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PREFACE 

The present volume contains the substance, with some additions, of a 
course of lectures given at the Faculty of Science in Paris for the require
ments of the licence d'enseignement during the academic sessions 1957-1958, 
1958-1959 and 1959-1960. It is basically concerned with the theory of 
analytic functions of a complex variable. The case of analytic functions 
of several real or complex variables is, however, touched on in chapter IV 

if only to give an insight into the harmonic functions of two real variables 
as analytic functions and to permit the treatment in chapter vu of the 
existence theorem for the solutions of differential systems in cases where 
the data is analytic. 
The subject matter of this book covers that part of the" Mathematics II " 
certificate syllabus given to analytic functions. This same subject matter 
was already included in the " Differential and integral calculus " certifi
cate of the old licence. 
As the syllabuses of certificates for the licence are not fixed in detail, the 
teacher usually enjoys a considerable degree of freedom in choosing 
the subject matter of his course. This freedom is mainly limited by 
tradition and, in the case of analytic functions of a complex variable, 
the tradition in France is fairly well established. It will therefore perhaps 
be useful to indicate here to what extent I have departed from this tradi
tion. In the first place I decided to begin by offering not Cauchy's point 
of view (differentiable functions and Cauchy's integral) but the Weierstrass 
point of view, i.e. the theory of convergent power series (chapter 1). 
This is itself preceded by a brief account of formal operations on power 
series, i.e. what is called nowadays the theory of formal series. I have also 
made something of an innovation by devoting two paragraphs of chapter VI 

to a systematic though very elementary exposition of the theory of 
abstract complex manifolds of one complex dimension. What is referred 
to here as a complex manifold is simply what used to be called a Riemann 
surface and is often still given that name; for our part, we decided to 
keep the term Riemann surface for the double datum of a complex mani
fold and a holomorphic mapping of this manifold into the complex plane 
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PREFACE 

(or, more generally, into another complex manifold). In this way a distinc
tion is made between the two ideas with a clarity unattainable with orthodox 
terminology. With a subject as well established as the theory of analytic 
functions of a complex variable, which has been in the past the subject 
of so many treatises and still is in all countries, there could be no question 
of laying claim to originality. If the present treatise differs in any way 
from its forerunners in France, it does so perhaps because it conforms 
to a recent practice which is becoming increasingly prevalent: a mathema
tical text must contain precise statements of propositions or theorems -
statements which are adequate in themselves and to which reference can 
be made at all times. With a very few exceptions which are clearly 
indicated, complete proofs are given of all the statements in the text. 
The somewhat ticklish problems of plane topology in relation to Cauchy's 
integral and the discussion of many-valued functions are approached quite 
openly in chapter 11. Here again it was thought that a few precise statements 
were preferable to vague intuitions and hazy ideas. On these problems 
of plane topology, I drew my inspiration from the excellent book by 
L. Ahlfors (Complex Analysis), without however conforming completely 
with the points of view he develops. The basic concepts of general 
Topology are assumed to be familiar to the reader and are employed 
frequently in the present work; in fact this course is addressed to students 
of' Mathematics II ' who are expected to have already studied the 'Mathe
matics I ' syllabus. 

I express my hearty thanks to Monsieur Reiji Takahashi, who are from 
experience gained in directing the practical work of students, has consen
ted to supplement the various chapters of this book with exersices and 
problems. It is hoped that the reader will thus be in a position to 
make sure that he has understood and ar ;imilated the theoretical ideas 
set out in the text. 

HENRI CARTAN 

Die (Drome), August 41h, 1960 
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CHAPTER I 

Power Series in One Variable 

1. Formal Power Series

I. ALGEBRA OF POLYNOMIALS 

Let K be a commutative field. We consider the formal polynomials 
in one symbol (or ' indeterminate ') X with coefficients in K (for the 
moment we do not give a value to X). The laws of addition of two poly
nomials and of multiplication of a polynomial by a ' scalar ' makes the 
set K[X] of polynomials into a vector space over K with the infinite base 

r,X, ... ,X", ... 

Each polynomial is a finite linear combination of the X• with coefficients 

in K and we write it � a.X ", where it is understood that only a finite 
n�O 

number of the coefficients an are non-zero in the infinite sequence of these 
coefficients. The multiplication table 

XP.Xq 
= XPH 

defines a multiplication in K[X]; the product 

( I. I ) c. = � apbq. 
p+q=n 

This multiplication is commutative and associative. It is bilinear in the 

sense that 

(r. 2) 
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POWER SERIES IN ONE VARIABLE 

for all polynomials P, P1, P2, Q and all scalars 1. It admits as unit ele
ment (denoted by 1 ) the polynomial � anXn such that a0 = I and 

n�O 
an = o for n > o. We express all these properties by saying that K[X], 
provided with its vector space structure and its multiplication, is a commu
tative algebra with a unit element over the field K; it is, in particular, a 

commutative ring with a unit element. 

2. THE ALGEBRA OF FORMAL SERIES 

A formal power series in X is a formal expression � anXn, where this tim e 
n�O 

· Wf! no longer require/ that Qnly a finite number of the coefficients an are 
non-zero. We define the sum of two formal series by 

where Cn =an+ bn, 

and the product of a formal series with a scalar by 

The set K[[X]] of formal series then forms a vector space over K. The 
neutral element of the addition is denoted by o; it is the formal series with 
all its coefficients zero. 

The product of two formal series is defined by the formula ( 1. 1), which 
still has a meaning because the sum on the right hand side is over a finite 
number of terms. The multiplication is still commutative, associative 
and bilinear with respect to the vector structure. Thus K[[X]] is an 
algebra over the field K with a unit element (denoted by 1) , which is 
the series � anXn such that a0 = I and an = o for n > o. 

n�O 
The algebra K[X] is identified with a subalgebra of K[[X]], the 

subalgebra of formal series whose coefficients are all zero except for a 
finite number of them. 

3· THE ORDER OF A FORMAL SERIES 

Denote � anXn by S(X), or, more briefly, by S. The order w(S) of this 
n�9 . 

series is an integer which is' only defined when S =I= o; it is the smallest n 
such that an =I= o. We say that a formal series S has order )> k if it is o 
or if w(S) )> k. By abus de langage, we write w(S) )> k even when S = o 
although w(S) is not defined in this case. 
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FORMAL POWER SERIES I.1.3 

Note. We can make the convention that w(o) = + oo. The S such 

that w(S) :;;;,,. k (for a given integer k) are simply the series Li anXn such 
n�O 

that an = o for n < k. They form a vector subspace of K[[X]]. 

Definition. A family (S;(X))ie1> where I denotes a set of indices, is said to 
be summable if, for any integer k, w(S;) :;;;,,. k for. all but a fin�te number of 
the indices i. By definition, the sum of a summable family of formal series 

S;(X) = Li an,iXn 

is the series 
n�O 

S(X) = Li anXn, 
n�O 

where, for each n, an= Li an,i· This makes sense because, for fixed n, all 
i 

but a finite number of. the an, 1 are zero by hypothesis. The operation 
of addition of formal series which form summable families generalizes the 
finite addition of the vector structure ofK[[X]]. The generalized addition 
is commutative and associative in a sense which the reader should specify. 

The formal notation Li anXn can then be justified by what follows. Let 
n�O 

a monomial of degree p be a formal series Li anXn such that an = o for 
n;::.o 

n =I= p and let apXP denote such a monomial. The family of monomials 
(anXn)ne:'! (N being the set of integers :;;;,,. o) is obviously summable, and 

its sum is simply the formal series Li a,.X". 
n�O 

Note. The product of two formal series 

is merely the sum of the summable family formed by all the products 

oi a monomial of the first series by one of the second. 

PROPOSITION 3. 1. The ring K[[X]] is an integral domain (this means that 
S =I= o and T =I= o imply ST =I= o) . 

Proof Suppose that S(X) = Li apXP and T(X) = � bqXq are non-zero. 
p 

Let p = w(S) and q = w(T), let 

S(X)·T(X) =�CnXn; 
n 
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obviously c. = o for n <P + q and cPH = apbq. Since K is a field and 
since ap # o, bq # o, we have that cP+,1 # o, so ST is not zero. 

What is more, we have proved that 

(3. I ) w(S · T) = w(S) + w(T) for S #o and T#o. 

Note. One can consider formal series with coefficients in a commutative 
ring A with a unit element which is not necessarily a field K; the above 
proof then establishes that; if A is an integral domain, then so is A[[X]]. 

4· SUBSTITUTION OF A FORMAL SERIES IN ANOTHER 

Consider two formal series 

S(X) = S a.X", 
n�O 

T(Y) = S bpYP. 
p?:-0 

It is essential also to assume that b0 = o, in other words that w(T) > I. 
To each monomial a.X• associate the formal series a.(T(Y))•, which has 
a meaning because the formal series in Y form an algebra. Since b0 = o, 
the order of a.(T(Y))• is> n; thus the family of the a.(T(Y))• (as n takes 
the values o, I, ... ) is summable, and we can consider the formal series 

(4· I) S a.(T(Y))•, 
n�O 

in which we regroup the powers ofY. This formal series in Y is said to be 
obtained by substitution ofT(Y) for X in S(X); we denote it by S(T(Y)), or 
So T without specifying the indeterminate Y. The reader will verify 
the relations : 

(4. 2) � (S1 + S2) o T = S1 o T + S2 o T, 

( (S1S2) o T = (S1 o T) (S2 o T), 1 o T = 1. 

But, note carefully that So (T1 + T2) is not, in general, equal to 

The relations (4· 2) express that, for given T (of order> 1 ) , the map
ping S -+ S o T is a homomorphism of the ring K[[X]] in the ring K[[Y]] 
which transforms the unit element I into I. 

Note. If we substitute o in S(X) = S a.X•, we find that the formal series 
n�O 

reduces to its ' constant term ' a0• 
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FORMAL POWER SERIES I. I ·4' 

If we have a summable family of formal series Si and if w(T) > 1, 

then the family S; o T is summable and 

( � S,) o T = � (Si o T), 

which generalizes the first of the relations (4· 2). For, let 

we have 

whence 

while 

Si (X) = � .an, ;X•; 
n?-0 

� S;(X) = � (� a•,i) Xn, 
i n�O i 

�Si o T = � C�o an,i(T(Y))•) . 

To prove the equality of the right hand sides of (4. 4) and (4. 5), we 

observe that the coefficient of a given power YP in each of them involves 
only a finite number of the coefficients a., i and we apply the associativity 
law of (finite) addition in the field K. 

PROPOSITION 4. 1. The relation 

(4. 6) (S o T) o U = S o (To U) 

holds whenever w(T) > 1, w(U) > I (associativity of substitution). 

Proof. Both sides of (4. 6) are defined. In the case when Sis a monomial, 
they are equal because 

(4. 7) T• o U = (T o U) • 

which follows by induction on n from the second relation in (4· 2). 
The general case of (4· 6) follows by considering the series S as the 

(infinite) sum of its monomials a.X"; by definition, 

and, from (4· 3), 

So T = � a.T•, 
n;?-0 

(So T) o U = � a.(T" o U), 
n�O 
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which, by (4. 7), is equal to 

� an (T 0 U) n = s 0 (T 0 U). 
n�O 

This completes the proof. 

5· ALGEBRAIC INVERSE OF A FORMAL SERIES 

In the ring K[[Y]J, the identity 

(5. I ) ( I - Y) ( I + Y + • · • + yn + • • • ) = I 

can easily be verified. Hence the series I - Y has an inverse in K[[Y]]. 

PROPOSITION 5. r. For S(X) = � anXn to have an inverse element for the multi· 
n 

plication ef K[[XJJ, it is necessary and sufficient that a0 =I= o, i.e. that S( o) =I= o. 

Proof. The condition is necessary because, if 

T(X) = � bnXn and if S(X)T(X) = 1, 

then a0b0 = 1 and so a0 =I= o. Conversely, suppose that a0 =I= o; we shall 

show that (a0)'--1S(X) = S1(X) has an inverse T1(X), whence it follows 
that (a0)-1T1(X) is the inverse of S(X). Now 

S1(X) = I - U(X) with w(U) >- 1, 

and we can substitute U(X) for Y in the relation (5. 1), from which it 
follows that 1 - U (X) has an inverse. The proposition is proved. 

Note. By considering the algebra of polynomials K[X] imbedded in the 
algebra of formal series K[[X]], it will be seen that any polynomial Q(X) 
such that Q(o) =I= o has an inverse in the ring K[[X]]; this ring then 
contains all the quotients P(X)/Q(X), where P and Qare polynomials 
and where Q(o) =I= o. 

6. FORMAL DERIVATIVE OF A SERIES 

Let S(X) = � anXn; by definition, the derived series S' (X) 1s given by 
the formula n 

(6. I ) S'(X) = � nanXn-t. 
n�O 

It can also be written ;�.or d� S. The derivative of a (finite or infinite) 
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FORMAL POWER SERIES 1.1 .7 

sum is equal to the sum of its derivatives. The mapping S---? S' is a linear 
mapping of K[[X]] into itself. Moreover, the derivative of the product 
of two formal series is given by the formula 

(6. 2) d dS dT 
dX (ST) = dX T + S dX0 

For, it is sufficient to verify this formula in the particular case when S 
and T are monomials, and it is clearly true then. 

If S(o) =fa o, let T be the inverse of S (c.f. n°. 5). The formula (6. 2) 
gives 

(6. 3) d ( I ) I dS 
dX s =-s2 dx· 

Higher derivatives of a formal series are defined by induction. If 
S(X) = � anXn, its derivative of order n is 

Hence, 
s<n>(X) = n ! an + terms of order > I. 

(6. 4) s<n>(o) = n! an, 

where S<n>(o) means the result of substituting the series o for the indeter
minate X in S<n>(X). 

7. COMPOSITIONAL INVERSE SERIES 

The series I(X) defined by I(X) = Xis a neutral element for the composition 
of formal series : 

So I= S = I o S. 

PROPOSITION 7. I. Given a formal series S, a necessary and sufficient condition 
for there to exist a formal series T such that 

(7. 1 ) T(o) = o, S oT =I 

is that 

(7. 2) S(o) = o, S'(o) =? o. 

In this case, T is unique, and T o S = I: in other words T is the inverse of S 
for the law of composition o • 

Proof. Let S(X) = � anXn, T(Y) = � bnYn. If 
n�O n�I 

S(T(Y)) = Y, 
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then equating the first two terms gives 

(7. 4) a0 = o, 

Hence the conditions (7. 2) are necessary. 
Suppose that they are satisfied; we write down the condition that the 

coefficient of yn is zero in the left hand side of (7. 3). This coefficient is 
the same as the coefficient of yn in 

which gives the relation 

(7. 5) 

where Pn is a known polynomial with non-negative integral coefficients 
and is linear in a2, ••• ,a.. Since a1 #- o, the second equation (7. 4) deter
mines b1; then, for n � 2, h. can be calculated by induction on n from 
(7. 5). Thus we have the existence and uniqueness of the formal series 
T(Y). The series thus obtained satisfies T(o) = o and T'(o) #- o, and 
so the result that we have just proved for S can be applied to T, giving a 
formal series S1 such that 

This implies that 

S1 = I o S1 = (S o T) o S1 = S o (T o S1) = S o I = S. 

Hence S1 is none other than S and, indeed, T o S = I, which completes 
the proof. 

Remark. Since S(T(Y)) = Y and T(S(X)) = X, we can say that the 
'formal transformations' 

Y = S(X), X = T(Y) 

are inverse to one another; thus we call T the ' inverse formal series ' 
of the series S. 

Proposition 7. I is an 'implicit function theorem' for formal functions. 

2. Convergent power series 

I. THE COMPLEX FIELD 

From now on, the field K will be either R or C, where R denotes the 
field of real numbers and C the field of complex numbers. 

Recall that a complex number z = x + 9' (x andy real) is represented by 
a point on the plane R2 whose coordinates are x and y. If we associate 
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with each complex number z = x + ry its ' conjugate ' z = x - ry, 
we define an automorphism z -> z of the field C, since 

z + z' = z + z', zz' = zz'. 

The conjugate of z is z; in other words, the transformation z � z is znvo

lutive, i.e. is equal to its inverse transformation. 
The norm, absolute value, or modulus lzl of a complex number z is defined 

by 
iZI = (z·z)112• 

It has the following properties : 

jz + z'/ � lzl + lz'I, lzz'I = lzl.lz'I, 

The norm lzl is always;;;;,:.. o and is zero only when z = o. This norm 
enables us to define a distance in the field C : the distance between z and z' 
is lz - z' I, which is precisely the euclidean distance in the plane R2• 
The space C is a complete space for this distance function, which means 
that the Cauchy criterion is valid : for a sequence of points Zn e C to have 
a limit, it is necessary and sufficient that 

lim lzm - Znl = O. m� oo n.;.. oo 

The Cauchy criterion gives the following well-known theorem : if a series 

�Un of complex numbers is such that �lunl < + oo, then the series 
n n 

converges (we say that the series is absolutely convergent). Moreover, 

We shall always identify R with a sub-field of C, i. e. the sub-field 
formed by the z such that z = z. The norm induces a norm on R, which 
is merely the absolute value of the real number. R is complete. The 
norm of the field C (or R) plays an essential role in what follows. 

We define 

Re(z) = _!__ (z + z) 
2 

and Im(z) = � (z-z) 
2Z 

the ' real part ' and the ' imaginary coefficient ' of z e C. 

2. REVISION OF THE THEORY OF CONVERGENCE OF SERIES OF FUNCTIONS 

(For a more complete account of this theory, the reader is referred to 
Cours de Mathematiques I of J. Dixmier : Cours de l'A.C.E.S., Topologie, 
chapter VI, § 9.) 
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Consider functions defined on a set E taking real, or complex, values 
(or one could consider the more general case when the functions take 
values in a complete normed vector space; cf. lac. cit.). For each function 
u, we write 

llull =sup /u(x)/, 
a:EE 

which is a number > o, or may be infinite. Evidently, 

for any scalar :A, when llull < + oo : in other words, llull is a norm on the 
vector space of functions u such that llull < + oo. 

We say that a series of functions Un is normally convergent if the series of 

norms }: llunll is a convergent series of positive terms, in other words, if 
n 

}:11u.!1< + oo. This implies that, for each xeE, the series }:/u.(x)/ is 
n n 

convergent, and so the series }: un(x) is absolutely convergent; moreover, 
" 

ifv(x) is the sum of this last series, 
p 

lim !Iv - }: u.11 = o. 
p�oo n=:O 

p 

The latter relation expresses that the partial sums }: Un converge uniformly 
n=O 

to v as P tends to infinitiy. Thus, a normally convergent series is uniformly 
convergent. If A is a subset of E, the series whose general term is Un is said 
to converge normally for x e A if the series of functions 

u� = Un I A (restriction of Un to A) 

is normally convergent. This is the same as saying that we can bound 
each lu.(x) I on A above by a constant En> o in such a way that the 

series }: <n is convergent. Recall that the limit of a uniformly convergent 
n 

sequence of continuous functions (on a topological space E) is continuous. 
In particular, the sum of a normally convergent series of continuous functions is 
continuous. An important consequence of this is : 

PROPOSITION I. 2. Suppose that, for each n, lim un(x) exists and takes 
x�:ro 

the value an. Then, if the series }: Un is normally convergent, the series }: an is 
convergent and 

}: a.= lim ( }: u.(x)) 
n X�Xo R 

(changing the order of the summation and the limiting process). 
All these results extend to multiple series and, more generally, to sum

mable families of functions (cf. the above-mentioned course by Dixmier). 

I8 
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3· RADIUS OF CONVERGENCE OF A POWER SERIES 

All the power series to be considered will have coefficients in either the 
field R, or the field C. 

Note however that what follows remains valid in the more general case when 
coefficients are in any field with a complete, non-discrete, valuation, that is, 
a field K with a mapping x-'>- / x I of K into the set of real numbers ;;:. o such that 

�Ix+ YI<( [xi+ [y[, [xy[ = [x[.[y[, 
? ([xi = o) � ( x  = o), 

and such that there exists some x =I= o with /xi =I= 1. 

Let S(X) = � anXn be a formal series with coefficients in R or C. 
n�O 

We propose to substitute an element z of the field for the indeterminate X 
and thus to obtain a 'value' S(z) of the series, which will be an element of 

the field; but this substitution is not possible unless the series � anzn 
n�O 

is convergent. In fact, we shall limit ourselves to the case when it is 
absolutely convergent. 

To be precise, we introduce a real variable r;;:. o and consider the 
series of positive (or zero) terms 

called the associated series of S(X). Its sum is a well-defined number 
> o, which may be infinity. The set of r ;;:. o for which 

is clearly an interval of the half line R+, and this interval is non-empty 
since the series converges for r = o. The interval can either be open or 
closed on the right, it can be finite or infinite, or it can reduce at the single 
point o. In all cases, let p be the least upper bound of the interval, so p is a 
number ;;:. o, finite, infinite, or zero; it is called the radius of convergence 

of the formal power series � anXn. The set of z such that fzl < p is 
n�O 

called the disc of convergence of the power series; it is an open set and it 
is empty if p = o. It is an ordinary disc when the field of coefficients is 
the complex field C. 

PROPOSITION 3· I. 

a) For atry r< p, the series � anzn converges normally for Jzl <( r. In par· 
n�O 

ticular, the series converges absolutely for each z such that I z I < p; 

rg 
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b) the series 2i anzn diverges for lzl > p. (We say nothing about the case 
n�O 

when lz/ = p.) 

Proof. Proposition 3. I follows from 

ABEL'S LEMMA. Let r and r0 be real numbers such that o < r < r0• If there 
exists a finite number M > o such that 

for any integer n > o, 

then the series 2i anz
n converges normally for [zl < r. 

n�O 

For, /anzn[ <; /an/r
n <; M(r/r0)n, and En = M�r/r0)n is the general term 

of a convergent series - a geometric series with common ratio r/r0 < r. 

We now prove statement a) of proposition 3.1: if r < p, choose r0 such 

that r < r0 < p; since 2i lan/(r0)n converges, its general term is bounded 
n""o 

above by a fixed number M, and Abel's lemma ensures the normal 

convergence of 2i anz
n for /zl <; r. Statement b) remains to be proved: 

n""O 

if Jz/ > p, we can make /anzn[ arbitrarily large by chasing the integer 
n suitably because, otherwise, Abels' lemma would give an r' with 

p < r' < /z/ such that the series 2i lan/r'
n4 were convergent and this 

n�O 
would contradict the definition of p. 

Formula for the radius of convergence (Hadamard) : we shall prove the formula 

(3. r) r/p = lim sup Jan!lf
n. 

n-;. oo 

Recall, first of all, the definition of the upper limit of a sequence of real 
numbers Un: 

lim sup Un = lim (sup Un) • 
n-::--oo p..:;,..oo n�p 

To prove (3. r), we use a classical criterion of consequence: if Vn is a 
sequence of non-negative numbers such that lim sup (vn)1fn <I, then 

n_,oo 

2ivn < + oo; moreover, if they are such that lim sup (vn)1Jn > r, then 
n n�oo 

}: Vn = + oo (this is " Cauchy's rule " and follows by comparing the series 
n 

2ivn with a geometric series). 
n 

20 
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and so the series Zi la.Ir" converges for I /r >lira sup la.I''", and diverges 

for I /r < lim sup la.I''"· This proves (3· I ). 
n.;..oo 

Some examples. - The series Zi n !z• has zero radius of convergence; 
n�O 

- the series � � z" has infinite radius of convergence; 
.�on. 

- each of the series � z•, � _!__ z•, � �z· has radius ofconvergence 
n�O n:>O n n>O n 

equal to I .  It can be shown that they behave differently when kl = I. 

4• ADDITION AND MULTIPLICATION OF CONVERGENT POWER SERIES. 
'' 

PROPOSITION 4. I. Let A(X>) and B(X) be two formal power series whose radii 
of convergence are )> p. Let 

S(X) = A(X) + B(X) and P(X) = A(X) . B(X) 

be their s um and product. Then : 

a) the ser ies S(X) and P(X) have radius of convergence ;;> p; 

b) for lzl < p, we have 

(4.I ) S(z) = A(z) · + B(z), P(z) = A(z)B(z). 

Proof. Let 

A(X) = 2i a.X•, B(X) = Zi b.X•, S(X) = � c.X•, P(X) = � d.X•, 
n�O n?-0 n?O n�O 

and let 

'{n = la.I + jb.I, 

We have le.! < '(n, ld,.I < o,.. If r < p, the series � la,. Ir" and � lb.Ir" 
converge, thus n�O n�O 

It follows that the series � lc.jr• and 2i Id.Ir" converge and therefore 
n�O n�O 

that any r< pis less than or equal to the radius of convergence of each of 
the series S(X) and P(X) . Thus both radii of convergence are ;;> p. 

The two relations (4· I ) remain to be proved. The first is obvious, and 

21 
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the second is obtained by multiplying convergent series; to be precise, 
we recall this classical result : 

PROPOSITION 4. 2. Let � Un and � Un be two absolutely convergent series. If 
n�O n�O 

Wn = � UpVn- P> 
o::s;;p�n 

then the series � w,. is absolutely convergent and its sum is equal to the product 

( � Up) • ( � Vq) 
P�.O q�O 

Write a.p = � Ju.I, �q = � \ v.I; we have 
n�p 11�q 

moreover, if m ;> 2n, 

is less than a sum of terms lupj.\vq\, where for each term, at least one of 
the integers p and q is > n; thus, this sum is less than a.0�. + 1 + �0a.. + h 

which tends to zero as n tends to infinity. It follows that � wk tends to 
� � k�m 

the product of the infinite sums £.1 u. and £.1 v •. 
n?-0 n�O 

5· SUBSTITUTION OF A CONVERGENT POWER SERIES IN ANOTHER 

For two given formal power series S and T with T(o) = o, we have defined 
the formal power series S o T in paragraph 1, no. 4. 

PROPOSITION 5.1. Suppose T(X) = � b.X•. If the radii of convergence 
·�t 

p(S) and p(T) are -=!= o, then the radius of convergence of U = So T is also 

-=!= o. To be precise, there exists an r> o such that � \b.\r• < p(S); the radius of 
·�t 

convergence of U is ;>. r, and, for atry z such that \z\ < r, we have 

\T(z) i < p(S) 
and 

(5. I) S(T(z)) = U(z). 

22 



CONVERGENT POWER SERIES 1.2.5 

Proo}� Put S(X) = � anXn. For sufficiently small r > o, � lbn/r• is finite 
n;:::.o n�t 

since the radius of convergence of T is ¥= o. Thus, � I bn irn- t is finite 
for sufficiently small r > o, and, consequently, n;::>t 

tends to o when r tends to o. There exists, then, an r > o such that 

� \bnlrn < p(S) as required. It follows that 
R�i 

is finite. However, this is a series � y.rn, and, if we put U (x) = � cnXn, we 
n�O n�O 

clearly obtain !cnl <:;: "(n· Thus � lcnlrn is finite and the radius of conver-
gence of U is > r. n;::>O 

Relation (5. 1 ) remains to be proved. Put Sn(X) = � akXk and let 
Sn o T = Un. For lzl <:;: r, we have O<S";k<S;n 

U.(z) = S.(T(z)), 

since the mapping T � T(z) is a ring homomorphism and Sn is a polyno
mial. Since the series S converges at the point T(z), we have 

S(T(z)) = lim Sn(T(z) ) . 
n 

On the other hand, the coefficients of U -Un = (S-S.) o T are bounded 
by those of 

a series whose sum tends to o as n-+ + oo. It follows that, for lzl <; r, 

U(z) - U.(z) tends to o as n � + oo. Finally, we have 

U(z) = lim Un(Z) = lim S.(T(z)) = S(T(z)) 
n�oo n...;.oo 

for 

which establishes relation (5. I ) and completes the proof. 

lzl < r, 

Interpretation of relation (5. I) : suppose r satisfies the conditions of propo
sition 5. I. Denote the function z � T(z) by T, defined for lzl <:;: r, 
and similarly denote the functions defined by the series S and U by S 
and (J respectively. The relation (5. I ) expresses that, for lzl <; r, the 
composite function S o T is defined and is equal to (J. Thus the relation 
U = S o T between formal series implies the relation U = S o T if the 
radii of convergence of S and T are ¥= o and if we restrict ourselves to 
sufficiently small values of the variable z. 
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6. ALGEBRAIC INVERSE OF A CONVERGENT POWER SERIES 

We know (§ 1, proposition 5. 1) that, if S(X) = � anXn with a0 =F o, 
n�O 

there exists a unique formal series T(X) such that S(X)T(X) is equal 
to 1. 

PROPOSITION 6. I. If the radius of convergence of S is =F o, then the radius 
of convergence of the series T such that ST = 1 is also =F o. 

Proof. Multiplying S(X) by a suitable constant reduces the propos1t10n 
to the special case when a0 = I. Put S(X) = 1 - U(X) so that U(o) = o. 
The inverse series T(X) is obtained by substituting U (X) for Yin the series 

1 + � yn; moreover, the radius of convergence of the latter is equal to 
n>O 

I and so =F o; proposition 6. I then follows from proposition 5. 1. 

7. DIFFERENTIATION OF A CONVERGENT POWER SERIES 

PROPOSITION 7. I. Let S(X) = � anXn be a formal power series and let 
n�O 

S' (X) = � nanXn-1 
n�O 

be its derived series ( c£ § 1, no. 6). Then the series S and S' have the same 
radius of convergence. Moreover, if this radius of convergence p is =F o, we have, 
for I.el< p, 

(7. I ) S'( ) _ 1. 
S(z + h) - S(z) 

z - 1_!11 h 
' 

where h tends to o without taking the value o. 

Preliminary remark. If lzi < p, then lz + h i< p for sufficiently small 
values of h (in fact, for Jhj < p - JzJ); thus S(z + h) is defined. On 
the other hand, it is understood in relation ( 7. 1) that h tends to o through 
non-zero real values if the field of coefficients is the field R, or by non
zero complex values if the field of coefficients is the field C. In the case 
of the field R, relation (7. 1) expresses that the function z __.,.. S(z) has 
derivative equal to S'(z); in the case of the complex field C, relation (7. 1) 
shows that we also have the notion of derivative with respect to the complex 
variable z. In both cases, the existence of a derived function S' (.<:) obviously 
implies that the function S(z) is continuous for JzJ < p, which can also be 
proved directly. 
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Proof of proposition 7. r. Let ix.= la.I and let p and p' be the radii of conver
gence of the series S and S' respectively. If r < p', the series � nix.r•-1 
converges, and so ·�0 

� ix.r• < r ( � nix.r•-1) < + oo, 
·�t n�o 

and, consequently, r < p. Conversely, if r < p, choose an r' such that 
r < r' < p; then n-1- I '• ( r ) •-1. na.r -1' (ix.r ) .n 1' , 

since r' < p, there exists a finite M > o such that ix.r'• < M for all n, 
whence 

nix.r•-1 < 1; n ( ;, ) •-l, 
and, since the series � n (_!_,)n-l converges, the series � nix.r•-1 also 

n�I T n�I 
converges; thus r < p'. We have then that any number < p' is < p and 
any number < p is < p', from which it follows that p = p'. 

Relation (7· 1 ) remains to be proved. Choose a fixed z with !zl < p 
and an r such that lzl < r < p and suppose that 

(7 · 2) o =I= lhl < r- l zl 
in what follows. 

Then S(z + h) is defined, and we have 

(7. 3) S (z + h) S(z) , � -·----- - S (z) = ,:.. u.(z, h), h n�I 
where we have put 

u.(z, h) = a. l (z + h)•-1 + z(z + h)•-2 + · · · + z•-1 - nz•-1 j. 

Since !zl and iz + hi are < r, we have Ju.(z, h) I< wix.r•-1; and, since 
r < p, we have � nix.r•-1 < + oo; thus, given E > o, there exists an integer 
n0 such that ·�1 

n>no 
With this choice of n0, the finite sum � u.(z,h) is a polynomial in h which n�no , 
vanishes when h = o; it follows that I � u.(z,h) I< E/2 when Jhl is n�n0 
smaller than a suitably chosen 'Ti· Finally, if h satisfies (7. 2) and Jhl < 'Tj, 
we deduce from (7. 3) that 

IS(z + h) - S(z) - S'(z) l<I � u.(z,h) I+ � 2nix.r•-1 < •· h n�n0 n>n0 
Thus we have 'proved the relation (7. 1 ) . 
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S(z + h) - S(z) 
It can be shown that the convergence of 

h 
towards 

S'(z) is uniform with respect to z for !zl < r (r being a fixed number strictly 
less than the radius of convergence p). 

8. CALCULATION OF THE COEFFICIENTS OF A POWER SERIES 

Let S(x) be a formal power series whose radius of convergence p =I= o, 

so that S(z) is the sum of the series _Li anzn for lzJ < p. The function S(z) 
n�O 

has for derivative the function S'(z) = _Li nanzn-1• We can again apply 
n�O 

proposition 7. I to the series S' to obtain its derived function S"(z), the 

sum of the power series ,Li n(n - I)anzn-2, whose radius of convergence is 
n�O 

also p. This process can be carried on indefinitely, and by induction we 
see that the function S(z) is infinitely differentiable for lzl < p; its deriva
tive of order n is 

where T n is a series of order ;:> I, in other words T n ( o) = o. From this, 
we have 

(8. 1) I 
an = - S<nl(o) . 

n! 

This fundamental formula shows, in particular, that, if the function 
S(z) is known in some neighbourhood of o (however small), the coefficients 
an of the power series S are completely determined. Consequently, given 
a function/ (z) defined for all sufficiently small l zl, there cannot exist more than 

one formal power series S(X) = ,Li anXn whose radius of convergence is =I= o, 
n�O 

and such that f(z) = .Li anzn for lzJ sufficiently small. 
n�O 

9· COMPOSITIONAL INVERSE SERIES OF A CONVERGENT POWER SERIES. 

Refer to § I, proposition 7. 1. 

PROPOSITION 9.1. Let S be a power series such that S(o) = o and S'(o) = o, 
and let T be its inverse series, that is the series such that 

T(o) = o, SoT=I. 

If the radius of convergence of S is =I= o, then the radius of convergence of T is =I= o. 
The reader can accept this proposition without proof because a proof 
(which does not use power series theory) will be given later (chap. IV,§ 5, 
proposition 6. I ) . 
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Here, however, a direct proof using power series theory is given to satisfy 
the reader with an inquisitive mind. It uses the idea of ' majorant series ' 
(cf. chap. vu). Let us keep to the notations of the proof of proposition 7.1 in§ I 

and let us consider relations (7. 5) of§ I which enable us to calculate the unknown 
coefficients bn of the required series T(X) . Along with the series S(X) , we consider 
a 'majorant' series, that is a series 

S(X) = A1X- � A.X• 
n�2 

with coefficients A. > o such that I a. I < A. for all n; moreover we assume that 
A1 = la1j. Applying § 1 proposition 7. I to the series S, gives a series 

T(Y) = � B.Y• 
n�t 

such that S(T(Y)) = Y; its coefficients B. are given by the relations 

(g. 1) 

which are analogs of (7. 5) of§ r. We obtain from them by induction on n 

(g. 2) lb.I< B •. 

It follows that the radius of convergence of the series T is not less than that of 
the series T. We shall prove proposition g. 1 by showing that the radius of conver
gence of T is > o. 

To this end, we choose the series S as follows: let r > o be a number strictly 
less than the radius of convergence of the series S (by hypothesis, this radius of conver-

gence is =I= o); the general tenn of the series � la.Ir" is then bounded above by 
by a finite number M > o and, if we put """' 

(g. 3) A.= Mfr" for n )> 2, 

we obtain the coefficients of a majorant series of S; its sum S(x) is equal to 

x2/r2 S(x) = A1x - M --

r -x/r 
for lxl < r. 

We seek, then, a function T(y) defined for sufficiently small values of y which is 
zero for y = o and which satisfies the equation S(T(y)) = y identically; T(y) 
must satisfy the quadratic equation 

(g. 4) (A1/r + M/r2) 'f2 - (A1 + yr)T + y = o, 

which has for solution (which vanishes wheny = o) 

When I y I is sufficiently small, the surd is of the form A1 v'I+u, with I u I < I, and 
so T(y) can be expanded as a power series in y, which converges for sufficiently 
small I y I· Thus the radius of convergence of this series is =I= o, as required. 
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3. Logarithmic and Exponential Functions 

I. EXPONENTIAL FUNCTION 

We have already remarked (§ 2, no. 3) that the formal series � �X· has 
infinite radius of convergence. For z complex, we define ·�0 n 

• 

that is, the sum of an absolutely convergent series. This function has 
derivative 

( I. I ) 
d 
- (e') = e' 
dz 

by proposition 7. 1 of§ 2. 
On the other hand, applying proposition 4. 2 of § 2 to two series with 

general terms 

gives 

Consequently 

( 1. 2) 

I 
n Un= lz, 

n. 

I In 
Vn = lz , 

n. 

� I I 
w. = ..:::. ' 'zPz'n-p = I (z + z')•. 

o�p�np.(n -p). n. 

(the fundamental functional property of the exponential function). In 
particular, 

(1. 3) e'.e-' = 1, so e' =I= o for all ;:;. 

Putting z = x + iy (with x andy real) gives 

so we need only study the two functions e"' and eir, where x and y are real 
variables. We have 

(1. 4) 
d 
dx (e"') 

= e"', 

2. REAL EXPONENTIAL FUNCTION e"' 

d 
( 

. 
) 

.. 
- e'Y = ze'Y. 
dy 

We have seen that e"' =I= o: what is more, e"' = (e"'12)2 > o. Moreover, 
x2 

the expansion e"' = 1 + x +- + · · ·  shows that e"'> I +x when x>o. 
2 
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Thus 
lim e'° = + oo; 

��+oo 

substituting - x for x leads to 

lim e'° = o. 

We deduce that the function e'° of the real variable x increases strictly 
from o to + oo. The transformation t = e'° has therefore a inverse trans
formation defined for t > o; it is denoted by 

x = log t. 

This function is also strictly monotonic increasing and increases from 
-oo to + oo. The functional relation of e'° is written 

log (tt') = log t + log t', 

and, in particular, log I = o. 
On the other hand, the theorem about the derivative of an inverse 

function gives 

(2. 2) d 
dt 

(log t) = I/t. 

Let us replace t by I+ u (u>-I); log (I+ u) is the primitive of -1-
I + u 

which vanishes for u = o; moreover we have the following power series 
expansion 

I -- =I -u + u2 + ... + (-I)n-lun-1 + ... 
I+ U 

whose radius of convergence is equal to I. From proposition 7. I of § 2, 
it follows that the series of the primitive has the same radius of convergence 

and that its sum has derivative _
I
_; whence, for lul < I, 

I+ U 

(2. 3) u2 un 
log (I+ u) = u --+ ... + (- I)n-1_ + ... 

2 n 

(in fact this expansion is also correct when u = 1 ) . 
Now put 

(2. 4) S(X) = � � Xn, 
n;::>I n • 

and examine the composed series U =So T. We have from proposition 
5. I of§ 2, for - 1 < u < + 1, 

V(u) = S(T(u)) ; 
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however, T(u) =log ( I + u), S(x) = e"- I, so 

V(u) = e1•g(l+u)_ I= (1 + u) - I= u. 

This shows that the formal series U is merely I because of the uniqueness 
of the power series expansion of a function (cf. § 2, no. 8). Thus the 
series S and T are inverse. 

3· THE IMAGINARY EXPONENTIAL FUNCTION eiY (y REAL) 

The series expansion of ei1 shows that e-i1 is the complex conjugate of ei1; 
thus ei1. e-i1 is the square of the modulus of eit; but this product is equal 
to I by relation (1. 3). Thus 

We note that, in the Argand plane representation of the complex field C, 

the point ei1 is on the unit circle, that is the locus of points whose distance 
from the origin o is equal to I. The complex numbers u such that /uj = I 

form a group U under multiplication and the functional property 

expresses the following : the mapping y - ei1 is a homomorphism of the additive 
group R in the multiplicative group U. This homomorphism will be studied 
more closely. 

THEOREM. The homomorphism y - ei1 maps R onto U, and its' kernel' (subgroup 
of the y such that eit = I, the neutral element of U) is composed of all the 
integral multiples of a certain real number > o. By definition, this number 
will be denoted by 2'7t. 

Proof. Let us introduce real and imaginary parts of e;Y; we put, by defini
tion, 

ei1 =cosy+ siny, 

which defines two real functions cos y and sin y, such that 

cos2 y + sin2 y = 1. 

These functions can be expanded as power series whose radii of convergence 
are infinite : 

(3• I ) 

I I 2 + + (- 1 )n 2n ' 

I 
COS y = I - -y · · · ---y I · · · 

2 (zn)! ' 

I (- I )n sin y = y __ y3 + ... + y
2n +I + .... 

�!  (2n + I ) ! 
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We shall study the way in which these two functions vary. Observe 
that separating the real and imaginary parts in the second equation ( I. 4) 

gives 

� (cosy) = - siny, � (siny) = cosy. 

When y = o, cosy is equal to I ; since cosy is a continuous function, there 
exists a y0 > o such that cos y > o for o �y �Yo· Hence sin y, whose 
derivative is cos y, is a strictly increasing function in the interval [ o, y0]. 
Put sin y0 =a> o. We shall show that cos y vanishes for a certain 
value of y which is> o. Suppose in fact that cosy> o for y0 �y �y1; 
we have 

(3. 2) ly, cosy1 - cosy0 = - sinydy. 
Yo 

However, sin y ;> a, because sin y is an increasing function in the interval 
[y0, y1] where its derivative is > o, thus 

ly, sinydy ;> a(y1 -y0). 
Yo 

By substituting this m (
3

. 2) and noting that cos y1 > o, we find that 

I 
Y1 -yo <-cOSYo· a 

This proves that cos y vanishes in the interval [ y0, Yo + -; cos Yo J 
Write _::... for the smallest value of y which is > o and for which cosy = o 

2 

(this is a definition of the number it). In the interval [ o, : } cosy 

decreases strictly from I to o, and sin y increases strictly from o to I ; thus 
the mapping y - eiY is a bijective mapping of the compact interval 

[ o, : J onto the set of points (u, v) of the unit circle whose coordinates 

u and v are both ;> o. By a theorem of topology about continuous, 
bijective, mappings of a compact space, we deduce : 

LEMMA. The mapping y - eiY is a homeomorphism ef [ o, : J onto the sector 

of the unit circle u2 + v2 = I in the positive quadrant u ;> o, v ;> o. 

For _::... <Y <it, we have eiY = iei(y-f), whence we easily deduce 
2 

that eiY takes each complex value of modulus I whose abscissa is <: o 
and whose ordinate is;> o, and takes each value precisely once. 

Analogous results can be deduced for the intervals [ it, 3
2

it J and [ 327t, 27t} 
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Thus, for o �y < 27t, eir takes each complex value of modulus 1 

precisely once, whereas e2i"' 
= 1. Therefore the function eir is periodic 

of period 27t, and the mapping y - eir maps R on U. This completes the 
proof of the theorem. 

4. MEASUREMENT OF ANGLES. ARGUMENT OF A COMPLEX NUMBER 

Let 27tZ denote the subgroup of the additive group R formed by 
the integral multiples of the number 27t. The mapping y - eir 

induces an isomorphism cp of the quotient group R/27tZ on the group U. 
The inverse isomorphism cp-1 of U on R/27tZ associates with any 
complex number u such that !u! = 1, a real number· which is defined 
up to addition of an integral multiple of 27t; this class of numbers is called 
the argument of u and is denoted by arg u. By an abuse of notation, arg u 
will also denote any one of the real numbers whose class modulo 27t is 
the argument of u; the function arg u is then an example of a many-valued 
function, that is, it can take many values for a given value of the variable u. 
This function resolves the problem of ' measure of angles ' (each angle is 
identified with the corresponding point of U) : the ' measure of an angle ' 
is a real number which is only defined modulo 27t. 

We topologize the quotient group R/27tZ by putting on it the quotient 
topology of the usual topology on the real line R : let p be the canonical 
mapping of R on its quotient R/27tZ, a subset A of R/27tZ is said to be open 
if its inverse image p-1 ( A), which is a subset of R invariant under translation 
by 27t, is an open set of R. It is easily verified that the topological space 
R/27tZ is Hausdorff (that is, that two distinct points have disjoint 
open neighbourhoods). Moreover, it is compact; for, if I is the closed 
interval [0,27t], the natural mapping I - R/27tZ takes the compact space I 
onto the Hausdorff space R/27tZ which is then compact by a classical 
theorem in topology. The homomorphism cp : R/27tZ - U is continuous 
and is a bijective mapping of the compact space R/27tZ onto the Hausdorff 
space U; hence cp is a homeomorphism of R/27tZ on U. 

General definition ef argument : for any complex number t of= o, define the 
argument oft by the formula 

arg t = arg (Fl)· 

The right hand side is defined already since t/!ti e U. (Note that 
the argument of o is not defined.) As above, arg tis only defined up to 
addition of integral multiples of 27t. We thus have 

(4· 1) t = ltlei•rgt. 
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Application. To solve the equation t" =a (where a =I= o is given) the 
equation is equivalent to 

Jtj = Jajlfn, I 
arg t = - arg a, 

n 

and has n complex solutions t because one obtains for arg t a real number 
defined up to addition of an integral multiple of 27r/n. 

5· COMPLEX LOGARITHMS 

Given a complex number t, we seek all the complex numbers z such that 
e' = t. Such numbers exist only when t =I= o. In this case, relation (4· I ) 
shows that the z that we seek are the complex numbers of the form 

(5. I ) log !ti+ i arg t. 

We define 

(5. 2) log t = log It I + i arg t, 

which is a complex number defined only up to addition of an integral 
multiple of 27ri. From this definition, we have e10g1 = t. When t is 
real and > o, we again have the classical function log t if we allow only 
the value o for arg t. 
For any complex numbers t and t' both =I= o and for any values of log t, 

log t' and log tt' , we have 

(5· 3) log (tt') =log t + log t' (mod 27ri). 

Branches of the logarithm. So far we have not defined log t as a function 
in the proper sense of the word. 

Definition. We say that a continuous functionf(t) of the complex variable t, 

defined in a connected open set D of the plane C, not containing the point 
t = o, is a branch of log t if, for all t e D, we have ef(t) = t (in other words, if 
f(t) is one of the possible values oflog t). 

We shall see later (chapter n, § I, no. 7) what conditions must be satisfied 
by the open set D for branch of log t to exist in D. We shall now examine 
how it is possible to obtain all branches of log t if one exists. 

PROPOSITION 5. I If there exists a branch f ( t) of log t in the connected open set D, 

then any other branch is of the for m f(t) + 2k7ri (k an integer); conver sely, 
f ( t) + 2k7ri is a br anch of log t for arry integer k. 
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Let us suppose the that f ( t) and g( t) are two branches of log t. The 
difference 

h(t) =
f(t) -

_
g(t) 

2'1tZ 

is a continuous function in D which takes only integral values; since D 

is assumed connected, such a function is necessarily constant. For, the set 
of points t e D such that h( t) is equal to a given integer n is both open and 
closed. Thus the set is empty or is equal D. The constant must of course 
be an integer. That f ( t) + 2k'lti is a branch of log t for any integer k is 
obvious. 

One defines similarly what must be understood by a branch of arg t 
in a connected open set D which does not contain the origin. Moreover, 
any branch of arg t defines one of log t and vice-versa. 

Example. Let D be the open half-plane Re (t) > o (recall that Re (t) 
denotes the real part oft). For any t in this half-plane, there is a unique 

value of arg t which is > _-2:_ and < .2:. ; denote this value by Arg t. 
2 2 

We shall show that Arg t is a continu ous functi on and that consequently 

log It I + i Arg t 

is a branch of log t in the half plane Re ( t) > o. It will be called the prin
cipal branch of log t. Since Arg t = Arg ( t JI t J) and since the mapping 
t -+ t JI t / is a continuous mapping of the half-plane Re ( t) > o on the set 
of u such that Jul = 1 and Re (u) > o, it is sufficient to show that the 
mapping y = Arg u is continuous. However, this is the inverse mapping of 

u = fir as y ranges over the open interval]- ; . + ; [; the function u = eiY 

is a continuous bijective mapping of the compact interval [ - ; , + ; ] 
on the set of u such that I u / = 1 and Re ( u) ;> o; this then is a homeomor
phism and the inverse mapping is indeed continuous, which completes 
the proof. 

6. SERIES EXPANSION OF THE COMPLEX LOGARITHM 

PROPOSITION 6. 1. The sum of the power series 

which converges for / u/ < 1, i s  equ al to the principal branch of log ( 1 + u). 

Note first that if f ul < 1, t = 1 + u remains inside an open disc contained 
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m the half plane Re ( t) > o. Again we use the notations of relation ( 2. 4) 
and remember that the series S and T are inverse to one another; proposi
tion 5. I of§ 2 shows that S(T(u)) = u for any complex number u such 
that f ul < I. In other words, eT(u) = 1 + u; and consequently T(u) 
is a branch of log ( I + u). To show that this is the principal branch, 
it is sufficient to verify that it takes the same value as the principal branch 
for a particular value of u, for instance, that it is zero when u = o, which 
is obvious from the series expansion of T ( u). 

PROPOSITION 6. 2. lf f( t) is a branch of log t in a connected open set D, the 
Function f ( t) has derivative f' ( t) with respect to the complex variable t, and 

f' ( t) = I/t. 

In fact, for h complex =I= o and sufficiently small, we have 

f (t + h) -f(t) _f (t + h) -f (t) . 
h - efCt+h)_efCt) ' 

and, when t tends to o, this tends to the algebraic inverse of the limit of 
e"

,
-e' 

as z' tends to z =f( t) ; the limit we seek is then the inverse of 
z-z 

the value of the derivative of e' for z = f ( t) , which is equal to e-fCt> = I It. 

Note. This result checks with the fact that the derivative of the power 

series T(u) is indeed equal to _
I
_, 

I +  U 

Definition. For any pair of complex numbers t =I= o and ix, we put 

This is a many valued function oft for fixed ix. A branch of ta in a 
connected open set D is defined as above. Any branch of log t in D 
defines a branch of ta in D. 

Revision. Here the reader is asked to revise, if necessary, the power series 
expansions of the usual functions, arc tan x, arc sin x ,  etc. Moreover, 
for any complex exponent ix and for x complex such that [xi< I, we consider 

where log ( I + x) denotes the principal branch (the function ( I + x) " 
then takes the value I for x = o) ; the reader should study its power series 
expansion. 
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4. Analytic Functions of a Real or Complex V ariahle 

I • DEFINITIONS 

Definition I. I. We say that a functionf(x), defined in some neighbourhood 
of x0, has a power series expansion at the point x0 if there exists a formal power 

series S(X) = � anX" whose radius of convergence is =I= o and which 
satisfies n;;::,o 

for 1x - x01 sufficiently small. 

This definition applies equally well to the case when x is a real or a 
complex variable. The series S(X), if it exists, is unique by no. 8 of§ 2. 

Iff (x) has a power series expansion at x0, then the functionf is infinitely 
differentiable in a neigbourhood of x0 because the sum of a power series 
has this property. If the product Jg of two functions f and g having power 
series expansions at x0 is identically zero in some neighbourhood of x0, 
then a least one of the functionsf and .. � is identically zero in a neighbourhood 
of x0; in fact, this is an immediate consequence of the fact that the ring 
of formal series is an integral domain (§ I, proposition 3. 1). If f has a 
power series expansion at x , there exists a function g also having a power 
series expansion at x0 and having derivative g' =fin some neighbourhood 
of x0; such a function is unique up to addition of a constant in some neigh
bourhood of x0; to see why this is so, it is sufficient to examine the series 
of primitives of terms of a power series expansion of the functionf. 
We shall consider in what follows an open set D of the real line R, or the 
complex plane C. If D is open in R, D is a union of open intervals and, 
if D is also connected, D is an open interval. We write x for a real or 
complex variable which varies over the open set D. 

Definition 1. 2. A function f(x) with real or complex values defined in 
the open set D, is said to be analytic in D if, for any point x0 e D, the function 

f(x) has a power series expansion at the point x0• In other words, there 

must exist a number p(x0) > o and a formal power series S(X) = � a.Xn 
with radius of convergence;>. p(x0) and such that n;;;:,o 

f(x) = � an(x - x0)" for 
n;;;:,o 

The following properties are obvious : any analytic function in D is 
infinitely differentiable in D and all its derivatives are analytic in D. 
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The sum and product of two analytic functions in D are analytic in D: 
that is to say, the analytic functions in D form a ring, and even an algebra. 
It follows from proposition 6. 1 of § 2 that, if f (x) is analytic in D, then 
1 /f (x) is analytic in the open set D excluding the set of points x0 such that 
f(xo) = o. 

Finally, proposition 5. 1 of§ 2 gives that, if f is analytic in D and takes its 
values in D' and if g is analytic in D', then the composed function g of 
is analytic in D. 

Let f be an analytic function in a connected set D; if f has a primitive g, 
that is, if there exists a function g in D whose derivative g' is equal to j, 
then this primitive function is unique up to addition of a constant and it . 
is an analytic function. 

Examples of analytic functions. Polynomials in x are analytic functions on 
the whole of the real line (or in the complex plane). A rational function 
P(x)/Q(x) is analytic in the complement of the set of points x0 such that 
Q(x0) = o. It will follow from proposition 2. 1 that the function e:& is 
analytic. The function arc tan x is analytic for all real x since its deriva-

• I • 1 . 
t1ve 

1 + xz 
is ana yt1c. 

2. CRITERIA OF ANALYTICITY 

PROPOSITION 2. I. Let S(X) = }: anXn be a power series whose radius of 
convergence p is =F o. Let n�o 

S(x) = }: anxn 
n�O 

be its sum for lxl < p. Then S(x) is an analytic function in the disc Jxj < p. 

This result is by no means trivial. It will be an immediate consequence 
of what follows, to be precise : 

PROPOSITION 2. 2 With the conditions of proposition 2. I, let x0 be such that 
lxol < p. Then the power series 

(2. I) 

has radius of convergence > p - lx01 and 

(2. 2) for Ix - Xol < P - !xol· 
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Proof of proposition 2. 2. Put r0 = lx01, oc. = la.I. We have 

For r0 < r < p, we have 

(2. 3) h ---\ 1s<P>(xo) I (r - ro)P < h (p ;- r) ! OCp.tq(ro)q(r - ro)P, 
p?:-oP· p,q p. q. 

< h oc.( � p!(n--; p) ! (r-r0)P(r0)•-P) , 
n�O O�p�n n. 

< h oc.r• < + oo. 
n�O 

Thus the radius of convergence of the series (2. 1 ) is > r - r0. Since r 
can be chosen arbitrarily near to p, this radius of convergence is > p - r0• 

Now let x be such that !x - x01 < p - r0• The double series 

� (p + q) ! a (x )q(x - x ) P ..:.i P' q' 
p+q o o 

p, q • • 

is absolutely convergent by (2. 3). Its sum can therefore be calculated 
by regrouping the terms in an arbitrary manner. We shall calculate 
this sum in two different ways. A first grouping of terms gives 

h a. ( h 1 
( 

n! 
) 

1 (x - x0)P(x0)•-P) = h a.x• = S(x); 
n?;-0 O�p�nP· n - p . n?;-0 

another grouping gives 

Formula (2. 2) follows from a comparison of these two and this completes 
the proof. 

Note I. The radius of convergence of series (2. 1 ) may be strictly larger 
than p -lxol· Consider, for example, the series 

S(X) = h (iX)•. 
n�O 

I 
Then S(x) = ---. for Ix!< I. Choose a real number for x0, so we have 

I - ZX 

I I ( . X -x0 )-1 � . i• 
( )" -- = I - Z --- = _.:.i X - Xo . 

I - ix I - iXo I - ixo n?;-o ( I - ixo)•+l 
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This series converges for [x - x0[ <VI + (x0)2 and V I + (x0)2 is strictly 
greater than 1 - f xoi· 

.Note 2. Let 

A(r) = � [an[rn for r< P· 
n�O 

From inequality (2. 3), we have 

(2. 4) for [x[ � r0 < r < p • 

.Note 3. If x is a complex variable, we shall see in chapter II that any func
tion which is differentiable is analytic and is consequently infinitely diffe
rentiable. The situation is completely different in the case of a real 
variable : there exist functions which have a first derivative but no second 
derivative (one need only consider the primitive of a continuous function 
which is not differentiable). Moreover, there exist functions which 
are infinitely differentiable but which are not analytic; here is a simple 
example: the functionf(x), which is equal to zero for x = o and to e-I/z• 
for x =I= o, is infinitely differentiable for all x; it vanishes with all its deri
vatives at x = o so, if it were analytic, it would be identically zero m 

some neighbourhood of x = o, which is not the case. 

THEOREM. In order that an irifinitely differentiable function of a real variable x 

in an open interval D should be analytic in D, it is necessary and si+ffecient that any 
point x0 e D has a neighbourhood V with the following property : there exist numbers 
M and t, finite and > o, such that 

for arry x e V and any integer p ;;>. o. 

Indication of proof. The condition is shown to be necessary by using 
inequality (2. 4). It is shown to be sufficient by writing a finite Taylor 
expansion of the functionf(x) and using (2. 5) to find an upper bound 
for the Lagrange remainder. 

3· PRINCIPLE OF ANALYTIC CONTINUATION 

THEOREM. Let f be an analytic function in a connected open set D and let x0 e D. 
The following conditions are equivalent : 

a) f<nl(x0) = o for all integers n ;;>. o; 

b) f is identically zero in a neighbourhood of x0; 
c) f is identically zero in D. 
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Proef. It is obvious that c) implies a). We shall show that a) implies b) 
and b) implies c). Suppose a) is satisfied. We have then J<n>(x0) = o 
for all n > o with the convention that j<0> = f. But f (x) has a power 
series expansion in powers of (x - x0) in a neigbourhood of x0 and the 

coefficients � Jn (x0) are zero; thus f (x) is identically zero in a neighbour-
n. 

hood of  x0  which proves b). 
Suppose conditions b) is satisfied. To show that f is zero at all points of 
D, it is sufficient to show that the set D' of points x e D in a neighbourhood 
efwhichf is identically zero is both open and closed (D' is not empty because 
of b), thus, since D is connected, D' will be equal to D). It follows from the 
definition of D' that it is open. It remains to be proved that, if x0 e D 
is in the closure of D', then x0eD'. However,J<n>(x) = o for eachn >o 

at points arbitrarily close to x0 (in fact, at the points of D'); thus J<n>(x0) = o 

because of the continuity of J<n>; this holding for all n > o implies as 
above thatf (x) is identically zero in a neighourhood of x0• Thus x0eD', 
which completes the proof. 

COROLLARY I. The ring ef analytic functions in a connected open set D is an 
integral domain. 

For, if the product Jg of two analytic functions in D is identically zero 
and if x0 e D, then one of the functions f, g is identically zero in a neighbour
hood of x0 because the ring of formal power series is an integral domain. 
But, iffis identically zero in some neighbourhood of x0, thenf is zero in the 
whole of D by the above theorem. 

COROLLARY 2. (Principle of analytic continuation) 1J two anarytic functions 
f and g in a connected open set D coincide in a neighbourhood ef a point ef D, 
then they are identical in D. 

The problem ef anarytic continuation is the following : given an analytic 
function h in a connected open set D' and given a connected open set D 
containing D', we ask if there exists an analytic function f in D which 
extends h. Corollary 2 shows that such a function f is unique if it exists. 

4• ZEROS OF AN ANALYTIC FUNCTION 

Letf (x) be an analytic function in a neighbourhood of x0 and let 

f (x) = � an (x-x0) n 

n;?:-0 

be its power series expansion for sufficiently small Ix - x0 J . Suppose 
that f(x0) = o and thatf (x) is not identically zero in a neighbourhood of x0• 
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Let k be the smallest integer such that ak =/= o. The series 

1+5 

converges for sufficiently small Ix - x0J and its sum g(x) is an analytic 
function such that g(x0) =/= o in some neighbourhood of x. Thus, for x 

near enough to x0, we have 

f (x) = (x -x0)kg(x), g(x0) =/= o. 

The integer k > o thus defined is called the order of multiplicity of the zero x0 
for the function f. It is characterized by relation (4· 1) , where g(x) 
is analytic in a neighbourhood of x0• The order of multiplicity k is also 
characterized by the condition 

If k = 1, we call x0 a simple zero. If k ;>. 2, we call x0 a multiple zero. 
Relation (4· 1 ) and continuity of g(x) imply 

f (x) =/= o for o <lx-x01 < • (e > o sufficiently small). 

In other words the point x0 has a neighbourhood in which it is the unique 
zero of the function f ( x). 

PROPOSITION 4. 1. If f is an analytic function in a connected open set D and if 
f is not identically zero, then the set of zeros off i's a discrete set (in other words, 
all the points of this set are isolated). 

For, corollary 2 of no. 3 gives that f is not identically zero in a neigbour
hood of any point of D, so one can apply the above reasoning to each 
zero off. 

In particular, any compact subset of D contains only a finite number of 
zeros of the function g. 

5· MEROMORPHIC FUNCTIONS 

Let f and g be two analytic functions in a connected open set D, and 
suppose that g is not identically zero. The function f(x)/g(x) is defined 
and analytic in a neighbourhood of every point x0 ofD such that g(x0) # o, 

that is to say, in the whole of D except perhaps in certain isolated points. 
Let us see how f(x)/g(x) behaves in a neighbourhood of a point x0 

which is a zero of g(x); iff (x) is not identically zero, we have 

f(x) = (x-x0)"fi(x), 



POWER SERIES IN ONE VARIABLE 

where k and k' are integers with k ;>. o and k' > o, f1 and g1 are analytic 
in some neighbourhood of x0 with f1(x0) =I= o and g1(x0) =I= o; hence, for 
x =I= x0 but near to x0, 

f_(x) 
= (x _ x )k-k' f1 (x)_ 

g(x) 
0 

g1(x) 

The function h 1(x) =f1(x)/g1(x) is analytic in a neighbourhood of x0 and 
we have that h1(x0) =I= o. Two cases arise: 

1 o k ;>. k'; then the function 

(x -xo)k-k'h1(x) 

is analytic in some neighbourhood of x0 and coincides with f(x)/g(x) for 
x =I= x0• Hence the extension of f/g to the point x0 is analytic in a neigh
bourhood of x0 and admits x0 as a zero if k > k'. 

20 k < k' : then 

f(x) 
_ 

I 

( ) - ( )k'-k h1(x), 
g X X-Xo 

We say in this case that x0 is a pole of the functionf/g; the integer k' -k 

is called the order of m ultiplicity of the pole. As x tends to x0, I�(�} I tends 

to + oo. We can agree to extend the function f/g by giving it the value 
" infinity" at x0• We shall return later to the introduction of this 
unique number infinity, denoted oo. 

lff(x) analytic and has x0 as a zero of order k > o, then x0 is clearly a pole 
of order k of I If (x). 

Definition. A meromorphic function in an open set D is defined to be a 
function f(x) which is defined and analytic an the open set D' obtained 
from D by taking out a set of isolated points each of which is a pole 
off(x). 

In a neighbourhood of each point of D (without exception),'j can be 
expressed as a quotient h(x)/g(x) of two analytic functions, the denominator 
being not identically zero. The sum and product of two meromorphic 
functions are defined in the obvious way : the meromorphic functions 
in D form a ring and even an algebra. In fact they form a field because, 
iff(x) is not identically zero in D, it is not identically zero in any neigh
bourhood of any point of D by the theorem of no. 3; so f ( x) is then analytic, 
or has at most a pole at each point of D and is consequently meromorphic 
in D. 

PROPOSITION 5. I. The derivative f' of a meromorphic function fin D is mero
morphic in D; the functions f and f' have the same poles; if x0 is a pole of order 
k of j, then it is a pole of order k + I off'. 
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For, f' is defined and analytic at each point of D which is not a pole off 
It remains to be proved that, if x0 is a pole of j, x0 is also a pole of f'. 
Moreover, for x near x0, 

I J (x) = ( )kg(x), 
X-X0 

g(x) being analytic with g(x0) =I= o, k > o. Hence, for x =I= x0, 

and as g1(x0) =I= o, x0 is a pole off' of order k + I. 

Exercises 

1. Let K be a commutative field, X an indeterminate and E = K[[X]] 
the algebra of formal power series with coefficients in K. For S, T in E, 
define 

d(S T)- � o if S = T, 
' - ( e-k if S =I= T, and w(S - T) = k. 

a) Show that d defines a distance function in the set E. 

b) Show that the mappings (S, T) -+ S + T and (S, T) -+ST of E x E 
into E are continuous with respect to the metric topology defined by d. 

c) Show that the algebra K[X] of polynomials is everywhere dense in E 
when considered as a subset of E. 

d) Show that the metric space E is complete. (If (S.) is a Cauchy sequence 
in E, note that for any integer m > o, the first m terms of S. do not depend 
on n for sufficiently large n.) 
e) Is the mapping S -+ S' (the derivative of S) continuous? 

2. Let p, q be integers ;;;> 1. Let S1 (X) be the formal series 

1 + x + x2 + . . .  + x· + ... , 

and put 

a) Show, by induction on n, that 

(I) 1+P+l!JP+1) + ... +P(P+ 1) ... (p+n-1) = (p+1) ... (p+n), 2! n! n! 
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and deduce (by induction on p), the expansion 

(2) Sp(X) = � (P + n-r)x·, 
·�o n 

where ( �) denotes the binomial coefficient h!(k � h) ! 
b) Use Sp(X) . Sq(X) = SP+q(X) to show that 

(3) � (P + l + r) (q +n+ l- r) = (P +q+ n + r) 
o,,;1,,;n l n-l n 

(which is a generalisation of ( r ) , the case when q = 
r). 

3· Find the precise form of the polynomials p n in the proof of proposition 7. I' 
§ r, for n .::::;;;: 5 and calculate the terms of degree .::::;;;: 5 of the formal 
(compositional) inverse series of 

I I I S(X) = X- -Xa + -Xs + ... + (- r)P -- X2P+l + .... 3 5 2p+r 

4. Find the radii of convergence of the following series.: 

a) � q•'z• (lq l < r), 
·�o 

b) � nPz• (p integer> o) , 
n�O 

c) � a.z•, with Oz..+1 = a2n+l, a2n = b2n n�O 

where a and b are real and o <a, b < r. 

5. Given two formal power series 

for n;;;;:,. o, 

S(X) = � a.x· and T(X) = � b.X· (b. '/= o) , 
·�o ·�o 

let 

U(X) = � (a.)PX", V(X) = � a.b.X•, W(X) = � (a./b.)X 
n�O n�O n�O 

(where p is an integer). Prove the following relations: 

p(U) = (p(S) )P, p(V) ;;;;:,. p(S). p(T), 

and, if p(T) 'f= o, 

p(W) < p(S)/p(T). 



EXERCISES 

6. Let a,b and c be elements of C, c not an integer < o. What is the 
radius of convergence of the series · 

S(X) = I +ab x + a(a + 1). (b + 1) x2 + ... 
c 2!c(c + l) 

+ a(a+ l) . . . (a + n-l ) .b(b + l) ... (b + n - l) x· + . .. n!c(c + 1) ... (c + n - l) 

Show that its sum S(z), for fzJ < p(S), satisfies the differential equation 

z(1 -z)S" + (c-(a + b + l)z)S' - abS = o. 

7. Let S(X) = Li a.X• be a formal power series such that p(S) === 1. 

Put ·�0 

l s. = a0 + · · · + a., t. = -- (s0 + s1 + · · · + s.) for n > o, 
n + 1 

and put 

U(X) = 2i s.X•, V(X) = 2i t.X•. 
n�O ,.�o 

Show that : (i) p(U) = p(V) = l, (ii) for all fzl < l, 

-1 - ( Li a.z•) = Li s.z•. l -z n�O n�O 

8. Let S(X) = Li a.X• be a formal power series whose coefficients are 
n�O 

defined by the. following recurrence relations : 

a0 = o, a1 = l, a. = oi:an-1 + �an-2 for n > 2, 

where a, � are given real numbers. 

a) Show that, for n > 1, we have fa. [ <;; (2c)•-1 where c =max (fa!, l�I, 1/2) 
and deduce that the radius of convergence p(S) =F o. 

b) Show that 

(1 -az-�z2)S(z) = z, for lzl < p(S), 

and deduce that, for fzl < p(S), 

z S(z) = · 
l -az - �z2 

c) Let z1, z2 be the two roots of �X2 + aX - I = o. By decomposing 
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the right hand side of ( 1) into partial fractions, find an expression for the 
an in terms of z1 and z2 and deduce that 

p(S) =min <lz1I• lz2D· 

(Note that, if S(X) = S1(X) . S2(X), then p(S) >min (p(S1), p(S2) ) .) 

g. Show that, if x, y are real and n is an integer > o, then 

� sin (px + y) =sin (!!__x + y) sin n + 1 x/sin �. 
O(;p(;n 2 2 2 

� cos (px + y) =cos (!!__x + y) sin n + 1 x/sin�, 
O(;p(;n 2 2 2 

(Use cos(px + y) + i sin (px + y) = ei<P"'+Y) = eir (ei"')P. ) 

10. Prove the following inequalities for z e C : 

1 1. Show that, for any integer n > 1 and any complex number z, 

( z )n 
� ( I ) ( p - I) zP 

1 + - =1 + z +  £.J 1-- ... 1- -- I' 
n 2,;;p,;;n n n p. 

and deduce that 

e' = lim (1 + _£) n
· 

n�oo n 

r2. Show that the function of a complex variable z defined by 

e;, + e-iz ( . eit _ e-iz) cos z = 2 
resp. sin z = 

2i 

is the analytic extension to the whole plane C of the function cos x (resp. sin x) 
defined in § 3, no. 3, Prove that, for any z, z' 

e C, 

cos (z + z') = cos z cos z' - sin z sin z', 
sin (z + z') = sin z cos z' + cos z sin z'; 

cos2 z + sin2 z = I. 

r 3. Prove the relations 

� x < sin x < x for x real and o < x < 7t/2. 
TC 
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14. Let z = x + ry with x, y real. 

(i) Show that 
!sin (x + 01) 12 = sin2 x + sinh2y, 
!cos (x + 0>) 12 = cos2x + sinh2y; 

(ii) determine the zeros of the functions sin az, cos az (where a is a real 
number =F o) ; 

(iii) Show that, if - 7t <a< 7t and n is a positive integer, 

and 

l s�n az l .:;;; cos�
. Slll'ltZ cosh'lty 

for 

. cosh a (n + ___!__) 
I sm azl ,;;;::: 2 

sin'ltz""' . h ( + 
1 ) ' 

Sln 'lt n -
2 

I . 

z = n +-+ ry, 
2 

for 

(N. B. By definition, cosh z =cos (iz), sinhz = - isin (iz).) 

15. Let I be an interval of the real line R. Show that, ifj(x) is an analytic 
function (of a real variable but with complex values) in I, it can be extended 
to an analytic function in a connected open set D of the complex plane 
containing I. 

16. (i) Let (or:n), (�n) be two sequences of numbers with the following 
properties : 

a) there is a constant M > o such that 

lor:1+or:2+···+a.l<; M for all n>1, 

b) the �n are real > o and �1 > �2 > 
· · · 

> �. > 
· · · . Show that, for all n > 1, 

(Introduce Sn = or:1 + · · • + or:. and write 

(ii) Let S(X) = � anXn be a formal power series with complex coeffi
n�o 

cients such that p(S) = 1, and that �an is convergent. Use (i) to show 
n""O 

that the series � a.xn is uniformly convergent in the closed interval 
n""O 

[o, 1] of R, and deduce that 

lim � a.x• = � a •. 
o<;�1 """o """o 
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(iii ) Let S(X) = }": X•/n2 now and let D be the intersection of the open 
n�1 

disc lzl < 1 and of the open disc lz- I I< I. Show that there exists a 
constant a such that 

S(z) + S(1 -z) =a -log zlog (1 ---z) for ze D, 

where log denotes the principal branch of the complex logarithm in the 
half�plane Re(�)> o (which contains D). 

(Note tha�,
. 

if z e D, then log (I -z) = -T(z) with 

T(X) = X.S'(X), 

because of proposition 6. I of § 3, and that proposition 6. 2 of § 3 gives 

d log ( 1 -z) 
- (log dog ( 1 -z)) = 
k z 

Finally, use (ii) to show that 

a= � 1 /n2, 

� ) for zeD. 
I-Z 

a -- (log 2) 2 = }": 1 /n22•-1. 
n�t 

(Cf. chapter v, § 2, no. 2, the application of proposition 2. 1.) 



cHAPnR II 

Holomorpbic Functions� 

Cauchy's Integral 

1. Curvilinear Integrals 

I. GENERAL THEORY 

We shall revise some of the elementary ideas in the theory of curvilinear 
integrals in the plane R2• Let x andy denote the coordinates in R2� 

A differentiable path is a mapping 

( I. I) t - y( t) 

of the segment [a, b] into the plane R2, such that the coordinates x(t) and 
y(t) of the point y(t) are continuously differentiable fU:nctions. We 
shall always suppose that a< b. The initial point of y is y(a) and its end 
point is y(b). If Dis an open set of the plane, we say that y is a differen
tiable path of the open set D if the function y takes its values in D. 

A dijf erential form in an open set D is an expression 

w = P dx + Qdy 

whose coefficients P and Q are (real- or complex-valued) continuous 
functions in D. 

If y is a differentiable path of D and w a differential form in D, we 

define the integral .£ w by the formula 

J: (I)= lb r'(CJ>), 

.. where y*(w) denotes the differential formf(t) dt defined by 

f(t) = P(x(t), y( t ))x'(t ) + Q(x(t), y(t))y'(t); 
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in other words, y*(w) is the differential from deduced from w by the 
change of variables x = x(t), y = y(t). Thus, 

Consider now a continuously differentiable function t = t(u) for 
a1 < u < h1 (with a1 < b1), whose derivative :e'(u) 'is always > o and 
which is such that t(a1) =a, t(b1) = b. The composed mapping of 
u --+ t ( u) and the mapping ( 1. 1) is 

( I. 2) u--+ y(t(u)). 
It defines a differentiable path y1• We say that y1 is deduced from y 
by change of parameter. The differential form f1(u) du deduced from w 

by the mapping ( 1. 2) is equal to 

f (t(u)) t'(u) du, 
by virtue of the formula giving the derivative of a composed function. 
The formula for change of variable in an ordinary integral thus gives the 
equation 

lw=jw. 
T Tt 

In other words, the curvilinear integral ;: w does not change its value 

if the differentiable path y is replaced by an<'ther which is deduced from y 
by change of parameter. We can, then, denote paths deduced from one 
another by change of parameter by the same symbol. 
Take now a continuously differentiable function t == t(u) defined for 
a1 < u < h1, but such that t'(u) < o, t(a1) = b, t(b1) =a (the description 

of the segment is reversed). We then see that J w = - 1 w. We 
r, r 

say therefore that we have made a change of parameter in y which 

changes the orienta tion of y; the effect of this is to multiply J: w by - I. 

Subdivide the interval [a, b] described by the parameter t into a finite 
number of sub-intervals 

... ) [t., b], 
where a< t1 < t2 < . .. < t._1 < t. < b. Let y; be the restriction of 
the mapping y to the i-th of these intervals; it is clear that 
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This result leads to a generalization of the idea of a differentiable path 
A piecewise differentiable path is de.fined to be a continuous mapping 

· 

y:[a,b]�R
2
, 

such that there exists a subdivision of the interval [a, b] into a finite number 
of sub-intervals as above, with the property that the restriction of y to 
each sub-interval is continuously differentiable. We define 

The sum on the right hand side is independent of the decomposition. 
The initial point of y1 is called the initial point of y and the final point of Y•+i 
is called the final point of y. We say that a path is closed if its initial and 
final points coincide. 

A closed path y can also be defined by taking, instead of a real parameter t 

varying from a to b, a parameter (J which describes the unit circle. 

Example. Consider, in the plane R2, the perimeter (or ' boundary ') 
of a rectangle A whose sides are parallel to the coordinate axes. The 
rectangle is the set of points (x, y) satisfying 

Its boundary consists of the four line segments 

x = a2, 

y = b2, 
x = a1, 

y =bl, 

b1 <Y < b2, 
a1 < x < a2, 
b1 <Y < b2, 
a1 < x < a2• 

For this boundary to define a piecewi!je differentiable closed path y, it is 
necessary to stipulate the'sense of description chosen. We agree always 
take the following sense of description : 

y increases from b1 to b2, 
x decreases from a2 to a1, 
_v decreases from b2 to b1, 
x increases from a1 to a2, 

along the side x = a2, 
along the side y = b2, 
along the side x = a1, 
along the side y = b1• 

Thus the integral J. w is well-defined; it does not depend on the choice of 

the initial point of y because it is always equal to the sum of integrals along 
the four sides, each described in the sense indicated. 
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2. PRIMITIVE OF A DIFFERENTIA L FORM 

LEMMA. Let D be a connected opere set of the plane. Any two points a e D 
and b e D are the initial and final points, respectively, of some piecewise differentiable 
path in D. (Briefly this says that a and b can be joined by a piecewise 
differentiable path). 

Proof. Each point c e D is the centre of a disc contained in D can be joined 
to each point of this disc by a piecewise differentiable path contained 
in D, for instance, a radius. Suppose that a e D is a given point; if c 
can be joined to a, then any point sufficiently near to c can also be joined 
to a because of the previous remark; thus the set E of points of D which 
can be joined to a is open. On the other hand, E is closed in D; because, 
if c e D is in the closure of E, c can be joined to some point of E because 
of previous remarks, so c can be joined to a. By hypothesis, D is connected; 
the subset E of D is non-empty (as a e E) and is both open and closed, 
so it must be the whole of D. This completes the proof. 

Let D again be a connected open set in the plane and let y be a ,piecewise 
differentiable path contained in D with initial point a and final point b. 
Let F be a continuously differentiable function in D and consider the 
differential form w = dF; then we have the obvious relation 

(2. I ) l dF = F(b) -F(a). 

It follows from this and the lemma that, if the differential dF is identically 
zero in D, the function F is constant in D. 

Given a differential form <d in a connected open set D, we investigate 
whether or not there is a continuously differentiable function F(x, y) 
in D such that d F = w. If w = P dx + 

Q dy, the relation dF = w is 
equivalent to 

(2. 2) 
i'lF 

= 
Q. 

by 
Such a function F, if it exists, is called a primitive of the form w. In this 
case, any other primitive G is obtained by adding a constant to F since 
d(F-G) = o. 

PROPOSITION 2. I. A necessary and sufficient condition that a differential form w 

has a primitive in D is that J w = o for arry piecewise differentiable closed path 
y contained in D. � 

Proof. I. The condition is necessary because, if w = dF, relation (2. I ) 
shows that r (t) = 0 whenever the initial and final point� of y coincide . .J� 
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2. The condition is sufficient. For, choose a point (x0, y0) e D; any point 
(x, y) e D can be joined to (x0, y0) by a piecewise continuously differentiable 

path y contained in D (by the lemma); the integral J; (I) does not depend on 

the choice of y because the integral of (I) round any closed path is zero 

by hypothesis. Let F(x,y) be the common value of the integrals J: (I) 

along paths y in D with initial point (x0, y0) and final point (x, y). We 
shall show that the function F so defined in D satisfies relations (2. 2). 

Give x a small increment h; the difference 

F(x + h, y) - F(x, y) 

is equal to the integral J (I) along any path contained in D starting at 

(x, y) and ending at (x + h, y). In particular, let us integrate along the 
line segment parallel to the x-axis (which is possible if jhJ is small enough) : 

lx+h 
F(x + h,y) - F(x,y) = P(e,y) de, 

and consequently, if h =F o, 

As h tends to o, the right hand side tends to P(x, y) because of the conti
nuity of the function P. Hence we indeed have 

bF 
-= p (x,y). 
bx 

We could prove bF = Q(x, y) similarly. This completes the proof of 
. . by propos1t10n 2. 1. 

Consider in particular the rectangles eontained in D whose sides are 
parallel to the axes (we mean that the rectangle must be entirely contained 
in D, both its interior and its frontier). If y is the boundary of such a 

rectangle, we must have J (I) =  o for the differential form (I) to have a 

primitive in D. This necessary condition is not always sufficient as 
we shall see later. Nevertheless, it is sufficient when D is 'simply 
connected' (cf. no. 7). For the moment we '.shall confine ourselves to 
proving following : 

PROPOSITION 2. 2. Let D be an open disc. 1J J (I) = o whenever y is the 

boundary of a rectangle contained in D with sides parallel to the axes, then (I) has 
a primitive in D. 
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Proof. Let (x0, y0) be the centre of the disc D and let (x, y) be a general 
point ofD. There are two paths y1 and y2 starting at (x0,y0) and ending 
at (x, y), each of which is composed of two sides of the rectangle (w;ith sides 
parallel to the axes) whose opposite corners are (x0, y0) and (x, y) [see 

figure 1]. Thus this rectangle is contained in D and J, � = J. w. Let 

(><o.Y) Yz ( ><, y} 

Y2[JY1 
y, 

(><o,Yo) (><,Yo) 

Fig. 1. 

F(x, y) be the common value of these two integrals; then we can show, 

b h 
bF p bF - Q h' h h 

.. 
as a ove, t at - = , w 1c proves t e propos1t1on. bx b y  - ' 

3· THE GREEN-RIEMANN FORMULA 

This formula, in some sense, generalizes relation (2. 1 ) : instead of relating 
the value of and ordinary integral to values of a function, it relates the value 
of a double integral to that of a curvilinear one. Let A be a rectangle with 
sides parallel to the axes, let y be its boundary and let P(x, y) and Q(x, y) 
be continuous functions defined in a neighbourhood D of A, the functions 

h . . . l d 
. . bP 

d 
bQ avmg contmuous partla erivat1ves - an -. by bx 

The Green-Riemann formula can then be written 

(3. I ) 

Proof. 

1 P dx + Qdy = ( ( (�Q.----; bP) dx dy. 
T J J A. _bx b)l 

We shall prove for instance that 

1 Qdy = ((bQdx dy. 
T jjA. bx 

We know that the double integral of the continuous function bQ can be 
calculated as follows : 

bx 
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However, 1°· bQ
dx = Q(a2, y) - Q(ai. y); integrating this with respect 

to y gives ' bx 

which is. precisely equal to 1 Qcry. 
This completes the proof. 1 
The Green-Riemann formula is valid for more general domains than 

rectangles, but we shall leave this question aside for the moment. 

PROPOSITION 3. I. Let w = P dx + Qdy be a differential form in a connected 

open set D, and suppose that the partial derivatives 
bP 

and � exist and are 
continuous in D. Then the relation 

by bx 

(3. 2) 

is a necessary condition for w to have a primitive in D; it is also 
'
sufficient if D is an 

open disc. 
· 

Proof. From formula (3.1), condition (3.2) implies that i w = o 

whenever y is the boundary of a rectangle contained in D; if D is an open 
disc, this implies that w has a primitive (proposition 2. 2). Conversely, 

if J: w = o whenever y is the boundary of a rectangle A contained 

in D with sides parallel to tl}e axes, we have 

Jn( (bP _bQ) 
dxdy = o 

JA by bX 

for any such rectangle A. Moreover, this implies relation (3. 2). For, 

"f h 
. 

fi 
. bP bQ . 

"d 
. 

11 . D h . i t e contmuous unct10n - - - is not I ent1ca y zero in , t ere 
by bx 

will be some point of D in a neighbourhood of which it is > o, say, 
and consequently the integral 

· 

--- dxcry 11(bP bQ ) · · 

A by bX 

will also be > o for a rectangle A contained in this neighbourhood, contrary 
to hypothesis (3· 3). Proposition 3. 3 is thus proved. 
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4· CLOSED DIFFERENTIAL FORMS 

Definition. We say that a form w = P dx + Qdy, with continuous coefficients 
P and Qin an open set D, is closed if any point (x0,y0) e D has an open neigh
bourhood in which w has a primitive. We can assume that such a neigh
bourhood is a disc with centre (x0, y0). Therefore, the results of nos. 2 
and 3 immediately imply : 

PROPOSITION 4. I. A necessary and sufficient condition for a differential form 

w with continuous coefficients in D to be closed is that ( w = o whenever y is the .J l 
boundary of a small rectangle contained (with its interior) in D with sides parallel 
to the axes. lf we also assume that P and Q have continuous partial derivatives 
of the first order, then (3. 2) is a necessary and su.fficient condition for w to be 
closed. 

We know from proposition 2. 2 that any closed form in an open disc has a 
pnm1t1ve. We shall now give an example of a closed form w in a connected 
open set D which has no primitive in D. 

PROPOSITION 4. 2. Let D be the open set consisting of all points z =I= o of the 
complex plane C. The form w = <k/z is closed in D but has no primitive. 

For, in a neighbourhood of each point z0 =I= o, there is a branch of log z 
and this branch is, in the neighbourhood of z0, a primitive of dz/z. Hence w 

is closed. To show that w has no primitive in D, it is sufficient to find a 

closed path yin D such that ldz =I= o. In fact, let y be the unit circle 
l z 

centred at the origin and described in the positive sense. To calculate [ w, 

we put z = e11 with t running from o to 2'1t; we have • 1 

dz= ie11 dt, dz "d - =' t, 
z 

and consequently 

(4. 1) l dz 12". . - = t dt = 2Z'lt =f= O. 

l z 0 

This completes the proof. 
In the preceding example, the form w is complex. Let us now take the 

imaginary part of w. Since 

dz= dx + i dy = x dx + y dy +
i

x dy-y dx
, z x+ry xz+y2 x2+y2 

the differential form 
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is closed in the plane with the origin excluded. It has no primitive because 
we have by (4. 1) 

l x dy-ydx 
= 2'1t 

T x2+y2 

if "f is the unit circle described in the positive sense. In fact, m is the 

differential of arc tan L, which is a many-valued function (that is to say with 
x 

many branches) in the plane with the origin excluded. 

5· STUDY OF MANY-VALUED PRIMITIVES 

Let w be a closed form defined in a connected open set D. Although w 

has not necessarily a (single-valued) primitive in D, we shall define what 
is meant by a primitive of w along a path "f of D. Such a path is defined 
by a continuous mapping of the segment_ I= [a, b] into D; we do not 
assume differentiability in this context. 

Definition. Let "f: [a, b] -+D be a path contained in an open set D,, and 
let w be a closed differential form in b. A continuous functionf (t) (t des
cribing [a, b]) is called a primitive of w along "f if it satisfies the following 
condition: 
(P) for any 't' e [a, b] there exists primitive F of w in a neighbourhood of the point 
r(T) e D such that 

· 

(5. 1) F( r(t)) = f(t) 

for t near enough to 't'. 

THEOREM 1. Such a primitive f always exists and is unique up to addition of 
a constant. 

Proof. First of all, if f1 and f2 are two such primitives, the difference 
f1(t)-f2(t) is, by (5. 1), of the form F1(r(t))-F2(r(t)) in a neighbourhood 
of each 't' e [a, b]; since the difference Fi - F 2 of two primitives of w 

is constant, it follows that the function f1(t) -f2(t) is constant in a neigh
bourhood ofeach point of the segment I. We express this by saying that 
the function f1 -f2 is locally constant. However, a continuous locally cons
tant function on a connected topological space (the segment I= [a, b] in this 
case) is constant. Indeed, for any number u, the set of points of the space 
where the function takes the value u is both open and closed. 
It remains to be proved that there exists a continuous functionf(t) satis
fying conditions (P). Each point 't' e I has a neighbourhood (in I) 
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mapped by y into an open disc where w has a primitive F. Since I is 
compact, we can find a finite sequence of points 

a = to < ti < ... < tn < tn+l = b, 

such that, for each integer i where o < i < n, y maps the segment [ti, ti+1] 
into an open disc U; in which w has a primitive Fi. The intersection 
Vin Ui+ 1 contains y(t;+1) so it is not empty; it is connected, so Fi+1 - F 
is constant in U; n U;+1 · We can then, by adding a suitable constant to 
each F;, arrange, step by step, that F;+ 1 coincides with F1 in U; n Ui+ 1. 
Then, we let f(t) be the function defined by 

f(t) = F;(y(t)) for t E [t;, t1+1]. 

It is obvious that f(t) is continuous and satisfies condition (P); the latter 
is clear when '! is different from the t; and the reader should verify it 
when " is equal to one of them. 

Note. Suppose that y is piecewise differentiable, in other words, that 
there is a subdivision of I such that the restriction of y to each sub-interval 

[t; , t;+i] is continuously differentiable. Then the integral l w is defined; 
it is by definition 

If f is a primitive along x, we have by formula ( 2 .  I ) 

1(1) =f(t;+1) -f(t;) , 
T; 

whence, by addition, 

(5. 2) J w =f(b) -f(a).  

This leads to  a definition of J w for a continuous path y,  without the hypo

thesis of differentiability of y : we take relation (5· 2) as the definition, 
which is valid because the right hand side does not depend on the choice 
of primitive f along y. 

PROPOSITION 5. 1 lf y is a closed pa th which does not pass through the origin, 
I ldz · · - is an integer. 
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Proof. w = �Z is a closed form. In the proof of theorem 1, we supposed 
z 

each F; to be a branch of log ;:,. Thus f(b) - f(a) is the difference 
between two branches of log z at the point y (a) = y (b), and, consequently, 
is of the form 27tin, where n is an integer. 

C 1 1x dy - y dx . . ( h 
. b ) OROLLARY. - --�- -- zs an integer t e same integer as a ove . 

27t T 
.\2 + y2 

The quantity jx � -; dx is often called the variation of the argument 
T X + 

of the point z = x + ry when this point describes the path y (whether y 
is closed or not). 

6. HOMOTOPY 

For simplification, we shall only consider paths parametrized by the 
segment I = [o, 1) . 

Definition. We say that two paths 

lo: i-+ n and Y1: I-+ D 

having the same initial points and the same end points (that is to say 
y0( o) = y1 ( o), y0( I ) = y1 ( I )) are homotopic (in D) with fixed end points, if there 
exists a continuous mapping (t, u) -+ 8(t, u) of 1 x'I· into D, such that 

(6. I ) �o(t� o) ='-t0(t)-, 
� o(o, u) = y0(o) = y1(o), 

o(t, 1) = y1(t), 
o(r, u) = y0(1) = Y1(1). 

For fixed u, the mapping t -+ o(t,u) is a path y0 of D with the same initial 
point as the common initial point of y0 and y1 and the same end point as 
their common end point. Intuitively, this path deforms continuously 
as u varies from o to 1, its end points remaining fixed. 
There is an analogous definition for two closed paths y0 and y1: we say that 
they are homotopic (in D) as closed paths if there is a continous mapping 
(t, u) -+ o(t, u) of Ix I into D, such that 

(6. 2) � �(t, o) = y0(t), 
( o(o, u) = 0(1, u) 

o(t, 1 ) = y1(t), 
for all u, 

(thus the path y. is closed for each u). In particular, we say that a closed 
path y0 is homotopic to a point in D if the above holds with y1(t) a constant 
function. 
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THEOREM 2. If y0 and y1 are two homotopic paths of D with fixed end points, 
then 

for any closedform w in D. 

r w- 1 w J10 T• 

THEOREM 2'. If y0 and y1 are closed paths which are homotopic as closed paths 
then 

for atry closed form w. 

r w - r w J1. J1. 

These two theorems are consequences of a lemma which we shall now 
state. First of all, here is a definition : 

Definition. Let (t, u) - S(t, u) be a continuous mapping of a rectangle 

(6. 3) a'< u < b' 

into the open set D, and let w be a closed form in D. A primitive of w 

following the mapping S is a continuous function f(t, u) in the rectangle 
satisfying the following condition : 
(P') For any point ( -r, u) of the rectangle, these exists a primitive F of w in a neigh
bourhood of o ( -r, u) such that 

F(o(t, u)) = f(t, u) 

at any point ( t, u) s�fficiently near to ( -r, u) . 

LEMMA. Such a primitive always exists and is unique up to addition of a constant, 
This lemma is, in some sense, an extension of theorem 1. We shall prove 
it in an similar way. By using the compactness of the rectangle, we can 
quadrisect it by subdividing the interval of variation of t by points t; 
and that of u by points uh in such a way that, for all i,j, the small rectangle, 
which is the product of the segments [ti> t1 + 1], [uh ui+1J, is mapped by o 

into an open disc U1,i> in which w has a primitive F1,i. 
Keep j fixed; since the intersection U1,i n U1+1.i is non-empty {and 

connected), we can add a constant to each F1,i (j fixed and i variable) in 
such a way that F1,j and F1+1,j coincide in U1,in U1+1,j; we then obtain, 
for ue[uh uH1], a functionjj(t, u) such that, for all i, we have 

jj(t, u) = F1,j(o(t, u)) when 

Hencejj(t, u) is continuous in the rectangle 

a< t < b, 

6o 
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and it is a primitive of w following the mapping oh the restriction of 1i 
to this rectangle. Each function jj is defined up to the addition of a 
constant; we can therefore, by induction onj, choose these additive constants 
in such a way that the functions jj(t, u) and jj+1(t, u) are equal when 
u = ui+i· Finally, letf(t, u) be the function defined in the rectangle (6. 3) 
by the condition that, for all j, we have 

f(t, u) = fj(t, u) when 

This is a continuous function which satisfies conditions (P') and is indeed 
a primitive of w following the mapping o. The lemma is thus proved. 

Proof of theorem 2. Let 1i be a continuous mapping satisfying conditions (6. I) 
and let f be a primitive of w following o. It is obvious that f is a 
constant on the vertical sides t = o and t = I of the rectangle I X I. 
Thus we have 

f(o, o) =f(o, 1 ) , f( 1, o) =f( I , 1 ) 

and, since 

j' w = f( 1, o) - f(o, o), 
To 

J .. w = f( 1, 1 ) -f(o, I ) , 
Tt 

theorem 2 is proved. 
The proof of theorem 21 is completely analogous; one uses a mapping o 

satisfying (6. 2). 

7. PRIMITIVES IN A SIMPLY CONNECTED OPEN SET 

Definition. We say that D is simply connected if it is connected and if in 
addition any closed path in D is homotopic to a point in D. 

THEOREM. 3. Any closed differential form w in a simply connected open set D 
has a primitive in D. 

For, from theorem 21, we have J w = o for any closed path y contained 

in D, which implies by proposition 2. 1 that w has a primitive in D. 
In particular, in any simply connected open set not containing o, the 

closed form dz/z has a primitive; in other words, log z has a branch in any 
simply connected open set which does not contain o. 

Examples of simply connected open sets. We say that a subset E of the plane 
is staffed with respect to one of its points a if, for any point z e E, the line 
segment joining a to z lies in E. 
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Any open set D which is starred with respect to one of its points a is simply connected : 

for, Dis obviously connected; moreover, for each real number u between o 

and I, the homothety of centre a and factor u transforms D into itself; as u 
decreases from I to o, this homothety defines a homotopy of any closed curve 
to a point. 
In particular, a convex open set D is simply connected. For, a convex open 
set is starred with respect to any of its points. 
In contrast, the plane with the origin excluded is not simply connected : 
for example, the circle [z[ = I is not homotopic to a point in C - lo( 

since the integral J dz 
of the closed form <!!::_ along this circle is not z z 

zero (cf. relation (4.I ) ) . 

The reader is invited to prove the equivalence of the following four proper
ties (for a connected open set D) as an exercise : 

a) D is simply connected; 

b) any continuous mapping of the circle !zl = I into D can be extended 
to a continuous mapping of the disc izi <:;; I into D; 

c) any continuous mapping of the boundary of a square into D can be 
extended to a continuous mapping of the square itself into D. 

d) if two paths of D have the same end points, then they are homotopic 
with fixed end points. 

8. THE INDEX OF A CLOS ED PATH 

Definition. Let y be a closed path in the plane C and let a be a point of C 

which does not belong to the image of y. The index of y with respect to a, 
denoted by I(y, a), is defined to be the value of the integral 

(3· I ) 
2:iJ z d

z 
a
· 

Proposition 5. I gives that the index I(y, a) is an integer. By referring back 
to the definitions, we see that, in order to calculate the index, we must 
find a continuous complex-valued function f (t) defined for o <:;; t <:;; I 
and such that 

then we have 
ef<1> = y(t) - a; 

I(y, a) =j(I) -f(o). 
27tZ 

PROPERTIES OF THE INDEX 

I) If the point a is fixed, the index I ( y, a) remains constant when the closed path 
y is continuously deformed without passing through the point a. This follows directly 
form theorem 2' of no. 6. 
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2) If the closed path 1 is fixed, the index I ( 1, a) is a locally constant function of 
a when a varies in the complement of the image of 1. The proof is the same 
as for I ) . It follows that I ( 1, a) is a function of a which is constant in each 
connected component of the complement of the image of 1. 

3) If the image of 1 is contained in a simply connected open set D which does not 
contain the point a, then the index 1(1, a) is zero. For, the closed path ·1 can 
then be deformed to a point while remaining in D, thus it never passes 
through a; it is sufficient now, to use I ) . 

4) If 1 is a circle described in the positive sense (i.e. in the sense such 
that 1(1, o) = + I ) , the index 1(1, a) is equal too for a outside the circle and 
equal to I for a inside the circle. The case when a is outside the circle is covered 
by 3); when a is inside the circle, it is sufficient to examine the case 
where a is the centre of the circle because of 2) ; so, we apply relation 
(4· i). 

PROPOSITION 8. I. Let f be a continuous mapping of the closed disc x2 + y2 <;; r2 

into the plane R2 and let 1 be the restriction off to the circle x2 + y2 = r2• If 
a point a of the plane does not belong to the image of 1 and if the index I ( 1, a) is =I= o, 
then f takes the value a at least once in the open disc x2 + y2 < r2• 

We prove this by reductio ad absurdum supposing that f does not take the 
value a. The restriction off to concentric circles of centre o defines a 
continuous deformation of the closed path 1 to a point. Consequently, 

the integral j-.!!£ is zero, which contradicts the hypothesis. 
rZ- a 

Definition. Let 11 and 12 be two closed paths which do not pass through 
the origin o. The product of these two paths means the closed path defined 
by the mapping 

t--* 11(t) .12(t ), 

where the dot means multiplication of the complex numbers 11(t) and 12(t). 

PROPOSITION 8. 2. The index, with respect to the origin, of the product of two 
closed paths, which do not pass through o, is equal to the sum of the indices of each 
of these closed paths. In other words, 

1(1112. o) = 1(11, o) + 1(12, o). 

For, letf1(t) andf2(t) be twof continuous complex-valued functions such 
that 
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Let y(t) = y1(t) .y2(t) be the product of the two closed curves; the function 

f(t) =f1(t) + f2(t) satisfies 

ef<1> = y(t) 

and we have 

which completes the proof. 

PROPOSITION 8. 3. Let y and r1 be two closed paths in the plane C. If r never 
takes the value o and if we always have Ir 1 ( t) I < fr ( t) [, then the mapping 
t - r(t) + r1(t) never takes the value o and 

I(r + r1, o) == I(r, o). 

For, we can write 

the closed path t - 1 + r11g] has zero index with respect to the origin 

because it is contained in the open disc of centre 1 and radius 1. Thus 

the closed path r + r1 is the product of two closed paths r and 1 + 
r1

, 
and by applying proposition 8. 2, we obtain proposition 8.3. 

r 

9· COMPLEMENTS: ORIENTED BOUNDARY OF A COMPACT SET 

LEMMA. If a path r is continuously differentiable and if its derivative r' is every
where =I= o, then, in a neighbourhood of each value of the parameter t, the mapping 
t - r(t) is injective and its image cuts the plane (locally) into two regions. 
The exact meaning of this statement will be made clear in the proof which 
follows. Let t - r(t) be a continuously differentiable mapping of the 
segment [a, b] into the plane R

2 and let the derivative r'(t) be =I= o for all 
values oft. The coordinates x, y of the point r(t) are then continuously 
differentiable functions r1(t), r 2(t) and their derivatives r;(t), r�(t) do not 
vanish simultaneously. The implicit function theorem shows then that, 
if t0 is an interior point of the interval (that is, if a< t0 < b) and if we 
write Xo== "f1(to),yo==r2(to), there exists a continuously differentiable mapping 
( t, w) -o ( t, u) of an open neighbourhood U of the point (t0, o) onto an open 
neighbourhood V of point (x0, y0), which satisfies the following conditions : 

(i) o(t, o) == r(t); 

(ii) o is a homeomorphism of U on V whose Jacobian is >o at each point 
of U (thus o preserves 'orientation '). Thus V is mapped homeomor-
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phically by the inverse homeomorphism of o onto U, the points of the 
path r going onto the points of the line u = o. The points of V comple
mentary to "'( are then partitioned into two open sets v+ and v- : that 

IJ 

v 

Fig. 2. 

for which u is > o and that for which u is < o. If we take U to be an 
open disc of centre (t0, o), then the open sets v+ and V- are connected. 
Thus the path r splits the open set V into two connected components, 
which completes the proof of the lemma. 

Definition. Let K be a compact subset of the plane C, and let r = jri!ie 
be a finite set of closed piecewise differentiable paths. We say that r is 
the oriented boundary of the compact set K if the following conditions are 
satisfied: 

(BO 1) each mapping t -)- r;(t) takes any two distinct points into distinct 
points, except for the initial and final points of the defining segment, and, 
moreover, the images of the various r 1 are disjoint and their union is the 

frontier of K; 

(BO 2) if r is a differentiable path of any of the r,, its derivative r'(t) 
is always of= o, and, if t0 is an interior point of the defining interval of r 
and the open set V of the previous lemma is chosen to be sufficiently small, 
then v- does not meet K while V+ is contained in the interior of K. 
Condition (B02) is expressed intuitively by saying that, when r is described 
in the direction oft increasing, the interior points of K are always on the 
left, whereas the points in the complement of K are on the right. 

Example. Take K to be a (closed) rectangle whose sides are parallel to 
the axes, then the perimeter of this rectangle, as defined at the end of 
no 1, is the oriented boundary of K. 

We shall admit, without proof, that the Green-Riemann formula holds 
for the oriented boundary r of a compact set K. A precise statement 
of the formula is that, if w = P dx + Qtbi is a differential form with conti-



HOLOMORPHIC FUNCTIONS, CAUCHY'S INTEGRAL 

nuously differentiable coefficients in an open set containing the compact 
set K, then 

(g. I) r p dx + Qdy = f� r (bQ_ bP) dx dy. 
Jr J" bx by 

(The notation Jr means � J;i where ri are the closed paths of I')· 
In particular, if the form w is closed in D, we have the relation 

(g. 2) J:.w=O 

whenever I' is the oriented bound ary of a compact subset of D. 

2. Holomorphic Functions; Fundamental Theorems 

I. REVISION OF DIFFERENTIABLE FUNCTIONS 

Let D be an open set of the plane R2 and letf (x, y) be a real- or complex
valued function defined in D. We say that f is differentiable at the point 
(x0, y0) e D if there is a linear function ah + bk of the real variables h and 
k, such that 

( 1. 1) f(x0 + h,y0 + k)-f(x0y0) =ah+ bk+ rr.Vh2 + k2, 

for all sufficiently small values of hand k; rr. is a (real-or complex-valu�d) 

function of h and k whose absolute value tends to o when V h2 + k2 tends 
to o. If f is differentiable at the point (x0,y0), the (real or complex) cons
tants a and bare uniquely determined and are equal to the partial deriva· 
tives 

bf 
a = - (xo, Yo), bx 

b f b = - (xo, Yo)· by 

Recall that the existence of the partial derivatives of f at the point 
(x0, y0) is not sufficient for the function to be differentiable at this point; 
but if f has partial derivatives at every point sufficiently near to (x0, y0) 
and if these partial derivatives are continuous functions at the point 
( x0, y0), then f is differentiable at this point. A function which has conti
nuous partial derivatives in an open set D is said to be continuously diffe
rentiable in D. 

2. CONDITION FOR HOLOMORPHY 

Let D be an open subset of the complex plane C and let f be a function of 
the complex variable z = x + ry defined in D. 

66 



HOLOMORPHIC FUNCTIONS; FUNDAMENTAL THEOREMS 11.2.2 

Definition. We say that f(z) is holomorphic at the point z0 e D if 

(2. 1) lim f(zo + u) -f(zo) exists 
u+O U 
u;eo 

(u denotes a variable complex number). This is the same as saying thatf 
has a derivative with respect to the complex variable at the point Zo· We 
say that f is holomorphic in the open set D if it holomorphic at each point 
ofD. 

Condition (2. 1) can also be written 

(2. 2) f(Z0 + u) -f(z0) = cu + oc(u) /ui, 

where oc(u) tends to o as u tends to o; c is the derivative f'(Zo)· Since 
z = x + ry, relation (2. 2) can also be written 

(2. 3) f(x0 + h,y0 + k) = c(h + ik) + oc(h, k)Vh2 + k2• 

This shows thatf, considered as a function of two reai variables x andy, 
is differentiable and that 

a= c, b = ic, 

where a and b are the constants in relation ( 1. 1) . 

and ��= ic, whence 

(2 . .  4) 

Thus we have ()j = c, · 

()x 

Conversely, let f be a differentiable function of the real variables x and y 
satisfying (2. 4). Then, relation ( 1. 1 ) implies (2. 3) with c =a and 
ic = b. Thus, f is holomorphic at the point Zo = x0 + ry0• We have, 
in fact, proved the following proposition : 

PROPOSITION 2. I. For f to be holomorphic at a point, it is necessary and sufficient 
that f, considered as a function of the real variables x and y, is differentiable at 
this point and that relation (2. 4) holds between the partial derivatives off at this 
point. 

We express relation (2. 4) more explicitly : if we put f = P + iQ, where P 
and Qare real functions, then we obtain the Cauchy conditions 

(2. 5) i'lP _i'lQ 
---· () x  ()y 

()p 
= _ i'lQ. 

i'ly ()x 
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3· INTRODUCTION OF THE VARIABLES ZAND Z 

Let f be a (real- or complex-valued) differentiable function of the real 
variables x and y. Consider the differential 

(3. 1 ) df =bf dx+ bf dy. 
bx by 

The particular functions z = x + ry and z = x - ry have differentials 

(3. 2) dz = dx + i t:[y, dz = dx - i i:ry; 
thus we have conversely 

(3· 3) dx = ..!... (dz + dz), 2 dy = 2: (dz - dz). 2Z 
By substituting this in (3· r ) we obtain the equation 

df =_!___ (bf - i�) dz+___!___ (bf+ iU) dz. 2 bx by 2 bx by 
This leads us to introduce the symbols 

With this notation, we obtain the equation 

(3. 5) 

Condition (2. 4), which expresses that f is a holomorphic function of 
the complex variable z, can now be written 

(3. 6) bf =O. 
i'lz 

In other words, a necessary and sufficient condition for f to be holomorphic 
is that the coefficient of dz is zero in the expression (3· 5) for the differential 
df. Or again : df must be proportional to dz, the coefficient of propor
tionality being simply the derivative f'(z). 
We shall apply this to prove the following result : Let f be a holomorphic 

function in a connected open set D; if the real part off is constant, then f is constant. 
For, the real part Re(f) is simply _!_ (f + J); by hypothesis d(f + J) = o 

in D, which can be written 2 
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But, sincefis is holomorphic, we have �� = o; by passing to the complex 
() 1' 

z 
conjugate, we have '!L = o. Hence, 

()z 

bf 
dz +()! dz = o. 

bz  · bz 

However, an expression adz + bdz can only be identically zero if the coeffi
cients a and b are zero, which gives ()j = o, � = o. Thus, 4f == o, 
andf is constant in D. ()z ()z 

We deduce from this that, if f is holomorphic and =I= o in a connected open 
set D and if either log Iii is constant or arg f is constant, then f is constant. 

For, consider the function 

g(z) = logf (z) = log If (z) I + i argf (z). 
We stay in some neighourhood of the point z0 and we choose a branch of the 
argument g is holomorphic and its real (or imaginary) part is constant. 
Thus g is constant in some neighbourhood of z0• Thus f = & is locally 
constant in D and is consequently constant since D is connected. 

4· CAUCHY'S THEOREM 

THEOREM 1. If f (z) is holomorphic in an open set D of the complex plane, then 
the differential form f(z)dz is closed in D. 

In view of the importance of this theorem, we shall give two proofs : 

First proof. This proof requires an extra hypothesis. We suppose that 
the partial derivatives bf and �are continuous in D. (In fact the second 

bx by 
proof shows that this hypothesis is automatically satisfied when f is holo• 
morphic.) To verify that the differential form f(z) dz =f(z) dx + if(t:.) dy. 
is closed, it is sufficient, by the Green-Riemann formula(§ 1, formule (3. 1)), 
to verify that 

However, this is precisely condition (2. 4) expressing that f is holo
morphic, and the proof is completed. 

Second proof. This proof, unlike the first, does not need any additional 
hypothesis, but it requires a more subtle argument. To show that f(z)dz 
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is closed, we must prove that the integral .{f(z) dz is zero along the 

boundary y of any rectangle R contained (with its interior) in D. To 
this end, we put a priori 

(4. 1 ) .f J(z) dz= ix(R). 

Divide the rectangle R into four equal rectangles by dividing each side 
in�o two equal parts. 

II 
- -
- -

II 

Fig. 3. 

Let y1 be the (oriented) boundaries of the four small rectangles (i = 1, 1, 3, 4) 
It is easily verified (cf. fig. 3) that 

4 4 

.{ f (z) dz= 1�1 J/(z) dz = i�t ix(R1). 

Thus among there four rectangles there is at least one such that 
·. · ·. .  I 

lix(R1)I >-lix(R)I. Call this rectangle R<1>. Now divide the rec-
4 

tangle R<1> into four equal rectangles at least one of which, say R<2>, 

will satisfy the condition lix(R<2>)i ;;>. � lix(R)I. We can repeat this 
4 

operation indefinitely to obtain a sequence of rectangles each included in 
tlie previous one; the k1h rectangle R<k> will have sides 2k times smaller 
than those of R and its area will then be 4k times smaller than that of 
the rectangles R. If y(R<k>) denotes the oriented boundary of the rectangle 
R<k>, then 

(4. 2) 11 f(z) dz/>� lix(R)I· 
T(R(k)) 4 

By the Cauchy criterion of convergence, there is a unique point Zo common 
to all the rectangles R<k>. Obviously Zoe D. Thus f(z) is holomorphic 
at 'the point ZQ, and, consequently, 

with 
f(z) = f(Zo) + f'(Zo) (z - Zo) + •(z) lz - Zol 

lim •(z) = o. 
Z+-Zo 



HOLOMORPHIC FUNCTIONS; FUNDAMENTAL THEOREMS II.2.4 

We deduce 

(4. 3) )· l(n<k>)f (z) dz 
= 

f (zo) j(R<k>) dz + f' (zo) j(n<k>) (z - z0) dz 

+ J(n<kl) s (z) Jz - z0J dz. 

On the right hand side of (4· 3), the first two integrals are zero and the 
third is negligible compared with the area of the rectangle R<k> as k in-

creases indefinitely; it is then negligible compared with 1k. Comparing 
4 

this with (4· 2) shows that we must have ci:(R) 
= 

o; consequently by the 

definition of ci:(R), we have J f (z) dz= o. This completes the proof. 

COROLLARY I. A holomorphic function f (z) in D has locally a primitive, 
which is holomorphic. 
This statement means that any point of D has an open neighbourhood 
in which f has a holomorphic primitive. The local existence of a primitive 
follows from the definition of a closed form; and this local primitive is 
indeed holomorphic because it has/ as its derivative. 

COROLLARY 2. If f (z) is holomorphic in D, then jJ(z) dz= o for any 
closed path y of D which is homotopic to a point in D. 1 

This follows from theorem I above and theorem 2' of § 1, no. 6. 

Generalization. We shall prove. theorem I again with less strict conditions. 

THEOREM I '. Let f ( z) be an continuous function in a open set D, which is holo
morphic at every point of D except perhaps at the points of a line Ii parallel to 
the real axis. Then the form f (z) dz is closed. In particular, if f is holomorphic 
at any point of D except perhaps at some isolated points, then the formf(z) dz is 
closed. 

Proof. We must prove that the integral J f(z) dz is zero for the 

boundary y of any rectangle contained in D. However, this is obvious 
if the rectangle does not intersect the line Ii. Suppose that the rectangle 
has a side contained in Ii and let u, u + a, u + ib, u + a + ib be the four 
corners of the rectangle, u and u + a being on the line Ii; a and b are 
real, and we assume, say, that b > o. Let R(s) be the rectangle with 
corners 

u + iE, u + a + is, u + ib, u + a + ib, 
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E being a very small number> o ;  the integral J f(z) dz is zero round 

the boundary of R(e); however, as E tends to o, this integral tends to the 

integral round the boundary y of the rectangle R. Thus .i f (z) dz= o.

Finally, if the line A meets the rectangle without containing one of its 
horizontal sides, the line A splits R into two rectangles R' and R" and 

the integral J f (z) dz is zero when taken round the boundaries of

either R' or R", because of the previous remarks; however, the sum 

of these integrals is equal to the integral J f (z) dz round the boundary 
of R. This completes the proof. 

· 

5· CAUCHY'S INTEGRAL FORMULA 

THEOREM 2. Let f be a holomorphic function in an open set D. Let a e D 
and let y be a closed path of D which does not pass thro ugh a and which is homotopic 
to a point in D. Then, 

(5. I ) 
I J f(z) dz 

21ti T -Z - a 
= I(-y, a) f(a),

where I ( y, a) denotes the index of the closed path y with respect ot a (cf. § 1, no. 8). 

Proof. Let g(z) be the function defined in D by 

) g(z) = f(z) - f(a) 
z-a 

g(z) =f'(a) 

for z �a, 

for z =a; 

this function g is continuous because of the definition of the derivative. 
It is holomorphic at any point of D except the point a. By theorem 11, 

we have 

However, 

l f(z) - f(a) dz = o. 
1 z-a 

l f(a) dz= 21ti I(y, a)f(a),
. z-a 

by the definition of the index. This proves relation (5. I ) . 

Example. Let f be a holomorphic function in some neighbourhood of a 
closed disc and let r be the boundary of the disc described in the positive 
sense. Then, 

ff (z) dz= � 21ti f(a) if a is inside the disc, 

1 z -a ? o if a is outside the disc. 
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6. TAYLOR EXPANSION OF A HOLOMORPHIC FUNCTION 

THEOREM 3. Letf(z) he a holomorphicfunction in the open disc jzl < p; then 
f can be expanded as a power series in this disc. 

This means that there exists a power series S (X) = }: a.X• whose 
"*'o 

radius of convergence is>- p and whose sum S(z) is equal tof (z) for !zl < p. 

Proof. Let r be< p. We shall find a power series which converges 
normally tof(z) for lzi <; r. This series will be independent of r because 
of the uniqueness of the power series expansion of a function in a neigh
bourhood of o. The theorem will then be proved. 

Choose an r0 such that r < r0 < p. We shall apply the integral formula 
of theorem 2 by taking y to be the circle of radius r0 centred at o described 
in the positive sense : 

f (z) =�Ji (t) dt 
2'1tZ T t- Z 

for lzl < r. 

The function which occurs under the integral sign can be 
t-z 

expanded as a series since !zl < Jtl. Explicitly, 

_I_
=

_!_ I =�(i+3-+···+�_".+···); t - Z t I - zf t t t t• 
consequently, 

f(z) = -
1
-.J }: z· � dt . 

2'1tZ T n*'O t 

The series converges normally for !z! <;rand it! = r0• We can therefore 
Jntegrate term by term and we obtain a normally convergent series for 
iz! <; r: 

where the coefficients are given by the integrals 

(6. 1 ) 
a. 

= 
2:i ii l=•oj f !�:t. 

Hence we have proved theorem 3. 

Comment. Theorem 3 shows that any holomorphic function in an open 
set Dis ana(ytic in D. Conversely, any analytic function in Dis holomor
phic in D since we know that analytic functions have derivatives . Hence, 
for functions of a complex variable, there is an equivalence between holo-
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morphy and ana?Jticiry. If we apply the known results for analytic functions 
to holomorphic functions, we see that a holomorphic function is infinite?J 
differentiable and, in particular, is continuously differentiable, and that 
the derivative of a holomorphic function is holomorphic. 

7. MoRERA's THEOREM 

THEOREM 4. (Converse of theorem I ). Let f(z) be a continuous function 
in an open set D. If the differentialformf(z) dz is closed, then thefunctionf(z) 
is holomorphic in D. 

For, f has a primitive g locally. This primitive is holomorphic, and 
f = g' is the derivative of a holomorphie function, so is itself holomorphic 
from the above remarks. 

COROLLARY. If f(z) is continuous in D and holomorphic at all points of D 

except perhaps at the points of some line Ii, then f is · holomorphic at all points of D 

without exception. 

For, we can suppose Ii. to be parallel to the real axis, by rotating if necessary. 
By theorem 1 ', the form f(z) dz is closed. Thus by theorem 4, f is holo
morphic at all points of D. 

We see then that theorem I' was only an apparent generalization of 
theorem I. However, we needed to establish it for technical reasons. 

8. ALTERNATIVE FORM OF CAUCHY'S INTEGRAL FORMULA 

THEOREM 5. Let r be the oriented boundary of a compact subset K of an open 
set D and let f ( z) be a holomorphic function in D; Then, 

if, moreover, a is an interior point of K, then 

(8. I ) r f(z) dz= 27tij(a). 
Jr z-a 

Proof. The first assertion follows from relation (g. I ) of § I. To prove 
the second assertion, we consider a small open disc S centred at a whose 
closure is in the interior of K. The oriented boundary of the compact 
set K -S is composed of r and the frontier-circle of S described in the 
negative sense. We shall say that this oriented boundary is the 
difference of r and the frontier-circle y of S taken in the positive sense. 
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By applying the first part of theorem 5 to the compact set K --"-;-• S 

and the function .f.J.g_ ,  which is holomorphic in D - I a ! , we obtain · · 
z-a 

r f (z) dz = 11 (z) dz 
I Jr z-a 1 z-a 

which, along with theorem 2, gives relation (8. 1). 

9· SCHWARZ' PRINCIPLE OF SYMMETRY 

We have seen (corollary to theorem 4) that, if f(z) is continuous in an 
open set D and holomorphic at any point of D except perhaps at points on 
the real axis, then f is holomorphic at all points of D without exception. 
Consider, then, a non-empty, connected, open set D which is symmetric 
with respect ot the real axis; let D' be the intersection of D with the closed 
half-plane y ;;;:,. o and let D" be the intersection of D with the half-plaiie 

y<; o. Suppose we are given a function f(z) which is confinuou8 in J)', 
which takes real values at the points of the real axis, and which is holp
morphic at points of D' where y > o. We shall show that there is a. holo
morphic function in D which extends f; such a function is unique by the 
principle of analytic continuation (cf. chap. 1, § 4, no. 3). 
Consider the function g(z) defined in D" by the equation 

g(z) = J(z). 

This function is continuous in D" and it can quickly be shown that it 
is holomorphic at any point ofD" not lying on the real axis. The fuiitti�n 
h(z) which is equal to f (z) in D' and g(z) in D" is continuous in D. and 
holomorphic at all points of D not lying on the real axis. It is therefore 
holomorphic at all points of D without exception. 
Note that the function h takes complex conjugate values (that is, symmetric 
values with respect to the real axis) at pairs of points of D which a� sym
metric with respect to the real axis. This is why the preceding constructi9n 
is called the " principle of symmetry " . 

· · .  · 

Exercises 

1. a) Let r be a piecewise differentiable path and let r be its imageund�r 
the mapping z � z (symmetry with respect .to the real axis.) . Sho\V 
that, if f(z) is a continuous function on y, the function z � f(z) is conti-
nuous on r and that 

; ' 

J f (z) dz . Jrf(z) dz. 
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{b) In particular, if y is the unit circle described in the positive sense, 
then 

f f(z) dz =- jf(z) �· 
' T Z 

2. Let y be a continuous path (not necessarily piecewise differentiable). 
Show that 

l (w1 + w2) = f W1 + J w2, 

;: aw= a ;: w, 

i( ,w1, <ll2, w are closed forms and a e C. (For the definition of J w, see 
Note§ 1, no. 5.) 
3. ·Let y be a piecewise differentiable path, whose image is contained 
in an open set D, and let qi(::.) be a holomorphic function in D taking 
values in an open set � (of the plane of the complex variable w). Show 
that r = <p o y is a piecewise differentiable path and that, for any continuous 
f�nction f ( w), 

frJ(w) dw = J:f(qi(z))qi'(z) dz. 

Is this formula still true when y is no longer necessarily differentiable? 

4. Let y be the (differentiable) path t - y(t) = re'1, o <;; t <;; 2'1t, and 
let Yn be the path t - Yn(t) = (1 - 1/n)re", with t varying over the same 
interval. Show that, if f (::.) is continuous in the closed disc fzl <;; r, 
then 

5. Show that, if/(::.) is continuous in the closed disc lzl <;;r and holomoiphic 
ill the open disc !zl < r, then 

f (::.) = __!___ r f (t) dt for all lzl < r, 2'1tl Jltl=rt-z 
where the integral is taken in the positive sense. 

6; Find a path t - y(t) with t varying in [o, 2'1t], having the ellipse 
x2/a1 + y2/b2 = I in the plane R2 (a, b > o) as image. Calculate the 
integral r �in two different ways, and deduce that Jr Z r2u dt 2'1t 

J0 a1cos2 t + b2 sin1 t = ab ' 
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7. Let Pn(t) = t• + a._11•-1 + · · · + a0 be a polynomial of degree 
n :;> 1 with complex coefficients and let la be the image of the circle 
!t I = R under the mapping t-+ z = P.(t). Show that, if R is sufficiently 
large, la does not pass through the origin z = o and that I(la• o) = n; 

deduce from this that P.(t) = o has at least one root. (First show that, 
for sufficiently large R, Jt•J > Ja0_1t•-1 + · · · + a01 for Jt I:;> R. Then 
use proposition 8. 3 of§ 1 to show that I(la• o) is equal to the index, with 
respect to the origin, of the image of the circle It I = R by the mapping 
t-+t"). 

8. Letf(z) =u(x,y) +iv(x,y) be a holomorphicfunction in a connected 
open set D. If 

au(x, y) + bv(x, y) = c in D, 

where a, b and c are real constants which are not all zero, then f(z) is 
constant in D. 

g. Let D be a convex open set in the plane and letf(z) be a holomorphic 
function in D. Show that, for any pair of points a, be D, we can choose 
two points c and d on the line segment joining a and b such that 

f(a) -f(b) =(a - b)(Re (f'(c) + ilm(f'(d))). 

(Consider the function of a real variable r defined by 

F(t) =f(b + (a -b)t)/(a - b), 

and apply the mean value theorem to the real and imaginary parts of 
F(t).) 

IO. Let D be a connected open set, which is symmetrical with respect to 
the real axis and has non-empty intersection I with it. Any holo
morphic function f (z) in D can be expreseed uniquely in the form 

f (z) = g(z) + ih(z) for all zeD, 

where g and h are holomorphic functions in D which take real values in I. 
Show that, in this case, 

and 
g(z) = g(z), h(z) = h( z) 

f(z) = g(z) - ih(z), for all zeD. 

1 1. Let f and g be two holomorphic functions in a connected open set D 
of the plane, which have no zeros in D; if there is a sequence (a.) of points 
of D such that 

lim a. = a, a e D and a. =I= a for all n, 
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and if 

show that there exists a constant c such that f (z) = cg(z) in D. 

12. Let rp(z) be a continuous function on the oriented boundary r of a 

compact set K. Let D be open set complementary to r in C, and put, 
for zeD, 

f(z) = r __till___ d�. 
Jr�- z 

I 
(i) If p =inf I� -at for aeD, show that -- for �er and 

�er �-z' 
lz -al < r with o < r < p, can be expanded in a series of powers 
of (z- a) which is normally convergent; deduce that f (z) is analytic 
in a neighbourhood of each a e D. (cf. the proof of theorem 3, § 2.) 
(ii) Show that 

f<11>(a) = n! r cp(�) . d�, 
Jr(� -a)"+1 

for any integer n > 1, aeD (cf. chapter rn, § 1). 

13. Let f (z) be holomorphic in lzl < p; show that, if o < r < p, then 

lim 
h�O 

O<lhl<f-r 

f (z + h) -f (z) 
=f'(z) 

h 

uniformly for lzi < r. (By using 12., show that 

f (z + h) -f (z) 
_ 

f'(z) = }!___1 f(t) dt 
. , h 2'1ti \l\=r' (t -z - h)(t - z)1 

where r' = (p + r)/2, lhl < (r' - r)/2 = (p - r)/4, say, and deduce 
from this that, if M =sup lf(t) j, then 

It i==r' 

If (z + � -f (z) >I P + r I ) f '(z < 4M (p -r)a hj. 

14. If two closed paths of C - Io l have the same index with respect to o, 
show that they are homotopic as closed paths in C -I o l . 



CHAPTER III 

Taylor and Laurent Expansions. 

Singular Points and Residues 

1. Cauchy's Inequalities; Liouville's Theorem 

I. INTEGRAL FORMULA FOR THE TAYLOR COEFFICIENTS 

We have seen ( chapter 11, § 2, no. 6. theorem 3) that, ifj (z) is holomorphic 
in an open disc D centred at the origin, then f (z) is the sum of a power 

series � anz
n which converges in D. The coefficients an of this power 

.. �o 

series are given by the relation 

In other words, the an are the coefficients of the Taylor expansion off (z) 
at the origin. This power series is called the Taylor series off (z). We 
now propose to express the ·coefficients an in terms of integrals involving 
the function f. 

Putz= rei1 for o < r < p, where p denotes the radius of the disc D. We 
have 

f(rei6) = � a.r•e1n1. 
n�O 

If we fix r, allowing a to vary, f (rei1) is a periodic function of a, and the 
above relation gives the Fourier expansion of this function. We observe 
that, only the e1"1 occur in this expansion for the various integers n :;> o. 
However, we know that the coefficients in the Fourier expansion of a 
continuous function of period 2'1t are expressible as integrals involving the 
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function. In the present context, the series ( 1. 1 ) converges normally when a 

varies, r remaining fixed; we can then integrate term by term and obtain 

on the right hand side, all the integrals are zero except that which corres
ponds to p = n, and we obtain the fundamental formula 

(1. 2) 

which we could also have deduced from relation (6. 1 ) of chapter 11, § 2. 

This integral formula gives an upper bound for the coefficient a,. : let M(r) 
be the upper bound of If ( re'6) I as a varies, that is the upper bound of the 
values off on the circumference of radius r. The absolute value of the 
right hand side of ( 1. 2) is then bounded above by M(r), and relation ( 1. 2 ) 
thus gives the fundamental inequalities 

( I. 3) n an integer > o. 

These inequalities are known as the Cauchy inequalities. 

2. LIOUVILLE'S THEOREM 

THEOREM. A bounded, holomorphic function f (z) in the whole plane is constant. 

Proof. We apply inequality ( 1. 3) for any integer n > 1. The quantity 
M(r) is, by hypothesis, kss than some number M independent of r. Hence 

no matter how big r is. Since the right hand side of this inequality tends 
to o as r tends to infinity (n being> 1 ) , we see that a,. = o for n > 1, 

thus f (z) = a0 is constant. 

Application : d'Alembert's theorem. We shall show that any polynomial 
with complex coefficients which is not constant has at least one complex 
root. Let P(z) be such a polynomial, we shall use reductio ad absurdum 
by supposing that P(z) =I= o for any complex number z. Then, the func-

tion P(z) is holomorphic in the whole plane. It is bounded; for, 

P(z) = a,.z" + a,._1z•-1 + · · · + a0 = z" (a,. + 
a,.

_1 + · · · + 
a
o) , a,. =I= o, 

Z Z" 
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tends to infinity as lzl tends to infinity, so there is a compact disc outside 

of which / i>(z) 
/ is bounded; on the other hand, I 

P
(
z) 
I is bounded in the 

compact disc because it is continuous function. Hence, 
P
C
z) 

is bounded 

in the whole of the plane and so is constant by Liouville theorem. It 
follows that P(z) is a constant, contrary to hypothesis. 

2. Mean Value Property; Maxim.um Modulus Principle 

I. MEAN VALUE PROPERTY 

We apply relation ( 1. 2) of§ I in the particular case when n = o. Then, 

or 

( I. 2) f(o) = - f(rei1) d6. I i2o: 2'lt 0 
This equation says that the value of f at the point o is equal to the mean 
value off on the circle of centre o and radius r. It follows, more generally, 
that, ifS is a closed disc contained in an open set D in whichfis holomor
phic, the value off at the centre ofS is equal to the mean of the values off 
on the frontier circle of S (this mean being calculated with respect to 
the arc of the circle). We shall say that a real- or complex-valued, conti
nuous function f defined in an open set D has the mean value property 
if, for any compact disc S contained in D, the value of f at the centre 
of S is equal to the mean value of f on the frontier circle of S. We 
shall see later that the functions with the mean value property are precisely 
the harmonic functions. From now on, we can say that any holomorphic 

function has the mean value property. It is clear that, if a complex-valued 
function has the mean value property, then so have its real and imaginary 
parts. Thus, the real and imaginary parts of a holomorphic function have 
the mean value property. 

2. MAXIMUM MODULUS PRINCIPLE 

This principle will apply to any (real- or complex-valued) function which 
has the mean value property (that is to say, as we shall see later, to any 
harmonic function). 
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THEOREM 1. (maximum modulus principle). Let f be a continuous 
(complex-valued) function in an open set D of the plane C. If f has the mean value 
property and if If I has a relative maximum at a point a e D (i.e. iflf(z) I< lf(a) I 
for atry z su.fficiently near to a), then f is constant in a neig hbourhood of a. 

Proof. Iff(a) = o, the theorem is obvious; suppose then thatf(a) =I= o; by 
multiplying f by a complex constant if necessary, we can reduce the theo
rem to the case whenf(a) is real and> o, which we shall assume from now 
on. For sufficiently small r > o, let 

M(r) =sup /f(a + rei6) I· 
0 

For sufficiently small r > o, we have M(r) <J(a) by hypothesis. Moreo
ver, the mean value property gives 

(2. 1) I 

12" f(a) = -. . J (a+ rei6) d6, 
2'1t 0 

whence f(a) < M(r) and consequently f(a) = M(r). It follows that the 
function 

g(z) =Re (f(a) -f(z)) 

is > o for sufficiently small lz-al = r, and that g(z) = o if and only if 
f(z)=f(a). By (2. 1), the mean value of g(z) on the circle 

lz-al = r 

is zero; since g is continuous and > o, this requires that g is identically 
zero on this circle, and, consequently, f(z) = f(a) when lz -a/ = r 

is sufficiently small. This completes the proof. 

COROLLARY. Let D be a bounded, connected, open set of the plane C; let f be a 
(complex-valued) continuous Junction de.fined in the closure D and having the mean 
value property in D; and, let M be the upper bound of If ( z) I when z describes the 
frontier of D. Then, 

(i) 
(ii) 

lf(z)I < M for zeD; 

if lf(a)I = M at a point aeD,jis constant. 

Proof. Let M' be the upper bound of !f(z)I for zeD, a bound which 
is attained at at least one point a of the compact set D (since If (z) I is 
continuous). If aeD,j is constant in some neighbourhood of a by theo
rem 1; theorem1 also shows that the subset ofD wherej takes the valuef (a) 
is open, and, as it is obviously closed and non-empty, this subset must 
be the whole of D (because D is connected); since f is continuous in D, we 
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also have f(;;) = f (a) for ;;:, e TI which shows that M = M' and establishes 
statements (i) and (ii). The other case to be proved is when Jf(a) J =FM' 
for any point aeD; but, then M · M' (which proves (i)), and (ii) is 
trivially true because we do not have Jf(a) I = M for any point a of D. 

Note. The maximum modulus principle is applied especially to the follow
ing case : if a continuous function f in a closed disc is holomorphic in the 
interior of the disc, the upper bound of If J on the boundary of the disc 
bounds Ill above in the interior of the disc. In particular, in the Cauchy 
inequalities ( 1. 3), M(r) is not only the upper bound of J f (;;:,) J for lzl = r 
but also for J;;J < r. 

3. Schwarz' Lemma 

THEOREM (Schwarz' Lemma). Let f (;;:,) be a holomorphic function in the 
disc lzl < 1 and suppose that 

f (o) = o, If(;;:,) I< I 

Then: 

1° we have If(;;:,) I< lzl for Jzl < 1; 

for J;;J < 1. 

2° if, for a Zo =F o, the equality If (;;0) I = IZol holds, then 

f (;;:,) = )..;;:, . identically and 

Proof. In the Taylor expansion f (;;:,) = � anzn, the coefficient ao is . 
n�O 

is zero becausef (o) = o. It follows thatf (;;:,)/;;:, is holomorphic for J;;J <I. 
Since If (;;:,) /< 1 by hypothesis, we have 

I f__ill I < 
.2... ;;:, r for lzl = r. 

This inequality holds also for lzl < r because of the maximum modulus 
principle. Ifwe fix;;:, in the disc lzl <1, we have lf(z)I <Jzl/r for any 
r ">- lzl and < 1. In the limit, we have then If(;;:,) I< lzl, which esta
blishes assertion 1° of the theorem. If If (;;0) I = IZol for some ;;0 =F o, 
the holomorphic function f (;;:,) /;;:, attains the upper bound of its modulus 
at a point interior to the disc lzl < 1; thus, by the maximum modulus 
principle, this function is contant and we have then the identity f (;;:,) /;;:, = ).., 
IJ./ = 1. This completes the proof. 
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4. Laurent's Expansion 

I. LAURENT'S SERIES 

Here we consider formal power series � a.X•, where the (formal) sum-
• 

mation is taken over all integers n, positive, negative, or o. To such a 

series, we associate two formal series (in the usual sense), � a.X• and 
n;:>O 

� a.X-•. Let pt and _!___ be the radii of convergence of these two series. 
n<O P2 
Consider the convergent series 

( I. I) 

(1. 2) 

for 

for 

We shall show that f2(z) is a holomorphic function of z. 
function 

I 
Putz=-; the 

u 

is holomorphic for lul < 1/p2 and its derivative is given by the formula 

g'(u) = � na_.u•-1• 
n>O 

The formula for the differentiation of a composite function shows that 

f2(z) has a derivative equal to 

f�(z) = -�g'(1/z) = � na.z•-1• 
Z n<o 

Hence, series (1. 2) is differentiable term by term for lz/ > p2• Suppose 
from now on that p2 <Pt· Then, the sumf(z) of the series 

(I. 3) 
--X><"<+oo 

is holomorphic in the annulus p2 < lz/ < p1 and its derivative f'(z) is 

the sum of the series � na.z•-1 obtained by differentiating term by term. 

The series � a.z• is called the Laurent series in the annulus p2 < /z/ <Pt· 
In the above, we do not exclude the case where p2 = o, nor the case 

where Pt = + oo. The convergence of series ( 1. 3) is normal in any 
annulus r2 < /z/ < rt, with 
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2. LAURENT SERIES EXPANSION OF A FUNCTION HOLOMORPHIC IN AN ANNULUS 

Definition. A functionf (z) defined in an annulus 

P2 < JzJ < P1 
is said to have a Laurent expansion in this annulus if there is a Laurent series 

� a.z• which converges in this annulus and whose sum is equal to f (z) at 
n 

any point of the annulus. 

By the results of no. 1, f (z) is then holomorphic in the annulus and the 
convergence is normal in any closed annulus r2 < JzJ < r1 such that 

moreover, we shall show that the Laurent series, if it exists, is unique._ 
For, put z = re16 (p2 < r < p1) ; by integrating the normally convergent 
expansion 

f (rei6) = � a.r•e'•! 
-ao<•<+ao 

term by term with respect to a, we obtain, exactly as in § 1 (no. I ) , the 
integral formula 

(2. 1) a.r• = � r'h e-in& f (re") da, 
27t Jo for n an integer ;>- o or < o. 

We see that, if the functionfis given, the coefficients a. of a Laurent expan
sion of f when it exists, are determined uniquely by relation (2.1). It is 
called the Laurent expansion off. 

THEOREM. Any holomorphic function f (z) in an annulus p2 < JzJ < p1 has 
a Laurent expansion in this annulus. 

Proof. Choose two numbers r1 and r2 such that 

P2 < r2 < r1 <Pi· 
We shall show that there exists a Laurent series which converges normally 
in the annulus r2 < JzJ < r1 and whose sum is equal tof (z) in this annulus. 
By the uniqueness of the Laurent expansion, which follows from the integral 
formula (2. 1), the Laurent series thus obtained will not depend on the 
choice of r1 and r2• Thus, this Laurent series will converge to f(z) in the . 
whole of the annulus p2 < JzJ < p1, which will prove the theorem. 

· 

Having chosen the numbers r1 and r2, we choose two numbers r; and 
r; such that p2 < r� < r2 < r1 < r; <Pi· Consider the compact annulus 

r; < Jzl < r; 

CARTAN 6 
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whose oriented boundary is the difference of the circle y1 of centre o and 
radius T; described in the positive sense, and the circle 'h of centre o and 
radius T� described in the positive sense. By Cauchy's integral formula 
(chapter 11, § 2, theorem 5), we have, for T2-<; lzl-<; Tl> 

f (z) � �.1f(t) dt 
-

� r f (t) dt_ 
21tl T 1 t - Z 21tl j Tt t - Z 

Consider the first integral; we have !ti= T; and lzl-<; T1 < T;; we can 
then write the series expansion 

which converges normally when t describes the circle of centre o and 

raditis T;. We replace -
1
- in the first integral by this series; we can . t-,-z 

integrate it term by term because of the normal convergence, whence 

(2. 3) 

where 

(2. 4) n:;;;,. o. 

Consider now the second integral; we have 

!ti= T� and 
so 

I 
Replace in the second integral by this series; since this series 

t-z 
converges normally, we can integrate it term by term to obtain 

(2. 5) 

where 

(2� 6) 

Finally, relation (2. 2) shows that 

f(z) = � anz
n 

· 
-ao<n<+ao 

n<o. 

for 

the convergence being normal. The theorem is thus proved. 
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3· DECOMPOSITION OF A HOLOMORPHIC FUNCTION IN AN ANNULUS 

PROPOSITION 3. 1 • Given a holomorphic function f ( z) in an annulus p 2 < I z I < Pt• 
there exists a holomorphic function ft(Z) in the disc lzl <Pt and a holomorphic 
function f2(z) for lzl > p2 such that 

(4· 1) 

This decomposition is unique if we stipulate that the function f2 tends to o as lz I 
tends to oo. 

For, let f (z) = � anzn be the Laurent expansion off. Put 
-oo<n<+oo 

Relation (4· 1) is obviously satisfied, and lf2(z) I tends to o as lzl tends to oc. 

Suppose that 

is another such decomposition; let us show thatft =gt and f2 = g2• Let 
h be the holomorphic function which is equal to ft - gt for Jzl < Pt and 
equal to g2 -f2 for Jzl > p2; this function his holomorphic in the whole 
plane and tends to o as lzl tends to oo. By the maximum modulus prin
Ciple (§ 2, no. 2), or by Liouville's theorem (§ 1, no. 2), the function his 
identically zero. This completes the proof. 

4• CAUCHY'S INEQ.UALITIES; APPLICATION TO THE STUDY OF ISOLATED 
SINGULARITIES 

Consider the integral formula {2. 1 ) . If M(r) denotes the upper bound 
ofJf(z)j for lzl =r, the right hand side of (2. 1 ) has its modulus bounded 
above by M(r), wh�ce the Cauchy inequality 

(4. 1) Jani < M(r), with nan integer >- o or < o. rn 

We shall consider a holomorphic function f(z) in the punctured disc 
o < lzl < p. We ask if this function can be extended to a holomorphic 
function in the complete disc lzl < p, centre included. This extension 
is obviously unique if it exists (by the principle of analytic continuation, 
or, in this case, simply because of continuity). 

PROPOSITION 4. I. A necessary and su.fficient condition for this extension to 
be possible is that thefunction f(z) is bounded in some neighbourhood of o. 

The condition is obviously necessary. We shall show that it is sufficient. 
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In the punctured disc o< lzl < p, the function/ has a Laurent expansion 

� a.z•. By hypothesis, there exists a number M > o which 
-oo<n<+oo 
bounds lf(z) I above for lzl = r with any sufficiently small r. By Cauchy's 
inequality (4. 1 ), we have 

for all small r, and for n < o this implies that a. = o. Thus the Laurent 
expansion off reduces to a Taylor series and this defines the required 
extension off ( z). 

Definition. Let f (z) be a holomorphic function in the punctured disc 
o < lzl < p. The origin o is said to be an isolated singularity off if the 
function f cannot be extended to a holomorphic function on the entire 
disc !zJ < p. 

A necessary and sufficient condition for o to be an isolated singularity 
is that the coefficients a. in the Laurent expansion are not all zero for 
n < o. We see that there are two possible cases : 

I st. case : there are only a finite number of integers n < o for which 
a,. =F o. In this case, there is a positive integer n such that z"f (z) is a holo
morphic function g(z) in some neighbourhood of the origin. Thus 
f (z) = g(z) /Z" is meromorphic in some neighbourhood of the origin. 

2 nd. case : there is an infinity of integers n < o such that a,. =F o. In this 
case the function/(z) is not a meromorphic function in a neighbourhood 
of the origin. 

Definition. In the first case, we say that the point o is a pole of the function/; 
in the second case, we say that o is an essential singularity of the functionf. 

THEOREM (Weierstrass). lf o is an isolated essential singularity of a holomorphic 
functionf (z) in the punctured disc o < lzJ < p, then, for any E > o, the image 
of the punctured disc o < JzJ < E under f is everywhere dense in the plane C. 

Proof. We use reductio ad absurdum by supposing that there exists a disc 
centred at a of radius r > o which is outside the image of the punctured 
disc o < JzJ < E under f. We have then 

(4. 2) ! f(z) - a J > r for o<Jzl<•· 

The function g (z) = f (z) 1 
_ 

a 
will then be holomorphic and bounded 

in the punctured disc o < lzl < E. By proposition 4. 1, this function 
can be extended to a holomorphic function in the disc Jzl < E, again 
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I 
denoted by g(z). Thus, 

g(z) 
will be meromorphic in the disc lzl < e 

and f(z) =a+ 
g
(
z) 

will also be meromorphic, which contradicts the 

hypothesis that o is an essential singularity of f(z). 

Note. The case when z0 is an essential singularity is obviously reduced 
to the case when z0 = o by replacing z by z - z0• 

The following theorem, which we shall not prove, is much more precise 
than the Weierstrass theorem: 

PICARD's THEOREM. If o is an isolated essential singularity of the holomorphic 
function f ( z), then the image by f of aTry punctured disc o < I z I < s is either the 
whole plane C, or the plane C with one point missing. 

Example. The function e1i' = � -; _!__ is holomorphic in the punctured 
n�on .  zn 

plane z =I= o and has an isolated essential singularity at the origin since the 

coefficient of _!__ is =I= o for all n :;;:,:. o. This function never takes the 
zn 

value o; a worthwhile exercise is to show that it takes any value =I= o in any 
punctured disc o < lzl < e. 

5. Introduction of the Point at Infinity• Residue Theorem 

I. RIEMANN SPHERE 

In the space R3, let x, y, u be the coordinates of a point and let us consi
der the unit sphere 82, 

x
2 + y2 + u2 = 1. 

The sphere 82, with the topology induced by that of the space R3, is a 
compact space since 82 is a bounded closed subset of R3• Let P and P' 
be two points of 82 whose coordinates are respectively (o, o, I ) and 
(o, o, - 1) . We shall consider stereographic projection from the pole P. 

It associates with any point M of 82 other than P the point of the plane 
u = o collinear with P and M. The complex coordinate z of this point 
is given by the formula 

( I. I ) 
x + &i 

z = ' 
I-U 

where x, y, u are the coordinates of the point M. Similary, we consider 
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stereographic projection from the pole P' but we take the point of the 
plane u = o which is the complex conjugate of the point corresponding to 
M (x, '" u) under this stereographic projection. Its complex coordinate 
z' is given by the formula 

(1. 2) z' = x-9'. 
I+ U 

Note that, for any point M (x, y, u) other than P or P', the correspon
ding complex numbers z and z' are related by 

(I. 3) zz' =I. 

The mapping (x,y, u) --+z is a homeomorphism of S2 = P onto C; we 
say that we have a chart ofS2 - P on the complex plane C. Similarly, the 
mapping (x,y, u) --+ z' is a chart of S2 - P' onto the complex plane C. 

Provided with these two charts, S2 is called the Riemann sphere. 
Let D be an open set of S2• We say that a function/ defined in Dis 

holomorphic in D if, in some neighbourhood of any point Me D distinct 
from P, it can be expressed as a holomorphic function of z, and if, in some 
neighbourhood of any point Me D distinct from P', it can be expressed 
as a holomorphic function of z'. We note that, in a neighbourhood of 
a point distinct from both P and P', any holomorphic function of z is a 

holomorphic function of z', and conversely, because of relation (1. 3). 
By means of relation ( 1. 1), we shall always identify the complex plane C 

with the sphere S2 with the point P excluded. We see that S2 is obtained by 
adding 'a point at infinity', to C. To study a function in a neighbourhood 
of the point at infinity P we use the complex variable z' = 1/z, which is 
zero at the point P. The open sets Jzl > r in C form a fundamental 
system of neighbourhoods of the point at infinity. A functionf(z) defined 
in such an open set is ' holomorphic at infinity ' if, by the change of 
variable z = 1/z', it is expressed as a holomorphic function of z' for 
Jz'I < 1/r. 

Similarly, a function/ (z) is meromorphic at infinity if, when expressed as a 
function of z', it is meromorphic in a neighbourhood of z' = o. Finally, 
a holomorphic functionf (z) for JzJ > r has an isolated essential singula
rity at the point at infinity if the function f ( 1 /z') has an isolated essential 
singularity at the origin z' ::== o. 

If 
f (z) = �a.z• 

n 

is the Laurent expansion off (z) for Jzl > r, a necessary and sufficient 
condition for the point at infinity to be a pole off is that a. = o for all 
the integers n > o except for a finite number of then; the condition for an 
essential singularity at the point at infinity is that .there exist an infinity 
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of integers n > o such that an =F o. 
The concepts of differentiable path, closed path, and oriented boundary of;a 

compact set can be defined for the sphere S2• 
· 

2. RESIDUE THEOREM. 

First, let us consider a holomorphic function f (z) in an annullis 
p2 < JzJ < p1 centred at the origin. 
PROPOSITION 2. 1. .if y is a closed path contained in the annulus, then 

(2. I ) �-Ji (z) dz= l(y, o) a_i, 
2'1tZ � 

where I ( r, o) is the index of the path y with respect to the origin o and a,..1 is tlie 
coefficient of I /z in the Laurent expansion off. 

Proof. We have 

where 
f (z) = a_1/z + g (z), 

is holomorphic on the annulus and has a primitive in it equal to 

� �zn+1 
n#o-ln +I 

(cf.§ 4,no 1 ) . 

Thus, we have the relation 

(2. 2) J f(z) dz= a_, ,i dz/z + J g(z) dz. 

But, J g(z) dz = o since g has a primitive, and 

J dz/z = 2'1ti l(y, o) by the definition of the index. 

These two relations, along with (2. 2), give (2. 1 ) . 

Formula (2. I ) is applied particularly in the case when the function f 
has an isolated singularity at the origin o (either a pole, or an essential 
singularity). In this case, y is a closed path in some neighbourhood 
of o which does not pass through o. The coefficient a_1 of the Laurent 
expansion is then called the residue of the functionf at the singular point o. 

In particular, if y is a circle centred at o with small radius described in 
the positive sense then 

(2. 3) 

The residue at any isolated singularity situated at any point of the plane C 
is defined in a similar way. 
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A residue at the point at infinity needs a special definition : letf (z) be a holomor

phic function for Jzl >rand put z = __!,; then, 
z 

f (z) dz= - z�2f (;, ) dz'. 

By definition, the residue off at the point at infinity is equal to the residue 

of the function - -+,. f (�) at the point z' = o. Thus, if � a.z" is 
Z Z n 

the Laurent expansion of f (z) in a neighbourhood of the point at infinity, 
the residue of f at infinity is - a_1• 

REsmuE THEOREM. Let D be an open set of the Riemann sphere 82 and let f 
be a holomorphic function in D except perhaps at isolated points which are singularities 
off. Let r be the oriented boundary of a compact subset A of D and suppose that r 

does not pass through any singularities of j, or the point at infinity. Then, onbi 
a finite number of singularities Zk are contained in A, and 

(2. 4) 

where Res (f, Zk) denotes the residue of the functionf at the point Zk; the summation 
extends over all the singularities Z1t e A including the point at infinity if it qualifies. 

Proof. We distinguish between the two cases where the point at infinity 
belongs or does not belong to A. 

Fig. 4. 
N. B. The shaded parts represent the complement of the compact set A. 

·l st. case. The point at infinity does not belong to A; A is then a (bounded) 
compact set of the plane C (cf. fig. 4); each singular point Z1t is the centre 
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of a closed disc Sk in the interior of A and we can choose the radii of these 
discs small enough for the discs to be disjoint. Let "(k be the boundary 
of the disc ok described in the positive sense. Let A' be the compact set 
obtained by removing the interiors of the above discs from A; the oriented 
boundary of A' is the difference between r (the oriented boundary of A) 
and the circles "(k· Since f is holomorphic in some neighbourhood of A', 
we have (cf. chapter n, § 2, no. 8, theorem 5) 

(2. 5) r f (z) dz = � r f (z) dz. Jr k JTk 
On the other hand, by (2. 3) 

Jf(z) dz= 2'1ti Res (f, z.), 
1k 

and substituting this in (2. 5) gives the required relation (2. 4). 

2nd. case. The point at infinity belongs to A. Let lzl � r be a neighbourhood 
of the point at infinity which does not intersect r and such that f (z) is 
holomorphic in this neighbourhood (the point at infinity being excluded). 
Let A" be the compact set obtained by removing the open set lzJ > r 

from A (cf. fig. 5) 

lzf •r 

Fig. 5. 
N. B. The shaded portion represents the complement of A. 

The oriented boundary of A" is the sum of the oriented bourdary r of A 
and of the circle Jzi = r described in the positive sense. By applying 
the results we have proved in the first case to A", we obtain 

(2. 6) ( f(z) dz+ ( f(z) dz = 2'1ti � Res (f, z.), Jr Jl•l=r k 

where the sum on the right hand side extends over all singularities Z1t 
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contained in A other than the point at infinity. Moreover, by the definition 
of the residue at infinity, we have 

( f(z) dz = -2'1ti Res (f, oo ) , 
Jl•l=r 

and this substituted in (2. 6) gives 

Jr! (z) dz= 2'1ti (Res (j, oo ) + f Res (f, Z1t) ) 

which is none other than the required relation (2. 4) when the point at 
infinity is one of the singularities Z1t· 
.Note. Consider in particular the case where the compact set is the whole 
sphere S2• In this case, the boundary is empty, and relation (2. 4) becomes: 

(2. 7) � Res (J, Z1t) = o. 
k 

For example, the sum ef the residues ef a rational function (including the residue 
at infinity) is zero. 

4. PRACTICAL CALCULATION OF RESIDUES 

The case ef a simple pole which is not at infinity. Let z0 be a simple pole off; 
then 

I 
f (z) = -- g(z) , 

z-zo 

where g is holomorphic in some neighbourhood of Zo with g(z0) -=!= o. Let 

g(z) = � a. (z -Zo) " 
n;;:,o 

be the Taylor expansion of g(z) in a neighbourhood of z0; we see that, 

in the Laurent expansion off (z) , the coefficient of-
I
- is equal to g(z0) . 

Thus, 
z-zo 

(3. I ) Res (J, z0) = lim (z-z0) f(z) . 
Z.�Zo 
:¢:.zo 

If f is given in the form of a quotient P /Q, where P and Q are holomor
phic in a neighbourhood of z0 and where Zo is a simple zero of Q with 
P(z0) -=!= o, then 

(3. 2) ( ) _ P(zo) 
Res J, z0 - Q'(zo) , 

Q' denoting the derivative of Q. 

94 



INTRODUCTION OF THE POINT OF INFINITY. RESIDUE THEOREM III.5.3 

Example. 

we have 

Let f(z) = � ; the function hai. two simple poles ;:, = + i; z + I 
P/Q; = _..!._ ei', and, consequently, the residue off at the pole i 

2;:, 

is equal to -_!_. 
2e 

The case ef a multiple pole. Let f (;:,) = ( 
1 

)kg(;:,), where g(z) is holo-z - zo 
morphic in a neighbourhood of the point ;:,0 with g(z0) =I= o. The residue 
off(;:,) is equal to the coefficient of (;:, - z0)k-l in the Taylor expansion 
of g(z) at the point ;:,0• The problem is reduced, then, to finding a limited 
expansion of g(;:,). To this end, it is often convenient to take a new variable 
t = ;:,-;:,0• 

eiz Example. Let f (;:,) = ;:,(;:,2 + 1 )2 and let us calculate residue of f(;:,) 

at the double pole ;:, = i. In this case, 

eiz 

g(z) = z(z + i)2• 

Put ;:, = i + t, so we must find coefficient of t in the Taylor expansion of 

ei(i+I) 
h(t) = 

. . 
(i + t) (2i + t)2 

It is sufficient to write down the limited expansion of degree 1 of each of 
the terms 

whence 

ei(1+1> = e-1(1 +it+ ... ) , 

(i + t)-1 = -i(1 -it)-1 = -i(1 +it+···), 
. I ( i )-2 I . (2t + t)-2 = -4 I --;t = - 4 ( 1 + tt + '.·· ) , 

h(t) = i._(1 +git+ ... ), 
¥ 

and the required residue is --1. 
¥ 

Application. Residue ef a logarithmic derivative. Let f (;:,) be a meromorphic 
function in a neighbourhood of ;:,0• We propose to find the residue of 
the logarithmic derivative f' If at the point ;:,g. We have 

where g is holomorphic at the point ;:,0 and g(;:,0) =I= o; the integer k is ;> o 
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ifjis holomorphic at z0, and k < o if Zo is a pole of f; taking the logarithmic 
derivative of the two sides gives 

J'IJ= -
k

-+g'/g; z-zo 

thus f' If has Zo as a simple pole and the residue of this pole is equal to the integer k, 
the order of multiplicity of the zero or pole z0 (counted positively for a zero 
and negatively for a pole). 

4· APPLICATION TO FINDING THE NUMBER OF POLES AND ZEROS OF A MERO· 

MORPHIC FUNCTION. 

PROPOSITION 4. I. Let f (z) be a meromorphic function which is not constant 
in an open set D and let r be the oriented boundary of a compact set K contained in D. 
Suppose that the function f has no poles on r and does not take the value a on r. 

Then, 

(4· I ) _I r !' (z) dz = z - P, 
27ti )rf(z)-a 

where Z denotes the sum of the orders of multiplicity of the roots of the equation 

f(z)-a = o 

contained in K, and P denotes the sum of the orders of multiplicity of the poles off 
contained in K. 

This is an immediate consequence of the residue theorem and of the 

explicit calculation of the residues of the function 
f 
rz; (� 

a
. 

In particular, when f is holomorphic, the integral on the left hand side 
of (4· I ) is equal to the number of zeros of f(z) -a contained in K, 
it being understood that each zero is counted as many times as its order 
of multiplicity. 
You will notice that the value of the integral on the left hand side of (4· I ) 
is equal to the quotient by 27t of the variation of the argument of f (z) -a 
when Z describes the closed path r (cf. chapter II, § I ,  no. 5). 

PROPOSITION 4. 2. Let Zo be a root of order k of the equation f (z) = a, 
f being a non-constant, holomorphic function in some neighbourhood of z0• For any 
sufficiently small neighbourhood V of z0, and for arry b sufficiently near to a and =I= a, 
the equation f (z) = b has exactly k simple solutions in V. 

For, let y be a circle centred at Zo with sufficiently small radius to ensure 
that z0 is the only solution to the equationf (z) = a contained in the closed 
disc bounded by y. Suppose. also that the radius of y is sufficiently small 
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to ensure that f'(z) is =I= o at any point of the disc except the centre z0• 
We consider the integral 

(4. 2) 
I 1 f'(z) dz 

2'7ti Tf(z)-b0 
We know that (4. 2) remains constant when b varies in a connected compo
nent of the complement of the image of i under f (cf. chapter n, § I, no. 8). 
Thus, for any b sufficiently near to a, we have 

_I J f'(z) dz __ I_ J f'(z) dz _ k 
2'7ti 1f(z) - b - 2'7ti rf(z) -a - ' 

and, consequently, the equation! (z) = b has exactly k roots in the interior 
of y, if each root is counted with its order of multiplicity. But, for b suffi
ciently near to a but =I= a, the roots of the equation f (z) = b are all simple 
because the derivative f '(z) is =I= o at any point of z sufficiently near to 
Zo and =F z0• Hence, proposition 4. 2 is proved. 

5· APPLICATION TO DOUBLY PERIODIC FUNCTIONS 

Let e1 and e2 be two complex numbers, which are linearly independent 
over the real field R, that is to say, such that e1 =I= o and that their quotient 
e�/e1 is not real. The totality of vectors of the form n1e1 + n2e2, where n1 
and n2 are arbitrary integers, forms a discrete subgroup 0 of the additive 
group of the field C. We say that a function ! (z) defined on the plane 
has the group O as group of periods if 

(5. I ) f (z + n1e1 + nae2) =f(z) 
for all z and for all integers n1 and n2• A necessary and sufficient condition 
for this is that 

(5. 2) 

Let z0 be any complex number. We consider the (closed) parallelogram 
with vertices z0, Zo + e1, Zo + e2, Zo + e1 + e2• It consists of all points 
of the form z0 + t1e1 + t2e2, where o <; t1 <; I and o <; t2 <; I. Such a 
parallelogramm is called a parallelogram of periods with first vertex z0• 
Let f (z) now be a meromorphic function in the whole plane which has 
0 as its group of periods, and choose Zo in such a way that f (z) has no 
poles on the boundary i of parallelogram of periods with Zo as first vertex. 

We can consider the integral j f(z) dz, whose value is zero because of 
the periodicity; for T 

jJ (z) dz= l1[f(z0 + te1) -f(z0 + e2 + te1)] dt 
T 0 (I 

+ Jo [f(zo + e1 + te2) -f(z0 + te2)] dt� 
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By appling this result to the logarithmic derivative f' If and using propo
sition 4. I, we obtain : 

PROPOSITION 5. 1. If f(z) is a non-constant meromorphic function in the whole 
plane which has 0 as group of periods, the number of zeros of this function contained 
in a parallelogramm of periods is equal to the number of poles contained in the same 
parallelogram, if no zeros or poles of the function f occur on the boundary of the 
parallelogram. 

COROLLARY. A holomorphic function in c having a as group of periods is 
constant. 

Otherwise, the number of zeros off (z) -a would be equal to the number 
of poles, that is zero; but, this is true for all a, which is absurd. 
Moreover, consider the function zf'(z)/(f (z) -a). It is not periodic, 
so we can no longer say that its integral round the boundary r of some 
parallelogram of periods is zero. We shall show that the value of the integral 

(5. 3) _I J zf'(z) dz 
27ti 1f(z) -a 

belongs to the group a of periods. For, it is equal to 

-�J f'(z) dz+ 11 f'(z) dz, 
27ti 1J(z)-a 27ti 1J(z)-a 

where y1 denotes the side of the parallelogram starting at Zo and ending 
at Zo + e1, and y2 denotes the side of the parallelogram starting at 
z0 and ending at Zo + e2• However, the values of the integrals 

1 J j'(z) dz I j f'(z) dz . -. 
f( ) 

and --. 
f( ) 

are integers. 
27ti 1, z -a 27ti r. z -a 

On the other hand, the integral (5. 3) is equal to the sum of the residues 
of the function zj'(z)/(f (z) -a). Let us calculate these residues. The 
poles are at most the poles off (z) and the zeros off (z) -a. If �i is a 
pole and k is its order of multiplicity, then the residue for this pole is equal 
to -k�1• Similarly, the residue of a zero a.; of multiplicity k off (z) -a is 
equal to ka.;. 

This is summed up by the following : 

PROPOSITION 5. 2. Let f (z) be a non-constant, meromorphic function in the 
whole plane having 0 as group of periods. For any complex number a, we have 

mod. 0, 

where the a.1 denote the roots of the equation f (z) = a (each occurring as often 
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as its multiplicity) and the �i denote the poles (occurring as often as·their multiplicity) 
contained in a parallelogram of periods. 

In particular, the sum � 1X1 taken modulo Q is independent of a. 
i 

6. Evaluation of Integrals by the Method of Residues 

We propose to evaluate definite integrals without finding a primitive of 
the integrand, but by interpreting the value of the integral as the sum of 
the residues at the singular points of a suitably chosen holomorphic function. 
There is no general method of dealing with this problem. We shall 
limit ourselves to some classical types and indicate, for each of them, 
the procedure by which the problem can be transformed into a residue 
calculation. 

I st type. Consider an integral of the form 

£2.: I = R (sin t, cos t )  dt, 
• 0 

where R(x, y) is a rational function without a pole on the circle x2 + y2 = I. 
Putz = ei1, so that z describes the unit circle as t increases form o to 2'1t. 
Thus, I is equal to 2'1ti times the sum of the residues of the function 

+ R (� (z _ _!__), 2-(z + _!__)) 
iz 2i z 2 z 

at the poles contained in the unit disc. 

We then have 

the sum extending over poles contained in the unit disc. 

Example. 12" dt 
Let 

+ 
. , where a is a real number > I. 

o a sm t 

� 2i I = 2'1t £.J Res 
2 

• • 

z + 2zaz- x 

Then, 

The only pole contained in the unit disc is z0 = - ia + iv' a2 - I ; its 
"d 

. i I I 2'1t res1 ue is ---. = . / , so = . / · 

Zo + ia v az - I v a2 - I 
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2 nd type. Consider an integral of the form 

f+ao I = -ao R(x) dx, 

where R is a rational function without a real pole . We also need to 
assume that the integral is convergent, and a necessary and sufficient 
condition for this is that the principal part of R(x) at infinity is of the form 

�with the integer n ;> 2. xn An equivalent condition is that 

(2. 1) lim xR(x) = o. 
i"'l+ao 

To calculate this integral I, we shall integrate the function R(z) of the 
complex variable z along the boundary y of a half-disc ·of centre o and 
radius r situated in the half-plane y ;> o (fig. 6). For sufficiently large r, 

y 

0 y 

Fig. 6. 

)( 

the function R(z) is holomorphic on the boundary r and the integral 

l R(z) dz is equal to the sum of the residues of the poles of R which are 

inside y. Then 

(2. 2) f+r R(x) dx + ( R(z) dz= 27ti � Res (R(z)), 
-r ,} 8\r) 

where o(r) denotes the half-circle centred at o of radius r described in the 
positive sense, and where the summation extends over the residues of 
poles situated in the half-plane y > o. As r tends to + oo, the first 
integral on the left hand side of (2. 2) tends to I; we shall show that the 
second integral on the left hand side of (2. 2) tends to o. This will give 

(2. 3) 

the sum extending over all the poles of R in the upper half-plane y > o. 

Similarly, 
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the sum this time being taken over all the poles in the lower half-plane. 
y<o. 
It remains to be proved that 

( 
R(z) dz tends to o as r tends to + oo, j S(r) 

which will be an immediate consequence of the following lemma: 

LEMMA I. Let f (z) be a continuous function defined in the sector 

61 < 6 < 62, 

r and 6 denoting the modulus and argument of z, If 

lim zf(z) = o (61 < argz < 62), 
l•I�., 

then the integral J f(z) dz extended over the arc of the circle !zi = r contained 

in the sector tends to o as r tends to + oo • 

For, let M(r) be the upper bound of If (z) I on the arc of the circle 

lz/ = r. Then 

and the lemma follows immediately from this. 
We could prove the following lemma similarly: 

LEMMA 2. Let f (z) be a continuous function defined in a sector 

r and 6 being the modulus and argument of z. If 

lim zf(z) = o (61 < arg z < 62), 
•• o 

then the integral J f(z) dz over the arc of the circle !zi = r contained in the sector 

tends to o as r tends to o. 

Example. To evaluate the integral 

(+"' dx 

I= Jo I + x6 ' 

The function _
I
_6 has six poles, all on the unit circle; the three poles 

I +z 
which are in the upper half-plane are 

CARTAN 

t.'IT. 
e s ' 

i1! 
e 2 ' 

Si rr 
e s 

7 

IOI 
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The residue of such a pole is equal to 6:5 = - � · Hence, 

I f+oo dx 1'i ( 1.!!. 1.!!. 5;.!!.) 
I=- -- = -- e 6 +e 2 +e 6 

2 -oo I + x6 
6 

7' ( . 7' ) 7' 
= 6 2 sm6- + 1 = 3. 

3rd type. We shall study integrals of the the form 

where f (z) is a holomorphic function in a neighbourhood of each point of 
the closed half-plane y > o, except perhaps at a finite number of points. 
We shall first consider the case when. the singularities are not on the real 
axis. Then, the integral 

has a meaning, and, as r tends to + oo, its value tends to 

if the latter integral is convergent. 
We shall prove the following result : 

PROPOSITION 3· I. If lim f(z) = 0 for y > o, then 
Jz[.,._ oo 

the summation extending over the singularities off (z) contained in the upper half
plane y > o. f+oo 
First, we no;:, that, if the integral _00 lf(x) I dx is convergent, the proposed 

integral i .. f(x)ei"' dx is absolutely convergent; relation (3. 1) then gives 

(3. 2) 

f+oo The integral _,. f (x) ei'" dx can also be convergent without being abso-

lutely convergent; for example it is well-known that, if the function f(x) 
is real and monotonic for x > o and tends to o as x tends to + oo, then the 
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1+00 integral 0 f (x) ei"' dx is convergent (by applying the second mean value 

theorem); in such a case, relation (3. 2) is again true. 
Before starting the proof of proposition 3. 1, we note that lei'I <I in the 

half-plane y )>-. o. This leads us to integrate on the half-plane y )>-. o 
along the contour already used above for the second type of integral. With 

the same notations as in (2. 2), we shall show that the integral r f(z )eiz dz J&(r) 
tends to o as r tends to + oo. Proposition 3. 1 will follow obviously from this. 

If we knew that lim zf (z ) = o, it would be sufficient to apply lemma I. 
1<1�00 

Relation (3. I) is thus proved in this case. For example, consider the integral 

1+oo COS X I ( £+00 ei"' 

) -2-- dx = - Re -2-- dx ; o X + I 2 " -oo X + I 

its value is equal to 'lti Li Res (+-)• the summation extending over 
Z +I 

poles situated in the upper half-plane. There is only one pole z = i, it is 
simple, and its residue is 

e-1 -.. 
2Z 

whence l+oo cos x dx = �-
0 x2 + I 2e 

To prove that ( f(z) ei• dz tends to zero with onry the hypothesis of J 8(r) 
proposition 3. 1, we use the following lemma : 

LEMMA 3. Let f(z) be a function defined in a sector of the half-plane y )>-. o. 

If limf(z)=o, the integral jf(z )eiz d;:, extended over the arcofthe circle lzl=r 
1=1�00 

contained in the sector tends to o as r tends to + oo . 
For, let us put z = re;e and let M(r) be the upper bound of If (re16) I as 6 

varies, the point ei6 remaining in the sector. Then 

(3· 3) If f (z) eiz dz l < M(r) l� e-rsin! rda 

We shall show that l� e-rsin!r da is bounded above by a fixed number 

independent of r, which will complete the proof of lemma 3. In fact, 

c;_ 

(3· 4) [ e- r sin!r da = 21 2 
e-rsin&r da <'It. 
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Proof of (3· 4) : we have 

whence 

2 /'sin 6 /' - �-- �I 
'lt (l 

for o<;;a<;;�. 
2 

Hence the proposition 3. 1 is completely proved. 
We now examine the case whenf (z) can have singularities on the real 

axis. We shall limit ourselves to one example, the case when f (z) has 
a simple pole at the origin. In this case, it is appropriate to modify the 
path of integration to make it by-pass the origin along a semicircle y(£) 
of small radius £ > o centred at the origin and situated in the upper half-plane 
(fig. 7). We use the following lemma : 

O{C.,o) ( r,o) 
Fig. 7. 

LEMMA 4. 1J z = o is a simple pole of g(z), then 

(3· 4) lim l g(z) dz= '!ti Res (g, o), 
.�o 1(1> 

y ( £ ) being described in the direction of increasing argument. 

.. x 

For, we have g(z) = !!__ + h(z), where h is a holomorphic function at 
z 

the origin. The integral 1 h(z) dz tends to o as E tends to o, and the 
1(1) 

integral 1 !!__dz is equal to 1ria. This gives relation (3· 4). 
1(•) Z 

This lemma will be applied to the function g(z) = f (z)eiz. 

Example. To evaluate the integral 

I = - dx = - - dx = --,- lun - dx + - dx . 
1+00sinx I f+00sinx I . [L 'ei.c f+ooei"' ] 

0 x 2 _00 x 2t .�o _00 x +• x 

By figure 7, this is equal to 
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lmportan; 
00
note. If, instead of J_

+

00

00 
f (x)e;"' dx, we had to calculate the inte

gral J_
00 

f (x) e-;"' dx, then it would be necessary to integrate in the lower 

half-plane instead of the upper half-plane; for, the function le-i•J is bounded 
in the lower half-plane y <;: o and it is in this half-plane that lemma 3 
is applicable (mutatis mutandis). More generally, an integral of the form 

}�+00
00
f (x)e""' dx (where a is complex constant) can be evaluated by inte

grating in the half-plane where [e'"I <;: 1. 

Remember that sin z and cos z are not bounded in any half-plane. To 
evaluate integrals of the forms 

one always expresses the trigonometric functions in terms of complex expo
nentials so that the preceding methods can be applied. 
4 th type. Consider integrals of the form 

I= -�dx, l+ "'R(x' 
o x• 

where at denotes a real number such that o <at< 1, and R (x) is a rational 
function with no pole on the positive real axis x ;;;> o. It is clear that such 
an integral converges for the lower limit of integration o. A necessary 
and sufficient condition for it to converge at the upper limit + oo is that 
the principal part of R(x) at infinity is of the form� with n ;;;> 1 : in other 
words, it is necessary and sufficient that x 

(4. 1) lim R(x) = o. 
%�+00 

To calculate such an integral, we consider the function f (z) = 

R(z) z• 
of the complex variable z, defined in the plane with the positive real axis 
x ;;;> o excluded. Let D be the open set thus defined. It is necessary to 
specify the branch of z• chosen in D : we shall take the branch of the 

f b d W. h h" . . R(z) argument o z etween o an 2'lt. It t IS convention, mtegrate --z• 
along the closed path o(r, e) defined as follows: we describe, first, the real 
axis from E > o to r > o, then the circle y(r) of centre o and radius r in the 
positive sense, then the real axis from r to e, and, finally, the circle y(e) 
of centre o and radius e in the negative sense (cf. figure 8). The integral 
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is equal to the sum of the residues of the poles of R{�} contained in D, if 
Z" 

r has been chosen sufficiently large and E sufficiently small. We have 

because, when the argument of z is equal to 27t, we have ;:," = e2";" lz l"· 
Since the argument of z remains bounded, zf (z) tends to o when z tends 

y(t) 

Fig. 8. 

to o or when lz l tends to infinity; thus the integrals along y(r) and y(e) 
tend to o as r tends to oo and E tends to o (lemmas 1 and 2). On the limit, 
we have 

(4. 2) 

and this relation allows us to calculate I. 

Example. To evaluate I= (+"' ( 
dx 

) 
, (o <ix< 1). Here we have Jo X" I + X 

R(z) = -1- ; there is only one pole z = - 1; because the branch 
1+z 

of the argument of z is equal to 7t at this point, the residue of R(z) 
Z" 

at this pole is equal to -1-. Relation (4. 2) then gives 
e
1t'Cl 

l=-
7t
-. 

sin 7t<X 

5 th type. Let us consider integrals of the form 

1+"' R(x) log x dx, 

where R is a rational function with no pole on the positive real axis x ;;;> o, 
and such that lim xR(x) = o. This last condition ensures that the integral 

m�+oo 

is convergent. 
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We consider the same open set D as for integrals of the 4th type and the 
same path of integration. Here again, we must specify the branch chosen 
for log z; we shall choose the argument of z between o and 27t. For a reason 
which will soon be apparent, we shall integrate, not the function R(z) log z, 
but the function R (z) (log z) 2. Here again the integrals along the 
circles y(r) and y(E) tend to o as r tends to oo, and E tends to o because of 
lemmas 1 and 2. When the argument of z is equal to 27t, we have 

log z = log x + 27ti, 

x denoting the modulus of z. Thus we have the relation 

(+"° R(x) (logx)2dx- [+"° R(x) (log x+27ti)2dx=27ti.�Res!R(z) (log z)21; Jo t. o 

hence, 

(5· 1 ) -2 l+ .. R(x) log x dx -27ti J:+00 R(x) dx =�Res !R(z) (log z)2!. 

Basically this only gives one relation between the two integrals 1+ 00 R(x) dx 
r+oo 

0 

and J 
0 

R(x) log x dx. Let us suppose, however, that the rational 
function R is real (that is, it takes real values for x real); by separating real 
and imaginary parts of !he relation (5. I ) , we obtain the two relations 

(5. 2) 1+00R(x) log xdx = --2..Re(�Res ! R(z) (log z)2!), 
0 2 

(5. 3) [+00R(x) dx = --2..Im(�Res jR(z) (log z)2 ! ). � 0 21t 

The summation extends over all the poles of the rational function R(z) 
contained in D. 

Example. To evaluate the integral 

1+00 log x 
I= 

o fl+ x)adx. 

The residue of ?og z) ;a at the pole z = - I is equal to the coefficient 1+z 
of t2 in the limited expansion of ( i1t + log ( r - t)) 2; it is therefore r - i1t, 
and we find I = --2... 2 

Note. By integrating the function R(z) log z in the same way we obtain 
the formula 

(5· 4) 1+00 R(x) dx = - �Res I R(z) log z I· 
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The above method can also be applied in some cases when the rational 
function R has a simple pole at x = 1 ; in this case, the integral 

r+® 
J 0 R(x) log x dx still has a meaning because the principal branch of 
log z has a simple zero at the point 1. It is then necessary to modify 
the contour of integration which we used before; when we integrate along 
the positive real axis with the argument of z equal to 21t, we must by-pass 

Fig. g. 

the point z = 1 along a semi-circle of centre 1 and small radius (fig. 9). 
The reader should prove that, when the function R is real, it satisfies 

(5. 5) l
+®

R (x) log xdx = 1t2Re (Res (R, 1 ) )  _ 
_!_Re(� Res (j)), 0 2 

where f denotes the function R(z) (log z) 2 and where the summation 
extends over all the poles off other than z = 1. For example, it can be 
verified that 

dx=-· 
j•+OO� 'Jt2 

o x2 - I 4 

Exercises 

1. Let f (z) be holomorphic in lzl < R, R > 1. Evaluate the integrals 

r (2 + (z + __!_))
f(z) dz 

Jlzl=I Z Z 

taken over the unit circle in the positive sense in two different ways and 
deduce the following relations : 
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) 12,, 6 � f(ei6) cos2-dO = 2j(o) +f'(o), 
'It 

0 2 
2
1

2" a - f (ei6) sin2-d6 = 2f (o) -f'(o). 
'It 0 2 
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2. Letf (z) be a holomorphic function in an open set containing the disc 
l zl < R and let y be the image of the circle lzl = R under the mapping 
z-+ f(z); suppose thatfis simple, i.e. f (z) =l=f (z') if z =I= z'. Show that 

the length L of y is equal to R fo2" If' (Rei6) I d6; deduce that 

L > 21tRlf'(o)I. 

Show that, under the same conditions, the area A of the image of the closed 
disc lzl < R under the same mapping is given by 

A= J�r lf'(x + 9')12 dx dy; 
Jlzl�R 

deduce the inequality 

(Change to polar coordinates and note that, for o < r < R, 

because of the Cauchy-Schwarz inequality for integrals.) 

3. Show that, if f (z) is holomorphic in an open set containing the 
closed disc lzl < 1, then 

�j 
f(z) dz= �f (o) if !al < 1, 

21tt 1:1=1Z - a (f (o)-f(1/7i) if !al> 1, 

where the integral is taken in the positive sense. (Use exercise 1.b) of 
chapter II and Cauchy's integral formula.) 

4. Let f (z) be a holomorphic function in the whole plane, and suppose 
that there is an integer n and two positive real numbers Rand M such that 

for lzl ;>.R. 

Show then thatf (z) is a polynomial of degree at most n. 

5. Let f be a non-constant, holomorphic function in a connected open 
set D, and let D' be a connected open set whose closure ])' is a compact 
subset of D. Show that, if If (z) I is constant on the frontier of D', there 
is at least one zero off (z) in D'. (Use reductio ad absurdum by considering 
1/f (z).) 

109 



TAYLOR AND LAURENT EXPANSIONS 

6. Let D be a bounded, connected, open set and consider n points P 1, -- -
P2, • • •  , P. in the plane R2• ·Show that the product PP1• PP2 • • •  PP. of 
the distances from a point P, which varies in the closure I>, to the points 
P 1, P 2, • • •  , P ., attains its maximum at a frontier point of D. 

7. Let f (z) be a holomorphic function in the disc Jzl < R1 and put 
M(r) = sup If (z) J, for o < r < R. Show that 

l•l=r 

a) M(r) is a continuous, monotonic increasing (in the broad sense), 
function of r in o < r < R, 

b) if f (z) is not constant, M(r) is strictly increasing. 

8. Hadamard's three circles theorem: let/ (z) be a holomorphic function 
in an open set containing the closed annulus 

and put M(r) = sup If (z) I for r1 < r < r,. Show that the following 
inequality holds 1' l=r 

log r� -logr log r-log r1 

M(r) < M(r1) logr,-logr1• M(r2) logr,-logr,
, 

for r1 < r < r2• (Apply the maximum modulus principle to the function 
zP(f (z))q with p, q integers and q > o; choose ix real such that 
r�M(r1) = r;jM(r2), and a sequence of pairs of integers (p., q.) such that 
lim p./q. =ix.) Verify that inequality ( 1 ) expresses that log M(r) is a n.;.. oo 

convex function oflog r for r 1 < r < r 2• 

9. Let/ (z) be holomorphic in lzl < R and put 

for o < r < R. 

Show that, if a. denotes the n-th Talylor coefficient of f (z) at the point 
z = o, then 

I2(r) = � Ja.J2r2•; n�O 
deduce that, if o < r < R, 

(i) I2(r) is a continuous, monotonic increasing (in the broad sense), 
function of r; 
(ii) l/(o)J2 < I2(r) < (M(r))2, (M(r) has the same meaning as in 7.); 
(iii) log I2(r) is a convex function oflog r in the case when/ is not identi
cally zero (show that, if 

s = logr, J(s) = I2(e') = � 1a.J2e2ns, 
n�O 
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to show that JJ'' - ( J') 2 ;;> o, use the Cauchy-Schwarz inequality for 
absolutely convergent series : 

IO. Let f be a holomorphic function in the disc lz/ < 1, such that If (z) I< 1 
in this disc; if there exist two distinct points a and b in the disc such that 
f(a) =a andf(b) = b, show thatf(z) = z in the disc. (Consider the 

function g(z) = h(z) �a), with h(z) = f (. z + � ) , for which g( o) = o, 
1-a z r+az ( b-a ) b-a g 

�b = �b' and /g(z)I < 1 in the disc.) 
1-a 1-a 

1 1. Let f be a holomorphic function in an open set containing the disc 
lzl-'(R. For o<; r<; R, put 

A(r) = sup Re(f(rei&)). 
o�e�2'K 

(i) Show that A(r) is a continuous, monotonic increasing (in the broad 
sense), function of r (note that eR•J<z> =!el<•>/). 

(ii) Show that, ifj(o) = o also, then, for o < r < R, 

2r 
M(r)-'( 

R _ 
,

A(R). 

(Consider the function g(z) =f(z)/(2A(R) -f (z)).) 

(iii) Show that, for o-'( r < R1 

2r R + r 
M(r) <R_

,
A(R) + R_,lf(o)I . 

1 2. Let x be a complex parameter. 

(i) Show that the Laurent expansion of the function 

at the origin z = o, is of the following form : 

with 

I 1� an = - e'"00"1 cos nt dt, 
'lt 0 

for 

for n ;;> o. 

o < l z l < + oo, 

I II 
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. 
Show similarly that the function exp ( x ( z- __!_) / 2) has the expan· 

s10n Z . 

with 

b. =_!_ [ cos (nt-x sin t) dt, for n ;;>. o. 

'It 0 

(Note that, if z' = - 1/Z, then 

exp (x(z' - l/Z')/2) =exp (x(z- l/Z)/2) for o < lzl < + oo.) 

(ii) Let m, n be two integers;;>. o. Show that 

(± l)P (n + 2p) ! 
_

1 ( (z2±1)m dz= p!(n+p)! 1 
2'1ti Jl,l=I zm+n+l 

o otherwise, 

if m = n + 2p, with p 
an integer > o, 

and deduce the power series expansions of a., b. as functions of the para
meter x (b., as a function of x, is called Bessel's function of the first kind). 

13. Letf(z) be a meromorphic function in a neighbourhood of the origin 
z = o with a simple pole at the origin. Let x be any complex number. 
Show that the Laurent expansion of the function of z 

is of the form 

f'(z) 
f(z) -x 

where u. is a polynomial in x of degree n. (An identification can be made 
by using the Taylor expansion of the function zf (z).) 

14. Let f (z) be a holomorphic function in the upper half-plane P+ 
defined by Im (z) > o, and suppose that f (z + 1) =f(z) for all zeP+. 
Show that there is a holomorphic function g(t) in the punctured disc 
o < Jtl < l, such that 

f (z) = g(e2 .. ;.), for zeP+. 

Deduce that f (z) has an expansion of the form 

f(z) = 
-oo<n<+ao 

II2 
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where 

for any y > o. Show that this series is normally convergent in any compact 
subset of P+. Show also that, if there exists a constant M > o and an 
integer n0 such that 

lf(x + �)I < Me21t•o1 for all sufficiently large y, 

and uniformly in x, then the expansion is of the form 

f (z) = � a.e2";"'. 
n�-n0 

15. (i) Show that the function f (z) = 1/(e'- 1) is meromorphic 
in the whole plane C and has simple poles at the points z = 2p7ti, p an 
integer. Calculate its Laurent expansion at the point z = 2p7ti. If 
a. (n > - 1) denote the coefficients of the expansion for p = o, show 
that aaq = o for q = 1,2, . . . , and if 

B. = (-1)•-1(2n) ! a2._i, for n > 1, 

show that the following recurrence relation holds : 

(2n + 1) ! 

for n > 1 (by equating coefficients on the two sides of the relation 

(ii) For n > 1, put 

and let "'(m be the perimeter of the square whose vertices have complex 
coordinates + (2m + I) 7t + (2m + 1) 7ti. Show that 

if z is on"'(,,,, 

and deduce, by integratingfs.(z) round the contour "'(min the positive sense 
and letting m -+ oo, that 

� I /p2• = ( 27t) 2•B •. 

p""1 2(w) ! 

(N.B. The numbers B. are called the Bernoulli numbers.) 
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16. Let c be an essential singularity of a holomorphic function f (z) m 

the punctured disc D given by o < lz-cl < p. 
(i) For any ye C and e > o, show that there exists a z' e D and a real 
number e' > o such that 

!:.(f (z'), e') c � n A(y, E), 

where A denotes the image of D under the mapping z --+ f (z) and where 

A(h, r) (resp. A(b, r)) is the open (resp. closed) disc of radius r centred at b 
(note that proposition 4. 2 of§ 5 implies that A is open (this also follows 
from the theorem in chapter v1, § 1 ,  no. 3), and use Weierstrass' theorem, 
no. 4 of§ 4). 
(ii) Let D be the punctured disc o < lz -cl< p/2• and let An be its 
image under j, for n > o. Given Yoe C, e0 > o, show, by induction on n, 
the existence of a sequence (•n)n�l of positive real numbers and a sequence 
(zn)11�1 of points of D satisfying the following conditions : 

ZneD•-1• 00>•1>02> ... , i..(f(Z1), 01)cA-n·A(yo, 00) 
--S..(f (Zn+i), En+i) c Ann A(f (Zn), En) for n > I ,  

deduce that there exists a sequence (cn)n;;?:-o of points in D such that 

lim Cn = C and J(cn) = Y for all n, with lr-rol<•o, 

and thatf (z) is not simple in any punctured disc o < lz -cl < r however 
small r is. 

17. Let qi: (x,y, u) --+z be the stereographic projection of S2-P onto C. 

(i) Express x, y and u as functions of z. 
(ii) Show that, if C is a circle of S2, which does not pass through P, 
rp(C) is a circle in the plane C, and that, if C passes through P, rp(C-P) is 
a line in C. 

·(iii) Let z1, z2e C; show that a necessary and sufficient condition for 
rp-1(z1) and rp-1(z2) to be antipodal is that z1z2 = - 1. 

(iv) Show that the distance P1P2 (in R3) between 

and 

is given by the formula 

P P _ 2 lz1 -Z2I 1 2 
- V(1 + 1z1l2)(1 + lz2l2). 

What happens to the formula when z2 tends to\'Vards the point infinity? 
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18. Show that a meromorphic function on the Riemann sphere is necessa
rily rational. (Show first that such a function can only have a finite number 
of poles.) 

19. Rouche's theorem. Let f (z) and g (z) be holomorphic functions 
in an open set D and let I' = (I' 1) iex be the oriented boundary of a compact 
subset K of D. If 

If (z) I> /g(z) I on I', 

show that the number of zeros off (z) + g(z) in K is equal to the number 
of zeros off(z) in K. (Consider the closed paths fo I'1, iel and apply 
proposition 4. 1 of § 5 and proposition 8.3 of chapter 11, §1. ) 

Example. If f (z) is holomorphic in an open set containing the closed 
disc /z/ < 1 and if /f(z)/ < 1 for /z/ = 1, then the equation f(z) = z" 
has exactly n solutions in lzi < 1, for any integer n;;:;:,. o. 

20. Evaluate the following integrals by calculating . residues : 

1+ 00 dx 1+ 00 cos 2ax - cos 2bx (i) 
( b 2)" (

a, b > o), (ii) 
2 

dx (a, b real), 
0 a+ x 0 x 

(iii) 1+oox2-a2 sinxdx (a>o), (iv) r· cosntdt . (/a# 11) 
0 x2 + a2 x J 0 1 - 2a cost + a2 

(integrate the function z"/(z - a)(z - 1/a) round the unit circle). 

21. Integrate the function f (z) = 

( 2 �) 1 
, where log denotes z +a ogz 

the branch such that - 7t < arg z < 7t, along the closed path o(r, e) 
defined as follows : describe in turn the negative real axis from - r to 
- e, then the circle y ( e) of radius ! centred at o in the negative sense, 
then the negative real axis from - e to - r, and, finally, the circle y (r) 
of radius r centred at o anticlockwise (o < e <a< r); deduce that 

100 dx 7t I 

0 (x2 + a2)((1og x)2 + 7t2) 
= 

2a((log a)2 + 7t2/4) 
-

1 + a2· 

22. Let a be> o and v be real. Show that 

100 cos vx dx 7t sin va 
0 cosh x + cosh a 

= 

sinh 7tV sinh a ' 

by integrating the function e1··'/(cosh z + cosh a) along the perimeter of 
the rectangle with vertices + R, + R + 27ti. 

23. (i) Let n be an integer ;;:;:,. 2. Show that 

roo dx - 7t/n 
)0 1 + x• - sin (7t/n)' 
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by integrating the function 1/(1 + z") along the contour formed by the 
segment [o, R] of the positive real axis, the arc represented by Rei1, 
o <;;; t <;;; 27t/n, and the segment represented by re2•ifn, o <;;; r <;;; R. 
(ii) Let n be an integer ;> 2 and let IX be a real number such that 
n > 1 + IX > o. Evaluate, by the same method, the integral 

( "" x• dx 
. 

)0 1 + x" 

24. Let p,q be two real numbers > o and let n be an integer ;> 1. By 
integrating the function z•-1e-• along a contour analogous to the above 
(in exercise 23), but with a suitable choice of the angle at the origin, 
prove the following relations : 

100 (n - 1 ) I Re (p + iq)n xn-le-1"" cos qx dx = 

. 

' 
0 (p2 + q2) R 

1"' (n - 1) 1 lm(p + iq)n xn-le-1"" sin qx dx = 

. . 
0 (p2 + q2) R 

(Recall that fo"" x•-1e-"' dx = (n - 1 ) !. ) 
25. (i) Show that the function 7t cot 7tZ is meromorphic in the whole 
complex plane, that it has simple poles at the points z = n for n an integer, 
and that its residue at the pole z = n is equal to 1 for all n. Let 

f (z) = P(z)/Q(z) 

be a rational function such that deg Q·> deg. P + 1, and let a1, a2, • • .  , a .. 

be its poles and let h1, b2, • • •  , bm be the corresponding residues. Suppose 
also that the aq are not integers for 1 <;;; q <;;; m. Let Yn denote the perimeter 

of the square with vertices+ ( n + -;-) + ( n + -;-)i, where n is a positive 

integer. Show that there exist two positive real numbers M1, K indepen
dent of n such that 

a) 
b) 

Deduce that 

and that 

( 1) 
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(Note: b) implies that 
11.

lf.�00 -n��n/(P) exists, thus the left hand sidef 

of (1) can be replaced by _00,f,,�00f(p).) 

Example. � 1/(a + bn2), � n2/(n4 + a4) (a, b positive real numbers). 
n�t n�t 

(ii) Show that the conclusion is valid even if we only have deg Q> deg P. 

(Show first thatf (z) can be written g(z) + c/z with ca constant andg(z) a 

rational function which satisfies the conditions of (i); show next that 
l cot 'ltZ d ( h . l l . "d l) N -- z = o t e mtegra s a ong opposite s1 es cance . ote : 

Tn Z 
l�m � / (p) does not exist in this case.) 

11,n �oo -n�p� n 

Example. Calculate lim � -1-, and deduce the valu e o 
n_,ao -n�p�n x-p 

� I h . . 
� -2--2 

w en x is not an integer. 
p:;?:-1 x -p 
(iii) Let Gt be a real number such that - 'lt < Gt < 'lt. Show that : 
c) there exists a positive real number M2, which does not depend on n, 
such that 

d) 
(Note that 

on y., 

l ei""" d _ . ;: sin ctZ d 
+ . l sin ctZ d 

. z - 2t . z 2t . z, 
1nz sm 'ltZ r�Z sin 'ltZ < -1�z sm 7tZ 

where r� (resp. r�) denotes the line segment represented by 

z = n 
+ � + V» Jyj <:; 

n +-�- (resp. z = x + i( n 
+ -�-} JxJ <:; 

n 
+ �). 

and use exercise 14. of chapter I. ) Deduce finally that, if f (z) is a 
rational function and satisfies the conditions of (ii), then 

Example. 

lim � (-r)Pj(p)eia.P=-'lt � bq _eia.aq. 
n-;.ao -n�p�rt i�q�,m Slll 'JtQq 
Take f(z) = r/(x-z) and show that, if -r.<ct<'lt, then 

{ � ( _ 1) n cos ctn 
= 

� �?s GtX __ I_ 
, 

' n:;,:.1 x2 -n2 2x sin 'ltX 2x2 
) � ( - r)• n sin ctn

= 
-2:_ s�n ctx, l n:;,:.1 x2-n2 2 Sln'ltX 

for X =/= o, +I, + 2, . . . . 
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CHAPTER IV 

Analytic Functions of Several Variables; 

Harmonic Functions 

1. Power Series m Several Variables 

In what follows, we shall only discuss the case of two variables so as not 
to let the notation become too complicated; however, the arguments go 
over to the case of any finite number of variables without difficulty. 

I. THE ALGEBRA K[[X, Y]] 

A formal power series in X and Y with coefficients in a field K is an expres

sion of the form S (X, Y) = � ap, qXPYq, where the coefficients ap,q 
belong to the field K. p, q°?'O 

We define, as in chapter 1, § 1, addition of two formal power series and 
multiplication of a formal power series by a scalar. The set K[[X, Y]] 
of formal series thus has a vector space structure over the field K. We 
define the product of two formal power series, and K[[X, Y]] becomes an 
algebra. 

The order of a formal power series which is not identically zero is defined 
to be the smallest integer n such that 

� ap, qXPYq =I= o. 

p+q=n 

It can be shown that the order of the product of two non-zero series is 
equal to the sum of the orders of these series; in particular, K[[X, Y]] 
is an integral domain. 
We shall not develop the theory of substituting formal power series for 
the variables X and Y; the theory does not present any special difficulties, 
but the series that are substituted must have order :;;> 1. As an exercise, 
the reader is invited to prove a proposition similar to proposition 5. 1 

of§ 1 of chapter 1. 
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2. DOMAIN OF CONVERGENCE OF A MULTIPLE POWER SERIES 

IV.I.I 

We suppose from now on that the field K is either R or C. As in chapter 1, 

§ 2, no. 3, we associate with each formal series 

the series of positive (or zero) terms 

where r1 and r2 are real variables > o. 

Let I' be the set of points (r 1, r 2) of the quadrant r 1 > o, r 2 > o of the plane 

such that }: J ap,qJ(r1)P(r2)q < + oo. The series }: ap, q(Z1)P(z2)q is then 
p, q p, q 

absolutely convergent for any pair of (real or complex) numbers z1 and z2 
such that Jz1J < r1, lz2J < r2• The set I' is not empty because it obviously 
contains the origin (o, o). 

Definition. The domain of convergence of the series S(X, Y) is defined to be 
the set fl. of points of the quadrant r1 > o, r2 > o interior to I'. 

The domain of convergence is then an open set of the quadrant. This 

set can be empty : it is, in fact, quite easy to construct an example where 
I' consists only of the origin. 

If we apply this definition to the case of a single variable z, we see that 
the domain of convergence is merely the interval Jo, p[ where p is the radius 
of convergence of the power series. 

PROPOSITION 2. 1. A necessary and su.fficient condition that (rv r2) e fl. is that 
there exist r�>r1, r�>r2 such that (r�, r�)el'. 

The condition is necessary, since the series }: Jap,ql (ri)P(rnq must converge 
p,q 

at all points sufficiently near to (r1, r2). It is sufficient because I' then 
contains all the points (p1, p2) such that p1 < r�, p2 < r� and consequently 
the point (r1, r2) is interior to I'. 

In particular, a necessary and sufficient condition for the domain of con
vergence fl. to be non-empty is that there exists at least one pair (r1, r2) 
of numbers > o such that 

}: Jap,qJ(r1)P (r2)q< + oo. 

p,q 

PROPOSITION 2. 2. If (r1, r2) belongs to the domain of convergence, the series 
S(z1, z2) converges normally for Jz1i < r1, lz21 < r2• If (lz1J, Jz21) does not belong 
to the closure of I', the series S(z1, z2) is divergent. 
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The proof depends, as in the case of series in one variable, on Abel's lemma : 

LEMMA. If lap,qJ(rDP(rDq<M (M independent of p and q) andif r1<r� and 
r2<r�, then the series �ap,q(Z1)P(z2)q converges normallyfor Jz1J<r1, lz2J<r2• p,q 

This lemma is easily proved by bounding above the absolute values of 
the terms of the series by the terms of a double geometric progression. 
The reader is left to deduce for himself proposition 2. 2 from Abel's lemma. 

By abus de langage, we also use ' domain of convergence ' to denote the 
set of pairs (zt> z2) such that (lz11, lz21) belongs to the domain of conver
gence �. Thus, for a single complex variable z, the domain of conver
gence is the open disc JzJ < p, where p is the radius of convergence. 

3· OPERATIONS ON CONVERGENT POWER SERIES 

PR.oPosmoN 3. I (Addition and multiplication of power series). Let 
D be an open set contained in the domain of convergence of the series A(X, Y) and 
in that of series B(X, Y). Then D is contained in the domain of convergence of 
each the series 

S(X, Y) = A(X, Y) + B(X, Y), 

Moreover, if (lz11, Jz21) e D, then 

S(z1' Z2) = A(z1, Z2) + B(z1, Z2), 

P(X, Y) = A(X, Y)B(X, Y). 

The proof is analogous to that given in the case of series in one variable. 
We define the partial derivatives of a power series 

S(X, Y) = �ap,qXPYq 
p,q 

in the obvious way : 

PROPOSITION 3.2. The series �� has the same domain of convergence as the 

series S. When (lz1J, Jz21) is in this domain, the function �� (z1, z2) is the partial 

derivative (with respect to the real or complex variable z1) of thefunction S(zt> z2). 
The proof is modelled on that of proposition 7. I of chapter I, § 2. 

By successive differentiation, it can be shown that 

(3. I ) a __ I
_ 

()PH S(o, o)_ p,q - p! q! ozfo,z:g 
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ANALYTIC FUNCTIONS lV.2.l 

2. Analytic Functions 

Here we consider functions of several real or complex variables defined 
in an open set D. For simplification, we shall confine our attention to 
functions of two variables. 

I. FUNCTIONS WITH POWER SERIES EXPANSIONS 

Definition. We say that a function f (x, y) defined in a neighourhood 
of a point (x0, y0) has a power series expansion at the point (x0, y0) if there 
exists a formal power series S(X, Y) whose domain of convergence is not 
empty and such that 

J (x, y) = S(x -x0, y-y0) 

for sufficiently small Ix - x01 and IY -Yol· 
The power series S, if it exists, is unique because of formula (3· I ) of§ I. 

The same reasoning as in chapter 1, § 4 gives the following properties : If 
f(x,y) has a power series expansion at the point (x0,y0), then the function f 
is infinitely differentiable in some neighbourhood of (x0,y0). The product jg 
of two functions f and g, which both have a power series expansion at the 
point (x0, y0), has a power series expansion at the point (x0, y0); if this 
product is identically zero in a neighbourhood of (x0,y0), then at least one 
of the functions f and g is identically zero in some neighourhood of (x0,y0). 

2. ANALYTIC FUNCTIONS; OPERATIONS ON THESE FUNCTIONS 

Definition. A real- or complex-valued function f (x, y) defined in an open 
set D is said to be anarytic in D, if, for any point (x0, y0) e D, the function 

f (x, y) has a power series expansion at the point (x0, y0). 

We shall confine ourselves to stating the following properties without 
proofs : The analytic functions in an open set D form a ring and even an 
algebra. Iff(x,y) is analytic inD, 1 /f(x,y) is analytic at any point (x0,y0) eD 
where f(x0,y0) =I= o. Any analytic function in D is infinitely differentiable, 
and its derivatives are analytic functions in D. The composite of two 
analytic functions is analytic : precisely, if f (x,y, z) is analytic in D and 
if g1(u, v), g2(u, v) , g3(u, v) are analytic in an open set D' and take their 
values in D, then the composed functionf(g1(u, v), g2(u, v), g3(u, v)) is 
analytic in D'. 
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PROPOSITION 2. I. The sum of a multiple power series is an analytic function 
of its variables in its domain of convergence. 
The proof is similar to that of proposition 2. I of § 4 of chapter I. The 
reader should formulate a proposition similar to proposition 2.2 of the same 

paragraph. 

3· THE PRINCIPLE OF ANALYTIC CONTINUATION 

THEOREM. Let f (x,y) be an analytic function in a connected open set D and 
let (x0, y0) e D. The following conditions are equivalent : 
a) f and all its derivatives vanish at (x0, y0); 
b) f is identically zero in some neighbourhood of (x0, y0) ; 
c) f is identically zero in D. 

The proof is modelled on that of the theorem of chapter I, § 4, no. 3. 

COROLLARY I. The ring of analytic functions in a connected open set D is an 
integral domain. 

COROLLARY 2. (principle of analytic continuation). If two analytic 
functions f and g in a connected open set D coincide in some neighbourhood of a point 
of D, then they are identical in D. 

3. Harmonic Functions of Two Real Variables 

I. DEFINITION OF HARMONIC FUNCTIONS 

Definition. A function off (x,y) of two real variables x andy defined in an 
open set D is said to be harmonic in D if it has continuous derivatives of the 
second order and satisfies the condition 

( I. I ) 

The differential 
denoted by t:... 

()2 f ()2 f -+-=o. 
ox2 o y2 

()2 ()2 
operator 2 + -2 is called the Laplacian and is often 

ox oy 

A harmonic function f of n real variables x1, • . .  , Xn is defined to be a 
function with continuous derivatives of the second order which satisfy 

but the following only applies to the case of two variables. 
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Let us introduce the differentiations � and �with respect to the complex 
b z  bz 

variables z = x + iy and its conjugate z = x-iy (cf. chapter n, § 2, n° 3). 
Then 

( 1. 2) 
()2 ()2 ()2 

bx2 + by2 = 4 bz oz' 

and, consequently, condition (1. 1) is equivalent to the following: 

(1. 3) 

Condition (1. 3) expresses then thatfis a harmonic function. 

Note. We consider both real- and complex-valued harmonic functions. 
By ( 1. 1) , a necessary and sufficient condition for a complex-valued function 
f = P + iQ (P and Q being real-valued) to be harmonic is that P and Q 
are harmonic. We shall often denote P by Re (/) and Q by Im(/). 

2. HARMONIC FUNCTIONS AND HOLOMORPHIC FUNCTIONS 

PROPOSITION 2. 1 Any Jwlomorphic function is harmonic. 
For, if f is holomorphic, it is infinitely differentiable, and, by taking the 
derivative � of the relation °[ = o, we obtain relation ( 1. 3). 

oz oz 

COROLLARY. The real and imaginary parts of a Jwlomorphic function are harmo
nic functions. 

For example, log [z[ is a harmonic function in the whole plane excluding 
the origin; for, in some neighbourhood of each point z =I= o, log z has a 

branch, and log Jzl is the real part of such a branch. 

PROPOSITION 2. 2. Any real harmonic function g(x,y) in an open set Dis , in a 

neighbourhood of each point of D, the real part of a holomorphic function f which 
is determined up to addition of a constant. 

Proof. Since g is harmonic �g.:: = o, and consequently bg is holomorphic 
oz oz oz 

m D. The differential form 2 o g dz has therefore a primitive f locally; 
oz 

in other words, in a neighbourhood of each point of D, there exists a 

functionf, determined up to addition of a constant, such that 

(2. 1) 
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This relation shows that f is holomorphic. Taking the complex conju
gate of relation ( 2. I ) gives 

(2. 2) 
- bg df = 2-d-;; 

i)z .... , 

because, g being real function, the functions � and
()� are complex conju· 

bz bz 
gates. By adding relations (2. 1 ) and (2. 2), we obtain 

� d(f+J) = dg; 

thus, g is equal to the real part ofjwith a real constant added if necessary. 
It remains to be proved that, if two holomorphic functions f1 and f2 in 
fl. neighbourhood of the same point have the same real part, then their 
difference f = f1 -f2 is constant. In fact, d (f + J) = o; that is, 

bf 
d" + q_ do;; = 0 

bz "' ciz "' ' 

which implies that � = o and C!] = o. 
bz bz 

This completes the proof . 

.Note. Given a real harmonic function g in an open set D, there does 
not necessarily exist a holomorphic function fin the whole of D, whose 
real part is equal tog. For example, when D is the whole plane excluding 
the origin, log lz/ is not the real part of a holomorphic function in D because 
the logarithm of z has no single·valued branch in D. Proposition 2. 2 
says only that any real, harmonic function is locally the real part of a 
holomorphic function. However : 

COROLLARY. lf D is a simply connected open set, atry real harmonic function g 
is the real part of a holomorphic function f in D. 

For, the differential form 2 (lg dz has a primitive in D (cf. chapter n, § 1, 
no. 7, theorem 3). i)z 

3· THE MEAN VALUE PROPERTY 

We saw in chapter rn, § 2, no. I that any holomorphic functionf in an open 
set D has the mean value property : for any closed disc contained in D, 
the value off at the centre of the disc is equal to the mean of its values on 
the boundary of the disc. 

PROPOSITION 3. I. Any harmonic function in D has the mean value property. 
It is sufficient to prove this for a real·valued harmonic function because 
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the case of a complex-valued harmonic function reduces to the real case 
when the real and imaginary parts are consider separately. 

Let g, then, be a real harmonic function in D and let S be a closed disc 
contained in D. By the corollary of proposition 2. 2, there exists a holo
morphic function f in some neighbourhood of S whose real part is g. The 
value off at the centre of S is equal. to the mean off on the boundary of 
the disc; by taking real parts, we see that the value of g at the centre of S 

is equal to its mean value on the boundary of the disc. 
This completes the proof. 

We shall see later (§ 4, no. 4) that, conversely, any continuous function 
with the mean value property is harmonic. In other words, the mean 
value property characterizes harmonic functions. 
In chapter m, § 2, no. 2, we proved the maximum modulus principle for all 
(real-or complex valued) continuous functions with the mean value pro
perty. The maximum modulus principle therefore applies to harmonic 
functions. 

4· ANALYTICITY OF HARMONIC FUNCTIONS 

PROPOSITION 4. I. Any harmonic function g( x, y) in an open set D of the plane 
is an anarytic function of the real variables x and y in D. In particular, atry harmo
nic function is in.finitery differentiable. 

Proof. We can suppose that g has real values and, as the proposition is 
local (since it is sufficient to show that g is analytic in a neighbourhood 
of each point of D), we shall suppose that g(x, y) is harmonic in the open 
disc x2 + y2 < p2• In this disc, g is the real part of a holomorphic function 

J, which can be expanded as a power series 

(4. 1) f (z) = � anz". 
n:;:i:.o 

Replace z by x + iy in this series and consider the series 

(4. 2) 

as a power series in two variables x andy, it being understood, that (x + ry)• 
in (4. 2) is replaced by its expansion 

All the points (x,y) such that lxl + IYI < p belong to the domain of conver-
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gence of the double series (4. 2). For, if (x,y) is such a point, there exist 
r1 >!xi and r2 >I YI such that 

r1 + r2 = r < p, 
and we have 

In particular, the sum of the series (4. 2) is an anarytic function in the pro
duct of the discs 

lxl<.L, 2 IYI < L. 2 

Let J (z) = � a.z• be the sum of the power series whose coefficients a. 
n�O 

are the complex conjugates of the coefficients of the series f (z). Then, 

(4. 5) 2g(x, y) = f (x + iy) + J(x - iy). 

For the same reason as above, the function J(x -iy) is analytic in the 
open set (4. 4). Thus g(x,y) is an analytic function in this open set. Hence 
the function g is analytic in some neighbourhood of the centre of any open 
disc in which it is harmonic. Proposition 4. I follows. 

5· METHOD OF FINDING A HOLOMORPHIC FUNCTION WHOSE REAL PART IS 

GIVEN 

We saw (proposition 2. 2) that any real harmonic function g is locally 
the real part of a holomorphic function] which is obtained by integration. 
We shall now see that, when g (which is analytic) is given by a power 
series expansion, f can be obtained without integrating. 

Suppose again that g(x,y) is harmonic in the open disc x2 + y2 < p2 and 
revert to the notation of no. 4. 
Consider the two formal power series in two variables X and Y : 

f (X + zY) = � a.(X + iY)•, ](X - iY) = � a.(X - zY)•. 
n�O n�O 

We have just seen that their domain of convergence contains the open set 
(4. 4). We now substitute for X and Y complex numbers x andy which 
satisfy (4. 4) and we obtain absolutely convergent series. 

Let z be a complex number such that !zi < p. By (4. 5) 

(5. I ) 2g (�. �) = f (z) +J(o). \ 2 2Z 
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By putting z equal to o in this relation we obtain 

2g(o, o) =f(o) + J(o). 

Subtracting gives the formula 

(5· 2) 2g (� ' �) -g(o, o) =f(z) + __!_(J(o) -f (o)) . 
2 2Z 2 

Thus the required function f (z) is equal, up to addition of a purely imaginary 
constant, to the known function 

(5· 3) 2g (�• �) - g (o, o), 
2 2Z 

obtained by substituting complex variables in the double power series expansion 
of the function g(x, y) of the real variables x and y . 

.Note. In the above calculation, we supposed the function g (x,y) to be 
harmonic in the disc x2 + y2 < p2• But relation (5· 2) still has a meaning 
for any real analytic function g (x,y) with a power series expansion in the 
open set (4· 4); the functionf (z) which it defines has a power series expan
sion for lzl < p and is therefore holomorphic in this disc. However, 
we can no longer be sure that g is the real part of the holomorphic func
tion (5· 3). A suggested exercise is to show that a necessary and sufficient 
condition for g to be the real part of (5· 3) is that g is harmonic. 

Example : consider the function 

Then, 

Sill X COS X g(x, y) = cos2x + sinh2 y 
· 

(z z) 2 sin � cos � 
2g -, ---:- = = tanz 2 2Z Z • Z 

' 
cos2--s1n2-

2 2 
and, consequently, 

f (z) =tan z. 
It can be verified that g is, in fact, the real part of tan z; thus, the given 
function g is harmonic and is the real part of tan z. 

4. Poisson's Formula; Dirichlet's Problem 

I. THE INTEGRAL REPRESENTATION OF A HARMONIC FUNCTION IN A DISC 

Let g(x, y) be a real harmonic function in the disc x2 + y2 < p2; g is the 
real part of a holomorphic function 

( I. I) f (z) = � a.z•, 
·�o 
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and we can suppose that a0 is real, which determines the function! comple· 
tely. 

For r< p, 

g(r cos a, r sin a) = ao + _!___ � r"(a.ein& + a.e-i•9), 
2 n;;?:-1 

the convergence being normal with respect to a which varies from o to 2'lt. 
The right hand side of ( I. 2) is a Fourier series expansion whose coefficients 
are given by the integral formulae 

(1. 3) ao = __!_ 12,,g(rcos a, rsin a) da, 
2'lt 0 

a. = 
__!_ 12-i<g(r cos a, rsin a) da for n > I. 
'It 0 (re•&) n 

Replace the coefficients a. on the right hand side of ( 1. 1) by their values 
in ( 1. 3) and (1. 4). For lzl < r, we obtain 

( 1. 5) f(z) =_!___ 121.g(rcosa, rsina) [1+2 � ( z;e) "] da 
2'lt o n;;?:-1 re 

since we can change the order of summation and integration because of 
the normal convergence. However, 

from which we obtain the formula 

( 1. 6) 
1 

121< 
. rei& +z f(z) = - g(r cos a, r sm a) -.8 - da, 

2'lt o re' -z 

which holds for lzl < r. 
This integral formula expresses the holomorphic function f (z) in the 

disc /zl < r in terms of its real part on the boundary of the disc . 
Let us equate the real parts of the two sides of (1. 6). We obtain 

( I. 7) I 12� . r2-jzj 2 g(x, y) = - g(r cos 6, r sm a) I .8 
12 

da 
2'lt o re' -z 

(with z = x + 9'). 

This formula is true in the open disc x2 + y 2 < r 2 for any real harmonic 
function gin the disc x 2 + y2 < p 2 (with r < p). In fact, formula (1. 7) 
is also true for a complex-valued harmonic function g as one sees by separating 
the real and imaginary parts. Formula (1. 7) is called Poisson's formula 

2_1 12 and the function 
j:e;e _ �

12, which occurrs in the integrand, is called 
Poisson's kernel. 



POISSON
'

S FORMULA. DIRICHLET
'

S PROBLEM 

2. PROPERTIBS OF POISSON
'

S KERNEL 

rv+3 

Fix r and 6; then, Poisson's kernel is a harmonic function of z = x + ry 
defined at every point except z = rei6. It is harmonic because it is 

the real part of the holomorphic function 
rei'. + z

. The Poisson kernel is 
re''-z 

zero at all points of the circle lzl = r other than the point z = rei6 and it 
is > o in the open disc lzl < r. 

Let us now fix r and z with lzl < r. Then, the Poisson kernel is a 
periodic function of 6 with strictly positive values; if we consider this 
function of 6 as the density of a positive mass distribution on the unit 
circle, then the total mass of the distribution is equal to + I because of 
the relation 

(2. I ) - d() =I 
I 12· r2- Jzl2 

27' 0 Jrern -zl2 

which is deduced from (r. 7) putting g equal to the constant I (which 
is harmonic). 

3· DIRICHLET
'

S PROBLEM FOR A DISC 

Dirichlet's problem is as follows : a continuous function is given on the 
circle of centre o and radius r by a continuous function f (6) which is 
periodic of period 27'. We seek a function F(z) of the complex variable z, 
which is defined and continuous in the closed disc /zl < r, which is harmo
nic in the open disc lzi < r and which satisfies 

F(rei6) = f (a) . 

In other words we want to extend the given continuous function on the 
circle to a continuous function in the closed disc which is harmonic in the 
open disc. We shall confine ourselves to the case when both the given 
function f and the unknown function F are real-valued; the case of complex
valued functions can be reduced to the real-valued case by separating 
the real and imaginary parts. 

THEOREM. The Dirichlet problem for a disc has a unique solution. 

First we prove the uniqueness of the solution if it exists. If F 1 and F 2 are 
two solutions to the problem, the difference F 1 - F 2 = G is continuous 
in the closed disc, harmonic in the open disc and zero on the boundary 
of the disc. It is therefore sufficient to prove the following lemma: 

LEMMA. A function G, which is defined and continuous in a closed disc, harmonie 
in the open disc and zero on the boundary of the disc, is identically zero. 
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For, the closed disc is compact and so G attains its upper bound M 
at a point of the closed disc. If M were > o, this point would be interior 
to the disc. By the maximum modulus principle (cf. chapter rn, § 2), 
G would be constant and equal to M in the whole of the open disc and 
thus in the closed disc also because of continuity, which contradicts the 
hypothesis that G is zero on the boundary. For the same reason, the lower 
bound of G on the closed disc is o. Thus G is identically zero. 

The existence of a solution to Dirichlet's problem will be proved in the 
following section. 

4· SOLUTION OF DIRICHLET'S PROBLEM FOR A DISC 

For lzl < r, let 

(4· I ) I 12" r2-lzl2 
F(z) =- f (a) 

I ie 12da. 2'lt 0 re -z 
We shall show that the function F so defined is harmonic and that 

f (60) = lim F(z). 
z�riOo 
1•1<• 

Hence, the function F extended to the boundary of the disc by f is a solution 
of the Dirichlet problem, and this will complete the proof of the theorem 
in no. 3. 

The function F defined in the interior of the disc by relation (4· I ) is 
obviously the real part of 

and this is a holomorphic function of z in the open disc because it can be 
differentiated under the integration sign. Thus F is indeed harmonic 
in the open disc. 

Relation (4· 2) remains to be proved. Here is the motivation of the 
proof: the Poisson kernel defines a positive mass distribution e, of total 
mass I, which depends on the point z interior to the disc of radius r. 
We shall show that as z tends to a point rei8o this mass distribution tends 
to the distribution which consists of a mass + I situated at the point rem•. 

A precise statement is that, given any arc I a -601<;7l of the circle of radius r 
containing the point re1a•, the total mass of the distribution e, carried by this 
arc tends to I when the point z tends to rei8•. An equivalent statement is 
that the total mass of the distribution e, carried by the complementary arc 
tends to o as z tends to the point rei8• while remaining interior to the disc. 
Hence we want to prove the following : 



LEMMA. 

(4. 3) 

POISSON'S FORMULA. DIRICHLET'S PROBLEM 

The integral 
I l r2-lzl2 - .9 da 27t l&-&ol>" Ire' -zl2 

tends to o as z tends to rem• while its modulus remains < r. 

Proof of the lemma: put z = peia. If Jcx-601 <l, then 2 

lcx-a1;;;:.l 2 

1v+4 

for all a satisfying I (J - 001 > "ll· Thus we have under the integration 
sign 

jreii -zl ;;;:,. r sin l, 2 
and, consequently, the integral (4. 3) is bounded above by 

I ___ (r2 _ p2). 
r2 sin 2 _.:1_ 2 

This indeed tends to o as p tends to r. 
Having proved the lemma, we can now prove relation (4. 2). We have 
by (2. 1 ) 

F(z) -f(ao) = __!___ ( (j(a) -f(ao)) 
l
r2;9- lzl�2da 27t J1e-e01<:;� re - Z 

I l r2-lzl2 
+ - (f (a) -f (ao)) I ;e _ 12 da. 27t I &-&oJ>� re Z 

Choose an E > o. The absolute value of the first integral of the right 
hand side of (4. 4) is bounded above by the upper bound of If (a)-f (00)1 
when [a - 001 < "lj, since the total mass of the positive distribution E, is 
equal to I. Since f is continuous, we can choose "tl so that the absolute 

value of the first integral is < -=-.. With this choice of "lj, we can give 2 
an upper bound 2Mm of the absolute value of the second integral on 
the right hand side of (4. 4), where Mis an upper bound of lf(a) I and m 
is the value of the integral (4. 3). By the above lemma, m tends to o as 
z tends to rei60• Therefore, when z is sufficiently near to rei90, the absolute 

value of the second integral will be<....:... Then, 2 

IF(z) -f (<Jo) I< E, 

which proves (4. 2) .  
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The theorem of no. 3 is thus completely proved, and formula (4. 1) gives 
the solution of the Dirichlet problem explicitly. 

5· CHARACTERIZATION OF HARMONIC FUNCTIONS BY THE MEAN VALUE 

PROPERTY 

We have seen (§ 3, no. 3) that any harmonic function has the mean value 
property. The converse is also true : 

THEOREM. Arry continuous function fin an open set D with the mean value property 
in D is harmonic in D. 

Proof. It is sufficient to show that f is harmonic in a neighbourhood of 
each point ofD; to this end, we shall show that, if K is a closed disc con
tained in D, then/ is harmonic in the interior of K. Consider the restriction 
of/to the boundary of the disc K; by the theorem of no. 3, there exists a 
continuous function F in K, which is harmonic in the interior of K and 
which coincides with f on the boundary of K. The difference F -f is 
zero on the boundary of K and satisfies the maximum modulus principle 
in the interior of K because it has the mean value property. By the 
maximum modulus principle (cf. the lemma of no. 3), F -f is identically 
zero in K. Thus f coincides with the harmonic function F in the 
interior of K and, consequently, f is indeed harmonic in the interior of K. 

5. Holomorphic Functions of Several Complex Variables 

I. DEFINITION OF A HOLOMORPHIC FUNCTION 

Consider n complex variables Zk = xk + ryk ( 1 < k < n). By reasoning 
as in chapter 11, § 2, no. 3, we see that the differential of a continuously 
differentiable function f can be written in the form 

( I. I ) 

Keep all the variables fixed except Zk; a necessary and sufficient condition 

for the partial function to be a holomorphic function of Zk is that "{)! = o. 

°6Zk 
If this is so for each of the variables Zk, the differential ijis a linear combi
nation of the dzk; conversely, if ijis a linear combination of the dzk, then 
the function f is holomorphic separately with respect to each variable Zk· 



HOLOMORPHIC FUNCTIONS OF SEVERAL COMPLEX VARIABLES IV,5.2 

Definition. A functionf (z10 • • •  , Zn) defined in an open set D of the space CA 

of n variables Z1t is said to be lwlomorphic in D if it is continuously differen
tiable and if, in addition, its differential df is equal to 

'\:I "!d. £.,j " dz1t• 
k uZ1t 

It is clear that an analytic function of the complex variables Z1t is holo
morphic. 

THEOREM. A continuous function in an open set D, which is holomorphic separately 
with respect to each of the complex variable z11, is holomorphic in D and also ana?Ytic 
in D. 

The proof of this theorem will be the main object of the next two 
sections. A particular consequence of the theorem is that any continuous 
function, which is holomorphic separately with respect to each variable Z1t, 
is not only continuously differentiable but also infinitely differentiable. 
Another consequence is the equivalence of the concepts of holomorphy and 
analyticity for functions of several complex variables. 

2. CAUCHY'S INTEGRAL FORMULA 

First, we consider the case of two complex variables Zi and z2. 
PRoPosmoN 2. 1. Jj f (zi, z2) is continuous in the product of discs 

(2. 1 ) lzil <Pl• lzal < P2 
and holomorphic separate?Y with respect to Zi and z2 in (2. r ) , then, when 

we have 
[z1tl < rk < P1t (k = 1, 2), 

(2. 2) Jc ) __ 
1
_. r r 1cci. t2) dti dt2 _ Zi, z2 - (21ti)2 J J (ti - Zi) (t2 - Z2)' 

where the double integral is taken over the product of the circles ltil = ri and 
lt2J = r2, each being described in the positive sense. 

Proof. Fix z2 in the open disc Izzi< r1• The functionf(Zi, z1) is holo
morphic in Zi in the disc lzil <Pi· We can thus apply Cauchy's integral 
formula (chapter 11, § 2, no. 5) to it, giving 

(2. 3) f(zi, Z2) = -2.__·1 i(ti, Za) dti for lzil <ri. 
2'1tZ 1�11=•, ti- Zi 

Now fix ti such that ltil = ri. The functionf (tl> z2) is holomorphic in z2 
for lz21 < p2, so, similarly, we obtain 

(2. 4) 
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Substitute the value off (�1, z2) from (2. 4) in the integrand of (2. 3). 
Sin�e the functionf (�u �2) is continuous, we obtain formula (2. 2) exactly. 

Note (due to Hartogs). Let f (z1, z2) be a continuous function defined 
in the union of the two open sets (with very small • > o) 

(A) 
(B) 

/z1i < P1• /z2i < •, 

P1 - � < /z1/ < Pl• /z2/ < P2· 
We suppose that, in (A),f is a holomorphic function of z1 and that, in (B), 

fis a holomorphic function of z2• Thenf can be extended to a holomorphic 
function of the variables z 1 and z 2 in the open set ( 2. 1 ) and the extended 
function satisfies the integral formula (2. 2) . 

Indication of proof. Choose r1 and r2 arbitrarily so that r1 < p1 and r2 < p2, 
but large enough for • < r2, r > p1 - •· We shall show that f can be 
extended to another function, again denoted by f (z1, z2), which is holo
morphic in the open set 

(2. 5) 

and which satisfies (2. 2) in this open set. First, relation (2. 3) holds for 
/z1/ < r1, Jz2/ < • becausef is a holomorphic function of z1 in (A); next, 
if /�1/ = r1, relation (2. 4) holds for /z2/ < r2 because f is a holomorphic 
function of z2 in (B). Thus (2. 2) holds for /z11 < ru /z2/ < •· However, 
the right hand side of (2. 2) is a holomorphic function of z1 and z2 in (2. 5); 
if we writef (z1, z2) for the function thus extended, it satisfies (2. 2) in (2. 5). 
This completes the proo£ 
Proposition 2. 1 has an analogue for functions of n complex variables, 
In this case, the integral formula (2. 1 ) is replaced by 

f( ) _ (·_!_)nf 
J

f (�l> "'' �n)d�l . .  • d�n Z1, ... ,Zn - . · • · • 
27tt (�1 - Z1) · · · (�n - Zn) 

3·· SERIES EXPANSION OF A HOLOMORPHIC FUNCTION 

PROPOSITION 3. 1 Under the hypotheses of proposition 2. 1, the function f has a 

double power series expansion in the open set ( 2. 1) 

(3. 1) 

The proof will be similar to that given in the case of one complex variable 
(cf. chapter 11, § 2, no. 6, theorem 3). We know already that, if the power 
series expansion exists, it is unique because it is necessarily the Taylor 
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expansion off at the origin It is sufficient then, given r� and r� such that 

r� < P1> r� < P2> 
to find a double power series which converges normally to f (z1, z2) m 

the product of the discs 

We choose r1 and r2 such that r� < r1 <Pl> r� < r2 < p2 and apply 
the integral formula (2. 2) for lz/ < r�, /z2/ < r�. Now, 

(3. 2) r _ � (z1)P(z2)q 
(�1 - Z1) (�2 - Z2) - p, q�o (�1)P+ 1(�2)q +l' 

and this series is normally convergent for lzd < r[, /�;/=Ti (i = r, 2). 
We substitute this value of ( 

)1 

( ) from (3· 2) into the inte-
�1 - Z1 �2 - Z2 

grand on the right hand side of (2. ::;i). Because of the normal convergence, 
we can integrate term by term and we obtain (3· r) exactly, where the coeffi
cients ap, q are given by the integral formula 

(3· 3) I 1� ( f (�1> �2) d� d� ap,q = (21ti)2 J (�1)p+l(�2)q+I 1 2• 

Proposition 3. r is thus proved. 
There is an analogous proposition for n complex variables. 

It is clear that the theorem stated at the end of no. r follows from propo-
sition 3. r . 

.Note. It can be shown that a function/ (z1, • • •  , Zn), which is holomorphic 
separately with respect to each variable in an open set D, is continuous in D, 

and, consequently, holomorphic. The proof is difficult and will not be 
given here. 

4. CALCULATION OF THE COEFFICIENTS OF THE TAYLOR EXPANSION OF A 

HOLOMORPHIC FUNCTION 

As in the case of one variable, the coefficients ap, q can be expressed as 
integrals involving the functionj. To do so, we replace z1 by r1ei61 and 
z2 by r2ei6• in relation (3· r); integrating term by term gives 

ap, q(r1)P(r2)q = � 12r.l2r.J (r1ei61, r2ei&•)e-i(pa, + q6,>da1d62· 
4'lt 0 0 

We deduce the Cauchy inequalities 

(4. 2) 
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where M(r1, r2) denotes the upper bound of /f(.;:1, z2) J for /z1J = r1, /z2/ =r2 , 
or, which is the same, for /z1/ < r1, /z21 < r2• The reader is left to state 
the theorem similar to Liouville's theorem and also the maximum modulus 
principle. 

5· COMPOSITION OF HOLOMORPHIC FUNCTIONS 

PROPOSITION 5. I. Let f(zu ... , Zn) be a holomorphic function in an open set D 

of Cn and let 

be holomorphic functions in an open set D' of CP, whose values at each point of D' 

are coordinates of a point in D. The function f o g defined by 

(tl, ... , lp) -+ f( g1(f1, ... , lp), g2(t1, .. ., tp), .. ., gn(tu .. ., tp)) 

is a holomorphicfunction of t1, • •  ., tp in the open set D'. 

Proof. We could use substitution in convergent power series but, since 
we have not gone into the details of this matter in the case of several 
variables, we shall give a method based on an entirely different principle. 

Since f is holomorphic, we have, by hypothesis, 

(5· I ) 

and, since the functions gk are holomorphic, 

(5. 2) 

We find the differential of the composed function fog by substituting for 
the differentials <k.k in (5. r), their values in (5. 2); thus d (f o g) is a linear 
combination of the dti> and, consequently, fog is a holomorphic function 
of the ti. 

6. THE IMPLICIT FUNCTION THEOREM 

PROPOSITION 6. I. Let fj(x1, .. ., Xn; Z1, • • •  ' Zp), for j = I' • • •  ' n, be holo
morphic functions in a neighbourhood of a point xi = ai> Zk = ck, and suppose 

that the functional determinant det (7Jfi) is =F o at the point considered. Then, 
• <Jx·· 

the equations J 

(6. r) Yi =fj(xu . .. , xn; Zu ... , Zp) (j = r, ... , n) 
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can be solved when the xi are sufficiently near to the ai> when the z,, are sefficiently 
near to the ck and when the Yi are sufficiently near to the bi = jj(al> ... , a.; c1, • • • , cp) , 

in the fallowing way : 

(6. 2) 

where the gi are holomorphic functions in some neighbourhood of the point 
(bl> .. ., b.; Cv . . . , Cp) · 

Proof. We shall reduce it to the classical implicit function theorem for 
real variables. Put 

xj, x'j, yj and yj being real. The exterior 'product dxi /\ dxi is equal to 

Hence, 

(6. 3) dxi/\dxi=-2i dxj /\dx'j, and, similary, dyi/\dyi=-2idyj/\djj. 
When z1, • • • , Zp are kept fixed, 

(bf) dy1 /\ · · · /\ dy. = det bx
; dx1 /\ · · · /\ dx., 

dJ1 /\ · · . /\ dy. = det (�fl)' dx1 /\ · · · /\ dx., 
bX/ 

whence, by multiplication, 

dy1 /\ dJ1 /\ ... /\ dy. /\ dy. = ldet (?Jfi) 12 dx1 A dx1 /\ ... /\ dx. /\ dx •. 
bxi' · 

This relation and (6. 3) show that the functional determinant of y�, yi, ... , 
y�,y� with respect to x�, xi, . . . , x�, x� is equal to 

which is¥= oat the point (a1, • • •  , a.; c1, . .  ., cp) by hypothesis. We now 
apply the implicit function theorem : x�, xi, . . . , x'� can be expressed 
(locally) as continuously differentiable functions of y�, yi, . . . ,_tn and the 
real and imaginary parts of z1, • • •  , Zp· However, the system of linear 
equations 

shows that the dxi' are linear combinations of the dyi and the tk.k· Thus, 
x1, • • •  , x,. are, in fact, holomorphic functions of the y1 and the Zk· 
This completes the proof. 
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Exercises 

1. Show that, if/(;:,) is holomorphic in an open set D, then, for all z e D, 

(i) 

(ii) 
Al/(z)l2 = 41/' (z)l2, 

A log(1+l/(z)l2)=4l/'(z)l2/(1 + l/(z)j2)2, 

where A denotes the Laplacian defined in § 3, no. I. 

2. (i) Let g(z) be a holomorphic function in the disc lzl < R. Show 
that , if o <; r < R and if g(z) has no zeros in the closed disc lzl <; r, then 

log lg(o) j = _!___ [2r.loglg(rei8)Jd6. 
27t ) 0 

(ii) Show that the integral 

exists and that its value is equal to 27t log r (r, t real, r > o) . Deduce that, 
if f (;:,) =I= o is a meromorphic function in the disc lzl < R, and if o < r < R, 

the integral l'M. log If (rei6) I d6 is convergent . 

(iii) Let av a
2
, • • •  , ap be the zeros and b1, b2, • • •  , bq the poles of the func

tion f (;:,) considered in (ii) which are contained in the punctured disc 
o < lzl <; r (each being counted as many times as its order of multiplicity), 
and let 

be the Laurent expansion off at the origin ( so n is an integer � o ) . Show 
that ·. 

(Consider the function 

and show that it is holomorphic without zeros in an open set containing 
the closed disc lzl <;rand that Jg(z)I = l/(z)I iflzl = r.) 



EXERCISES IV 

3. The harmonic functions considered in this question are all assumed 
to be real-valued. 
(i) If f (z) is harmonic in the disc lzJ < R and if f (z) ;;;> o throughout 
the disc, prove the inequalities 

. 

R-lzl R + lzl 
R + lzl f (o) 

<J(z) < R-lzl f (o) 

for all lzl < R. (Use the Poisson formula and note that the Poisson kernel 
satisfies the inequalities 

r-lzl r2 -1zJ2 r + lz1 , 
-+ I I < I ;e 12 < I I (for 1zl < r).) r z re -z r- z 

(ii) Deduce from (i) that, ifj(z) is harmonic and;;;> o in the disc D(a, r) 
of centre a and radius r, then 

I -f(a) <J(z) <: 3f(a) 3 
for all z in the disc D(a, r/2). 
(iii) Let f (z) be a harmonic function ;;;> o in a connected open set of 
the plane C and let K be a compact subset of D. Show that there is a 

constant M, which depends only on D and K, such that 

for all z1, z2 in K. (Show that there is a finite number of closed discs p,. 
satisfying the conditions that 

D:> LJDn=>K, 

and that, for any pair of [them, DP' and Dq, say, there exists a sequence 
Dn, , ... , D"k such that Dn, = Dp, Dn,, = Dq and D"i-• n D"i =I= p for 
j = 2, 3, .. ., k. Apply (ii) to each of these discs.) 
(iv) Let (fn(z)) be a sequence of harmonic functions in a connected 
open set D and let the sequence be monotonic increasing (in the .broad 
sense), that is 

for all zeD and n = 1, 2, . . . • 

If there exists an aeD such that sup Jfn(a)I < oo, show that the sequence n 
(fn(z)) converges uniformly in any compact subset in D to a harmonic 
function (note the equivalence of the convergence of the sequence (fn(z)) 
and of the series '£(fn+1(z) -fn(Z)) and apply (iii).) 
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4. Subharmonic functions. A real-valued continuous function in an open 
set D of the plane C is said to be subharmonic if, for any a e D, 

(SH) f(a) <- f (a + re16) d& 
I 
12": 

21t 0 

for sufficiently small r > o. 

(i) lff(z) is holomorphic in an open set D, show that lf(z) !P is subhar
monic in D for p > o. 

(ii) If j..(z), v = 1, 2, ... , n, are subharmonic in D, then the following 
functions are also subharmonic in D : 

� a,f,(z), a,;> o; sup f.(z). 
��t l���n 

(iii) lf a sequence of subharmonic functionsf.(z) in D converges uniformly 
on any compact subset of D, then ·the limit function is also subharmonic. 

(iv) Show that the maximum modulus principle holds for subharmonic 
functions; show, in fact, that : 

( 1 ) lffis a subharmonic function in an open set D and ifjhas a relative 
maximum at a point aeD (i.e.f (z) <J(a) for any z sufficiently near 
to a), thenf is constant in some neighbourhood of a. 

(2) Let D be a bounded, connected, open subset of the plane, let f be 
a continuous function in I> which is subharmonic in D and let M be the 
upper bound ofj(z) as z describes the frontier ofD. Then, 

(a) f (z) < M for all zeD, 

(b) ifj (a) =Mat a point aeD, thenfis constant. 

(v} Let r be the oriented boundary of a compact subset K of an open set D. 
Show that, if u, v are two (real-valued) functions with continuous second 
derivatives, then 

(vAu - uAv) d xdy = u -- v- dx + v-- u- dy. ff. fr ( ()v ()u) ( ()u ()v ) 
1t r ()y ()y ()x ()x 

(Use the Green-Riemann formula quoted in chapter 11, § 1, no. g; first 

take P =-v 
<>u

, Q= v�. then interchange u andv.) Deduce that, iff(z) 
<>y ()x 

is a function defined in D with continuous second derivatives and if a e D, 
then 

( ( (Af }(z) dxdy = 12.:U° (a+ re'8) rd&, 
JJ1•-ai�r o ()r 



EXERCISES IV 

for sufficiently small r > o. (Put u = f and v = 1 in the previous relation). 
Deduce that 

- f(a + pei6)d6 =f(a) + ·_ (Af)(z) dxdy 
I 12" 1• dr f1 27t o o 27tT [•-a�r 

for sufficiently small p > o and show that a function f (z) with conti
nuous second derivatives is subharmonic in D if and only if A f (z) > o 
for ;:,eD. 

Example. Show that, ifj (z) is holomorphic in an open set D, the function 
log ( 1 + lf(z) j2) is subharmonic in D. 

5. Letf (z) be a subharmonic function in the disc Jzl < R. Show that, 
if o < r1 < R and if g (z) is the solution to the Dirichlet problem in the 
disc lzJ <;;;; r1 such that g(r1ei1) =f(r1ei6), then 

g(rei&) >-f (rei&) 

for o <;;;; r < r 1• Deduce that the function 

m(r) = __!.._ f (rei6)d 6 121< 27t 0 

is a continuous, monotonic increasing (in the broad sense) function of r in 
o<;;r < R. 

6. Show that, iff (z) is holomorphic in the disc Jzj < R and ix is a real 
number > o, then 

is continuous and monotonic increasing (in the broad sense) in o <;;;; r < R 



CHAPTER V 

Convergence of Sequences of Holomorphic 

or Meromorphic Functions; 

Series, Infinite Products; Normal Families 

In this chapter we shall only consider functions of one complex variable. 
However, many of the concepts can be extended to the case of several 
complex variables. 

1. Topology of the Space C:(D) 

I. UNIFORM CONVERGENCE ON COMPACT SUBSETS 

Let D be an open set of the complex plane C. We shall write e(D) for the 
vector space of continuous (complex-valued) functions in the open set D. 
Similarly, .'.HS(D) denotes the vector space of holomorphic functions in D. 

Definition. We say that a sequence of functions f,. e e(D) converges uni
formly on compact subsets if, for any compact subset Kc D, the sequence of 
restrictions f. I K is uniformly convergent. 

This definition applies in the particular case of functions of the space .!&(D). 

We know that the limit of a uniformly convergent sequence of continuous 
functions is a continuous function. Thus, if the sequence of continuous 
functions fn is uniformly convergent on any compact subset of D, the 
limit function f is such that its rectriction JIK to any compact subset 
Kc D is continuous. Since any point of D has a compact neighbourhood 
contained in D, it follows that f is continuous. 

Definition. We say that a series � f. of functions f,. e e (D) converges nor-
• 

malty in compact subsets of D if, for any compact subset Kc D, the series 
of restrictions f., I K converges normally. In other words, on any compact 
subset K, the given series is majorized by a convergent series of constant 
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pos1t1ve terms. It is clear that, if a series is normally convergent on compact 
subsets, the partial sums of this series form a sequence which is uniformly 
convergent on compact subsets. 

PROPOSITION 1. 1 A su:fficient (and necessary) condition for a sequence of functions 
f,, e e (D) to be uniformly convergent on compact subsets of D is that the sequence 
of restrictions fn I :E to every compact disc I: c D is uniformly convergent. There is 
a similar theorem for normally convergent series. 

For, any compact subset K of D can be covered by the interiors of a finite 
number of compact discs contained in D. The proposition follows imme
diately. 

2. FUNDAMENTAL THEOREMS ON THE CONVERGENCE OF HOLOMORPHIC 

FUNCTIONS 

THEOREM r. lf a sequence of functions fn e :+&(D) is uniformly convergent on 
compact subsets, then the limit function f is holomorphic in D. 

Proof. We have just seen that f is continuous in D. To show that f is 
holomorphic, it is sufficient, by Morera's theorem (chapter II, § 2, no. 7, 

theorem 4) to show that the differential form f (z) dz is closed. For this, 

it is sufficient to show that j f(z) dz= o whenever r is the boundary of 

a rectangle contained in D (cf. chapter II, § 1, proposition 4. 1) . However, 
f is the uniform limit of the sequence fn on the boundary of each rectangle, 
and, hence, 

j f (z) dz = li!11 jfn(z) dz= o, 

which proves theorem I. 

CAROLLARY. The sum of a series of holomorphic functions, which is normally 
convergent on compact subsets of D, is a holomorphic function in D. 

THEOREM 2. lf a sequence of functions fn e :+&(D) converges to f e :+&(D) uni
fomzly on compact subsets, then the sequence of derivatives f � converge to the derivative 

f' uniformly on compact subsets. 

Proof. By proposition I. 1, it is sufficient to show that thef� converge tof' 
uniformly on any compact disc in D. Let :E be such a disc of radius r 

and choose the centre of :E as origin o. There exists r0 > r such that the 
closed disc of centre o and radius r0 is contained in D. Thus the fn are 
holomorphic for lzl < r0 + e (for sufficiently small E > o) and converge 
tofuniformly for lzl < r0• 
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We shall show that the derivativesf� converge uniformly tof' for lzl < r, 
which will follow immediately from the following lemma : 

LEMMA. If g (z) is holomorphic for lzl < r0 + s and if lg (z) I < M for 
lzl < r0, then 

(2. 1 ) jg'(z)[ < M 
( '0 )Z for /zl < r < 'o· 
To-T 

Proof of the lemma. There is a convergent expansion 

(2. 2) g(z) = � anzn for lz/ < 'o· 
n�O 

M By Cauchy's inequalities, we have Ian!< (ro)n' On the other hand, 
differentiating term by term gives 

g'(z) = � nanzn-t. 
n90 

Thus, for lz/ < r < r0, 

(2. 4) M � nrn-t lg'(z)I <- "" ----;;=t· To n�O (ro) 

We shall find the sum of the series � n (_!_) n-t; since ntn-t is the derivative 
n�o To 

of en, then � ntn-t is the derivative of �tn = -1--, and, consequently, 
n I - t 

.t.-(:.r· �(·_:_ff 

This substituted in (2. 4) gives the inequality 

lg'(<) I < 
M 

( ' ) " To I _ _!_ 
To 

which proves the lemma . 

.Note. One can construct another proof of theorem 2 by observing that 
Cauchy's integral formula 

J(z) = � r i(t) dt 
2'1tZ J 1 t- z 

(where y denotes the boundary of a disc concentric with � but with a 
slightly larger radius) gives, by differentiating with respect to z under the 
integral sign, 

f'(z) = �J f(t) dt. 
2'1tZ T (t-z)Z 
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Thus, 

f'( ) = 1. _I J fn(t ) dt = l" j'( ) Z Im . 
( 

) II Im n Z . 
n 21tl T t-z n 

and the limit is approached uniformly for z e �-

PROPOSITION 2. I. Let D be a connected open set. If a sequence of holomorphic 
functions/. e�(D) is uniformly convergent on compact subsets ofD, and if eachfn 
is =I= o at any point of D, then the limit function f is =I= o at any point of D unless 
it is identically zero. 

Proof. Suppose f is not identically zero. Then the zeros of f (which 
is holomorphic by theorem I) are isolated since D is connected. Suppose f 
vanishes at z0; by proposition 4. I of chapter m, § 5, the order of multi
plicity of this zero is equal to the integral 

_I Jf' (z) dz
' 21ti T f (z) 

taken round a circle y of small radius centred at Zo· By theorem 2, this 
integral is the limit of integrals 

I jD(z) dz 
21ti r fn(Z) 1 

and these integrals are zero since the holomorphic functions f,. do not 
vanish. Hence, we have a contradiction and this proves the proposition. 

Definition. A function defined in an open set P is said to be simple if the 
mapping it defines is injective, in other words, if it always takes distinct 
values at distinct points. 

PROPOSITION 2. 2. Let D be an open set of C. If a sequence of holomorphic 
functidns fn e �(D) converges uniformly on compact subsets of D and if each f,. is 
simple, then the limit function f is simple if it is not constant. 

Proof. We use reductio ad absurdum. Let us assume that f (z1) = f (z2) =a 
for two distinct points z1 and z2 of D and we shall show that this leads 
to a contradiction. Consider two open discs S1 and S2 with centres z1 
and z2 an with radii so small that S1 and S2 are disjoint and are contained 
in D. By proposition 2. 1,/n takes the value a in S1 and in S2 for suffi
ciently large n, which contradicts the simplicity off,.. 

3· TOPOLOGY 00F THE SPACE e(D) 

We have already defined what we mean by a sequence of functions J,. e e(D) 
which converges uniformly on compact subsets. We shall now define a topology 
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on the vector space e (D) in a more precise way. The vector subspace JfiJ (D) 
is given the induced topology. For any pair (K, E) consisting of a compact 
subset Kc D and a number • > o, we consider the subset V(K, •) of e(D) 
defined by 

(3· I ) f eV(K, •) � [f(x)j < • for xeK. 

A necessary and sufficient condition for a sequence of functions fn e e (D) 
to converge to f uniformly on compact subsets is that, for any K and e, 

f-fn e V(K, e) for sufficiently large n. 

This expresses that the sequence offn E e(D) has fas its limit in the topology 
(if it exists) for which the sets V(K, e) form a fundamental system of neigh
bourhoods of o (the neighbourhoods of a point fare defined by translating 
the neighbourhoods of o by f). 

PROPOSITION 3· I. e (D) has indeed a topology (invariant under translation) 
in which the sets V (K, E) form a fundamental system of neighbourhoods of o. This 
topology is unique and can be de.fined by a distance which is invariant under translation. 

Proof. The uniqueness of the topology is obvious, because we know a 
fundamental system of neighbourhoods of o, and, therefore, a fundamental 
system of neighbourhoods of any point of the space e (D) by translation. 
We need only find a distance function, which is invariant under translation, 
such that the V(K, e) form a fundamental system of neighbourhoods of o 
in the topology defined by this distance. 

First we introduce the concept of an exhaustive sequence of compact subsets 
ofD, that is, an increasing sequence of compact sets Ki c D (thus Ki c Ki+1) 
such that any compact subset K contained in D is contained in one of 
the K;. 

LEMMA. There exists an exhaustive sequence of compact subsets of D. 

For, consider the compact discs contained in D whose centre has rational 
coordinates and whose radius is rational. They form a countable set 
that can be arranged in a sequence D1, D2, • • •  , Dn, . . . . Let 

We now show that the K; form an exhaustive sequence: the interiors of 
the discs Dn·form an open cover ofD and, consequently, any compact subset 
K of D is contained in a K;. 
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Suppose, from now on, that we have chosen an exhaustive sequence of 
compact subsets Ki and, for eachfee(D), put 

(3. 2) 

(3. 3) 

Mi(f) =sup lf(z)I, 
z:EKi 

d(f) = � riinf(1, Mi(f)). 
i�l 

We note that d(f) is finite because the series on the right hand side is 

majorized by the geometric series � ri. We shall prove that d(f) has 
the following properties: n;;:>t 

(3. 4) 
(3. 5) 

(3. 6) 

d (f) = 0 � f = o, 

d(f + g) < d(f) + d(g ), 

� 2-i inf (1, Mi(f)) <, �(!), 
( d(f) <, Mi(f) + r'. 

Proof of (3. 4). It is clear that, ifj is identically zero, d(f) = o ; conversely, 
d(f) = o implies, by (3. 3), that Mi(f) = o for all i, so the restriction 
of to each open set Ki is zero, and, consequently, f is identically zero. 

Proof of (3. 5). It is obvious that 

from which we easily deduce that 

inf(1, Mi(f + g)) <, inf(1, Mi(f)) + inf(1, Mi(g)), 

and (3. 5) follows by summation. 

The relations (3. 4) and (3. 5) show that, if the distance between f and g 
is defined to be equal to d( f -g), this distance function is a metric satisfying 
the triangle inequality; this metric is invariant under translation. It defines a 

Hausdorff topology on the space e(D) which is invariant under translation. 
We now prove the inequalities (3. 6). The first follows obviously from 

the definition (3. 3). On the other hand, if i is an integer > I, then 

for j <, i, and, consequently, (3. 3) implies that 

which gives (3. 6). 

d (f) <, � riM;(f) + � ri, 
j�i j>i 

To complete the proof of proposition 3. 1, we still have to show that the 
sets V(K, e) form a fundamental system of neighbourhoods of o in the 
topology defined by the above metric. 
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1 ) Any set V (K, E) is a neighbourhood of o : for, given K and E with E < 1 ,  

let i b e  such that Kc: Ki. Then the relation d (f) < r ;$ implies 
f e V(K, E) because of the first inequality (3. 6). 
2) Any neighbourhood of o of the form d(f) < E contains a set of the 

form V(K, �'). For, given e, choose an integer i so that 2-
i < � ; then 

2 

f e V ( K,, ; ) implies d (f) < e, because of the second inequality (3· 6). 

Hence, proposition 3. 1 is proved. 

Note. We can apply the known properties of metric spaces, or, more 
precisely, of metrizable topological spaces, to e(D) and its subspace �(D). 
For example, a necessary and sufficient condition for a subset A of a 
metrizable space E to be closed is that each point of E which is the limit 
of a sequence of points of A belongs to A. Similarly, a necessary and 
sufficient condition for a mappingf of E into a metrisable space E' to be 
continuous at a point x e E is that, for any sequence of points x. e E having 
x as their limit, the sequence f (x.) has f (x) as its limit. (The reader 
can refer to Cours de mathimatiques I of J. Dixmier, Topologie, chapter 11, § 3.) 

We see from the above note that the space e(D) is complete, since the limit 
of any sequence of continuous functions, which converges uniformly 
on compact subsets, is continuous. Moreover theorems 1 and 2 of no. 2 

can be restated as follows : 
The subspace �(D) is closed in e(D); the mapping of �(D) into :H'>(D) which 

associates with each function f its derivative f' is continuous. 

2. Series of Meromorphic Functions 

I. CONVERGENCE OF A SERIES OF MEROMORPHIC FUNCTIONS 

Let D be an open set of the complex plane C; we shall consider a sequence 
of meromorphic functionsf,. in D. We must define what we mean by the 

convergence of the series "i.iJ,.. 
n 

Definition. We say that the series "i.iJ,. converges uniformly on the subset Ac: D 
if it is possible to remove a finite number of terms from the series in such 
a way that the remaining functions f,. have no pole in A and form a uni
formly convergent series in A. 

Similarly, the series "ti f,. is said to converge normally on A if it is possible to 
n 
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remove a finite number of terms in such a way that the remaining terms f,. 
have no pole in A and form a normally convergent series in A. 

It is clear that any normally convergent series in A is uniformly conver
gent on A. In what follows, we consider series of meromorphic functions 
in D which converge uniformly (resp. normally) on compact subsets K ofD. The 
sum of such a series in a relatively compact open subset U of D is defined 
to be the meromorphic function 

(I. I) 

where n0 is chosen so that the series � f,. is uniformly convergent on the 
n>no 

closure U. The first term in ( 1. I) is a meromorphic function in U, 

being the sum of a finite number of meromorphic functions; the second 
term is a holomorphic function in U, since it is the sum of a uniformly 
convergent series of holomorphic functions in U. It is easy to see that 
the meromorphic function defined by ( 1. 1) in U does not depend on the 
choice of the integer n0• 

THEOREM. Let � f,. be a senes of meromorphic functions fn in D. If this 
n 

series is uniformly (resp. normally) convergent on compact subsets of D, then the 

sum f of this series is a meromorphic function in D; the series � f n of derivatives 
n 

converges uniformly (resp. normally) on compact subsets of D, and its sum is the 
derivative f' of the sum f of the given series. 

Proof. We have already seen that the sum/is meromorphic in any rela
tively compact open subset Uc D, so it is meromorphic in D. 
Let U be a given relatively compact open subset and let n0 be chosen as in 
(1.1); then, in U, 

(1. 2) 

However, the series � f,. of holomorphic functions can be differentiated 
n>no 

term by term because it is uniformly convergent on compact subsets of U; 

by theorem 2 of§ 1, no. 2, the series � f� of derivatives converges uni-
' n>no 

formly to ( � fr.) on any compact subset of U. This proves that the series 
n>n0 

� f � of meromorphic functions converges uniformly to f' on compact 
n 

subsets of U. Since this is true for any relatively compact open subset U, 
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it follows that � f � converges uniformly to f' on any compact subset of D. 
n 

If the series �fn converges normally on compact subsets of D, the fact 
n 

tha't. the series � f � converges normally on any compact subset of D 
n 

foHoWs from the lemma of§ 1, no. 2. 

Note. It is obvious that the set P(f) of poles off is contained in the union 
of the sets P(fn), where P(fn) denotes the set of poles of J,.. Moreover, 
relation ( 1. 1) shows that, if the sets P(fn) are disjoint from one another, 
the set P(f) is equal to the union of the sets P(fn); more precisely, if Zo is a 
pole of order k offn, then it is a pole of order k off. 

2·.; · FIRST EXAMPLE OF A SERIES OF MEROMORPHIC FUNCTIONS 

Consider the series 

(2. 1) � I 

-ao<n<+ao (z-n)2
' 

the summation extending over all integers n. We shall show that this 
series converges normally on any compact subset of the plane C. · Any 
such .compact subset is contained in a strip of the form x0 <; x <; x1 (we 
ha.ve put z = x + ry). It is sufficient then to show that the series (2. 1) 
c·onverges normally on any strip of the above form. Such a strip only 

contains a finite number of integers n; in the series � ( 
1 

)2
, e�ch 

n<xo z-n 
ter'm is bounded above by (xo � 

n)2
, and, con:aequently, this partial series 

is n()rmally convergent in the strip. Similarly, the partial series � (z � 
n) 2 n>a:t 

converges normally on the strip. After removing a suitable finite number 
of terms of the series ( 2. 1) , we are left with a series of holomorphic func
tions which are normally convergent on the strip. 
This completes the proo£ 
Let f (z) be the sum of the series (2. I ); it is a meromorphic function in 
the whole c. The function f has period I: 

for, 
f (z + 1 ) = f (z); 

· '\' I = � I 

..:.i ..:.i by putting n - 1 = n'. 
,n (z +I -n)2 n' (z-n')2' 

. The poles off are the integer points z = n and they are all double poles. 
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The residue at such a pole is zero because, in some neighbourhood of the 
point z = n, 

I f (z) = 
( )2 

+ g(z) z-n 
with g holomorphic. 

PROPOSITION 2. I. The sumf (z) of the series (2. I) is equal to (�)2• 
s1n 1tZ 

Proof. The function! (z) tends to o as IYI tends to + oc;, uniformly with 
respect to x : in other words, for any e > o, there exists an a such that I y I :;> a 
implies If (z) I < e. For, suppose first that z remains in a strip x0 -<; x -<; x1 
and that its imaginary party satisfies I YI•:;> a for some a > o; in this domain, 
the series (2. I) is a normally convergent series of holornorphic functions; 
when I y I --+ + oc; , each term of the series tends to o uniformly with respect 
toxin the strip. Thus the sum of this series (which is normally convergent ) 
tends to o as IYI --+ + oc; uniformly with respect toxin the strip. However, 
f (z) has period I, so, by applying the above property to a strip of width 
at least 1, we see that f (z) tends to o as I yl --+ + oo, uniformly with 
respect to x. 2 
The function g (z) = (�) has the same following properties as the 

. sm 1tZ · 

function f (z): 
10 it is meromorphic in C and has period I; 

20 its poles are the integers z = n which are double poles with principal 
I 

part
( )2

; 
z-n 

3° g(z) tends to o uniformly with respect to x as I YI --+ + oc;. 

Property I0 is obvious; to prove 2° it is sufficient, because of the perio

dicity, to show that the origin o is a double pole with principal part -; 
z 

but, 

(2. 2) 

Finally, property 3° follows from the relation 

lsin 1tZJ2 
= sin2 'ltX + sinh2 -.ty, 

which shows that lsin 1tZI tends to infinity (uniformly with respect to x) 
as IYI tends to infinity. 

We can now prove proposition 2. I : the function f (z) -g(z) is holo
morphic in C because f and g have the same poles with the same principal 
parts. We shall show thatf- g is bounded: consider a strip �x0-<; x-<; x1; 
it is bounded for I YI-<; a (because a continuous function is bounded on a 
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compact set) and it is bounded for I YI ;?:. a because it tends to o as I YI 
tends to infinity; since it is bounded in each strip, the function f -g is 
bounded in the whole plane because of its periodicity. Liouville's theorem 
(chapter m, § 1, no. 2) gives that the function f - g must therefore be 
constant; since J- g tends to o as I yj tends to infinity, this constant is 
zero. Hence, proposition 2. 1 is proved. 

Application. We have 

(2. 3) (_'It )2-_!__ 
= � 1 ' 

sin'ltz z2 n>6o (z-n)2 

and the right hand side is a holomorphic function h (z) m some neigh-

bourhood of z = o. 

(2. 4) 

Moreover, h ( o) = � �- Hence, 
n#O n 

hm -- -- = 2 � -. , [( 'It )2 I ] � I 
=�O sin 'ltZ z2 n;;J::t n2 

However, the left hand side of (2. 4) is easily evaluated by means of the 
2 limited expansion (2. 2); its value is �. so we obtain the relation 

3 

(2. 5) 

due to Euler. 

�..!_='Its 
n;<:.t n2 6 

3· SECOND EXAMPLE OF A SERIES OF MEROMORPHIC FUNCTIONS 

Consider the series 

(3. 1) 

Its general term is equal to 
( 

Z 
) 

; the reader is left to prove for himself 
n z-n 

that this series is normally convergent on compact subsets of the plane C. 
Its sum F(z) is, then, a meromorphic function in C, and its poles are the 
integers z = n; they are simple poles with residues equal to 1. By the 
theorem of no. 1, the derivative F' (z) is the sum of the series of derivatives, 
that is to say 

F'(z) __ !___� 1 =- f -'lt )11 = _{ ( _'It )· 
- z2 n>6o (z-n) 2 \sin'ltZ, dz tan'ltZ 

It follows that F(z)--'lt- is a constant. However, we see from (3. 1) 
tan'ltz 
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that F(-z) = -F(z); thus, the function F(z) __ 'It_ is an odd function 
tan'ltz 

of z, and, as it is a constant, the constant must be zero. 
The series (3. 1) can be rearranged by putting together the two terms 
corresponding to the integers n and - n : since 

(_I + _!_) + (-1 _ _!_) _ � 
z-n n z + n n - z1-n2' 

we finally obtain the relation 

(3. 2) 

4· ANOTHER EXAMPLE 

By the same method as no. 2, it can be shown that 

(4. 1) � (- 1)n _ '1t2 • 

-ao<n< +ao (z - n) 2 - (sin 'ltZ) (tan 'ltZ) ' 

from this, it can be shown by the method of no. 3 that 

(4. 2) �+ � (- i ) n 2Z =-'It -. 
Z n�I z2 - n2 sin 'ltZ 

5· WEIERSTRASS � FUNCTION 

Consider, as in chapter III, § 5, no. 5, a discrete subgroup 0 of C with a 
base consisting of two vectors e1 and e2 whose ratio is not real. We note 
immediately that the base (eu e2) is not completely determined by the 
choice of O. The vectors of another base (e�, e�) are expressible as linear 
combinations of the vectors of the first base with integral coefficients, and 
vice-versa; it follows that the determinant of the matrix of coefficients is 
an integer which has an inverse in the ring of integers, so it is equal to -+- 1. 
Conversely, if e� and e� are linear combinations of e1 and e2 with integral 
coefficients and if the determinant of the matrix of coefficients is equal 
to-+- 1, then the Cramer formulae show that, conversely, e1 and e2 are 
linear combinations of e� and e� with integer coefficients, and, consequently, 
(e�, eD is a base of 0. 

PROPOSITION 5. 1. Given a discrete subgroup 0 as above, the series 

(5. 1) V(z) = � + � ( ( I ) 2 Z .. e!i-101 z- w �2) 
is normalry convergent on compact subsets of the plane C. 
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To prove this we shall need the following lemma : 

LEMMA. The series � -1 1 13 is convergent. 
wE!l, w::;;l:O lt) 

Proof of the lemma. For each integer n ;;> 1, consider the parallelogramm Pn 
formed by the points z = t1e1 + t2e2 where the real numbers t1 and t2 
are such that sup (lt1/, lt2/) = n (cf. figure 10). There are exactly Bn 

Fig. IO 

points of a on P n, and the distance between any of them and o is ;;> kn, 
where k is a fixed number > o (it is the smallest distance from o to the 
points of P1). The sum;: the /�/3 taken over the points of Pn is there

fore bounded above by k3n3, so 

" I  '\' 8  
Li -, -3 < � k3 2' .,�o wJ n;:>I n 

and, since the series � � is convergent, the lemma is proved. 
n 

We can now show that the series (5. I ) converges normally on any compact 
disc lzf <r. We have lwl;>-2r for all but a finite number of thew; thus, 
for all but a finite number of the terms of the series (5. 1), 

lz(2 _-3._)J r _5__ I 1 1 I I 2wz - z2 [ I w · 2 10 r 

( _ )2-2 = 2( _ )2 = 1 12<--=�. 13as lzl<r. 
z w w w w Z 1 lw3 1

1 _ _£ lwl3· __!.__ ,
w 

w 4 

It follows from the lemma that the series (5. 1) converges normally in 
the disc [zl < r. 

Definition. The Weierstrass function �(z) is defined to be the meromorphic 
function which is the sum of the series (5. 1 ) . (This function depends, of 
course, on the discrete subgroup a chosen). 
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The poles of .)' are exactly the points of 0; they are double poles• whose 
residue is zero : for, in some neighbourhood of z = w, 

.)'(z) = 
( 

1 

) 2 + g(z), where g is holomorphic. 
z-w 

The function .)' is an even function of z because 

and it is sufficient to put -w for w on the right hand side to recover the 
series (5· 1 ) . By the theorem of no. 1, an expansion of the derived function 
.)'' as a series (which is normally convergent on compact subsets) is 

(5· 2) .)''(z) = -2 � ( 
I ) S · 

.. e!l z-w 

This relation demonstrates the periodicity of the function .)'', 

V'(z + w) = V'(z) for all we 0, 

and the fact that .)''(-z) = -V'(z). 
We shall now show that the function .)' itself has any we O as period. 

To do this, it is sufficient to prove that .)'(z + ei) = .)'(z) when i takes the 
values 1 and 2. However, 

(5· 3) .)'(z + e;) -.)'(z) = constant 

because the derivative V'(z + ei) -V'(z) = o. We can give z the value 
e· e· e· : · 

- _!_ in relation (5. 3) because _!_ and - _!_ are not poles of.)'; we find then 2 2 2 
that the right hand side of (5· 3) is equal to .)' (2)-v (-2), which 
is zero since .)' is an even function. 

2 2 ' 
To sum up, the Weierstrass .)'-function is a meromorphic function with 
the points of 0 as periods and with poles at the points of 0 and no others, 

each pole having order 2 and principal part ( 1 
) 2 

• 
z-w 

The Laurent expansion of .)'(z). In some neighbourhood of the origin, 
.)' has a Laurent expansion which is a priori, of the form 

I v(z) = - + azz2 + a4z4 + . .  · , z2 

because the function .)' is even and because, by (5. 1 ), the holomorphic 
function defined by 

g(z) = v(z) -:2 = .. �o ((z�w)2-�2) 
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in some neighbourhood of the origin, is zero for z = o. The coefficients 
a1 and a, can easily be expressed in terms of the discrete subgroup Q; 

differentiating the series g(z) term by term gives 

(5. 5) 

Now, differentiate relation (5. 4) term by term and square both sides; 
this gives 

(5. 6) 

cubing both sides of (5. 4) gives 

(5. 7) (\l(z))3 = :6 + 3� + 3a, + · · . , 

whence, 

It follows that the function 

(5. 8) 

is holomorphic in some neighbourhood of the origin and is zero at the 
origin. However, this function has a as its group of periods, so it is 
holomorphic in some neighbourhood of each point of O and zero at 
each point of a. Since the function has no poles outside a, it follows 
that it is holomorphic in the whole plane; since it is bounded on any 
compact subset, its periodicity implies that it is bounded on C; and, since 
it is zero at the origin, Liouville's theorem shows that it is identically 
zero. Finally, we have proved 

(5. 9) 

This relation has an important interpretation : let us consider the alge
braic curve 

(5. 10) 

the formulae x = \)(z), y = \l'(z) give a parametric representation of this 
curve. We shall show that any point (x, y) e C X C which satisfies (5. 10) 
is the image of a point z e C, which is determined up to the addition of 
an element of a. 

First we seek the zeC such that 2zeO and zll!O. At :such a point, \land p' 

are holomorphic; we have p'(z) = v'(- z) because of the periodicity of p' and 
ii'(z) = - p'(- z) because of\)' is an odd function; hence, p' is zero at such a 

paint. We know three such points, namely, 

(5.11) 
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and we immediately see that any z such that 24 e Q and z $ 0 is congruent 
(mod. 0) to one of the three points (5. 11 ); the classes (mod. 0) of the three points 
(5. 1 1) are distinct. Since ll' has a unique triple pole in each parallelogram of 
periods, proposition 5. 1 of chapter 111, § 5, shows that 1>' has, at the most, three 
distinct zeros in each parallelogram of periods. These are therefore the three 
points (5. 11) or their conjugates (mod. 0). By the same proposition, the func
tion \l does not take a given value more than twice in each parallelogram of periods. 
Since )) (z0) = ii(- z0), the function takes each value of the form ll(Zo) exactly 
twice if 2Zo $ 0; on the other hand, if 2Zo e 0 and Zo $ 0, then ))1 (z0) = 0 as we 
have jwt seen, and the equation v(z) = r(z0) has z0 as a double root, so v only 
takes the value v(z0) once in each parallelogram of periods. From these results, 
it follows that each of the values 

v(e1/2), 'r(e./2), ll((e1 + 11)/2) 

is taken precisely once in each parallelogram of periods and that these three values 
are distinct. By (5. g), they are the three roots of the equation 

(5. 12) 

and, consequently, this equation has three distinct roots. To sum up, we have 
proved: 

PROPOSITION 5. 2. Given the discrete group 0, equation (5. 12), wlwse coefficients a1 
and a, are defined by (5. 5), has three distinct roots. Moreover,for each point 

(x,y)eCxC 

of the algebraic:curve (5. 10), there is a unique (modulo 0) zeC such that 

v(z) = x, v' (z) = y. 

We shall see (cf. chapter VI, § 5, no. 3) that, conversely, given an arbitrary 
equation of the form (5. Io) whose right hand side has three distinct 
roots, there exists a discrete group 0 such that a2 and a, satisfy (5. 5); 
if\) is the Weierstrass function associated with this group 0, the formulae 
x = V(z), y = V'(z) give a parametric representation of the algebraic 
curve (5. IO) . 

3. Infinite Products of Holomorphic Functions 

I. DEFINITIONS. 

Definition. Let (fn(Z)) be a sequence of continuous functions defined in 
an open set D of the complex plane. We say that the infinite product 

II fn(Z) converges normalry on a subset' Kc D if the following two condi-
" 

tions are satisfied : 

I0 as n tends to + oo, f,.(z) tends uniformly to I on K; this implies in 
particular that, for sufficiently large n, f,. - I has modulus < I on K 

I57 



CONVERGENCE OF SEQUENCES OF HOLOMORPHIC OR MEROMORPHIC FUNCTIONS 

and, consequently, logfn is a function defined in K (we take the principal 
branch of the logarithm); 

2° the series whose general term is logfn (which is defined for sufficiently 
large n) is normally convergent in K. 

We can give a single condition which is equivalent to the two condi
tions 1° and 2° above. Let fn = 1 + un; then, condition 1° expresses 
that the sequence Un converges uniformly to o in K; when Un is small, 
log fn and Un are equivalent to the first order, and, consequently, 

condition 2° expresses that the series � Un converges normally in K. 
n 

To sum up, a necessary and sufficient condition for the infinite product Ilfn to 
n 

converge normally in K is that the series � Un converges normally in K. 
n 

Definition. The infinite product' II.fn is said to converge normally on compact 
n 

subsets of D if this product converges normally an every compact subset K 

ofD. 
A necessary and sufficient condition for this is that, if we putf,. = I +Un, 

the series � Un converges normally on compact subsets of D. If this is 
n 

so, then, as n0 increases indefinitely, the products II J,. converge uniformly 
n:::;n0 

on compacts subsets of D to a limit f (z), which is evidently a continuous 
function of z. To see this convergence, it is sufficient to take logarithms 
of the factors fn for sufficiently large n. 

2. PROPERTIES OF NORMALLY CONVERGENT PRODUCTS OF HOLOMORPHIC 

FUNCTIONS 

THEOREM 1 • 1J the functions fn are holomorphic in D and if the ir!ftnite product II J,. 
n 

converges normally on compact subsets of D, then f = fifn is holomorphic in D. 
Moreover, n 

(2. I ) 

The set of zeros off is the union of the sets of zeros of the functions J,., the order of 
multiplicity of a zero of f being equal to the sum of the orders of multiplicity which it 
has for each of the functions fn· 

Proof. f is holomorphic because f is the limit (approached uniformly on 
compact subsets) of the finite products, which are holomorphic. The 
associativity formula (2. 1) is obvious on any relatively compact open set U 

The functionfn has no zeros in U for sufficiently large n, since Un = fn - I 

converges uniformly to o in U; the last statement is then obvious. 
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THEOREM 2. With the hypotheses ef theorem 1, the series S f �/fn ef meromorphic 
n 

functions converges normally on compact subsets ef D (in the sense ef no. 1 ef § 2) 
and its sum is merely the logarithmic derivative f' If. 

Proof. Let U be a relatively compact open set of D. The function 

(2. 2) gp = exp( S logfn) 
11>p 

is defined and holomorphic in U for sufficiently large p. By (2. 1), we 
have, in U, 

(2. 3) 

However, 

(2. 4) 

f' - "\' f� g' - - � -+.fil!.... 
J n,;;, pfn gp 

where the series on the right hand side converges uniformly on compact 
subsets of D; for, the series S logfn of logarithms converges (uniformly 

n>p 
on compact subsets) to log gp, so the series of derivatives of these logarithms 
converges (uniformly on compact subsets) to the derivative g�/gp (cf. § 1, 

no. 2, theorem 2). By comparing (2. 3) and (2. 4), we see that, in U, 

the convergence being normal on compact subsets of U. This holds for 
all U, whence the theorem. 

3· EXAMPLE : EXPANSION OF SIN 7tZ AS AN INFINITE PRODUCT 

Consider the infinite product 

(3. 1) f (z) = zIT ( 1 - z:-) · 
n�t n 

This product converges normally on compact subsets of the plane C because 

the series S z: converges normally on compact subsets, which follows 
n n 

from the convergence of the numerical series S � · Thus, f (z) is a 
n n 

holomorphic function in the whole plane and its zeros are all the integral 
values of z, They are simple zeros. 
By theorem 2, we can differentiate logarithmically term by term; we obtain 
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a series of meromorphic functions, which converges normally on compact 
subsets of the plane, 

(3. 2) 

We have seen (§ 2, no. 3) that the sum of this series is 

_'lt 
__ rul 

tan 'ltZ - g(z) ' 
where g(z) = sin 7tZ. Thus, f' If= g' /g, so 

[ill sin'ltz 
=c -- . 

z z 

The constant c remains to be determined. By (3. l ) , f (z)/z tends to l, 

ds d 
. sin 7tZ h 

. 1. . 
h 

1 
as z ten to o, an , smce -- as 'lt as its 1m1t, we see t at c = - . z 'lt 
Hence, we have proved the formula 

(3. 3) 

4. THE r-FUNcTioN 

Consider the holomorphic function g,. defined for each integer n > l by 

(4. l ) g,.(z) = z(1 + z) ( 1 + �) · · · ( 1 + �) n-= 

= 
z(z + 1) (z + 2) . .. (z + n) n-•. 

n! 
We have, for n > 2, 

(4. 2) g,.(z
(
)

) 
= (1 + __£)(• -�)' =f,.(z). g,._1 z n n 

If Jzl < rand 1 < r < n, we can consider the principal branch of log f,.(z) 
and so 

(4· 3) jlogf.(z)I < 2 (_,:_ + � + · · · ) < 2 '2 
2n2 3ns n z 

for sufficiently small .!___. Hence, the series � log f,.(z) converges 
n ,. 

normally on compact subsets of the plane, and, consequently, the infinite 

product g1• IT __&____ converges normally on compact subsets of the 
n;;:>2 gn-1 

plane. Its value is a holomorphic function g(z), which is the uniform 
limit on compact subsets of the functions 

g. = gif°.J . . . f,.. 

The function g has the numbers o, - l, - 2, .. . , -n, .. . as its zeros, and 
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they are all simple zeros. If z is not an integer, we can form the quotient 

g(z) = lim g.(z) = lim nz 
= z. 

g(z + 1) .�,.,g.(z + 1) ·�oo n + z + 1 

Thus, the meromorphic function ( 
g(z) 

) 
is, in fact, holomorphic and 

identical with z. Moreover, g Z + 1 

(4. 5) g(1) = limg. (1) = limn+ 1 = 1. 
n+oo n+oo n 

Definition. The meromorphic function 1 /g(z) is denoted by r(z). All 
the integers n <;: o are simple poles of r(z), and the function satisfies 

(4. 6) r(z + 1) = zr(z), r(1) = 1, 

which follows obviously from (4. 4) and (4. 5). We deduce from (4. 6) by 
induction on the integer n ;> o that 

r(n + 1) = n! 

We now propose to calculate the product r(z) .r(1 -z). We have 

(4. 8) • n + I - Z rr" ( Z2 ) g(z).g(1 - z) = hm · z. 1 
-k2 • n�oo n k=I 

h. h b · 1 sin 'ltZ B · · b · w ic , y no.3, is equa to --· y mvertmg, we o tam 
'It 

(4. g) r(z).r(1 - z) = �. 
Sln 'ltZ 

and, in the particular case when z = __!_, 
2 

The Weierstrass infinite product. By using (4. 1), we can write 

(4. 10) ( ) - n
" (( + z ) -:/k) · (1+.!+ .. ·+_!_-logn) g. Z - z. I - e .e 2 n • 

k=-1 k 

The exponent z( 1 + · · · + � -log n) tends to Cz as n tends to infinity, 

where C denotes Euler constant. In the limit, we obtain 

(4. II) 
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and the reader can verify that the product on the right hand side is 
normally convergent on compact subsets of the plane. Since g = 1 /r, we 
obtain, by taking logarithmic derivatives of the two side of (4. 11 ) 
(cf. theorem 2) , 

(4. 12) r'(z) = _ _!__ c +}: (__1_ _ _ 1 -) · 
r(z) z · 91 n z + n 

and, in particular, 

- C = lim (T'(z) + _!__) · 
•?0 r(z) z 

Finally, we can differentiate relation (4. 12) term by term (cf. § 2, 

no. 1 ) to obtain 

l._(r'(z)) _ }: 1 . 

dz r(z) - 9o(z + n)2 

Note the similarity between the series on the right hand side and the series 

whose sum is (-.-7t-) 
2 

(§ 2, no. 2) . When z is real and positive, the right 
sin 7tZ 

hand side of (4. 14) is obviously positive, so log r(z) is a convex function of 

z for real z > o. 

4. Compact Subsets of .m(D) 

The characterization of compact subsets of .16(D) which is given here is 
what used to be called the theory of ' normal families ' of holomorphic 
functions. 

I. BOUNDED SUBSETS OF .:J6(D) 

We shall define what is meant by bounded subsets of the vector space J6(D). 
The definition is merely a particular case of a definition which applies 
to any topological vector space. In particular the same definition applies 
to bounded subsets of e(D). 

Definition. A subset Ac .M(D) is bounded if, for any neighbourhood V(K, s) 
of o, there is a finite positive number ).. such that Ac).. V (K, s) , where 
:>..V(K, e) denotes the homothety of V(K, • ) with respect to the origin o 

by the factor :>... The relation Ac:>.. V(K, •) expresses that If (z) I< :>..e 
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for z e K and for any function f e A. Hence, a necessary and sufficient condition 
for a set A of holomorphic functions in D to be bounded is that, for arry compact 
subset KcD, there exists a.finite number M(K) such that 

( 1. 1) lf(z)I <; M(K) for all zeK and allfe A. 

In other words, A is a bounded subset if the functions f e A are uniformly 
bounded on compact subsets of D (the upper bound M(K) depending clearly 
on the compact subset K). 

If A is a bounded subset of .m(D), its closure A is bounded (we mean 
here the closure in the topology of uniform convergence on compact subsets 
of D). This is obvious because, if ( 1. 1) holds for every f e A, it holds also 
for every function belonging to the closure of A. 

PROPOSITION 1. 1. The mapping f--+ f' of .m(D) into itself takes any bounded 
subset into a bounded subset. 
This follows directly from the lemma which we used to prove theorem 2 

of§ 1, no. 2. 

2. STATEMENT OF THE FUNDAMENTAL THEOREM 

We propose to characterize the compact subsets of the space :+G(D) of 
holomorphic functions in an open set D of the complex plane. 

PROPOSITION 2. 1. If Ac: :+&(D) is compact, then A is closed and bounded. 

Proof. The space :+&(D) is Hausdorff since it is metrizable (cf.§ 1, no. 3), 
Thus, any compact subset of .m(D) is closed by a classical result in general 
topology. It remains to be proved that, if A is compact, A is bounded, 
To prove this, let K be a compact subset of D and consider the mapping 

f-+suplf (z)I 
:EK 

of the space .'.ffi(D) into R; it is clear that this is a continuous mapping, 
so the set of values which it takes on the compact subset consisting of the 
f e A is bounded. This· expresses that the f e A are uniformly bounded 
on the compact subset K. It holds for any compact subset K of D, 
and, consequently, the set A is indeed a bounded subset of the vector 
space .'.ffi(D) . 

.Note. Proposition 2. 1 is stated for the space .m(D) but it is also true 
for the space e(D) of continuous functions in D. In constrast, the converse 
of proposition 2. 1, which we shall now state, is only true for subsets 
of the space :+&(D) of holomorphic functions in D. 
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FUNDAMENTAL THEOREM. A'V' subset of �(D) which is bounded and closed 
is compact. 

COROLLARY. A necessary and sufficient condition for a subset A of �(D) to 
be compact is that it is bounded and closed. 

The proof of this theorem will take up numbers 3, 4 and 5. An equi
valent statement of the fundamental theorem is the following : 

Any bounded subset of �(D) is relatively compact. The converse is also true. 

3· ME THOD OF PROOF OF THE FUNDAMENTAL THEOREM. 

Let A be a bounded, closed subset of �(D). The topological space A is 
metrizable since it is a subspace of a metrizable space �(D). To prove 
that A is compact it is sufficient to show that a'V' infinite sequence of elements 
of A has an irifinite sub-sequence which converges to an element of A. For, we have 
the following topological lemma : 

LEMMA I • Let A be a metric space such that any irifinite sequence of points of A 
contains an infinite subsequence which converges to a point of A; then A is compact. 

Proof of lemma I. Let (U;) be a covering of A by open sets U;. We must 
show that this covering contains a finite covering. 
First we show : 

a) There exists an £ > o such that any ball B(x, £) is contained in at 
least one of the U1 (we use B(x, £) to denote the closed ball of centre xeA 
and radius£). 

To prove a) we use reductio ad absurdum: we assume that there is a 
sequence of points x,. e A and a decreasing sequence of numbers En tending 
to zero such that, for each n, the ball B(x., !n) is not contained in any of 
the U;. By hypothesis, the sequence (x.) contains an infinite subsequence 
which converges to a point aeA. We can therefore suppose that the 
sequence (xn) converges to a. Let U; be an open set containing a; then U; 
contains a ball B(a, r). For sufficiently large n, x. eB(a, r/2) and En<, r/2. 
It follows that B(x., En) is contained in U1 for sufficiently large n, which 
is a contradiction. This proves a). We now show: 

b) For any E > o, A can be covered by afinite number of balls B(xn, £). 
It is clear that a) and b) together imply that there exists a finite number 
of the open sets U1 which cover A. 

We prove b) also by seeking a contradiction : if b) is false, there is an infinite 
sequence of points x. e A whose distances apart are all > E; however, 
we can, by hypothesis, extract a convergent subsequence of this sequence, 
which obviously leads to a contradiction. Thus, we have proved lemma I. 
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4· A LEMMA 

Because of no. 3, we have reduced the theorem to showing that, if A is a 
bounded subset of :J&(D), then any infinite sequence of functions f., e A 
contains an infinite subsequence which converges uniformly on compact 
subsets of D. The following lemma is a useful criterion for convergence 
of sequences of holomorphic functions belonging to a bounded subset : 

LEMMA 2. Let D be an open disc centred at Zo and let A be a bounded subset 
of :J&(D). A necessary and sufficient condition for a sequence of functions f" e A 
to be convergent (in the topology of uniform convergence on compact subsets of D) 
is the following condition : 

C(z0) for each n :;> o, the sequence of n-th derivatives j�•>(z0) has a limit. 
(For n = o this means that the sequence of values. of the functions fk at 
the point Zo has a limit.). 

Proof of lemma 2. Condition C(z0) is necessary because, for each n, the 
sequence of n-th derivatives J1,,•> converges uniformly on any compact 
subset of D (§ 1, no. 2, theorem 2). It remains to be proved that condition 
C(z0) implies that the sequence (fk) converges uniformly in any compact 
disc of centre z0 and radius r strictly less than the radius of the disc D. 
Choose an r0>r but still strictly less than the radius of D. Since A is 
bounded, there exists a finite M such that 

(4. 1) for lz-zol < 'o· 

We consider the Taylor expansions of the holomorphic functions fk : 

(4. 2) fk(Z) = 2i a.,k(Z-Z0) ". 
n�O 

By Cauchy's inequalities, we have 

M lan,kl <; (r o)"
. 

Thus, for [z- z0 J <;rand for all k and h, 

Since r/r0 < 1, we can choose p sufficiently large to make 

� ( r ) " 2M � -
n>p To 

less than �. where E is an arbitrary number > o given in advance. By 
2 
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condition C(z0), when the integers k and h both increase indefinitely, the 
difference a.,k - a.,k tends to zero for each n because 

We can therefore choose the integer k0 such that 

for 

Thus, from (4· 4), 

for k > k0, h > ho, /z - Zol < r, 

which proves that the sequence of functions fk converges uniformly on 
the compact disc of centre Zo and radius r. Hence, lemma 2 is proved. 

5. PROOF OF THE FUNDAMENTAL THEOREM 

We are now in a position to prove the fundamental theorem (no. 2). 
The given open set D can be covered by a countable sequence of open discs 

with centres at Z; e D. For each integer n ;;;:,. o and for each i, consider 
the linear mapping 

(5· 1 ) A� : �(D) --+ C 

which associates the number J<•>(z;) with each function f Let us consider 
a sequence of functions fk belonging to a bounded subset A; we intend to 
show that there is an infinite subset N' of the set of positive integers N 
such that 

(5· 2) lim A7(fk) exists for each pair (i, n). 
kEN' 

But, for each i and each n, the numbers A7(fk) form a bounded sequence as 
the index k describes N, since the Ji, describe a bounded set A and the 
mappings ),7 are continuous. Let us arrange the countable set of mappings 
A7 into a single sequence which we write 11-1, • . .  , "'"" . • . • We shall show 
the existence of an infinite subset N' of N such that 

(5. 3) lim 11-m(fk) exists for each integer m ;;;:,. I. 
kEN' 

To do this, we shall use the diagonal sequence method. Since the sequence 
of the 11-1(fk), for keN, is bounded, there is an infinite subsetN1cN such 
that 
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The sequence of the p.2(fk), fork e Nu is bounded, so there exists an infinite 
subset N 2 c N1 such that 

Hence we define, step by step, the infinite subsets 

The set Nm+i is then an infinite subset of Nm such that 

lim P.m+1(fk) exists. 
kENm+l 

Consider now the infinite sequence N' of integers defined in the following 
way: for each integer m;;;:,. 1, the m-th term of the sequence N' is them-th 
term of the sequence Nm. The sequence N' is strictly increasing, and it 
is clear that every integer of sequence N' after the m-th belongs to Nm. 
This holds for all m, so the sequence N' satisfies condition (S· 3), which 
completes the proof. 

Hence the fundamental theorem of no. 2 is completely proved. 

Note. What we have just proved is, in fact, that, in a special case, an 
infinite product of compact spaces is compact. 

6. SOME CONSEQUENCES OF THE FUNDAMENTAL THEOREM 

The following principle is frequently used : Let A be a bounded set of holo
morphic functions in D; if a sequence of functions f k e A has not more than one 

fuJUtion in its closure (in the topology of uniform convergence on compact subsets), 
this sequence is convergent (in the same topology). This follows from a classical 
theorem about the topology of compact spaces. 

As an application of this principle, consider first the case where 
the open set D is connected and where the sequence of functions f k converges 
simply at each point of a non-empty open set D' contained in D (this convergence 
means that the sequence ofnumbersf k(Z) has a limit for each point zeD'). 
If this is the case and if the f k belong to a bounded set, the sequence (f k) 
converges uniformly on closed subsets of D. For, if f and g are two holo
morphic functions in D and both are in the closure of the sequence of the j,,, 
then, clearly, f (z) = g(z) at any point z e D' which implies that f and g 
are identical in D (by the principle of analytic continuation). 
Consider now the case of a bounded sequence ofholomorphic functionsfk 
satisfying the conditions C(z0) oflemma 2, where z0 is a point ofD. Then, 
if D is connected, the sequence (fk) converges uniformly in any compact 
subset of D. For, iff and g are two holomorphic functions in the closure 
of the sequence (fk), then j<•>(z0) = g<•>(z0) for any integer n;;;:,. o, and 
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consequently, J and g are identical because of the principle of analytic 
continuation. 

Another case is that of a bounded sequence of holomorphic functions fk 
in D which converges simply at each point of a non-discrete subset E of D, 
where D is still connected. Such a sequence converges uniformly on 

compact subsets of D, because, if J and g are two holomorphic functions 
in the closure of the sequence (fk), the difference J(z) -g(z) is zero at each 
point of E, and is thus identically zero since the set of zeros of a holomorphic 
function in D (connected) is a discrete set if the function is not identically 
zero. 

Exel"cises 

1. Let f ( z) be a holomorphic function in the disc I z I < r, and suppose 

that J ( o) = o. Show that the series � f (zn) converges uniformly in 
n�t 

any compact subset of this disc. (Given o < r < I, use Schwarz' lemma 
(in the disc IZI < r) to bound lf(zn) I above by a constant multiple of 
lzln for lzl < r) , 

2. Let D be a connected open set of the plane Cand let (fn(Z)) be a sequence 
of holomorphic functions in D, converging uniformly on compact subsets 
of D to a function f (z) which is not identically zero. Moreover, let r be 
the oriented boundary ofa compact subset K of D such that J (z) =F o on r. 
Show that there is a positive integer N such that, for n ;?- N,fn(Z) =F o on r, 
and thatf,. and f have the same number of zeros in K. (If M is the lower 
bound oflJ(z) I on r and ifN is chosen so that lfn(z)-f(z) J<M for n;?-N 
and z e r, then Rouch6' s theorem (exercise 1 g of chapter rn) can be 
applied to the functions/ (z) and fn(Z) -J (z).) 

Deduce that, if a is a zero off (z), there exists a sequence (an ) of points 
of D such that 

lim an =a, 

3. Let -r be a complex number such that Im(-r) > o, and put q = e"i'. 

Show that the following two series.converge uniformly on compact subsets of 
the plane C of the variable u : 

-i 
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If we denote the holomorphic functions defined (in the whole plane) 
by these series by .5-0(u), .5-1(u), then the following relations hold : 

.5"0(u + 1 ) = .5-0(u), .5"1(u + 1 ) = -.5"1(u), 
.5-o(u + T) = - q-le-2•i".3"o(u), .3"1(u + T) = - q-1e-2�;".3"1(u), 

.5-o ( u + ; ) = iq-t/4 e-�i".5"1(u). 

Show that the functions .5-0(u), .5-1(u) are not identically zero. 

(Show, for instance, that 

11
l.5-0(x)J2dx =I + 2 � Jqln•.) 

0 n�i 

Show!that the complex numbers m + ;nT, for integral values of m and n, are 

zeros of the function .5-1(u), and that the numbers m+ ( n + + )T are zeros of 

2-0( u). By evaluating the integral of the function h' /h round the perimeter of a 
suitable parallelogram of periods, show that there are no other zeros. 

4. Let a be a real number. By proceeding as in no. 2, § 2, prove the 
relation 

7ti sinh 27ta 
·sin 7t (z + ai) sin 7t(Z -ai) 

and deduce that 

� I .-
I
+ 

·)• 
-»<n<+ooz+n-ai z+n at 

7t sinh 27ta Li I 
--;; . cosh 27ta - cos 27tZ -ao<n<+oo (z + n)2 + a2 

5. Justify the following expansions : 

(i) 

(ii) 

_7t_ = 
2i (-1)n+1(2n-1)

, 
COS 7tZ n�I ( l ) 2 

2 
n-- -z 

2 

7t tan 'itZ = 2Z Li ( I

) 2 . 
n�I n-� -z2 

2 
Deduce from (i) that 

7t I I I 
-=1-- + - -- + 
4 3 5 7 

Deduce the following formulae from (i) and (ii) by the methods of no. 3, 

§ 3 : 

(iii) 

(iv) 

- II ( 4z2 ) cos 7tZ - I -
( ) 2 • n�t 2n-I 

7tZ . 7tZ -II (r + (- 1)•z) cos--sm-- · 

4 4 n�t 2n-I 

r6g 
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(Note that 

(cost/2-sint/2)' = -� 1 + sint
.) cos t/2 - sin t/2 2 cos t 

6. Show that 

(Use formula (4. 14)). Deduce, by integration, that 

r(z) r ( z + �) = e"abr(2z), a, b constants; 

determine a and b by putting z = -2..., 1 in turn. Use the same method 
2 

to obtain the more general formula for any integer p >- 2: 

r(pz) = (2'1t)-<P-1>12pp•-112r(z)r (z+ ;) ... r(z+P pi ) · 

(To determine the constants of integration, put z = 1/p, 1; formula (4. 9) 

with z = q/p, 1 < q<P and the relation sin �sin 2'1t ... sinp-1 
'It= p/2P-1 

(for p >- 2) can be used to evaluate P P P 

r(1/p) r(2/ p) . . .  r((P- 1)/ p)). 

7. (i) Show that the integral 

fo°" e -1e"'-1 dt, 

where x is a real parameter, converges uniformly in any interval a< x < b 

with o <a< b; deduce that the integral fo00 e-1e:- l dt defines a holomor

phic function of z, which is denoted by G(z), in the half-plane Re(z) > o. 

(ii) Show that 

(1) I -- t:z:-l dt = 
. in ( t ) n n"'n I 

0 n x(x+1) ... (x+n) 

and n an integer >- 1 ; 

for real x > o 

( 2) e-1( I - :
n 

t2 ) < ( I - ! r < e-1 for 0 < t < n. 

(First prove the inequalities . 1 - t/n < e-1/n < 1 -t/n + t2/2n2, and 
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then use the inequality an - bn < nan-l( a - b), which is true for a > b > o, 
by taking a = e-tfn, b = 1 - t/n.) Deduce that 

and that 

G(z) = r(z) for Re (z) > o 

8. Determine the residue of the function r (z) at the pole z = - n for 
n = o, 1, 2, . . . • 

g. Show that, if 

I 

V(z) = 2 + a2z2 + a4z' + · · · + a2nZ2n + · · · 

z 

. is the Laurent expansion of the function V(z) at the origin, then the diffe. 
rential equation (5· g) of § 2 allows us to calculate the coefficients a2n 
for n > 3 as polynomials in a2 and a4 by induction. Determine a6 and a8• 

IO. Let P be a parallelogram of periods of the functions V· Show that, 
if a: and � are two complex numbers, the function 

(1) V'(z) - a:V(z) - � 

has three zeros in P and that their sum is equal to a period (use propositions 
5. 1 and 5. 2 of chapter 111, § 5). Deduce that, if u and v are two complex 
numbers such that u + v :::f:. o (mod. 0), then a:, � can be found so that 
the function ( 1) has zeros at u, v and!- u;_:__ v; deduce that, if u + v + w = o, 
then 

V(u) 
det V(v) 

V(w) 

V'(u) 
V'(v) 
V'(w) 

I =O. 

I 1. In the notation of example 3 above, show that the infinite product 

II ((1 _ q2n-le2r.iu)(I -q2n-le-2r.iu)] 
n�i 

defines a holomorphic functionf(u) in the whole of the plane of the complex 
variable u. What are the zeros of f(u)? Show that 

f (u) = c . . �0(u), 

where c denotes a constant. 
(The function f (u) /(J0(u) is shown to be doubly periodic and holomorphic 
in the whole plane, so the corollary to proposition 5. 1 of chapter 111, § 5 
applies.) 



CHAPTER VI 

Holomorphic Transformations 

I. General Theory; Examples 

I. LOCAL STUDY OF A HOLOMORPHIC TRANSFORMATION W = j (z) WHEN 
f'(Zo) # 0 

PROPOSITION 1. 1. Let w = f (z) be a holomorphic function in a neighbourhood 
ef z0; suppose that f' (z0) # o, and put w0 = f (z0). When z and ware sufficiently 
near to z0 and w0, respectively, the relation w = f(z) is equivalent to a relation 
z = g(w), where g denotes a (well-defined) holomorphic function ef w in some 
neighbourhood ef Wo such that g(Wo) = Zo· 

This follows from chapter 1, § 2 proposition g. 1, and also from chapter 1v, 

§ 5, proposition 6. 1. 

Hence, in some neighbourhood of a point, the inverse transformation 
of a holomorphic transformation with derivative # o is a holomorphic 
transformation; moreover, with the above notation, the derivative g' 
is given by the relation 

g'(w) 
= f'(z). 

In particular, this derivative is # o at the point w0• 
Let c be the non-zero complex number f'(z0). The (homogeneous) 

linear, tangent transformation of the transformation fat the point z0 is 
the transformation 

( I. I ) W=cZ. 

This, considered as a transformation of the plane, is a direct similitude. 
In particular, this transformation preserves angles and their orientation. In 
other words, if two differentiable paths y1 and y2 of the z-plane have 
initial point z0, the images of these paths under the transformation w 

= f (z) 
are differentiable paths with initial point Wo and the half-tangents at Wo 
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make the same oriented angle as the half-tangents to the paths 1
1 

and 12 
at the point z0• For this reason, we say that a holomorphic transformation 
w = f (z) is conformal at each point z0 where the derivative f' (z0) is =I= o. 

Conversely, any (homogeneous) linear transformation of the plane which 
preserves angles (without necessarily preserving their orientation) is of the 
form ( I. I) , or of the form 

(1. 2) W=cZ. 

For, if T is such a transformation, there exists a direct similitude S such 
that the composed transformation s-1 o T leaves the real point (1,0) 
fixed. Since S-1 o T preserves angles, the point (o, 1) is transformed into 
( o, a), where a is real =I= o. Thus ( 1, 1) is transformed into ( 1, a), the vectors 
(1, 1) and (1, a) make equal angles with (1, o), whence a=+ 1. If a= 1, 
s-1 0 T is the identity and T = s is of the form (1. 1). If a= - I, 
S-1 o T = U is a symmetry with respect to the real axis and T = S o U is 
of the form ( 1. 2), which completes the proof. 

In the case (1. 1), the linear transformation preserves orientation; in 
the case ( 1. 2) , it changes orientation. Consider, then, a transformation 
w = f (z) defined in a connected open set D of the plane of the complex 
variable z = x + ry; suppose it to be continuously differentiable with 
Jacobian =I= o at all points of D; if this transformation preserves angles 
(in other words, if the linear tangent transformation is one of the types (I. 1) 
or ( 1. 2) , at each point ofD), then, at each point ofD, one of the relations 

"CJ f 
=O 

"CJz ' 

holds. These relations can never be satisfied simultaneously at a point 
of D because the partial derivatives off with respect to x and y would 
be both zero, contradicting the fact that the Jacobian is non-zero. Since 

the two functions "CJ
f 

and "CJf 
are continuous, the sets of points ofD on which 

"CJz "CJz 
they are zero are closed in D; hence, D is the union of these two disjoint 
closed sets, and, consequently, one of the two sets is empty since Dis connec-

ted. Only two cases are possible : either �{ = o at any point of D (so the 

transformation is holomorphic), or "CJf 
= o at any point of D (so f is a 

()z 
holomorphic function of z). In the latter case we say that the transfor-
mation is antiholomorphic. To sum up : 

PROPOSITION 1. 2. A necessary and sufficient condition for a continuously diffe
rentiable transformation with Jacobian =I= o everywhere in a connected open set D 
of the plane to preserve angles, is that it is either holomorphic or antiholomorphic. 
In the first case, it conserves the orientation of angles and, in the second case, it changes 
the orientation of angles. 
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2. LOCAL STUDY OF A HOLOMORPHIC TRANSFORMATION W = j (z) WHEN 

f' (zo) = o. 

First, consider a particular case, that of the transformation 

(2. 1 ) w=zP, 

where p denotes an integer;;:;,. 2. The derivative of zP is zero for z = o. 
The inverse transformation 

(2. 2) z = wl!P, 

is many-valued : to each value =I= o of w, there correspond p distinct 
values of z. Angles at the origin are not preserved by the transformation 
( 2. 1 ) because the argument of w is p times the argument of z. The angles 
are, in fact, multiplied by the integer p. When the point z turns once 
round the origin, the point w turns p times round the origin in the same 
direction; the reader is invited to formulate this precisely in terms of the 
index of any closed curve described by z and the index of the trans
formed curve described by w. 

To study the general case of a holomorphic transformation w = f (z) 
when f'(z0) = o, we suppose for that z0 = o, J(z0) = o for simplicity. 
In what follows, it is essential to assume that f is not identically zero in 
a neighbourhood of o; if p is the order of multiplicity of the zero off at 
the origin, the Taylor expansion off at the origin is of the form 

(2. 3) 

where the constant c is =I= o and the function j1, which is holomorphic 
at the origin, satisfies f1 ( o) = o. Put 

the function f2(z) is holomorphic in some neighbourhood of the origin 
(we choose one of its branches), andf2(o) =I= o. Relation (2. 3) then 
becomes 

(2. 4) 

Let 

(2. 5) 

By no. 1, this relation gives z = g( t) where g is holomorphic in some neigh
bourhood of o and zero at the point o with g'(o) =I= o. By (2. 4), we 
have t = w11P whence, finally, 

(2. 6) z = g (wl/P) . 
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Hence, the relation w = f(z) is equivalent, in a neighbourhood of the origin, to a 
relation of the form ( 2. 6), where g is holomorphic in a neighbourhood of o and zero 
at the origin, with g' ( o) # o. 

In particular, to any value of w sufficiently near to o and # o there 
correspond p distinct values of z. The origin is said to be a critical point 
of order p for the transformation (2.6), the inverse of w =f(z). 

3· HOLOMORPHIC TRANSFORMATIONS 

THEOREM. 
open set D. 

Let f be a holomorphic function, which is not constant, in a connected 
Then the image f (D) is an open set of the plane. 

Proof. It is sufficient to show that, for any point z0eD, the imagef(D) 
contains all the points of some neighbourhood off(z0). The case when 

f '(z0) # o follows from no. I : in this case f defines a homeomor
phism of a neighbourhood of ;:.0 onto a neighbourhood of f (z0). 
The case when f'(z0) = o (the function f not being constant in 
any neighbourhood of ;:.0) follows from no. 2 : in this case there is a neigh
bourhood of ;:.0 in which the function f takes p times. each value sufficiently 
near to f (z0) and # f (z0). Hence, the theorem is proved in all cases . 

.Note. For any open subset D' of D, the image f (D' ) is open. We say 
then that f is an open mapping. 

COROLLARY. lf f is a simple (cf. chapter, v, § 1, no. 2) holomorphicfunction 
in a connected open set D, then f is a homeomorphism of D onto the open set f (D), 
and the inverse mappingf-1 is holomorphic inf(D). 

Proof. f is an injective, continuous, open mapping. Its inverse mapping 
f-1 is continuous because f is open. Since f is simple, f'(z0) # o at any 
point ;:.0 e D by the results of no. 2; thus, by no. I, f-1 is holomorphic 
at each pointf (z0). 

Definition. Let D be an open set of the plane of the variable z, and D' 
an open set of the plane of the variable w. An isomorphism of D on D' 
is defined to be a homeomorphism which is defined by a holomorphic map
ping f whose inverse is also holomorphic. 

It follows from the above corollary that if a holomorphic mapping of D 
is simple, then it is an isomorphism of D onto its imagef(D) . 

.Note. The above definitions and results hold, not only when D is an 
open set in the plane of a complex variable, but, more generally, when Dis 
an open set of the Riemann sphere, and the mapping f can also take 
values in the Riemann sphere. 
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4· EXAMPLES OF NON-SIMPLE HOLOMORPHIC FUNCTIONS 

Even when the derivative J' (z) is everywhere =fa o, the function f can be 
non-simple (that is to say not simple). The easiest example is the trans
formation 

w = e' 

which is periodic of period 27ti. A strip a < Im z < b is transformed into 
the set of points w such that 

a< argw< b. 

In this strip, the transformation is simple if and only if 

b-a < 27t. 

By way of an example, we shall study the transformation w =cos z whose 
derivative vanishes at all z which are integral multiples of 'It. We have 

w = cosz = .2... (ei' + e;'), 
2 

so the transformation w = cos z is composed of two transformations 

and 
I 

w = -(t + I /t) . 
2 

Let us examine the inverse transformation : if w is given arbitrarily, 
two values of t correspond to it; they are the roots of the quadratic 
equation 

t2 - 2Wt + I = O, 

and their product is therefore equal to I ; they are distinct if w =fa + I ; 
to each of these roots, there corresponds an infinity of values of z deduced 
from each other by adding arbitrary integral multiples of 27t. 

Put z = x + �' w = u +iv (x, y, u, v being real). Then 

u = coshy cos x, v = -sinhy sin x. 

If y is kept and x varies, the point ( u, v) describes the ellipse 

u2 v2 
---+--=I 
cosh2 y sinh2 y 

(the point describes the ellipse once each time that x describes an interval 
of length 27t). If x is kept fixed while y varies, the point (u, v) describes 
once one of the two branches of the hyperbola 

u2 v2 
cos2x -sin�x 

= I. 

To study how w varies as a function of z, it is sufficient, because of the 
periodicity, to let x vary from -7t to + 7t and y from - oo to + oo 

Moreover, if we put -z for z, w remains unchanged, so we shall only let x 
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vary from o to 'lt. If we put -y for y without changing x, u remains unchan
ged, but v is changed into - v : thus, to a pair of points z1, z2 which are 
symmetric about the real axis, there corresponds a pair of points Wu w2 which 
are symmetric about the real axis. Finally, it is sufficient to let x vary 
from o to '7t andy from o to+ r:J:). Let D1 then, be the open set 

(D) o<x<?t, y>o. 

First, let z = x + ry describe the oriented boundary of D: 1° while x 

stays at o and y decreases from + oo to o, w stays on the real axis 
decreasing from + oo to + 1; 2° while y stays at o and x increases 

0 
x 
-
x 

v 

·········· ·······- ... : 
.. · ,:·· ... 

. · · .. 

co• x./ \ 
0--r-lf-- 1l 

:z 
x 

-------.r--1 - - - - - - --I 0 

' 
-····+····· ···--·--: y=-Yo 

Fig. I I 

-Shy. 
I 
I 
I 
I 
I 
I 

from o to 'lt, w stays on the real axis decreasing from + 1 to - 1; 30 when 
x stays equal to 'lt, y increases from o to + oo, w stays on the real axis 
decreasing from - 1 to - oo. Hence, the mapping w = cos z maps 
the boundary of D homeomorphically onto the real axis. 

The reader should prove that D is mapped homeomorphically onto 
the lower half-plane v < o. In fact, when the point z describes a segment 

y = y0 (constant > o) as x increases from o to 'lt, the point w decribes, 
exactly once, the half-ellipse which is situated in the half-plane v < o 

with + 1 and - I as foci and whose semi-major and semi-minor axes are 
coshy0 and sinhy0, respectively. When the point Zo describes a half-line 
x = x0 (o < x0 < 1t) andy increases from o to+ oo, the point w describes, 
just once, the half-branch of the hyperbola which is situated in the half
plane v < o with+ 1 and- 1 as foci and whose semi-axes are leas x0l 
and sin x0• 
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The strip o < x < 7t (y varying from - oo to + oo ) is mapped homeo
morphically onto the plane excluding the two half-lines of the real axis, 
u ;;;> + r and u -< - 1. 

Let us examine the angles. We note that the transformation w =cos z 
doubles the angles at each of the points z = o and z = 'It (the right angles 
in the boundary of D become flat); this corresponds to the fact that deri
vative - sin z of cos z has a simple zero at each of these points. Angles 
are preserved by the transformation in the interior of D; lines parallel 
to the coordinate axes in the z-plane are transformed into a confocal 
system of ellipses and hyperbolae as we have seen. 

2. Conformal Representation 

I. STATEMENT OF THE PROBLEM 

Let D and D' be two connected open sets of the Riemann sphere 82• We 
ask whether there exists an isomorphism ofD on D', or, what is equivalent, 
whether there is a simple holomorphic mapping ofD on D'. A necessary 
condition for a positive answer to this problem is a purely topological one : 
the sets D and D' must be homeomorphic, for any isomorphism is a homeo
rnorphism. For example, if D is simply connected, it is necessary that 
D' is also simply connected. This necessary condition is not sufficient 
as the following theorem shows : 

THEOREM 1. The plane C and the open disc f zl < 1 are not isomorphic (although 
they are homeomorphic). 

Proof. Suppose that there is an isomorphism f of C on the disc f zl < 1. 

Then, f is a bounded holomorphic function, which must be constant by 
Liouville's theorem, and this contradicts the fact that f is simple. 

2. AUTOMORPHISMS OF D 

Let us suppose that there is at least one isomorphismf of D on D' and that 
we want to find all the isomorphisms g of D on D'. The transformation 
S = f-1 o g is an isomorphism of D onto itself, in other words, it is an 
automorphism of D; thus, 

(2. 1) g =f 0 s. 

Conversely, if S is an automorphism of D, the transformation g defined 
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by (2. 1) is an isomorphism of D on D'. Hence, we obtain all the iso
morphisms of D on D' by composing an arbitrary automorphism of D 
with a particular isomorphism f of D on D'. It is clear that the auto
morphisms of D form a group r(D). Moreover, if f is an isomorphism 
of D on D', the mapping S -f o So f-1 is an isomorphism of the group 
r(D) on the group r(D'). 

We propose to determine the group r(D) explicitly for certain simple 
open sets in the examples which follow. 

3. AUTOMORPHISMS OF THE COMPLEX PLANE 

Here we take the case when Dis the whole complex plane C. Let z -f (z) 
be an automorphism of C; the function f (z) is holomorphic in C; so only 
two possible cases arise a priori : 

10 f has an essential singularity at the point at infinity; 

2° f is a polynomial. 

We shall see that case 1° is impossible. For, sincef is simple, the image 
under f of the annulus lzl > 1 does not meet the image under f of the 
disc lz l < 1; this image is open and non-empty. Thus the image of 
Jzl > 1 is not dense in the whole plane, and, consequently, by the Weier
strass theorem (chapter rn, § 4, no. 4) the point at infinity is not an essential 
singularity off. Hence,fis a polynomial of degree n >- 1, and, by d'Alem
bert's theorem, the equation f (z) = w has n distinct roots (except for 
particular values ofw). However,fis simple by hypothesis, so we conclude 
that n = 1. We have thus proved the following theorem: 

THEOREM 2. The automorphism group of C consists of the linear transformations 

(3· 1) z-az + b, a =I= o. 

When a = 1, the transformation (3. 1) is a translation; it has no fixed 
points. On the other hand, when a =I= 1, the transformation has a unique 
fixed point 

b 
z= ---. 

I-a 

We note that the transformations (3· 1) form a transitive group in the 
plane C : in other words, given any pair of points z1,z2, there is at least 
one transformation of the group which takes z1 into z2• The stabilizer 
of a point z0, that is the subgroup of transformations which leave the 
point z0 fixed, is easily found; for example, the stabilizer of the origin o 

is composed of the direct similitudes z -+ az. 
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4. AUTOMORPHISMS OF THE RIEMANN SPHERE 

Consider the homographic transformations 

(4. 1 ) 
az+b 

w= -- , 
cz+d 

ad - be =I= o. 

If the constants a, b, c, d, are multiplied by the same complex number =I= o, 
the transformation remains the saine. Hence, we must always consider 
that the coefficients a, b, c, d, are only defined up to a constant factor. 

Such a transformation is defined on the Riemann sphere 82 and takes 
values in the Riemann sphere 82 : to be precise, for z = oo, w = a(c if 
c =I= o, and w = oo if c = o (which implies that a =I= o). Each transfor
mation (4. 1 ) has an inverse transformation 

(4. 2) 
dw-b 

z= ' 
-cw+a 

which shows that each homographic transformation (4. 1) is a homeo
morphism of 82 on 82• 

The transformations (4. 1 ) thus form a group G of automorphisms of 
the Riemann sphere 82• We propose to prove the following: 

THEOREM 3. The Riemann sphere has no other automorphism than the homo
graphies ( 4. 1 ) . 

Proof. Consider the subgroup of G whose elements are the transformations 
leaving the point at infinity of 82 fixed. They are the transformations 
with c = o, and, since d =I= o, we can suppose d = 1. In other words, 
the subgroup of G leaving the point at infinity fixed is merely the group of 
all the automorphisms w = az + b of the plane C (theorem 2). This 
group is then the group of all the automorphisms of 82 which leave the 
point at infinity fixed. Theorem 3 thus follows from a lemma of a 
general nature : 

LEMMA. Let D be an open set of the Riemann sphere 82 and let G be a subgroup 
of the group r (D) of all automorphisms of D. Suppose that the following condi lions 
are satisfied : 

a) G is transitive in D; 

b) there is at least one point of D whose stabiliser is contained in G. 

Then, G is the group of all automorphisms of D. 

Proof of the lemma : Let Se r  (D), and let Zoe D be a point whose stabilizer 
is contained in G. Since G is transitive there is a Te G such that 
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T(z0) = S(z0). Hence, the transformation T-1 o Se r(D) leaves the 
point z0 fixed and therefore belongs to G; thus S = T o (T-1 o S) belongs 
to G. 

This completes the proof. 

5· GEOMETRICAL STUDY OF THE GROUP OF HOMOGRAPHIES; EQUIVALENCE OF 
THE HALF-PLANE TO THE DISC. 

When e =I= o, transformation (4. 1) can be put in the well-known canonical 
form 

(5. 1) w 
= _E___ +(be - ad)/e2

• e z + d/e 

It follows that (4. 1 ) is composed of the transformations 

d 
Z1 =z +-, e 

a 
w = Z3 +-, e 

be-ad 
where k = --2- and where each is a special type of homography. 

e 

Hence, any homography is composed of translations, homotheties with fac
tor=!= o, and inversion-reflection (an inversion-reflection is a transforma
tion of the form z' = 1 /z; such a transformation is composed of a reflection 
about the real axis and an inversion of centre o and radius I ) . This 
result has been established for transformations ( 4. 1) such that e =I= o; 
when e = o, it is still true in an obvious way. We deduce that any homo
graphic transformation takes circles, or lines, into circles, or lines (lines can 
be considered as circles passing through the point at infinity). Moreover, 
homographic transformations are conformal since they are holomorphic 
mappings of 82 into 82; in particular, they transform orthogonal circles 
(or lines) into orthogonal circles (or lines). 

For an arbitrarily given pair of circles (or lines), there is always a homo
graphy transforming one into the other. In particular, there is a homo
araphy which takes the real axis y = o into the unit circle : an example is 
the transformation 

(5. 2) z-i 
w= -- · 

z+i 

To verify this, it is sufficient to check that three particular points of the 
real axis (for example o, 1 and oo ) are transformed into points of the unit 
circle (in this case, the points w = - 1, w = -i and w = 1) . 

A priori, a homographic transformation which takes the real axis into 
the unit circle transforms one of the half-planes bounded by the real 
axis into the interior of the unit disc, and the other half-plane into the 
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exterior of the unit disc (including the point at infinity). In the case of 
transformation (5. 2), the upper half-plane y>o is transformed into the 
disc JwJ < 1, since the point z = i is transformed into w = o. 

6. AUTOMORPHISMS OF THE HALF-PLANE AND OF THE UNIT DISC 

Let P denote the upper half-plane y > o and let B denote the open disc 
!wJ < 1. By the results at the end of no. 2, the transformation (5. 2) 
establishes an isomorphism of the group r(P) onto the group r(B). We 
propose now to determine these groups explicitly. 

We have already determined the group of all automorphisms of the 
Riemann sphere. A subgroup of these is formed by the ones which trans
form the real axis y = o into itself; it is the subgroup consisting of the 
homographic transformations 

(6. 1) z�
az+ b

, cz+d 
ad - be =I= o, 

with real coefficients a,b,c,d. For, it is obvious that, if the coefficients are 
real, the transformations (6. 1) take the real axis into itself; conversely, 
if the real axis is transformed into itself, the coefficients a,b,c,d are deter
mined up to a factor by a system of linear equations with real coefficients, 
which are obtained by considering three distinct points .z1,z2,.z3 of the 
real axis and expressing that their transforms are real. 

Since the cofficients of (6. 1 ) are only defined up to a real factor =I= o, 
we can suppose that ad - be=+ 1 in (6. 1). It is easy to see that the 
transformations of the form (6. 1) which take the upper half-plane y > o 
into itself are those for which ad - be = 1 ; for, it is sufficient to verify 

that the real part of a�+ 
d
b is> o. The transformations (6. 1) for which 

CZ+ 
ad - be = 1 form a subgroup G of the group r (P) of all automorphisms 
of the half-plane P; each transformation of G determines the coefficients 
a, b, c, d up to a factor+ 1. 

THEOREM 4. The above group G contains all the automorphisms of the half
plane P. 

When we have proved this theorem, it will follow that every automorphism 
of the half-plane P extends to an automorphism of the Ri�mann sphere, 
which is not obvious a priori. 

To show that G = r(P), we observe first that the group G is transitive 
in the half-plane P. For, the point i can be transformed into an arbitrary 
point a+ ib (b > o) of the half-plane by a suitable transformations in G; 
this follows immediately. If we show that the stabilizer of a point 
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in the half-plane (for example, the point z = i) is contained in G, 
then theorem 4 will be proved because of the lemma of no. 4. The proof 
is then reduced to showing that the stability subgroup of the point i consists 
of homographic transformations. Transformation (5· 2 ) defines an iso
morphism of this stability subgroup onto the subgroup lwl < 1 of r(B) 
consisting of the automorphisms of the disc which leave the centre o fixed. 
It is therefore sufficient to prove the following : 

PROPOSITION 6. I. An automorphism of the disc lzl < 1, which leaves o fixed, 
is a rotation z ---+ zei& for some angle a. 

Proof of proposition 6. 1. Let z ---+ f (z) be an automorphism of the unit 
disc such thatf (o) = o. By Schwarz' lemma (chapter 111, § 3), we have 

lf(z)I < izl 

for all z such that lzl < 1. But, by applying Schwarz' lemma to the inverse 
transformation, we also find that 

lzl < If (z) I· 
Comparing them gives lzl = lf(z)i, and consequently, again by Schwarz 
lemma, we have f (z) = cz, where c is a constant of unit modulus. This 
completes the proof. 

Hence, we have also completed the proof of theorem 4. 

As an exercise one can determine explicitly the stabilizer of the point 
z = i in the group of all automorphisms of the upper half-plane y > o. 
It is transformed from the stabilizer of o into the group of auto
morphisms of the unit disc by the transformation (5· 2 ) . One obtains 
the transformations 

z +tan.!. 
2 z---+ -----a 

1 -ztan-
2 

which depend on the real parameter a. 
To determine the automorphism group of the unit disc lzl < 1, it is sufficient 
to transform the group of automorphisms of the upper half-plane by (5. 2 ). 
However, we shall use a more direct method. The problem is to find 
all the homographic transformations 

, az + b 
z = 

cz + d 

which transform the circle zz - 1 = o into the circle z'z' - 1 = o while 
transforming the open disc 1 - z:e > o into the open disc 1 - z'z' > o. 
The first of these conditions says that 

(az + b)(az + b) = (cz + d)(cz + d) 
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for all z of modulus 1, which implies 

(6. 2) 

and 

(6. 3) 

We have then 

ali = cd 

aii - cc = dd - bb. 

1 
_ ,_, _ (da-hli) (1 -zz) z z - Jez + dJ2 , 

and, for I - zz > o to imply 1 -z'z' > o, it is necessary and sufficient 
that 

(6. 4) dd-bb> o. 

Inequality (6. 4) along with equation (6. 3) implies that a =I= o, d =I= o; 
from (6. 2), we have 

and, by (6. 3), 

Hence, 

c ]j � (i" =-=;{ =A, with P-1 < 1• 

!a/ =JdJ. 

z + 'A_j_ 
a a = eie z + Zo , 
d + "i a I + ZoZ I dz 

where 6 is real and z0 is a complex number such that Jz0J < 1. 

To sum up, we have proved the following : 

PROPOSITION 6. 2. The group of automorphisms of the unit disc is composed 
of the homographic transformations of the form 

(6. 5) z' = ei0 z + 
_Zo , for 6 real and Jzol < I. I + ZoZ 

3. Fundamental Theorem of Conformal Representation 

I. STATEMENT OF THE FUNDAMENTAL THEOREM 

We propose the following problem: given an open set D of the plane C, 
find all the isomorphisms (if any exist) of D on the unit disc Jz/ I. A< 
necessary condition for the existence of such an isomorphism is the follo
wing: 
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It is necessary that D shall be simply connected and different from C. 

The first part of the condition is necessary because D must be homeo
morphic to the open disc, which is simply connected; the condition D # C 

is necessary because of theorem I of§ 2, no. I. The following fundamental 
theorem states that these necessary conditions are also sufficient. 

FUNDAMENTAL THEOREM. Any open set D ofthe plane C which is simply connected 
and different from C is isomorphic to the open disc lzl < 1. 

The proof of this theorem will be the object of numbers 3 and 4. First of 
all, we observe that any isomorphism of D onto izl < I is composed of a 
particular isomorphism and an arbitrary automorphism of the unit disc. 
Since the automorphisms of the unit disc form a transitive group, we see 
that, if there exists an isomorphism of D on the unit disc, there exists an 
isomorphism which takes an arbitrarily chosen point z0 e D into the 
centre of the disc. Hence, we restrict the required isomorphism f with 
condition 

( I. l ) f (zo) = o. 

Moreover, the stabilizer of the centre of the unit disc consists of the 
rotations about o (§ 2, proposition 6. 1) ; we can thus restrict the isomorphism 
f with the additional condition 

( 1. 2) f' (z0) is real and/' (z0) > o. 

In brief, conditions ( 1. 1) and ( 1. 2) completely determine the required 
isomorphism f if it exists. 

',Ye shall immediately state two corollaries of the fundamental theorem. 

COROLLARY I. Two simply-connected open sets D1 and D2 of the plane C are 
isomorphic if they are both different from C. 

We note that, because of theorem 1 of§ 2, no. 1, a simply-connected 
open set D different from C is not isomorphic ot C. Nevertheless : 

COROLLARY 2. Two simply connected open sets D1 and D2 of the plane are 
always homeomorphic. 

For, if they are different from C, this follows from corollary 1; if one of 

them is equal to C, it follows from the fact that the disc lzl < 1 is homeo
morphic to the plane C. 

2. REDUCTION TO THE CASE OF A BOUNDED DOMAIN 

PROPOSITION 2. 1 • Let D be an open set satisjyi,ng the hypotheses of the funda
mental theorem. Then, there exists an isomorphism of D onto a bounded open 

set of the plane C. 
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For, there exists a point a* D by hypothesis. Consider the function 
log (z- a) in D; a branch g(z) of it can be chosen since D is simply-con
nected (cf. chapter 11, § 1, no. 7). The holomorphicfunction g is simple 
in D because the relation g(z1) = g(z2) implies 

that is 

Choose a point Zoe D; the function g takes all the values in a disc E 
of centre g(z0) as z varies in D (cf. § 1, n°. 1) . If we translate this disc 
by a translation. 27ti, we obtain a disc, which has no points in common 
with the imageiof D by g since the function e'J is simple. It follows that 
the function 

g(z) - g(z0) - 2'1ti 

is holomorphic, simple and bounded in D. It therefore defines an isomor
phism of the open set D onto a bounded open set of the plane C, and 
proposition 2. 1 is proved. 
In future, we shall assume D to be bounded; by means of a translation and 
a homothety we can suppose that Zo = o and that D is contained in the 
disc izl < 1. These hypotheses will always be made in future. 

3· AN EXTREMAL PROPERTY 

PROPOSITION 3. 1. Let A be the set of simple holomorphic functions in D which 
satisfy the two conditions 

(3· 1 ) f(o) = o, lf(z)I < 1 for zeD. 

A necessary and sufficient condition for the image D' off to be exactly the unit disc 
is that If' ( o) I is maximum in the set of values which it takes as f describes A. 

Proof. 

10 The condition is necessary. Let f e A, let D' be its image and let g 
be an isomorphism of D on the unit disc such that g( o) = o. Then, 
f = h o g, where h is an isomorphism of the unit disc onto the image D' 
off, with h(o) = o. Thus, ]h'(o)I <; 1 by Cauchy's inequality. Hence 

lf'(o)I <;jg'(o)j. 

20 The condition is sufficient. To see this, we shall show that if f e A 
and if there is an a (with ial-:=::: 1) which does not belong to the image 
off, then there exists a g EA such that 

jg'(o)I > lf '(o) j. 
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For, let us consider the function 

(3· 2) F(z) = log f (z)_-a ; 
1 - af (z) 

it is holomorphic and simple in D. The values off (z) are in the unit 

disc, the values of _J (z)_ f( a) are also in the unit disc (cf. § 2, proposition 
I -a Z · 

6. 2), and, consequently, the function F(z) has real part < o. We have, 
of course, chosen some branch of the logarithm for F(z), which is possible 
because D is simply connected. Consider the function 

(3· 3) ( 
) 

_ F(z)-F(o) g z 
- ' F(z) + F(o) 

which is holomorphic and simple in D. Then, g(o) = o; moreover, 
[g(z) [ < 1 because of the following lemma : 

LEMMA. 1J two complex numbers u and v satisfy Re(u) < o and Re(v) < o, 

then Iv - �1 < 1. (The proof is left to the reader.) 
v + u 

Hence, the function g belongs to the set A defined in proposition 3; 1. 

Let us calculate the derivative of g at the origin : 

, F'(o) (3. 4) 
g (o) = 

F(o) + F(o)' with F'(o) =(a-� )i'(o). 

We then have 
\g'(o)\ _ 1 -aa 
\f'(o)\ - 2jaj log l �I' (3· 5) 

and, to show that [g'(o)[ > [f'(o)[, it is sufficient to verify the inequality 

(3· 6) I - t2 I ---2log->o t t for 0 < t< I. 

This verification is elementary : the left hand side is a function of t whose 
derivative is < o; thus it is strictly decreasing in the interval o < t <; 1 
and, since it is equal to o for t = 1, it is> o for o < t < 1. 

We have thus completed the proof of proposition 3. 1. 

4· PROOF OF THE FUNDAMENTAL THEOREM 

Because of proposition 3. 1, we need only prove that there exists a function 
f e A for which the upper bound of If' ( o) [ is attained. 

Let B be the set of those f e A for which [f' ( o) [ :>- I. The set B is 
non-empty because the function f (z) = z belongs to it. The set B is a 

bounded subset of the vector space ;H;(D) (cf. chapter v, § 4, no. 1); for, 
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we have If (z) I <I for all zeD and all feB. We shall show that B 
is also a closed subset of �(D). Let f be a holomorphic function in D 
which is the limit (uniform on compact subsets of D) of a sequence of 
functions J,. e B. Then, 

f (o) = limfn(o) = o. 

Moreover, since the derivative f' is the limit, uniform on compact sets, 
of the derivativesf�, we deduce that the limit lf'(o)I = lim lf�(o)I ;;;>I. 

R 

Thus the functionfis not constant in D. Moreoverfis the limit of simple 
functions fn· It follows thatfis simple (cf. chapter v, § 1, proposition 2. 2). 
Since I fn(Z) I< I for all z e D, we have If (z) I< I in the limit; but 
If (z) I = I is impossible at any point z e D because of the maximum 
modulus principle, remembering again thatf is not constant. To sum up, 
we have just proved that the function f satisfies all the conditions which 
define the set B. In other words, f e B, and this proves that the set B 
is closed in �(D). 
Hence the set Bis a bounded, closed subset of :f&(D). By the fundamental 
theorem of chapter v (§ 4, no. 2), the set B is therefore compact. However 
the mapping which associates the real number l f '(o)I to each feB 
is a continuous mapping by theorem 2 of chapter v, § 1, no. 2. This 
continuous function on a compact space thus attains its upper bound and 
the fundamental theorem is proved. 

4. Concept of complex Manifold; 
Integration of Differential Forms 

I. COMPLEX MANIFOLD STRUCTURE 

Let X be a Hausdorff topological space. We suppose that an open covering 
(U;);e1 is given, and that for each U; there is a complex-valued function 
Z; defined in U; which is a homeomorphism of U; onto an open set A; of 
the plane C. The following coherence condition is imposed on the func
tions : 

(I. I ) For any i EI andj EI such that U; n uj =I= ¢, the mapping fij = Zi 0 (zJ-1 
ef the image Zi(V; n Ui) c: Ai onto the image Z;(V; n UJ c: A; is a holomorphic 
transformation whose derivative is everywhere =I= o. In other words, Z; = fii(Zi) 
in U; n Uh where the f;i are holomorphic (with derivative =I= o) in the 
open set ziV; n Vi) of C. 

By definition, the datum on X of an open covering and functions Z; 

satisfying condition ( I. I ) , is called a complex manifold structure (of complex 
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dimension I ) . The function z, is called the local coordinate in the open set 
Ui. If a point of X belongs to several open sets U,, then there are several 
local coordinates in some neighbourhood of this point (one for each open 
set); the change from one local coordinate Zi to another Zi is made by a 
holomorphic transformation fii because of the coherence condition ( I .  I ) . 

For example we have already defined the Riemann sphere as a datum of 
this kind (chapter 111, § 5, no. 1). In that case, X was the unit sphere 
in R3, and the covering consisted of two open sets, each being the comple
ment of one of the poles of the sphere. 

Definition of a holomorphic function. Let X be a space with an complex 
manifold structure as above. Let f be a continuous complex-valued 
function defined on X, and, for each i, let f; be the function defined on 
the open set Ac C by the equation f = f; o z, in U,. We say that f 
is holomorphic if the functionf; is holomorphic in the open set A, for each i. 
In other words,f is holomorphic in X if it can be expressed as a holomorphic 
function of the local coordinate Zi in each open set Ui. 

2. HOLOMORPHIC MAPPINGS; INDUCED STRUCTURE 

Definition. Let X and Y be two spaces, each with an complex manifold 
structure. We say that a mapping ep : X-+ Y is a holomorphic mapping 
if it is continuous and if, in addition, it satisfies the following condition : 
for any point a e X, let b = ep (a) and let w be a local coordinate in a neigh
bourhood of b in the space Y; then, w o cp must be a holomorphic function 
in some neighbourhood of the point a of X. This condition means that 
w o cp is expressible as a holomorphic function of a local coordinate in a 
neighbourhood of a in the space X. Hence, the continuous mapping Cf' 
is holomorphic if, in a neighbourhood of each point a e X, a local coor
dinate in a neighbourhood of the image point b = cp(a) is a holomorphic 
function of a local coordinate in a neighbourhood of a. The coherence 
condition ( 1. I ) ensures that the above condition is independent of the 
choice of local coordinates. 

Let X, Y and Z be three complex manifolds and let qi : X -+ Y and � : 
Y-+ Z be two holomorphic mappings. Then, the composed mapping 
� o cp is a holomorphic mapping of X into Z. The proof is left to the 
reader. 

Let X and Y be two complex manifolds; an isomorphism ofX on Y is defined 
to be a homeomorphism ep : X-+ Y which is holomorphic along with its 
inverse homeomorphism 9-1. In fact, we shall see later (proposition 6. 1) 
that, if cp is a holomorphic homeomorphism, its inverse mapping is automatically 
holomorphic, and, consequently, qi is an isomorphism. 
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Consider two complex manifold structures on the same topological 
space X, the first being defined by an open cover (U;) and local coordi
nates Z;, and the second being defined by an open cover (Va) and local coordi
nates w,. We ask if the identity mapping X -+ X is an isomorphism of the 
first complex manifold structure onto the second. By going back to the defi
nitions, we see immediately that the following condition is necessary and 
sufficient : for any point a e X, for any local coordinate Z; of the first struc
ture in a neighbourhood of a, and for any local coordinate Wa of the second 
structure in a neighbourhood of the same point a, Wa is expressible as a 
holomorphic function of Z;, and conversely Z; is expressible as a holo
morphic function of Wa. This condition can also be expressed as follows : 
consider the open covering of X consisting of all the U; and all the Va 
with local coordinates Z; and wa; then the required condition is that this 
system satisfies the coherence condition ( 1. 1) ; in other words, the system 
must define a complex manifold structure on X (which structure will be 
isomorphic both to that defined by the U; and the Z; and to that defined 
by the Va and the Wa) . When two complex manifold structures on X 

satisfy the above condition we say that they are equivalent. A complex 
manifold is defined to be the datum of a Hausdorff topological space X 

and a class of analytic structures on X which are equivalent to each other. 

Definition. Let X be a space with a complex manifold structure defined 
by the Ui and the Zi· Let U be an open set of X; the complex structure 
on U induced by that on X is defined to be the structure given by the open 
sets Un U1 and the restriction of the functions Z; to Un U;. In other 
words, if a e U, then a local coordinate in a neighbourhood of a for the 
induced structure is merely a local coordinate in a neighbourhood of a 
for the given structure on X. · Hence, any open set U of a complex mani
fold X is automatically provided with a complex manifold structure. 

3· EXAMPLES OF COMPLEX MANIFOLDS 

Consider the plane C of the complex variable z. We take the covering 
formed by the single open set C and take z to be the local coordinate in C. 
This defines a complex manifold structure on C because the coherence 
condition ( 1. 1) is trivially satisfied. In accordance with the end of no. 2, 

any open set D c C is provided with a complex manifold structure; with 
this definition, the holomorphic functions on the complex manifold D 

are merely what we have always called holomorphic functions in D. As 

a second example of a complex manifold, we have the Riemann sphere 
which we have already discussed (chapter rn, § 5, no. 1) . 

Consider now the quotient space C/Z of the plane C by the additive 
subgroup Z of real points with integral coordinates. A point of C/Z 
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is then an equivalence class formed by points whose differences are 
integers. According to the general definitions · of topology, CjZ is 
provided with the quotient topology of the topology of C : a set of C/Z is 
open if its inverse image in C (for the canonical mapping C-+ C/Z) is an 
open set of C. This is equivalent to saying that the open sets of C/Z are 
the images of open sets of C under the canonical mapping C -+ C/Z. 
It is very easy to show that the topology of C/Z is Hausdorff. To define 
a complex manifold structure on X = C/Z, consider the open sets V of C 
which are so small that the restriction to V of the canonical mapping 
p: C -+X is injective (for example, the open sets V of diameter< I). 
If z denotes the coordinate in the plane C, consider the pair formed by 
the open set U = p(V) of X and the function z o p-1 defined in this open 
set; we shall show that these pairs define a complex manifold structure on X. 
It is sufficient to check the coherence condition. Let, therefore, V 1 and V 2 
be two sufficiently small open sets of C such that their images U 1 = p(V 1) 
and U2 = p(V2) intersect; call the restriction of p to vi (for i = I, 2) 
p;, and put 

Vf=(Pi)-
1
(U1nU2)cVi (i=I,2). 

The coherence condition requires that the mapping f12 = P11 o p2 of 

V� on V� is holomorphic and that its derivative is =F o. However, 
this is indeed the case because, if z e V�, then f12(z) and z have the same 
image in C/Z, so, in some neighbourhood of each point of V�, f12(z) - z 

is a fixed integer. 
We obtain another example of.a complex manifold by considering a 

discrete subgroup Q of C having as base a system of two vectors e1 and e2 
with a ratio which is not real, as in chapter v, § 2, no. 5. Let X be the 
quotient C/O provided with the quotient topology of the topology of C; 
the open sets of X are the images of open sets of C by the canonical 
mapping p : C -+ C/O. The topology of X is Hausdorff and its complex 
manifold structure is defined exactly as in the previous example. But, in this 
case, the space X = C/O is compact: for, consider a closed parallelogram of 
periods, say P; P is a compact subset of C, so its image under p is a 
compact subset of X; but this image is the whole of X, and X is therefore 
compact. We have thus an example of a compact complex manifold 
other than the one we already know, the Riemann sphere. 

4· PRINCIPLE OF ANALYTIC CONTINUATION; MAXIMUM MODULUS PRINCIPLE 

The principle of analytic continuation (chapter I, § 4, no. 3, corollary 2) 
extends to holomorphic functions on a complex manifold and, more 
generally, to holomorphic mappings of a complex manifold X into a 

complex manifold X'. To be precise, let D be a non-empty open set of a 

connected complex manifold X; if two holomorphic mapping f and g of 
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X into X' coincide on D, then they coincide everywhere in X. To prove this, 
it is sufficient to prove the following : 

PROPOSITION 4. I. Let f and g be two holomorphic mappings of a complex mani
fold X into a complex manifold X' ; the set U of points of X in a neighbourhood 
of which f and g coincide is both open and closed. 

Proof. By definition, U is open, and it is therefore sufficient to show that 
U is closed. Let a be a point of X in the closure of U; since f and g are 
continuous and coincide in U, we have f(a) =g(a). In some neighbour
hood of a in X, take a local coordinate which is zero at the point a; take 
also a local coordinate win a neighbourhood of f (a) in X'. In some neigh
bourhood of a, the functions w of and w o g can be expressed as holo
morphic functions cp(z) and '}(z) in a neighbourhood V of z = o. By 
the classical principle of analytic continuation, the set E of z e V in a 
neighbourhood of which <p and 'f coincide is closed; since the point z = o 
is in the closure of E, we have o e E; hence, cp and 'f coincide in a neigh
bourhood of o, and, consequently, f and g coincide in a neighbourhood 
of the point a e X. 

This completes the proof. 

PROPOSITION 4. 2. Let f be a holo"Wrphic function on a connected complex mani
fold X. If ! f I has a relative maximum at a point a e X, then the function f is 

constant (maximum modulus principle). 

Proof Consider a local coordinate z in a neighbourhood of a; the function/ 
is expressed in a neighbourhood of a as a holomorphic function of z. Since 

If I has a relative maximum at the point a, the function f is constant in 
some neighbourhood of a by the classical maximum modulus principle 
(cf.chapter rn, § 2, theorem I ) . We see then, by the usual argument, 
that the set of points of X where f takes the value f (a) is both open and 
closed; since X is connected, this set is the whole of X. 

This completes the proof. 

CoROLLARY. If X is a compact, connected, complex manifold, any holomorphic 
function on X is constant. 

For, If I is a continuons function on the compact space, so it attains its 
upper bound; by proposition 4. 2, the function f is then constant on X. 

Examples. The Riemann sphere S2 and the space C/O (cf. no. 3) are 
compact, connected, complex manifolds. Thus, any holomorphic func
tion on one of these spaces is constant. By noting that the mapping 

f-+ f o p establishes a bijective correspondence between the holomorphic 
functions on C/O and the holomorphic functions on C which have the 
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points of O as periods, we obtain a result which we established earlier 
by another method, namely : arry holomorphic function on C which is doubly 
periodic is constant ( c£ chapter m, § 5, no. 5, corollary to proposition 5. I ). 

5· MEROMORPHIC FUNCTIONS ON COMPLEX MANIFOLDS 

Definition. Let X be a complex manifold; a meromorphic function on X 
is defined to be a holomorphic mapping ofX into the Riemann sphere S2; 
a meromorphic function is simply a continuous function which can take 
the value oo and which in a neighbourhood of each point a e X, can 
be expressed as a meromorphic function of a local coordinate in the neigh
bourhood of a. 

Let 0 again be a discrete subgroup of C generated by two elements e1 
and e2 whose ratio is not real. The canonical mapping C-+ C/O obviou
sly sets up a bijective correspondence between the meromorphic functions 
on the complex manifold C/O and the meromorphic functions on C having 
Q as a system of periods. 

6. RAMIFICATION INDEX OF A HOLOMORPHIC MAPPING 

Let cp: X-+ Y be a holomorphic mapping of a complex manifold X into 
a complex manifold Y, and let a be a point of X. Let z be a local coor
dinate in X in a neighbourhood of a and let w be a local coordinate in Y 
in a neighbourhood of b = cp(a). Since cp is holomorphic, w(cp(x)), for x 

near a, can be expressed as a holomorphic functionf (z) of the local coor
dinate z. Suppose, for simplicity, that z is zero at the point a, and w 

vanishes at the point b. 
Let p be the order of multiplicity of the root o of the equationf (z) = o. 

It is easy to see that this integer p is independant of the choice of local 
coordinate z in the neighbourhood of a and of the choice oflocal coordinate 
w in the neighbourhood of b; for, the changes of local coordinates are 
effected by holomorphic functions whose derivatives are =I= o. 

The integer p thus defined is called the ramification index of the mapping 
cp : X-+ Y at the point a e X. By § I (nos. I and 2), if p is the ramification 
index there exists a local coordinate z in a neighbourhood of a and 
a coordinate w in a neighbourhood of b, such that the transformation 

cp expressed in terms of these local coordinates is w = zP. Conversely, 

if this is the case, the ramification index at the point a is equal to p. 
We see that, in a neighbourhood of a, the function cp takes each value in Y 
sufficiently near to b and distinct from b exactly p times. In particular, 
a necessary and sujfici.ent condition for the restriction of cp to a sujfici.ently small 
neighbourhood of a to be a homeomorphism of this neighbourhood on its image (in 
other words, that cp is locally simple in a neighbourhood of a) is that the rami-
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fication index p is equal to 1; we say then that the mapping cp is uuramified 
at the point a. 

PROPOSITION 6. 1. Any simple holomorphic mapping of a complex manifold X 
on a complex manifold Y is an isomorphism. 

For, by the previous argument, the ramification index is necessarily equal 
to 1 at any point a e X; if b = cp(a), the inverse mapping cp-1 is obtained 
in a neighbourhood of b by expressing the local coordinate z in a neigh
bourhood of a as a holomorphic function of the local coordinate w in a 
neighbourhood of b. This proves the proposition. 

Example. Consider the mapping z -+ e2�i•, which is a holomorphic map
ping of the additive group C onto the multiplicative group C* of complex 
numbers =I= o. By passing to the quotient, it induces a holomorphic 
mapping cp of the analytic space C/Z onto C*. It is clear that this mapping 
is holomorphic and simple. It follows that cp is an isomorphism of C/Z 
onto C*. In fact, it is also an isomorphism of the topological groups C/Z 
and C* as we saw in chapter 1, § 3. 

7. FUNDAMENTAL THEOREM OF CONFORMAL REPRESENTATION 

Here we shall state, without proof, a theorem which generalizes the fun
damental theorem, stated and proved in § 3 for open sets of the plane C, 
to the case of complex manifolds. 

FUNDAMENTAL THEOREM. Arry simply connected complex manifold X is iso
morphic to one of the following three manifolds : 

1° the Riemann sphere S2; 

2° the plane C; 

3° the unit disc lzl < 1. 
The proof of this theorem is too difficult to be given here. Note that 

only one of the three analytic manifolds above is compact, the first S2• 
We deduce the following corollary: 

COROLLARY. Any compact simply-connected, complex manifold is isomorphic 
to the Riemann sphere. Any non-compact, simply-connected, complex manifold is 
isomorphic to the plane C or the unit disc (these two cases are mutually exclusive) . 

8. INTEGRATION OF DIFFERENTIAL FORMS AND THE RESIDUE THEOREM 

Definition of a holomorphic differential form on a complex manifold X : such 
a form is defined by giving a holomorphic differential form 

w; = f;(z;)dz; 
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in each open set U; with local coordinate Z;, where f; is a holomorphic 
function in the open set A; c C, which is the image of U; under the local 
coordinate Zi· The forms w; are further restricted by the following 
coherence condition : if z, and Zi are two local coordinates in a neighbour
hood of the same point a e X, the differential form w i is deduced from the 
differential form w; by the change of variable 

(8. I ) 

where transformation (8. I ) is that which expresses the local coordinate Z; 

as a function of the local coordinate Zi· In other words, we must 
have the relation 

(8. 2) 

We shall indicate quickly, without proofs, how the theory of holomorphic 
differential forms in an open set of the plane C can be generalized to the case 
we have in mind of holomorphic differential forms on a complex manifold. 
Let w be a holomorphic differential form on a complex manifold X; 
in a neighbourhood of each point of X, there exists a primitive of w, that 
is, a holomorphic function g such that dg = w. Such a primitive is deter
mined up to the addition of a constant. A global primitive of w does 
not exist in general; however, if the space X is simply connected, any 
holomorphic differential form on X has a primitive. In the general 
case where X is not simply connected, the integral of w along a closed 
path of X is not always zero; this integral has the same value for two 
homotopic closed paths (in the sense of chapter n, § I, no. 6). The value 

of the integral along such a closed path is called a period of the integral J w. 

Let X be an analytic manifold; we have, in some neighbourhood of each 
point a of X, a concept of orientation because each local coordinate in a 
neighbourhood of a defines a homeomorphism of a neighbourhood of 
a onto an open set of the plane C, which has its natural orientation, and 
two local coordinates in a neighbourhood of a indeed define the same 
orientation, since the change of local coordinates is expressed by a holo
morphic transformation. From this, the idea of the oriented boundary 
of a compact set contained in X can easily be deduced; if r is the oriented 

boundary of a compact set, then the integral fr w is zero for any holo-
morphic differential form w. 

r 

We shall now define the idea of a residue of a holomorphic differential 
form. Let E be a closed discrete subset of a complex manifold X (so that 
E consists of isolated points) and let w be a holomorphic differential form in 
the complement of E. Let a be a point of E and let z be a local coordinate 
in a neighbourhood of a which is zero at the point a. In some neigh
bourhood of a, the form w can be writtenf(z) dz, wheref is holomorphic 
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in the neighbourhood of o except perhaps at z = o. The Laurent expan
sion ofj(z) shows that, in a neighbourhood of a, the form w can be written 

(8. 3) W = w 1 + (1+2+ ·" ) dz, 
z z2 

where w1 is a holomorphic differential form in a neighbourhood of a 
(a included). Let y be a closed path situated in a small neighbourhood of 
a which does not pass through a and whose index with respect to a is equal 
to r (the index of a closed path is defined by considering the image of a 
neighbourhood of a under a local coordinate). The classical residue 
theorem shows that 

(8. 4) 

Hence, the coefficient c1 which occurs on the right hand side of (8. 3) 
does not depend on the choice of local coordinate z, which is zero at the 
point a. We call it the residue of the differential form w at th• point a· 
Starting from this definition and reasoning exactly as in chapter III (§ 5, no. 2) 
we can prove the following : 

THEOREM OF RESIDUES. If the oriented boundary r of a compact set K does not 
contain any of the points of the discrete closed set E in the complement of which the 

differential form w is holomorphic, the integral l w is equal to 27ti times the sum 

of the residues of w at the points of E situated in K. 

5. Riemann Surfaces 

I • DEFINITIONS 

Definition. Let Y be a complex manifold; a Riemann surface spread over Y 
(or, simply, a Riemann surface over Y) is defined to be a connected complex 
manifold X and a non-constant holomorphic mapping cp: X-+ Y. We 
usually consider the case where Y is the plane C of the complex variable, 
or the Riemann sphere S2, in other words, Riemann surfaces spread over 
the plane, or the sphere. 

We have seen in § 4, no. 6 the effect of the mapping cp in a neighbourhood 
of a general point a e X : if the ramification index of cp is equal to I at 
the point a, cp defines a homeomorphism of a neighbourhood of a onto 
a neighbourhood of cp(a); if the ramification index of cp at the point a is an 
integer p > I, the image under cp of a small neighbourhood of a covers a 
neighbourhood of cp(a) p times. The ramifications of cp (points where the 
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ramification index is > 1) are isolated points of X. The mapping qi is 
always an open mapping and the inverse image of a point of Y is a discrete 
subset ofX. 

It should be understood that the mapping qi is not necessarily injective 
even if there are no ramifications; moreover, when there are ramifications, 
the image under qi of the ( discrete) set of ramifications is not necessarily a 
discrete subset of Y; it can also happen that an infinity of distinct 
ramifications of X have the same image in Y. 

Definition. An unramified Riemann surface over Y is a Riemann surface 
(X, <p) where the mapping qi is unramified, that is to say, where qi has 
ramification index 1 at each point of X. 

To define an unramified Riemann surface over Y, it is sufficient to take 
a connected, Hausdorff, topological space X and a continuous mapping qi 
ofX into Y which is locally a homeomorphism (this means that any point ofX 
has an open neighbourhood V such that the restriction of cp to Vis a homeo
morphism of V onto its image cp(V)). For, the mapping qi then defines, 
in a neighbourhood of each point of X, a local coordinate, and so X is provided 
with a complex manifold structure and it is clear that the mapping qi is 
a holomorphic mapping of X in Y. A particular case of an unramified 
Riemann surface over Y is that of a covering space of Y : 

Definition. A covering space of Y is an unramified Riemann surface (X, cp) 
which satisfies the following condition : 

For any point b e Y, there exists an open neighbourhood V of b in Y such that the 
inverse image cp-1(V) is composed of disjoint open sets Ui of X, each of which 
is mapped homeomorphically onto V by the mapping cp. 

Example. Let Y = C*, the complement of o in the plane C. Let X = C 
and let z = e1 be the mapping of X into Y. This mapping makes X into 
a covering space of Y. For, let b be a complex number =I= o, and take 
an open disc of centre b and radius < jbj for V. Each branch of log z 
in V is a function which defines a homeomorphism of V onto an open set of 
the plane C. These open sets U1 are mutually disjoint, their union is 
cp-1(V), and the restriction of cp to each U1 is a homeomorphism of Ui on V. 
In the above example, the space Y = C* is not simply connected, but 
its covering space C is simply connected. This is therefore an example 
of a connected but not simply connected manifold having a simply 
connected covering space. We state the following theorem without 
proof: 

THEOREM. Any connected open set of the plane C (or, more generally, any connected 
complex manifold Y) has a simply connected covering space. 
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2. ; HoLOMORPHIC FUNCTIONS AND HOLOMORPHIC DIFFERENTIAL FORMS ON 
A RIEMANN SURFACE 

Definition. Given a Riemann surface (X, cp) over Y, a holomorphic (resp. mero
morphic) function on this Riemann surface is simply defined to be a holo
niorphic (resp. meromorphic) function on the analytic manifold X. A 
holomorphic differential form on a Riemann surface is defined similarly. 

For example, consider the Riemann surface mentioned at the end of 
no. l : X = C (with complex variable t), Y = C* (with complex variable 
z .=fa o), and the mapping cp is given by z = e1• Since the mapping cp is 
u,nramified, we can take the function e1 = z as a local coordinate in a 
neighbourhood of each point of X; then any holomorphic function f 
on the Riemann surface can be expressed locally as a holomorphic function 
of z. But, since different points of X can be mapped by cp onto the same 
point of Y,/ is not in general a global (single-valued) holomorphic function 
of the variable z =I= o. In particular, t is a holomorphic function on X; 
in. a neighbourhood of each point of X, t is one of the branches of log z, 
butlog z is not a single-valued function of z on C*. We can say that we 
have made log z single-valued by considering the covering space cp : X --+ Y : 
instead of considering it as a function on C*, we consider it as a function 
on. the simply connected covering space (X, cp) of C*. 

We shall now study another example of how a many-valued function can be 
'made single-valued' by the introduction of a suitable Riemann surface (we 
shall not deal with the general case). Consider the many-valued function 

Y = ( 1 - .r)l/3 

in the plane C. At each point x other than l, j and j2 (the cube roots of l ) , 

y has three distinct values; if x takes one of the values l, j, or j2, the three 
'{alues ofy coincide at the value zero. We intend to define a complex mani
fq�d X and a holomorphic mapping cp : X --+ C. Consider the product C x C 
consisting of pairs (x,y) of complex numbers and the subset X consisting of 
pairs such that 

(2. l) x3 +ya= I . 

We provide X with the topology induced from the product C X C; 
thus X is a Ha'usdorff topological space. We consider the two functions 
<>n X, denoted by x and y, which are, in fact, the first and second coordi
nates. of the point (x,y). To define a complex manifold structure on X, 
we. choose a local coordinate in a neighbourhood of each point of X. Take 
first a point (x0,y0) e X such that y0 =I= o (so x0 is neither l, j, nor j2); 
then x is taken as the local coordinate. This choice is valid because 
the function x defines a homeomorphism of a neighbourhood of the point 
(x0,y0) (in X) onto a neighbourhood of x0 (in C) : the inverse homeomor-
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phism takes a point x (near to x0) to the pair (x, y), where y = (1 - xll)113 
the branch being that which is equal to y0 at x = x0• Now let (x0, y0) 
be a point of X such that y0 = o; then x0 =I= o (in fact, x0 is one of the 
numbers 1 ,j,j2) and we can take y as a local coordinate; this choice is 
valid for the same reason as in the other case (but with the roles of x and y 
interchanged). We still need to check that the local coordinates thus 
defined satisfy the coherence condition ((1 . 1 )  of§ 4). In other words, 
we must verify that in a neighbourhood of a point (x0, y0) e X such that 
x0 =I= o and y0 =I= o, equation (2. 1 )  defines the local coordinate y as a 
holomorphic function of the local coordinate x, and vice-versa. However, 
this is indeed the case because ( 1 -x3) 113 has a holomorphic branch which 
is equal to y0 for x = x0; similarly, ( 1 -y3)113 has a holomorphic branch 
which is equal to x0 for y =_Yo· 

Hence we have provided the topological space X with a complex mani
fold structure. Each of the functions x and y is a holomorphic function 
on X for this structure. Let us verify this for x : it is obvious for a point 
(x0,y0) such that y0 =I= o because x is a local coordinate; at a point (x0, y0) 
such that y0 = o, y is a local coordinate, and x = (1 -y3)1/3 is a holo
morphic function of y. 

Let the mapping ip: X---+ C be the function x. Thus, (X, ip) is a Riemann 
surface over C and it is the one that we have been seeking. On this 
Riemann surface, y = (1 -x3)113 is indeed a (single-valued) holomorphic 
function. We note that the Riemann surface X has three points over 
each point xeC, the three points (x,y) such that y = (1 -x3)1i3• We 
say that the Riemann surface has three 'sheets'. But these three points 
coincide if x is one of the points 1 ,  j, j2 of C. 

We define a particular holomorphic differential farm w on the above complex 
manifold X as follows: in a neighbourhood of a point (x0, y0) such that 
y0 =I= o, we put 

dx 
ro=-, 

y 

and, in a neighbourhood of a point (x0, y0) such that Yo = o (so x0 =I= o), 
we put 

- ydy 
w---, 

x2 

( If x0 =I= o and y0 =I= o, the relation 

x2 dx + y2 dy = o, 

which is a consequence of (2. 1 ), implies the equality of the differential 

forms 
dx 

= 
_ydy) . We can say that w is simply the differential form 

y x2 
dx 

(i _ x3)1/3 
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on C, made holomorphic by introducing the Riemann surface (X, cp) over C. 
Example. Show that the closed path y of the plane C, illustrated in figure 12, 
is actually the image under cp of a closed path on the Riemann surface X; 
in fact, there are three closed paths on X whose image is y. By integra-

0 

x 

Fig. 12 

ting the above differential form ro round one of them, show that the 
1 . 1 (1 dx . 1 2'1t 

rea mtegra 
J 0 ( 1 _ x3) 113 is equa to 3VS · 

Let us reconsider equation (2. 1 ) . It will lead us to define a Riemann 
surface, not over C, but over the Riemann sphere 82• Consider then the 
complex projective plane P2(C), which is the quotient of 

C x C x C - lo, o, o! 

by the following equivalence relation : 

(x, y, z) '""" (x', y', z') if x, y, z are proportional to x', y', z' 

(we say that (x,y, z) is a system of homogeneous coordinates of the point 
of P2(C) which it defines, that is to say, of its equivalence class). The 
points of P2(C) whose homogeneous coordinate x,y, z satisfy the equation 

(2. 2) xa + y3 = za 

form a Hausdorff topological space X'. The space X above can be 
identified with a subspace of X' by associating with each point (x,y) e X 
the point with homogeneous coordinates (x,y, 1 ) . The space X' is com
posed of the space X and three points at 'infinity' : these points have 
homogeneous coordinates ( 1, - r, o), (j, - r, o) and (j2, - 1, o). The 
reader should define a complex manifold structure on X', which extends 
that of X (it is sufficient to define a local coordinate in a neighbourhood 
of each of the three points at infinity of X'), and a holomorphic mapping 
cp' : X' -+- 82, which extends qi. It can be shown that X' is a compact 
complex manifold and that y/z is a meromorphic function on X', whose 
poles are the three points at infinity. 
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3· RIEMANN SURFACE ASSOCIATED WITH AN 'ELLIPTIC CURVE' 

Consider an algebraic relation between two complex variables x and y, of the 
form 

(3. 1) 

(we supposely use the same notation as in chapter v, § 2, n° 5). We assume that a2 
and a4 are chosen so that the polynomial on the right hand side of (3. 1 ) has three 
distinct roots. Write this polynomial P(x); then P'(x) =I= o for any value of 
x such that P(x) = o, P' denoting the derivative of P. We shall associate a 
Riemann surface (X, f) over C with the 'elliptic curve' (3. 1) . The topological 
space X is a subspace of C X C defined by the pairs (x, y) which satisfy (3. 1). 
The complex manifold structure the space X is defined as follows: at a point 
(x0,y0) e X such that Yo =I= o, we take x as 'local coordinate'; at a point (x0,y0) 
such that y0 = o, we have P'(x0) =I= o, thus by the implicit function theorem 
relation (3. 1 ) is equivalent to a relation of the form x = f(y) in a neighbourhood 
of (x0, o), wheref is holomorphic in some neighbourhood of o and f(o) = x0• We 
take y as a local coordinate in a neighbourhood of such a point (x0, o). 

The mapping f: X-+C which maps (x,y) onto xeC is obviously holomorphic. 
Thus (X,f) is a Riemann surface over C; it has two ' sheets ' because a value of 
x corresponds to two distinct values ofy in general (they are distinct if P(x) =I= o). 
Moreover, the function x__,..c which maps the pair (x,y) onto y is also holo
morphic on X; we shall write it simply y. 

The differential form«>, defined by w = dx/ y in a neighbourhood of points (x0,y0) e X 

such that y0 =I= o, and by w = dy in a neighbourhood of points (x0, o) e X, 
6x

2
- 1oa2 

is a holomorphic differential form on X. Since it is a closed form, it has a primitive 
in a neighbourhood of each point of X; globally, this primitive is a many-valued 
function z; which is holomorphic in a neighbourhood of each point of X. The 
equation dz: = w shows that 

(3. 2) dx = y dz;. 

Each branch of the function z; in a neighbourhood of each point (x0, y0) e X is 

a local coordinate: for, if y0=/=o, x is a local coordinate and dz= �dx; ify0= o, 

y is a local coordinate and dz = dy , the denominator ;;'ot being zero. 
6x2- rna2 

We shall now complete the Riemann surface (X, f') to obtain a Riemann surface 
(X', f') over the Riemann sphere 82• To do this, we let (x,y, t) be lwmogeneous coordi
nates of a point of the complex projective plane P2(C) (cf. n° 2) and we consider 
the set X' of points of P2(C) whose homogeneous coordinates satisfy 

(3. 3) 

The topological space X' is Hausdorff; we identify X with a subspace of X' by 
associating the point (x,y) e X with the point of X' whose homogeneous coor
dinates are (x,y, 1 ) ; the complement X' - X consists of a single point at infinity, 
the point with homogeneous coordinates (o, 1, o). In a neighbourhood of this 
point, denoted by oo, we can take x/y = x' as local coordinate because x

' 

defines a homeomorphism of a neighbourhood of the point oo onto a neighbourhood 
of o in C (for, put t/ y = t'; equation (3. 3) is equivalent to 
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in some neighbourhood of x' = o, t' = o, the implicit function theorem gives t' 
as a holomorphic function of x': 

(3. 4) t' = 4X'3 - 32oa2x'7 + · · · ) . 

A complex manifold structure is defined on X' when we have chosen x' as the 
local coordinate at oo (the reader should check the coherence conditions). Final
ly, the mapping <p' is defined to be equal to <p on X and to take the point .x; of 
X' onto the point at infinity of S2• 

The holomorphic differential form w, which we defined above on X, extends 
to a holomorphic differential form on X'; in a neighbourhood of the point oo, we 
use the local coordinate x' and the holomorphic function t' of x' defined by (3. 4) 
and we put 

w=t'd(x'/t')=dx'-x' dt' =dx'-12x'2+ ···dx'=-2 dx'(1 +g(x')), t' 4x'2 + ... 

where g is a holomorphic function in a neighbourhood of x' = o and is zero for 
x' = o. The form w thus defined on the (compact) space X' has locally a primitive, 
which is a many-valued function on X' and serves as a local coordinate at each 
point of X'. 
Suppose now that the constants a2 and a, are obtained from a discrete group 0 
by the relations (5. 5) of chapter v, § 2. Then, proposition 5. 2 of the same 
paragraph shows that the meromorphic transformation 

(3. 5) x = v(z), y = v'(z) 

defines an isomorphism of the complex manifold C/D. onto the complex manifold X'. 
The inverse isomorphism defines z as a holomorphic many-valued function on X', 
whose (local) branches differ in value by a constant belonging to D.. We have 
dx = y dz because of (3. 5), and, consequently, dz (which is a well-defined diffe

rential form on X') is simply the form w defined above (which justifies the notation z). 
Let us now abandon the hypothesis that a2 and a4 arise from a discrete subgroup D. 

by the formulae (5. 5) of chapter v, § 2. The many valued function z is still 
defined on X' by the condition that dz = w; a more searching analysis of the 
topology of the space X' would reveal that the different branches of z are obtained 
from one another by adding constants which form a discrete subgroup 0 of the 
additive group C, and that D. is generated by two elements e1 and e2 which are 
linearly independent over the real field R. We can fix the many-valued function z 
by imposing the condition that it is zero (mod. D.) at the point oo of X'. We 
then introduce the elliptic curve 

y2 = ¥3- 2ob� - 28b4, 

where the constants b2 and b, are given by 

Let (X", <p") be the corresponding Riemann surface over S2• The many
valued function z defines a holomorphic mapping ofX' into C/D., which, as we have 
just seen, is isomorphic with X"; we have therefore a holomorphic mappingf: X' �x". 
It can be shown (though we shall not do so here) that f is an isomorphism; hence, 

f takes each class of values mod. D. once and once only on X'. Thus the (non
homogeneous) coordinates x and y of a point of X' are meromorphic functions of z 
with D. as group of periods, and, since it can easily be seen that x is function of z 
with a double pole at z = o and with 1/z2 as its principal part (and having no 
poles other than those at points of D.), it follows that x = V(z), where v is the 
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Weierstrass function attached to the group n, andy = p'(z). Hence, theisomor" 
phism f: X' __,.. X" is merely the identity mapping, and we have b2 = a2, b4 = a4• 
Finally, we conclude that any pair of constants a2 and a4, such that the polynqmial P(x) 
on the right hand side of (3· r ) has three distinct roots, defines a discrete group Q such 'th.at 
a2 and a4 satisfy the relations (s. 5) of chapter v, § 2; moreover, the algebraic elliptic cur've 
(3. I ) , including its point at infinity, has a parametric representation given by formulae (3· 5). 

4. SOME IDEAS ON ANALYTIC CONTINUATION 

We shall confine our attention to analytic continuation m the complex 
plane C. We formulate the problem as follows: 

Problem. Suppose we are given a non-empty open set U of the plane C 

(U will regarded as a Riemann surface over C, the mapping i: U-+- C 

being the inclusion mapping), and suppose thatf is a given holomorphic 
function in U. We seek an unramified Riemann surface (X, cp) over C 

and an isomorphismj of U onto an open set of X with the following condi
tions: 

(i) cp o j = i (which enables us to identify U with a ' sub-Riemann 
surface ' of X) ; 

· 

(ii) the function f extends to a holomorphic function g in X (' extends ' 
means that g oj =fin U); 

(iii) the Riemann surface (X, cp) is the ' greatest possible ' of those 
satisfying (i) and (ii). This means that, if (X', cp') is an unramified 
Riemann surface over C and j' is an isomorphism of U onto an open set 
of X' satisfying conditions similar to (i) and (ii), then there exists a 
unique holomorphic mapping 

h: X' __,.. X 
such that 

(4. 1) h 0 j' = j, cpoh=cp'. 

Before proceeding further, we note that the holomorphic function g 
'extending' f in condition (ii) is unique because of the' principle of analytic 
continuation ' (cf. § 4, no. 4). Moreover, if g' is the unique holomorphic 
function in the X' of condition (iii) such that g' o j' = j, then, 

(4. 2) g 0 h = g'; 

for, go his holomorphic in X', and we certainly have (g o  h) oj' =fin U 

because h o j' = j by (4. 1) and g o j = f by hypothesis. 

We express property (iii) brief ly saying that the triple (X, cp, j) is universal 
(with respect to triples satisfying (i) and (ii)). 

The fundamental theorem of analytic continuation is this : given a connec-
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ted open set Uc C and a holomorphic functionfin U, the above problem has a 
solution which is unique. By uniqueness here, we mean 'up to isomorphism'. 
Our first step is to prove this uniqueness and thus to clarify what we mean 
by ' up to isomorphism '. 

Proef ef uniqueness. Suppose that there are two solutions (X, rp,j) and 
(X1, rp1, ii) to the problem. Since (X, rp, j) has the universal property, 
there exists a unique holomorphic mapping h : X1 -+ X such that 

(4. 3) 

For the same reason, there exists a unique holomorphic mapping 
hi : X -+ Xi such that 

Consider the mapping h o hi of X into itself; it is a mapping k such that 

k 0 j =j, 

however, by the universal property, there is onry one holomorphic mapping 
with these properties, and, since the identity mapping of X has these 
properties, it follows that k =ho hi is the identity mapping of Xi. For 
the same reason, h1 o h is the identity mapping of X1• This implies that hi 
and hare isomorphisms and are inverse to one another. 

Hence, any two solutions of the problem can be derived from each other by 
an isomorphism h satisfying (4. 3); it is in this sense that we say that the 
solution to the problem (if it exists) is unique up to isomorphism. 
We have still to prove the existence of a solution and this is more tricky. 
The reader may wish to omit this proof in his first reading. 

Let Z be the set of pairs (z0, S) consisting of a point z0 e C and a power series S 
(in one variable ) whose radius of convergence is non-zero. We define a topology 
on Z : to each pair (V, F) consisting of an open set V c C and a holomorphic func
tion Fin V, we associate the set W(V, F) of pairs (z0, S) where z0eV and Sis 

the power series � anXn such that � an(Z-Zo) n is the power series expansion 
n�O n�O 

of F in a neighbourhood of z0; we define the topology on Z by stipulating that 
the sets W(V, F) form a base of open sets for this topology, that is to say, any 
open set ofZ is a union of sets of the form W(V, F), and, conversely, any union of 
sets of the form W(V, F) is open; thus, the topology on Z is well defined. This 
topology is Hausdorff: that two distinct points (z0, S) and (z6, S) have disjoint open 
neighbourhoods is obvious if z0 =I= z6; and, if z0 = z6 and S =I= S', the set of points 
(sufficiently near to z0) in a neighbourhood of which the holomorphic functions, 
defined by the distinct power series S and S', coincide is empty because of the prin-
ciple of analytic continuation. 

· 

Let p : Z-+ C be the mapping which maps each pair (z0, S) onto z0 e C; it is 
locally a homeomorphism (i. e. any point of Z has a neighbourhood which is mapped 
homeomorphically by the restriction of p onto a neighbourhood of the image of 
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the point) : this follows directly from the definition of the topology of Z. By 
using p as a local coordinate in a neighbourhood of each point of the space Z, we 
define a complex manifold structure on Z. The mapping p is a holomorphic mapping 
of this structure, so (Z, p) would be a Riemann surface over C if Z were connected 
(we shall see that this is not the case). 

We define a function G on the space Z as follows: the value of G at a point 

(z0, S) e Z is defined to be the constant term of the power series S = � a.X•; this 
n;,:.o 

is also the value, at the point z0, of the holomorphic function � a.(z - z0)• 
n�O 

defined in a neighbourhood of z0• The definition of the topology of Z shows, 
clearly, that the function G thm defined on the space Z is holomorphic; in fact, if it 
is expressed as a function of the local coordinate Z in a neigbourhood of (z0, S), 

then we find, that the function G has the power series expansion � a.(z-z0)•, 
'"' n�O 

where L..J a.X• is precisely the series S. 
n�O 

So far, we have not used the given non-empty, connected, open set U, or the 
holomorphic function/ in U. We shall introduce them now. ConsiderW(U,f): 
it is a (non-empty, connected) opep•set oLthe complex manifold Z by definition, 
and the restriction of the mapping p : Z --+ C to this open set W (U ,f) is an iso
morphism ofW(U,j) onto the open set Uc C. Let j be the inverse isomorphism. 
The composed mapping G o j is simply j. Let X be the connected component 
of Z which contains the open setj(U), let 'I' be the restriction ofp to X, and let g 
be the restriction of G to X. 

Since p is locally a homeomorphism, so is :p; thus (X, :p) is indeed an unramified 
Riemann surface over C. To show that (X, '!') and the isomorphismj satisfy the 
conditions of the problem, it remains to be checked that they satisfy conditions 
(i), (ii) and (iii). Condition (i) follows trivially from the definition ofj. Condition 
(ii) is true because g is the restriction of G to X and because G o j = fas we have seen. 
To prove (iii), let (X', :p') andj' be as in (iii), with a holomorphic functiong' in X' 
such that g' o j' =f in U; we define a mapping k of X' into Z taking a point x� e X' 

onto the pair ('!''(x�), S), where S denotes the power series � a.X• such that 

� � 
.::.i a.(z-z0)• is the expansion in a neighbourhood of z0 = :p'(x�) of the holo

n;,:.o 
morphic function A(z) defined by A(:p'(x')) = g'(x') in a neighbourhood of x� 
(we use here the condition that the Riemann surface (x', '!'') is unramified and that 
:p'(x') is therefore a local coordinate in X' in a neighbourhood of x�). The 
mapping k, which we have just defined, is holomorphic in X'. Since the space 
X' is connected (by the definition of a Riemann surface), its image by k is 
connected; and, as this image obviously contains the open setj(U), it is contained 
in the connected component X of Z. Therefore, k induces a holomorphic mapping 
h of X' into X and it is easily verified that h satisfies conditions (4. 1 ). To complete 
the proof, it remains to be proved that any holomorphic mapping h : X' ..- X 
satisfying (4. 1) coincides with the one defined above; they must coincide 
in the non-empty open set j'(U) and, consequently, they coincide on the whole of 
the connected space X' because of the principle of analytic continuation (§ 4, no. 4). 

Comments. We have thus obtained a 'largest' unramified Riemann 
surface over C, containing the given open set U and to which the function 
f can be extended holomorphically. The most simple idea would have 
been to seek a ' largest ' connected open set V containing U to which f can 
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be extended holomorphically. However, this problem has no solution 
in general, and it is because of this that unramified Riemann surfaces, 
rather than, simply, open sets of C, must be considered in this context. 
Here is an example showing that there is no largest open set V containing U 

and allowing an extension off: we take as U an open disc of C which 
does not contain o, and we take a branch of log z in U as the functionf; 
let U' be the symmetric image ofU with respect to o ;  then, it is easy to 
construct two simply connected open sets V1 and V2 each containing both. 
U and U' (see figure 13) such that, if the branch of log z in U is extended 

Fig. 13 

in turn to V 1 and V 2, then the two extensions give different branches when 
restricted to U'. There is therefore no open set V containing V 1 and V 2 
to which the branch of log z in U can be extended and therefore no largest 
open set containing U to which the extension is possible. 

Letf again be a holomorphic function in an open set Uc C, and let z0 e U. 

Consider a path y : I -+ C with initial point z0 and end point z1 
(I denotes the segment [ o, r ]) ; we do not assume that the image of y is con
tained in U. Moreover, let the triple (X, cp, g)j satisfy conditions (i), (ii) 
and (iii). If there is a continuous mapping h: -+X such that cp oh= y 
and h(o) = j(z0), then this h is unique (the proof is easy); it is called a 
lifting of the path y in the Riemann surface (X, cp). In a neighbourhood 
of the point h( r ) e X, the function g is expressible as a holomorphic function 
of z = cp(x) in some neighbourhood of the point z1; we say that this holo
morphic function of z has been obtained by analytic continuation of the holo
morphic function f along the path y (with initial point Zo and end point z1). 

The above theory of analytic continuation has many generalizations. 
For example, instead of extending to an unramified Riemann surface 
over C, we can extend to an unramified Riemann surface over the Riemann 
sphere; the arguments are similar. It is also possible to consider Riemann 
surfaces without the restriction that they shall be unramified, with condi
tions similar to (i), (ii) and (iii); it can be shown that this problem also, 
has a solution which is unique ' up to isomorphism '. 
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Exercises 

1. Let D be a simply connected open set of the plane C, different from C, 
and let a e D. Given a complex number b such that I b J < 1 and a real 
number a, show that there exists a unique holomorphic functionf(z) which 
defines an isomorphism of D on the unit disc and satisfies 

(i) f (a)= b, (ii) argf'(a) =a. 

2. Let D be a connected open set whose frontier is the union of two non
intersecting circles C1, C2, such that C1 is inside C2• Show that there 
is a homographic transformation which maps D onto an annulus r < Jzl < 1 

(where r is a suitable number> o and< 1). 

3. Let f (z) be a simple holomorphic function in the unit disc B given 
by lzl < 1, and let D =f (B) be the image of B under f Similarly, 
let D, be the image under f of the open disc B, given by I z I< r for o < r < 1. 

(i) Show that, if h is an automorphism of D leaving the point f ( o) fixed, 
then 

for 

(Apply Schwarz' lemma to the function f-1(h(f (z))).) 

(ii) Show that, ifD is starred with respect to the pointf(o) (see chapter n, 

§ 1, no. 7 for the definition), then D, is also starred with respect to the 
point f (o) for o < r < 1. (Reduce the problem to the case when 
f (o) = o and consider the function f-1(),f (z)) for o <A< 1. ) 
(iii) Suppose now that D is convex. Show that D, is also convex for 
o < r < 1. If E is an open disc such that E c B, is the imagef (E) convex? 
(Given o < A< I and z1, z2 e B, consider the function 

where 1z11 < lz21 =I= o. For the second part, show that there is an 
automorphism '¥of B such that '¥(E) = B., where o < r < 1, and consider 
the function f o qi-1.) 

4. Let w = f (z) be a simple holomorphic function in the unit disc 
lzl < 1 and let r be the image of the circle lzl = r, o < r < 1, under f 
Show that the radius of curvature p ofr at a point f(a), with !al= r, is 
given by the following formula : 

I _ Re(af"(a)/f'(a)) +I 

-p- lef'(a) I 
. 
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(Note that, if f (rei6) = u(6) + iv(6), then 

---- =Im , 
u'v" - u"v' (u" +iv") 
u'2 + v'2 u' +iv' 

where u', u", etc., denote derivatives with respect to 6.) 

5. Let a be a complex number, r a real number and z1, z2 two corres
ponding points of the inversion with respect to the circle C of centre a 

and radius r. Let S be a homographic transformation whose pole does 
not lie on the circle C; show that S(z1) and S(z2) are corresponding points 
of some inversion, and determine its centre and radius. If the pole of S lies 
on C, show that S(z1) and S(z2) are corresponding points of the reflection 
in the line S(C). 

6. Let C (resp. r) be a circle in the plane of the complex variable z 
(resp. w) defined by lz - a l = r (resp. jw - ix l = p). Let D (resp . .1) 
be a connected open set of the z-(resp. w-)plane satisfying the following 
conditions : 

(i) C0 = D n C (resp. r0 = .1 n r) is a non-empty (open) arc of C 
(resp. r); 

(ii) D+ = ]0(D_) (resp. '1+ = Jr(.1_)), 
where Jc ( respc. Jr) denotes the inversion with respect to the circle C (resp. 
r) and D,. (resp . .1,.) denotes the set of the z e D (resp. we r) such 

that lz - a l z r (resp. tw - ixl z p). 

Let there be also a function f defined and continuous in D+ u C0 with 
values in '1+ u r 0 such that : 

(iii) f is holomorphic in D+ and maps D+ into '1+; 

(iv) f maps C0 into r 0• 

Show that, with these hypotheses, f can be extended uniquely to a holo
morphic function g in D which maps D_ into ,i_. (Reduce it to the case 
when C0 (resp. r 0) is contained in the real axis and use Schwarz principle 
of symmetry, chapter rr, § 2, no. g). 
We now replace hypotheses (iii) and (iv) by the more restrictive hypotheses: 

(iii') f defines an isomorphism of D+ onto '1+; 

(iv') f maps C0 onto r 0• 

Show then that the extension g is an isomorphism of D on .1. (It is 
necessary, in particular, to show that f is simple and, therefore, to show 
that f takes distinct values at distinct points of C0; this follows by reductio 
ad absurdum using proposition 4. 2 of chap. m, § 5.) 

7. Let a, r be two real numbers such that r > a > o. Find a function 
w = f (z) which defines an isomorphism of the interior D of Cassini's 
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oval lz2 -· a21 < r2 onto the unit disc B, lwl < I, which preserves the 
axes of symmetry. (Because of the principle of symmetry, it is sufficient 
to find a function f defining an isomorphism of the right half D+ defined 
by 

Re(z) > o, 

onto the right half of the unit disc B+ defined by 

l w l <I, Re (w) > o, 

which takes real values on the real axis and maps the segment !Ji, 
y2 .:;;;: r2 - a2, of the z-plane on the segment iv, !vi.:;;;: 1, of thew-plane. 
To do so, consider first the transformation � = z2; then the homographic 

transformation Z = 12� + � taking the circle I� -a21 = r2 into the 
"(� + 0 

unit circle I z I = I and the segment a2-r2 < Re m < o, Im w = o, 
onto the segment - 1 .:;;;: Re (Z).:;;;: o, Im (Z) = o; and, finally, a suitable 
branch of the function w = z112.) 

8. Consider the function f (z) defined in the upper half-plane P+, 
Im (z) > o, by the integral 

rz dt u =f(z) = - , 
' o V ( r -tZ)(r -k2t2) 

taken along a path in P+ joining o to z, where k is a real constant such that 
o < k < 1 ; we take the simple branch of the integrand which takes the 
value 1 fort= o. Show thatf (z) can be extended to a continuous func
tion in the closed half-plane Im (z) >- o. Put 

fl/k dt K'--
I V(t2-I) ( 1 -k2t2) 

(t real). 

Show that the function f (z) thus extended defines an isomorphism of 
the half-plane p+ onto the (open) rectangle whose vertices are the points 
- K, K, K + iK', - K + iK', and maps the real axis onto the perimeter 
of this rectangle. Determine which points correspond to the vertices. 
Show that the inverse transformation z = F(u) can be extended to a 
meromorphic function which is doubly periodic with periods 4K, 2iK', 
in the plane of the variable u. Determine its zeros and poles, and deduce 
that there exists a constant A such that 

where .9'0, .5'1 denote the functions considered in exercise 3 of chapter v, 

with -r = iK' /K. 



CHAPTER VII 

Holomorphic 

of Differential 

Systems 

Equations 

1. Existence and Uniqueness Theorem 

I. SETTING THE PROBLEM 

Let k be an integer)> 1. We are given k analytic functions of k + I 

real or complex variables : 

It is assumed that these functions are analytic in some neighbourhood 
of a point (a, b1, • • •  , bk)• We consider the system of differential equations 

( I. I) dyi_ 
dx -f;(x,y1, ... 'yk), 

We seek a system of k functions Yi= tpi(x) (i = 1, . . .  , k), which are 
analytic in some neighbourhood of the point x =a with cpi(a) = b1 and 
which satisfy the system ( 1. 1) . This last condition expresses that the 
derivatives cp;(x) satisfy 

(1. 2) cp;(x) =f;(x, cp1(x), ... , cpk(x)). 

THEOREM 1 • The above problem has a unique solution. 

This theorem will be proved in the next three sections. 

2. CASE WHEN k = I : FORMAL SOLUTION 

We have a single unknown function y of the variable x, and the differential 
equation to be solved is 

(2. 1) 
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The function f(x, y) is given and is analytic in some neighbourhood 
of the point (a, b). For simplification, we shall assume from now on that 
a= o and b = o; we can always reduce it to this case by means of a 
translation. Let 

(2. 2) f (x,y) = Li Cp,qXPf 
p, q�O 

be the Taylor expansion off, 
neighbourhood of the origin. 
Taylor expansion 

which, by hypothesis, converges in some 
The unknown function y = cp(x) has the 

(2. 3) cp(x) = 2. anxn, 
n�t 

whose coefficients an are to be determined. The coefficient a0 is zero since 
we have required qi(o) = o. For the first stage, we shall restrict ourselves 
to seeking a formal power series (2. 3) which formally satisfies the diffe
rential equation (2. 1) ; in other words, if cp'(x) denotes the formal derivative 
of the formal series cp(x), we must have 

(2. 4) q/(x) =f(x, qi(x)), 

where the right hand side is obtained by substituting the formal series cp(x) 
(without constant term) for y. 

PROPOSITION 2. 1. Given the formal series (2. 2), there exists a unique formal 
series (2. 3) which satisfies (2. 4). 

We shall now prove this proposition; we shall not, until later on, consider 
the question of whether the series (2. 3) thus obtained is indeed convergent 
in a neighbourhood of o. 

Let us identify the formal series in x on the two sides of (2. 4); by equating 
the coefficients of xn in the two sides, we obtain 

(2. 5) 

where P n+1 is a polynomial in the coefficients a1, • • •  , an and a finite number 
of the coefficients Cp,q and the coefficients of the polynomial are integers;;;;:, o. 
It is not worth while giving this polynomial more precisely. For example, 

From relations (2. 5), we deduce, by induction on n, 

(2. 6) 
where the Qn are polynomials, with rational coefficients ;;> o, in the 
variables Cp,q (each polynomial Qn depends only on a finite number of 

these variables). It should be carefully noted that the polynomials Q,. 
are defined once and for all. 
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The first two polynomials Qn are 

Since relations (2. 6) are necessary and sufficient for the formal relation (2. 4) 
to be satisfied, proposition 2. I is proved. 

3· CASE WHEN k = I: CONVERGENCE 

We now assume that the power series on the right hand side of (2. 2) is 
convergent in some neighbourhood of (o, o). We propose to prove that 
the power series (2. 3), whose coefficients are defined by the formulae (2. 6), 
then has non-zero radius of convergence. To do so, we shall use the 
so-called majorant series method. 

Definition. A formal power series 

(3. 1) F(x,y) = � Cp,qxPf 
p, q;;:,o 

is called a major ant series of the series ( 2. 2) if the coefficients C P• q are > o 
and satisfy the inequalities 

jcp,ql < Cp,q. 
We define similarly a majorant series 

(3. 2) 

of the formal series (2. 3). 

PROPOSITION 3. I. Let F(x,y) be a majorant series of the series f(x,y). Let 
ol>(x) be the formal series without constant term, which is the unique formal solution 
of the differential equation 

(3. 3) dy 
dx 

= F(x, y). 

Then, ol> is a majorant series of tf· 

Proof. The coefficients A. of the series ol> are given, as we have seen, by 
the formulae 

(3. 4) 

Since the polynomials Qn have coefficients > o, the inequalities [cp,q[ < Cp, q 
and the classical inequalities for the absolute values of a sum or a product 
show immediately that [a,.[ <A.. This proves the proposition. 
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To show that the series (2. 3) has non-zero radius of convergence when the 
given series (2. 2) converges in some neighbourhood of the origin, we shall 
proceed as follows : we shall choose a majorant series F of the series j, 
then explicitly calculate the formal solution If> of the differential equation 
(3. 3), and verify directly that the series If> has radius of convergence =I= o. 
Since the radius of convergence of the series ip is at least equal the radius 
of convergence of the majorant series If>, it will follow, as required, that 
the radius of convergence of ip is =I= o, and theorem 1 (of no. 1) will be 
completely proved in the case when k = 1. 

By hypothesis, the series (2. 2) converges in a neighbourhood of the closed 
set 

(3. 5) I.el< r, IYI <r 
where r is number > o. Let M be the least upper bound of lf(x, y) I 
on the set (3. 5). By the Cauchy inequalities (chapter IV,§ 5, formula (4. 2)) 
we have 

(3. 6) 

Put 

(3. 7) M c --· p,q - rP+q' 

the Cp,q are coefficients ofa power series F(x,y) which is a majorantseries 
off (x,y). The sum of the series F, which is a double geometric series, 
can be calculated immediately: 

(3. 8) F(x,y) � ( 
x 
� ) 

1-- 1-L 
r . r 

for !xi < r, IYI < r. 

The differential equation (3. 3) is separable : 

(3. g) 

We integrate it directly: the solution y which vanishes when x = o is 
given by the relation 

(3. 10) ( I - � r- I = 2M log (I - : ) . lxl <r, 

where we take the branch of the logarithm on the right hand side which 
is zero when x = o. We obtain from (3. 10) 

(3. I I) y = r( I - v I + 2M log (I - : ) ) . 
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wh'ete We take the branch of the root on the right hand side which is 
equlal to 1 for x = o. The right hand side of (3· I l) is exactly the func
tioiFili(xh which is the solution of the differential equation (3· 3) in 
a• neighbourhood of x = o. · ·Moreover, it is clear that this· function is 
analytic iti a neighbourhood of x = o and that its power series expansion 
thu.s ·has ·radius of convergence =F o. In fact, it is easy to .see that the 
radius of convergence of the right hand side of (3· II) is equal to 

j 

The proof of theorem l is thus completed in the case when k = l. 

4· ' GENERAL CASE, ANY k 

Let us return to the problem set in no. I. We suppose that a, bi, ... , bk 
are zero; it can always be reduced to this case by a translation. The k 
analytic functions j;(x,y1, ... ,yk) have Taylor expansions 

(4· 1 ) j;(x,y1, ... ,yk) = .� c�,>q,,. .. ,qkxPy�· ···Y'll· 
p, q..,; •· •• ., qk"?;-0 

G.iiveaJhese series, we propose to determine power series 
.l;.i 

(4· 2) cpi(x) = � a�i>xn 
n;;;?d 

which converge in some neighbourhood of o and satisfy relations (1. 2). 
As in the case k = l, we shall argue in two stages : we shall first solve the 
equations ( l. 2) formally; then we shall prove that the power series obtained 
converge. 

The formal solution to equations ( 1. 2) is unique : we need only write, 
for each i, 

This gives, for each i, 

a(i) - Q<i>(c<i> ) n -
n p, q.,,, · • •• qk ' 

where the Q�;> are polynomials with rational coefficients)> o and where 
each polynomial only depends on a finite number of the variables 
/;!,> q,, .. .• qk (the index j taking the values l, ... , k). 

We shall now show that, if the power series (4· 1 ) converge in a neigh
bourhood of the origin, the series (4· 2) whose coefficients are given by (4· 3) 
have non-zero radius of convergence. To do so, we shall replace each 
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series}; by a majorant series Fi. Let («1>1, • • •  , cllk) be the unique formal 
solution of the ' majorant system ' 

dyi 
dx = F;(x, Yi• · • .  , Yk)· 

Then, for each i, «I>; is a majorant of qi; (the proof is similar to that of propo
sition 3. r ) . We need only determine the Fi and the «I>; explicitly. 

By hypothesis, the series (4. I) converge in a neighbourhood of some closed. 
polydisc 

for 

and their absolute values I };I are bounded above by a number M in this 
polydisc. We deduce that 

(4. 6) 

are the coefficients of some majorant series F;. The system of differential 
equations (4. 4) can then be written 

�i=.· 
M 

x (g�) · 
I -- I - -

r · r 

Let y; = «l>(x) be unique formal solution of the system of differential 
equations (4. 7). We show that each series 4>1is· equal to a fixed series-$. 
For, lety = 4>(-t') be the unique formal solution of the differential equation 

(4. J:l) (1-L)kdy=�· · 
r dx x 

I-
r 

It is clear that, if we put y; = cll(x)for all i, we indeed obtain a formal 
scilution of (4. 7); this proves the assertion. 
Finally, all that is left to be proved is that the formal series y = «l>(x) which 
is the solution of the equation (4. 8), has non-zero radius of convergence. 
However the differential equation (4. 8) integrates directly : the solution 
which vanishes for x = o is 

(4. g) 

and the right hand side of (4. g) is certainly an analytic function cll(x) 
in a neighbourhood of x = o; its radius of convergence is then =I= o as 

required. In fact, its radius of convergence is equal to 
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2. Dependence on Parameters and Initial Conditions 

I. DEPENDENCE ON PARAMETERS 

We now suppose that the analytic functions ft which occur on the right hand 
side of the differential system (1. 1) of§ 1 depend analytically on the para
meters t1, • • •  , ti. To be precise, suppose that we are given k functions 

fi(x,yu · · .,yk; tu ··.,ti) 

which are analytic in the k + j + 1 variables in some neighbourhood 
of the origin. For each system (tu ... , ti) sufficiently near to ( o, ... , o) 
the differential system 

(1. 1) � = Ji(x, y1, .. ., yk; t1, ... , ti), (1 < i < k) 

has a unique analytic solution y1 = q>;(x) which is zero for x = o. 
The functions q>1(x) depend, of course, on the values given to tu ... , ti. 
We write 

for the solution of (1. 1) such that q>;(o; t1, ... , tk) = o for i = 1, • . .  , k. 

THEOREM 2. With the above hypotheses, the functions q>(X;, t1, • • •  , ti) are ana?Jitic 
functions of the j + 1 variables x, tu . • .  , t1 in some neighbourhood of the origin 
(o, o, ... , o). 

To keep the notation simple, we shall confine ourselves to proving this 
theorem in the case when k = 1, j = 1. Thus we have 

(1. 3) f (x, y; t) = � Cp, q(t)x".Y', 
p,q�O 

where the coefficients cp,q(t) are themselves power series in t: 

(1. 4) 

The unique formal solution of the differential equation 

(1. 5) 
dy =f(x,y;t) 
dx 

has its coefficients an given by the formulae (2. 6) of§ 1; thus each a. is 
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itself a formal series in t. Hence, the formal solution of equation ( 1. 5) 
is a formal series 

(1. 6) y = cp(x, t) 

in the two variables x and t. 
To prove theorem 2, it is sufficient to show that the formal series ( I. 6) 
converges whenever x and t are sufficiently small. We do so by using 
the method of majorant series !again. The series ( 1 .3) is, by hypothesis, 
convergent in a neighbourhood of some closed polydisc 

(1. 7) jxj <; r, jyj<;r, jtj <; T with r > o. 

Therefore, it has a majorant series F(x,y, t) of the form 

(1. 8) M F(x, y, t) = , . 
(1-;)(1-f )(1-:) 

We notice that this majorant series is deduced from that considered in 

no 3 of§ I by replacing the number M by M / (I-+) on the right hand 

side of formula (3. 8) of§ I. Thus the solution y=cf>(x, t) of the majorant 

differential equation t = F(x, y, t) is given by the relation 

(1. g) «J>f x t' 1- 2M 
( 

x )]112 � = I -

-

I + 
I -

: log I- -, • 

Moreover, it is clear that the right hand side of (1. g) is an analytic 
function of the variables x and t in some neighbourhood of the origin 
x = o, t = o. This completes the proof of theorem 2. 

2. DEPENDENCE ON INITIAL CONDITIONS 

Let us consider a system of differential equations 

t' = j,(x, Y1• . . . , y,,) 

which, for simplicity, does not depend on any parameters. The given 
functions fi(x,yu ... ,y,,) are again assumed to be analytic in some neigh
bourhood of the origin. If the point (b1, • • •  , bk) is near enough to the 
origin, the functions Ji are also analytic in some neighbourhood of the 
point (o, b1, • • •  , bk)· We can then apply the existence and uniqueness 
theorem (theorem 1 of § 1): there exists a unique solution y; = cp;(x) of 
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the system of differential equations (2. I ) which is analytic in a neigh
bourhood of x = o and is such that cpi( o) = bi. The functions cp;(x) 
obviously depend on the initial values b1, ... , bk; we write them cpi(x, b1, ... , bk). 

THEOREM 3. With the above notations, the functions cp;(x, b1, . • •  , bk) are 
analytic with respect to the the variables x, b1, • . •  , bk in some neighbourhood of 
the origin x = o, b1 = o, ... , bk= o. 
In other words, the solution of the differential system (2. I ) depends 
analytically on the initial values bi of the unknown functions Yi· 

Proof. We take, as new unknown functions, 

They must satisfy the differential system 

(2. 3) d;:,; . 
dx-= f;(x, Z1 + b1, ... , Zk + bk), 

with the initial values Zi( o) = o. The right hand sides of the equations ( 2. 3) 
depend analytically on the parameters b1, • • .  , bk in some neighbourhood 
of the origin. By theorem 2, the tinique solution of (2. 3) which is zero 
for x = o is an analytic function �i = •h(x; b1, • • •  , bk)· The solution 
of (2. I ) such thaty; =bi for x = o is given by 

Yi = bi + o/i(x, b1, • . .  , bk) 

and is, consequently, analytic in x, b1; • • •  , bk in some neighbourhood 
of the origin. This proves theorem 3. 

3. Differential Equations of Higher Order. 

We shall confine our attention to one example,. that of a single differential 
equation of order k : 

(3. I ) dky -f ( I ,lk-1)) 
dxk -

x, y, y' ... , .r . 

The given function f is an analytic function of k + I variables in a 
neighbourhood of the point (a, b, b1, ... , bk-1). We seek a functiony= cp(x) 
which is analytic in some neighbourhood of the point x = a, is such that 
cp(a) = b and is such that the successive derivatives cp'(x), ... , cp<k-l) (x) 
take the values b1, .. . , bk_1, respectively, at the point a, and, finally, such 
that, for x sufficiently near to a, we have the identity 

cp<k>(x) =f(x, cp(x), cp'(x), ... , cpk-l(x)). 
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THEOREM 4. The above problem has a unique solution. 

VII 

Proof. We use a classical method of reducing a differential equation 
like (3. I) to a differential system of the first order by introducing.· :µew 
unknown functions. To be precise, let us consider, along with th� 
unknown function y = cp(x), the functions 

I - <}_j_ k-1) - dk-l
cp y 

- dx' . • . , .f - dxk-i· 

The functions y, y', . . . , _f k-I) must satisfy the system of differential equatim;iS. 

dy I 
dx =y' 
d ,. 12'...-y" dx - ' 
.. . ........ . . .. . - ' 
d:fk-2) 

- :fk-1) 
dx 

- ' 

d
j

k-1) I 
dx =f(x,y,y, ... ,:fk

-
1
>). ·i:·. 

We apply theorem 1 of§ 1 to the system (3· 2), and this proves theorem¥ 

Exercises 

1. Given a linear differential equation of the form 

� , = 

show that, if U(z) is a continuous functions in an open set D, andy is a 
piecewise differentiable path in D with initial point zo and final point z1, 
then the function f (x) defined by the integral 

f(x) = [ e""V(z) dz 

is holomorphic in the whole of the x plane. For f(x) to be a solution 
of (I), show that it is sufficient that 

(i) 

(ii) 

[e""A(z)V(z)]�: = o, 
d 

d/A(z)V(z)) = B(z)U(z), 
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where 

Suppose that A(z) has n distinct zeros Cu • • .  , Cn• Show that we can write 

B (z) = « +�+ ... +�, 
A(z) Z - c1 Z - Cn 

where «, «1, • • .  , «n are complex constants, and deduce that, if 

Yi (j = 1, ... , n) denotes a closed differentiable path in D, where 
b = C - I c 1, • • •  , Cn j , starting at a fixed point Zoe D and encircling the 
point cionce, ifyi," (1 <;,j, k<;,n) denotes the path defined by describing Yi 
in the positive sense, y,, in the positive sense, then Yi in the negative sense, 
and finally Y1t in the negative sense, and if we take the function 

pour zeD, 

a many-valued function in general, then the integral (2), where we 
take y = "(J,1t (so z0 = z1) defines a solution of (1). Show that, at most, 
(•- 1) solutions (which are holomorphic in the plane) can be found in 
this way. 

2. Proofoftheimplicit function theorem (propostion 6. 1, chapter 1vof§ 5, 
no. 6) by the method of majorant series (we use the notation in the state
ment of the proposition in question) : show first that it can be reduced to 
the case where 

Dj = bi= c,, = O, j = I, • •  . , n; 

and that 

k = I, .. ., p 

(1) jj(x1, .. ., Xn; Z1, · · . , Zp) = Cj1(z)x1 
+ 

· · • 
+ 

Cjn(Z)Xn 

+ � c_;.., . . .•• (z)x;• . • •  x�n, 
"t+• · ·+-.,n� 2 

where the coefficients ci1. (z) and ch .. . 'n (z) are themselves power series 
in Zu • •  . , Zp and 

det CiJ•(z) =I= o 

for sufficiently small x1, ... , xn; z1, . . • , Zp· 
Use Cramer's formula to deduce that the system (6. 1) of chapter IV, § 5, 

is equivalent to 
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for j = 1, • . .  , n, where the coefficients y are also power series in Zt> • • . , Zp, 
and that (2) can then be written 

1.:::Sj'�n 
"l!i• . . . , Xp�O 

+ � "fj;., .... n:•, .... PxJ.• . .. xJ.nz�• ... zj,P,j=I, . .. ,n. 

'llt+···+"n;;?;-2 
Xf, ••• , Xp�O 

Show that a necessary and sufficient condition for the n formal series 

X � d· y:.1.-1 yfLr,.O't ,,op j = £.l J: i'-1• . .. , ;•n; •1• • .  ., •p 1 • • • n "'l • • • "'P • 
�1+···+: ... n+o-1+···+0'p�l 

• 
J = I, . .  ., n, 

to form a system of formal solutions of (3) is that 

where Q denotes a well-defined polynomial with integer coefficients in 
the Yii•;•., . . .,•p• Yi;·•., .. .,·•n; • : ,. .. ,•j,• and the di;'l.,,. . ., •.; •., .. .,•p• the latter occurring 
only if 

A1 + · · • + An + "1 + · · ' + 'rp < (J-1 + · ' •  + (Jon + 111 + · • • + ap. 

Deduce that there is a unique formal solution of (3)· 
To exhibit the convergence of the series obtained, show that (3) has a 

majorant series of the following form: 

where M, R are real positive constants (note that the power series expan-

sion of ( T ) 
1 

( T 
) is majorized by that of 

I- 1 • • •  I- n 

I ) 
Show that, consequently, by taking X1 = X2 = · · · = 

Xn = 
X, a majorant 

series for (4) is obtained by solving the quadratic equation in X : 

. M I I �( X = Z1 + · · · + Zp (Y
1 + . . ' + Yn +I -nX/R -I -R I- R 

(see the proof of proposition g, 1 of chapter 1, § 2, no. g). 
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