxi ax)) =1= O. The index of a nonde
generate critical point is the number of negative eigenvalues in the Hessian 
of f By Sylvester's theorem from linear algebra, the index is independent of 
the coordinate systems. It may be interpreted as the number of independent 
directions along whichfis decreasing. 
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EXAMPLE 17.14. Consider a torus in 3-space sitting on a plane as shown in 
Figure 17.13. Letf(p) be the height of the point p above the plane. Then as 
a function on the torusfhas four critical points A, B, C, and D, of indices 0, 
1, 1, and 2 respectively. 

Figure 17.13 

We outline below the proofs of the two main theorems of Morse theory. 
For details the reader is referred to Milnor [2, §3] or Bott 'and Mather [1, 
pp. 468-472]. 

Theorem 17.1S. Let f be a differentiable function on the manifold M, and M a 

the set f-l([ -00, a]). If f- 1([a, b]) is compact and contains no critical 
points, then Ma has the same homotopy type as Mb • 

OUTLINE OF PROOF. Choose a Riemannian structure <, ) on M. Then 
away from the critical points of f, the gradient Vf of a differentiable func
tion f is defined: it is the unique vector field on M such that for all vector 
fields Yon M, 

<Vip, Yp) = dfiYp)' 

Let X be the unit vector field -Vflll Vfll. Becausefhas no critical points on 

Figure 17.14 
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f -l([a, b ]), X is defined on f -l([a, b ]). As in vector calculus on ~n the 
gradient of a function points in the direction of the fastest increase, so X 
points in the direction of the fastest decrease. Extend X to a vector field on 
M. The flow lines of X give a deformation retraction of Mb onto Ma (Figure 
17.14). 

o 
Theorem 17.16. Suppose f- 1([a, b]) is compact and contains precisely one 
critical point in its interior, which is nondegenerate and of index k. Then Mb 
has the homotopy type of Ma u ek• 

To prove this theorem we need the following. 

Morse lemma. If p is a nondegenerate critical point off of index k, then there 
is a coordinate system Xl> ••• , Xn near p such that 

f=f(P) - xi -'" - xf + Xf+l + ... + x~. 

The Morse lemma may be proved by the method used to diagonalize 
quadratic forms (see Milnor [2, p. 6]). 

OUTLINE OF A PROOF OF THEOREM 17.16. Let c = f(P) be the critical value 
and e a small positive number. By Theorem 17.15, Mb has the homotopy 
type of Mc+., and Ma that of Mc-., so it suffices to show that Mc+. has the 
homotopy type of Mc-. u ek• 

Figure 17.15 
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On a neighborhood U of p where the Morse lemma holds, 

Mc+. '"' U = { -x~ - ... - xf + xf+1 + ... + x~ ~ e} 

Mc -. '"' U = {-x~ - ... - xf + Xk+l + ... + x~ ~ -e} 

These regions are illustrated in Figure 17.15 for k = 1 and n = 2. The set 
Mc+. is the shaded portion. (We choose e small enough so that U meets the 
level setsf -l(C + e) andf -l(C - e).) 

Let C be the subset of U defined by 

C = {f ~ c + e, x~ + ... + xf ~ c5}, 

where c5 is a small positive number, say smaller than el • Note that C is 
homotopically equivalent to the cell ek• Set B = Mc+. - C. B is the shaded 
region in the picture in Figure 17.16. From the picture it is plausible that B 
can be contracted onto M c -. by moving along the vector field - Vf. Since 
Mc+. is obtained from B by attaching C, up to homotopy 

Figure 17.16 o 
A smooth real-valued function on a manifold all of whose critical points 

are nondegenerate is called a Morse function. It follows from the two pre
ceding theorems that there is a very close relation between the topology of 
a manifold and the critical points of a Morse function. We next show that 
there are many Morse functions on any manifold. Our proof is taken from 
Guillemin and Pollack [1, pp. 43-45]. 

Lemma 17.17. Let U be an open subset ofRn andf any smooth real-valued 
function on U. Thenfor almost all a = (ah ... , an) in R", thefunction!a(x) = 
f(x) + alxl + ... + anxn is a Morsefunction. 

PROOF. Recall that we denote the Jacobian matrix of a function h by D(h). 
Define g(x) = (Of/OXh ... , of/ax"). Note that the Hessian offis precisely the 
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Jacobian of g, and x is a nondegenerate critical point of f if and only if 
g(x) = 0 and D(g)(x) is nonsingular. Let ga(x) = (afaJax l> ... , afaJaxn). Then 
ga(x) = g(x) + a and D(ga) = D(g). In this setup x is a critical point of fa if 
and only if g(x) = - a; it is nondegenerate if and only if in addition D(g)(x) 
is nonsingular, i.e., a is a regular value of g. By Sard's theorem almost all a 
in IRn are regular values of g. For any such a, the function fa will be a Morse 
function on V. 0 

Proposition 17.18. Let M be a manifold of dimension n in IRr. For almost all 
a = (ai, ... , ar) in IRr, the function f(x) = alxl + ... + ar Xr is a Morse func
tion on M. 

PROOF. Let Xl> ... , Xr be the coordinate functions on IRr. Every point x in M 
has a neighborhood V in M on which some n of Xl> .•• , Xr form a coordi
nate system. (Proof: Since T" M -+ T" IRr is injective, T:lRr -+ T: M is surjec
tive, so dXl> ... , dXr restrict to a spanning set in the cotangent space T:M. 
If dXil' .•• , dXin is a basis for T:M, then XiI' ••. , Xin is a set of local coordi
nates around x.) Because a manifold is by definition second countable, M 
can be covered by a countable number of such open sets, M = Ur;.I VI' 
Suppose X h ... , Xn form a local coordinate system on Vi' Fix (an+ h ... ar) 
and define f(x) = an+1Xn+l + ... + arXr on Vi' By Lemma 17.17, for 
almost all (ah ... , an), the function f(x) + alxl + ... + anXn is a Morse 
function on Vi' It follows that for almost all a = (ai' ... , ar) in IRr, the 
functionfa(x) = alxl + ... + arXr is a Morse function on Vi' Let 

Ai = {a E IRr I fix) is not a Morse function on VJ 

If a E IRr - U~ 1 Ai> then fa(x) is a Morse function on M. Since Ur;.I Ai 
has measure zero, the proposition is proved. 0 

Theorem 17.19. Every compact manifold M has the homotopy type of a finite 
CW complex. 

PROOF. By Whitney's embedding theorem (see de Rham [1, p. 12]), we may 
assume that M is a submanifold of some Euclidean space. Letfbe a Morse 
function on M (the existence of f is guaranteed by Proposition 17.18). By 
the Morse lemma, the critical points off are isolated. Since M is compact.! 
can have only finitely many critical points on M. Furthermore, for any real 
number a, the set Ma = f -1([ - 00, a]) is compact, as it is a closed subset of 
a compact set. Let Ph ... , Pr be the critical points of index O. By the two 
main theorems of Morse theory (Theorems 17.15 and 17.16), up to homo
topy M is constructed from Pl> ••• , Pr by attaching cells, a cell of dimension 
k for each critical point of index k > O. The only question that remains is: 
are the cells attached in the order of increasing dimensions? Suppose not. 
Then at some point there is a cell ek which is attached to a finite CW 
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complex X via an attaching map f: Sk-l -+ X whose image does not lie 
entirely in the (k - I)-skeleton of X. If n > k - 1, then f cannot surject 
onto an n-cell of X, so for each such n-cell en we can choose a point P in 
en - f(Sk-l) and deform f to the boundary of en. In this way f can be 
deformed so that its image lies in the (k - I)-skeleton of X. Thus up to 
homotopy the cells of M can be attached in the proper order and M has 
the homotopy type of a finite CW complex. 

The Relation between Homotopy and Homology 

The relation between the homotopy and the homology functors is a very 
subtle one. There is of course a natural homomorphism 

i: TCq(X)- Hq(X), 

defined as follows: fix a generator u for Hq(Sq) and send [f] in TCq(X) to 
f.(u). In general i is neither injective nor surjective. We have seen that Hq is 
relatively computable. On the other hand, TCq is not; there is no analogue of 
the Mayer-Vietoris principle for TCq. For this reason, the following theorems 
are a cornerstone of homotopy theory. 

Theorem 17.20. Let X be a path-connected space. Then H l(X) is the 
Abelianization of TCl(X), i.e., if [1tl(X), 1tl(X)] is the commutator subgroup of 
1tl(X), then H 1(X) = 1tl(X)![1tl(X), 1tl(X)], 

We will assume this theorem as known. Its proof may be found in, for 
instance, Greenberg [1, p. 48]. The higher-dimensional analogue is 

Theorem 17.21 (Hurewicz Isomorphism Theorem). Let X be a simply con
nected path-connected CW complex. Then the first nontrivial homotopy and 
homology occur in the same dimension and are equal, i.e., given a positive 
integer n ~ 2, if 1tq(X) = 0 for 1 :::;; q < n, then HiX) = 0 for 1 :::;; q < nand 
Hn(X) = 1tn(X). 

PROOF. To start the induction, consider the case n = 2. The E2 term of the 
homology spectral sequence of the path fibration 

nx-px 
! 
X 

is 
q 

1 H 1(nX) 

0 7L 0 H 2(X) 

0 1 2 
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Thus 
H 2(X) = H 1(OX) 

= 1tl(OX) 

= 1t2(X). 

because P X has no homology 

because 1tl(OX) = 1t2(X) is Abelian 

Now let n be any positive integer greater than 2. By the induction 
hypothesis applied to OX, 

Hq(OX) = 0 for q < n - 1 
and 

Hn _ 1(OX) = 1tn_l(OX) = 1t,,(X). 

The E2 term of the homology spectral sequence of the path fibration is 

o 
o 
7L 

Since PX has trivial homology, 

Hq(X) = Hq_1(OX) = 0 for 1 ~ q < n 

and 

n 

o 

REMARK 17.21.1. A careful reader should have noticed that there is a sleight 
of hand in this deceptively simple proof: because we developed the Leray 
spectral sequence for spaces with a good cover (Theorem 15.11 and its 
homology analogue), to be strictly correct, we must show that both X and 
OX have good covers. By (17.13), the CW complex X is homotopy equivalent 
to a space with a good cover. Next we quote the theorem of Milnor that the 
loop space of a CW complex is again a CW complex (Milnor [1, Cor. 3, 
p. 276]). So, at least up to homotopy, OX also has a good cover. 

Actually the Hurewicz theorem is true for any path-connected topologi
cal space. This is a consequence of the CW-approximation theorem which, 
in the form that we need, states that given any topological space X there is a 
CW complex K and a map !: K ~ X which induces isomorphisms 
!.: 'lTiK) -=+ 'lTq(X) and!.: HiK) -=+ HiX) in all homotopy and homology 
(Whitehead [1, Ch. V, Section 3, p. 219]). Thus, in the Hurewicz isomor
phism theorem, we may drop the requirement that X be a CW complex. 
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The spectral sequence proof of the Hurewicz isomorphism theorem is 
due to Serre [2, pp. 271-274]. Actually, Serre's approach is slightly differ
ent; by developing a spectral sequence which is valid in much greater 
generality than ours, Serre could bypass the question of the existence of a 
good cover on a topological space. Of course, a price has to be paid for this 
greater generality; one has to work much harder to establish Serre's spec
tral sequence. 

As a first and very important example, consider Sft again. It follows from 
the Hurewicz theorem and the homology of Sft that the homotopy groups of 
Sft in low dimensions are 

1tq(Sft) = 0 for q < n 

and 

1t3(S2) and the Hopf Invariant 

Now that we have computed 1tq(Sft) for q ~ n, the first nontrivial com
putation of the homotopy of a sphere is 1t3(S2). This can be done using the 
homotopy exact sequence ofthe Hop/fibration, as follows. 

Let S3 be the unit sphere {(zo, Zt) II ZO 12 + I Ztl2 = 1} in C2• Define an 
equivalence relation on S3 by 

(zo, Zl) -- (wo, Wl) if and only if (zo, Zl) = (AWo, AWl) 

for some complex number A of absolute value 1. The quotient S3/ -- is the 
complex projective space Cpl and the fibering 

Sl-+ S3 

! 
S2 = cpt 

is the Hop/fibration. From the exact homotopy sequence 

..• -+ 1tq(Sl)-+ 1tq(S3)-+ 1tq(S2)-+ 1tq_l(Sl)-+ ... 

and the fact that 1tq(Sl) = 0 for q ~ 2 (see Example 18.1(a», we get 1tq(S3) = 
1tq(S2) for q ~ 3. In particular 1t3(S2) = 71... 

This homotopy group 1t3(S2) was first computed by H. Hopf in 1931 
using a linking number argument which associates to each homotopy class 
of maps from S3 to S2 an integer now called the Hop/ invariant. We give 
here an account of the Hopf invariant first in the dual language of differ
ential forms and then in terms of the linking number. Thus the setting for 
this section is the differentiable category. 

Let /: S3 -+ S2 be a differentiable map and let IX be a generator of 
HbR(S2). Since HbR(S3) = 0, there exists a 1-form co on S3 such that 
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f*1"1. = dw. As will be shown below, the expression 

H(f) = f w /\ dw 
JS3 

is independent of the choice of w. We define HU) to be the Hopf invariant 
off 

More generally the same procedure defines the Hopf invariant for any 
differentiable map f : s2n-l_ sn. If 1"1. is a generator of HDR(sn), then 
f*1"1. = dw for some (n - I)-form w on s2n-l and the Hopfinvariant offis 

HU) = f w /\ dw. 
JS20-1 

Proposition 17.22. (a) The definition of the Hopf invariant is independent of 
the choice of w. 

(b) For odd n the Hopfinvariant is O. 
(c) Homotopic maps have the same Hopfinvariant. 

PROOF. (a) Let w' be another (n - I)-form on s2n-l such that f*1"1. = dw'. 
Then 0 = d( w - w'). Hence 

i w /\ dw - i w' /\ dw' = i (w - w') /\ dw 
S20-1 S20-1 S20-1 

= ± f d«w - w') 1\ w) J s2n-l 

= 0 by Stokes' theorem. 

(b) Since w is even-dimensional, 

w /\ dw = td(w /\ w). 

By Stokes' theorem, JS20-1 w /\ dw = O. 
(c) By (b) we may assume n even. Let F : s2n -1 X 1- sn be a homotopy 

between the two maps fo and fl from s2n - 1 to sn, where 1 = [0, I]. If io is 
the inclusion 

io: s2n-1_ So = s2n-l X {O} C s2n-l xl 

and similarly for i 10 then 

F 0 io =fo, 

Foil = fl' 

Let 1"1. be a generator of HDR(sn). Then F*1"1. = dw for some (n - I)-form w on 
s2n -1 X 1. Define i~w = Wo and iTw = Wl' Then 

and 

Note that 

Wo /\ dwo = i~( w /\ dw). 
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Hence, 

H(fl) - H(fo) = Ln-I WI /\ dWI - L.-I Wo /\ dwo 

= r it(w/\dw) _ r i~(w/\dw) 
JS2n-1 JS2n-1 

= r w /\ dw - r w /\ dw 
JS1 Jso 

= 1 w /\ dw 
0(S20-1 x I) 

= f dw 1\ dw by Stokes' theorem 
5 2"-1 xl 

= r F*(rx/\ rx) 
JS2n-1 xl 

= 0 because rx/\ rx E n21(S"). 

229 

o 

Since homotopy groups can be computed using only smooth maps 
(Proposition 17.8.1), it follows from Proposition 17.22(c) that the Hopf 
invariant gives a map 

H :1t211-I(S")-1R. 

We leave it as an exercise to the reader to prove that H is in fact a 
homomorphism. 

Actually the Hopf invariant is always an integer and is geometrically 
given by the linking number of the pre-images A = f -l(p) and B = f - l(q) of 
any two distinct regular values off In the classical case where n = 2, these 
two submanifolds are two "circles" embedded in S3. To fix the ideas we will 
first explain the linking concept for this case. 

The linking number of two disjoint oriented circles A and B in S3 can be 
defined in several quite different but equivalent ways. 

The Intersection-Theory Definition. 

Choose a smooth surface D in S3 with boundary A such that D intersects B 
transversally (Figure 17.17). Set the linking number to be 

link(A, B) = L ± 1. 
DnB 

Here the sum is extended over the points in the intersection of D with Band 
the sign is given by the usual convention: at a point x in D 11 B, the sign is 
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A B 

Figure 17.17 

+ 1 or - 1 according to whether the tangent space Tx S3 has or does not 
have the direct sum orientation of T"D Ef) T"B (Guillemin and Pollack 
[1, p. 108]). 

It of course has to be shown that the linking number as defined is 
independent of the choice of D. This is a consequence of the discussion to 
follow. 

The Differential-Form Definition. 

Choose disjoint open neighborhoods W.. and WB of A and B and choose 
representatives '1 .. and '1B of the compact Poincare duals of A and B in 
H:(W .. ) and H:(WB). Because H~R(S3) = 0, the extensions of '1 .. and '1B by 
zero to all of S3, also denoted '1 .. and '1B' are exact. Thus there are 1-forms 
w .. and WB on S3 such that 

dw .. ='1 .. and dWB='1B. 

In terms of these forms one would expect, naively, that the dual to the 
intersection-theory definition is the expression 

r W .. /\'1B, 
JS3 

for if A = aD and '1 .. = dw .. , then in some sense D should correspond to 
w... So let this integral be the differential-form definition of the linking 
number of A and B. We have to check that it is independent of all the 
choices involved. Let w:. be some other form with dw:' = '1 ... Then w:. - w .. 
is closed. So 

On the other hand, if '18 is another representative of ['1B], then 

'1B - '18 = dJl. 

for some Jl. in n:(WB). Hence, 

r W .. /\('1B-'18) = - r d(w .. /\Jl.) + r '1 .. /\Jl.. 
JS3 JS3 JS3 
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Both terms on the right vanish: the first by Stokes' theorem, and the second 
because the supports of 1I,t and JI. are disjoint! 

The differential-form definition is quite close to the Hopf invariant. To 
bring one into the other, we first choose disjoint neighborhoods Up and U q 
of the regular values p and q ofJand set W,t =J- 1(Up) and WB =J- 1(Uq). 

We next choose forms cxp and cxq in O;(U p) and O;(U q) representing the 
Poincare duals of p and q and set 1I,t = J*cxp and 1IB = J*cxq • According to 
the differential-form definition the linking number of J -1(p) = A and 
J - l(q) = B is then given by 

r W,tI\1IB' JS3 
where W,t is a form on S3 with dw,t = rt,t. On the other hand, as cxp gener
ates H1R(S2), the Hopf invariant is given by 

H(f) = r W,tI\1I,t. JS3 
Because cxp and cxq are both representatives for the generator of H1R(S2), 
there is a form (1 in 01(S2) such that 

cxp - cxq = d{1. 

Hence, 

W,tI\(1I,t - 1IB) = W,t 1\ J* d{1 

= - d(w,tl\ J* (1) + (dw,t) I\f* [J • 

The last term on the right equals 

1I,tI\J* (1 = f*(cxp 1\ (1). 

But cxp 1\ (1 E 03(S2) and hence vanishes! By Stokes' theorem it follows that 

r W,tI\1IB = r W,t 1\ 1I,t = H(f), JS3 JS3 
as was to be shown. 

Finally we prove the compatibility of the two definitions of the linking 
number. This will then also explain why the Hopf invariant is always an 
integer. 

To start off one needs certain plausible constructions of differential top
ology. The first of these is that a surface such as D, which has boundary A, 
can always be extended by a small ribbon diffeomorphic to A x [0, 1]. 
More precisely, there exists an embedding 

4>: A x [ - I, 1] ~ S3 

such that 4> maps A x [ -1, 0] diffeomorphically onto a closed neighbor
hood of A = bD in D, with A x {O} going to A, and such that 

Dl = D u 4>(A x [0, 1]) 
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is still a smoothly embedded manifold with boundary. If we set 

D-1 = D - <p(A x (-1,0]), 

this construction exhibits D in a nested sequence of submanifolds with 
boundary 

D1=>D=>D_1 

with the interior of D1 - D -1 being diffeomorphic to A x (-1, 1). A map <p 
of this type is often called a collar about aD, and the restriction of <p to 
A x (-1, 1) an open collar about aD. 

Using this parametrization we can clearly construct a smooth function 
XA on D 1 such that 

(1) XA == 0 near aD!> and 
(2) XA == 1 on a neighborhood of D _ 1 in D l' 

It follows that dXA is a 1-form with compact support on the open collar 
D~ - D _!> where D~ is the interior of D1. Furthermore, dXA represents the 
compact Poincare dual of A in n:(D~ - D - d. 

Next we choose a neighborhood of D1 in S3, say W, small enough to 
admit a retraction 

r: W-D1' 

(For a small enough an a-neighborhood of D1 relative to some Riemannian 
structure on S3 will do.) Let T be a tubular neighborhood of D1 - aD1 in 
W - aD1 diffeomorphic to the unit disk bundle in the normal bundle of 
Dl - aD1 in W - aD1 and let co:;" represent the Thorn class of T in n:v(T). 
See Figure 17.18. 

w 

T 

collar collar 

aD \ I aD D_I 
'-- ) . 

D 
DI 

Figure 17.18 
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Now consider the I-form 

WA = (r*XA)W~' 

It has many virtues. First of all it has compact support in Wand so can be 
extended by zero to all of S3. This comes about because w~ has compact 
support normal to D'l. and r*XA vanishes identically near BDl' Secondly, we 
see that if we set 

WA = r-l(D'l.- D_ 1), 

then dw A E n;(WA) and represents the compact Poincare dual of A there. 
We will use this WA in the integral JS3 WA A '1B to complete the argument 

that 

First choose a small enough neighborhood WB of B, a small enough collar 
for D, and a small enough tubular neighborhood T for D'l. so that (see 
Figure 17.19) 

T 

Figure 17.19 

Once this is done WA will equal w~ in the support of'1B since on r-l(D_ l) 
the function r*XA is identically 1. Therefore, our integral can be rewritten in 
the form 

(*) 
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But now w~ represents the Poincare dual of D'l in 01(S3 - aD 1) and'1B the 
compact Poincare dual of Bin 0:(S3 - aDd. In Section 6 we discussed the 
relation between the Thorn isomorphism, Poincare duality, and the trans
versal intersections of closed oriented submanifolds. Although (6.24) and 
(6.31) were stated for the closed Poincare duals, the same discussion applies 
to the compact Poincare duals, provided the relevant submanifolds are 
compact. Hence the integral (*) just counts the transversal intersection 
number of D1 with B. Thus 

i WA t\ '1B = L ± 1 = L ± 1, 
S3 D1 n B D n B 

the last being valid because the extension D1 intersects B no more often 
than D did. 0 

REMARK. The arguments of this section of course extend to the higher
dimensional examples. In particular the two definitions of the linking 
number make sense and are equivalent whenever A and B are compact 
oriented submanifolds of an oriented manifold M satisfying the following 
conditions: 

(1) A and B are disjoint; 
(2) dim A + dim B = dim M - 1; 
(3) both A and B are bounding in the sense that their fundamental classes 

are homologous to zero in H *(M). 

Linking is therefore not a purely homological concept. 
We cannot resist mentioning at this point that there is yet a third defini

tion of the linking number of two disjoint oriented circles A and B in S3. 

The Degree Definition. 

Remove a point p from S3 not on A or B and identify S3 - {p} with 1ij3. Let 

L: A x B_S2 

be the map to the unit sphere in 1ij3 given by 

x-y 
L(x, y) = II x _ y II ' 

where II II denotes the Euclidean length in 1ij3. Give A x B the product 
orientation and S2 the standard orientation. Then 

link(A, B) = deg L. 

We close this section with two explicit computations of the Hopf in
variant in the classical case, one using the differential-geometric and the 
other the intersection point of view. Just to be sure, if you will. 
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EXAMPLE 17.23 (The Hopf invariant of the Hopf fibration). Let S3 be the 
unit sphere in C2 andf: S3 _ Cpl the natural map 

f: (zo, ZI)- [zo, ztJ, 

where we write [zo, ZI] for the homogeneous coordinates on Cpl. IfCpl is 
identified with the unit sphere S2 in 1R3, say via the stereographic projection, 
then the map f: S3 - S2 is the Hopf fibration. To compute its Hopf in
variant, we proceed in five steps: 

(a) Find a volume form (I on the 2-sphere. 
(b) Write down a diffeomorphismg: Cpl ~ S2. 
(c) Pull the generator (I of H2(S2) via g back to a generator (X of H2(Cpl). 
(d) Pull (X back to S3 viafand find a I-form ru such thatf*(X = dru on S3. 
(e) Compute JS] ru A dru. 

(a) A Volume Form on the 2-Sphere. 

Let Uit U2' and U3 be the standard coordinates of 1R3. By Exercise 4.3.1 a 
generator of H2(S2) is 

1 
(I = 41t (Ul dU2 dU3 - U2 dUI dU2 + U3 dUI dU2). 

Since (dr) . (I = (r/41t) dUI dU2 dU3, which is the standard orientation on 
1R3, the form (I represents the positive generator on S2 (see the discussion 
preceding Exercise 6.32). 

Over the open set in S2 where U3 ':1= 0, the form (I has a simpler ex
pression. For if 

then 

Ul dUI + U2 dU2 + U3 dU3 = 0, 

so that we can eliminate dU3 from (I to get 

(17.23.1) 
1 dUI dU2 

(1=-

41t U3 

(b) Stereographic Projection of S2 onto Cpl. 

In the homogeneous coordinates [zo, ZI] on CPt, the single point [zo, 0] is 
called the point at infinity. On the open set ZI ':1= 0, we may use z = ZO/ZI as 
the coordinate and identify the point z = x + iy in Cpl - {[t, OJ} with the 
point (x, y, 0) of the (Uit u2)-plane in 1R3. Then the stereographic projection 
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from the north pole (0, 0, 1) maps S2 onto Cpl, sending the north pole to 
the point at infinity (Figure 17.20). To find the inverse map g: Cpl----. S2, 
note that the line through (0,0, 1) and (x, y,O) has parametric equation 
(0, 0, 1) + t(x, y, -1), which intersects the unit sphere when 

t2x2 + t2y2 + (1 - t)2 = 1, 

that is, 

2 
1 + x2 + y2· 

Hence the inverse map g: Cpl ----. S2 C 1R3 is given by 

t=O or 

. (2X 2y -1 + x2 + y2) 
(17.23.2) Z = x + lyf-+ 1 + x2 + y2 , 1 + x2 + l' 1 + x2 + y2 . 

(0,0,1) 

Figure 17.20 

By pulling the generator (1 in H2(S2) back to Cpl we obtain a generator g*(1 
in H2(Cpl). It follows from (17.23.1) and (17.23.2) that in the appropriate 
coordinate patch, 

where 

2x 2y -1 + x2 + l 
UI = 1 + x2 + y2' U2 = 1 + x2 + y2' and U3 = 1 + x2 + y2 . 

In terms of Z = x + iy, the form g*(1 can be written as 

1 dx dy dz di 
g*(1 = -;; (1 + x2 + y2)2 = - 21t (1 + 1 z 12)2 . 
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By convention the standard orientation on Cpl is given locally by dx dy. 
Therefore the positive generator in H2(Cpl) is 

_ * _..i.- dz dz 
a - -g (J - 2lt (1 + 1 Z 12)2 . 

Since Z = ZO/Zh in terms of the homogeneous coordinates, 

(17.23.3) 

REMARK. If S2 and Cpl are given their respective standard orientations, 
then the stereographic projection from S2 to Cpl is orientation-reversing. 

(d) Finding an w such that f*a = dw on S3. 

Let Zo = Xl + iX2 and Zl = X3 + iX4 be the coordinates on C2. Then the 
unit 3-sphere S3 is defined by 

1 Zo 12 + 1 Z 1 12 = xf + x~ + x~ + x~ = 1 . 

Hence I1= 1 Xi dXi = 0 on S3. By a straightforward computation, replacing 
Zo and Z I in (17.23.3) by the x/s, we find 

Therefore, we may take w to be 

1 
w = - (Xl dX2 + X3 dX4)' 

1t 

(e) Computing the Integral. 

The Hopf invariant of the Hopf fibration is 

H(f) = i w/\dw 
S3 

= ~ i Xl dX2 dX3 dX4 + X3 dXI dX2 dX4 
1t S3 

= 22 i Xl dX2 dX3 dX4 by symmetry. 
1t S3 
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Using spherical coordinates, 

Xl = sin ~ sin tjJ cos e, 

X2 = sin ~ sin tjJ sin e, 

X3 = sin ~ cos tjJ, 

X4 = cos ~, 

where ° ~ ~ ~ n, ° ~ tjJ ~ n, and ° ~ e ~ 2n, the integral becomes 

I Xl dX2 dX3 dX4 = In In 12n sin4 ~ sin3 tjJ COS2 e de dtjJ d~ 
JS3 Jo Jo Jo 

= n2/2. 

Therefore, the Hopf invariant off is 1. 
This Hopf invariant may also be found geometrically, for by identifying 

S3 - {north pole} with ~3 via the stereographic projection, it is possible to 
visualize the fibers of the Hopf fibration 

SI~S3 

! 
S2 = Cpl 

and to compute the linking number of two tibers. We let Zo = X I + iX2' 
Z I = X 3 + iX4' Then the stereographic projection 

p : S3 - {(O, 0, 0, l)} ~ ~3 = {X4 = O} 

is given by 

This we see as follows. The line through the north pole (0, 0, 0, 1) and the 
point (Xl' X2, X3, X4) has parametric equation (0, 0, 0, 1) + t(xt. X2' X3, 
X4 - 1). It intersects ~3 = {X4 = O} at t = 1/(1 - X4), so the intersection 
point is 

See Figure 17.21. 

Note that the fiber Soo of the Hopf fibration over [1,0] E Cpl is {(zo, 
0) E C2 11 Zo I = 1} and the fiber So over [0, 1] is {(O, 0, cos e, sin e) E ~4, ° ~ e ~ 2n}, both oriented counterclockwise in their planes. So via the 
stereo graphic projection S 00 corresponds to the unit circle in the (x 1> 

x2)-plane while So corresponds to {(O, 0, cos e/(1 - sin e), ° ~ e ~ 2n}, 
which is the x3-axis with its usual orientation. Therefore the linking number 
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(0,0,0,1) 

83 

«---------.::.~~\ 
(2.L-~~0) 1 - X4' 1 - X4' 1 - X4 ' 

Figure 17.21 
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of S co and So is 1. By the geometric interpretation of the Hopf invariant as a 
linking number, the Hopf invariant of the Hopf fibration is 1. 

Exercise 17.24. (a) Given an integer q, show that for n ~ q + 2, the natural 
inclusion O(n) c.. O(n + 1) induces an isomorphism 1I:q(O(n» ~ 1I:q(O(n + 1». 
For n sufficiently large, the homotopy group 1I:q(O(n) is therefore indepen
dent of n and we can write 1I:q(O). This is the q-th stable homotopy group of 
the orthogonal group. 

(b) Given integers k and q, show that for n ~ k + q + 2, 

1I:q(O(n)/O(n - k» = O. 

(c) Similarly, use the fiber bundle of s2n+ 1 = U(n + 1)/U(n) to show that 
for 2n ~ q + 1, the inclusion U(n) c.. U(n + 1) induces an isomorphism 

1I:q(U(n) ~ 1I:q(U(n + 1)). 

Deduce that for n ~ (2k + q + 1)/2, 

1I:iU(n)jU(n - k) = O. 

§18 Applications to Homotopy Theory 

The Leray spectral sequence is basically a tool for computing the homology 
or cohomology of a fibration. However, since by the Hurewicz isomorphism 
theorem, the first nontrivial homology of the Eilenberg-MacLane space 
K(1I:iX), n) is 1I:q(X), if one can fit the Eilenberg-MacLane spaces K(1I:iX), n) 
into a fibering, it may be possible to apply the spectral sequence to compute 
the homotopy groups. Such fiberings are provided by the Postnikov ap
proximation and the Whitehead tower, two twisted products of Eilenberg-
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MacLane spaces which in some way approximate a given space in 
homotopy. As examples of how this works, we compute in this section 
1l4(S3) and 1l5(S3). 

Eilenberg-MacLane Spaces 

Let A be a group. A path-connected space Y is an Eilenberg-MacLane space 
K(A, n) if 

1l (Y) = {A in dimension n 
q 0 otherwise. 

(We do not consider 110 unless otherwise indicated.) For any group A and 
any integer n ~ 1 (with the obvious restriction that A be Abelian if n > 1), it 
can be shown that in the category of CW complexes such a space exists and 
is unique up to homotopy equivalence (Spanier [1, Chap. 8, Sec. 1, Cor. 5, 
p. 426] and Mosher and Tangora [1, Cor. 2, p. 3]). So provided we consider 
only CW complexes, the symbol K(A, n) is unambiguous. 

EXAMPLE 18.1. (a) Since 1l : 1R1_ S1 given by 

1l(x) = e2fti;x 

is a covering space, 1liS1) = 1lq(1R1) = 0 for q ~ 2 by (17.5). Therefore the 
circle is a K(Z, 1). 

(b) If F is a free group, then K(F, 1) is a bouquet of circles, one for each 
generator (Figure 18.1). 

Figure 18.1 

(c) The fundamental group of a Riemann surface S of genus g ~ 1 
(Figure 18.2) is a group 1l with generators ah bh .•• , a" b, and a single 
relation 

b -1b-1 b -1b- 1 1 a1 1 a1 1 ••• a, ,a, , = . 

By the uniformization theorem of complex function theory the universal 
cover of a Riemann surface of genus g ~ 1 is contractible. Hence the Rie
mann surface S is the Eilenberg-MacLane space K(1l, 1). 
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Figure 18.2 

(d) By Proposition 17.2, we see that OK(A, n) = K(A, n - 1). 
(e) The Eilenberg-MacLane space K(l, n) may be constructed from the 

sphere S" by killing all1tq(S") for q > n. The procedure for killing homotopy 
groups is discussed in the section on Postnikov approximation. 

(t) By (17.1.a) if A and B are two groups, then 

K(A, n) x K(B, n) = K(A x B, n). 

The Telescoping Construction 

In this section we give a technique for constructing certain Eilenberg
MacLane spaces, called the telescoping construction. It is best illustrated 
with examples. 

EXAMPLE 18.2 (The infinite real projective space). The real projective space 
RP" is defined as the quotient of the sphere sn under the equivalence 
relation which identifies the antipodal points of S". There is a natural 
sequence of inclusions 

I I 
{point} '+ ... '+ RP" '+ RP" + 1 '+ .. . . 

We define the infinite real projective space Rpoo by gluing together via the 
natural inclusions all the finite real projective spaces 

Rpoo = II RP" x I /(x, 1) '"" (i(x), 0). 

" 
Pictorially Rpoo looks like an infinite telescope (Figure 18.3). 

Since S"-+ Rpn is a double cover, by (17.5) 1tq(Rpn) = 1tq(sn) = 0 for 
1 < q < n. We now show that Rpoo has no higher homotopy, i.e., 
1tq(Rp OO ) = 0 for q > 1. Take 1t15(RpOO) for example. Supposef :S15-+ Rpoo 

represents an element of 1t1,(RpOO). Since the image f(S15) is compact, it 
must lie in a finite union of the RP" x I's above. We can slidef(S15) into a 
high RP" x I. If n> 15, then f(S1') will be contractible. Therefore 
1tl,(RpOO) = O. Thus by sliding the image of a sphere into a high enough 
projective space, we see that this telescope kills all higher homotopy groups. 
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IRpn 

o 

o 
Figure 18.3 

Applying the telescoping construction to the sequence of spheres 

{point} '+ ... 4. sn 4. sn+l '+ ... 

we obtain the infinite sphere 

S<Xl = II sn x I /(x, 1) ,... (i(x), 0). 
n 

It is a double cover of RP<Xl. By the same reasoning as above, S<Xl has no 
homotopy in any dimension. Therefore 1tl(Rp<Xl) = 7L 2 • This proves that 
Rp<Xl is a K(7L2 , 1). 

EXAMPLE 18.3. (The infinite complex projective space). Applying the tele
scoping construction to the sequences 

... C s2n+l C s2n+3 c··· 

Sl! ! 
..• C cpn C cpn+ 1 C ... , 

we obtain the fibering 

(18.3.1) 

cp<Xl 

where Cp<Xl is gotten by gluing together the cpn's as in the previous exam
ple. Since S<Xl has no homotopy in any dimension, it follows from the 
homotopy sequence of the fibering that 

1trc(CP<Xl) = {7Lo when k = 2 
otherwise. 

Therefore CP<Xl is a K(7L, 2). 

Exercise 18.4. By the Hurewicz isomorphism theorem Hrc(S<Xl) = 0 except in 
dimension O. Apply the spectral sequence of the fibering (18.3.1) to show 
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that the cohomology ring of Cpoo is a polynomial algebra with a generator 
in dimension 2: 

H*(Cp OO ) = .l[x], dim x = 2. 

EXAMPLE 18.5 (Lens spaces). Let S211+ 1 be the unit sphere in C"+ 1. Since SI 

acts freely on S211+ 1, so does any subgroup of SI. For example,.ls acts on 
S211+ 1 by 

e2fCl/S • (z z ) '----'" (e2fC1/ Sz e2fC1/ Sz ) . 0,·· 0, n,.--r" 0, ... , II' 

The quotient space of s2n+ 1 by the action of 1. 5 is the lens space L( n, 5). 
Applying the telescoping construction 

SI c ... C S211+ 1 C S20+3 C ... 

L(O, 5) c ... c L(n, 5) c L(n + 1,5) c ... , 

we obtain a five-sheeted covering 

! 
L(00,5). 

Hence 

{ .ls if k = 1 
1tk(L( 00, 5) = 0 if k > 1. 

So the infinite lens space L( 00,5) is a K(1. 5,1). In exactly the same manner 
we can construct L(oo, q) = K(1.q' 1) for any positive integer q. 

REMARK 18.5.1. The lens space L(n,2) is the real projective space Rp 2n+\ 
and the infinite lens space L(oo,2) is RP"". 

Next we shall compute the cohomology of a lens space, say L(n,5). 
Since the lens space L( n, 5) is not simply connected, the defining fibration 
Z 5 -+ s2n+ 1 -+ L(n, 5) is of little use in the computation of the cohomology. 
Instead, note that the free action of S1 on s2n+1 descends to an action on 
L(n,5): 

with quotient CP", so that there is a fiber bundle 
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The Ez term of this fiber bundle is 

(18.S.2) 

o 
01234 2n 

To decide what the differential dz is, we compare with the spectral se
quence of the fiber bundle S1 -+ sZn+ 1 ~ CP". The bundle map p: 
s2n + 1 -+ L(n, S) over cpn induces a chain map on the double complexes 

p* : C*(n£ lU, 0*)-+ C*(ni lU, 0*), 

where U is a good cover of CP". Let aL and as be the generators of E~' 1 for 
these two complexes, and x a generator of H*(Cpn). Because p is a map of 
degree S, p*aL = Sas. Hence, 

p*(dz aLl = d2 p*aL = dzSas = Sx. 

So d 2aL = 5x in (18.5.2). The cohomology of the lens space L(n,5) is 
therefore 

Z in dimension 0 

H*(L(n, S» = 
Z, in dimensions 2, 4, ... , 2n 

Z in dimension 2n + 1 

0 otherwise. 

REMARK 18.S.3. Another way of determining the differential in (185.2) is to 
compute HZ(L(n, S» first by the universal coefficient theorem (IS.14). Since 
n1(L(n, S» = Z" H 1(L(n, S» = Z, and HZ = z, E9 free part. Therefore dz a 
must be Sx and HZ = Z, . 

In exactly the same way we see that the cohomology of the lens space 
L(n, q) is 

(18.6) 1 Z in dimension 0 

Z" in dimensions 2, 4, ... , 2n 
H*(L(n, q» = 

Z in dimension 2n + 1 

o otherwise. 

Exercise 1B.7. Prove that the lens space L(n,q) is an orientable manifold. 
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Exercise 18.8. Let q be a positive integer greater than one. 
(a) Show that the integer cohomology of K(Zq, 1) is 

{ 
Z in dimension 0 

H*(K(Zq, 1); Z) = Zq in every positive even dimension 
o otherwise. 
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(b) Using the fibering SI-+ K(Zq, 1)-+ Cpoo, compute H*(K(Zq, 1); Zp) 
where p is a prime. 

Exercise 18.9. Let nand q be positive integers. Show that 

H*(K(Z , n); 10) = {IO in dim~nsion 0 
q 0 otherwise. 

Therefore, by the structure theorem for finitely generated Abelian groups, 
the rational cohomology of K(A, n) is trivial for a finitely generated torsion 
Abelian group. 

Exercise 18.10. Determine the product structures of H*(L(n, q», H*(K(Z" 
1», and H*(K(Z" 1); Zp). In particular, show that 

H*(lRpOO) = Z[a]/(2a), dim a = 2, 

and 

The Cohomology of K(Z, 3) 

Since 1t,(S3) = 0 for q < 3 and 1t3(S3) = Z, one may wonder if the sphere S3 
is a K(Z, 3). One way of deciding this is to compute the cohomology of 
K(Z, 3). We first observe that 

nK(Z, 3) = K(Z, 2) = Cpoo, 

whose cohomology we know to be Z[x] from Exercise 18.4. Since by 
Remark 17.13, every CW complex has a good cover, we can apply the 
spectral sequence of the path fibration 

K(Z, 2)-+ PK(Z, 3) 

! 
K(Z, 3) 

to compute the cohomology of K(Z, 3). 
By Leray's theorem with integer coefficients (15.11), the E2 term of the 

spectral sequence is 

E~· q = HP(K(Z, 3» ® H'(Cp OO ) 
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and its product structure is that of the tensor product of H*(K(Z, 3)) and 
H*(Cpoo). 

6 a~ 
I'-.. 

5 "'" ~ 
4 a2 2 

" a--.z" 
3 "-.: 

~ ~~ 
E2 = E3 = 2 a, as ......... ~ as2 

1 ~ I-' "" "" r--........ ~ ~ 
0 1 0 0 ..... s 0 0 ""y 0 I'<t 

o 1 2 3 4 567 8 

Since the total space PK(Z, 3) is contractible, the Eoo term is 0 except for 
E~ o. The plan now is to "create" elements in the bottom row of the E2 
picture which would sooner or later "kill off" all the nonzero elements of 
the spectral sequence. There can be no nonzero elements in the bottom row 
of columns 1 and 2, for any such element would survive to Eoo. However 
there must be an element s in column 3 to kill off a. Thus 

d3 a = s 

and 

d3(a 2) = 2ad3 a = 2as. 

There must be an element y in column 6 to kill off as for otherwise as would 
survive to Eoo. Therefore H6(K(Z, 3)) 1= O. This proves that S3 is not a 
K(Z, 3). Equivalently, it shows the existence of nontrivial higher homotopy 
groups for S3. Later in this section we will compute 1t4 and 1t5 of S3. 

As for the cohomology ring of K(Z, 3), we can be more precise. First, 
note that y = d3(as) = (d3a)' s = S2. From the picture of E2 , it is clear that 
H6(K(Z, 3)) = Z2' Therefore, 2S2 = O. Now a nonzero element in Ei' ° = 
H7(K(Z, 3)) can be killed only by a3 under d7 • Since d3(a 3) = 3a2s 1= 0, a3 

does not even live to E4 • So H7(K(Z, 3)) = O. Since d3(a2s) = 2as2 = 0, a2s 
would live to Eoo unless ds(a2s) = t 1= O. In E4 = Es , a2s generates the cyclic 
group Z3' Since t is the element that kills a2s in Es , t is of order 3. In 
summary the first few cohomology groups of K(Z, 3) are 

q 0 1 2 3 4 5 6 7 8 

(18.11) Hq Z 0 0 Z 0 0 Z2 0 Z3 

generators 1 s S2 t 
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EXERCISE 18.12. Show that H*(K(Z, n); Q) is an exterior algebra on one 
generator of dimension n if n is odd and a polynomial algebra on one 
generator of dimension n if n is even. In either case we say that the coho
mology of K(Z, n) isfree on one generator (see Section 19 for the definition 
of a free algebra). 

The Transgression 

Let n : E -+ X be a fibration with connected fiber F over a simply connected 
space with a good cover U. In computing the differentials of the spectral 
sequence of E using what we have developed so far, one often encounters 
ambiguities which cannot be resolved without further clues. One such clue is 
knowledge of the transgressive elements. An element OJ in 

Hq(F) ~ E~· q = HO(U, Yt'q(F)) 

is called transgressive if it lives to Eq+ 1; that is, 

d2 0J = d3 0J = ... = dqOJ = 0. 

An alternative characterization of a transgressive element is given in the 
following proposition, which we phrase in the language of differential forms. 
Of course by replacing forms with singular cochains, the proposition is 
equally true in the singular setting with arbitrary coefficients. 

Proposition 18.13. Let n : E --+ M be a fibration with fiber F in the differ
entiable category. An element OJ in Hq(F) is transgressive if and only if it is the 
restriction of a global form IjJ on E such that dIjJ = n*r for some form r on the 
base M. 

REMARK 18.13.l. Because n* is injective and 

n*dr = ddIjJ = 0, 

we actually have 
dr = 0, 

so the form r defines a cohomology class on M. 

PROOF OF PROPOSITION 18.13. Let U be a good cover of M. If OJ is trans
gressive, then by (14.l2) it can be extended to a cochain a = ao + ... + aq 

in the double complex C*(n-1U, n*) such that Da = n*f3 for some Cech 
cocycle f3 on M. 

ao 
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By the collating formula (9.5), 

(*) 
i=O 

is a global form on E corresponding to oc. From (*) we see that 

dl/l = (-1)q+ l(D" K)q+ l1t*fJ = 1t*r, 

where r = ( - D" K)q + 1 fJ is by (9.8) a closed global form on M. 
Conversely, suppose 1/1 is a global q-form on E with dl/l = 1t*r for some 

(q + 1)-form on M. We will identify global forms on M with O-cochains in 
C*(U, n*) that vanish under <>. By Remark 18.l3.l, r defines a cohomology 
class on M. Let fJ E Cq+l(U, IR) be the Cech cocycle corresponding to r under 
the Cech-de Rham isomorphism. Then 

r = fJ + D(yo + Yl + ... + Yq) E C*(U, n*), 

where Yi E Ci(U, n q- I ). Hence, 

DI/I = 1t*r = 1t*fJ + D(1t*Yo + 1t*Yl + ... + 1t*Yq) E C*(1t- lU, n*). 

Let OCi = -1t*YI' Then 

(**) D(I/I + OCo + OC l + ... + ocq) = 1t*fJ· 

Since (1/1 + oco)IF = (1/1 - 1t*Yo)IF = I/IIF' the cohomology class of 1/1 IF in Hq(F) 
can be represented by the cochain 1/1 + 1X0 E E~·q. The existence of IXl' ••• , IXq 

in (**) shows that the cochain 1/1 + 1X0 lives to Eq+1' 0 

We will now apply the singular analogue of Proposition 18.13 to obtain 
one of the most useful vanishing criteria for the differentials of a spectral 
sequence. 

Proposition 18.14. In mod 2 cohomology, if IX is a transgressive, so is oc2 • 

PROOF. Let 1/1 be the singular cochain on E given by Prop. 18.13. Since 1/1 
restricts to IX on a fiber, 1/12 restricts to 1X2. With 71.2 coefficients, 

d(I/I 2 ) = (dl/l)I/I ± 1/1 dl/l = 21/1 dl/l = 0, 

because -1 = + 1 (mod 2). Therefore, by Prop. 18.13 again, 1X2 is transgres
~ 0 

Exercise 18.15. Compute H*(K(71. 2 , 2); 71. 2) and H*(K(71.2 ' 2); 71.) up to di
mension 6. 

Exercise 18.16. Compute H*(K(71. 2, 3); 71. 2) and H*(K(71.2 ' 3); 71.) up to 
dimension 6. 

Exercise 18.16.1. Compute the homology H*(K(71. 2, 4); 71.) up to dimen
sion 6. 
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Basic Tricks of the Trade 

In homotopy theory every map f : A -. B from a space A to a path
connected space B may be viewed as either an inclusion or a fibering. We 
can see this as follows. 

(18.17) Inclusion 
Applying the telescoping idea just once, we construct the mapping cylin

der off (see Figure 18.4): 

M J = (A x 1) uBI (a, 1)..., f(a). 

Figure 18.4 

It is clear that the mapping cylinder M f has the same homotopy type as B 
and that A is included in M J' Indeed the following diagram is com
mutative: 

(18.18) Fibering 

f 
A---~. B 

II 1 homotopy ",.'""m,, 

A---~. Mr. 

Let f: A -+ B be any map, with B path connected. By (18.17) we may 
assume thatfis an inclusion, i.e., A is a subspace of B (Figure 18.5). Define 
L to be the space of all paths in B with initial point in A. By shrinking every 

Figure 18.5 



250 III Spectral Sequences and Applications 

path to its initial point, we get a homotopy equivalence 

L~A. 

On the other hand by projecting every path to its endpoint, we get a 
fibering 

! 
B 

whose fiber is n:, the space of all paths from a point ... in B to A. So up to 
homotopy equivalence,f : A -. B is a fibering. 

Postnikov Approximation 

Let X be a CW complex with homotopy groups 1Cq{X) = 1Cq • Although X 
has the same homotopy groups as the product space n K{1Cq , q), in general 
it will not have the same homotopy type as n K{1Cq , q). However, up to 
homotopy every CW complex can be thought of as a "twisted product" of 
Eilenberg-MacLane spaces in the following sense. 

Proposition 18.19 (Postnikov Approximation). Every connected CW complex 
can be approximated by a twisted product of Eilenberg-MacLane spaces; 
more precisely, for each n, there is a sequence of fibrations Yq -. Yq _ 1 with the 
K{1Cq , q)'s as fibers and commuting maps X -. Yq 

such that the map X -. Yq induces an isomorphism of homotopy groups in 
dimensions :s;; q. 

Such a sequence of fibrations is called a Postnikov tower of X. In view of 
(18.18) that every map in homotopy theory is a fibration, this proposition is 
perhaps not so surprising. 

We first explain a procedure for killing the homotopy groups of X above 
a given dimension. For example, to construct K{1Ch 1) we kill off the homo
topy groups of X in dimensions ~ 2 as follows. If oc : S2 -. X represents a 
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nontrivial element in 1t2(X), we attach a 3-cell to X via IX: 

Xu e3 = X 11 e3 Ix '" IX(X), X E S2 . 
" 

This procedure does not change the fundamental group of the space-by 
Proposition 17.11 attaching an n-cell to X could kill an element Of1tn -l(X) 
but does not affect the homotopy of X in dimensions ;5;; n - 2. For each 
generator of 1t2(X) we attach a 3-cell to X as above. In this way we create a 
new space X 1 with the same fundamental group as X but with no 1t2. 
Iterating this procedure we can kill all higher homotopy groups. This 
gives Yl. 

PROOF OF PROPOSITION 18.19. To construct y" we kill off all homotopy of X 
in dimensions ~ n + 1 by attaching cells of dimensions ~ n + 2. Then 

1tk(y") = {O, k ~ n + 1 
1tk> k = 1, 2, ... , n. 

Having constructed Y", the space y" _ 1 is obtained from y" by killing the 
homotopy of y" in dimension n and above. By (18.18), the inclusions 

X c y" c Y" _ 1 C ... C Y1 

may be converted to fiberings. From the exact homotopy sequence of a 
fibering we see that the fiber of Yq-+ Yq-l is the Eilenberg-MacLane space 
K(1tq , q). D 

This computation of 1t4 = 1t4(S3) is based on the fact that the homotopy 
group 1t4 appears as the first nontrivial homology group of the Eilenberg
MacLane space K(1t4, 4). If this Eilenberg-MacLane space can be fitted into 
some fibering, its homology may be found from the spectral sequence. Such 
a fibering is provided by the Postnikov approximation. 

Let Y4 be a space whose homotopy agrees with S3 up to and including 
dimension 4 and vanishes in higher dimensions. To get such a space we kill 
off all homotopy groups of S3 in dimensions ~ 5 by attaching cells of 
dimensions ~ 6. So 

Y4 = S3 u e6 u .... 

By Proposition 17.12, H 4( Y4 ) = H s( Y4 ) = 0. The Postnikov approximation 
theorem gives us a fibering 

! 
K(Z,3). 
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The E2 term of the homology spectral sequence of this fibering is 

5 
4 

K(1t4 , 4) 3 
2 
1 
o 

1t4 
~ 

i'--

'" ~ 7L 7L 7L2 

0123456 

K(7L,3) 

where the homology of K(7L, 3) is obtained from (18.11) and the universal 
coefficient theorem (15.14). Since H4(Y4) = H S(Y4) = 0, the arrow shown 
must be an isomorphism. Hence 1t4(S3) = 7L2 . 

More generally since Yq = S3 u eq+ 2 u ... , by (17.12), 

Hq(Yq) = Hq+ l(Yq) = O. 

Hence from the homology E2 term of the fibration 

1tq ............. 

------r-.. --- Hq+ 1(Yq-l) 

q+l 
we get 

(18.20) 

The Whitehead Tower 

The Whitehead tower is a sequence of fibrations, dual to the Postnikov 
approximation in a certain sense, which generalizes the universal covering 
of a space. It is due independently to Cartan and Serre [1] and to George 
Whitehead [2]. Unlike the Postnikov construction, where we kill succes
sively the homotopy groups above a given dimension, here the idea is to kill 
at each stage all the homotopy groups below a given dimension. 

Up to homotopy the universal covering of a space X may be constructed 
as follows. Write 1tq = 1tq(X). By attaching cells to X we can kill al11tq for 
q ~ 2 as in (18.19). Let Y = X u e3 u ... be the space so obtained; Y is a 
K(1th 1) containing X as a subspace. Consider the space n! of all paths in 
Y from a base point. to X (Figure 18.6). The endpoint map: n! -+ X is a 
fibration with fiber ny = nK(1th 1) = K(1th 0). From the homotopy exact 
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.A 
sequence of the fibering 

Figure 18.6 

! 
X 

253 

y 

we see that nl(n!) = O. Hence Xl = n! is the universal covering of X up to 
homotopy. 

We will now generalize this procedure to obtain a sequence offibrations 

! 
K(n", n - 1) -X" 

! 
X,,-l 

! 

! 
K(nto 0) -Xl 

! 
X 

such that 

(a) X" is n-connected, i.e., nq(XJ = 0 for all q ~ n; 
(b) above dimension n the homotopy groups of X" and X agree; 
(c) the fiber of X,,- X,,-l is K(n" , n - 1). 

This is the Whitehead tower of X. To construct X" from XII-to we first kill 
allnq(X,,_t), q ~ n + I, by attaching cells to X,,-l' This gives a 

K(n", n) = X,,-l U e,,+2 U •••. 

Next let X" = n!"-l be the space of all paths in K(n", n) from a base point 
• to X,,-l' The endpoint map: X,,- X,,-l has fiber nK(n" , n)=K(n", n-I). 
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From the homotopy exact sequence of the fibering 

K(n., n - 1)---4 X. 

! 
X.- 1 

it is readily checked that nq(X.) = niX.-d for q ~ n + 1; and niX.) = 0 
for q ~ n - 2; furthermore, 

(18.21) 0---4 n.(X.)---4 n.(X._l)~ n._l(nK(n., n))---4 n._l(Xn)---4 0 

is exact. Here n.(X. _ d = n. by the induction hypothesis, and the problem 
is to show that a: n.(X._d---4 n.-l(nK(nn, n)) is an isomorphism. Now the 
inclusion X.- 1 c K(n., n) = X.- 1 U en + 2 U ... induces by (17.11) an iso
morphism 

Moreover, the definition of the boundary map 

a: n.(X._ 1)---4 n._l(nK(nn, n)) 

(see (17.4)) is precisely how n.(K(nn' n)) was identified with nn_l(nK(n., n)) 
in Proposition 17.2. Therefore a is an isomorphism and n.(X.)=n._1(X.)= 
o in (18.21). This completes the construction of the Whitehead tower. 

As a first application of the Whitehead tower we will prove Serre's 
theorem on the homotopy groups of the spheres. We call a sphere sn odd or 
even according to whether n is odd or even. 

Theorem 18.22 (Serre). The homotopy groups of an odd sphere sn are torsion 
except in dimension n; those of an even sphere s· are torsion except in 
dimensions nand 2n - 1. 

PROOF. We will need to know that all homotopy groups of s· are finitely 
generated. This is a consequence of Serre's mod C(j theory, with C(j the class 
of finitely generated Abelian groups (see Serre [2] or Mosher and Tangora 
[1, Prop. 1, p. 95]). Assuming this, the essential facts to be used in the proof 
are the following: 

(a) in the Whitehead tower of any space X, nq+ l(X) = Hq+ l(Xq); hence, 

nq+ l(X) ® 10 = Hq+ l(Xq; 10); 

(b) the rational cohomology ring of K(n, n) is trivial for a torsion finitely 
generated Abelian group n and is free on one generator of dimension n for 
n = 71.. (Exercises 18.9 and 18.12). 

Since S· is (n - I)-connected and nn(S·) = 71.., the Whitehead tower begins 
with 

(18.22.1) 

S·. 
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For the rest of this proof we write 7tq for 7t,(S"). First consider the case 
where n is odd. We will assume n ~ 3. Then the rational cohomology of 
K(Z, n - 1) is a polynomial algebra on one generator of dimension n - 1 
and the cohomology spectral sequence of the fibration (18.22.l) has E2 term 

2(n - 1) Q 

n-1 Q 

n 

(Here we are using the cohomology spectral sequence to take advantage of 
the product structure.) The bottom arrow is an isomorphism because 
H,,_l(X"; Q) = 0; the other arrows are isomorphisms by the product struc
ture. From the spectral sequence we see that X" has trivial rational coho
mology, hence trivial rational homology. By Remark (a) above, 7t,,+ 1 is 
torsion. Now consider the next step of the Whitehead tower: 

Since both X" and K(7t" + 1 , n) have trivial rational homology, so doesX,,+l· 
By Remark (a) again, 1t,,+2 = HII + 2(X" + 1) is torsion. By induction for all 
q ~ n + 1, XII has trivial rational homology and 1tll is torsion. 

Now suppose n is even. Then the rational cohomology of K(Z, n - 1) is 
an exterior algebra and the E2 term of the rational homology sequence of 
the fibration (18.22.l) has only four nonzero boxes: 

n-1 Q Q 

'" r'-Q I'-- Q o 
o n 

The arrow shown is an isomorphism because X" is n-connected. So 

{ Q in dimensions 0, 2n - 1 
H.(X,,; Q) = 0 otherwise. 

Suppose n > 2. Then n + 1 < 2n - 1. By Remark (a), 7t,,+1 = H,,+l(X,,) is 



256 III Spectral Sequences and Applications 

torsion. Since H *(K(1t,, + 1, n); Q) is trivial, from the fibration 

! 
XII 

we conclude that XII +1 has the same rational homology as XII' This sets the 
induction going again, showing that 1tQ is torsion, until we hit 1t211-1 = 
H211-1(X211-2), which is not torsion. In fact, 1t211-1 has one infinite cyclic 
generator and possibly some torsion generators. At this point we may 
assume n ~ 2. By Remark (b), the rational cohomology ring 

H*(K(1t211-1o 2n - 2); Q) 

is a polynomial algebra on one generator, so the cohomology E2 term of 
the fibration 

! 

is 

4n -4 Q Q 

2n- 2 

............. 
~ 

Q .............. Q 
r--.. 
~ 

Q r--.... Q 

2n -1 

Since H 2/1- 1 (X 2/1- 1) = 0, the arrows shown must all be isomorphisms. It 
follows that the rational cohomology groups of X q are trivial for all 
q > 2n - 1 and the homotopy groups 1tq(S") are torsion for all q > 2n - l. 

o 
Exercise 18.23. Give a proof of Theorem 18.22 based on the Postnikov 
approximation. 

If we try to compute 1tS(S3) using the Postnikov approximation, we very 
quickly run up against an ambiguity in the spectral sequence. For by 
(18.20), 1ts(S3) = H6(Y4), but to compute H6(Y4) from the homology spectral 
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sequence of the fibering 

6 Z2 

5 "-
"" 4 lL z lLz 

K(lLz, 4)-+ Y4 
3 

! 
2 

K(lL,3) 
1 

0 lL lL lL z 0 

0 1 2 3 4 5 6 

we will have to decide whether the arrow shown is the zero map or an 
isomorphism. With the tools at our disposal, this cannot be done. (For the 
homology of K(lLz , 4) and K(Z, 3) see (18.16.1) and (18.11).) 

In this case the Whitehead tower is more useful. Since S3 is 2-connected, 
the Whitehead tower up to X 4 is 

K(1t4' 3)-+ X 4 

! 
K(lL, 2) -+ X 3 

! 

From the construction of the Whitehead tower and the Hurewicz isomor
phism, 1tS(S3) = 1ts(X4) = HS(X4). So we can get 1ts by computing the hom
ology of X 4. This method also gives 1t4(S3), which is H 4(X 3). 

The cohomology of X 3 may be computed from the spectral sequence of 
the fibration K(Z, 2)-+ X 3-+ S3, whose Ez term is 

4 Xz 
... 
~ 3 

2 x, ~ xu cpoo 
I'-< 1 

"" 0 1 loU 

0 1 2 3 

S3 
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Since d2 is clearly zero, E2 = E3 • Next d3 : Eg· 2 -+ E~' 0 is an isomorphism 
because X 3 is 3-connected. By the antiderivation property of the differential 
d3 , which we will write as d here, 

d(xn) = nxn - 1 dx = nxn-1u. 

Hence the integral cohomology and homology of X 3 are 

-
q 0 1 2 3 4 5 6 7 8 9 10 11 

HQ(X3) 71.. 0 0 0 0 71..2 0 71..3 0 71..4 0 71.. s 

HiX 3) 71.. 0 0 0 71..2 0 71..3 0 71..4 0 71.. s 0 

where the homology is obtained from the cohomology by the universal 
coefficient theorem (15.14.1). 

The homology spectral sequence of the fibration K(1t4 , 3) -+ X 4 -+ X 3 

has E2 term 

5 

4 

3 

2 

o 

~~ 

1t4 ~ d6 

i", 
~ "'" ~ ~ ~ 

71.. o 0 0 71..2 0 71..3 

0123456 

which shows that 1t4 = 71..2, since X 4 is 4-connected. 
By Exercise 18.16, H4(K(71.. 2 , 3» = 0 and Hs(K(71.. 2 , 3» = 71..2, Since the 

only homomorphism from 71..3 to 71..2 is the zero map, d6 in the diagram 
above is zero. Hence H s(X 4) = 71..2 and 1ts(S3) = 1ts(X 4) = H s(X 4) = 71..2 • 

Exercise 18.24. Given a prime p, find the least q such that the homotopy 
group 1tq(S3) has p-torsion. 

§19 Rational Homotopy Theory 

By some divine justice the homotopy groups of a finite polyhedron or a 
manifold seem as difficult to compute as they are easy to define. For a 
simple space like S3, already, the homotopy groups appear to be completely 
irregular. The computation of 1t4(S3) and 1ts(S3) in the preceding section 
should have given the reader some idea of the complexity that is involved. 
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However, if one is willing to forego the torsion information, by considering, 
for instance, the rational homotopy groups 1tq(X) ® 0, then some general 
theorems are possible. One such result is Serre's theorem on the homotopy 
groups of the spheres (Th. 18.22). In the late sixties Dennis Sullivan shed 
new light on the computation of rational homotopy by the use of differ
ential forms. This section is a brief introduction to Sullivan's work. Al
though Sullivan's theory, with an appropriate definition of the rational 
differential forms, is applicable to CW complexes, we will consider only 
differentiable manifolds. As applications we derive again Serre's theorem 
and also compute some low-dimensional homotopy groups of the wedge 
S2V S2. 

Minimal Models 

Let A = ~I~O AI be a differential graded commutative algebra over R; 
here the differential is an antiderivation of degree 1: 

d(a . b) = (da) . b + (_1)dlm/Ja . db; 

and the commutativity is in the graded sense: 

a . b = ( - 1 )dlm /J . dlm"b . a. 

In this section we will consider only finitely generated differential graded 
commutative algebras. Such an algebra is free if it satisfies no relations 
other than those of associativity and graded commutativity. We write A(xlt 
.•. , Xl) for the free algebra generated by X" .•• , Xl; this algebra is the 

tensor product of the polynomial algebra on its even-dimensional gener
ators and the exterior algebra on its odd-dimensional generators. An el
ement in A is said to be decomposable if it is a sum of products of positive 
elements in A, i.e., a E A + . A +, where A + = ~I>O AI. A differential graded 
algebra .It is called a minimal model for A if: 

(a) .It is free; 
(b) there is a chain map f : .It --+ A which induces an isomorphism in 

cohomology; 
(c) the differential of a generator is either zero or decomposable (a differ

ential graded algebra satisfying this condition is said to be minimal). 

A minimal model of a manifold M is by definition a minimal model of its 
algebra of forms n*(M). 

Examples of Minimal Models 

EXAMPLE 19.1. The de Rham cohomology of the odd sphere s2n-1 is an 
exterior algebra on one generator. Hence a minimal model for s2n -1 is A(x), 
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dim x = 2n - 1 and dx = 0, with 

/ : x 1-+ volume form on S2. -1. 

EXAMPLE 19.2. The de Rham cohomology of the even sphere S2. is 
R[a]/(a2), dim a = 2n. To construct a minimal model, we need a generator 
x in dimension 2n to map onto a and a generator y in dimension 4n - I to 
kill off x 2• Since dim y is odd, y2 = O. So the complex A(x, y), dx = 0, 
dy = x 2 can be visualized as the array 

4n -1 

o 2n4n 6n 

which shows that the cohomology of A(x, y) is R[x]/(x2). The minimal 
model of S2. is A(x, y), and the map/ : A(x, y)- 0*(S2.) is given by 

/ : x 1-+ volume form (J) on S211 

yl-+O. 

EXAMPLE 19.3. Since the de Rham cohomology of the complex projective 
space CP" is R[x]/(x·+ 1), dim x = 2, by reasoning similar to the preceding 
example, a minimal model is A(x, y), dim y = 2n + 1, dx = 0, dy = x·+ 1• 

A differential graded algebra A is said to be I-connected if HO(A) = R 
and Hl(A) = O. 

Proposition 19.4. 1/ the differential graded algebra A is I-connected and has 
finite-dimensional cohomology, then it has a minimal model. 

PROOF. Let a1' ... , a" be the 2-dimensional cocycles in A which represent a 
basis of the second cohomology H 2(A). Define .It 2 = A(ah ... , a,.}, 
where dim a/ = 2 and da, = 0, and set 

a/I-+a" 

At this stage / induces an isomorphism in cohomology in dimensions less 
than 3 and an injection in dimension 3, because A(ah ... , a,,) has nothing in 
dimension 3. We will prove inductively that for any n there is a minimal free 
algebra .It. together with a chain map / : .It. - A such that 

(a) the algebra .It. has no elements in dimension 1 and no generators in 
dimensions greater than n; 

(b) the map/induces an isomorphism in cohomology in dimensions less 
than n + 1 and an injection in dimension n + 1. 
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So suppose this is true for n = q - 1. By hypothesis there are exact se
quences 

and 

0-+ ker Hq+1(f)-+ Hq+1(.Aq_1)-+ Hq+1(A). 

Let {[b;]h e I be a basis of coker Hq(f) and {[x)]} a basis of ker Hq+ 1(f), 
with bi in Aq and x) in .A:~i, where .A:~i denotes the elements of degree 
q + 1 in .Aq- 1• The x/s are decomposable because the generators of.Aq _ 1 

are all of dimension ~ q - 1. The idea is to introduce new elements in 
.Aq- 1 to kill both coker Hq(f) and ker Hq+1(f). Define 

.Aq = .Aq- 1 ® A(b" 'i)' dim bi = dim ') = q . 

.A q is again a free minimal algebra, with differential 

d(m ® 1) = (dm) ® 1, 

d(1 ® bi) = 0, 

d(1 ® e)~ = x) ® 1. 

We extendf: .Aq - 1-+ A tof : .Aq-+ A by 

f(m ® 1) = f(m), 

f(1 ® bi) = bi' 

f(1 ® e)~ = a.j, 

where a.) is an element of A such thatf(x) = da.). It is easy to check that 
this new f is again a chain map. 

We now show that Hq(f): Hq(.Aq)-+ Hq(A) is an isomorphism. Suppose 

Z = L Vt(mk ® 1) + L Ai(1 ® bi) + L J.l)(1 ® e)~ 

is a cocycle in .A q. Then 

L Vk dmk + L J.ljx) = O. 

Since the classes [Xj] are linearly independent, all J.l) = O. If in addition 
Z E ker Hq(f), then 

L vt/(mk) + L Ajbi = o. 
Since the [b;] form a basis of the cokernel of Hq(f): Hq(.A q -1) -+ Hq(A), all 
Ai = O. Therefore, all the cocycles in .A q that map to zero come from .A q - 1. 

By the induction hypothesis these cocycles are exact. This proves the injec
tivity. The surjectivity follows directly from the definition of the bj • 

Finally, because .A q -1 has nothing in dimension 1, the elements of di
mension q + 1 in .#q-1 ®A(b j , 'j) all come from .Aq - 1 ; i.e., 
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.Itt + 1 = .ltq:: t ® 1. Hence ker Hq + 1(f) is spanned by x j ® 1. Since all of 
th:se eleme~ts are exact in .It q (they are the differentials of 1 ® e]), Hq+ 1(f) 
is injective. 0 

The Main Theorem and Applications 

We will not prove the main theorem stated below. For a discussion of the 
proof, see Sullivan [1] and [2] and Deligne, Griffiths, Morgan and Sullivan 
[1]. 

Theorem 19.5. Let M be a simply connected manifold and .It its minimal 
model. Then the dimension of the vector space 'It,J..M) ® C is the number of 
generators of the minimal model .It in dimension q. 

To make this theorem plausible, we will say a few words about the 
computation of the rational cohomology of M. The idea is to compute it 
from the Postnikov towers of M, whose fibers are the Eilenberg-MacLane 
spaces K('ltq, q). Now there are two things to remember about the rational 
cohomology of K('ltq, q): 

(a) a free summand 7L in 'ltq contributes a generator of dimension q to the 
rational cohomology H*(K('ltq, q); C); 

(b) a finite summand in 'ltq contributes nothing. 

In other words, the rational cohomology of K('ltq, q) is a free algebra with 
as many generators as the rank of 'ltq (see 18.9 and 18.12). As far as the 
rational cohomology is concerned, then, the finite homotopy groups in the 
Postnikov towers have no effect. If the minimal model of M is to be built 
step by step out of its Postnikov towers, it makes sense that a generator 
appears in the model precisely when a rational homotopy element is in
volved. Hence it is not unreasonable that the dimension of the rational 
homotopy group 'ltq(M) ® Q is equal to the number of generators of the 
minimal model in dimension q. However, to make these arguments precise, 
considerable technical details remain to be resolved. In fact, at this writing 
there is no truly satisfactory exposition of rational homotopy theory avail
able. 

From this theorem and Examples 19.1 and 19.2 we have again Serre's 
result (18.22) that the homotopy groups of an odd sphere sn are torsion except 
in dimension n, where it is infinite cyclic; for an even sphere sn, the excep
tional dimensions are nand 2n - 1. 

EXAMPLE 19.6. The wedge ofthe spheres sn and sift is the union ofSn andSlft 

with one point in common, written sn V Sift. As an application of Sullivan's 
theory we will compute the ranks of the first few homotopy groups of 
82 V S2. Since 82 V 82 has the same homotopy type as 1R3 - P - Q, where P 
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and Q are two distinct points of 1R3 , it suffices to construct a minimal model 
vi{ for Q*(1R3 - P - Q). 

At this stage we exploit the geometry of the situation to construct two 
closed 2-forms x and y on 1R3 - P - Q that generate the cohomology 
H1JR(1R3 - P - Q) and that satisfy 

x2 = xy = y2 = o. 
For this purpose choose small spheres Sp and Sa about P and Q respec
tively. Let Wp be a bump form of mass 1 concentrated near the north pole of 
S p and let wa be a similar form about the south pole of Sa. The projection 
from P defines a natural map 

1tp: 1R3 - P - Q-+ Sp; 

similarly the projection from Q defines a map 

1ta : 1R3 - P - Q -+ Sa. 

Then 

x = 1t; Wp and y = 1ta wa 

are easily seen to have the desired properties. 
The minimal model is now constructed in a completely algebraic way as 

follows. First of all, the minimal model vi{ must have two generators x and 
y in dimension 2 mapping to x and y. To kill x2, xy, and y2, we need three 
generators a, b, e in dimension 3 with (see Figure 19.1) 

da = Xl 

db =xy 

de = y2. 

The map f : vi{ -+ Q*(1R3 - P - Q) up to this point is given by x H x, Y H y, 
a,b,eHO. 

The differentials of the elements in dimension 5 are 

d(ax) = x3 

d(ay) = x2y 

d(bx) = x2y 

d(by) = xy2 

d(ex) = xy2 

d(ey) = y3. 

Hence d(ay - bx) = 0 and d(by - ex) = O. To kill these two closed forms, 
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7 

ab 
6 be 

ae 

5 p,q,r 

eX,ey 
4 e,g gx,gy 

aX,ay ax2,axy, ay2 

3 a,b,e bX,by bx2,bxy,by l 

eX,ey ex' ,exy, ey2 

2 

o x2,xy,y2 

o 2 3 4 5 6 7 

Figure 19.1 

there must be two elements e and 9 in dimension 4 such that 
de = ay - bx 

dg = by - ex. 

8 

To find the generators in dimension 5 we need to know the closed forms 
in dimension 6. By looking at the differentials of all the elements in dimen
sion 6: 

d(ex) = axy - bx2 

d(ey) = ay2 - bxy 

d(gx) = bxy - ex2 

d(gy) = by2 - exy 

d(ab) = bx2 - axy 

d(be) = exy - by2 

d(ae) = ex2 - ay2, 

it is readily determined that ex + ab, gy + be, and ey + gx + ae are closed. 
Since the existing elements of dimension 5 do not map to these, we need 
three generators p, q, r in dimension 5 with 

dp = ex + ab 

dq = gy + be 

dr = ey + gx + ae. 
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The reader is invited to continue this process one step further and show 
that in dimension 6 there are six generators. 

In summary the generators in dimensions ::; 6 are 

dim 2 3 4 5 6 

generators X,Y a, b, c e, g p, q, r S, t, U, v, w, z 

By Sullivan's theorem the rank of 7tq(S2 V S2) is 

q 1 2 3 4 5 6 

dim 7tq(S2 V S2) ® Q 0 2 3 2 3 6 

This agrees with Hilton's result on the homotopy groups of a wedge of 
spheres (Hilton [1]), since by Hilton's theorem 

7tq.<S2 V S2) = 7tq(S2) + 7tq(S2) + 7tq(S3) + 7tq(S4) + 7tq(S4) 

+ L 7tq(SS) + L 7tq(S6) + 7tq of spheres of dimension ~ 7. 
3 copl.. 6 copl •• 



CHAPTER IV 

Characteristic Classes 

After the excursion into homotopy theory in the previous chapter, we 
return now to the differentiable category. Thus in this chapter, in the ab
sence of explicit qualifications, all spaces are smooth manifolds, all maps 
are smooth maps, and H*(X) denotes the de Rham cohomology. 

In Section 6 we first encountered the Euler class of a Coo oriented rank 2 
vector bundle. It is but one of the many characteristic classes-that is, 
cohomology classes intrisically associated to a vector bundle. In its modern 
form the theory of characteristic classes originated with Hopf, Stiefel, Whit
ney, Chern, and Pontrjagin. It has since found many applications to topol
ogy, differential geometry, and algebraic geometry. 

In its most rudimentary form the point of view towards the Chern classes 
really goes back to the old Italian algebraic geometers, but in Section 20 we 
recast it along the ideas of Grothendieck. We introduce in Section 21 the 
computational and proof technique known as the splitting principle. This is 
followed by the Pontrjagin classes, which may be considered the real ana
logue of the Chern classes. We also include an application to the embedding 
of manifolds. 

In the final section the Chern classes are shown to be the only complex 
characteristic classes in the following sense: any natural transformation 
from the complex vector bundles to the cohomology ring is a polynomial in 
the Chern classes. An added dividend is a classification theorem for com
plex vector bundles. With its aid we fulfill an earlier promise (see ·the 
remark following Prop. 11.9) to show that the vanishing of the Euler class 
of an oriented sphere bundle does not imply the existence of a section. 

For the Euler class of a rank 2 bundle we had in (6.38) an explicit 
formula in terms of the patching data on the base manifold M. Elegant as 
the Grothendieck approach to the Chern classes is, it is not directly linked 
to the geometry of M, for it gives no such patching formulas. In the con
cluding remarks to this chapter we describe without proof a recipe for 

266 
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constructing the Chern classes of a complex vector bundle 1t: E -. M out of 
the transition functions of E and a partition of unity on M relative to some 
trivializing good cover for E. 

§20 Chern Classes of a Complex Vector Bundle 

In this section we will study the characteristic classes of a complex vector 
bundle. To begin with we define the first Chern class of a complex line 
bundle as the Euler class of its underlying real bundle. Applying the Leray
Hirsch theorem, we then compute the cohomology ring of the projectiviza
tion P(E) of a complex vector bundle E and define the Chern classes of E in 
terms of the ring structure of H*(P(E). We conclude with a list of the main 
properties of the Chern classes. 

The First Chern Class of a Complex Line Bundle 

Recall that a complex vector bundle of rank n is a fiber bundle with fiber 
en and structure group GL(n, C). A complex vector bundle of rank 1 is also 
called a complex line bundle. Just as the structure group of a real vector 
bundle can be reduced to the orthogonal group O(n), so by the Hermitian 
analogue of (6.4), the structure group of a rank n complex vector bundle can 
be reduced to the unitary group U(n). Every complex vector bundle E of 
rank n has an underlying real vector bundle ER of rank 2n, obtained by 
discarding the complex structure on each fiber. By the isomorphism of U(l) 
with 50(2), this sets up a one-to-one correspondence between the complex 
line bundles and the oriented rank 2 real bundles. We define the first Chern 
class of a complex line bundle L over a manifold M to be the Euler class of 
its underlying real bundle L IR : cl(L) = e(LIR) E H 2(M). 

If Land r.. are complex line bundles with transition functions {g/l/l} and 
{g~/l}' 

then their tensor product L ® r.. is the complex line bundle with transition 
functions {g .. /l . g~/l}' By the formula (6.38) which gives the Euler class in 
terms of the transition functions, we have 

(20.1) 

Let L * be the dual of L. Since the line bundle L ® L * = Hom( L, L) has 
a nowhere vanishing section given by the identity map, L ® L * is a trivial 
bundle. By (20.1), c1(L) + c1(L*) = cl(L ® L*) = O. Therefore, 

(20.2) 
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EXAMPLE 20.3 (Tautological bundles on a projective space). Let V be a 
complex vector space of dimension nand P(V) its projectivization: 

P(V) = {1-dimensional subspaces of V}. 

On P(V) there are several God-given vector bundles: the product b~ndle 
V = P(V) x V, the universal subbundle S, which is the sub bundle of V de
fined by 

S = {(t, v) E P(V) x Vlv E t}, 

and the universal quotient bundle Q, defined by the exact sequence 

(20.4) 

The fiber of S above each point t in P(V) consists of all the points in t, 
where t is viewed as a line in the vector space V. The sequence (20.4) is 
called the tautological exact sequence over P(V), and S· the hyperplane 
bundle. 

Consider the composition 

(1 : S c. P(V) x V --+ V 

of the inclusion followed by the projection. The inverse image of any point v 
is 

(1-1(V) = {(t, v) I vet}. 

U V -+ 0, (1-1(V) consists of precisely one point (t, v) where t is the line 
through the origin and v; if v = 0, then (1-1(0) is isomorphic to P(V). Thus S 
may be obtained from V by separating all the lines through the origin in V. 
This map (1 : S --+ V is called the blow-up or the quadratic transformation of 
of V at the origin. Over the real numbers the blow-up of a plane may be 
pictured as the portion of a helicoid in Figure 20.1 with its top and bottom 
edges identified. Indeed, we may view the (x, y)-plane as being traced out by 
a horizontal line rotating about the origin. In order to separate these lines 
at the origin, we let the generating line move with constant velocity along 
the z-axis while it is rotating horizontally. The resulting surface in 1R3 is a 
helicoid. 

We now compute the cohomology of P(V). Endow V with a Hermitian 
metric and let E be the unit sphere bundle of the universal subbundle S: 

E = {(t, v) I vet, II v II = 1}. 

Note that (1-1(0) is the zero section of the universal subbundle S. Since 
S - (1-1(0) is diffeomorphic to V - {O}, we see that E is diffeomorphic to 
the sphere s2n - 1 in V and that the map 11: : E --+ P(V) gives a fibering 

S1--+ s2n-1 

! 
P(V). 
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,---L_*_7 
Figure 20.1 

By a computation similar to (14.32), the cohomology ring H*(P(V» is seen 
to be generated by the Euler class of the circle bundle E, i.e., the first Chern 
class of the universal subbundle S. It is customary to take x = Cl(S*) = 
-Cl(S) to be the generator and write 

(20.S) H*(P(V» = R[x]/(x"), where n = dime V. 

We define the Poincare series of a manifold M to be 

GO 

P J,M) = L dim H'(M) t'. 
1=0 

By (20.S) the Poincare series of the projective space P(V) is 

1 - t211 
PJ,P(V» = 1 + t2 + ... + t 2(II-l) = --2 . 

1 - t 

The Projectivization of a Vector Bundle 

Let p : E - M be a complex vector bundle with transition functions g", : 
U" f"I U,- GL(n, C). We write Ep for the fiber over p and PGL(n, C) for the 
projective general linear group GL(n, C)/{scalar matrices}. The projectiviza
tion of E, 1[ : P(E)- M, is by definition the fiber bundle whose fiber at a 
point p in M is the projective space P(Ep) and whose transition functions 
g",: U. f"I U,--+ PGL(n, C) are induced from g.,. Thus a point of P(E) is a 
line t p in the fiber E p • 

As on the projectivization of a vector space, on P(E) there are several 
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tautological bundles: the pullback 11: -1 E, the universal subbundle S, and the 
universal quotient bundle Q. 

0-+ S-+ 11:- 1 E-+ Q-+ 0 

The pullback bundle 11: - 1 E is the vector bundle over P(E) whose fiber at t, 
is E p' When restricted to the fiber 11: - 1(p) it becomes the trivial bundle, 

1I:- 1Elp(E)p = P(E), x E" 

since p : Ep-+ {p} is a trivial bundle. The universal subbundle S over P(E) is 
defined by 

S = {(t" v) E 1I:- 1Elv E t p}. 

Its fiber at t p consists of all the points in t,. The universal quotient bundle 
Q is determined by the tautological exact sequence 

0-+ S-+ 11:- 1 E-+ Q-+ O. 

Set x = C1(S*), Then x is a cohomology class in H2(P(E». Since the 
restriction of the universal subbundle S on P(E) to a fiber P(Ep) is the 
universal subbundle S of the projective space P(E,b by the naturality pro
perty of the first Chern class (6.39), it follows that c1(S) is the restriction of - x 
to P(Ep)' Hence the cohomology classes 1, x, ... , xn - 1 are global classes on 
P(E) whose restrictions to each fiber P(Ep) freely generate the cohomology 
of the fiber. By the Leray-Hirsch theorem (5.11) the cohomology H*(P(E» is 
a free module over H*(M) with basis {1, x, ... , xn-l}. So xn can be written 
uniquely as a linear combination of 1, x, ... , Xn -1 with coefficients in 
H*(M); these coefficients are by definition the Chern classes of the complex 
vector bundle E: 

(20.6) xn + C1(E)Xn- 1 + ... + cn(E) = 0, 

In this equation by c, (E) we really mean 1I:*c, (E). We call Ci (E) the ith Chern 
class of E and 

c(E) = 1 + c1(E) + ... + cn(E) E H*(M) 

its total Chern class. With this definition of the Chern classes, we see that 
the ring structure of the cohomology of P(E) is given by 

(20.7) H*(P(E» = H*(M)[x]/(xn + c1(E)xn- t + ... + cn(E», 

where x = Ct(S*) and n is the rank of E. Since additively 

H*(P(E» = H*(M)®H*(pn - 1), 
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where pn- 1 is the complex projective space P(Cn), the Poincare series of P(E) is 

(20.8) 
1 - t2n 

Pr(P(E» = Pr(M) --2 . 
1 - t 

We now have two definitions of the first Chern class of a line bundle L: 
as the Euler class of LR , and as a coefficient in (20.6). To check that these 
two definitions agree we will temporarily reserve the notation c 1 ( ) for the 
second definition. What must be shown is that e(LIA) = c1(L). 

(20.9) 

For a line bundle L, P(L) = M, n- 1L = L and the universal subbundle S on 
P(L) is L itself. Therefore, x = e(S=) = - e(SRl = - e(LR). So the relation 
(20.6) is x + e(LIII) = 0, which proves that c1(L) = e(LR). 

If E is the trivial bundle M x V over M, then P(E) = M x P(V), so 
x" = O. Hence all the Chern classes of a trivial bundle are zero. In this sense 
the Chern classes measure the twisting of a complex vector bundle. 

Main Properties of the Chern Classes 

In this section we collect together some basic properties of the Chern 
classes. 

(20.10.1) (Naturality) If f is a map from Y to X and E is a complex vector 
bundle over X, then c(f- 1E) =f*c(E). 

f- 1E E 

1 1 
Y---+. X 

J 

PROOF. Basically this property follows from the functoriality of all the con
structions in the definition of the Chern class. To be precise, by (6.39) the 
first Chern class of a line bundle is functorial. Write SE for the universal 
subbundle over PE. Now f- 1PE = P(f- 1E) and f-1S~ = S1-1E' so if 
XE = Cl(S~), then 
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Applyingf* to 

we get 

Hence 

o 

It follows from the naturality of the Chern class that if E and Fare 
isomorphic vector bundles over X, then c(E) = c(F). 

(20.10.2) Let V be a complex vector space. If S* is the hyperplane bundle over 
P(V), then CI(S*) generates the algebra H*(P(V». 

This was proved earlier (20.5). 

(20.10.3) (Whitney Product Formula) c(E' E9 E") = c(E')c(E"). 

The proof will be given in the next section. 

In fact, these three properties uniquely characterize the Chern class 
(Hirzebruch [1, pp. 58-60]). For future reference we list below three more 
useful properties. 

(20.10.4) If E has rank n as a complex vector bundle, then CI (E) = 0 for i > n. 

This is really a definition. 

(20.10.5) If E has a nonvanishing section, then the top Chern class cn(E) is 
zero. 

PROOF. Such a section s induces a section s of P(E) as follows. At a point p 
in X, the value of sis the line in Ep through the origin and s(P). 

P(E) 

if1n 
X 

Then rISE is a line bundle over X whose fiber at p is the line in Ep 
spanned by s(p). Since every line bundle with a nonvanishing section is 
isomorphic to the trivial bundle, we have the tautology 

r IS E ~ the trivial line bundle. 

It follows from the naturality of the Chern class that 

§*CI(SE) = 0, 
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which implies that 

§*x = O. 

Applying §* to 

we get 

By our abuse of notation this really means §*1t*cn = O. Therefore Cn = O. 
o 

(20.10.6) The top Chern class of a complex vector bundle E is the Euler class 
of its realization: 

cn(E) = e(EgJ, where n = rank E. 

This proposition will be proved in the next section after we have es
tablished the splitting principle. 

§21 The Splitting Principle and Flag Manifolds 

In this section we prove the Whitney product formula and compute a few 
Chern classes. The proof and the computations are based on the splitting 
principle, which, roughly speaking, states that if a polynomial identity in the 
Chern classes holds for direct sums of line bundles, then it holds for general 
vector bundles. In the course of establishing the splitting principle we intro
duce the flag manifolds. We conclude by computing the cohomology ring of 
a flag manifold. 

The Splitting Principle 

Let t : E -+ M be a COO complex vector bundle of rank n over a manifold M. 
Our goal is to construct a space F(E) and a map u :F(E)-+ M such that: 

(1) the pullback of E to F(E) splits into a direct sum of line bundles: 
u- 1E = L1 E9'" E9 Ln; 

(2) u* embeds H*(M) in H*(F(E». 

Such a space F(E), which is in fact a manifold by construction, is called a 
split manifold of E. 

If E has rank 1, there is nothing to prove. 
If E has rank 2, we can take as a split manifold F(E) the projective 
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bundle P(E), for on P(E) there is the exact sequence 

0-+ SB-+ (1-1 E -+ QB-+ 0; 

IV Characteristic Classes 

by the exercise below, (1-1 E = SB $ QB, which is a direct sum of line bun
dles. 

Exercise 21.1. Let 0 -+ A -+ B -+ C -+ 0 be a short exact sequence of COO 
complex vector bundles. Then B is isomorphic to A ED C as a Coo bundle. 

Now suppose E has rank 3. Over P(E) the line bundle SB splits off as 
before. The quotient bundle QB over P(E) has rank 2 and so can be split 
into a direct sum of line bundles when pulled back to P(QB)' 

Thus we may take P(QE) to be a split manifold F(E). Let Xl = P*C1(SJ) and 
X2 = C1(Sas)' By the result on the cohomology of a projective bundle (20.7), 

H*(F(E» = H*(M)[Xh X2]/(X~ + c1(E)xf + c2(E)X1 + c3(E), 

x~ + Cl(QE)X2 + C2(QE»' 

The pattern is now clear; we split off one subbundle at a time by pulling 
back to the projectivization of a quotient bundle. 
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So for a bundle E of any rank n, a split manifold F(E) exists and is given 
explicitly by (21.2). Its cohomology H*(F(E» is a free H*(M)-module having 
as a basis all monomials of the form 

(21.3) X~lX~2 ••• x:"":i, al::;; n -1, a2::;; n - 2, ... , an-I::;; 1, 

al> ... , an - I nonnegative, 

where XI = cI(Sr) in the notation of the diagram. 
More generally, by iterating the construction above we see that given 

any number of vector bundles E I> ... , Er over M, there is a manifold Nand 
a map (I: N - M such that the pullbacks of EI> ... , Er to N are all direct 
sums of line bundles and that H*(M) injects into H*(N) under (1*. The 
manifold N is a split manifold for EI> ... , Er • 

Because of the existence of the split manifolds we can formulate the 
following general principle. 

The Splitting Principle. To prove a polynomial identity in the Chern classes of 
complex vector bundles, it suffices to prove it under the assumption that the 
vector bundles are direct sums of line bundles. 

For example, suppose we want to prove a certain polynomial relation 
P(c(E), c(F), c(E ® F» = 0 for vector bundles E and F over a manifold M. 
Let (I : N - M be a split manifold for the pair E, F. By the naturality of the 
Chern classes 

where (I-IE and (I-IF are direct sums of line bundles. So if the identity 
holds for direct sums of line bundles, then 

(1* P(c(E), c(F), c(E ® F» = O. 

By the injectivity of (1* : H*(M)- H*(N), 

P(c(E), c(F), c(E ® F» = o. 
In the next two subsections we give some illustrations of this principle. 

Proof of the Whitney Product Formula and the Equality of the Top 
Chern Class and the Euler Class 

We consider first the case of a direct sum of line bundles: 

E = LI EI)···EI)Ln• 

By abuse of notation we write 1t- 1 E = LI EI) ... EI) Ln for the pullback of E 
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to the projectivization peE). Over P(E). the universal subbundle S splits off 
from x-IE. 

Let Si be the projection of S onto L,. Then s, is a section of Hom(S. L,) = 
S· ® L, . Since at every point y of peE). the fiber Sy is a 1-dimensional 
subspace of (x- 1E)y. the projections SIo .... sn cannot be simultaneously 
zero. It follows that the open sets 

U, = {y E P(E) I Si(Y) :/= O} 

form an open cover of P(E). Over each U, the bundle (S· ® L,) lUI has a 
nowhere-vanishing section. namely S,; so (S· ® L,) lUi is trivial. Let ei be a 
closed global 2-form on peE) representing Cl(S· ® L,). Then eilui = dWi for 
some 1-form W, on U" The crux of the proof is to find a global form on 
peE) that represents Cl(S· ® L,) and that vanishes on U,; because W, is not 
a global form on peE). ei - dw, won't do. However. by shrinking the open 
cover {Ui} slightly we can extend ei - dWi to a global form. To be precise 
we will need the following lemmas. 

Exercise 21.4 (The Shrinking Lemma). Let X be a normal topological space 
and {Ul},&l a finite open cover of X. Then there is an open cover {J'H'El 
with 

Exercise 21.5. Let M be a manifold. U an open subset. and A a closed 
subset contained in U. Then there is a C<XJ function/which is identically 1 
on A and is 0 outside U. 

It follows from these two lemmas that on peE) there exists an open cover 
{JIj} and C<XJ functions P, satisfying 

(a) ~ c: U, 
(b) P, is 1 on ~ and is 0 outside U" 

Now PI W, is a global form which agrees with W, on JIj so that 

is a global form representing Cl(S· ® L,) and vanishing on JIj. In summary. 
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there is an open cover {Y,} of P(E) such that C1(S* ® L I) may be represented 
by a global form which vanishes on Y,. 

Since {Y,} covers P(E), n1= 1 C1(S* ® LI) = O. Writing x = C1(S*), this 
gives by (20.1) 

n 

n(x + c1(LI» = xn + 0'1Xn- 1 + ... + O'n = 0 
j=1 

where t11 is the ith elementary symmetric polynomial of cl(L1), ... , c1(Ln). 
But this equation is precisely the defining equation of c(E). Thus 

t1j = CI(E) 

and 

c(E) = n (1 + cl(L j» = n c(LI)' 

So the Whitney product formula holds for a direct sum of line bundles. By 
the splitting principle it holds for any complex vector bundle. As an illustra
tion of the splitting principle we will go through the argument in detail. Let 
E and E' be two complex vector bundles of rank nand m respectively and 
let 7t: F(E) -+ M and 7t': F(7t - 1 E') -+ F(E) be the splitting constructions. 
Both bundles split completely when pulled back to F(7t- 1 E') as indicated in 
the diagram below. 

L1 $'" $Ln$Li$"'$L;" 

L 1$"'$Ln$7t- 1E' 1 
E$E' 1 ~ F(7t- 1E') ! .-----:--- F(E) 

Let t1 = 7t' 0 7t. Then 

t1*c(E $ E') = c(0'-1(E $ E'» = C(L1 $'" $ Ln $ Ll $'" $ L;,.) 

= n c(LI)c(L~ 

= t1*c(E)O'*(E') = O'*c(E)c(E'). 

Since t1* is injective, c(E $ E') = c(E)c(E'). This concludes the proof of the 
Whitney product formula. 

REMARK 21.6. By Exercise (21.1) and the Whitney product formula, when
ever we have an exact sequence of Coo complex vector bundles 

O-+A-+B-+C-+O, 

then c(B) = c(A)c(C). 
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As an application of the existence of the split manifold and the Whitney 
product formula, we will prove now the relation (20.10.6) between the top 
Chern class and the Euler class. Let E be a rank n complex vector bundle 
and u: F(E)~ E its split manifold. Write u- 1 E = Ll EEl'" EEl Ln, where the 
L/s are line bundles on the split manifold F(E). 

u*cn(E) = cn(u- 1E) 
= cl(L 1)'" cl(Ln) 

= e« u - 1 E)IJi) 

= u*e(EIJi)· 

by the naturality of Cn 

by the Whitney product formula 
(20.10.3) 
by the definition of the first Chern 
class of a complex line bundle 
by the Whitney product formula for 
the Euler class (12.5) 

By the injectivity of u* on cohomology, cn(E) = e(EIJi). 

Computation of Some Chern Classes 

Given a rank n complex vector bundle E we may write formally 

n 

c(E) = n (1 + Xi), 
i= 1 

where the Xi'S may be thought of as the first Chern class of the line bundles 
into which E splits when pulled back to the splitting manifold F(E). Since 
the Chern classes cl(E), ... , cn(E) are the elementary symmetric functions of 
Xl> ... , Xn, by the symmetric function theorem (van der Waerden [1, p. 99]) 
any symmetric polynomial in Xl> ... , Xn is a polynomial in cl(E), ... , cn(E); 
a similar result holds for power series. 

EXAMPLE 21.7 (Exterior powers, symmetric powers, and tensor products). 
Recall that if V is a vector space with basis {Vi' ••• , Vn}, then the exterior 
powerAP Visthevectorspacewithbasis{vil 1\ ... 1\ Vip}l~II<"'<lp~n' So 
if E is the direct sum of line bundles E = Ll EEl •.• EEl L n, then 

APE = E9 (LII ® ... ® Lip)' 
1 ::!$;il <"'<i,,::S;;1I 

Hence 

c(APE) = n (1 + cl(Lil ® ... ® LiJ) 

= n (1 + Xii + ... + XIJ 

by the Whitney product formula 

by (20.1), with Xi = cl(L;), 

where the product is over all multi-indices 1 ~ il < ... < ip ~ n. Since the 
right-hand side is symmetric in Xl> ... , Xn, it is expressible as a polynomial 
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c(AJ'E) = Q(Cl(E), ... , c,,(E». 

By the splitting principle this formula holds for every rank n vector bundle, 
whether it is a direct sum or not. It should be pointed out that the poly
nomial Q depends only on nand p, not on E; for example, the Chern class 
of A 2 E, where rank E = 3, is given by 

c(A 2 E) = Q(ct> Cl, C3) = (1 + Cl - xl)(1 + Cl - xl)(1 + Cl - X3) 

= (1 + Cl)3 - Cl(1 + Cl)2 + cz(1 + Cl) - C3' 

Similarly, if V and Ware vector spaces with bases {Vi> ... , v,,} and {Wi> •.. , 

wm} respectively, then the pth symmetric power SPy of V is the vector 
space with basis {VII ® ... ® Vip}lE: i lE:"'E:ip E:" and the tensor product 
V®W is the vector space with basis {VI®Wj}lE:IE:",lE:jE:m' By the same 
discussion as above, if E is a rank n vector bundle withc(E) = n7=1 (1 + XI) 

and F is a rank m vector bundle with c(F) = nj=l (1 + Yj), then 

(21.8) c(SPE) = n (1 + XII + ... + XIJ 

and 

(21.9) 

l~ll:E:··dsa,~n 

c(E ® F) = n (1 + Xi + Yj)' 
lE:IE:" 
l~J~'" 

In particular if L is a complex line bundle with first Chern class y, then 

" " (21.10) c(E ® L) = n (1 + Y + XI) = L cl(E)(1 + y)"-i, 
1=1 1=0 

where by convention we set co(E) = 1. 

EXAMPLE 21.11 (The L-class and the Todd class). In the notation of the 
preceding example the power series 

Ii fxt 
1=1 tanh fxt 

is symmetric in Xi> ••• , x,,, hence is some power series L in cl(E), ... , c,,(E). 
This power series L(E) = L(Cl(E), ... , c,,(E» is called the L-class of E. By the 
splitting principle the L-class automatically satisfies the product formula 

L(E E9 F) = L(E)L(F). 

Similarly, 

" XI n x = Td(c 1(E), ... , c,,(E» = Td(E) 
1=1 1 - e j 

defines the Todd class of E. By the splitting principle the Todd class also 
automatically satisfies the product formula. The L-class and the Todd 
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class turn out to be of fundamental importance in the Hirzebruch signature 
formula (see Remark 22.9) and the Riemann-Roch theorem (see Hirzebruch 
[1]). 

EXAMPLE 21.12 (The dual bundle). Let L be a complex line bundle. By (20.2), 

c1(L*) = -c1{L). 

Next consider a direct sum of line bundles 

E = L1 Ea ... Ea Ln· 

By the Whitney product formula 

c(E) = c(L1) .. ·c(Ln) = (1 + c1{L1)) ... (1 + c1(Ln))· 

On the other hand 

and 

Therefore 

cq(E*) = (-1)qcq(E). 

By the splitting principle this result holds for all complex vector bundles E. 

EXAMPLE 21.13 (The Chern classes of the complex projective space). By 
analogy with the definition of a differentiable manifold, we say that a 
second countable, Hausdorff space M is a complex manifold of dimension n 
if every point has a neighborhood Ua homeomorphic to some open ball in 
en, CPa: Ua ~ en, such that the transition functions 

Cn 
V 

g«p = 4J« 0 4Ji 1 : 4Jp(U« n U/l)-+ Cn 

are holomorphic. Smooth maps and smooth vector bundles have obvious 
analogues in the hoi om orphic category. If U10 ••• , Un are the coordinate 
functions on cn, then Zj = Uj 0 4J«, i = 1, ... , n, are the coordinate functions 
on V«. At each point p in V« the vectors %z 10 ••• , %zn span over C the 
holomorphic tangent bundle of M. It is a complex vector bundle of rank n. 
The Chern class of a complex manifold is defined to be the Chern class of 
its holomorphic tangent bundle. 

The complex projective space cpn is an example of a complex manifold, 
since, as in Exercise 6.44, the transition functions gjl relative to the standard 
open cover are given by multiplication by z;/Zj, which are holomorphic 
functions from 4Jj{Vj n UJ) to 4J j (V j n Vj)' Recall that there is a tauto
logical exact sequence on cpn 

0-+ S-+ cn+ 1-+ Q-+ 0, 

where en + 1 denotes the trivial bundle of rank n + 1 over cpn. A tangent 
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Figure 21.1 

vector to cpn at a line t in Cn+ 1 may be regarded as an infinitesimal 
motion of the line t (Figure 21.1). Such a motion corresponds to a linear 
map from t to the quotient space Cn+ 1/t, which may be represented by the 
complementary subspace of tin Cn+ 1 (relative to some metric). Thus, de
noting the holomorphic tangent bundle by T, we have 

T ~ Hom(S, Q) = Q ® S·. 

We will compute the Chern class of T in two ways. 

(1) Tensoring the tautological sequence with S·, we get 

0-+ C-+ S· ® Cn + 1 -+ S· ® Q-+ O. 

By the Whitney product formula 

c(n = c(S· ® Q) = c(S· ® cn+ 1) = C(S· EJ:) ••• EJ:) S.) = (1 + X)n+ 1, 

where x = C1(S·). 
(2) From the tautological exact sequence and the Whitney product formula 

1 lin c(Q) = - = -- = + x + ... + x , 
c(S) 1 - x 

since xn+ 1 = 0 in H·(cpn). By (21.10) 

n n 

c(CP") = c(Q ® S·) = L c~Q)(1 + x)n-I = L xl(1 + x)n-I 
1=0 1=0 

n ( X )1 = (1 + x)n L -1-
1=0 + X 

= (1 + x)n+1 _ xn+1 

= (1 + x)n+1. 
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Exercise 21.14. Chern classes of a hypersurface in a complex projective space. 
Let H be the hyperplane bundle over the projective space CP" (see (20.3», 
and H®A: the tensor product of k copies of H. The line bundle H is in fact 
more than a COO complex line bundle; because its transition functions are 
holomorphic, it is a holomorphic line bundle. The total space of a holomorp
hic bundle over a complex manifold is again a complex manifold, so that 
the notion of a holomorphic section makes sense. The zero locus of a holo
morphic section of H09" is called a hypersurface of degree k in CP". If the 
section is transversal to the zero section, then the hypersurface is a smooth 
complex manifold. Compute the Chern classes of a smooth hypersurface of 
degree k in cpn. (Hint: apply Prop. 12.7 to get the normal bundle of the 
hypersurface.) 

Flag Manifolds 

Given a complex vector space V of dimension n, aflag in V is a sequence of 
subspaces A1 c A2 C ••• c An = V, dime Ai = i. Let FI(V) be the collection 
of all flags in V. Clearly any flag can be carried into any other flag in V by 
an element of the general linear group GL(n, C), and the stabilizer at a flag 
is the group H of the upper triangular matrices. So as a set FI(V) is isomor
phic to the coset space GL(n, C)/H. Since the quotient of a Lie group by a 
closed subgroup is a manifold (Warner [1, p. 120]), FI(V) can be made into 
a manifold. It is called the flag manifold of V. 

Given a vector bundle E, just as one can form its projectivization P(E), 
so one can form its associated flag bundle FI(E). The bundle FI(E) is ob
tained from E by replacing each fiber E" by the flag manifold FI(E,,); the 
local trivialization <p,.: E lu. ~ U,. X Cn induces a natural trivialization 
FI(E) lu. :::= U,. x FI(Cn). Since GL(n, C) acts on FI(Cn), we may take the 
transition functions of FI(E) to be those of E, but note that FI(E) is not a 
vector bundle. 

Proposition 21.15. The associated flag bundle FI(E) of a vector bundle is the 
split manifold F(E) constructed earlier. 

PROOF. We first show this for E = V a vector space of dimension 3, viewed 
as a rank 3 vector bundle over a point. 

sye save Qav 

SyeQy 1 
V 1 ________ P(Qy) = F(V) 

.1 ________ P(V) 

pomt 
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In what follows all lines and planes go through the origin. A point 
in P(V) is a line L in V. A point of P(Qy) is a line L in V and a line~ in 
V/L. ~ may be regarded as a 2-plane in V containing L. Thus Fl(V) = 
P(Qy) = {A 1 C A2 C V, dim AI = i} = F(V). 

Now let E be a vector bundle ofrank n over M. The split manifold F(E) 
is obtained by a sequence of n - 1 projectivizations as in (21.2). A point of 
peE) is a pair (p, (), where p is in M and ( is a line in Ep- By introducing a 
Hermitian metric on E, we may regard all the quotient bundles Q" ... , 
Q,,-l in (21.2) as subbundles of E. Then a point of P(Ql) over(p, (1) in peE) 

is a triple (p, (h (2) where (2 is a line in the orthogonal complement oft 1 

in Ep. A point of P(Q2) over (p, (h (2) in P(Ql) is a 4-tuple (p, t h (2, (3) 

where (3 is a line in the orthogonal complement of (1 and t 2 in Ep. Thus, 
more generally, a point in the split manifold F(E) = P(Q,,-l) may be ident
ified with the flag 

(p, (1 c {I" (2} C {(1' (2, (3} c··· c Ep). 

This proves the equality of the split manifold F(E) and the flag bundle 
~~ 0 

From now on the notations F(E) and Fl(E) will be used interchangeably. 
The formula (21.3) gives one description of the vector space structure of 

the cohomology of a flag bundle. To compute its ring structure we first 
recall from (20.7) that if E is a rank n complex vector bundle over M, then 
the cohomology ring of its projectivization is 

H*(P(E» = H*(M)[x]/(x" + cl(E)x,,-l + ... + c,,(E», where x = Cl(S*), 

NOTATION. If A is a graded ring, and a, b, c, f E A, then (a, b, c) denotes 
the ideal generated by a, b, and c, while (f = 0) denotes the ideal generated 
by the homogeneous components of f. 

There is an alternate description of the ring structure which is sometimes 
very useful. We write H*(M)[c(S), c(Q)] for H*(M)[Cl(S), Cl(Q), ... , C,,-l(Q)], 
where Sand Q are the universal subbundle and quotient bundle on peE)· 

0-+ S-+ 7t*E-+ Q-+ 0 

1 E 

peE) 1 
~ 

M 

Proposition 21.16. H*(P(E» = H*(M)[c(S), c(Q)]/(c(S)c(Q) = 7t*c(E». 

PROOF. The idea is to eliminate the generators Cl(Q), ... , C,,-l(Q) by using 
the relation c(S)c(Q) = 7t*c(E). Let x = Cl(S*), YI = c~Q), and CI = 7t*c~E). 
Equating the terms of equal degrees in 

(1 - x)(1 + Yl + ... + Y,,-l) = 1 + Cl + ... + c,,' 
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we get 

Yl - x = Cl' 

Yz - XYI = CZ' 

Y.-l - XY.-Z = C.-b 

- XY.-l = c •. 

By the first n - 1 equations, Yl' ... , Y.-l can be expressed in terms of x 
and elements of H*(M), and so can be eliminated as generators of 
H*(M)[c(S), c(Q)]/(c(S)c(Q) = n*c(E)). The last equation -XYn-l = c. trans
lates into 

X· + c 1 x· - 1 + ... + c. = o. 
Hence H*(M)[c(S), c(Q)J/(c(S)c(Q) = n*c(E)) is isomorphic to the poly
nomial ring over H*(M) with the single generator x and the single relation 
~ 0 

By (21.2) and (21.15) the flag bundle Fl(E) is obtained from a sequence of 
n - 1 projectivizations. Applying Proposition 21.16 to (21.2), we have 

H*(P(Ql)) 

= H*(P(E))[C(S2), C(Q2)]/(C(Sz)c(Qz) = C(Ql)) 

= H*(M)[c(Sd, c(Qd, c(Sz), c(QzW(c(SdC(Ql) = c(E), c(Sz)c(Qz) = c(Qd) 

= H*(M)[c(S 1), C(S2), c(Qz)J/(c(S I)C(SZ)c(Qz) = c(E)). 

By induction 

H*(P(Q.-z)) 

= H*(M)[c(Sl)' ... , C(S.-l), C(Q.-l)J/(C(Sl)···C(S.-dc(Q.-l) = c(E)). 

Writing Xi = C1(Si)' i = 1, ... , n - 1, and X. = Cl(Q.-l), the cohomology ring 
of the flag bundle Fl(E) is 

H*«Fl(E)) = H*(M)[x 1, •.. , x.J I CI)y + Xi) = C(E)). 

Specializing this theorem to a complex vector space V, considered as the 
trivial bundle over a point, we obtain the cohomology ring of the flag 
manifold 

H*«Fl(V)) = IR[Xb ... , x.J I (lJY + Xi) = 1). 
As for the Poincare polynomial of the flag manifold we note again that 

the flag manifold is obtained by a sequence of n - 1 projectivizations (21.2). 
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By (20.8) each time we projectivize a rank k vector bundle, the Poincare 
polynomial is multiplied by (1 - t2k)/(1 - t2). So the Poincare polynomial 
of the flag manifold FI(V) is 

I_t2n I_t2n - 2 I-t2 
P,(FI(V)) = -- . . '" . --

I - t2 1 - t2 1 _ t2 • 

This discussion may be summarized in the following proposition. 

Proposition 21.17. Let V be a complex vector space of dimension n. The 
cohomology ring oftheftag manifold FI(V) is 

H*(FI(V)) = lR[xt. ... , xn] I (t~ (1 + XI) = 1). 

It has Poincare polynomial 

REMARK 21.18. Similarly, if E is a rank n complex vector bundle over a 
manifold M, then the cohomology ring of the flag bundle FI(E) is 

H*(FI(E)) = H*(M)[xt. ... , xn] I (t~ (1 + XI) = c(E») , 

and the Poincare series is 

REMARK 21.19. Since projectivization does not introduce any torsion el
ement in integer cohomology, the integer cohomology ring of the flag mani
fold Fl(V) is torsion-free and is given by the same formula as (21.17) with 7L 
in place of R The integer cohomology ring of a flag bundle is given by the 
same formula as (21.18). In fact, with a little care, the entire discussion can 
be translated into the Cech theory. 

§22 Pontrjagin Classes 

Although the Chern classes are invariants of a complex bundle, they can be 
used to define invariants of a real vector bundle, called the Pontrjagin 
classes. In this section we define the Pontrjagin classes, compute a few 
examples, and as an application obtain an embedding criterion for differ
entiable manifolds. 
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Conjugate Bundles 

Let V be a complex vector space. If Z E C and v E V, the formula 

Z * v = iv 

defines an action of C on V. The underlying additive group of V with this 
action as scalar multiplication is called the conjugate vector space of V, 
denoted V. The conjugate space V may be thought of as V with the op
posite complex structure; as a vector space, V is anti-isomorphic to V. A 
linear map f: V ~ W of two complex vector spaces V and W is also a linear 
map of the conjugate vector spaces f: V ~ W; we denote both by f as they 
are represented by the same matrix. 

Given a complex vector bundle E with trivialization 

cPa: E I u. ~ VaX C·, 

we construct the conjugate vector bundle E by replacing each fiber of E by 
its conjugate. The trivialization of E is given by 

lfia: EI u. ~ Va X C·, 

which is the composition 

q, conjugation EI u. ~ Va X C· ---->. Va X C·. 

In terms of transition functions, if the cocycle {gaP} defines E, then its 
conjugate {gaP} defines E. 

As in (6.4), by endowing a complex vector bundle on a manifold with a 
Hermitian metric, we can reduce its structure group to the unitary group. 
Since unitary matrices gaP satisfy gaP = (g~p) - 1, we see that the conjugate 
bundle E and the dual bundle E* have the same transition functions and 
hence are isomorphic. So by Example 21.12, if c(E) = n (1 + Xi), then 
c(E) = n (1 - x;). 

Realization and Complexification 

By simply forgetting the complex structure, we can regard a linear map of 
complex vector spaces L : C·~ C· with coordinates Zl' ..• , Z. as a linear 
map of the underlying real vector spaces L.Jl : ~2.~ ~2n with coordinates 
Xl> ... , X2. where Zk = X2k-l + iX2k' Conversely, via the natural embedding 
of ~n in C·, a linear map of real vector spaces L : ~n~ ~. gives rise to a 
map L ® C : C· ~ C·. The first operation is called realization and the 
second, complexification. The complexification of a real matrix is the matrix 
itself, but with the entries viewed as complex numbers. The realization of a 
complex matrix is described in Examples 22.2 and 22.3 below. In terms of 



§22 Pontrjagin Classes 287 

matrices these two operations give a sequence of embeddings 

U(n) c. O(2n) c. U(2n) 

f""I f""I f""I 

(22.1) GL(n, C) c. GL(2n, R) c. GL(2n, C) 

A 1-+ AIR 1-+ AIR ® c. 

EXAMPLE 22.2. Let L: (: -+ (: be given by multiplication by the complex 
number A. = a + ip. Since 

(a + W)(XI + iX2) = (axi - PX2) + i(PXI + aX2), 

as a linear map from R2 to R2, LIR is given by 

Thus 

. (a -P) (a + IP)IR = P a· 

EXAMPLE 22.3 Let L: (:2 -+ (:2 be given by the complex matrix (1~ 1!) 
where A.t = at + iPk. A little computation shows that LR : R4 -+ R4 is given 
by 

Thus 

It is clear from these two examples what the realization of an n by n 
complex matrix should be. 

Lemma 22.4. Let A be an n by n complex matrix. There is a 2n by 2n matrix 
B, independent of A, such that Alii ® (: is similar to (g ~) via B. 

PROOF. In the 1 by 1 case, this is a matter of diagonalizing 

. (a -P) (a + IP)IR ® (: = P a· 
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Corresponding to the eigenvalues (X + ifJ and (X - ifJ are the eigenvectors 
( ~ ,) and (t). Therefore, B = (~i t). 

Now consider the 2 by 2 case: 

( Al Al) '{J 
A = A3 A4 ' Ale = (Xle + l " 

AR ® C = (~: ~:) where Ak = (;: - !:) . 
Note that 

(A, A,) e 0 

~ ~}(-~ 
0 10)(, Al 

t) 0 0 i 0 A3 A4 
A3 A4 0 1 o 1 0 1 o 1 Il 

0 -i o i 0 -i o i I3 

SO 

C 
0 1 

D-
-i 0 i 

B= ~ 1 0 
-i 0 

For the n by n case, we can take B to be 

1 1 
-i 

1 1 
-i 

1 1 
-i 

o 
If E is a complex vector bundle of rank n with transition functions {gczll}' 

then ER ® C is the complex vector bundle of rank 2n with transition func
tions {(gczll)R ® C}. By Lemma 22.4, 

(22.S) ER ® C ~ E E9 E. 
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This result may be seen alternatively as follows. On the complex vector 
space EIR ® C, multiplication by i is a linear transformation J satisfying 
J2 = - 1. Therefore, the eigenvalues of J are ± j and EIR ® C accordingly 
decomposes into a direct sum 

EIR ® C = (i-eigenspace) E9 « - i)-eigenspace). 

On the i-eigenspace, J acts as multiplication by i, hence 

(i-eigenspace) ::> E. 
Similarly, 

« - i)-eigenspace) ::> E. 

It follows by reasons of dimension that 

EIR ® C = E E9 E. 

The Pontrjagin Classes of a Real Vector Bundle 

By their naturality property the Chern classes of a COO complex vector 
bundle are COO invariants of the bundle. For a real vector bundle E similar 
invariants may be obtained by considering the Chern classes of its com
plexification E ®R C; these are the Pontrjagin classes of E. More precisely, 
if E is a rank n real vector bundle over M, then its total Pontrjagin class is 

P(E) = 1 + Pl(E) + ... + Pn(E) 

= 1 + cl(E ® C) + ... + cn(E ® C) E H*(M). 

It follows from the corresponding properties of the total Chern class that 
the Pontrjagin class is functorial and satisfies the Whitney product formula 

P(E E9 E') = P(E)P(E'). 

The Pontrjagin class of a manifold is defined to be that of its tangent 
bundle. 

REMARK 22.6. Let E be a real vector bundle. Because the transition func
tions of E ® C are the same as those of E,they are real-valued, and 
therefore E ® C is isomorphic to its conjugate E ® C. It follows that 
cl(E®C) = cj(E®C)=( -1)lcl (E®C). For an odd i, then, 2c1(E®C)=O. 
Thus the odd Pontrjagin classes, as we have defined them, are zero in the 
de Rham cohomology, and torsion of order 2 in the integral cohomology. 
The usual definition of the Pontrjagin classes in the literature (see, for 
instance, Milnor and Stasheff [I, p. 174]) ignores these odd Chern classes 
and defines PI (E) to be 
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EXAMPLE 22.7. (The Pontrjagin class of the sphere). Since the sphere sn is 
orientable, its normal bundle N in IRn+ 1 is trivial. From the exact sequence 

0- Ts.- TIA.+ 1 Is.- N - 0, 

we see by the Whitney product formula that 

p(sn)p(N) = p(TRo +1 Iso). 
Therefore, 

p(sn) = 1. 

EXAMPLE 22.8 (The Pontrjagin class of a complex manifold). The Pontrjagin 
class of a complex manifold M is defined to be that of the underlying real 
manifold MR' Let T be the holomorphic tangent bundle to M. Then the 
tangent bundle to M R is the realization of T and 

P(M) = P(T~ = C(TR ® C) = c(T E9 t) = c(T)c(t). 

So if the total Chern class of the complex manifold M is c(M) = n (1 + x,), 
then the Pontrjagin class is P(M) = n (1 - xl). 

REMARK 22.8.1. If we had followed the usual sign convention for the Pontr
jagin classes (see Remark 22.6), the Pontrjagin class of a complex manifold 
would be P(M) = n (1 + xl), where the x/s are defined as above. To have 
only positive terms in this formula is one of the reasons for the sign in 
(_1)'C2i(E ® C) in the usual definition of the Pontrjagin class. 

REMARK 22.9. Let M be a compact oriented manifold of dimension 4n. By 
Poincare duality the wedge product 1\ : H2n(M) ® H2n(M)_ IR is a nonde
generate symmetric bilinear form and hence has a signature; this is called 
the signature of M. Recall that the signature of a symmetric matrix is the 
number of positive eigenvalues minus the number of negative eigenvalues. 
Hirzebruch proved that the signature is expressible in terms of the Pontrja
gin classes. 

H irzebruch signature formula: 

signature of M = (-1)" fM L(pl(M), ... , Pn(M», 

where L is the polynomial defined in Example 21.11. For a proof of the 
signature formula, see Milnor and Stasheff [1, p. 224]. 

Application to the Embedding of a Manifold 
in a Euclidean Space 

Using the Pontrjagin class one can sometimes decide if a conjectured em
bedding is possible. We illustrate this with the following example. 



§23 The Search for the Universal Bundle 291 

EXAMPLE 22.10. Decide ifCP"" can be differentiably embedded in R9. 
By (22.8) and (21.13) the Pontrjagin class of cP"" is 

P(Cp4) = c(TCP4)C(TcP4) = (1 + x)'(1 - x)' = (1 - x2)'. 

If cP"" can be differentiably embedded in R9, then there is an exact se
quence 

0---+ (TCP4)R---+ TR9 IcP4---+ N ---+ 0, 

where (TCP4)R is the realization of the holomorphic tangent bundle TCP4 and 
N is the normal bundle of CP4 in R9. By the Whitney product formula 

(22.11) 

Since the restriction TR9 1cP4 is the pullback of TR9 to Cp4 under the em
bedding i : cP"" ---+ R9, by the functoriality ofthe Pontrjagin class 

P(TR9 IcP4) = i*P(TR9) = 1. 

Therefore, by (22.11) 

(22.12) 

Since N is a real line bundle, the top component of P(N) should be in 
H2(Cp4). This contradicts the fact that 5x2 and 15x4 are nonzero classes in 
H4(Cp4) and HB(Cp4). Thus cP"" cannot be embedded in R9. 

From (22.12), ifCP"" can be embedded in RIf, then the normal bundle has 
rank at least 4, since the top-degree term of the Pontrjagin class of a rank k 
real bundle is in dimension 2k. It follows that cP"" cannot be embedded in a 
Euclidean space of dimension 11 or less. 

§23 The Search for the Universal Bundle 

Let I: M -+ N be a map between two manifolds and E a complex bundle 
over N. The pullback 1-1E is a bundle over M. If the Chern classes 
of E vanish, by the naturality property (20.10.1), so do those of I - 1 E. 
Taking the Chern classes to be a measure of the twisting of a bundle, we 
may assert that pulling back "dilutes" a bundle, i.e., makes it less twisted. 
One extreme example is when I is constant; in this case I -1 E is trivial. 
Another example is the flag construction of Section 21; pulling E back to 
the split manifold F(E) splits E into a direct sum of line bundles. One may 
wonder if there exists a bundle which is so twisted that every bundle is a 
pullback of this universal bundle. Such a bundle indeed exists, at least for 
manifolds of finite type; it is the universal quotient bundle on the Grass
mannian G,,(CIf) for n sufficiently large. We will prove this result and con
clude from it that every natural transformation from the complex vector 
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bundles to the cohomology classes is expressible in terms of the Chern 
classes, all for manifolds of finite type. We also indicate how the theorems 
generalize to an arbitrary manifold. 

The Grassmannian 

Let V be a complex vector space of dimension n. The complex Grassman
nian G,,(V) is the set of all subspaces of complex codimension k in V. We 
sometimes call such a subspace an (n - k)-plane in V. Given a Hermitian 
metric on V, the unitary group U(n) is the group of all metric-preserving 
endomorphisms of V. Clearly U(n) acts transitively on the collection of all 
(n - k)-planes in V. Since a unitary matrix which sends an (n - k)-plane to 
itself must also fix the complementary orthogonal k-plane, the stabilizer of 
an (n - k)-plane in V is U(n - k) x U(k). Thus the Grassmannian can be 
represented as a homogeneous space 

U(n) 
G,,(V) = U(k) x U(n - k) 

As the coset space of a Lie group by a closed subgroup, G,,(V) is a differ
entiable manifold (Warner [1, p. 120]). Note that Gn - 1(V) is the projective 
space P(V). 

Just as in the case of the projective space, over the Grassmannian G,,(V) 
there are three tautological bundles: the universal subbundle S, whose fiber 
at each point A of G,,(V) is the (n - k)-plane A itself; the product bundle 
V = G,,(V) x V; and the universal quotient bundle Q defined by 

0-+ S-+ V -+ Q-+ O. 

This exact sequence is called the tautological sequence on G,,(V). Over G,,(V) 
the universal subbundle S has rank n - k and the universal quotient bundle 
has rank k. 

Similarly, if V is a real vector space, one can define the real Grassman
nian G,,(V) of codimension k real subspaces of V, and the analogous real 
universal bundles. The real Grassmannian can also be represented as a 
homogeneous space 

n O(n) 
G,,(~ ) = O(k) x O(n - k) 

Proposition 23.1. The cohomology of the complex Grassmannian G,,(V) has 
Poincare polynomial 
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PROOF. The flag manifold F(V) may be obtained from the Grassmannian 
Gk(V) by a series of flag constructions as follows. Let Q be the pullback of Q 
to the flag bundle F(S). 

A point of F(S) is a pair (A, Ll c ... c A) consisting of an (n - k)-plane A 
in V together with a flag in A. Therefore a point in F(Q) consists of a point 
in F(S), (A, Ll c ... c A), together with a flag in VIA, i.e., a point in F(Q) is 
given by (A, Ll c ... c Ln- k - 1 cAe Ln-k+l c ... c V). So F(Q) is the 
flag manifold F(V), and F(V) is obtained from the Grassmannian Gk(V) by 
two flag constructions. By (21.18), the Poincare polynomials of F(V) and 
Gk(V) satisfy the relation 

(1 - t2) ... (1 - t 2(n-k»(1 - t2) ... (1 _ t 2k) 
P,(F(V» = P,(Gk(V» (1 _ t2) ... (1 _ t 2)(1 _ t2) ... (1 _ t 2) 

From (21.17) it follows that 

(1 - t2) ... (1 _ t 2n) 
o 

As for the ring structure of the cohomology of the Grassmannian Gk(V), 
we have the following. 

Proposition 23.2. Let V be a complex vector space of dimension n. 

(a) As a ring 

H*(G (V» = IR[Cl(S), ... , Cn-k(S), Cl(Q), ... , Ck(Q)] 
k (c(S)c(Q) = 1) 

(b) The Chern classes Cl(Q), ... , Ck(Q) of the quotient bundle generate the 
cohomology ring H*(Gk(V». 

(c) For afixed k and afixed i there are no polynomial relations of degree i 
among Cl(Q), ... , Ck(Q) if the dimension of V is large enough. 

PROOF. In the proof of Proposition 23.1, we saw that the flag manifold F(V) 
is obtained from the Grassmannian by two flag constructions 

Q 

S EEl Q 1 F(Q) = F(V) 

1 F(S)/ 

Gk(V)/ 
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By (21.18) the cohomology ring of the flag manifold is 

H*(Gk(V))[Xb ... , Xn-k, Yb ... , Yk] 
H*(F(V)) = (n (1 + Xi) = c(S), n (1 + Yj) = c(Q)) . 

On the other hand, we've computed the cohomology of F(V) in (21.17) to be 

(*) H*(F(V)) = !R[Xb ... , Xn-k, Yb ... , Yk]/(n (1 + Xi) n (1 + Yj) = 1). 

Thus in H*(Gk(V)) the Chern classes of Sand Q can satisfy no relation other 
than c(S)c(Q) = 1, for any relation among them would appear as a relation 
among the x/s and y/s in (*). It follows that there is an injection of algebras 

(23.2.1) !R[c(S), c(Q)] '+ H*(Gk(V)). 
(c(S)c(Q) = 1) 

From the digression following this proof, the Poincare series of 
!R[Cl(S), ... , Cn-k(S), Cl(Q), ... , Ck(Q)]/(C(S)c(Q) = 1) is 

( !R[c(S), C(Q)]) (1 - t2) ... (1 - t 2n) 
P, (c(S)c(Q) = 1) = (1 - t2) .. ·(1 - t 2(n-k»)(1 - t2) ... (1 _ t 2k) . 

But this is also the Poincare series of H*(Gk(V)). Thus the injection (23.2.1) 
is an isomorphism. This proves (a). 

Writing c(S) = l/c(Q), we see from the description of the ring structure in 
(a) that Cl(Q), ... , Ck(Q) generate the cohomology ring of Gk(V). 

The equation c(S) = l/c(Q) not only allows one to eliminate Cl(S), ... , 
Cn-k(S) in terms of Cl(Q), ... , Ck(Q), but also gives polynomial relations of 
degrees 2(n - k + 1), ... , 2n among Cl(Q), ... , Ck(Q). Thus for a given degree 
i, if the dimension n of the vector space V is so large that 2(n - k + 1) > i, 
then there are no polynomial relations of degree i among the Chern classes 
ofQ. 0 

Digression on the Poincare Series 
of a Graded Algebra 

Let k be a field and A = ffi ~ 1 AI a graded algebra over k. The Poincare 
series of A is defined to be 

00 

P,(A) = L. (dimk Aa{ 
i=O 

If A is a graded Z-module, its Poincare series is defined to be that of the 
iQ-algebra A ® z 10. 

EXAMPLE. Let A be the polynomial ring !R[X] , where X is an element of 
degree n. Then 

1 
P (A) = 1 + tn + t2n + ... = -- . , 1 - til 
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EXAMPLE. Let A and B be two graded algebras. Suppose a basis for A as a 
vector space is {xiheI and a basis for B is {Yj}jeJ' Then a vector space 
basis for A ® B is {Xi ® Yj};eI,}eJ' Therefore 

P,(A ® B) = P,(A)P,(B). 

EXAMPLE. Let A = !R[x, Y], with deg X = m and deg Y = n. Then since 
!R[~, y] = !R[x] ® !R[y], 

1 1 
P,(A) = P,(!R[x])P,(!R[y]) = --. --. 

1-tm 1-tn 

We next investigate the effect of a relation on the Poincare series of a 
graded algebra. 

Proposition 23.3. Let A = Ef) r; 0 Ai be a graded algebra over a field k, and x a 
homogeneous element of degree n in A. If x is not a zero-divisor, then 

P,(A/xA) = P,(A)(1 - tn). 

PROOF. Because x is not a zero-divisor, multiplication by x is an injection. 
Hence for each integer i there is an exact sequence of vector spaces 

By the additivity of the dimension, 

dim Ai+n = dim AI + dim(A/xA)i+n' 

Summing over all i, 
00 00 00 

L (dim Ai+n)ti+n = L (dim AI)ti+n + L dim(A/xAhn ti+n, 
1= -n 1= -n I=-n 

where we set AI = {O} if i is negative. Hence 

P,(A) = P ,(A)tn + P,(A/xA). o 

EXAMPLE. If x, y, and z are elements of degree 1, then the Poincare series of 
A = !R[x, y, z]/(x3y + y2z2 + xy2Z) is 

P,(A) = P,(!R[x, y, z])(1 - t4 ) 

= (1 - t4)/(1 - t)3. 

To generalize Proposition 23.3, we will need the notion of a regular 
sequence. 

Definition. Let A be a ring. A sequence of elements at> ... , a, in A is a 
regular sequence if al is not a zero-divisor in A and for each i ~ 2, the image 
of al in A/(al, ... , al_ 1) is not a zero-divisor. 
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Proposition 23.4. Let A be a graded algebra over a field k and a I, ... , a, a 
regular sequence of homogeneous elements of degrees n I, ... , n,. Then 

P,(A/(ai' ... , a,» = P,(A)(1 - tnI) ... (1 - tn,). 

PROOF. This is an immediate consequence of Proposition 23.3 and induction 
on r. o 

Let I be the ideal in !R[ x 10 ... , Xi' Y 10 ... , Yk] generated by the homogen
eous terms of (1 + Xl + ... + x)(1 + YI + ... + Yk) - 1, where deg Xi = 2i 
and deg Yi = 2i. We will now compute the Poincare series of !R[XI' ... , Xi' 

YI' ... , Yk]/I. 

Lemma 23.5. Let A be a graded algebra over a field k. If ai' ... , a, is a 
regular sequence of homogeneous elements of positive degrees in A, so is any 
permutation of ai' ... , a,. 

PROOF. Since any permutation is a product of transpositions of adjacent 
elements, it suffices to show that ai' ... , ai-1o ai+1o a;, ... , a, is a regular 
sequence. For this it is enough to show that in the ring A/(ah ... , ai-I), the 
images of ai+ 10 ai form a regular sequence. In this way the lemma is reduced 
to the case of two elements: if a, b is a regular sequence of elements of 
positive degrees in the graded algebra A, so is b, a. 

If X is an element of A, we write x for the image of X in whatever 
quotient ring of A being discussed. Assume that a, b is a regular sequence in 
A. 

(1) Suppose bx = 0 in A. Then bx = 0 in A/(a). Since b is not a zero-divisor 
in A/(a), X = aXI for some Xl in A. Therefore, abxI = 0 in A. Since a is 
not a zero divisor, bXI = O. Repeating the argument, we get Xl = aX2, 
X2 = aX3, and so on. Thus X == aXI = a2x2 = a3x3 = ... , showing that 

X is divisible by all the powers of a. Since a has positive degree, this is 
possible only if X = O. Therefore b is not a zero-divisor in A. 

(2) Next we show that a is not a zero-divisor in A/(b). Suppose ax = 0 in 
A/(b). ,!,hen ax = by for some Y in A. It follows that by = 0 in A/(a). 
Since b is not a zero-divisor in A/(a), Y = az for some z. Therefore, 
ax = abz. Since a is not a zero-divisor in A, X = bz; hence, x = 0 in 
~ 0 

Lemma 23.6. If ai' ... , ar, band a h ... , a" c are regular sequences in a ring 
A, then so is ah ... , ar, bc. 

PROOF. It suffices to check that bc is not a zero-divisor in A/(ah ... , arlo This 
is clear since by hypothesis neither b nor c is a zero-divisor in A/(ah ... , arlo 

o 
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Proposition 23.7. The homogeneous terms of 

(1 + Xl + ... + x)(1 + YI + ... + Yk) - 1 

form a regular sequence in A = !R[Xb .... Xj' YI • .... Yk]' 

PROOF. The proof proceeds by induction on j and k. Suppose j = 1 and 
k = 1. Then !R[Xb YI]/(XI + yd = !R[XI] and the image of XIYI in !R[Xb 
YI]/(XI + YI) is -xi. which is not a zero divisor. So Xl + Yb XIYI is a 

regular sequence in !R[Xb yd. For a general j and k. letJi be the homogen-
eous term of degree i in (1 + Xl + ... + xj)(1 + YI + ... + Yk) - 1. We first 
show thatfl. "·.!i+k-l. Xl andfb .... jj+k-l> Yk are regular sequences. By 
Lemma 23.5.!1~ .. .• jj+k-l. Xj is a regular sequence if and only if Xi.!l • .... 
jj +k -1 is. Let Ji be the image ofJi in AI(x i)' Since X j is not a zero-divisor in 
A. it suffices to show thatlb . ... fj+k-l is a regular sequence in AI(xi)' This 
is true by the induction hypothesis. since 

and 

1 + 11 + ... + h+k-l = (1 + Xl + ... + Xl-I)(1 + Yl + ... + Yk)' 

Therefore. flo '" .jj+k- 10 Xi is a regular sequence in A. Similarly.!to ... . 
jj+k-l. Yk is also a regular sequence in A. By Lemma 23.6. so isfto ... . 

jj+k-l. XiYk' 0 

By Propositions 23.4 and 23.7, if I is the ideal in 

A = !R[Xto ...• X,,-k. Yto ...• Yk] 

generated by the homogeneous terms of 

(1 + Xl + ... + x,,_k)(1 + YI + ... + Yk) - 1. 

where deg Xi = 2i and deg Yi = 2i, then the Poincare series of All is 

(1 - t2 ) .. • (1 - t 2n) 

The Classification of Vector Bundles 

Vector bundles over a manifold M may be classified up to isomorphism by 
the homotopy classes of maps from M into a Grassmannian. We will discuss 
this first for complex vector bundles. and then state the result for real vector 
bundles. 
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Lemma 23.8. Let E be a rank k complex vector bundle over a differentiable 
manifold M of finite type. There exist on M finitely many smooth sections of 
E which span the fiber at every point. 

PROOF. Let {U1hel be a finite good cover for M. Since Ui is contractible, 
E lUI is trivial and so we can find k sections Si, 10 ... , Si, k over Ui which form 
a basis of the fiber above any point in Ui' By the Shrinking Lemma (see 
(21.4) and (21.5)), there is an open cover {V,hel with Yt c: Ui and smooth 
functions It such that It is identically 1 on V, and identically 0 outside Ui • 

Then {It SI,1o ... , It s', kh e 1 are global sections of E which span the fiber at 
every point. 0 

Proposition 23.9. Let E be a rank k complex vector bundle over a differ
entiable manifold M of finite type. Suppose there are n global sections of E 
which span the fiber at every point. Then there is a map f from M to some 
Grassmannian Gk(C") such that E is the pullback under f of the universal 
quotient bundle Q; that is, E = f -IQ. 

PROOF. Let SI' ••• , s" be n spanning sections of E and let V be the complex 
vector space with basis S10 ... , s". Since S1' ... , s" are spanning sections, for 
each point p in M the evaluation map 

evp: V-+Ep-+O 

is surjective. Hence ker ev p is a codimension k subspace of V, and the fiber 
of the universal quotient bundle Q at the point ker.ev p of the Grassmannian 
Gk(V) is V /ker ev p = E p' lethe map f: M -+ Gk(V) is defined by 

f: pl-+ker evp , 

then the quotient bundle Q pulls back to E. We can identify V with C", and 
Gk(V) with Gk(C"). 0 

This mapf : M -+ Gk(C") is called a classifying map for the bundle E. 
It can be shown that the homotopy class of the classifying map f: M -+ 

Gk(C") in the preceding proposition is uniquely determined by the vector 
bundle E. This is a consequence of the following lemma, which we do not 
prove. 

Lemma 23.9.1. Given a manifold M of dimension m, if n ~ k + '! and f 
and g: M -+ Gk(C") are two maps such that f-1Q ~ g-1Q, then f and g are 
homotopic. 

A proof of this lemma based on obstruction theory may be found in Steen
rod [1, §19] and Husemoller [1, §7.6]. 
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Writing Vect,,(M; q for the isomorphism classes of the rank k complex 
vector bundles over M and [X, Y] for the set of all homotopy classes of maps 
from X to Y, we have the following. 

(23.9.2) For n sufficiently large, there is a well-defined map 

fJ: Vect,.(M; q- [M, GI;«(:II)] 

given by the classifying map of a vector bundle. 

Theorem 23.10. Let M be a manifold having a finite good cover and let k be a 
positive integer. For n sufficiently large, the classifying map of a vector bundle 
induces a one-to-one correspondence 

Vect.{M; q ~ [M, G,.«(:II)] 

between the isomorphism classes of rank k complex vector bundles over M and 
the homotopy classes of maps from M into the complex Grassmannian G,,«(:,,). 

PROOF. By the homotopy property of vector bundles (Theorem 6.8), there is 
a map 

IX: [M, Gk«(:I1)]- Vect,,(M; q 
given by the pullback of the universal quotient bundle over G,,«(:II): 

fr-.f-1Q. 

By (23.9), (23.9.2), and (23.9.3), for n sufficiently large, the map 

fJ : Vect,,(M; q- [M, G,.«(:II)], 

given by the homotopy class of the classifying map of a vector bundle, is 
inverse to IX. 0 

As a corollary of the existence of the universal bundle (23.9), we now 
show that in a precise sense the Chern classes are the only cohomological 
invariants of a smooth complex vector bundle. We think of Vect,,( ; q and 
H*( ) as functors from the category of manifolds to the category of sets. 
A natural transformation T between these functors is given by a collec
tion of maps TM from Vect,,(M; q to H*(M) such that the naturality dia
grams commute. The Chern classes c1 , ••• , c" are examples of such natural 
transformations. 

Proposition 23.11. Every natural transformation from the isomorphism classes 
of complex vector bundles over a manifold of finite type to the de Rham 
cohomology can be given as a polynomial in the Chern classes. 
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PROOF. Let T be a natural transformation from the functor Vectk( ; C) to 
the functor H*( ) in the category of manifolds of finite type. By Proposition 
23.9 and the naturality of T, if E is any rank k complex vector bundle over 
M andf : M ---+ Gk(Cft) a classifying map for E, then 

T(E) = T(f -lQ) = f*T(Q). 

Because the cohomology of the Grassmannian Gk(cn) is generated by the 
Chern classes of Q (Prop. 23.2(b)), T(Q) can be written as 

T(Q) = P.,.{Cl(Q), ... , Ck(Q» 

for some polynomial PT depending on T. Therefore 

T(E) = f*T(Q) = P"'{f*Cl(Q), ... ,f*Ck(Q)) = P",{cl(E), ... , ck(E)). 0 

Recall that we write Vectk(M) for the isomorphism classes of rank k real 
vector bundles over M. Of course, there is an analogue of Theorem 23.10 
for real vector bundles. A proof applicable to both real and complex 
bundles may be found in Steenrod [1, §19]. The result for real bundles is 
as follows. 

Theorem 23.12. Let M be a manifold of dimension m. Then there is a one-to-one 
correspondence 

[M, Gk(~k+m)] ~ VectiM) 

which assigns to the homotopy class of a map f: M --t Gk(~k+m) the isomorphism 
class of the pullback f-lQ of the universal quotient bundle Q over Gk(~k+m). 

We now classify the vector bundles over spheres and relate them to the 
homotopy groups of the orthogonal and unitary groups. 

Exercise 23.13. (a) Use Exercise 17.24 and the homotopy exact sequence of 
the fibration 

to show that 

O(k)---+O(n)/O(n - k) 
! 

Gk(~ft) 

7t.!Gk(~ft)) = 7tq _l(O(k» if n ~ k + q + 2. 

(b) Similarly show that 

7tiGk(cn)) = 7tq _ 1(U(k» if n ~ (2k + q + 1)/2. 

Combining these formulas with Proposition 17.6.1 concerning the re
lation of free versus base-point preserving homotopies we find that for n 
sufficiently large, 
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VecMSq) = [sq, Gk(lRn)] 

= 1tq( GA;(lRn»/1t 1 (GA;(IR") 

= 1tq _I(O(k»/1to(O(k». 

301 

Exactly the same computation works for the complex vector bundles over 
sq. We summarize the results in the following. 

Proposition 23.14. The isomorphism classes of the differentiable rank k real 
vector bundles over the sphere sq are given by 

VectA;(S,) ~ 1tq -l(O(k»/Zz; 

the isomorphism classes of the complex vector bundles are given by 

Vect,,(Sq; C) ~ 1tq _I(U(k». 

REMARK 23.14.1 If G is a Lie group and a E G, then conjugation by a defines 
an automorphism ha of G: 

ha(g) = aga- 1 • 

Let m be any integer. The map ha induces a map of homotopy groups: 

(ha).: 1tm(G)-+ 1tm(G). 

If two elements a and b in G can be joined by a path y(t) in G, then ha is 
homotopic to hb via the homotopy hy(t). Consequently (ha). = (hb) •. In this 
way conjugation induces an action of 1to(G) on 1tm(G), called the adjoint 
action. 

We know from (17.6) that for any space X with base point x, conjugation 
on the loop space nxx induces an action of 1tl(X) on 1tq(X). With a little 
more classifying space theory, it can be shown that the action of 1to(O(k» on 
1tq _I(O(k» corresponding to the action of 1t1(G,,(lRn» on 1tq(GA;(lRn» under the 
identification of 1tq _I(O(k» with 1t,tGA;(lRn» is precisely the adjoint action. 

REMARK 23.14.2. It is in fact possible to explain the correspondence (23.14) 
directly. Let E be a rank k vector bundle over sq with structure group O(k), 
and let U 0 and U I be small open neighborhoods of the upper and lower 
hemispheres. Because U 0 and U I are contractible, E is trivial over them. 
Hence E is completely determined by the transition function 

gOI : U 0 nUl -+ O(k). 

gOI is called a clutching function for E. Then Proposition 23.14 may be 
interpreted as a correspondence between the isomorphism classes of vector 
bundles over a sphere and the free homotopy classes of the clutching func
tions. 
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Exercise 23.15. Compute Vectk(Sl), Vectk(S2), and Vectk(S3). 

EXAMPLE 23.16 (An orientable sphere bundle with zero Euler class but no 
section). Because S4 is simply connected, every vector bundle over S4 is 
orientable (Proposition 11.5). For a line bundle orientability implies triv
iality. Therefore, 

By (23.14), 

VectiS4) = 1t3(SO(2))/Z2 = 1t3(Sl)/Z2 = 0, 

Vect3(S4) = 1t3(SO(3))/Z2 = 1t3(lRp3)/Z2 

= 1t3(S3)/Z2 = Z/Z2' 

Consequently there is a nontrivial rank 3 vector bundle E over S4. The 
Euler class of E vanishes trivially, since e(E) is in H3(S4) = O. If E has a 
nonzero global section, it would split into a direct sum E = L Ef) F of a line 
bundle and a rank 2 bundle. Since Vect1(S4) = Vect2(S4) = 0, this would 
imply that E is trivial, a contradiction. Therefore the unit sphere bundle of 
E relative to some Riemannian metric is an orientable S2-bundle over S4 
with zero Euler class but no section. This example shows that the converse 
of Proposition 11.9 is not true. 

REMARK 23.16.1 Actually Vect3(S4) ~ Z, because the action of Z2 on 
1t3(SO(3)) is trivial. Indeed, by Remark 23.14.1 this action is induced by the 
action of -1 E 0(3) under conjugation on SO(3). But conjugating by - 1 
clearly gives the identity map. 

In general, by the same reasoning, if k is odd, then the action ofno(O(k)) 
on 1tq(O(k)) is trivial for all q. 

The Infinite Grassmannian 

We will now say a few words about vector bundles over manifolds not 
having a finite good cover. For Theorem 23.10 to hold here the analogue of 
the finite Grassmannian is the infinite Grassmannian. Given a sequence of 
complex vector spaces 

... c: Vr c: v" + 1 c: v,,+2 c: ... dime Vi = i, 

there is a naturally induced sequence of Grassmannians 

. .. c: G k( v,,) c: Gk( v" + 1) c: Gk( v" + 2) c: .... 

The infinite Grassmannian Gk(Voo ) is the telescope constructed from this 
sequence. Over each Gk(v,,) there are the universal quotient bundles Qr and 
there are maps 

. .. c: Qr c: Qr+ 1 c: Qr+ 2 c: .... 
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By the telescoping construction again there is a bundle Q of rank k over 
Gt(V,x,). A point of Gt(Voo) is a subspace A of codimension kin Voo and the 
fiber of Q over A is the k-dimensional quotient space Voo/A. 

Unfortunately the infinite Grassmannian is infinite-dimensional and so is 
not a manifold in our sense of the word. Since to discuss infinite
dimensional manifolds would take us too far afield, we will merely indicate 
how our theorems may be extended. By the countable analogue of the 
Shrinking Lemma (Ex. 21.4), with the finite cover replaced by a countable 
locally finite cover, one can show just as in Lemma 23.8 that every vector 
bundle over an arbitrary manifold M has a collection of countably many 
spanning sections Sl' Sz, .... If Voo is the infinite-dimensional vector space 
with basis S1> Sz, ... , there is again a surjective evaluation map at each 
point p in M: 

evp: Voo - Ep- O. 

The kernel of evp is a codimension k subspace of Voo' So the function 
f(P) = ker evp sends M into the infinite Grassmannian Gt(Voo). This mapfis 
a classifying map for the vector bundle E and there is again a one-to-one 
correspondence 

Vect,,(M; C):!! [M, G,,(COO)]. 

All this can be proved in the same way as for manifolds of finite type. From 
Proposition 23.2, it is reasonable to conjecture that the cohomology ring of 
the infinite Grassmannian Gk(COO) is the free polynomial algebra 

IR[C1(Q), ... , c,,(Q)]. 

This is indeed the case. (For a proof see Milnor and Stasheff [1, p. 161] or 
Husemoller [1, Ch. 18, Th. 3.2, p. 269].) Hence Proposition 23.11 extends to 
a general manifold. 

Exercise 23.17. Let V be a vector space over IR and V* = Hom(V, IR) its 
dual. 

(a) Show that P(V*) may be interpreted as the set of all hyperplanes in V. 
(b) Let Y c P(V) x P(V*) be defined by 

Y = {([v], [H]) I H(v) = 0, V E V, H E V*}. 

In other words, Y is the incidence correspondence of pairs (line in V, 
hyperplane in V) such that the line is contained in the hyperplane. Compute 
H*(Y). 

Concluding Remarks 

In the preceding sections the Chern classes of a vector bundle E over M 
were first defined by studying the relations in the cohomology ring H*(PE) 
of the projective bundle, where the ring was considered as an algebra over 
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H*(M). This somewhat ad hoc procedure turned out to yield all characteris
tic classes of E only after we learned that all bundles of a given rank were 
pullbacks of a universal bundle and that the cohomology ring of the uni
versal base space (the classifying space) was generated by the Chern classes 
of the universal bundle. 

From a purely topological point of view one could therefore dispense 
with the original definition, for by designating a set of generators of the 
cohomology ring of the classifying space as the universal Chern classes, one 
can define the Chern classes of any vector bundle simply as the pullbacks 
via the classifying map of the universal Chern classes. On the other hand, 
from the differential-geometric point of view the projective-bundle defini
tion is more appealing, starting as it does, with Cl(S*), a class that we 
understand rather thoroughly and that furnishes us with a canonical gener
ator for H*(PE) over H*(M). However, this Cl is taken on the space P(E) 
rather than on M and is therefore not directly linked to the geometry of M. 
The question arises whether one can write down a form representing Ct(E) 
in terms of the following data: 

(1) a good cover U = {U .. } of M which trivializes E; 
(2) the transition functions 

g .. (J: U .. ('\ U(J- GL(n, q 
for E relative to such a trivialization; 

(3) a partition of unity subordinate to the open cover U. 

The answer to this question is yes and the reader is referred to Bott [2] 
for a thoroughgoing discussion. Here we will describe only the final recipe, 
for to understand it properly, we would have to explore the concepts of 
connections and curvature, which are beyond the scope of this book. 

Observe first that we are already in possession of the desired formula for 
the first Chern class of a complex line bundle L (see (6.38)). Indeed, if g .. (J is 
the transition function for L, the element 

i 
C1,l = - d log g 271: .. (J 

in the Cech-de Rham complex C* (U, n*) is both d- and c5-closed. By the 
collating formula (9.5), once a partition of unity is selected, this cocycle 
yields a global form. The cohomology class of this global form is cl(L). 

In the general case one can construct a cocycle E~:bck-q,k+q, with 
ck-q,k+q in ck-q(U, nk+q), that represents the k-th Chern class ck(E) by 
the following unfortunately rather formidable "averaging" procedure. 

Let 1= (io,.'" iq) correspond to a nonvacuous intersection, set 

U I = U io ('\ .•. ('\ U i, ' 

and let 
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be the pertinent transition matrix function for E. Consider the expression 

" (h = L t) go/ dgo) 
)=0 

as a matrix of I-forms on V, x R,,+1, the t's being linear coordinates in 
Ill" + 1. From 0 one can construct the matrix of 2-forms 

K, = dO, +! 01 
on V, x 1Il,,+1 and set 

Our recipe is now completed by the following ansatz. Let 

a" = {(t b ···, t,,+1)lt) ~ 0, L t) = 1} 

be the standard q-simplex in Ill" + 1. The 2k-form £1(E) restricted to V, x a", 
and integrated over the "fiber a,," yields the desired form on V, : 

c~-",I:+"(E) = t c~E). 
In other words, CIJE) is represented by the chain 

1:-1 

L cl:-",1:+" E C*(U, 0*). 
,,=0 

Note that for dimensional reasons this chain has no component below the 
diagonal and also no component in the zero-th column. This fact has 
interesting applications in foliation theory (Bott [1]). In any case, the col
lating procedure (9.5) now completes the construction of the forms ca:(E) in 
terms of the specified data. 
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of a O-chain 184 

Degree of a proper map 
between compact oriented 

manifolds 47 
between Euclidean spaces 40 
between spheres 215 
is an integer 41 

Density 85 
integration of 86 

Density bundle 85 
transition functions 85 

Derived couple 155 
stationary 158 

Diagonal 
normal bundle is isomorphic to the 

tangent bundle 127 
Poincare dual of 127 
self-intersection number 128 

Difference operator 110 (See also 
Alternating difference; Coboundary 
operator; Differential operator) 

Differentiable function on a manifold 21 

Index 

Differential in a spectral sequence 162, 
164 

Differential complex 16, 156 
Differential forms (See also Forms) 

on a Euclidean space 13 
on a manifold 21 
with values in a vector bundle 80 
with values in a vector space 79 

Differential graded commutative 
algebra (See Differential graded 
algebra) 

Differential graded algebra 259 
existence of a minimal model 260 
I-connected 260 

Differential operator 13, 16 
in the Mayer- Vietoris sequence 93 
on a double complex 90, 162, 164 

Diluting a bundle 291 
Dimension of a filtration 160 
Direct limit 112 
Direct product 

Chern classes of 267, 272 
dual is not always a direct sum 46 
of vector bundles 56 

Direct sum 
Chern classes of 279 
dual is a direct product 46 
of vector bundles 56 

Direct sum orientation 66 
Direct system of groups 112 
Directed set 43 
Divergence 14 
Divided polynomial algebra 20~ 
Double complex 90 SSee also Cech-de 

Rham complex; Cech-singular 
complex) 

differential operator on 90, 162, 164 
filtration on 156 
spectral sequence of 165 

Dual 56 (See also Dual bundle; Poincare 
dual) 

Dual bundle 56 
and conjugate bundle 286 
Chern classes of 267, 280 

Edge homorphism 178 
Edge path group 147 
Effective action 48 
Eilenberg-Steenrod axioms 5 
Eilenberg- Mac Lane space 9,240, 

250 
K(Z, 1) 240 
K(Z, 2) 242 
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K( 7L., 3) 245 
K(7L.2' 1) 242 
K(7L. q , 1) 243 
rational cohomology ring 245 

Elementary symmetric functions 278 
Embedding a manifold 290 
Endpoint map 252 
Equivalent cocycles 54 
Equivalent oriented trivializations 54 
Euclidean space 

compact cohomology 39 
de Rham cohomology 35 
infinite Euclidean space 183 
singular cohomology 189 
singular homology 185 

Euler characteristic 126 
is equal to the Euler number 128 
of a fiber bundle 182 

Euler class 72, 116 
and spectral sequences 171 
and the top Chern class 273 
functoriality 74 
in terms of the transition functions 73 
in the Gysin sequence 179 
is independent of good covers 118 
is Poincare dual to the zero locus of a 

section 125 
is the pullback of the Thorn 

class 132 
naturality 74 
of an oriented S2n-bundle 126 
of an oriented vector bundle 118 
of the normal bundle ofCpl in Cp2 
of the 2-sphere 125 
Whitney product formula 133 

Euler number 122 
and local degree 124 
is equal to the Euler characteristic 128 
is the self-intersection of the 

diagonal 128 
Evaluation map 298, 303 
Exact couple 155, 158 
Exact forms 15 
Exact sequence 

of set maps 209 
of vector bundles 65 
of vector spaces 17 

Ext 193-194 
Extension principle 147 
Extension problem 167 
Exterior algebra 205 
Exterior differentiation 14 
Exterior derivative 14 

is an antiderivation 14 

Exterior power 278 
Chern classes of 278, 279 

Face map 183 
Fiber 47, 48, 199 

connectedness 202 
homotopy type 200 

Fiber bundle 47 
cohomology (See Leray- Hirsch 

theorem) 
spectral sequence of 169 

Fibering 199 
as a basic trick of the trade 249 
in the sense of Hurewicz 199 
in the sense of Serre 199 

Fibration 199 (See also Fibering) 
Filtered complex 156 

spectral sequence of 156 
Filtration 156 

induced filtration 159 
length 159 
on a double complex 156 

Finite type 42 
Finite-dimensionality of de Rham 

cohomology 43, 99 
Finitely generated Abelian group 9 
First homotopy group 1 (See also 

Fundamental group; Homotopy 
groups) 

Five Lemma 44 
Fixed-point formula 

of Lefschetz 129 
Flag 282 
Flag bundle 282 

cohomology ring 285 
is a split manifold 282 
Poincare series 285 

Flag manifold 282 
cohomology ring 284 
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obtained from the Grassmannian by two 
flag constructions 293 

Poincare polynomial 285 
Flat vector bundle 80 

cohomology with coefficients in 
80 

Forms with compact support 8, 25 
integration of 29 

Forms with compact support in the vertical 
direction 61 

Frame 54 
Free homotopy class 211 
Free resolution 193 
Front r-face 192 
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Functor 20, 109 (See also Contravariant 
functor; Covariant functor) 

Functoriality (See Naturality) 
Fundamental group 1, 206 (See also 

Homotopy groups) 
of a Riemann surface 1, 240 
of the nerve of a good cover 148 
of the support of a simplicial complex is 

the edge path group 147 

G-bundle 48 
General linear group 56 
Generator 40 

for the cohomology of a circle 24 
for the cohomology of a complex 

projective space 236 
for the cohomology of a sphere 37 
for the compact cohomology of a 

Euclidean space 40 
Geodesically convex neighborhood 43 
Global angular form 71,73, 121, 124 

formula for 122 
God-given set of differential equations 15 
God-given vector bundles 268 
Good covers 42 

are cofinal 43, 190 
on a manifold 42 
on a topological space 147 
on a triangularizable space 190 
on the torus 105 

Graded algebra (See also Differential 
graded algebra) 

commutativity 20 
Poincare series 294 

Gradient 3, 14, 221 
Grassmannian (See Complex 

Grassmannian; Infinite complex 
Grassmannian; Real Grassmannian) 

Griffiths, Phillip A. 262 
Grothendieck, Alexander 266 
Gysin sequence 177 

Helicoid 268 
Hessian 220 
Hilton, Peter 265 
Hirzebruch, F. 280 
Hirzebruch - Riemann - Roch 

theorem 280 
Hirzebruch signature formula 290 
Holomorphic section 282 
Holomorphic tangent bundle 280 
Hom functor 56, 169 

exactness of 169 

Homogeneous coordinates 75 
Homogeneous space 292 
Homology 183 (See also Singular 

homology) 
relation with homotopy 225 

Homology Mayer- Vietoris 
sequence 188 

Homology spectral sequence 196 
Homomorphism of presheaves 109 
Homotopy 35 

Index 

between continuous and differentiable 
maps 213 

Homotopy axiom for de Rham 
cohomology 35 

Homotopy exact sequence (See 
Homotopy sequence) 

Homotopy groups 2,206 
higher homotopy groups are 

Abelian 207 
in the C" sense and in the continuous 

sense 214 
of a bouquet of circles 240 
of a Cartesian product 207 
of a Riemann surface 240 
of a sphere (See Homotopy groups of a 

sphere) 
of a wedge of spheres 265 
of an Eilenberg- Mac Lane space 240 
of the circle 240 
of the infinite real projective space 241 
relation with homology 225 
relative homotopy groups 213 

Homotopy groups of a sphere 214,215 
Hurewicz isomorphism 227 
1T,(S3) 256 
1T4(S~ 251 
1T3(S2) 227 
Serre's theorem 254,262 

Homotopy invariance of de Rham 
cohomology 5,24 

Homotopy operator 34 
for the compact Poincare lemma 38 
for the generalized Mayer- Vietoris 

sequence 94 
for the Poincare lemma 34 

Homotopy property of vector bundles 57 
Homotopy sequence 

of a fibering 209 
relative homotopy sequence 213 

Homotopy type 
in the C" sense 36 
of a CW-complex 219 
of a manifold 220 
of the fiber of a fibering 200 

Hopf, Heinz 7, 227, 266 



Index 

Hopf invariant 228 
degree definition 234 
differential form definition 230 
homotopy invariance 228 
Hopf fibration 235 
intersection-theory definition 229 
off: S2n-l_Sn is zero for odd n 228 

Hopf fibration 227 
fiber over 00 238 
fiber over 0 238 
Hopf invariant 235 

Hopf index theorem 129 
Hurewicz 

fibering in the sense of 199 
Hurewicz isomorphism theorem 225 
Hurewicz, W. 2 
Hypersurface in a complex projective 

space 282 
Chern classes of 282 

Incidence correspondence 303 
Inclusion 249 
Index 

of a nondegenerate critical point 220 
of a zero of a vector field 128 

Index theorem 
Atiyah - Singer 
Hopf 129 

Indices 
convention on 93 

Induced filtration 159 
Induced map 

in cohomology corresponds to pre-image 
in geometry 69 

in homotopy 210 
on the boundary 18 

Induced orientation on the boundary 31 
Infinite complex Grassmannian 302 

cohomology ring 303 
Infinite complex projective space 242 

cohomology ring 243 
Infinite-dimensional manifold 303 
Infinite Euclidean space 183 
Infinite lens space 243 
Infinite real projective space 241 

cohomology ring 245 
has no higher homotopy 241 
is the infinite Lens space L( 00, 2) 243 

Infinite sphere 242 
has no homotopy 242 

Integral 3, 27 
Integration 

of a density 86 
of a differential form 27 
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Integration along the fiber 37, 61-63 
commutes with d 38, 62 
in the Gysin sequence 179 

Invariant form on a sphere 77 

Jacobian determinant 28 
Jacobian matrix 60, 220, 223, 224 

Kernel of a set map 209 
Kill 

to get killed 177 
Killing homotopy groups 250 
Kiinneth formula 

algebraic Kiinneth formula 173 
finiteness hypothesis 108 
for the compact cohomology 50 
for the de Rham cohomology 47 
for the singular cohomology 192 
Mayer- Vietoris argument 47 
spectral sequence proof 170 
tic-tac-toe proof 106 

L-class 279 
Hirzebruch signature formula 290 

Lefschetz fixed-point formula 129 
Lefschetz number 129 
Length of a filtration 159 
Lens space 243 

cohomology 244 
Leray- Hirsch theorem 50 

for the singular cohomology 192 
Mayer- Vietoris argument 50 
spectral sequence proof 170 
tic-tac-toe proof 108 

Leray, Jean 5, 10 
Leray's construction 179 
Leray's theorem 

for the de Rham cohomology 170 
for the singular cohomology 192 

Lie group 196, 208, 292 
Line bundle 115 

Chern class of the dual line bundle 267 
Chern class of a tensor product of line 

bundles 267 
complex line bundle 267 

Line integral 3 
Linking number 229 
Live to the Er term 163 
Local compatibility condition 114 
Local degree of a section 123 
Local product orientation 61 
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Localization principle 53, 67 
Locally constant presheaf 

on a good cover 143 
with group Z2 146 

Locally constant sections 80 
Locally constant trivialization 80 
Locally finite open refinement 58 
Long exact sequence 17, 157 

coboundary operator in 17 
derived couple 157 
of homotopy groups 209 

Loop space 1, 199 
homotopy groups 208 
of a sphere (See Loop space of a 

sphere) 
of an Eilenberg-MacLane space 241 

Loop space of a sphere 
integer cohomology 203 
ring structure 204 

Manifold 4, 20 
existence of a good cover on 42 
homotopy type of 220, 224 
is paracompact 58 
of finite type 42 
orientable ~ has a global nowhere 

vanishing top form 29 
orientable ~ tangent bundle is 

orientable 55 
simply connected ~ orientable 

116 
Manifold with boundary 30 (See also 

Surface with boundary) 
Map between spheres 

degree 215 
Hopf invariant 227 
normal form 216 

Mapping cylinder 249 
Massey, William 155 
Mathematical physics 8 
Mayer- Vietoris argument 42 

finite-dimensionality of de Rham 43 
for the singular cohomology 193 
Kiinneth formula 47 
Leray-Hirsch theorem 50 
Poincare duality 44-46 
Thorn isomorphism 52 

Mayer- Vietoris sequence 4, 22 
for compact supports 26, 139 
for countably many open sets 94 
for singular chains 186 
for singular cochains 189 
for two open sets 22, 89 
generalized 94 

Index 

homology Mayer- Vietoris sequence for 
two open sets 188 

Mayer- Vietoris principle 
as a consequence of the tic-tac-toe 

lemma 138 
generalized 96 
spectral sequence proof of 166 

Measure zero 41, 42 
Milnor, John 220,221,222, 226 
Minimal model 259 

existence of 260 
main theorem 262 

Mobius band 7 (See also open Mobius 
strip) 

Mobius strip (See open Mobius strip) 
Monodromy representation 146 
Morgan,John 262 
Morphism 20 
Morse, A. P. 41 
Morse function 223, 224 
Morse lemma 222 
Morse theory 220 

main theorems 221, 222 
Multiplicity 

of a fixed point 129 
of a zero 125 

Natural transformation 109, 300 
Naturality 

Chern class 271 
Euler class 74 

n-connected 253 
Nerve of an open cover 100 
Nondegenerate critical point 220 
Nondegenerate pairing 44 
Nonorientable Poincare duality 87, 141 
Nonorientable Thorn isomorphism 88, 

131 
Normal bundle 66 

ofCplinCp275 
of the diagonal is isomorphic to the 

tangent bundle 127 
of the zero locus of a transversal 

section 133 
Normal form of a map between two 

spheres 216 

Object 20 
Obstruction theory 123 
I-connected 261 
Open collar 232 
O~n cover 

Cech cohomology of 97, 99, 11 0 
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coordinate open cover 21 
good cover 42 

Open Mobius strip 
compact cohomology 40, 60, 141 
de Rham cohomology 40, 138 

Orientability 
a simply connected manifold is 

orientable 171 
of a manifold 29 
of a sphere bundle (See Orientability of 

a sphere bundle) 
of a vector bundle 115 

Orientability of a sphere bundle 114 
spectral sequence point of view 171 

Orientable manifold 29 
Orientable sphere bundle (See Oriented 

sphere bundle) 
Orientable vector bundle 54 (See also 

Oriented vector bundle) 
over an orientable manifold 60 

Orientation 
direct sum orientation 66 
local product orientation 61 
on a manifold 29 
on a sphere bundle 114 
on a vector bundle 55 
on the normal bundle of an oriented 

submanifold 66 
on the zero locus of a section 134 
product orientation 123 

Orientation bundle 
of a manifold 84 
of a vector bundle 88 

Orientation-preserving map 28 
Oriented manifold 29 
Oriented sphere bundle 114, 171 

cohomology 177 
Euler class 72, 116, 171 
Gysin sequence 177 
orientation 114 

Oriented vector bundle 54, 60 
Euler class 1I8 

Orthogonal group (See also Special 
orthogonal group) 

reduction to 55 
stable homotopy groups of 239 

Paracompact space 58 
Parallel translation 125 
Partition of unity 4, 21 
Path components I, 189, 208 

and connected components 208 
Path fibration 199, 225 
Path space 198 
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Physics 8 
Poincare conjecture 147 
Poincare dual 51, 230 (See also Closed 

Poincare dual; Compact Poincare 
dual) 

is the Thorn class of the normal 
bundle 67 

localization principle 53, 67 
of a circle on a torus 68 
of a closed oriented submanifold 51 
of a point 68 
of a transversal intersection 69 
of the ambient manifold 68 
of the diagonal 127 
of the Euler class 125 
of the pullback of a form 69 
of the zero locus of a section 125 
support of 67 

Poincare, Henri 5, 6 
Poincare duality 44 

and the Thorn isomorphism 60, 67 
nonorientable 87, 141 

Poincare lemma 16, 35 
for compact supports 19, 39 
for compact vertical supports 63 

Poincare polynomial (See also Poincare 
series) 

of a Grassmannian 293 
Poincare series 269, 296, 297 

of a complex Grassmannian 292 
of a complex projective space 269 
of a flag bundle 285 
of a flag manifold 285 
of a graded algebra 294 
of a projective bundle 271 

Pontrjagin classes 289 
application to the embedding of a 

manifold 290 
of a sphere 290 
sign convention 289, 290 

Pontrjagin, Lev S. 8, 266 
Positive form 70 
Postnikov approximation 250, 251 

in the computation of homotopy 
groups 9, 10, 256 

in the computation of 17"5(S3) 256, 257 
in the computation of 17" is 3) 251, 

252 
Postnikov tower 250 
Pre sheaf 108 

cohomology presheaf 109 
constant presheaf 109, 141, 177 
homomorphism of presheaves 109 
locally constant on an open cover 143 
locally constant presheaf 109.141. 177 
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Presheaf (cont.) 
of compact vertical cohomology 131 
on an open cover 142 
trivial presheaf 109 

Product bundle 
over a Grassmannian 292 
over a projective space 268 

Product orientation 123 
Product structure 

on a teq,sor product 176 
on the <;ech complex 174 
on the Cech-de Rham complex 174 
on the de Rham complex 14 
on the singular cohomology 191 

Projective general linear group 269 
Projective plane 

real projective plane 105 
Projective space (See Complex projective 

space; Infinite complex projective 
space; Infinite real projective space; 
Real projective space) 

Projectivization of a vector bundle 269 
cohomology ring 270,283 
pullback bundle 270 
tautological exact sequence 270 
universal quotient bundle 270 
universal subbundle 270 

Projection formula 63 
Proper map 26 

degree 40, 41 
image is closed 41 
not surjective .~ degree is zero 41 

Pullback 
commutes with d 19 
in the Gysin sequence 179 
of a differential form 19 
of a vector bundle 56 

Quadratic transformation 268 

Rational homotopy theory 259 
main theorem 262 

Real Grassmannian 292 
and the classification of vector bundles 

over a sphere 301 
as a homogeneous space 292 
homotopy groups 300 

Real projective plane 105 
good cover on 105 

Real projective space 77, 241 (See also 
Infinite real projective space; Real 
projective plane) 

de Rham cohomology of 78 

Real vector bundle 53 
Realization 267, 286 

of a complex matrix 287 

Index 

of a complex vector bundle 267, 286 
Reduction of the structure group 54 

and orientability 55 
to the orthogonal group 55 
to the unitary group 267 

Refinement 43 
Regular sequence 295,296 
Regular value 40, 224, 229 
Relative de Rham cohomology 79 
Relative de Rham theory 78 
Relative homotopy group 213 
Relative homotopy sequence 213 
Restriction 109 
Retraction 36 
Riemann integral 27 
Riemann-Roch theorem 280 
Riemann surface 1 

as an Eilenberg- Mac Lane space 240 
de Rham cohomology of 5 
homotopy groups of 2,240 

Riemannian structure 42 

Sard, A. 41 
Sard's theorem 41, 42, 215, 218, 224 
Second spectral sequence 166 
Section 

and the Euler class 119, 302 
existence of 122, 272 
existence ~ zero Euler class 119 
partial section 122 
singularities of 122 

Serre 
fibering in the sense of 199 

Serre, Jean-Pierre 10, 227 
Serre's theorem on the homotopy groups of 

the spheres 254, 262 
Short exact sequence 17 
Shrinking lemma 276, 303 
Sign convention 

general principle 174 
indices 93 
Pontrjagin classes 289, 290 

Signature 290 
Signature formula of Hirzebruch 290 
Singular chain 183 
Singular cochain 188 
Singularities of a section 122 

lo:al degree 123 
Simplex 

barycenter 142 
barycentric subdivision 142 
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standard q-simplex 183 
Simplicial approximation theorem 147 
Simplicial complex 142 

good cover on 190,220 
k-skeleton 142 
support of 142 

Simplicial map 146 
Singulll! cohomology 189 

and Cech cohomology 189, 191 
of a Euclidean space 189 
of a fiber bundle 192 
of a flag bundle 285 
of a flag manifold 285 
of a Lens space 243, 244 
of a special orthogonal group 195, 196 
of a unitary group 196 
of an Eilenberg-MacLane 

space 245-248 
of K( Z, 3) 245 
of the infinite complex projective 

space 243 
of the infinite real projective space 245 
of the loop space of a sphere 203 
of the unit tangent bundle of a 

sphere 194 
Singular homology 184 

of a Euclidean space 185 
Skeleton 

of a CW-complex 219 
of a simplicial complex 142 

Spanning sections 298 
Special orthogonal group 55, 195 

action of 'ITt on 'lTq 302 
and orientability 55 
and the classification of vector 

bundles 302 
identification of SO(3) with IRp3 

195 
integer cohomology of SO(4) 195 
integer cohomology of SO(3) 195 
reduction to 55 

Spectral sequence 159 
and the Euler class 171 
Cech-de Rhamisomorphism 167,175 
convergence 160 
differential 161-164 
exact couples 155 
Kiinneth formula 170 
Leray - Hirsch theorem 170 
Mayer- Vietoris principle 167 
product structures 174 
of a double complex (See Spectral 

sequence of a double complex) 
of a fiber bundle 169 
of a filtered complex 160 

orientability 171 
orientability of a simply connected 

manifold 171 
Spectral sequence of a double 

complex 161 
differential 162, 164 
second spectral sequence 166 

Sphere 
Cech cohomology of 102 
cohomology of 36 
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Euler class of the tangent bundle of 125 
generator in the top dimension of 37 
homotopy groups 214, 215, 227 
invariant form on 77 
minimal model 259, 260 
Serre's theorem on the homotopy groups 

of 254,262 
tangent bundle (See Tangent bundle of 

a sphere) 
unit tangent bundle of the 2-sphere is 

SO(3) 195 
volume form on 37, 235 

Sphere bundle (See also Oriented sphere 
bundle) 

orientation 114 
structure group 113 

Spherical coordinates 238 
Split manifold 273, 275 

is the flag bundle 283 
Splitting 

of a G-module 194 
of a vector bundle 274 

Splitting principle 275 
in the computation of Chern 

classes 279 
in the proof of the Whitney product 

formula 277 
Stable homotopy groups 

of the orthogonal group 239 
of the unitary group 239 

Star 142, 190, 220 
Standard orientation 

on a sphere 70 
on cpt 237 

Standard q-simplex 183 
Stationary derived couples 158 
Steenrod, Norman 123 
Stereographic projection 235 
Stiefel, Eduard 266 
Stokes' theorem 31 

for densities 86 
Stone, A. H. 58 
Structure group 47 

of a complex vector bundle 54, 267 
of a fiber bundle 47 
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Structure group (cont.) 
of a real vector bundle 53 
of a sphere bundle 113 
of an orientable vector bundle 55 
reduction of (See Reduction of the 

structure group) 
Subcomplex 156 
Subdivision 

barycentric 142 
Sullivan, Dennis 259, 262 
Support 

of a form 24 
of a function 18 
of a simplicial complex 142 

Surface with boundary 231 
Sylvester's theorem 220 
Symmetric function theorem 278 
Symmetric power 279 

Chern classes of 279 

Tangent bundle 55 
holomorphic tangent bundle 280 
of a sphere (See Tangent bundle of a 

sphere) 
Tangent bundle of a sphere 

cohomology 194 
Euler class 125 
unit tangent bundle of the 2-sphere is 

SO(3) 195 
Tangent space 21 
Tangent vector field (See Vector field) 
Tautological exact sequence 

over a Grassmannian 292 
over a projective bundle 270 
over a projective space 268 

Telescoping construction 241 
infinite complex projective space 242 
infinite Grassmannian 302 
infinite Lens space 243 
infinite real projective space 241 
infinite sphere 242 

Tensor product 
exactness 169 
Chern classes of 
of vector bundles 
product structure 

267,279 
56 
176 

Thorn class 64, 232 
a characterization of 64 
as a relative cohomology class 78 
in terms of the global angular form 74, 

132 
in terms of the patching data 75 
of a direct sum 65 

Index 

pulls back to the Euler class 74, 132 
relation to the Poincare dual 67 

Thorn isomorphism 63 
and Poincare duality 60 
nonorientable 88, 131 

3-sphere 243 
1TiS) 251 
1TS(S3) 257 

Tic-tac-toe lemma 135 
Tic-tac-toe proof 

of Poincare duality 141 
of the generalized Mayer- Vietoris 

principle 138 
of the Kiinneth formula 105 
of the Leray- Hirsch theorem 108 

Todd class 279 
Tor functor 193, 194 
Torsion 9, 182, 194 
Torus 221 

good cover on 105 
Total space 48 
Total Chern class 270 (See also Chern 

classes) 
Total Pontrjagin class 289 (See also 

Pontrjagin classes) 
of a complex manifold 290 
of a sphere 290 

Transition functions 
for a fiber bundle 48 
for a manifold 20 
for a vector bundle 53 
for the conjugate bundle 286 
for the density bundle 85 
for the direct sum 56 
for the dual bundle 56 
for the tensor product 56 
reduction of the structure group 

54 
Transgression 247 
Transgressive element 247 
Transversal intersection 68, 69 

codimension is additive 69 
is dual to the wedge product 69 
normal bundle of 69 

Transversality theorem 123 
Triangularizable space 190 

good covers are cofinal 190 
Triangulation 190 

of a manifold 190 
Tricks 

basic tricks in homotopy theory 
249 

Trivialization 
and transition functions 54 
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of a coordinate open cover 21 
locally constant 80 

Tubular neighborhood 65, 214 
Tubular neighborhood theorem 66 
Twisted cohomology 80, 82 

and trivialization 80, 83 
invariant under the refinement of open 

covers 82 
Twisted de Rham cohomology 84 

is the same as the de Rham cohomology 
on an orientable manifold 85 

Twisted de Rham cohomology with 
compact supports 84 

Twisted de Rham complex 85 

Unit sphere bundle 114 
Unit tangent bundle of a sphere 

cohomology of 195 
Unitary group 196, 292 

integer cohomology of 196 
reduction of the structure group to 267 
stable homotopy groups of 239 

Universal Chern classes 304 
Universal coefficient theorems 194 
Universal covering 252 

of a circle 152 
Universal quotient bundle 

and the cohomology of a 
Grassmannian 293 

classification of vector bundles 298 
over a Grassmannian 292, 298 
over a projective bundle 270 
over a projective space 268 

Universal subbundle 77, 270 
over a Grassmannian 292 
over a projective bundle 270 
over a projective space 268 

Upper half space 30 
n -small chain 185 

Vector bundles (See also oriented vector 
bundle) 

classification 299 
cohomology 60 
compact cohomology 60,65 
compact vertical cohomology 61, 63 
complex vector bundle 54 
Euler class 72, 118 
exact sequence of 65 
flat 80 

God-given 268 
isomorphic ~ cocycles are 

equivalent 54 
orientability of 54 
orientable ~ associated sphere 

bundles are 115 

331 

orientable ~ determinant bundles 
are 116 

over a contractible manifold 59 
over a simply connected manifold 116 
over a sphere 302 
real vector bundle 53 
reduction of the structure group 54,267 
splitting of 274 
to "dilute" a vector bundle 291 
unit sphere bundle of 114 

Vector field 21 
Hopf index theorem 129 
index of a zero 128 
on a sphere 125 

Volume integral 3 
Volume form 

on a sphere 27 
on the 2-sphere 235 

Wedge of spheres 153, 262 
minimal model 263 
ranks of the homotopy groups 265 

Wedge product of differential forms 14 
is Poincare dual to a transversal 

intersection 69 
Wei!, Andre 5, 10, 89 
Whitehead tower 252, 253, 257 
Whitney embedding theorem 213 
Whitney, Hassler 7, 217, 266 
Whitney product formula 

for the Chern class 272, 275 
for the Euler class 133 
for the L-class 279 
for the Pontrjagin class 289 
for the Todd class 279 

Yang- Mills 8 

Zero locus of a section 
normal bundle of 133 
orientation on 134 
Poincare dual of 134 

Zig-zag 95 
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