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1. DIMENSION OF RINGS, RINGS OF LOW DIMENSION

All rings are supposed to be commutative and have a unit element. We start with
the following basic definition.

Definition 1.1. Let A be a ring and P ✓ A be a prime ideal. Define the height of P
by

ht(P ) := sup{r 2 N | 9P1 ( P2 ( · · · ( Pr ( P chain of prime ideals in P}

The Krull dimension of the ring A is

dim (A) := sup{ht(P ) | P ✓ A prime}

We shall prove later that over a field k both the polynomial ring k[x1, . . . , xn] and
the power series ring k[[x1, . . . , xn]] have Krull dimension n. In both cases (x1) ⇢
(x1, x2) ⇢ · · · ⇢ (x1, . . . , xn) is a chain of prime ideals of maximal length. Note,
however, that whereas k[x1, . . . , xn] is a finitely generated k-algebra and n is its
minimal number of generators, this is not the case for k[[x1, . . . , xn]].

Remarks 1.2.
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1. For A the coordinate ring of an affine variety X the chain P1 ( P2 ( · · · ( Pr

corresponds to a chain of irreducible subvarieties Z1 ) Z2 ) · · · ) Zr contained in
X . The dimension is thus the length of the longest such chain. This is a non-linear
version of the definition of the dimension of a vector space V as the length of a
maximal chain of subspaces in V .

2. Recall that the map Q 7! QAP induces a bijection between prime ideals Q ⇢ P

and the prime ideals of AP . This implies ht(P ) = ht(PAP ) = dim (AP ).

Let us look at examples of rings of low Krull dimension. Obviously, a field has
Krull dimension 0. More generally, we have:

Proposition 1.3. A Noetherian local ring A is of Krull dimension 0 if and only if it is
Artinian.

For use in the proof below we recall the following lemma.

Lemma 1.4. The set of nilpotent elements in a ring A is an ideal, and equals the intersection
of the prime ideals in A.

The above ideal is called the nilradical of A.

Proof. The first statement is clear as the radical
p
I of any ideal is again an ideal. For

the second one, note first that a nilpotent element is contained in every prime ideal.
Conversely, assume f 2 A is not nilpotent. We find a prime ideal not containing f .
Consider the partially ordered set of ideals in A that do not contain any power of f .
This set is not empty (it contains (0)) and satisfies the condition of Zorn’s lemma, so
it has a maximal element P . We contend that P is a prime ideal. Assume x, y 2 A\P ;
we have to show that xy /2 P . The ideals P +(x), P +(y) strictly contain P , hence by
maximality of P both contain some power of f . But (P + (x))(P + (y)) ⇢ P + (xy),
and therefore P + (xy) also contains some power of f , hence cannot equal P . This
means xy /2 P .

Proof of Proposition 1.3. Assume A is of Krull dimension 0. Then by Lemma 1.4 the
maximal ideal P consists of nilpotent elements. Since A is Noetherian, P is finitely
generated so for a generating system y1, . . . , yk there is a big enough exponent N
such that yNi = 0 for all i. Hence all products of k · N elements in P are zero,i.e.
P

kN
= 0. Now we have a finite descending filtration A ◆ P ◆ P

2 ◆ P
3 ◆ · · · ◆

P
kN

= 0 of A where every quotient is a finite dimensional vector space over the
field A/P , hence an Artinian A-module. Since an extension of Artinian modules is
again Artinian, we are done by induction.

Conversely, assume A is Artinian, and Q ⇢ P is a prime ideal in A. We show
Q = P ; for this we may replace A by A/Q and assume moreover that A is an integral
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domain. Suppose there were a nonzero element x 2 P . As A is Artinian, the chain
(x) � (x

2
) � (x

3
) � · · · must stabilize, i.e we find n such that (xn

) = (x
n+1

). In
particular, xn

= rx
n+1 for some r 2 A. Since A is an integral domain, this implies

rx = 1 which is impossible for x 2 P . ⇤

Remark 1.5. In fact, the proposition is true without assuming A local; see e.g. the
book of Atiyah–MacDonald.

Next an important class of local rings of dimension 1.

Definition 1.6. A ring A is a discrete valuation ring if A is a local principal ideal
domain which is not a field.

Basic examples of discrete valuation rings are localizations of Z or k[x] at a (prin-
cipal) prime ideal as well as power series rings in one variable over a field.

In the proposition below we prove that discrete valuation rings are of Krull di-
mension 1 and much more. Observe first that if A is a local ring with maximal ideal
P , then the A-module P/P

2 is in fact a vector space over the field (P ) = A/P ,
simply because multiplication by P maps P into P

2.

Proposition 1.7. For a Noetherian local domain A with maximal ideal P and fraction field
K the following conditions are equivalent:

(1) A is a discrete valuation ring.
(2) A has Krull dimension 1 and P/P

2 is of dimension 1 over (P ).
(3) The maximal ideal P is principal, and after fixing a generator t of P every element

x 6= 0 in K can be written uniquely in the form x = ut
n with u a unit in A and

n 2 Z.

For the proof we need the following well-known lemma which will be extremely
useful in other situations as well:

Lemma 1.8 (Nakayama). Let A be a local ring with maximal ideal P and M a finitely
generated A-module. If PM = M , then M = 0.

Proof. Assume M 6= 0 and let m0, . . . ,mn be a minimal system of generators of M
over A. By assumption m0 is contained in PM and hence we have a relation m0 =

p0m0 + . . . , pnmn with all the pi elements of P . But here 1 � p0 is a unit in A (as
otherwise it would generate an ideal contained in P ) and hence by multiplying the
equation by (1� p0)

�1 we may write m0 as a linear combination of the other terms,
which is in contradiction with the minimality of the system.

Nakayama’s lemma is often used through the following corollary.
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Corollary 1.9. Let A, P , M be as in the lemma and assume given elements t1, . . . , tm 2
M whose images in the A/P -vector space M/PM form a generating system. Then they
generate M over A.

Proof. Let T be the A-submodule generated by the ti; we have M = T + PM by
assumption. Hence M/T = P (M/T ) and the lemma gives M/T = 0.

Before proving the proposition we need another easy lemma.

Lemma 1.10. Let A be a Noetherian integral domain and t 2 A an element which is not a
unit. Then \n(t

n
) = (0).

Proof. The case t = 0 is obvious. Otherwise suppose a 2 \n(t
n
) is a nonzero element.

Then a = a1t for some a1 2 A. Since a 2 (t
2
), there is a2 such that a = a2t

2, so since
A is a domain we have a1 = a2t. Repeating the argument we obtain an increasing
chain of ideals (a1) ⇢ (a2) ⇢ (a3) ⇢ · · · with ai = ai+1t. Here the inclusions
are strict because an equality (ai) = (ai+1) would imply that for some s we have
ai+1 = ais = ai+1ts which is impossible as t is not a unit. This contradicts the
assumption that A is Noetherian.

Proof of Proposition 1.7. To prove (1) ) (2), assume A is a discrete valuation ring and
P is generated by t. Since A is a unique factorization domain, every nonzero prime
ideal is generated by some prime element p. But (p) is contained in the maximal
ideal P = (t), which means that t divides p. But this is only possible if (p) = (t) = P ,
so A is of Krull dimension 1. Also, the image of t is a basis of the vector space P/P

2,
whence (2). Next, assume (2) and apply Corollary 1.9 with M = P . It follows
that the maximal ideal P of A is generated by some element t. To prove (3), it will
suffice to show that it holds for every nonzero element a 2 A with n � 0. To find
n, observe that by Corollary 1.10 there is a unique n � 0 for which a 2 P

n \ P
n+1

which means that a can be written in the required form. Moreover, if a = ut
n
= vt

n,
then u = v since A is a domain. Finally, assume (3) and take an ideal I of A. As A

is Noetherian, I can be generated by a finite sequence of elements a1, . . . , ak. Write
ai = uit

ni according to the above representation and let j be an index for which
ni � nj for all i. Each ai is a multiple of tnj and hence I = (t

nj) is principal as stated
in (1).

We now explain the origin of the name “discrete valuation ring”.

Definition 1.11. For any field K, a discrete valuation is a surjection v : K ! Z[ {1}
with the properties

v(xy) = v(x) + v(y),

v(x+ y) � min{v(x), v(y)},
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v(x) = 1 if and only if x = 0.

The elements x 2 K with v(x) � 0 form a subring A ⇢ K called the valuation ring of
v.

Proposition 1.12. A domain A is a discrete valuation ring if and only if it is the valuation
ring of some discrete valuation v : K ! Z [ {1}, where K is the fraction field of A.

Proof. Assume first A is a discrete valuation ring. Define a function v : K ! Z [ {1}
by mapping 0 to 1 and any x 6= 0 to the integer n given by Proposition 1.7 (3). It is
immediate to check that v is a discrete valuation with valuation ring A. Conversely,
given a discrete valuation v on K, the elements of A with v(a) > 0 form an ideal
P ⇢ A with the property that a 2 P \ {0} if and only if a�1 /2 A. It follows that
A \ P = {a 2 A : v(a) = 0} is the set of units in a and hence A is local with maximal
ideal P . Note that if t is an element of P with v(t) = 1, then for every p 2 P we have
v(p/t) = v(p) � 1 � 0, so that p/t 2 A and therefore (t) = P . Similarly, if a 2 K is a
nonzero element with v(a) = n, we have v(a/t

n
) = 0 and condition (3) of the above

proposition follows.

There is another very useful characterization of discrete valuation rings which
uses the notion of integral closure. We begin by some reminders. Recall that given
an extension of rings A ⇢ B, an element b 2 B is said to be integral over A if it is a
root of a monic polynomial xn

+ an�1x
n�1

+ · · · + a0 2 A[x]. There is the following
characterization of integral elements:

Lemma 1.13. Let A ⇢ B an extension of rings. The following are equivalent for an element
b 2 B:

(1) The element b is integral over A.
(2) The subring A[b] of B is finitely generated as an A-module.
(3) There is a subring C of B containing b which is finitely generated as an A-module.
(4) There exists a faithful A[b]-module C that is finitely generated as an A-module.

Recall that an A-module C is faithful if there is no nonzero a 2 A with aC = 0.

Proof. For the implication (1) ) (2) note that if b satisfies a monic polynomial of
degree n, then 1, b, . . . , b

n�1 is a basis of A[b] over A. The implication (2) ) (3) is
trivial, and (3) ) (4) follows because if C is a subring as in (3) and a 2 A[b] satisfies
aC = 0, then a = a · 1 = 0. Now only (4) ) (1) remains. For this let c1, . . . , cm be
a system of A-module generators for C and consider the A-module endomorphism
of C given by multiplication by b. For all i we have bci = ai1c1 + · · · + aimcm with
some aij 2 A. It follows that the system of homogeneous equations

ai1c1 + . . . (aii � b)ci + · · ·+ aimcm = 0
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for i = 1, . . . ,m has a nontrivial solution in the ci, hence by Cramer’s rule the deter-
minant of the coefficient matrix annihilates the ci and therefore equals 0 by faithful-
ness of C. This matrix is, up to sign, a monic polynomial in A[x] evaluated at x = b.

Corollary 1.14. Those elements of B which are integral over A form a subring in B.

Proof. Indeed, given two elements b1, b2 2 B integral over A, the elements b1�b2 and
b1b2 are both contained in the subring A[b1, b2] of B which is a finitely generated A-
module by assumption.

If all elements of B are integral over A, we say that the extension A ⇢ B is integral.

Corollary 1.15. Given a tower of extensions A ⇢ B ⇢ C with A ⇢ B and B ⇢ C integral,
the extension A ⇢ C is also integral.

Proof. Each c 2 C satisfies a monic polynomial equation c
n
+ bn�1c

n�1
+ · · ·+ b0 = 0

with bi 2 B and is therefore integral over the A-subalgebra A[b0, . . . , bn�1] ⇢ B. This
is a finitely generated A-module because the bi are integral over A, hence so is the
A-subalgebra A[b0, . . . , bn�1, c] ⇢ C.

For later use we note the following fact.

Lemma 1.16. If A ⇢ B is an integral extension of integral domains, then A is a field if and
only if B is a field.

Proof. Assume first A is a field. If b 2 B is a nonzero element, it satisfies a monic
polynomial equation

b
n
+ an�1b

n�1
+ · · ·+ a0 = 0

with ai 2 A and a0 6= 0 (this latter fact uses that B is an integral domain). But then
(�a

�1
0 )(b

n�1
+ bn�1b

n�2
+ · · ·+ a1) is an inverse for b, which shows that B is a field.

For the converse, suppose B is a field and given a 2 A, pick b 2 B with ab = 1.
Since B is integral over A, we also find ai 2 A with b

n
+ an�1b

n�1
+ · · ·+ a1b+ a0 = 0

by Lemma 1.13. Multiplying by a
n�1 we obtain b = �an�1�· · ·�a1a

n�2�a0a
n�1 2 A

as required.

If A is a domain with fraction field K and L is an extension of K, the integral
closure of A in L is the subring of L formed by elements integral over A. We say
that A is integrally closed if its integral closure in the fraction field K is just A. By
Corollary 1.15 the integral closure of a domain A in some extension L of its fraction
field is integrally closed.
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Example 1.17. A unique factorization domain A is integrally closed. Indeed, we
may write every element of the fraction field K in the form a/b with a, b coprime. If
it satisfies a monic polynomial equation (a/b)

n
+an�1(a/b)

n�1
+a1(a/b)+a0 = 0 with

coefficients in A, then after multiplying with b
n we see that an should be divisible

by b, which is only possible when b is a unit.
In particular, the ring Z is integrally closed.

Now we can state:

Proposition 1.18. A local domain A is a discrete valuation ring if and only if A is Noe-
therian, integrally closed and its Krull dimension is 1.

Integrally closed Noetherian domains of Krull dimension 1 are usually called
Dedekind domains. So the proposition says that a local Dedekind domain is the same
thing as a discrete valuation ring.

For the proof recall the following lemma which is a starting point of the theory of
associated primes.

Lemma 1.19. Let A be a Noetherian ring, M a nonzero A-module and I a maximal element
in the system of ideals of A that are annihilators of nonzero elements of M . Then I is a prime
ideal.

Recall that the annihilator of m 2 M is the ideal {a 2 A : am = 0} ⇢ A. A
maximal element I as in the lemma exists because A is Noetherian.

Proof. Suppose I is the annihilator of m 2 M and ab 2 I but a /2 I . Then am 6= 0

and its annihilator J contains b. But I is also contained in J , and hence I = J by
maximality of I . We conclude that b 2 I .

Proof of Proposition 1.18. Necessity of the conditions has already been checked. For
sufficiency, let P be the maximal ideal of A and fix a nonzero x 2 P . Applying the
lemma to the A-module A/xA and using the fact that P is the only nonzero prime
ideal of A we find a 2 A such that P is the annihilator of a mod xA in A/xA (note
that the annihilator of 1 mod xa is nonzero). It will suffice to show that aP * xP .
Indeed, suppose y 2 P is such that ay /2 xP . Since aP ⇢ xA by definition of P , we
then have ay = xu with a unit u 2 A \ P and hence x = u

�1
ay 2 aP . Therefore

x = az for z = u
�1
y 2 P . So aP ⇢ xA means that for every p 2 P we have ap = azb

for some b 2 A and hence p 2 zA as A is a domain. In other words, P equals the
principal ideal (z) ⇢ A, and the criterion of Propostion 1.7 (2) holds.

So assume for contradiction that aP ✓ xP . In the fraction field K of A we then
have (a/x)P ⇢ P , so P is a faithful A[a/x]-module (as both A[a/x] and P are sub-
rings of K). As A is Noetherian, P is finitely generated as an A-module, so by
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Lemma 1.13 the element a/x 2 K is integral over A. But A is integrally closed, so
a/x 2 A and therefore a 2 xA. But then the annihilator of a in A/xA is A and not
P . ⇤

Remark 1.20. Let K be a field of characteristic 0. It contains Q as its prime subfield;
let A be the integral closure of Z in K. Then A has Krull dimension 1. Indeed, if
P ⇢ A is a nonzero prime ideal and x 2 P a nonzero element, then x satisfies an
irreducible monic polynomial equation x

n
+ an�1x

n�1
+ · · · + a0 = 0 over Z. Here

a0 2 P \ Z is a nonzero element by irreducibility of the polynomial, so P \ Z 6= (0)

and therefore P \ Z = (p) for some prime number p. But then Z/pZ ⇢ A/P is an
integral extension of integral domains, so A/P is a field by Lemma 1.16. This shows
that P is maximal.

Assume moreover K is a finite extension of Q; in this case K is called an algebraic
number field and A the ring of integers of K. Then it can be proven using arguments
from field theory that A is a finitely generated Z-module; in particular, it is Noether-
ian. Thus the localization AP by a maximal P as above is a discrete valuation ring by
Proposition 1.18 (one checks easily that localizations of integrally closed domains
are again integrally closed). We conclude that the ring of integers in a number field
is a Dedekind domain (in fact, this was the first example studied historically).

We conclude this section with a structure theorem for ideals in Dedekind do-
mains, generalizing unique factorization in Z.

Theorem 1.21. In a Dedekind domain every ideal I 6= 0 can be written uniquely as a
product I = P

n1
1 · · ·P nr

r , where the Pi are prime ideals.

Recall the following basic property of Noetherian rings:

Lemma 1.22. If A is a Noetherian ring and I ⇢ A is an ideal, there are finitely many prime
ideals P � I that are minimal with this property.

Proof. We first show that the radical
p
I is the intersection of finitely many prime

ideals. Indeed, assume this is not the case. Since A is Noetherian, we may assume
I is maximal with this property. Plainly

p
I cannot be a prime ideal, so we find

a1, a2 62
p
I with a1a2 2

p
I . For i = 1, 2 let Ii be the intersection of the prime ideals

containing I and ai. Then I1 \ I2 =

p
I by Lemma 1.4 applied to A/

p
I , but each Ii

is the intersection of finitely many prime ideals by maximality of I , contradiction.
Now if

p
I = P1 \ · · · \ Pr with some prime ideals Pi and P � I is a prime ideal

different from the Pi, then P � P1 · · ·Pr and therefore P � Pi for some i, so P is not
minimal above I . ⇤

We shall need another easy lemma:
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Lemma 1.23. Let A be an arbitrary ring, I, J ideals of A. We have I = J if and only if
IAP = JAP for all maximal ideals P ⇢ A.

Proof. For the nontrivial implication assume a 2 J is not contained in I . Then
{x 2 A : xa 2 I} ⇢ A is an ideal different from A, hence contained in a maximal
ideal P . By definition, the image of a in JAP lies in IAP if and only if sa 2 I for
some s 2 A \ P but that’s not possible by choice of P , so IAP 6= JAP . ⇤

Proof of Theorem 1.21. There are only finitely many prime ideals P1, . . . , Pr contain-
ing I by Lemma 1.22. Since APi is a discrete valuation ring for all i, we have
IAPi = (t

ni
i ) for some ni > 0, where ti generates PiAPi . So IAPi = P

ni
i APi for all i.

Now consider J = P
n1
1 · · ·P nr

r . If P is a prime ideal different from the Pi, it does not
contain I by assumption and cannot contain any of the Pi since dim (A) = 1. Since it
is a prime ideal, it cannot contain J either, so for P 6= Pi we have IAP = JAP = AP .
A similar reasoning shows that for i 6= j we have Pi 6� P

nj

j , so P
nj

j APi = APi and
therefore IAPi = P

ni
i APi = JAPi . Now the lemma above shows I = J . ⇤

2. KRULL’S HAUPTIDEALSATZ

Our next topic is a fundamental theorem that gives a relation between the height
of a prime ideal and the number of its generators.

Theorem 2.1. (Krull’s Hauptidealsatz) Let A be a Noetherian ring and x 2 A. If P is a
minimal prime ideal such that x 2 P , then ht(P )  1.

Note that the statement of the theorem is non-vacuous only if x is not a unit, so
this is implicitly assumed. The following is Krull’s original proof.

Proof. We show that if Q ( P is a prime ideal, then ht(Q) = 0. Replacing A by AP

we may assume that A is local with maximal ideal P . Define the n-th symbolic power
of Q by

Q
(n)

:= {q 2 A | 9s /2 Q such that sq 2 Q
n}.

This is in fact the preimage of (QAQ)
n by the localization map A ! AQ.

Since P is minimal over (x), the ring A/(x) is local of Krull dimension 0, hence
Artinian by Proposition 1.3. Therefore the chain

(x,Q) ◆ (x,Q
(2)
) ◆ (x,Q

(3)
) ◆ · · ·

stabilizes at some level n. So if f 2 Q
(n) ✓ (x,Q

(n)
) = (x,Q

(n+1)
) then f = ax+ q for

some a 2 A and q 2 Q
(n+1). Then ax = f � q 2 Q

(n) but x /2 Q because Q ( P and
P is minimal over x. By definition, there exists s /2 Q such that sax 2 Q

n but then
a 2 Q

(n) since sx /2 Q because Q is a prime ideal.
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In summary, we got that Q(n) ✓ (x)Q
(n)

+Q
(n+1) and the reverse inclusion is auto-

matic. Therefore, Q(n)
/Q

(n+1)
= P (Q

(n)
/Q

(n+1)
) because x 2 P and we just proved

that every element of Q(n)
/Q

(n+1) can be expressed as an element of (x)Q(n)
/Q

(n+1).
So by Nakayama’s lemma we get Q

(n)
/Q

(n+1)
= 0. In other words, (QAQ)

n
=

(QAQ)
n+1 as ideals in AQ. Now we can apply Nakayama’s lemma in AQ where

the maximal ideal is QAQ, and obtain (QAQ)
n
= 0. Now we are left with a local

ring with a nilpotent maximal ideal. By Lemma 1.4 this implies that QAQ is the
only prime ideal in AQ, whence ht(Q) = 0 as required. ⇤

Remark 2.2. Equality does not always hold in the theorem. For instance, in the 0-
dimensional ring k[x]/(x

2
) the image of x generates a prime ideal, and so does the

image of 2 in the 0-dimensional ring Z/6Z.
In these examples, the generators of the principal ideal are zero-divisors. Howev-

er, if x is not a zero-divisor and P is a minimal prime ideal above (x), then ht(P ) = 1.
This is because the minimal prime ideals in A consist of zero-divisors. Indeed, if P
is a minimal prime ideal, then AP is local of dimension 0, so PAP is a nilpotent
ideal. But then for every y 2 P we have y

n
= 0 in AP , i.e. syn = 0 for some s 62 P ,

and therefore y is a zero-divisor.

Theorem 2.3. (Generalization of Krull’s Hauptidealsatz) Let A be a Noetherian ring
and x1, . . . , xr 2 A . If P is a prime ideal which is minimal among the prime ideals with
xi 2 P for all i then ht(P )  r.

Proof. We proceed by induction on r. The case r = 1 is exactly the Hauptidealsatz.
For r > 1 pick any prime ideal P1 ( P such that there does not exist P

0: P1 (
P
0 ( P . We show that there exist y1, . . . , yr�1 2 A such that P1 is minimal over

(y1, . . . , yr�1), and then we can use induction.
We may assume that P is maximal by replacing A by AP . Since P1 ( P and P is

minimal above (x1, . . . , xr), there exists an i such that xi /2 P1, say i = r. Then P is
a minimal prime ideal such that (xr, P1) ✓ P , hence A/(xr, P1) has Krull dimension
0 with nilradical the image of P . Therefore for all i  r � 1 we have x

m
i = aixr + yi

for some yi 2 P1, ai 2 A and big enough m. Thus the image of (x1, . . . , xr) in
A/(y1, . . . , yr�1, xr) is nilpotent; on the other hand the image of P in A/(x1, . . . , xr)

is the nilradical. We conclude that the image of P in A/(y1, . . . , yr�1, xr) is nilpotent,
hence the image of P in A/(y1, . . . , yr�1) is minimal over (xr). As such it has height
 1 by the Hauptidealsatz, so the image of P1 in A/(y1, . . . , yr�1) has height 0 as
required. ⇤

Remark 2.4. The previous theorem has the following geometric interpretation. Take
I = (f1, . . . , fr) ⇢ k[x1, . . . , xn] and consider X = V (I) ⇢ An. The irreducible
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components of X correspond to the minimal prime ideals above I . The theorem
then says that each of these components has dimension � n � r (it would be much
easier to prove that some component has dimension � n� r).

More generally, we may consider an affine variety Y ⇢ An. The ideal I induces
an ideal Ī = (f̄1, . . . , f̄r) ⇢ AY . The irreducible components of X \ Y correspond to
the minimal prime ideals above Ī . The theorem applied to Ī then says that each of
these components has dimension � dimY � r.

Corollary 2.5. In a Noetherian ring every prime ideal has finite height, hence the prime
ideals satisfy the descending chain condition. Also, a Noetherian localring has finite Krull
dimension.

Remark 2.6. The corollary does not imply that a Noetherian ring has finite Krull
dimension; there are counterexamples to this statement.

The Hauptidealsatz has the following converse.

Theorem 2.7. If A is Noetherian and P ⇢ A is a prime ideal with ht(P ) = r > 0, there
exist x1, . . . , xr 2 P such that P is minimal above (x1, . . . , xr).

For the proof we need:

Lemma 2.8. (Prime avoidance) Let A be any ring, and I1, . . . , In, J ⇢ A ideals such that
all Ij are prime ideals except perhaps for In�1 and In. If J 6✓ Ij for all j, then there exists
x 2 J such that x 62 Ij for all j  n.

Equivalently, J ✓ [Ij implies J ✓ Ij for some j  n.

Proof. Induction on n: the case n = 1 is clear. For n > 1, assume that J 6✓ Ij for all
j. By induction, for i = 1, . . . , n there exist xi 2 J such that xi /2 Ij for all j 6= i. If
for some i we also have xi 62 Ii, we are done, so assume xi 2 Ii for all i. Then for
n = 2 we also get x1 + x2 62 I1 and x1 + x2 62 I2, so x1 + x2 works. If n > 2, then I1 is
necessarily a prime ideal, so x2 · · · xn 62 I1 and therefore x1 + x2 · · · xn works. ⇤
Proof of Proposition 2.7. We construct inductively a sequence x1, . . . , xr of elements
of P with the property that for all 1  i  r all minimal prime ideals above
(x1, . . . , xi) will have height � i (hence exactly i by the generalized Hauptideal-
satz). For i = r it will follow that P is minimal above (x1, . . . , xr), for otherwise its
height would be > r.

For 1 < i  r assume we have already constructed x1, . . . , xi�1. Consider the
ideal

Ii�1 :=

8
<

:
(x1, . . . , xi�1) i > 1

(0) i = 1.
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Choose an xi 2 P not contained in the minimal primes above Ii�1. By Lemma 2.8
such an xi exists; otherwise the lemma would give that one of the minimal primes
above Ii�1 contains P , but then Theorem 2.3 would give ht(P )  i� 1 < r which is
impossible. Now a minimal prime ideal Qi above (x1, . . . , xi) is not minimal above
Ii�1 by our choice of xi, so it contains a prime ideal Qi�1 minimal above Ii�1 which
has height at least i� 1 by induction. Therefore ht(Qi) � i as required. ⇤

Corollary 2.9. The height of a nonzero prime ideal P is the smallest integer r such that P
is minimal above an ideal generated by r elements.

3. DIMENSIONS OF SOME IMPORTANT RINGS

As an application of the results of the previous section we can compute the di-
mensions of many concrete rings. We begin by studying the behaviour of heights
of prime ideals under homomorphisms.

Proposition 3.1. Let ' : A ! B be a homomorphism of Noetherian rings, Q ✓ B be a
prime ideal, and P := '

�1
(Q). Then ht(Q)  ht(P ) + dimBQ/PBQ.

Here, as usual, the notation PBQ stands for '(P )BQ.

Proof. Without loss of generality we may replace A by AP , P by PAP , B by BQ and
Q by QBQ since the heights of P and Q do not change under these localizations.
(Note also that the composite A

'! B ! BQ induces a map AP ! BQ by the
universal property of localization.) So we may assume that A and B are local and
then we have to prove that dimB  dimA + dimB/PB. Set r := ht(P ) and s :=

ht(Q mod PB). By Proposition 2.7 we find x1, . . . , xr 2 A such that P is minimal
above them and similarly, we find y1, . . . , ys 2 B such that Q modulo PB is minimal
above y1 . . . , ys modulo PB. As in the proof of the Hauptidealsatz we obtain that for
N and M sufficiently large Q

N ✓ PB+(y1, . . . , ys) and P
M ✓ (x1, . . . , xr). Therefore

Q
NM ✓ ('(x1), . . .'(xr), y1, . . . , ys) and therefore Q is a minimal prime ideal above

('(x1), . . .'(xr), y1, . . . , ys).
To sum up, we have dim(B) = ht(Q)  r + s = ht(P ) + dim (B/PB), where the

inequality is a consequence of the Generalized Hauptidealsatz (Theorem 2.3). ⇤

Remark 3.2. The proposition has an important geometric interpretation. We discuss
an easy special case first. Suppose k is an algebraically closed field and A = k[x],
B = k[x, y] with ' the natural inclusion. From the Nullstellensatz we know that
maximal ideals of k[x, y] are of the form Q = (x � a, y � b) for a, b 2 K. Here
P = �

�1
(Q) = (x�a), so geometrically � corresponds to the projection ⇡ : A2

k ! A1
k

given by (a, b) 7! a. We have B/PB = k[x, y]/(x � a) ⇠= k[y] which is a ring of
dimension 1, and so is the localization BQ/PBQ. The maximal ideals of B/PB
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correspond to points with first coordinate a, i.e. the points in the fibre of ⇡ above
the point x = a of A1

k. The Proposition says that this fibre has dimension at least
ht(Q)� ht(P ) = 2� 1 = 1 which is indeed true.

In general, a homomorphism � : A ! B of finitely generated k-algebras corre-
sponds to a map of affine varieties X ! Y and the proposition translates as the fact
that every fibre of such a morphism has dimension at least dim (X) � dim (Y ). In
the above example equality holds for all fibres but not in general; for instance, there
are morphisms of surfaces that contract whole curves.

As a consequences of the proposition we can determine the Krull dimension of
polynomial and power series rings.

Corollary 3.3. If A is a Noetherian ring, then dimA[x] = dimA + 1. Consequently, if k
is a field, then dim k[x1, . . . , xn] = n.

Proof. The inequality dimA[x] � dimA+1 is easy: a chain of prime ideals P0 ( P1 (
· · · ( Pn in A can be considered as a chain of prime ideals in A[x] using the natural
embedding A ,! A[x] since the quotients A[x]/PiA[x]

⇠= (A/Pi)[x] are again integral
domains. However, a maximal ideal Pn ⇢ A will not be maximal in A[x] because
the quotient (A/Pn)[x] is not a field, so the Krull dimension of A[x] is strictly larger.

Conversely, it is enough to show that for a maximal ideal Q ⇢ A[x] we have
ht(Q)  ht(A \ Q) + 1. For this, set P := A \Q which is a prime ideal in A. By the
previous proposition we know that

ht(Q)  ht(P ) + dim (A[x]Q/P · A[x]Q)

So we need to prove that the second term on the right is  1 (in fact it equals 1). We
compute

A[x]Q/PA[x]Q
⇠= (A[x]/PA[x])Q̄

⇠= ((A/P )[x])Q̄
⇠= ((A/P )P [x])Q̄

⇠= ((P )[x])Q̄

using the notation Q̄ := Q mod PA[x] and (P ) := AP/PAP for the residue field
at P . Since (P )[x] is a one-variable polynomial ring over a field, it has dimension
1 (every irreducible polynomial generates a maximal ideal) and localizing at Q can
only lower the dimension.

This proves the first statement. The second statement follows by induction from
the first, noting that polynomial rings over a field are Noetherian by the Hilbert
Basis Theorem. ⇤

Remark 3.4. Without the Noetherian property the statement is not true: For a ring
A, the polynomial ring A[x] can have arbitrary dimension between dimA + 1 and
2dimA + 1. The point where we rely on the Noetherian property is in Proposition
3.1 and its proof.
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Similarly, we obtain:

Corollary 3.5. If A is a Noetherian ring, then dimA[[x]] = dimA+ 1.

Proof. As in the previous proof, an increasing chain of prime ideals in A gives an
increasing chain of prime ideals in A[[x]] as well, whence dimA[[x]] � dimA + 1.
Conversely, for a maximal ideal Q ⇢ A and P = A \Q we again have

ht(Q)  ht(P ) + dim (A[[x]]Q/P · A[[x]]Q)

by Proposition 3.1. As before, we compute

A[[x]]Q/P · A[[x]]Q ⇠= ((A/P )[[x]])Q̄
⇠= ((A/P )P [[x]])Q̄

⇠= ((P )[[x]])Q̄

It remains to recall that (P )[[x]] has dimension 1 because it is a discrete valuation
ring. ⇤

Corollary 3.6. If k is a field, then dim k[[x1, . . . , xn]] = n.

This follows by induction from the preceding corollary, combined with the fol-
lowing proposition:

Proposition 3.7. If A is a Noetherian ring, the formal power series ring A[[x]] is also
Noetherian.

Proof. This is similar to the proof of the Hilbert basis theorem. Fix an ideal I ⇢ A

and write Ir for the ideal in A generated by the leading coefficients ar of power
series of the form arx

r
+ ar+1x

r+1
+ . . . contained in I . Then I0 ⇢ I1 ⇢ I2 ⇢ . . .

is an ascending chain, so there is n for which In = In+1 = In+2 = ... Choose finite
sets of generators mij for the ideals Ij with j  n and power series sij 2 I with
leading coefficient mij 2 Ij . Given a power series s = arx + ar+1x

r+1
+ . . . in I , we

express it as an A[[x]]-linear combination of the sij . If r  n, we find bi 2 A such
that ar = ⌃ bimir, so after subtracting finitely many A-linear combinations of the
sij we may assume r > n. But then ar = ⌃ b

r
imin for some b

r
i 2 A and therefore

s� ⌃ b
r
ix

r�n
sin begins with a term ar+1x

r+1. Therefore

s =

X

i

 1X

r=n+1

b
r
ix

r�n

!
sin

where the coefficient in parentheses is an element of A[[x]].

Let now A be an integral domain containing a field k. Elements a1, . . . , ar 2 A are
called algebraically dependent if there exists a nonzero polynomial f 2 k[x1, . . . , xr]

such that f(a1, . . . , ar) = 0; otherwise they are algebraically independent. Assume
moreover that A is a finitely generated k-algebra. Then the transcendence degree of A
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over k is the maximal number of elements in A that are algebraically independent
over k. It can be shown that under our assumption that A is finitely generated this
is a finite number; we denote it by tr.degk(A).

Theorem 3.8. Under the above assumptions tr.degk(A) = dimA.

The proof is based on two ingredients. The first is:

Lemma 3.9 (Noether’s normalization lemma). In the above situation assume A has
transcendence degree d over k. Then there exist algebraically independent elements x1, . . . , xd

such that A is a finitely generated module over the subring k[x1, . . . , xd] ⇢ A.

Here we mean the k-subalgebra of A generated by x1, . . . , xd; by algebraic inde-
pendence it is isomorphic to the polynomial ring k[x1, . . . , xd].

Proof. We only do the case where k is infinite; it is a bit easier. Let x1, . . . , xn be a sys-
tem of k-algebra generators for A; we may assume that the first d are algebraically
independent. We do induction on n starting from the case n = d which is obvious.
Assume the case n� 1 has been settled. Since n > d, there is a nonzero polynomial
f in n variables over k such that f(x1, . . . , xn) = 0. Denote by m the degree of f and
by fm its homogeneous part of degree m. Since k is infinite, we find a1, . . . , an�1 2 k

such that fm(a1, . . . , an�1, 1) 6= 0. Setting x
0
i := xi � aixn for i = 1, . . . , n � 1 we

compute

0 = f(x1, . . . , xn) = f(x
0
1 + a1xn, . . . , x

0
n�1 + an�1xn, xn) =

= fm(a1, . . . , an�1, 1)x
m
n + gm�1x

m�1
n + · · ·+ g0

with some gi 2 k[x
0
1, . . . , x

0
n�1]. Dividing by fm(a1, . . . , an�1, 1) we see that xn sat-

isfies a monic polynomial relation with coefficients in k[x
0
1, . . . , x

0
n�1], so that A =

k[x
0
1, . . . , x

0
n�1][xn] is a finitely generated module over its subalgebra k[x

0
1, . . . , x

0
n�1].

By induction we know that k[x01, . . . , x
0
n�1] is a finitely generated module over the

polynomial ring k[x1, . . . , xd], and we are done.

Now we turn to the second ingredient.

Lemma 3.10. Suppose A ⇢ B is an integral extension of rings. Given a prime ideal P ⇢ A,
there exists a prime ideal Q ⇢ B such that Q \ A = P .

Proof. Localizing both A and B by the multiplicatively closed subset A\P we obtain
a ring extension AP ⇢ BP where AP is local with maximal ideal P . We contend that
PBP 6= BP . Indeed, otherwise we have an equation 1 = p1b1 + · · · + prbr with
pi 2 P and bi 2 BP . If C ⇢ BP is the AP -subalgebra generated by the bi, then C

satisfies PC = C and moreover is finitely generated as an AP -module because the
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bi are integral over AP . Thus C = 0 by Nakayama’s lemma which is impossible
since 1 2 C. Therefore indeed PBP 6= BP and we find a maximal ideal QP ⇢ BP

containing PBP . By construction QP \AP � P , hence QP \AP = P by maximality
of P . Thus Q := QP \ B will do.

Corollary 3.11 (Going up theorem of Cohen–Seidenberg). Under the assumptions of
the lemma given a chain P1 ( P2 ( · · · ( Pr of prime ideals in A, there exists a chain
Q1 ( Q2 ( · · · ( Qr of prime ideals in B such that Qi \ A = Pi for i = 1, . . . , r.

Proof. We use induction on r. By the lemma we find Q1 ⇢ B with Q1 \ A = P1.
Assume Q1 ( Q2 ( · · · ( Qr�1 have been constructed, and denote by P̄r the image
of Pr in A/Pr�1. Since B/Qr�1 is integral over A/Pr�1, the lemma gives a prime
ideal Q̄r in B/Qr�1 such that Q̄r \ (A/Pr�1) = P̄r. Now take Qr to be the preimage
of Q̄r in B. ⇤

Proof of Theorem 3.8. By Noether’s normalization lemma we find a polynomial ring
R := k[x1, . . . , xd] contained as a k-subalgebra in A such that A is a finitely gen-
erated R-module, so in particular integral over R; we know from Corollary 3.3
that dim (R) = d. By the going up theorem we may extend the maximal chain
(0) ⇢ (x1) ⇢ (x1, x2) ⇢ · · · ⇢ (x1, . . . xd) of prime ideals in R to a chain (0) (
Q1 ( Q2 ( · · · ( Qd of prime ideals in A, whence dimA � d. On the other hand,
if Q is a maximal ideal in A with ht(Q) = dim (A), set P := Q \ R. The algebra
AR\P/PAR\P is finite dimensional over the field RP/PRP , so it is Artinian. The
local ring AQ/PAQ is a localization of AR\P/PAR\P , so its Krull dimension is 0 by
Proposition 1.3. Thus Proposition 3.1 applied to the inclusion map RP ! AQ gives
dimA = dimAQ  ht(P )  d. ⇤

Remark 3.12. The theorem contains as a special case the weak form of Hilbert’s
Nullstellensatz: if A as in the theorem is a field, it has Krull dimension 0, hence
has transcendence degree 0 over k by the theorem, i.e. it is a finite extension. In
particular, if moreover k is algebrically closed, it must be k itself. Consequently, if
P is a maximal ideal in the polynomial ring k[x1, . . . , xn] with k algebraically closed,
we have A := k[x1, . . . , xn]/P

⇠= k, so denoting by ai the image of xi mod P we get
P ◆ (x1 � a1, . . . , xn � an). Since (x1 � a1, . . . , xn � an) is a maximal ideal, this
inclusion is an equality. We have proven that every maximal ideal of k[x1, . . . , xn] is
of the form (x1 � a1, . . . , xn � an) with some ai 2 k.

We now prove a stronger form of Theorem 3.8.

Theorem 3.13. Let A be an integral domain that is a finitely generated algebra of transcen-
dence degree d over a field k. Every maximal chain of prime ideals of A has length d.
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As consequences we have:

Corollary 3.14. Let A be as in the theorem.

(1) Every prime ideal P ⇢ A satisfies the equality ht(P ) = tr.degk(A)�tr.degk(A/P ).
(2) Given two prime ideals P ⇢ Q of A, every maximal chain of prime ideals between

P and Q has length ht(P )� ht(Q).

Proof. For statement (1) choose a maximal chain of prime ideals P1 ( P2 · · · ( Pr (
P and extend it to a maximal chain P1 ( P2 · · · ( Pr ( P ( Q1 ( · · · ( Qs of
prime ideals in A. By construction ht(P ) = r and by the theorem dim (A) = r + s,
dim (A/P ) = s. Statement (2) follows from (1). ⇤

Rings having the property in (2) above are called catenary rings.
The following proof of the theorem is based on:

Proposition 3.15 (Going down theorem of Cohen–Seidenberg). Let A ⇢ B be an
integral extension of integral domains such that A is integrally closed in its fraction field K

and the fraction field L of B is a finite extension of K.
Given prime ideals P1 ( P2 of A and a prime ideal Q2 ⇢ B with Q2 \ A = P2, there

exists a prime ideal Q1 ( Q2 of B with Q1 \ A = P1.

Remarks 3.16.

1. Of course, as in Corollary 3.11 one concludes by induction that for every finite
descending chain of prime ideals of A we can find a finite descending chain of prime
ideals of B lying above it.
2. The proposition also holds without the assumption L|K finite but we’ll only use
the finite case. The proof in the general case uses infinite Galois theory.

We begin the proof of the going down theorem with some preliminary observa-
tions.

Remarks 3.17.

1. If A ⇢ B is an integral extension of rings and Q1 ( Q2 are prime ideals in B, then
the intersections Pi := Qi \A satisfy P1 ( P2. Indeed, if Q1 \A = Q2 \A = P , then
after localizing by A \ P we obtain an integral extension AP ⇢ BP with two prime
ideals Q1BP ( Q2BP whose intersection with A is the maximal ideal P . Passing
to the integral extensions AP/PAP ⇢ BP/QiBP we see from Lemma 1.16 that both
Q1BP and Q2BP must be maximal ideals, which is impossible.

2. Let A ⇢ B be an extension of integral domains and assume that the extension
K ⇢ L of their fraction fields is finite and purely inseparable. This means that both
have characteristic p > 0 and L = K(

pr1
p
a1, . . . ,

prm
p
am) for some ai 2 K and ri > 0.
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In particular, for r large enough L
pr ⇢ K. Assume moreover that B \K = A (this is

the case e.g. in the situation of the proposition). Then it is straightforward to check
that if P ⇢ A is a prime ideal, then P

B
:= {b 2 B : b

pr 2 P} is a prime ideal of B.
Moreover PB \ A = P and for a prime ideal Q ⇢ B we have (Q \ A)

B
= Q. Thus

the assignment P ! P
B gives an inclusion-preserving bijection between the prime

ideals of A and B.

We also need the following lemma generalizing a well-known fact from algebraic
number theory.

Lemma 3.18. In the situation of the proposition assume moreover that B is the integral
closure of A in L and the extension L|K is Galois with group G. If P ⇢ A is a prime ideal,
then G acts transitively on the set of prime ideals Q ⇢ B with Q \ A = P .

Note that if � 2 G and b 2 B, then �(b) 2 B because it is integral over A (in
fact it satisfies the same monic polynomial) and B is the integral closure of A in L.
Furthermore, if Q ⇢ B is a prime ideal, then �(Q) := {�(b) 2 B : b 2 Q} is a prime
ideal in B, which defines the G-action in the lemma.

Proof. Let Q,Q
0 ⇢ B be prime ideals with Q \ A = Q

0 \ A = P and assume that
�(Q) 6= Q

0 for any � 2 G. Here Q
0 * �(Q) for any � 2 G by Remark 3.17 (1), so

by prime avoidance (Lemma 2.8) we find b 2 Q
0 such that b /2 �(Q) for any � 2 G.

Then NL|K(b) := ⇧�2G�(b) 2 B \K = A because b is fixed by G and A is integrally
closed. But since G contains the identity map of L, we have NL|K(b) 2 Q

0 \ A = P .
But then NL|K(b) 2 Q, so since Q is a prime ideal, we have �(b) 2 Q for some � 2 G,
whence b 2 �

�1
(Q), a contradiction. ⇤

Proof of Proposition 3.15. Assume first the extension L|K is separable. Embed L in a
finite Galois extension L

0 of K with group G, and let B0 be the integral closure of
A in L

0. By the going up theorem we find prime ideals Q
0
1 ( Q

0
2 in B

0 such that
Q
0
i \A = Pi for i = 1, 2. Furthermore, by Lemma 3.10 we find a prime ideal Q0 ⇢ B

0

with Q
0 \ B = Q2. Since Q

0 \ A = Q
0
2 \ A = P2, by Lemma 3.18 we find � 2 G with

�(Q
0
2) = Q

0. It follows that �(Q01) ⇢ Q
0 is a prime ideal satisfying �(Q

0
1) \ A = P1,

and therefore Q1 := �(Q
0
1) \ B has the required properties.

In the general case let K ⇢ L
s ⇢ L be the maximal separable subextension and

set Bs
:= B \ L

s. The proposition holds for the extension A ⇢ B
s by the previous

paragraph. Since L|Ls is a purely inseparable extension, we conclude by applying
Remark 3.17 (2) to the extension B

s ⇢ B. ⇤

Now that the going down theorem is proven, we can turn to:
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Proof of Theorem 3.13. We use induction on d = dim (A) = tr.degk(A). The case d = 0

is clear because then A is a field. Assume d > 0 and use the Noether normalization
lemma to find a polynomial ring R := k[x1, . . . , xd] over which A is finitely generat-
ed as a module. Consider a maximal chain (0) ( Q1 ( · · · ( Qm of prime ideals of
A, and set Pi := Qi\R for all i. Since P1 6= (0) by Remark 3.17 (1), we find a nonzero
irreducible polynomial f 2 P1. The principal ideal (f) ⇢ P1 is a prime ideal as f is
a prime element in the unique factorization domain R = k[x1, . . . , xd]. If (f) 6= P1,
then applying the going down theorem to (f) ⇢ P1 and Q1 we find a prime ideal
Q0 ⇢ Q1 in A with Q0 \ R = (f). But then (0) ( Q1 ( · · · ( Qm cannot be a
maximal chain, so we have (f) = P1. In this case Ā := A/Q1 is a finitely generated
R/(f)-module, hence of transcendence degree d � 1. By induction every maximal
chain of prime ideals in Ā has length d � 1, so every maximal chain in A starting
with (0) ⇢ Q1 has length d. As Q1 was arbitrary, the theorem is proven. ⇤

4. REGULAR LOCAL RINGS AND REGULAR SEQUENCES

Observe that if A is a local ring with maximal ideal P , then (P ) := A/P is a
field (the residue field of A) and P/P

2 inherits a (P )-vector space structure from the
A-module structure on P .

Definition 4.1. A Noetherian local ring A with maximal ideal P is a regular local ring if
dim (P )P/P

2
= dimA.

If x1, . . . , xr 2 P are such that their mod P
2 images form a basis in P/P

2, we call them
a regular system of parameters.

Remarks 4.2.

1. The algebraic meaning of regularity is the following. If x1, . . . , xr 2 P are such
that their images modulo P

2 generate P/P
2, then they also generate P as an ideal

by Corollary 1.9. In fact, they form a minimal system of generators if and only if
their mod P

2 images form a (P )-basis of P/P 2. By the Hauptidealsatz r � dimA,
so a Noetherian local ring is regular if and only if P is generated by the smallest
possible number of elements.

2. If A is the local ring of an (affine) variety X at some point P , it is a theorem of
Zariski that P/P 2 is the dual space of the tangent space of X at P . Points where
the dimension of the tangent space equals the dimension of the variety are called
smooth (or nonsingular) points in algebraic geometry. Thus regular local rings are
the local rings of smooth points. We’ll come back to this fact later.

Examples 4.3.
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1. Basic examples of regular local rings of dimension n are power series rings
k[[x1, . . . , xn]] over a field k. (We know that they are Noetherian and local of di-
mension n, and x1, . . . , xn form a regular system of parameters.)

2. The regular local rings of dimension 1 are exactly the discrete valuation rings.
This follows from Proposition 1.7 and Theorem 4.6 below.

Proposition 4.4. If A is a regular local ring and x1, . . . , xr a regular system of parameters
in A, then A/(x1, . . . , xi) is a regular local ring of dimension r � i for all 1  i  r.

In fact, we prove more:

Proposition 4.5. If A is a Noetherian ring, P is a minimal prime ideal above x1, . . . , xr

and ht(P ) = r, then ht(P/(x1, . . . , xi)) = r � i in A/(x1, . . . , xi) for all 1  i  r.

Proof. Set s := ht(P/(x1, . . . , xi)). By the generalized Hauptidealsatz we have s 
r�i since P/(x1, . . . , xi) is minimal above the images of xi+1, . . . , xr in A/(x1, . . . , xi).
On the other hand, by the converse of Hauptidealsatz (Proposition 2.7) we get ele-
ments ȳ1, . . . , ȳs such that P/(x1, . . . , xi) is minimal above ȳ1, . . . , ȳs. Lifting these el-
ements to y1, . . . , ys 2 P we get that it is minimal above x1, . . . , xi, y1, . . . , ys, whence
i+ s � r, again by the Hauptidealsatz. This proves s = r � i as required. ⇤

Theorem 4.6. A regular local ring is an integral domain.

Proof. We proceed by induction on d := dimA. If d = 0, then the maximal ideal P
satisfies P = P

2, hence equals (0) by Nakayama’s lemma and the statement is clear.
Now assume the proposition holds for d � 1. Let P1, . . . , Pm be the minimal prime
ideals of A. We apply prime avoidance (Lemma 2.8) to P1, . . . , Pm, P

2 and P . We
know that P 6✓ Pi and P 6✓ P

2, so there exists an x 2 P\P 2 such that x /2 Pi for all i.
Since x /2 P

2, it is part of a regular system of parameters of A (as x mod P
2 is part

of a basis of P/P 2). By Proposition 4.4 the quotient A/(x) is then regular and local
of dimension d� 1. Hence by induction we know that A/(x) is an integral domain,
so (x) is a prime ideal. Since x /2 Pi for all i, the prime ideal (x) cannot be minimal,
so it properly contains one of the minimal prime ideals Pi. In particular, x /2 Pi but
for all y 2 Pi we have y = ax for some a 2 A. So a 2 Pi and we conclude that
Pi = (x)Pi. This implies Pi = PPi, so by Nakayama’s lemma Pi = (0), i.e. (0) is a
prime ideal. ⇤

Now comes a key definition.

Definition 4.7. Let A be a ring. Elements x1, . . . , xr 2 A form a regular sequence if
(1) xi is not a zero-divisor modulo (x1, . . . , xi�1) for all 1  i r.
(2) (x1, . . . , xr) 6= A.
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Note that when A is local, the second condition implies that all xi are contained
in the maximal ideal.

Remarks 4.8.

1. If A is Noetherian and local with maximal ideal P , every permutation of a regular
sequence is again a regular sequence. (The condition that A is local is necessary: one
can check that in the polynomial ring k[x1, x2, x3] the sequence x1(x1 � 1), x1x2 � 1,
x1x3 is regular but x1(x1 � 1), x1x3, x1x2 � 1 is not.)

To see this, it is enough to show that for all i interchanging xi and xi+1 in a regular
sequence gives a regular sequence. Replacing A by A/(x1, . . . , xi�1) if necessary we
reduce to i = 1 and then to r = 2. Let (x1, x2) be a regular sequence in A and K

the kernel of the map given by multiplication by x2. If x 2 K, we have x = x1x
0

for some x
0 as x2 is not a zero divisor modulo (x1). Here x

0 2 K because x2x1x
0
= 0

and x1 is not a zero divisor. It follows that x1K = K, hence PK = K and K = 0 by
Nakayama’s lemma. This shows x2 is not a zero divisor in A. To see that x1 is not
a zero divisor mod (x2), assume x1y = x2z for some y, z 2 A. Since x2 is not a zero
divisor mod (x1), we get z = x1z

0 for some z
0, whence (using that x1 is not a zero

divisor) y = x2z
0, as required.

2. For A = k[x1, . . . , xn] the geometric meaning of the definition is the follow-
ing: a sequence of nonconstant elements f1, . . . , fr forms a regular sequence if and
only if for all i the hypersurface V (fi) intersects each irreducible component of
V (f1, . . . , fi�1) properly.

Theorem 4.9. Let A be a Noetherian local ring with maximal ideal P and x1, . . . , xd a
minimal system of generators for P . Then A is a regular local ring if and only if x1, . . . , xd

is a regular sequence.

Proof. By Remark 4.2 (1) the xi form a minimal system of generators for P if and
only if modulo P

2 their images form a basis of P/P 2. So if A is regular, then the xi

form a regular system of parameters, hence a regular sequence by Proposition 4.4
and Theorem 4.6. The converse results from the following lemma.

Lemma 4.10. If A is a Noetherian local ring and x1, . . . , xr is a regular sequence in A, then
dimA/(x1, . . . , xr) = dimA� r.

The lemma looks similar to Proposition 4.5 but does not follow from it: there
we assumed ht(P ) = r whereas here we want to prove it using the fact that the
sequence is regular.

Proof. As in the proof of Proposition 4.5, setting s = dimA/(x1, . . . , xr) and applying
Proposition 2.7 to A/(x1, . . . , xr) we find y1, . . . , ys 2 P such that P is a minimal
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prime ideal containing x1, . . . , xr, y1, . . . , ys. The generalized Hauptidealsatz then
gives dimA = htP  r + s. For the reverse inequality, observe that x1 is not a
zero divisor in A, so for all minimal prime ideals P

0 ◆ (x1) we have ht(P
0
) = 1 by

Remark 2.2. In other words, dimA/(x1)  dimA� 1, so we can use induction along
the regular sequence x1, . . . , xr to obtain s = dimA/(x1, . . . , xr)  dimA� r. ⇤

Remark 4.11. If A is regular local of dimension d, it is not necessarily true that a
regular sequence of length d generates the maximal ideal. One counterexample
among many: x1, x2, . . . , xd�1, x

2
d in k[[x1, . . . , xd]].

To close this section we globalize the definition of regular local rings.

Definition 4.12. A Noetherian ring A is regular if all localizations AP by prime ideals
P ✓ A are regular local rings.

Remark 4.13. We shall prove later that every localization of a regular local ring by
a prime ideal is again regular. It will follow that a Noetherian ring is regular if and
only if all localizations by maximal ideals are regular local rings.

Examples 4.14.

(1) By Proposition 1.18 Dedekind domains are regular.
(2) If X is a smooth affine variety over an algebraically closed field, then the

coordinate ring AX is regular. We’ll prove this in a more general form later.

We give an algebraic proof for the latter example in the case of affine space:

Proposition 4.15. If A is a regular ring, then A[t] is regular as well. Consequently, if k is
a field, then k[t1, . . . , tn] is regular.

Proof. Let Q ✓ A[t] be a prime ideal and take P := Q\A. Then A[t]Q is a localization
of AP [t] where AP is regular, so we can assume that A is regular local with maximal
ideal P . The prime ideal Q maps to a principal ideal (f) ✓ k[t] modulo P . If
f = 0, then Q = PA[t] and so dimA[t]Q = dimA using Corollary 3.3 (and its proof),
whereas a regular system of parameters for P is also one for Q. So we may assume
f 6= 0 and lift f to f 2 A[t]. We obtain Q = (P, f) where f is not a zero-divisor
modulo P . Therefore choosing a regular system of parameters for P and adding f

we get a regular sequence generating Q; by construction it is a minimal system of
generators. By Theorem 4.9 this proves that A[t]Q is regular. ⇤

5. COMPLETIONS

Completion is an algebraization of the notion of power series expansion for ana-
lytic functions. Here is the precise definition.
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Definition 5.1. Let A be a ring, and I ⇢ A an ideal. The completion of A with respect
to I is

bA := {(an) ⇢
1Y

n=1

(A/I
n
) : an = an+1 mod I

n for all n }.

This is again a ring with the obvious operations. There is a natural map A ! bA
given by a 7! (a mod I

n
); if it is an isomorphism, we say that A is complete with

respect to I .

The basic example is:

Example 5.2. Consider the polynomial ring A = k[x1, . . . , xn], k a field, and I =

(x1, . . . , xn). Then bA is the formal power series ring k[[x1, . . . , xn]].
Observe that we get the same power series ring if instead of A we start with the

localization AI = k[x1, . . . , xn](x1,...,xn). We shall soon see that the completion with
respect to the maximal ideal of any regular local ring containing a field is a power
series ring.

Completion is a special case of the inverse limit construction in category theory.
Recall that an inverse system of groups (rings, modules, etc.) indexed by N together
with its natural ordering is given by a group (ring, module...) Gn for each n � 0

and a morphism �n : Gn+1 ! Gn for each n > 0. The inverse limit of the system is
defined by

lim
 

Gn := {(gn) ⇢
1Y

n=1

Gn : gn = �n(gn+1) for all n }.

Important inverse systems of modules over a fixed ring A are given by descending
chains of submodules M = M

0 � M
1 � M

2 � . . . of a fixed A-module M ; such
chains are called filtrations. The modules in the inverse system are the quotients
M/M

n and the maps the natural projections. We call the inverse limit the comple-
tion of M with respect to the chain (M

n
) and denote it by cM . For instance, we may

take M
n
:= I

n
M for an ideal I ⇢ A; in this case we call cM the I-adic completion of M.

The case M = A gives back the completion bA defined above.
There is a natural map M ! cM given by sending m 2 M to the sequence

(m modM
n
). In general it is neither injective nor surjective. However, in the case

when it is an isomorphism, we say that M is complete (with respect to the filtration
(M

n
)).

There are natural surjective projections pn : cM ! M/M
n for each n; set M̄n

:=

ker(pn). The pn induce isomorphisms cM/M̄
n ⇠= M/M

n, so that cM is complete with
respect to the chain (M̄

n
). Note also that by definition \nM̄

n
= (0) but \nM

n can
be nontrivial.
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The next observation shows that we have a certain freedom in choosing the in-
verse system defining a completion.

Proposition 5.3. Given an A-module M , consider two filtrations M0 � M
1 � M

2 � . . .

and N
0 � N

1 � N
2 � . . . by submodules. If for each M

n there exists Nm with N
m ⇢ M

n

and conversely, for each N
n there exists M

m with M
m ⇢ N

n. Then there is a canonical
isomorphism

lim
 

M/M
n ⇠= lim

 
M/N

n
.

Proof. In the special case when the N
n can be identified with a subsequence of the

M
n there is a natural map lim

 
M/M

n ! lim
 

M/N
n given by restriction to subse-

quences which is plainly an isomorphism.
In the general case we can find strictly increasing maps ↵, � : N ! N such that

for each M
n we have N

↵(n) ⇢ M
n and for each N

n we have M
�(n) ⇢ N

n. There are
natural maps lim

 
M/N

↵(n) ! lim
 

M/M
n and lim

 
M/M

�(n) ! lim
 

M/N
n induced

by the natural projections. Composing with the isomorphisms constructed in the
special case we get maps lim

 
M/N

n ! lim
 

M/M
n and lim

 
M/M

n ! lim
 

M/N
n

which are plainly inverse to each other.

Remark 5.4. In the above situation we may equip M with a topology in which
we declare the M

n to be a basis of open neighbourhoods of 0. In the case M
n
=

I
n
M this is called the I-adic topology. The topology is Hausdorff if and only if the

intersection of the M
n is 0.

A sequence (mn) ⇢ M is a Cauchy sequence for this topology if mi�mj 2 M
n for

i, j larger than an index N depending on n; it converges to m 2 M if m�mi 2 M
n

for i larger than an index N depending on n. In the completion cM every Cauchy
sequence is convergent.

The condition of the above proposition says that the topologies generated by the
submodules M

n and N
n are equivalent. Thus the completion depends only on the

topology of the module.

In the remainder of this section the base ring A will always be Noetherian. The
key result is:

Proposition 5.5. Let
0 ! M1 ! M2 ! M3 ! 0

be an exact sequence of finitely generated A-modules, with A a Noetherian ring. Then for
an ideal I ⇢ A the natural sequence of I-adic completions

0 ! cM1 ! cM2 ! cM3 ! 0

is exact.
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Before proving the proposition we derive a series of corollaries.

Corollary 5.6. We have canonical isomorphisms bA/bI ⇠= A/I and bIn/bIn+1 ⇠= I
n
/I

n+1 for
all n > 0.

Proof. Apply the proposition with M1 = I
n+1, M2 = I

n (also for n = 0, where I0 = A)
and observe that \In/In+1 = I

n
/I

n+1.

Corollary 5.7. If A is Noetherian and J = (a1, . . . , an) ⇢ A is any ideal, then its I-adic
completion as an A-module satisfies bJ ⇠= J bA.

Proof. Applying the proposition to the exact sequence

0 ! J ! A ! A/J ! 0

shows dA/J ⇠= bA/ bJ . Next, consider the exact sequence

A
n �! A ! A/J ! 0

where �(t1, . . . tn) := ⌃ aiti. Applying the proposition again gives the exact se-
quence

bAn
b�! bA ! bA/ bJ ! 0

so we conclude bJ = Im (b�). But b� is given by �(bt1, . . .btn) := ⌃aibti (or in other words
b� = �⌦ id bA), so Im (b�) = J bA.

The next corollary shows that complete Noetherian rings are close to power series
rings.

Corollary 5.8. Let A be a Noetherian ring, I = (a1, . . . , an) an ideal of A. Then the I-adic
completion bA satisfies

bA ⇠= A[[x1, . . . , xn]]/(x1 � a1, . . . xn � an).

Proof. Consider the polynomial ring B := A[x1, . . . , xn] and define an A-homomorphism
B ! A by sending xi to ai. It is surjective with kernel J := (x1 � a1, . . . , xn � an),
and the ideal (x1, . . . , xn) ⇢ B maps onto I in A. Applying Proposition 5.5 to the
(x1, . . . , xn)-adic completion of

0 ! J ! B ! A ! 0

shows bA ⇠= bB/ bJ . By Corollary 5.7 we have bJ ⇠= J bB, so it remains to observe that
bB ⇠= A[[x1, . . . , xn]].

Combining Proposition 3.7 with Corollary 5.8 we get:

Corollary 5.9. If A is a Noetherian ring, any completion bA of A by an ideal is Noetherian.
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The proof of Proposition 5.5 will be given in two steps.

Step 1: We prove the exactness of the sequence of inverse limits

0 ! lim
 

M1/(I
n
M2 \M1) ! lim

 
M2/I

n
M2 ! lim

 
M3/I

n
M3 ! 0.

Step 2: We establish an isomorphism lim
 

M1/(I
n
M2 \M1)

⇠= lim
 

M1/I
n
M1.

Step 1 follows by applying part a) of the following general lemma to the exact
sequences

0 ! M1/(I
n
M2 \M1) ! M2/I

n
M2 ! M3/I

n
M3 ! 0.

Lemma 5.10. Let (An), (Bn) and (Cn) be inverse systems of abelian groups such that there
are commutative diagrams with exact rows

0 ���! An+1 ���! Bn+1 ���! Cn+1 ���! 0
??y�A

n

??y�B
n

??y�C
n

0 ���! An ���! Bn ���! Cn ���! 0

for each n > 0.
The induced sequence

1 ! lim
 

An ! lim
 

Bn ! lim
 

Cn ! 1

of inverse limits is exact in each of the following cases:
a) The maps �A

n are surjective for all n.
b) For each n there exists m � n such that the map �

A
mn := �

A
n ��A

n+1�· · ·��A
m : Am+1 !

An is 0.

Proof. Left exactness of the sequence (without any of the additional conditions) is
immediate from the definition of the inverse limit. For surjectivity on the right
we have to show that every sequence (cn) 2 lim

 
Cn is the image of a sequence

(bn) 2 lim
 

Bn. Choose arbitrary liftings bn of the cn. We modify them by adding
suitable elements an 2 An so that �n(bn+1) = bn will hold for all n.

Assuming condition a) we use induction on n. Assume that bi have been con-
structed for i  n such that �i(bi+1) = bi for i  n � 1. Now consider bn+1. The
element �B

n (bn+1)� bn maps to 0 in Cn, hence it comes from some an 2 An. As �A
n is

surjective, we find an+1 2 An+1 with �
A
n (an+1) = an. Then bn+1 � an+1 still maps to

cn+1 in Cn+1 but moreover it maps to bn in Bn.
Assuming condition b), consider an = �

B
n (bn+1)� bn for all n and set

a
0
n := an +

1X

m=n

�
A
mn(am+1).
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By condition b) all sums here are finite. Moreover, �A
n+1(a

0
n+1) = a

0
n�an, so replacing

bn by bn + a
0
n we have �

B
n+1(bn+1 + a

0
n+1) = bn + a

0
n as required.

Remarks 5.11.

1. In case b) the assumption actually implies lim
 

An = 0, so lim
 

Bn
⇠! lim

 
Cn.

2. A more general sufficient (but not necessary) condition for right exactness of
the inverse limit is the Mittag–Leffler condition: the images �mn(Am+1) ⇢ An for all
m � n satisfy the descending chain condition. In these notes we’ll only need the
easier special cases a) and b) above.

We shall prove Step 2 in a stronger form. Assume given an ideal I ⇢ A and a
filtration (M

n
) of an A-module M satisfying I

m
M

n ⇢ M
m+n for all m,n. We say

that (Mn
) is stably I-adic if Mn+1

= IM
n for all n large enough. Obviously the I-adic

filtration (I
n
M) of M is stably I-adic.

Lemma 5.12. If (Mn
) is a stably I-adic filtration on M , there is an isomorphism

lim
 

M/M
n ⇠= lim

 
M/I

n
M.

Proof. We check the condition of Proposition 5.3. On the one hand, for all n we have
I
n
M = I

n
M

0 ⇢ M
n by assumption. On the other hand, if Mn+1

= IM
n for n � n0,

then M
n0+m

= I
m
M

n0 ⇢ I
m
M for all m > 0. ⇤

Now consider the graded ring1

I
�
:=

1M

n=0

I
n

and the direct sum of A-modules

M
�
:=

1M

n=0

M
n
.

Here M
� is a graded I

�-module, which means that there is an I
�-module structure

I
�⇥M

� ! M
� on M

� which in all degrees m,n restricts to I
m⇥M

n ! M
m+n (this

uses our condition on (M
n
) above).

Lemma 5.13 (Cartier). Assume A is Noetherian and M is finitely generated over A. The
filtration (M

n
) is stably I-adic if and only if M� is a finitely generated I

�-module.

1Recall that a graded ring is a ring R together with a family of additive subgroups Rd for each
d � 0 such that RdRe ⇢ Rd+e and R =

M

d

Rd.
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Proof. Suppose first Mn+1
= IM

n for all n � n0. For n  n0 each Mn is finitely
generated over A; choose a finite system S of generators for their direct sum. Since
for all m > 0 we have M

n0+m
= I

m
M

n0 , we conclude that S generates M� over I�.
Conversely, if M� is finitely generated over I�, we may assume all generators lie in
some homogeneous component Mn and let n0 be the largest n involved. Now for
m > 0 each element of Mn0+m is a sum of elements of the form in0+m�nxn with xn 2
M

n a generator and in0+m�n 2 I
n0+m�n. Since I

n0+m�n
= I

m
I
n0�n and I

n0�nMn ⇢
M

n0 , we obtain M
n0+m

= I
m
M

n0 . ⇤

Corollary 5.14 (Artin–Rees lemma). Assume moreover M1 ⇢ M is a submodule. The
filtration (I

n
M \M1) of M1 is stably I-adic.

Proof. First note that the filtration (I
n
M \M1) satisfies Im(InM \M1) ⇢ (I

n+m
M \

M1) for all n,m. Next, observe that a finite system of generators of I generates I
�

as an A-algebra, so I
� is Noetherian by the Hilbert basis theorem. By the lemma

I
�
M = �I

n
M is a finitely generated I

�-module, so its submodule �(I
n
M \M1) is

also finitely generated. Now apply the other implication of the lemma. ⇤

Proof of Proposition 5.5. As noted above, Lemma 5.10 a) implies exactness of the se-
quence

0 ! lim
 

M1/(I
n
M2 \M1) ! lim

 
M2/I

n
M2 ! lim

 
M3/I

n
M3 ! 0.

Now lim
 

M1/(I
n
M2 \ M1)

⇠= lim
 

M1/I
n
M1 follows from the Artin–Rees lemma

(Corollary 5.14) applied with M = M2 and Lemma 5.12. ⇤

The Artin–Rees lemma has another important consequence:

Corollary 5.15. (Krull intersection theorem) If A is a Noetherian local ring and I ( A

is an ideal, then
1\

n=1

I
n
= (0).

Proof. We may assume I = P , the maximal ideal of A, since I ⇢ P . Write N for
the intersection of the P

n. As N is an ideal, we have PN ⇢ N . On the other hand,
applying the Artin–Rees lemma to N ⇢ A gives an n0 for which

N = P
n0+1 \N = P (P

n0 \N) ⇢ PN.

Thus PN = N , so N = (0) by Nakayama’s lemma.

Corollary 5.16. If A is a Noetherian local ring and bA its completion with respect to some
ideal I ( A, the natural map A ! bA is injective.
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Proof. The kernel is
1\

n=1

I
n
.

While we are at local rings, let us also record the following fact.

Proposition 5.17. If A is a Noetherian local ring with maximal ideal P , its completion bA
with respect to an ideal I ⇢ A is a local ring with maximal ideal bP = P bA.

The proof uses a general lemma whose technique will serve many times.

Lemma 5.18. Let A be a ring complete with respect to an ideal I . An element a 2 A is a
unit in A if and only if a mod I is a unit in A/I .

Proof. Assume a mod I is a unit in A/I , the other implication being trivial. We
first treat the case I

2
= 0 (note that under this assumption A is indeed I-adically

complete). There is b 2 A and h 2 I with ab = 1 + h. Then ab(1 � h) = 1 � h
2
= 1,

so b(1� h) is an inverse for a.
Since I

n
/I

n+1 ⇢ A/I
n+1 is an ideal of square zero, we get using induction on n

that the lemma holds if I
n+1

= 0. In the general case we know from the above
that a mod I

n has a multiplicative inverse bn 2 A/I
n for each n > 0. Since the

multiplicative inverse of a ring element is unique, we must have bn = bn+1 mod
I
n
/I

n+1 for all n, so (bn) defines an element of A which is an inverse of A. ⇤

Proof of Proposition 5.17. Given t 2 bP , the element 1 + t is a unit in bA. Indeed, t mod
I lifts to an element t0 2 P and 1 + t0 is a unit in A. Now apply the lemma above.

By Corollary 5.6 the quotient bA/ bP ⇠= A/P is a field, so bP is a maximal ideal.
Now given t 2 bP and a maximal ideal P 0 ⇢ bA, we have t 2 P

0. Indeed, otherwise
(t, P

0
) = bA so there exist a 2 bA and b 2 P

0 with at + b = 1, but this contradicts the
fact proven above that 1� at is a unit. So bP ⇢ P

0, whence bP = P
0. ⇤

Remark 5.19. The above argument also shows that if A is any ring and bA its com-
pletion with respect to an ideal I ⇢ A, then bI is contained in all maximal ideals of
bA, i.e. in its Jacobson radical.

To proceed further we need the notion of a flat A-module: An A-module N is flat
if for every exact sequence

0 ! M1 ! M2 ! M3 ! 0

of A-modules the tensored sequence

0 ! M1 ⌦A N ! M2 ⌦A N ! M3 ⌦A N ! 0

remains exact.
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Remarks 5.20.

1. Since the sequence is always right exact by a basic property of the tensor product,
flatness is equivalent to injectivity of M1 ⌦A N ! M2 ⌦A N for all injective maps
M1 ! M2. In fact, here we may restrict to finitely generated Mi. Indeed, assume
↵ =

X
mi ⌦ ai is an element of M1 ⌦A N that maps to 0 in M2 ⌦A N . To prove that

↵ = 0 we may replace M1 by the finitely generated submodule generated by the mi.
Also, by construction of the tensor product the image of ↵ in M2 ⌦A N is 0 if the
corresponding element of the free A-module A[M2 ⇥ N ] is a sum of finitely many
relations occurring in the definition of M2 ⌦A N , so we find a finitely generated
submodule M1 ⇢ M

f ⇢ M2 such that ↵ maps to 0 already in M
f ⌦A N .

2. If N is flat over A and B is an A-algebra, then N ⌦A B is flat over B. Indeed,
if M1 ! M2 is an injection of B-modules, it can also be viewed as an injection of
A-modules via the map A ! B, and Mi ⌦B (N ⌦A B) ⇠= Mi ⌦A N for i = 1, 2.

Proposition 5.21. If A is Noetherian and bA is the completion of A with respect to some
ideal I ⇢ A, then bA is flat over A.

Proof. First note that for all finitely generated A-modules M we have isomorphisms
cM ⇠= bA⌦A M . When M = A

n this is easily checked using the definition of comple-
tions. In the general case write M as a cokernel of a suitable morphism A

m ! A
n

and use right exactness of completion (part of Proposition 5.5) and of the tensor
product. In view of Remark 5.20 (1) the flatness of bA now follows from the full
statement of Proposition 5.5. ⇤

Proposition 5.22. If A is a Noetherian local ring and bA its completion with respect to some
ideal I ⇢ A, then dimA = dim bA.

Proof. Applying Proposition 3.1 to the inclusion map A ! bA and the maximal ideal
P bA ⇢ bA we obtain dim bA  dimA. To prove the reverse inequality, choose a chain
P1 ( P2 ( · · · ( Pd ( P of maximal length in A. Applying the lemma below
with B = bA and the ideals Pd ( P and P bA we obtain a prime ideal Qd ( P bA with
Qd \ A = Pd. Now the process may be repeated with Pd�1 ( Pd and so on, until
we obtain a chain of prime ideals Q1 ( Q2 ( · · · ( Qd ( P bA. Note that the lemma
applies in view of Proposition 5.21 (and Corollary 5.16). ⇤

Lemma 5.23 (Going down theorem for flat extensions). Let A ⇢ B be a ring extension
making B a flat A-module. If P1 ( P2 are prime ideals in A such that there exists a prime
ideal Q2 ⇢ B with Q2\A = P2, then there exists a prime ideal Q1 ( Q2 with Q1\A = P1.

Proof. By Remark 5.20 (2) the ring extension A/P1 ⇢ B/P1B
⇠= B ⌦A (A/P1) is still

flat, so we may replace A by A/P1 and assume P1 = (0) (in particular, A is an
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integral domain). Choose a minimal prime ideal Q1 ⇢ Q2 in B (it exists by Zorn’s
lemma as the intersection of a descending chain of prime ideals is a prime ideal). If
x 2 A is a nonzero element, the map A ! A given by a 7! xa is injective on A, hence
so is the similar map B ! B by flatness of B over A. So x is not a zero-divisor in B

and as such cannot be contained in the minimal prime ideal Q1 by Remark 2.2. This
shows Q1 \ A = (0) as required; in particular, Q1 ( Q2.

Remark 5.24. In the above proof we did not really use that A was a subring of B. So
the statement holds more generally for any flat A-algebra B if we understand Qi\A
as '

�1
(Qi), where ' : A ! B is the natural homomorphism giving the A-algebra

structure on B. Of course, at the end we have to work with '(x) as an element of
B.

The above arguments may also be used to prove that in the inequality of Propo-
sition 3.1 equality holds when the ring B is a flat A-algebra via the map ' : A ! B.

Finally, we obtain:

Corollary 5.25. If A is a Noetherian local ring, A is regular if and only if its completion bA
with respect to the maximal ideal P is regular.

Proof. By Corollary 5.9 and Proposition 5.17 the completion bA is again Noetherian
and local. Now apply Corollary 5.6 with I = P and Proposition 5.22.

It can be shown that the statement corollary holds more generally for completions
with respect to arbitrary ideals I ⇢ A.

Example 5.26. Take A = Z, I = (p). The completion Zp := lim
 

Z/pnZ is the ring of
p-adic integers. Since Zp is also the completion of the localization Z(p) by its maximal
ideal, it is a discrete valuation ring by the corollary above. In particular, it is an
integral domain; its fraction field Qp is the field of p-adic numbers. Every nonzero
a 2 Qp can be written uniquely as a = up

vp(a) with u 2 Zp a unit and vp(a) 2 Z. The
function a 7! vp(a) gives the discrete valuation of Qp.

By Corollary 5.8 we have an isomorphism Zp
⇠= Z[[x]]/(x� p). This may actually

be taken as a quick, albeit unorthodox, definition of p-adic integers.

6. THE COHEN STRUCTURE THEOREM: PART I

From now on, when speaking about complete local rings we always understand
completion with respect to the maximal ideal. The Cohen structure theorem de-
scribes the structure of complete regular local rings. The easiest case is:
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Theorem 6.1. Let A be a complete Noetherian local ring that contains a subfield k map-
ping isomorphically onto its residue field. Then A is a quotient of some power series ring
k[[x1, . . . , xd]].

If moreover A is regular of dimension d, then A ⇠= k[[x1, . . . , xd]].

Note that all the assumptions of the theorem are satisfied by the completion of
the local ring of a smooth point on an algebraic variety over an algebraically closed
field.

For the proof we need the associated graded ring of a ring complete with respect to
the I-adic filtration. It is defined by

gr•(A) :=

1M

n=0

I
n
/I

n+1
.

Lemma 6.2. Let � : A ! B be a homomorphism of complete local rings such that �(P n
A) ⇢

P
n
B for all n � 1, where PA (resp. PB) is the maximal ideal of A (resp. B).
If the induced homomorphism gr•(A) ! gr•(B) is injective (resp. surjective), then so is

�.

Proof. Consider the commutative diagram

0 ���! P
n
A/P

n+1
A ���! A/P

n+1
A ���! A/P

n
A ���! 0

grn(�)

??y �n+1

??y �n

??y

0 ���! P
n
B/P

n+1
B ���! B/P

n+1
B ���! B/P

n
B ���! 0

The injectivity of grn(�) shows the injectivity of �n for all n by induction on n,
whence also the injectivity of �. For surjectivity, given (bn) ⇢ B = bB with bn 2
B/P

n
B, we have to find a sequence of elements an 2 A/P

n
A with �n(an) = bn and an+1

mod P
n
A = an. We do this by induction on n: assuming an has been constructed,

we lift it to an+1 2 A/P
n+1
A arbitrarily. This an+1 may not map to bn+1 in A/P

n+1
A but

�n+1(an+1) � bn+1 comes from P
n
B/P

n+1
B . By surjectivity of grn(�) we may therefore

modify an+1 by an element of P n
A/P

n+1
A so that its image becomes bn+1.

Proof of Theorem 6.1. Let t1, . . . , td be a system of generators for the maximal ideal P
of A. There is a unique k-algebra homomorphism � : k[[x1, . . . , xd]] ! A sending xi

to ti. Indeed, for all n there is a unique homomorphism � : k[[x1, . . . , xd]]/(x1, . . . , xd)
n !

A/P
n sending the image of xi to that of ti; as A is complete, these assemble to a ho-

momorphism � as required. As A/P ⇠= k and the ti generate P , the induced map
gr•(�) is surjective, so � is surjective by the lemma.

If moreover A is regular, we may choose d = dimA. As moreover A is then an
integral domain, the kernel of � is a prime ideal, so since A and k[[x1, . . . , xd]] are
both of dimension d, we must have ker(�) = 0.
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We can use the theorem to expand elements of regular local rings in power series.
To do so, we use first the fact, resulting from Corollary 5.25, that A is regular if and
only if bA is. By Corollary 5.16 the natural map embeds A in bA, so the theorem
implies:

Corollary 6.3. Given a regular local ring A of dimension d containing a field k mapping
onto its residue field there is an injective homomorphism A ,! k[[x1, . . . , xn]]. It is deter-
mined by the choice of a regular system of parameters t1, . . . , td in A. In other words, each
element of A has a ‘power series expansion’ in the ti.

Remark 6.4. For d = 1 there is an easy direct proof of the corollary. In this case A

is a discrete valuation ring, i.e. the maximal ideal P is principal. Fix a generator
t of P and pick a 2 A. Set a0 := a mod P and b0 = a � a0. Then b0 = b1t with
a unique b1 2 A and we set a1 := b1 mod P . Continuing the process we get a =

a0 + a1t+ . . . ant
n
+ bn with bn 2 P

n for each n, whence the required map A 7! k[[t]];
it is injective by the Krull intersection theorem.

For general d the obvious generalization of the above procedure still yields some
power series expansion of a with respect to a regular system of parameters t1, . . . , td
but its uniqueness is not a priori clear.

We now prove that the assumption in Theorem 6.1 is always satisfied if the char-
acteristic of A equals that of its residue field. The argument used for the proof is
inspired by a classical result called Hensel’s lemma, so we begin by stating it in its
simplest form.

Proposition 6.5 (Hensel’s lemma). Let A be a complete local ring with maximal ideal P
and residue field k. Let f 2 A[T ] be a polynomial, and write f̄ for the image of f in k[T ].
Assume that ā 2 k satisfies f̄(ā) = 0 but f̄ 0(ā) 6= 0. Then there exists a unique a 2 A

reducing to ā modulo P with f(a) = 0.

As A is complete with respect to P , it suffices to construct for each n � 0 elements
an 2 A/P

n satisfying a1 = ā, f(an) = 0 and an mapping to an�1 in A/P
n�1. We shall

do this by applying

Proposition 6.6. Let B be a ring, I ⇢ B an ideal satisfying I
2
= 0, and f 2 B[T ] a

polynomial. If b 2 B is such that f(b) 2 I but f 0(b) is a unit in B, there exists a unique
c 2 B with f(c) = 0 and c ⌘ b mod I .

By the above arguments, if we apply the proposition inductively with B = A/P
n,

I = P
n�1

/P
n and b a lift of an�1 to A/P

n, Proposition 6.5 follows. Indeed, since b

maps to ā modulo P by construction, f 0(b) maps to f
0
(ā) modulo P , and so f

0
(b) is

a unit but f(b) 2 P
n�1

/P
n.
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We prove Proposition 6.6 in an even more general form:

Proposition 6.7. Let B be a ring, I ⇢ B an ideal satisfying I
2
= 0. Assume moreover

given a commutative diagram

(1)
S

�̄���! B/I
x??

x??

R
µ���! B

where S = R[T ]/(f) with some f 2 R[T ], and write t for the image of T in S. If �̄(f 0(t))
is a unit in B/I , then �̄ lifts to a unique map � : S ! B making the diagram commute.

To get the previous proposition, we apply this with R = B, µ = idB and �̄ the
map B[T ]/(f) ! B/I induced by sending t = T mod (f) to b, and then set c := �(t).

Proof. Lift �̄(t) to b 2 B arbitrarily; since f
0
(b) maps to �̄(f

0
(t)) mod I , it is a unit

in B by Lemma 5.18 (here we evaluate f
0 at b via applying µ to its coefficients). To

define �, we have to find h 2 I such that f(b+ h) = 0 (with the same convention of
evaluating f via µ), for then T 7! b + h determines � uniquely. The Taylor formula
with difference h is of the shape f(b + h) = f(b) + f

0
(b)h because I

2
= 0 and h 2 I .

But f 0(b) is a unit in B, and therefore the equation 0 = f(b) + f
0
(b)h can be solved

uniquely in h. ⇤

Remarks 6.8.

(1) Hensel’s lemma (Proposition 6.5) is often stated without the uniqueness of
the lifting a 2 A. However, it can be checked directly that existence implies
uniqueness.

(2) If in the above proposition f
0
(t) is a unit in S, then the lifting property holds

without any further assumption on �̄. This is an instance of formal smooth-
ness (in fact, formal étaleness) that we’ll study in more detail later.

We shall use Proposition 6.7 through the following consequence.

Corollary 6.9. Let L|K be a separable algebraic field extension. Assume moreover given a
commutative diagram

L
�̄���! B/I

x??
x??

K ���! B

where B is a ring, I ⇢ B an ideal satisfying I
2
= 0. Then �̄ lifts to a map � : L ! B

making the diagram commute.
The same holds if instead of I2 = 0 we assume that B is complete with respect to I .
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Proof. Assume first that L|K is a finite extension. By the theorem of the primitive
element we may then write L ⇠= K[T ]/(f) with f a polynomial having only simple
roots, so we may apply the proposition with R = K and S = L to conclude (indeed,
in this case already f

0
(t) 2 S is a unit). If L|K is an infinite separable algebraic ex-

tension, we may write it as a union of finite separable extensions, and then conclude
from the finite case using uniqueness of the lifting in Proposition 6.7.

The second statement of the proposition reduces to the first in the same way as
Proposition 6.5 reduces to Proposition 6.6. ⇤

We now return to the assumption in Theorem 6.1.

Definition 6.10. Let A be a local ring with maximal ideal P and residue field k. A
field contained in A is a coefficient field of A if it is mapped isomorphically onto k by
the natural projection A ! k.

We can now state:

Theorem 6.11 (Cohen). If A is a complete local ring containing a field, then A has a
coefficient field.

Assume moreover that A is an integral domain. We say that A is equi-characteristic
if char(A) = char(k). This holds if and only if A contains a field. Sufficiency is ob-
vious, and so is necessity in positive characteristic. For necessity in characteristic 0,
observe that the subring Z ⇢ A generated by 1 must meet P trivially, and therefore
all of its elements are units in A, i.e. A contains Q. Thus combining the previous
theorem with Theorem 6.1 we obtain:

Corollary 6.12. Let A be an equi-characteristic complete Noetherian local domain with
residue field k. Then A is a quotient of some power series ring k[[x1, . . . , xd]].

If moreover A is regular of dimension d, then A ⇠= k[[x1, . . . , xd]].

In the proof of Theorem 6.11 we distinguish two cases, depending on the charac-
teristic of the subfield contained in A.

Proof of Theorem 6.11 in characteristic 0. Let k0 ⇢ k be a maximal subfield such that
the identity map of k

0 lifts to a map k
0 ! A. By a simple application of Zorn’s

lemma such a k
0 exists and contains the prime field Q. Assume k

0 6= k. If k contains
an element x̄ transcendental over k

0, then lifting x̄ to x 2 A we see that the ring
k
0
[x] meets P trivially (otherwise we would have k

0
[x] \ P = (f) for a polynomial

f 2 k
0
[T ] and x̄ would be algebraic over k

0). Therefore k
0
(x) ⇢ A and the map

k
0
(x̄) ! A sending x̄ to x lifts the identity of k0(x̄), contradicting the maximality of

k
0. Hence k|k0 is an algebraic extension, and also separable as we are in characteristic
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0. Now an application of Corollary 6.9 with L = k, K = k
0 and B = A again

contradicts the maximality of k0.

Proof of Theorem 6.11 in characteristic p > 0. This case follows as above from the
following proposition applied to B = A, L = k and the map k ! A/P :

Proposition 6.13. Let L be a field of characteristic p > 0, B an Fp-algebra, and I ⇢ B an
ideal satisfying I

2
= 0. Then every homomorphism �̄ : L ! B/I lifts to a homomorphism

� : L ! B.
The same holds if instead of I2 = 0 we assume that B is complete with respect to I .

Proof. Define a map �p : L
p ! B as follows. Given a 2 L, lift �̄(a) to b 2 B, and set

�p(a
p
) := b

p. This does not depend on the choice of b because if b0 is another lifting,
then b� b

0 2 I , so that bp� (b
0
)
p
= (b� b

0
)
p
= 0 because B is an Fp-algebra, p � 2 and

I
2
= 0. The map �p is well defined because the map x 7! x

p is injective on L, and it
is a homomorphism. Moreover, it is the unique lifting of �̄|Lp to a map L

p ! B, and
identifies Lp with a subfield of B.2 By Zorn’s lemma there exists a maximal subfield
L
0 ⇢ L containing L

p such that �̄|L0 lifts to a map L
0 ! B. We know that Lp ⇢ L

0 and
now show that L0 = L. Assume not, and pick ↵ 2 L \ L0. Then ↵

p 2 L
p, and x

p � ↵
p

is the minimal polynomial of ↵ over L0. Moreover, a lifting � of �̄(↵) to B satisfies
�
p
= �p(↵

p
) by uniqueness of �p. Therefore sending ↵ to � defines an extension of

�̄|L0 to L
0
(↵) = L

0
[x]/(x

p � ↵
p
), contradicting the maximality of L0.

To get the second statement, we apply the first part inductively to B/I
n+1 in place

of B and I
n
/I

n+1 in place of I , assuming that a lifting to B/I
n has already been

constructed.

Finally, we discuss the Cohen structure theorem for complete local domains of
mixed characteristic, i.e. of characteristic 0, and with residue field of characteristic
p > 0. There are two basic facts that go beyond the equicharacteristic case.

Fact 6.14. Given a field k of characteristic p > 0, there exists a complete discrete valuation
ring A0 of characteristic 0 with residue field k and maximal ideal generated by p.

Such an A0 is often called a Cohen ring. In the case where k is perfect, the ring A0

is unique up to unique isomorphism and depends functorially on k: it is the ring of
Witt vectors of k. In the non-perfect case, however, uniqueness does not hold.

Fact 6.15. Let A be a complete local domain of characteristic 0, with maximal ideal P and
residue field k of characteristic p > 0. There exists a Cohen ring A0 contained in A with
residue field k and such that P \ A0 = (p).

2For L perfect the proof stops here.



NOTES ON COMMUTATIVE ALGEBRA 37

We shall prove these facts in the case when k is perfect in the next section and in
Section 10 in general. Let us take them for granted for now and prove the mixed
characteristic case of the Cohen structure theorem.

Theorem 6.16. Let A be a Noetherian complete local domain of mixed characteristic, and
let A0 ⇢ A be a Cohen ring as in Fact 6.15.

(1) There is a surjective homomorphism A0[[x1, . . . , xn]] ⇣ A for some n > 0.
(2) If moreover A is regular of dimension d + 1 and p 2 P \ P

2, there is such a map
with n = d, inducing an isomorphism A ⇠= A0[[x1, . . . , xd]].

Here, as usual, P denotes the maximal ideal of A.

Proof. For (1) choose elements t1, . . . , tn 2 P so that P = (p, t1, . . . , tn). For every
i > 0 we have an isomorphism

A0[[x1, . . . , xn]]/(p, x1, . . . , xn)
i ⇠= A0[x1, . . . , xn]/(p, x1, . . . , xn)

i
,

whence a unique map of A0-algebras A0[[x1, . . . , xn]]/(p, x1, . . . , xn)
i ! A/P

i which
sends xj to tj for all j. By passing to the inverse limit over i we obtain a map
A0[[x1, . . . , xn]] ! A whose surjectivity follows from Lemma 6.2 as in the proof of
Theorem 6.1.

Under the assumptions of (2) we may moreover take n = d and find ti so that
p, t1, . . . , td is a regular system of parameters for P . As in the proof of Theorem
6.1, the surjection A0[[x1, . . . , xd]] ! A must then be an isomorphism for dimension
reasons.

If A is regular but p 2 P
2, then p cannot be part of a regular system of parameters

asin the above proof, because then A/pA cannot be an integral domain, contra-
dicting Proposition 4.4 and Theorem 4.6. In fact, in this case there is usually no
isomorphism with a power series ring as in the theorem. The best we can get is:

Proposition 6.17. Let A be a Noetherian complete local domain of mixed characteristic and
dimension d+ 1, and let A0 ⇢ A be a Cohen ring. There exists an injective homomorphism
A0[[x1, . . . , xd]] ,! A such that A is finitely generated as a module over its image.

We shall need an easy lemma.

Lemma 6.18. Let R be a ring complete with respect to an ideal I satisfying \jI
j
= 0, and

M an R-module. If M/IM is finitely generated over R/I , then M is finitely generated
over R.

Proof. Choose elements m1, . . . ,mr 2 M whose images modulo IM generate M/IM

over R/I . The equality

(2) M = Rm1 � · · ·�Rmr + IM
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then implies

(3) I
j
M = I

j
m1 � · · ·� I

j
mr + I

j+1
M

for all j. So if m 2 M , we may write

m =

X

i

ri0mi + n1

with ri0 2 R and n1 2 IM using (2), and then construct inductively elements rij 2 I
j

and nj 2 I
j
M satisfying

nj =

X

i

rijmi + nj+1

using (3). Here the sums ri0+ ri1+ ri2+ . . . converge to ri 2 R, but then the element
m�

X

i

rimi lies in \jI
j
M , so it equals 0 by assumption. ⇤

Proof of Proposition 6.17. The quotient ring A/pA is Noetherian local of dimension
d by Lemma 4.10, so by the converse of the Hauptidealsatz we find t1, . . . , td 2 P

such that P is minimal above J = (p, t1, . . . , td). Since then some power of P lies
in J , it follows from Proposition 5.3 that A is also J-adically complete. As in the
previous proof we then obtain a map ⇢ : A0[[x1, . . . , xd]] ! A induced by sending xi

to ti and passing to the inverse limit over the quotients A/J i. Hence A is a module
over R := A0[[x1, . . . , xd]] via ⇢, and if we put I = (p, x1, . . . , xd) ⇢ R, then J = IA.
Since A/J is Noetherian of dimension 0, it is Artinian, hence finite dimensional over
R/I ⇠= A0/pA0

⇠= A/P . So applying the lemma above with M = A we see that A is
a finitely generated R-module. On the other hand, applying Proposition 3.1 to the
map ⇢(R) ! A we see that dim (A/IA) = 0 implies that ⇢(R) has Krull dimension
� d+ 1, which is only possible if ⇢ is injective. ⇤

7. WITT VECTORS

In this section we prove the statement of Fact 6.14 in the case the field k is perfect.
Under this assumption, the Cohen ring with residue field k is unique up to unique
isomorphism.

We prove a more general statement involving not necessarily local or Noetherian
rings.

Definition 7.1. Let p be a prime number. A strict p-ring is a ring A complete with
respect to the ideal (p) such that p is not a zero-divisor in A.

Proposition 7.2. Assume A is a strict p-ring such that the ideal (p) is maximal. Then A is
a complete discrete valuation ring with maximal ideal (p).
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Proof. Since every x 2 A \ (p) is a unit modulo the maximal ideal (p), it is a unit
by Lemma 5.18. This shows that A is local with maximal ideal (p). We have
\j(p

j
) = (0) by completeness, so for every nonzero a 2 A we find a unique r � 0

such that a 2 (p
r
) \ (pr+1

). Then a = up
r where u /2 (p), hence u is a unit. It follows

that (a) = (p
r
) and, more generally, for any nonzero ideal I ⇢ (p) we have I = (p

r
)

with the largest r such that I ✓ (p
r
). Moreover, if a = up

r were a zero-divisor,
so would be p which is not the case. We conclude that A is a local principal ideal
domain, i.e. a discrete valuation ring. ⇤
Remark 7.3. In the above proof we did not use the completeness of A, only the
triviality of the intersection \j(p

j
) =, so the statement remains true under this more

general assumption.

Now recall that an integral domain R of characteristic p > 0 is perfect if the map
x 7! x

p is an automorphism of R.

Theorem 7.4. Given a perfect ring R of characteristic p, there exists a strict p-ring W (R)

with W (R)/pW (R) ⇠= R. Such a W (R) is unique up to unique isomorphism and functorial
in R, i.e. any homomorphism R ! S induces a homomorphism W (R) ! W (S).

When R is a perfect field, then W (R) is a discrete valuation ring.

In the case when R is a perfect field the ring W (R) was constructed by Ernst Witt
in 1937, whence the name ‘Witt vectors’. Later several other constructions have
been given. Recently a particularly simple one was found by Cuntz and Deninger3.
We explain their arguments, following the original paper closely.

Construction 7.5. View R as a monoid under multiplication and let Z[R] be the
associated monoid algebra. Its elements are formal sums of the form ⌃r2Rnr[r] with
almost all nr = 0. Addition and multiplication are the obvious ones. Note that
[1] = 1 but [0] 6= 0. Multiplicative maps R ! B into commutative rings mapping
1 to 1 correspond to ring homomorphisms Z[R] ! B. The identity map R = R

induces the surjective ring homomorphism ⇡ : Z[R] ! R which sends ⌃nr[r] to
⌃nrr. Let I be its kernel, so that we have an exact sequence

0 �! I �! Z[R]
⇡�! R �! 0 .

The multiplicative isomorphism r 7! r
p of R induces a ring isomorphism F :

Z[R] ! Z[R] mapping ⌃nr[r] to ⌃nr[r
p
]. It satisfies F (I) = I .

Let W (R) := lim
 

Z[R]/I
i be the I-adic completion of Z[R]. By construction W (R)

is complete with respect to the filtration given by the ideals
bI i := lim

 
I
i
/I

i+n ⇢ W (R)

3J.Cuntz, C. Deninger, An alternative to Witt vectors, Münster J. Math. 7 (2014), no. 1, 105-114.
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where the inverse limit is taken over n. (Note that we do not know a priori that bI i
is the i-th power of bI ; this will follow from the proof of Proposition 7.6 below.)

Plainly, the above construction of W (R) is functorial in R.

Proposition 7.6. If R is a perfect ring of characteristic p, then W (R) is a strict p-ring with
W (R)/pW (R) = R.

The proof will require some lemmas. Consider first the map � : Z[R] ! Z[R]

defined by the formula

�(x) =
1

p
(F (x)� x

p
) .

It is well defined since F (x) ⌘ x
p

mod pZ[R] and because Z[R], being a free Z-
module, has no p-torsion, and therefore for every x 2 pZ[R] we find a unique y

with py = x.

Lemma 7.7. For x, y 2 Z[R] the following equalities hold.

(4) �(x+ y) = �(x) + �(y)�
p�1X

i=1

1

p

✓
p

i

◆
x
i
y
p�i

(5) �(xy) = �(x)F (y) + x
p
�(y) .

Proof. Equality (4) follows from the additivity of F and the binomial formula; equality
(5) is a straightforward calculation using the multiplicativity of F . ⇤

Corollary 7.8. We have �(In) ⇢ I
n�1 for all n � 1.

Proof. Applying (5) inductively gives the relation

�(x1 · · · xn) =

nX

i=1

x
p
1 · · · x

p
i�1�(xi)F (xi+1) · · ·F (xn) for xi 2 Z[R] .

Equation (4) shows that we have

�(x+ y) ⌘ �(x) + �(y) mod I
n if x or y is in I

n
.

Since elements of I
n are sums of n-fold products of elements of I , the corollary

follows from the above formulas.

Lemma 7.9. Let R be a perfect ring of characteristic p and n � 1 an integer.
a) If pa 2 I

n for some a 2 Z[R] then a 2 I
n�1.

b) In = I
i
+ p

nZ[R] for any i � n.
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Proof. a) According to the previous corollary we have �(pa) 2 I
n�1. On the other

hand, by definition:
�(pa) = F (a)� p

p�1
a
p
,

and therefore since pa 2 I
n

�(pa) ⌘ F (a) mod I
n
.

It follows that F (a) 2 I
n�1 and hence a 2 I

n�1 since F is an automorphism with
F (I) = I .
b) We prove the inclusion I

n ⇢ I
i
+ p

nZ[R] for i � n by induction with respect to
n � 1. The other inclusion is clear. For y 2 Z[R] and i � 1 we have

F
i
(y) ⌘ y

pi
mod pZ[R] .

Applying this to y = F
�i
(x), we get for all x 2 Z[R]

x ⌘ F
�i
(x)

pi
mod pZ[R] .

For x 2 I this shows that x 2 I
i
+ pZ[R] settling the case n = 1 of the assertion.

Now assume that In ⇢ I
i
+ p

nZ[R] has been shown for a given n � 1 and all i � n.
Fix some i � n+ 1 and consider an element x 2 I

n+1. By the inductive assumption
x = y + p

n
z with y 2 I

i and z 2 Z[R]. Hence p
n
z = x� y 2 I

n+1. Using assertion a)
of the lemma repeatedly shows that z 2 I . Hence z 2 I

i
+ pZ[R] by the case n = 1.

Writing z = a+ pb with a 2 I
i and b 2 Z[R] we find

x = (y + p
n
a) + p

n+1
b 2 I

i
+ p

n+1Z[R] .

Thus we have shown the inductive step I
n+1 ⇢ I

i
+ p

n+1Z[R]. ⇤

Proof of Proposition 7.6. We show that there is an equality of ideals (p
n
) = bIn for all

n � 1 in W (R) and that p is not a zero-divisor in W (R); since by construction W (R)

is complete with respect to the filtration given by the ideals bIn, this will show that
it is a strict p-ring. We’ll then also have W (R)/pW (R) = W (R)/bI ⇠= R. Let p�n(I i)
be the inverse image of I i under pn-multiplication on Z[R]. Then for any i � n � 1

we have an exact sequence

0 �! p
�n

(I
i
)/I

i �! Z[R]/I
i pn�! I

n
/I

i �! 0

where the surjectivity on the right is due to part b) of Lemma 7.9. From this we
get an exact sequence of inverse systems whose transition maps for i � n are the
reduction maps. In the limit we have an exact sequence

0 �! lim
 

p
�n

(I
i
)/I

i �! W (R)
pn�! bIn .

The transition map p
�n

(I
i+n

)/I
i+n ! p

�n
(I

i
)/I

i is the zero map since a 2 p
�n

(I
i+n

)

implies p
n
a 2 I

i+n and hence a 2 I
i by part a) of Lemma 7.9. So condition b) of
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Lemma 5.10 is satisfied, and therefore the map p
n
: W (R) ! bIn is surjective. By

Remark 5.11 (1) it also follows that lim
 

p
�n

(I
i
)/I

i
= 0, so that pn : W (R) ! W (R)

is injective with image bIn, as claimed. ⇤

Remark 7.10. There is an isomorphism

R
⇠�! I

n
/I

n+1 given by r 7�! p
n
[r] .

This holds because

I
n
/I

n+1
= bIn/dIn+1 = p

n
W (R)/p

n+1
W (R)

p�n

= W (R)/pW (R) = R .

It remains to show the uniqueness property of W (R). We do this via a method
that at the same time will yield Fact 6.15 for complete local rings of mixed charac-
teristic with perfect residue field. We first prove:

Lemma 7.11. Let A be a ring complete with respect to an ideal P ⇢ A such that A/P
is a perfect ring of characteristic p > 0. The natural map ⇡ : A ! A/P has a unique
multiplicative retraction, i.e. a map ⇢ : A/P ! A satisfying ⇡ � ⇢ = id and ⇢(āb̄) =

⇢(ā)⇢(b̄) for ā, b̄ 2 A/P . Moreover, ⇢(ā) is the unique element of A with the properties

(6) ā = ⇢(ā) modP, ⇢(ā) 2
1\

n=0

A
pn
.

The element ⇢(ā) 2 A is often called the Teichmüller representative of ā 2 A/P .
Note that the assumption implies that p 2 P and therefore p

i 2 P
i for all i � 1.

Proof. Given ā 2 A/P , we show that there is a unique ⇢(ā) 2 A satisfying the prop-
erties (6). This will define the required multiplicative retraction, since for b̄ 2 A/P

the product ⇢(ā)⇢(b̄) lifts ā · b̄ and is contained in A
pn for all n > 0. Note that since

A/P is perfect, any multiplicative retraction ⇢ must satisfy the conditions in (6), so
uniqueness will also follow.

First we show that for all i � 0 there is a unique element ai 2 A/P
i+1 mapping

to ā mod P that is in the image of Api mod P
i+1. Indeed, since A/P is perfect, we

find x 2 A with ā = x
pi mod P . For such an x we have (x+ y)

pi
= x

pi mod P
i+1 for

y 2 P since p
i 2 P

i, hence the class

ai := x
pi
modP

i+1

does not depend on x. Moreover, since obviously x
pi 2 A

pi�1
, by uniqueness we

must have
x
pi
modP

i
= ai modP

i
/P

i+1
= ai�1.

Therefore, since A is complete with respect to P , the sequence (ai) defines an ele-
ment of lim

 
A/P

i+1
= A mapping to ā modulo P . Denote it by ⇢(ā).
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Now fix n > 0 and let b̄n 2 A/P be the unique element with b̄
pn

n = ā. Then ⇢(b̄n)
pn

mod P
i+1 also comes from A

pi for all i and maps to ā mod P . By uniqueness of the
ai we must have ⇢(ā) = ⇢(b̄n)

pn . It follows that ⇢(ā) 2 A
pn for all n, as required.

Example 7.12. For A = W (R) the composite map R ! Z[R] ! W (R) is multiplica-
tive, so by uniqueness it must be the Teichmüller retraction.

Corollary 7.13. If A is as in Lemma 7.11 and R is a perfect ring of characteristic p, every
homomorphism '̄ : R ! A/P lifts to a unique homomorphism ' : W (R) ! A such that
the induced map W (R)/pW (R) ! A/P coincides with '̄.

Proof. The composite map ⇢ � '̄ : R ! A/P ! A preserves multiplication, hence
extends uniquely to a ring homomorphism '̃ : Z[R] ! A. By construction '̃(I) ⇢
P , hence '̃(I

i
) ⇢ P

i. Thus there is a canonical induced map ' from the I-adic
completion W (R) of Z[R] to the P -adically complete A. For uniqueness of the lifting
' note that any lifting of '̄ must send r 2 R to (⇢ � '̄)(r) by uniqueness of the
Teichmüller retraction; in the remaining steps of the construction uniqueness holds.

⇤

Proof of Theorem 7.4. Existence was proven in proposition 7.6 and uniqueness fol-
lows from the previous corollary. The last statement follows from Proposition
7.2. ⇤

The following corollary justifies Fact 6.15.

Corollary 7.14. Let A be a complete local integral domain of characteristic 0 with maximal
ideal P and perfect residue field k of characteristic p > 0. The identity map of k induces an
injective map ' : W (k) ! A where '�1(P ) = pW (k).

Proof. Apply the previous corollary with R = k. Since A is an integral domain of
characteristic 0, the kernel of ' is a prime ideal that must be different from (p), and
hence equals (0). ⇤

Remark 7.15. Classically, elements of W (R) are represented by infinite sequences
(‘vectors’)

(7) (r0, r1, r2, . . . )

with ri 2 R. The vector (7) corresponds to the convergent sum
1X

i=0

r
p�i

i p
i 2 W (R).

Note, therefore, that the ring operations in W (R) do not correspond to component-
wise addition and multiplication on the sequences (7)!
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There are two important operations on Witt vectors. The first is the Frobenius

F : (r0, r1, r2, . . . ) 7! (r
p
0, r

p
1, r

p
2, . . . ).

It corresponds to the unique automorphism of W (R) induced by F on Z[R]; it exists
because of F (I) = I .

The second is the Verschiebung (‘shift’) given by

V : (r0, r1, r2, . . . ) 7! (0, r0, r1, r2, . . . ).

On W (R) it corresponds to the additive homomorphism defined by V (x) = pF
�1
(x).

By definition ImV
i
= p

i
W (R) and V � F = F � V = p.

8. DERIVATIONS AND DIFFERENTIALS

In differential geometry, the tangent space at a point P on some variety is defined
to consist of so-called linear derivations, i.e. linear maps that associate a scalar to each
function germ at P and satisfy the Leibniz rule. Here is an algebraic version of this
notion.

Definition 8.1. Let B be a ring and M a B-module. A derivation of B into M is a
map d : B ! M subject to the two conditions:

(1) (Additivity) d(x+ y) = dx+ dy;
(2) (Leibniz rule) d(xy) = xdy + ydx.

Here we have written dx for d(x) to emphasise the analogy with the classical deriva-
tion rules. If moreover B is an A-algebra for some ring A (for example A = Z), an
A-linear derivation is called an A-derivation. The set of A-derivations of B to M is
equipped with a natural B-module structure via the rules (d1 + d2)x = d1x + d2x

and (bd)x = b(dx). This B-module is denoted by DerA(B,M).

Note that applying the Leibniz rule to the equality 1 · 1 = 1 gives d(1) = 0 for all
derivations; hence all A-derivations are trivial on the image of A in B.

In the example one encounters in (say) real differential geometry we have A =

M = R, and B is the ring of germs of differentiable functions at some point; R is a
B-module via evaluation of functions. Now comes a purely algebraic example.

Example 8.2. Assume given an A-algebra B which decomposes as an A-module into
a direct sum B ⇠= A� I , where I is an ideal of B with I

2
= 0. Then the natural pro-

jection d : B ! I is an A-derivation of B into I . Indeed, A-linearity is immediate;
for the Leibniz rule we take elements x1, x2 2 B and write xi = ai + dxi with ai 2 k

for i = 1, 2. Now we have

d(x1x2) = d[(a1 + dx1)(a2 + dx2)] = d(a1a2 + a2dx1 + a1dx2) = x2dx1 + x1dx2
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where we used several times the facts that I2 = 0 and d(A) = 0.
In fact, given any ring A and A-module I , we can define an A-algebra B as above

by defining a product structure on the A-module A � I by the rule (a1, i1)(a2, i2) =

(a1a2, a1i2 + a2i1). So the above method yields plenty of examples of derivations.

Now notice that for fixed A and B the rule M ! DerA(B,M) defines a func-
tor on the category of B-modules; indeed, given a homomorphism � : M1 ! M2

of B-modules, we get a natural homomorphism DerA(B,M1) ! DerA(B,M2) by
composing derivations with �.

Proposition 8.3. There exists a B-module ⌦1
B/A together with an A-derivation d : B !

⌦
1
B/A such that for every B-module M and derivation � 2 DerA(B,M) we have a factor-

ization � = � � d with a B-homomorphism ⌦
1
B/A ! M .

Proof. Define ⌦
1
B/A to be the quotient of the free B-module generated by symbols

dx for each x 2 B modulo the relations given by the additivity and Leibniz rules
as in Definition 8.1 as well as the relations d(�(a)) = 0 for all a 2 A, where � :

A ! B is the map defining the A-module structure on B. The map x ! dx is an
A-derivation of B into ⌦

1
B/A. Moreover, given any B-module M and A-derivation

� 2 DerA(B,M), the map dx ! �(x) induces a B-module homomorphism ⌦
1
B/A !

M whose composition with d is just �.

We call ⌦1
B/A the module of relative differentials of B with respect to A. We shall

often refer to the elements of ⌦1
B/A as differential forms.

Next we describe how to compute relative differentials of a finitely presented
A-algebra.

Proposition 8.4. Let B be the quotient of the polynomial ring A[x1, . . . , xn] by an ideal
generated by finitely many polynomials f1, . . . , fm. Then ⌦

1
B/A is the quotient of the free

B-module on generators dx1, . . . , dxn modulo the B-submodule generated by the elementsX

j

(@jfi)dxj (i = 1, . . . ,m), where @jfi denotes the j-th (formal) partial derivative of fi.

Proof. First consider the case B = A[x1, . . . , xn]. As B is the free A-algebra generated
by the xi, one sees that for any B-module M there is a bijection between DerA(B,M)

and maps of the set {x1, . . . , xn} into B. This implies that ⌦1
B/A is the free A-module

generated by the dxi.
The general case follows from this in view of the easy observation that given any

M , composition by the projection A[x1, . . . , xn] ! B induces an isomorphism of
DerA(B,M) onto the submodule of DerA(A[x1, . . . , xn],M) consisting of derivations
mapping the fi to 0.

Next some basic properties of modules of differentials.
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Lemma 8.5. Let A be a ring and B an A-algebra.
(1) (Direct sums) For any A-algebra B

0

⌦
1
(B�B0)/A

⇠= ⌦
1
B/A � ⌦

1
B0/A.

(2) (Base change) Given a ring homomorphism A ! A
0, denote by B

0 the A
0-algebra

B ⌦A A
0. There is a natural isomorphism

⌦
1
B/A ⌦B B

0 ⇠= ⌦
1
B0/A0 .

(3) (Localization) For any multiplicatively closed subset S ⇢ B there is a natural iso-
morphism

⌦
1
BS/A

⇠= ⌦
1
B/A ⌦B BS.

Proof. The first property follows from the definitions. For base change, note first
that the universal derivation d : B ! ⌦

1
B/A is an A-module homomorphism and so

tensoring it by A
0 we get a map

d
0
: B

0 ! ⌦
1
B/A ⌦A A

0 ⇠= ⌦
1
B/A ⌦B B ⌦A A

0 ⇠= ⌦
1
B/A ⌦B B

0

which is easily seen to be an A
0-derivation. Now any A

0-derivation �
0
: B

0 ! M
0

induces an A-derivation � : B ! M
0 by composition with the natural map B ! B

0.
But � factors as � = ��d, with a B-module homomorphism � : ⌦

1
B/A ! M

0, whence
a map �

0
: ⌦

1
B/A ⌦B B

0 ! M
0 constructed as above. Now one checks that �0 = �

0 � d0

which means that ⌦1
B/A ⌦B B

0 satisfies the universal property for DerA0(B
0
,M

0
).

For the localization property, given an A-derivation � : B ! M , we may extend
it uniquely to an A-derivation �S : BS ! M ⌦B BS by setting �S(b/s) = (�(b)s �
b�(s)) ⌦ (1/s

2
). (We leave it to the reader to check that for b

0
/s
0
= b/s we get the

same result.) This applies in particular to the universal derivation d : B ! ⌦
1
B/A,

and one argues as in the previous case to show that any A-derivation BS ! MS

factors uniquely through dS .

There are two fundamental exact sequences that are instrumental in computing
modules of differentials.

Proposition 8.6. Let � : B ! C be a homomorphism of A-algebras.
(1) There is an exact sequence of C-modules

(8) ⌦
1
B/A ⌦B C ! ⌦

1
C/A ! ⌦

1
C/B ! 0.

(2) If moreover � is surjective with kernel I , we have an exact sequence of C-modules

I/I
2 ! ⌦

1
B/A ⌦B C ! ⌦

1
C/A ! 0.

Note that I/I2 is indeed a module over B/I ⇠= C.
For the proof recall the following easy lemma.
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Lemma 8.7. Let M1, M2, M3 be A-modules and

(9) M1
i!M2

p!M3 ! 0

a sequence of A-homomorphisms. This is an exact sequence if and only if for any A-module
N the sequence induced by composition of R-homomorphisms

(10) 0 ! HomA(M3, N) ! HomA(M2, N) ! HomA(M1, N)

is an exact sequence of A-modules.

Proof. The proof that exactness of (9) implies that of (10) is easy and is left to the
readers. The converse is not much harder: taking N = M3/M2 shows that injectivity
of the second map in (10) implies the surjectivity on the right in (9), and taking
N = M2/im(i) shows that if moreover (10) is exact in the middle, then the surjection
M2/im(i) ! M3 has a section M3 ! M2/im(i) and thus im(i) = ker(p).

Proof of Proposition 8.6. For the first statement note that for any C-module M we
have a natural exact sequence

0 ! DerB(C,M) ! DerA(C,M) ! DerA(B,M)

of C-modules isomorphic to

0 ! HomC(⌦
1
C/B,M) ! HomC(⌦

1
C/A,M) ! HomB(⌦

1
B/A,M).

Now observe that there is an isomorphism HomB(⌦
1
B/A,M) ⇠= HomC(⌦

1
B/A⌦BC,M)

induced by mapping a homomorphism ⌦
1
B/A ! M to the composite ⌦

1
B/A ⌦B C !

M ⌦B C ! M where the second map is multiplication. An inverse is given by
composition with the natural map ⌦

1
B/A ! ⌦

1
B/A ⌦B C. Thus we may rewrite the

previous exact sequence as

(11) 0 ! HomC(⌦
1
C/B,M) ! HomC(⌦

1
C/A,M) ! HomC(⌦

1
B/A ⌦B C,M).

Set M = ⌦
1
C/B. The image of id⌦1

C/B
2 HomC(⌦

1
C/B,⌦

1
C/B) by the first map of the

above exact sequence gives a map in HomC(⌦
1
C/A,⌦

1
C/B) which is the second map in

(8). Similarly, setting M = ⌦
1
C/A and taking the image of id⌦1

C/A
2 HomC(⌦

1
C/A,⌦

1
C/A)

in (11) defines the first map in (8). Finally, since the sequence (11) is exact for all C-
modules M , the sequence in (8) is exact by the lemma above.

If the map B ! C is surjective, then any B-derivation C ! M is trivial, so ⌦
1
B/C =

0 and the first map in the first exact sequence is surjective, giving the surjectivity
of the second map in the second sequence. Now define a map � : I ! ⌦

1
B/A ⌦B C

by �(x) := dx ⌦ 1. This is a B-module map because the Leibniz rule for d implies
�(bx) = bdx ⌦ 1 for b 2 B, x 2 I ; indeed, we have xdb ⌦ 1 = db ⌦ x which is 0 in
⌦

1
B/A⌦BC. If x 2 I

2, the same argument shows that �(x) = 0, whence the C-module
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map �̄ : I/I
2 ! ⌦

1
B/A ⌦B C in the second exact sequence. To conclude, it will again

suffice to verify the exactness of the dual sequence

0 ! DerA(C,M) ! DerA(B,M) ! HomC(I/I
2
,M)

for all C-modules M , where injectivity on the left is already proven. The second
map is induced by composition with the inclusion map I ! B: indeed, if we restrict
a derivation � : B ! M to I , then the Leibniz rule for � gives �(I

2
) = 0 as well as

�(bx) = b�(x) + x�(b) = b�(x) for all b 2 B, x 2 I . This implies exactness in the
middle. ⇤

Here is a first application.

Proposition 8.8. A finite extension K|k of fields is separable if and only if ⌦1
K/k = 0.

Proof. If K|k is separable, then K ⇠= k[x]/(f) with a polynomial f satisfying f
0 6= 0,

so Proposition 8.4 gives ⌦
1
K/k = 0. For the converse we may assume k has char-

acteristic p > 0. Recall from field theory4 that there exists an intermediate field
k ⇢ K0 ⇢ K such that K0|k is separable and K = K0(

pr1
p
a1, . . . ,

prm
p
am) for some

ai 2 K0 and ri > 0. Applying Proposition 8.6 (1) with A = k, B = K0, C = K

gives ⌦
1
K/k

⇠= ⌦
1
K/K0

by the first part of the proof, and then Proposition 8.4 gives
⌦

1
K/K0

⇠= K
m
0 , which can be 0 only for K = K0. ⇤

9. DIFFERENTIALS, REGULARITY AND SMOOTHNESS

By means of differentials we obtain a new characterization of regular local rings
coming from geometry.

Proposition 9.1. Let k be a perfect field, and let A be an integral domain of dimension
d which is a finitely generated k-algebra. Given a prime ideal P , the localization AP is a
regular local ring if and only if ⌦1

AP /k is a free AP -module of rank d.

For the proof we need a lemma from field theory:5

Lemma 9.2. Let k be a perfect field and let K|k be a finitely generated field extension of
transcendence degree n. Then there exist algebraically independent elements x1, . . . , xn 2
K such that the finite extension K|k(x1, . . . , xn) is separable.

Corollary 9.3. In the situation of the lemma, the K-vector space ⌦1
K/k is of dimension n, a

basis being given by the dxi.

4See e.g. Lang, Algebra, Chapter V, §6.
5For a proof, see e.g. Lang, Algebra, Chapter VIII, Corollary 4.4.
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Proof. We may write the field K as the fraction field of the quotient A of the poly-
nomial ring k[x1, . . . , xn, x] by a single polynomial relation f . Here f is the mini-
mal polynomial of a generator of the extension K|k(x1, . . . , xn) multiplied with a
common denominator of its coefficients. Now according to Proposition 8.4 the A-
module ⌦

1
A/k has a presentation with generators dx1, . . . , dxn, dx and a relation in

which dx has a nontrivial coefficient because f
0 6= 0 by the lemma. The corollary

now follows using Lemma 8.5 (3).

Proof of Proposition 9.1. We denote the maximal ideal of AP again by P and by  its
residue field. Applying the second exact sequence of Proposition 8.6 to the surjec-
tion AP ⇣  we obtain an exact sequence of -vector spaces

P/P
2 ! ⌦

1
AP /k ⌦AP  ! ⌦

1
/k ! 0.

We contend that here the first map is injective. To prove this we may replace AP

by AP/P
2. Indeed, applying Proposition 8.6 (2) to the surjection AP ⇣ AP/P

2 we
obtain an exact sequence

P
2
/P

4 ! ⌦
1
AP /k ⌦AP (AP/P

2
) ! ⌦

1
(AP /P 2)/k ! 0

which gives an isomorphism ⌦
1
AP /k ⌦AP  ! ⌦

1
(AP /P 2)/k ⌦AP /P 2  upon tensoring

with . Thus we may assume P
2
= 0, in which case AP is complete. Applying

Theorem 6.11 we obtain a subfield in AP isomorphic to  and an isomorphism of
-vector spaces AP

⇠= � P . Now recall that for every -vector space M the map

(12) Hom(⌦
1
AP /k ⌦AP ,M) ! Hom(P,M)

identifies with the map Derk(AP ,M) ! Hom(P,M) obtained by composing with
the inclusion P ! AP . But this map has a retraction: composing a -homomorphism
P ! M by the quotient map AP ! AP/

⇠= P of k-vector spaces gives a k-
derivation AP ! M as in Example 8.2. So the map (12) is surjective for all M ,
whence the required injectivity.

Now return to the general case. By the injectivity proven above, reading off di-
mensions in the above exact sequence gives

dim (⌦
1
AP /k ⌦AP ) = dim P/P

2
+ dim ⌦

1
/k.

Here dim ⌦
1
/k = tr.degk() = d � dimAP by Corollary 9.3 and Corollary 3.14 (1).

Thus AP is regular if and only if dim (⌦
1
AP /k ⌦AP ) = d. If ⌦1

AP /k is free of rank d,
this certainly holds. Conversely, choose elements dt1, . . . , dtd 2 ⌦

1
AP /k such that their

images in ⌦
1
AP /k⌦AP  = ⌦

1
AP /k/P⌦

1
AP /k form a basis over . By Nakayama’s lemma

they then generate ⌦
1
AP /k as an AP -module, so by sending the standard generators
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of the free module A
d
P to the dti we obtain an exact sequence of the form

0 ! N ! A
d
P ! ⌦

1
AP /k ! 0.

The fraction field K of AP is a flat AP -module, so the induced sequence

0 ! N ⌦AP K ! K
d ! ⌦

1
AP /k ⌦AP K ! 0

is exact. But by Lemma 8.5 (3) and Corollary 9.3 the K-vector space ⌦
1
AP /k ⌦AP K ⇠=

⌦
1
K/k has dimension d, so the last exact sequence gives N ⌦AP K = 0. Since AP is

an integral domain and N is a submodule of Ad
P , this is only possible for N = 0, i.e.

when ⌦
1
AP /k is free of rank d. ⇤

The proposition can be made explicit as follows. Consider a presentation

A = k[x1, . . . , xn]/(f1, . . . , fr),

and introduce the n ⇥ r Jacobian matrix J := [@ifj]. Given a preimage Q of P in
k[x1, . . . , xn], we consider J as a matrix with entries in k[x1, . . . , xn]Q. In this way it
makes sense to view J mod Q as a matrix with entries in .

Corollary 9.4 (Jacobian criterion). With notations and assumptions as above, the ring
AP is regular if and only if the matrix J modQ has rank n� d.

Proof. For ease of notation set R := k[x1, . . . , xn] and write I for the ideal (f1, . . . , fr)RQ.
We then have an exact sequence 0 ! I ! RQ ! AP ! 0, whence by Proposition
8.6 (2) an exact sequence of AP -modules

I/I
2 ! ⌦

1
RQ/k ⌦RQ AP ! ⌦

1
AP /k ! 0.

Tensoring by  gives an exact sequence of -vector spaces

I/I
2 ⌦AP 

�̄! ⌦
1
RQ/k ⌦RQ  ! ⌦

1
AP /k ⌦AP  ! 0.

Here ⌦
1
RQ/k ⌦RQ  ⇠= ⌦

1
R/k ⌦R  ⇠= 

n by Lemma 8.5 (3) and Proposition 8.4, and
from the previous proposition we know that ⌦1

AP /k ⌦AP  ⇠= 
d if and only if AP

is regular. So AP is regular if and only if Im(�̄) has dimension n � d. Now if we
identify ⌦

1
RQ/k ⌦RQ  with 

n via the -basis given by dx1, . . . , dxn, we obtain that
the map �̄ is induced by the map � : I ! 

n given by f 7! (@1f, . . . , @nf) mod Q. It
remains to note that dim Im(�) equals the rank of the matrix J mod Q. ⇤

We now relate the above to a property encountered during the discussion of the
Cohen structure theorem.
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Definition 9.5 (Grothendieck). An R-algebra S of rings is formally smooth if it satis-
fies the following property: given a commutative diagram

(13)
S

�̄���! B/I
x??

x??

R
µ���! B

with a ring B and an ideal I ⇢ B satisfying I
2
= 0, the map �̄ lifts to a map

� : S ! B making the diagram commute. If moreover S is finitely presented
as an R-algebra, we say that S is smooth over R.6

Examples 9.6.

(1) If S is a free R-algebra (e.g. a polynomial ring R[x1, . . . , xn]), then it is for-
mally smooth over R.

(2) We have seen in Corollary 6.9 that if L|K is a separable algebraic field ex-
tension, then L is formally smooth over K. Also, Proposition 6.13 says that
every field of characteristic p > 0 is formally smooth over Fp.

Here are some basic properties of formal smoothness.

Lemma 9.7. Let S be a formally smooth R-algebra.

(1) (Base change) If R0 is any R-algebra, then S ⌦R R
0 is formally smooth over R0.

(2) (Transitivity) If S 0 is a formally smooth S-algebra, then it is also formally smooth
over R.

(3) (Tensor product) If S1 and S2 are formally smooth R-algebras, then so is S1 ⌦R S2.
(4) (Localization) If T ⇢ S is a multiplicatively closed subset, then the localization ST

is also formally smooth over R.

Proof. For (1), note first that any R
0-algebra B

0 is also an R-algebra. Given an R
0-

algebra map �̄
0
: S ⌦R R

0 ! B
0
/I
0 with I

02
= 0, it induces an R-algebra map

S ! B
0
/I
0 by composition with the map s 7! s ⌦ 1, whence a lifting S ! B

0

by formal smoothness of S. Since B
0 is an R

0-algebra, there is an induced map
S ⌦R R

0 ! B
0 lifting �̄

0. For statement (2), assume given �̄ : S
0 ! B/I with

an R-algebra B and I
2
= 0. By formal smoothness of S over R the composite map

S ! S
0 ! B/I lifts to an R-algebra map S ! B, so that B is also an S-algebra. Then

by formal smoothness of S 0 over S �̄ lifts to a map S
0 ! B as required. Statement

(3) follows from (1) and (2): by (1) the tensor product S1 ⌦R S2 is formally smooth
over S2, hence over R by (2).

6This is the definition of the Stacks Project. Grothendieck in EGA uses a weaker assumption: the
algebra should be locally of finite presentation.
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For (4) assume given �̄T : ST ! B/I with an R-algebra B and I
2
= 0. The

composite map S ! ST ! B/I lifts to a map � : S ! B by formal smoothness of
S over R. By Lemma 5.18 the elements of �(T ) are units in B, so � induces a map
ST ! B lifting �̄T , as required. ⇤

Now we come to a key example, already studied above.

Proposition 9.8. Let k be a field, A = k[x1, . . . , xn]/(f1, . . . , fr), and P ⇢ A a prime ideal
with preimage Q ⇢ k[x1, . . . , xn]. If the Jacobian matrix J = [@ifj] has rank r modulo Q,
then AP is formally smooth over k.

Proof. We proceed like in the proof of Proposition 6.7. As before, write R := k[x1, . . . , xn].
Assume given �̄ : AP ! B/I with a k-algebra B and I

2
= 0. It will be enough to

lift the composite map µ̄ : R/(f1, . . . , fr) ! AP ! B/I to a map R/(f1, . . . , fr) !
AP ! B/I , for then the lifting will factor through AP as in the proof of Lemma 9.7
(4). Choose preimages bi 2 B of µ(xi) 2 B/I for all i. In order to construct the
required lifting, it suffices to find hi 2 I such that fj(b1 + h1, . . . bn + hn) = 0 for all
j. Now the multivariable Taylor formula of degree 2 gives a matrix equation

2

64
0

...
0

3

75 =

2

64
f1(b1 + h1, . . . , bn + hn)

...
fr(b1 + h1, . . . , bn + hn)

3

75 =

2

64
f1(b1, . . . , bn)

...
fr(b1, . . . , bn)

3

75+ J(b1, . . . , bn)

2

64
h1

...
hn

3

75

in view of I2 = 0. Note that by assumption some r ⇥ r minor of J maps to a unit in
RQ, hence in AP , and therefore J(b1, . . . , bn) mod I is a unit. Hence it is a unit in B as
well, i.e. the matrix J(b1, . . . , bn) has rank r and the matrix equation is solvable. ⇤

Remark 9.9. The same argument shows that if A is a ring, B = A[x1, . . . , xn]/(f1, . . . , fr)

and the Jacobian matrix J = [@ifj] has an r⇥ r minor which is a unit in B, then B is
formally smooth over A.

In the presence of formal smoothness we have a strengthening of Proposition 8.6.

Proposition 9.10. Let � : B ! C be a formally smooth homomorphism of A-algebras.

(1) There is a split exact sequence of C-modules

0 ! ⌦
1
B/A ⌦B C ! ⌦

1
C/A ! ⌦

1
C/B ! 0.

(2) If moreover � is surjective with kernel I , we have a split exact sequence of C-modules

0 ! I/I
2 ! ⌦

1
B/A ⌦B C ! ⌦

1
C/A ! 0.
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Proof. For (1), note that from the proof of Proposition 8.6 we already have an exact
sequence

0 ! DerB(C,M) ! DerA(C,M) ! DerA(B,M).

for all C-modules M . It will be enough to extend it to a split exact sequence

0 ! DerB(C,M) ! DerA(C,M) ! DerA(B,M) ! 0.

Fix a derivation D 2 DerA(B,M) and consider the commutative diagram

C
id���! C

x??
x??

B
(�,D)���! C �M

where C � M is given a ring structure with M
2
= 0 as in Example 8.2. By formal

smoothness there is a map C ! C �M making the diagram commute which, com-
posed with the projection C �M ! M , gives an element in DerA(C,M) whose re-
striction to B is D by construction. This defines the required retraction DerA(B,M) !
DerA(C,M). Statement (2) is proven by the same argument as in the first half of the
proof of Proposition 9.1, using formal smoothness instead of the application of The-
orem 6.11.

We may now complete Proposition 9.1 as follows.

Theorem 9.11. Let k be a perfect field, A = k[x1, . . . , xn]/(f1, . . . , fr) an integral domain
of dimension d, and P ⇢ A a prime ideal with preimage Q ⇢ k[x1, . . . , xn]. The following
are equivalent.

(1) The Jacobian matrix J = [@ifj] has rank n� d modulo Q.
(2) The localization AP is formally smooth over k.
(3) The AP -module ⌦1

AP /k is free of rank d.
(4) AP is a regular local ring.

Proof. The equivalence of (1), (3) and (4) is Proposition 9.1 together with Corollary
9.4, and the implication (1) ) (2) will follow from Proposition 9.8 once we show
that we may assume r = n � d. Write R := k[x1, . . . , xn] as before. We may num-
ber the variables xi and the polynomials fj so that the (n � d) ⇥ (n � d) minor
det[(@ifj)1i,jn�d] is nonzero mod Q. If we set  := RQ/QRQ, this means that the
map ⇢ : QRQ ! 

n given by ⇢(f) := (@1f, . . . @nf) mod Q maps f1, . . . , fn�d to
linearly independent elements in 

n. But ⇢ factors through QRQ/(QRQ)
2, so we

conclude that f1, . . . , fn�d give linearly independent elements in the -vector space
QRQ/(QRQ)

2. Here RQ is a regular local ring, so the fi form a regular sequence
in RQ by Theorem 4.9. On the other hand, using Lemma 4.10 we then obtain that
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ht((f1, . . . , fn�d)RQ) = ht(f1, . . . , fn�d) = n�d, which is also the height of (f1, . . . , fr)
by Remark 3.14 (1). This shows (f1, . . . , fn�d) = (f1, . . . , fr) as required.

Finally, for (2) ) (3), set I = (f1, . . . , fr)RQ and apply Proposition 9.10 (2) to
obtain a split exact sequence

0 ! I/I
2 ! ⌦

1
RQ/k ⌦RQ AP ! ⌦

1
AP /k ! 0.

Here ⌦
1
RP /k is free of rank n by Proposition 8.4, so the finitely generated AP -module

⌦
1
AP /k is a direct summand of a free module. It is thus projective over AP , hence

free. Its rank is calculated as in the proof of Proposition 9.1: for the fraction field K

of AP we have ⌦
1
K/k

⇠= ⌦
1
AP /k ⌦AP K by Lemma 8.5 (3) and this K-vector space has

dimension d by Corollary 9.3. ⇤

Remark 9.12. By Lemma 9.7 (4) formal smoothness of AP over k implies that of K.
It can be shown that this implies that K is separably generated over k, whence the
proof of (2) ) (3) goes through without assuming k perfect. In fact, inspection of
the proof of Corollary 9.4 then shows that the equivalence of conditions (1)� (3) in
the above theorem holds over arbitrary k.

On the other hand, it is not hard to show using the arguments seen so far that if
A is a Noetherian local ring containing a field k and A is formally smooth over k,
then A is regular. The converse does not hold in general.

10. THE COHEN STRUCTURE THEOREM: PART II

As an application of the theory of formal smoothness we complete the proof of
the Cohen structure theorem in mixed characteristic. Recall that a local domain is
of mixed characteristic if it is of characteristic 0 and its residue field is of characteristic
p > 0. By the discussion in Section 6 in order to prove the Cohen structure theorem
for complete local domains of mixed characteristic it suffices to give proofs for Facts
6.14 and 6.15.

Recall first that a Cohen ring is a complete discrete valuation ring of characteristic
0 with maximal ideal generated by a prime number p. The following proposition
was proven for k perfect in the section on Witt vectors; we now give a general
construction.

Proposition 10.1. Given a field k of characteristic p > 0, there exists a Cohen ring A0 with
residue field A0/pA0

⇠= k.

Proof. First let hx� : � 2 ⇤i ⇢ k be a maximal algebraically independent system
over Fp. Let Zphx�i be the free Zp-algebra generated by the x�, and let R0 be its
localization by the prime ideal pZphx�i. By construction R0 is local with maximal
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ideal (p) and moreover \i(p
i
) = 0 in R0. Thus R0 is a discrete valuation ring by

Remark 7.3.
We now construct a discrete valuation ring R � R0 with maximal ideal pS and

residue field k. This will finish the proof, as we may then take A0 to be the p-adic
completion of R. By construction k is algebraic over the residue field k0 of R. Let K
be an algebraic closure of the fraction field of R0, and consider the system S of pairs
(S, ⇢), where R0 ⇢ S ⇢ K is a subring that is a discrete valuation ring with maximal
ideal pS, and ⇢ : S ! k is a homomorphism with kernel pS. These pairs are
naturally partially ordered by inclusion, and satisfy the condition of Zorn’s lemma.
Indeed, if (S1, ⇢1)  (S2, ⇢2)  (S3, ⇢3)  . . . is an ascending chain, then the union eS
of the Si inside K has a homomorphism e⇢ : eS ! k with kernel peS induced by the
⇢i. Moreover, here \jp

j eS = 0 because the Si are discrete valuation rings. Hence eS
satisfies the assumptions of Remark 7.3, which means that eS is a discrete valuation
ring and therefore (eS, e⇢) 2 S . So let (S, ⇢) be a maximal element in S furnished
by Zorn’s lemma. We contend that its residue field kS equals k. If not, there is
some ↵ 2 k \ kS algebraic over kS . Let f 2 S[x] be a monic irreducible polynomial
mapping modulo pS to the minimal polynomial of ↵ over kS . Since S is a unique
factorization domain, f is also irreducible over the fraction field of S, so since K

is algebraically closed, we find an injective homomorphism S
0
:= S[x]/(f) ! K

where moreover pS 0 ⇢ S
0 is a maximal ideal with S

0
/pS

0 ⇠= kS(↵). Now if P 0 ⇢ S
0

is any maximal ideal, then P
0 \ S is maximal in S by Lemma 1.13 applied to the

integral extension S
0
/P
0 � S/(P

0 \ S), so P
0
= pS

0 and S
0 is local with maximal

ideal pS 0. Moreover, S 0 is Noetherian since it is a finitely generated S-algebra, so by
Proposition 1.7 S

0 is a discrete valuation ring, which contradicts the maximality of
S. ⇤

Now we justify Fact 6.15 in the general case.

Theorem 10.2. Let A be a complete local domain of mixed characteristic with maximal
ideal P . There exists a subring A0 ⇢ A which is a Cohen ring and moreover the inclusion
map A0 ! A induces an isomorphism A0/pA0

⇠! A/P .

The key ingredient in the proof is the following proposition.

Proposition 10.3. Let � : R ! S be a homomorphism of rings and I ⇢ R a nilpotent
ideal. If S is projective as an R-module and S/IS is formally smooth over R/I , then S is
formally smooth over R.

Proof. Recall the following criterion from homological algebra (that uses the pro-
jectivity of S over R): S is formally smooth over R if and only if the symmet-
ric Hochschild cohomology group HH

2
s (S,M) is 0 for every S-module M . By
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assumption HH
2
s (S/IS,M/IM) = 0, so given a symmetric Hochschild 2-cocycle

f : S ⇥ S ! M , there is a 1-cochain g0 : S/IS ! M/IM with f mod I = @
1
(g0).

We may lift g0 to an R-linear map S ! M/IM and finally to an R-linear map
g1 : S ! M by projectivity of S over R. Then f � @

1
(g1) is a 2-cocyle with values

in IM . Repeating the argument for f � @
1
(g1) with IM in place of M we obtain a 2-

cocyle with values in I
2
M , so after finitely many repeats we get g2, . . . , gn : S ! M

such that f � @
1
(g1 + · · · gn) has values in I

n
M which is 0 for n large enough. This

proves that the class of f in HH
2
s (S,M) is 0. ⇤

In order to ensure that the projectivity assumption in the proposition holds when
we shall apply it, we shall need:

Lemma 10.4. Let A be a ring, and I ⇢ A a nilpotent ideal. If M is a flat A-module such
that M/IM is a free A/I-module, then M is a free A-module.

Before starting the proof, recall the following simple observation: if M is a flat
module over a ring A and I ⇢ A is an ideal, then the multiplication map I ⌦A M !
IM is an isomorphism. Indeed, it is certainly surjective, and for injectivity we ten-
sor the injection I ! A by M . The resulting map I ⌦A M ! M is injective by
flatness, and its image identifies with IM .

Proof. Choose a free A-module F so that F/IF (which is a free A/I-module) is
isomorphic to M/IM . By projectivity of F we may lift the composite map F !
F/IF

⇠! M/IM to a map � : F ! M ; we contend that it is an isomorphism. First
note that the induced maps �n : I

n
F/I

n+1
F ! I

n
M/I

n+1
M are injective for all n.

Indeed, since F and M are flat over A, so are F/IF and M/IM over A/I , so the �n

may be identified with the maps (I
n
/I

n+1
) ⌦A/I F/IF ! (I

n
/I

n+1
) ⌦A/I M/IM by

the observation above. These are isomorphisms by assumption. Now consider the
commutative diagram with exact rows

0 ���! I
n
F/I

n+1
F ���! F/I

n+1
F ���! F/I

n+1
F ���! 0

??y�n

??y
??y

0 ���! I
n
M/I

n+1
M ���! M/I

n+1
M ���! M/I

n+1
M ���! 0

Here the left vertical arrow is an isomorphism, so it follows by induction on n

(starting from the obvious case n = 0) that the map F/I
n+1

F ! M/I
n+1

M is an
isomorphism. We conclude by taking n large enough. ⇤

Proof of Theorem 10.2. First note that since p 2 P , the natural map Z ! A sending 1
to 1 induces homomorphisms Z/pnZ ! A/p

n
A for all n > 0, whence a map Zp ! A

after passing to the inverse limit. We may thus consider A as a Zp-algebra. Now take
a Cohen ring A0 with residue field k; it is also a Zp-algebra by the same argument.
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It will suffice to show that the identity map of k lifts to a homomorphism A0 ! A;
indeed, as A is a domain of characteristic 0 and the only nonzero prime ideal of A0

is (p), the map A0 ! A must be injective.
As A0 is an integral domain, it is torsion free over Zp and hence a flat Zp-algebra

as Zp is a principal ideal domain. Since A0/p
n
A0 is then flat over Z/pnZ as well,

it follows from Proposition 10.4 that A0/p
n
A0 is a free, hence projective module

over Z/pnZ for all n. Given that k is formally smooth over Fp by Example 9.6 (2),
Proposition 10.3 implies that A0/p

n
A0 is also formally smooth over Z/pnZ. We now

prove that the identity map of k lifts to maps �n : A0/p
n
A0 ! A/P

n for all n with
�n = �n+1 mod p

n, from which the theorem will follow by passing to the inverse
limit. We proceed by induction on n, the case n = 0 being trivial. If �n has been
constructed, consider the exact sequence 0 ! P

n
/P

n+1 ! A/P
n+1 ! A/P

n ! 0 of
Z/pn+1Z-algebras. Since P

n
/P

n+1 is an ideal of square 0, the map �n : A0/p
n
A0 !

A/P
n lifts to �n+1 : A0/p

n+1
A0 ! A/P

n+1 by formal smoothness. ⇤
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1. BACKGROUND FROM CATEGORY THEORY

Definition 1.1. A category consists of objects as well as morphisms between pairs of
objects; given two objects A, B of a category C, the morphisms from A to B form a
set, denoted by Hom(A,B). (Notice that in contrast to this we do not impose that
the objects of the category form a set.) These are subject to the following constraints.

(1) For each object A the set Hom(A,A) contains a distinguished element idA,
the identity morphism of A.

(2) Given two morphims � 2 Hom(B,C) and  2 Hom(A,B), there exists a
canonical morphism � �  2 Hom(A,C), the composition of � and  . The
composition of morphisms should satisfy two natural axioms:

• Given � 2 Hom(A,B), one has � � idA = idB � � = �.
• (Associativity rule) For � 2 Hom(A,B),  2 Hom(B,C), � 2 Hom(C,D)

one has (� �  ) � � = � � ( � �).
1



2 TAMÁS SZAMUELY

A morphism � 2 Hom(A,B) is an isomorphism if there exists  2 Hom(B,A) with
 � � = idA, � �  = idB; we denote the set of isomorphisms between A and B by
Isom(A,B).

Examples 1.2. In these notes, the main examples we’ll consider will be algebraic.
Thus we shall consider, for example, the category of groups, abelian groups, rings,
or modules over a fixed ring R. In all these examples the morphisms are the homo-
morphisms between appropriate objects.

Remark 1.3. If the objects themselves form a set, we say that the category is small.
In this case one can associate an oriented graph to the category by taking objects as
vertices and defining an oriented edge between two objects corresponding to each
morphism.

In the examples above the categories are not small but if we restrict to some set
of objects we obtain small subcategories (in the sense to be defined below).

For small categories it is easy to visualize the contents of the following definition.

Definition 1.4. The opposite category Cop of a category C is “the category with the
same objects and arrows reversed”; i.e. for each pair of objects (A, B) of C, there is a
canonical bijection between the sets Hom(A,B) of C and Hom(B,A) of Cop preserv-
ing the identity morphisms and composition.

Next we consider subcategories.

Definition 1.5. A subcategory of a category C is just a category D consisting of some
objects and some morphisms of C; it is a full subcategory if given two objects in D,
HomD(A,B) = HomC(A,B), i.e. all C-morphisms between A and B are morphisms
in D.

Examples 1.6. The category of abelian groups is a full subcategory of the category
of groups. Given a ring R 6= Z, the category of R-modules is a subcategory of that
of abelian groups, but not a full subcategory.

Now comes the second basic definition of category theory.

Definition 1.7. A (covariant) functor F between two categories C1 and C2 consist-
s of a rule A 7! F (A) on objects and a map on sets of morphisms Hom(A,B) !
Hom(F (A), F (B)) which sends identity morphisms to identity morphisms and p-
reserves composition. A contravariant functor from C1 to C2 is a functor from C1 to
Cop

2
.

Examples 1.8. Here are some examples of functors.
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(1) The identity functor is the functor idC on any category C which leaves all
objects and morphisms fixed.

(2) Other basic examples of functors are obtained by fixing an object A of a cat-
egory C and considering the covariant functor Hom(A, ) (resp. the con-
travariant functor Hom( , A)) from C to the category Sets which sends an ob-
ject B the set Hom(A,B) (resp. Hom(B,A)) and a morphism � : B ! C to the
set-theoretic map Hom(A,B)! Hom(A,C) (resp. Hom(C,A)! Hom(B,A))
induced by composing with �.

(3) There are forgetful functors defined by forgetting structure. For instance, as-
sociating to an R-module the underlying abelian group and to an R-module
homomorphism the underlying group homomorphism defines the forgetful
functor from the category of R-modules to that of abelian groups.

(4) On the category ModR of R-modules important examples of functors are giv-
en by tensor product. Fix an R-module B. The rule

A 7! A⌦R B, (� : A1 ! A2) 7! (�⌦ idB : A1 ⌦ B ! A2 ⌦ B)

defines a functor ⌦R B : ModR ! ModR. Similarly, tensoring by a module
A on the left gives a functor A⌦R : ModR ! ModR.

Definition 1.9. If F and G are two functors with same domain C1 and target C2, a
morphism of functors � between F and G is a collection of morphisms �A : F (A) !
G(A) in C2 for each object A 2 C1 such that for every morphism � : A! B in C1 the
diagram

F (A)
�A���! G(A)

F (�)

??y
??yG(�)

F (B)
�B���! G(B)

commutes. The morphism � is an isomorphism if each �A is an isomorphism; in
this case we shall write F ⇠= G.

Remark 1.10. Given two categories C1 and C2 one can define (modulo some set-
theoretic difficulties) a new category called the functor category of the pair (C1, C2)
whose objects are functors from C1 to C2 and whose morphisms are morphisms of
functors. Here the composition rule for some � and  is induced by the composi-
tion of the morphisms �A and  A for each object A in C1.

We now turn to categories with additional properties, abstracting some proper-
ties of categories of modules over some ring.

Definition 1.11. A category A is additive if the following hold:
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• For any two objects A, B the set Hom(A,B) carries the structure of an abelian
group.

• The compositions of morphisms Hom(A,B) ⇥ Hom(B,C) ! Hom(A,C) are
Z-bilinear maps.

• There is an object 0 2 A that is both initial and final (i.e. for every object
A 2 A there is a unique morphism 0! A and a unique morphism A! 0).

• For any two objects A,B the product A ⇥ B exists (defined by the usual
universal property).

In an additive category the kernel of a morphism � : A ! B is an object ker(�)
together with a morphism  : ker(�) ! A such that every morphism  : C ! A

with � �  = 0 factors uniquely as a composite C ! ker(�)
! A. Similarly, the

cokernel of � is an object coker(�) together with a morphism � : B ! coker(�) such
that every morphism  : B ! C with  � � = 0 factors uniquely as a composite
B ! coker(�)

�! C.
The kernel and the cokernel may not exist for �. When they do, we define the im-

age of � as im(�) := ker(B ! coker(�)) and its coimage as coim(�) := coker(ker(�)!
A). Note that by definition there is a canonical morphism coim(�) ! im(�). With
these notions exact sequences are defined in the usual way.

Definition 1.12. An additive category A is abelian if every morphism � has a kernel
and a cokernel and the canonical morphism coim(�)! im(�) is an isomorphism.

Basic examples of abelian categories are categories of modules over some (not
necessarily commutative) ring. The Freyd–Mitchell embedding theorem states that ev-
ery small abelian category can be embedded as a full subcategory in the category
modules over a suitable ring R.

Somewhat less straightforward examples are given by sheaves of abelian groups
on some topological space. Later we shall encounter additive categories which are
not abelian.

2. CATEGORIES OF MODULES

A functor F : A! B between additive categories is additive if for any two objects
A,B 2 A the induced map Hom(A,B) ! Hom(F (A), F (B)) is a group homomor-
phism. In what follows all functors between additive categories will be understood
to be additive.

Definition 2.1. A functor F : A ! B between abelian categories is left exact if for
every short exact sequence

0! A1 ! A2 ! A3 ! 0
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in A the sequence
0! F (A1)! F (A2)! F (A3)

is exact; it is right exact if

F (A1)! F (A2)! F (A3)! 0

is exact. We say that F is exact if it is both left and right exact.
There are also notions of left and right exactness for contravariant functors G: left

exactness is defined by exactness of

0! G(A3)! G(A2)! G(A1)

and right exactness by that of

G(A3)! G(A2)! G(A1)! 0.

Remark 2.2. In the Freyd–Mitchell embedding theorem cited in the previous section
the functor realizing the embedding is exact.

Examples 2.3. Fix objects A and B in A.
(1) The functor Hom(A, ) from A to the category of abelian groups is left exact

but not always right exact.
(2) The contravariant functor Hom( , B) is left exact but not always right exact.

Now we specialize to the category ModR of modules over a ring R. We shall
assume our rings to be commutative with unit. However, everything will hold for
noncommutative rings as well, one just has to choose a convention whether one
considers left or right modules over a ring R.

We shall study modules satisfying exactness properties for the above two Hom-
functors, and also for the tensor product functors A ⌦R : ModR ! ModR and
⌦R B : ModR ! ModR which do not exist in an arbitrary abelian category. They

are right exact but not left exact in general. We start with the tensor product.

Definition 2.4. An R-module A is flat over R if the functor A⌦R is exact.

Example 2.5. The R-module R is obviously flat. Since tensor products commute
with direct sums, free R-modules are also flat. (Recall that a free R-module is by
definition an R-module isomorphic to a direct sum of copies of the R-module R.)

In Proposition 5.4 below we’ll see that conversely finitely generated flat modules
over a Noetherian local ring are free.

We note for later use the following fact:

Proposition 2.6. An R-module A is flat if and only if the restriction of the functor A⌦R

to the full subcategory of finitely generated R-modules is exact.
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Proof. We only have to treat left exactness. Assume � : B0 ! B is an injective map
of R-modules, and ↵ =

X
ai⌦bi is an element of A⌦RB0 that maps to 0 in A⌦B. To

prove that ↵ = 0 we may replace B0 by the finitely generated submodule generated
by the bi. Also, by construction of the tensor product the image of ↵ in A ⌦R B is
0 if the corresponding element of the free R-module R[A ⇥ B] is a sum of finitely
many relations occurring in the definition of A⌦RB, so we find a finitely generated
submodule �(B0) ⇢ B

f ⇢ B such that ↵ maps to 0 already in A⌦R B
f . ⇤

A stronger notion is that of faithful flatness:

Definition 2.7. An R-module A is faithfully flat over R if it is flat and for every R-
module B one has B 6= 0 if and only if A⌦R B 6= 0.

It is easy to see that faithful flatness is equivalent to the following property: a
sequence of R-modules 0 ! B1 ! B2 ! B3 ! 0 is exact if and only if the sequence
0! A⌦RB1 ! A⌦RB2 ! A⌦RB3 ! 0 is exact. Another important characterization
is:

Lemma 2.8. A flat R-module A is faithfully flat if and only if A ⌦R R/P 6= 0 for every

maximal ideal P ⇢ R.

Proof. Necessity is obvious. For sufficiency assume B 6= 0 but A ⌦R B = 0. For a
nonzero b 2 B consider its annihilator I = Ann(b) := {r 2 R : rb = 0}. Since b 6= 0,
we have I 6= R, so there is a maximal ideal P ⇢ R with P � I . Tensoring by A

the injective map R/I ! B obtained by sending 1 to b we obtain an injective map
A⌦R R/I ,! A⌦R B = 0 by flatness of A, so A⌦R R/I = 0. But A⌦R R/I surjects
onto A⌦R R/P , so A⌦R R/P = 0 as well, contradiction. ⇤

Now we can introduce an important class of (faithfully) flat R-modules:

Proposition 2.9. If R is Noetherian and bR is the completion of R with respect to some ideal

I ⇢ R, then bR is flat over R. If moreover R is local, then bR is faithfully flat over R.

Proof. First note that for all finitely generated R-modules A we have isomorphisms
bA ⇠= bR⌦RA. When A = R

n this is easily checked using the definition of completions.
In the general case write A as a cokernel of a suitable morphism R

m ! R
n and use

right exactness of completion and of the tensor product. In view of Proposition 2.6
flatness of bR now follows as it is known that the functor A 7! bA is exact on the
category of finitely generated modules over Noetherian rings.

Now assume R is local with maximal ideal P . In view of the lemma above we
have to check that the tensor product bR ⌦R R/P ⇠= bR/P bR is nonzero. In fact, it is
known that bR is local with maximal ideal P bR. A ‘cheaper’ argument is as follows:
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by definition of completions we have a natural surjection bR ! R/I which we may
compose with the natural surjection R/I ! R/P induced by the inclusion I ⇢ P .
The composite bR! R/P factors through bR/P bR which must then be nonzero. ⇤

Another type of important example is the following.

Example 2.10. If S ⇢ R is a multiplicatively closed subset, the localization RS is flat
over R. In particular, when R is an integral domain, its fraction field is flat over R.

To see this, let A0 ,! A be an injective morphism of R-modules. We have to show
that A0 ⌦R RS ! A ⌦R RS is still injective. A general element of A0 ⌦R RS is a sum
of elements of the form a

0 ⌦ (r/s
0
) with a

0 2 A
0, r 2 R, s0 2 S. Choosing a common

denominator in S and using bilinearity of the tensor product we may rewrite this
element in the form a ⌦ (1/s) with a 2 A

0, s 2 S. An element of this form is 0 in
A
0 ⌦R RS if and only if tsa = 0 for some t 2 S. But such an equation holds in A

0 if
and only if it holds in A.

Note that RS is not always faithfully flat over R. For instance, Q is not faithfully
flat over Z because A⌦Z Q = 0 for every torsion abelian group A.

Now to the covariant Hom-functor. The following definition can be made in an
arbitrary abelian category:

Definition 2.11. An R-module P is projective if the functor Hom(P, ) : ModR !
ModR is exact.

By left exactness of Hom(P, ) a module P is projective if and only if the natural
map Hom(P,A) ! Hom(P,B) given by � ! ↵ � � is surjective for every surjection

↵ : A! B.

Lemma 2.12.
(1) The R-module R is projective.

(2) Arbitrary direct sums of projective modules are projective.

Proof. For the first statement, given an R-homomorphism � : R ! B and a surjec-
tion A! B, lift � to an element of Hom(R,A) by lifting �(1) to an element of A. The
second statement is immediate from the compatibility of Hom-groups with direct
sums in the first variable.

Corollary 2.13. A free R-module is projective.

Construction 2.14. Given an R-module A, define a free R-module F (A) by taking
direct sum of copies of R indexed by the elements of A. One has a surjection ⇡A :

F (A) ! A induced by mapping 1a to a, where 1a is the element of F (A) with 1 in
the component corresponding to a 2 A and 0 elsewhere.
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When A is finitely generated by a system a1, . . . , an of generators, one may con-
sider the finitely generated free module Ffg(A) defined as a finite direct sum of
copies of R indexed by the elements ai. Sending 1ai to ai still defines a surjection
Ffg(A)! A.

Thus every R-module is the quotient of a free R-module and hence of a projec-
tive module. This is expressed by saying that the category of R-modules has enough

projectives. The full subcategory of finitely generated modules also has enough pro-
jectives by the second part of the construction.

Projective modules are in fact direct summands of free modules:

Lemma 2.15. An R-module P is projective if and only if there exist an R-module A and a

free R-module F with P � A ⇠= F .

By symmetry, A is then also projective.

Proof. For sufficiency, extend a map � : P ! B to F by defining it to be 0 on A and
use projectivity of F . For necessity, take F to be the free R-module F (P ) associated
with P in the above example. We claim that we have an isomorphism as required,
with A = ker(⇡P ). Indeed, as P is projective, we may lift the identity map of P to a
map ⇡ : P ! F (P ) with ⇡P � ⇡ = idP .

Since free modules are flat, the lemma implies:

Corollary 2.16. Projective modules are flat.

Projective modules over local rings are in fact free:

Proposition 2.17. Let R be a local ring with maximal ideal P and residue field k, and let

A be a finitely generated R-module.

If A is projective, then A is free over R.

Proof. Let a1, . . . an 2 A be elements such that their mod PA images form a basis
of the k-vector space A/PA. By Nakayama’s lemma they generate A, so the map
� : R

n ! A sending (r1, . . . , rn) to r1a1+ · · ·+rnan is surjective and an isomorphism
mod P . By projectivity of A we then have R

n ⇠= A � B where B = ker(�). Since
R

n
/PR

n ⇠! A/PA, we get B ⇢ PR
n. But then R

n
= A+ PR

n, so R
n ⇠! A, again by

Nakayama’s lemma. ⇤

Remark 2.18. In fact, Kaplansky proved that the proposition holds without assum-
ing A finitely generated, but the proof is much more involved.

The above proposition yields a characterization of finitely generated projective
modules over arbitrary Noetherian rings.
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Proposition 2.19. Let R be a Noetherian ring. A finitely generated R-module A is projec-

tive if and only if A⌦R RP is free for all prime ideals P ✓ R.

In fact, one may restrict to maximal ideals in this statement.

For the proof we need some lemmas.

Lemma 2.20. Let R be a ring.

(1) An R-module A is 0 if and only if A⌦R RP = 0 for all maximal ideals P .

(2) A morphism ' : A1 ! A2 of R-modules is injective (resp. surjective) if and only if

'⌦ idRP is (resp. surjective) for all maximal ideals P .

Proof. For the nontrivial implication of (1) assume A 6= 0, and pick a nonzero a 2 A.
The map R ! A sending r 2 R to ra shows that the submodule hai ⇢ A is isomor-
phic to R/I for some ideal I ( R. Pick a maximal ideal I ⇢ P ⇢ R. We then have
a 6= 0 in A⌦R RP .

Statement (2) follows by applying (1) to the kernel (resp. cokernel) of '. ⇤

Lemma 2.21. Given a finitely presented R-module A, an R-module B and a prime ideal

P ⇢ R, we have canonical isomorphisms

HomR(A,B)⌦R RP

⇠! HomRP (A⌦R RP , B ⌦R RP ).

Proof. We have a natural map HomR(A,B)⌦R RP ! HomRP (A⌦R RP , B⌦R RP ) in-
duced by tensoring with RP . If A ⇠= R

n for some n, then this map is an isomorphism
because the map HomR(R,B)⌦R RP

⇠! HomRP (R ⌦R RP , B ⌦R RP ) identifies with
the identity map of B ⌦R RP . For the general case write A as a cokernel of some
map R

m ! R
n (this is possible as A is finitely presented). We have a commutative

diagram
0 �����! HomR(A,B)⌦R RP �����! HomR(R

n
, B)⌦R RP �����! HomR(R

m
, B)⌦R RP

??y
??y

??y

0 �����! HomRP
(A⌦R RP , B ⌦R RP ) �����! HomRP

(R
n ⌦R RP , B ⌦R RP ) �����! HomRP

(R
m ⌦R RP , B ⌦R RP )

whose rows are exact by left exactness of Hom( , B) and by flatness of RP over R.
The second and third vertical maps are isomorphisms by the previous case, hence
so is the first. ⇤

Proof of Proposition 2.19. The ‘only if’ part follows from Lemma 2.15 because if A is
a direct summand of a free module over R, so is A ⌦R RP over RP . For the ‘if’
part take an exact sequence 0 ! K ! F

f! A ! 0 with F finitely generated and
free. We show that this sequence splits. This is equivalent to showing that the map
HomR(A,F ) ! HomR(A,A) induced by f is surjective. Indeed, if this is the case,
then a splitting is given by a preimage of idA 2 HomR(A,A); conversely, if idA comes
from HomR(A,F ), then so does every element of HomR(A,A) by left composition.
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By assumption for P maximal the induced map HomRP (A ⌦R RP , F ⌦R RP ) !
HomRP (A ⌦R RP , A ⌦R RP ) is surjective. By the lemma above this is the same as
the map HomR(A,F )⌦R RP ! HomR(A,A)⌦R RP (note that A is finitely presented
because R is Noetherian)), so we conclude from part (2) of Lemma 2.20. ⇤

We now consider the dual notion of injective modules.

Definition 2.22. An R-module Q is injective if the functor Hom( , Q) : ModR !
ModR is exact.

By right exactness of Hom( , Q) a module Q is injective if and only if given an
injective map ↵ : A ,! B, every homomorphism �A : A ! Q extends to a homo-
morphism �B : B ! Q with �A = �B � ↵.

Remark 2.23. Arbitrary direct products of injective modules are injective. This fol-
lows from compatibility of the functor Hom(A, ) with direct products.

Lemma 2.24 (Baer’s criterion). An R-module Q is injective if and only if for every ideal

I ,! R and every R-module homomorphism �I : I ! Q there is an extension �R : R! Q.

Proof. Only the ‘if’ part requires proof. Assume given an inclusion A ,! B and a
map � : A ! Q. Consider pairs (A0,�0) where A ⇢ A

0 ⇢ B is an R-submodule and
�
0
: A

0 ! Q extends �. Inclusion maps A
0
,! A

00 induce a natural partial ordering
on the set of such pairs and the condition of Zorn’s lemma is satisfied. Let ( eA, e�) be
a maximal pair. If eA = B, we are done. Suppose eA 6= B, and pick b 2 B \ eA. The
set I := {r 2 R : rb 2 eA} is an ideal in R equipped with a natural map �I : I ! eA
given by r 7! rb. By assumption the composite map e� � �I : I ! Q extends to a
map �R : R! Q. On the submodule eA\hbi ⇢ B the map e� coincides with the map
�b : hbi ! Q, rb 7! �R(r). Hence e� and rb 7! �R(r) patch together to a map from
eA+ hbi ⇢ B to Q, contradicting the maximality of eA.

Recall that an abelian group A is divisible if for all n 2 Z the map a 7! na is
surjective on A. Basic examples of divisible abelian groups are Q and Q/Z.

Corollary 2.25. An abelian group Q is injective if and only if it is divisible.

Proof. For ‘only if’ fix a 2 Q and define a homomorphism nZ ! Q by sending n to
a. By injectivity it extends to a homomorphism Z ! Q. The image of 1 will be an
element b 2 Q with nb = a. Conversely, since every ideal of Z is of the form nZ,
reversing the argument gives that the condition in Baer’s criterion is satisfied.
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This enables us to construct injective modules over an arbitrary ring R. Note
first that given an abelian group T and a ring R, the set of abelian group homo-
morphisms HomZ(R, T ) carries a natural R-module structure by composing maps
R! T by the multiplication-by r-map R! R for r 2 R.

Lemma 2.26. Fix an R-module A. The natural map of abelian groups

HomZ(A, T )! HomR(A,HomZ(R, T ))

given by � 7! (a 7! (r 7! �(ra)) for r 2 R, a 2 A is an isomorphism. Moreover,

this isomorphism is functorial in A, i.e. for every R-module homomorphism A ! B the

diagram

HomZ(B, T ) ���! HomR(B,HomZ(R, T ))
??y

??y

HomZ(A, T ) ���! HomR(A,HomZ(R, T ))

commutes.

In other words, we have an isomorphism of functors

HomZ( , T )
⇠! HomR( ,HomZ(R, T )).

Proof. An inverse map sends ⇢ 2 HomR(A,HomZ(R, T )) to a 7! ⇢(a)(1) for a 2 A.
Functoriality follows from the construction.

Corollary 2.27. If Q is an injective abelian group, then HomZ(R,Q) is an injective R-

module.

Proof. Assume given an injection ◆ : A ,! B. We have to show surjectivity of the
map HomR(B,HomZ(R,Q)) ! HomR(A,HomZ(R,Q)). By the lemma it identifies
with the natural map HomZ(B,Q) ! HomZ(A,Q) induced by ◆ which is surjective
by injectivity of Q.

Now we can prove that the category of R-modules has enough injectives.

Proposition 2.28. Every R-module A can be embedded in an injective R-module.

Proof. Set Q := HomZ(R,Q/Z). This is an injective R-module by the previous corol-
lary. Define now a module I(A) as the direct product of copies of Q indexed by the
set HomR(A,Q). This is still an injective R-module by Remark 2.23. Define a map
A ! I(A) by sending a 2 A to �(a) in the component indexed by � 2 HomR(A,Q).
To see that this map is injective, note first that HomR(A,Q) ⇠= HomZ(A,Q/Z) by
the previous lemma. Thus it will suffice to construct for each nonzero a 2 A a
group homomorphism �̄ : A ! Q/Z with �̄(a) 6= 0, for then the corresponding
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� 2 HomR(A,Q) will satisfy �(a) 6= 0. Let hai ⇢ A be the Z-submodule of A gener-
ated by a. Define a group homomorphism hai ! Q/Z by sending a to any nonzero
element of Q/Z if a has infinite order and to a nonzero element of order dividing n

if a has finite order n. By divisibility of Q/Z this map extends to a homomorphism
�̄ : A! Q/Z as required. ⇤

3. COMPLEXES AND RESOLUTIONS

We begin with some constructions that work in an arbitrary abelian category.

Definition 3.1. A (cohomological) complex A
• in an abelian category A is a sequence

of morphisms

. . . · · · d
i�1

�! A
i d

i

�! A
i+1 d

i+1

�! A
i+2 d

i+2

�! . . .

for all i 2 Z, satisfying d
i+1 � di = 0 for all i.

We shall also use the convention A�i := A
i, giving rise to the homological indexing

of the complex.
We introduce the notations

Z
i
(A

•
) := ker(d

i
), B

i
(A

•
) := Im (d

i�1
) and H

i
(A

•
) := Z

i
(A

•
)/B

i
(A

•
).

The complex A
• is said to be acyclic or exact if H i

(A
•
) = 0 for all i.

A morphism of complexes � : A
• ! B

• is a collection of homomorphisms �i
: A

i !
B

i for all i such that the diagrams

A
i ���! A

i+1

�
i

??y
??y�i+1

B
i ���! B

i+1

commute for all i. Thus complexes form a category in which morphisms are defined
as above; we shall denote it by C(A). The reader will check that this category is
again abelian.

By its defining property, a morphism of complexes � : A
• ! B

• induces maps
H

i
(�) : H

i
(A

•
) ! H

i
(B

•
) for all i. We say that � is a quasi-isomorphism if the H

i
(�)

are isomorphisms for all i.
An important source for quasi-isomorphisms is the following.

Definition 3.2. Two morphisms of complexes �, : A
• ! B

• are (chain) homotopic

if there exist maps ki
: A

i ! B
i�1 for all i satisfying

(1) �
i �  i

= k
i+1 � di

A
+ d

i�1
B
� ki

for all i.
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Two complexes A
• and B

• are homotopy equivalent if there exist morphisms of
complexes � : A

• ! B
• and ⇢ : B• ! A

• such that ��⇢ is homotopic to the identity
map of B• and ⇢ � � is homotopic to the identity map of A•.

The following statement follows from the definitions:

Lemma 3.3. If � and  are homotopic morphisms A
• ! B

•
, then H

i
(�) = H

i
( ) for all i.

In particular, when � induces a homotopy equivalence of complexes, then � is a quasi-

isomorphism.

Remark 3.4. Historically one of the first examples of a (homological) complex of
abelian groups was the singular complex S•(X) associated with a topological space
X ; its homology groups are by definition the (singular) homology groups of X .
The assignment X 7! S•(X) induces a functor from the category of topological s-
paces (with continuous maps as morphisms) to the category of complexes of abelian
groups. It is a basic result in algebraic topology that homotopic continuous maps
from a space X to a space Y induce homotopic morphisms of complexes S•(X) !
S•(Y ) and hence homotopy equivalent topological spaces give rise to homotopy
equivalent singular complexes. This is the origin of the use of homotopical mor-
phisms of complexes in homological algebra.

A short exact sequence of complexes is a short exact sequence in the category C(A).
In other words, it is a sequence of morphisms of complexes

0! A
• ! B

• ! C
• ! 0

such that the sequences
0! A

i ! B
i ! C

i ! 0

are exact for all i. Now we have the following basic fact.

Proposition 3.5. Given a short exact sequence

0! A
• ! B

• ! C
• ! 0

of complexes, there is a long exact sequence

· · ·! H
i
(A

•
)! H

i
(B

•
)! H

i
(C

•
)

@! H
i+1

(A
•
)! H

i+1
(B

•
)! . . .

The map @ is usually called the connecting homomorphism or the (co)boundary map.
For the proof of the proposition we need the following equally basic lemma.

Lemma 3.6 (The Snake Lemma). Given a commutative diagram

A ���! B ���! C ���! 0
??y↵

??y�
??y�

0 ���! A
0 ���! B

0 ���! C
0
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with exact rows, there is an exact sequence

ker(↵)! ker(�)! ker(�)! coker (↵)! coker (�)! coker (�).

Proof. It is easy to give a proof in a category of R-modules. The construction of all
maps in the sequence is then immediate, except for the map @ : ker(�)! coker (↵).
For this, lift c 2 ker(�) to b 2 B. By commutativity of the right square, the element
�(b) maps to 0 in C

0, hence it comes from a unique a
0 2 A

0. Define @(c) as the image
of a

0 in coker (↵). Two choices of b differ by an element a 2 A which maps to 0
in coker (↵), so @ is well-defined. Checking exactness is left as an exercise to the
readers.

In a general abelian category take the smallest abelian subcategory containing all
morphisms in the diagram. It is a small subcategory, so we may apply the Freyd–
Mitchell embedding theorem to it. Since the embedding functor is exact, we deduce
the required exact sequence from the case of module categories.

Proof of Proposition 3.5. Applying the Snake Lemma to the diagram

A
i
/B

i
(A

•
) ���! B

i
/B

i
(B

•
) ���! C

i
/B

i
(C

•
) ���! 0

??y↵
??y�

??y�

0 ���! Z
i+1

(A
•
) ���! Z

i+1
(B

•
) ���! Z

i+1
(C

•
)

yields a long exact sequence

H
i
(A

•
)! H

i
(B

•
)! H

i
(C

•
)! H

i+1
(A

•
)! H

i+1
(B

•
)! H

i+1
(C

•
),

and the proposition is obtained by splicing these sequences together. ⇤

Corollary 3.7. Assume given a commutative diagram of morphisms of complexes

0 ���! A
• ���! B

• ���! C
• ���! 0

�A

??y �B

??y �C

??y

0 ���! A
0• ���! B

0• ���! C
0• ���! 0

with exact rows. If any two of the vertical maps are quasi-isomorphisms, then so is the third

one.

Proof. Apply the five lemma to the associated commutative diagram of long exact
sequences. ⇤

Now we assume A has enough projectives (e.g. it is a category of modules over a
ring). As a consequence, every object A has a projective resolution P• ! A, i.e. there
is an acyclic complex of the form

· · ·! P2 ! P1 ! P0 ! A! 0
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(note the homological indexing!) with Pi projective. Such a resolution can be ob-
tained inductively: first take a surjection p0 : P0 ! A with Pi projective. Once Pi

and pi : Pi ! Pi�1 have been defined (with the convention P�1 = A), one defines
Pi+1 and pi+1 by applying the same construction to ker(pi) in place of A.

Remark 3.8. A projective resolution can be interpreted as a quasi-isomorphism be-
tween the complex

· · ·! P2 ! P1 ! P0 ! 0! 0! · · ·

and the complex
· · ·! 0! 0! A! 0! 0

in which A is the only nonzero term and it is placed in degree 0. Indeed, we have
a morphism of complexes given by the map P0 ! A in degree 0 and the zero map
elsewhere; it is a quasi-isomorphism because both complexes have trivial homology
outside degree 0 and there it equals A. This almost tautological observation will be
useful later.

Now the basic fact concerning projective resolutions is:

Lemma 3.9. Assume given a diagram

. . . ���! P2

p2���! P1

p1���! P0

p0���! A ���! 0
??y↵

. . . ���! B2

b2���! B1

b1���! B0

b0���! B ���! 0

where the upper row is a complex with the Pi projective and the lower row is an acyclic

complex. Then ↵ extends to a morphism of complexes given by the diagram:

. . . ���! P2

p2���! P1

p1���! P0

p0���! A ���! 0
??y↵2

??y↵1

??y↵0

??y↵

. . . ���! B2

b2���! B1

b1���! B0

b0���! B ���! 0

Moreover, any two such extensions are chain homotopic.

Proof. To construct ↵i, assume that the ↵j are already defined for j < i, with the
convention ↵�1 = ↵. Observe that Im (↵i�1 �pi) ⇢ Im (bi); this is immediate for i = 0

and follows from bi�1�↵i�1�pi = ↵i�2�pi�1�pi = 0 for i > 0 by exactness of the lower
row. Hence by the projectivity of Pi we may define ↵i as a preimage in Hom(Pi, Bi)

of the map ↵i�1 � pi : Pi ! Im (bi). For the second statement, suppose �i : Pi ! Bi

define another extension. Define k�1 = 0 and assume kj defined for j < i satisfying
↵j��j = kj�1�pj+bj+1�kj . This implies Im (↵i��i�(ki�1�pi)) ⇢ Im (bi+1) because

bi � (↵i � �i � (ki�1 � pi)) = (↵i�1 � �i�1) � pi � bi � ki�1 � pi = ki�2 � pi�1 � pi = 0,
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so, again using the projectivity of Pi, we may define ki as a preimage of ↵i � �i �
(ki�1 � pi) 2 Hom(Pi, Im (bi+1)) in Hom(Pi, Bi+1).

Corollary 3.10. Any two projective resolutions of an object A are homotopy equivalent.

Proof. Given two projective resolutions P• ! A and P
0
• ! A, the identity map of A

lifts to morphisms of complexes � : P• ! P
0
• and �0 : P 0• ! P• by the lemma above.

By the second statement of the lemma � � �0 : P
0
• ! P

0
• is chain homotopic to the

identity map of P 0• and similarly for �0 � � : P• ! P•. ⇤

For a category A that has enough injectives the preceding arguments dualize. Using
the fact that every object A embeds in an injective object we construct inductively
injective resolutions A! Q

•, i.e. acyclic complexes of the form

0! A! Q
0 ! Q

1 ! Q
2 ! · · ·

with the Q
i injective. The analogue of the previous lemma holds, with the same

proof (performed in the opposite category of A):

Lemma 3.11. Assume given a diagram

0 ���! A
a
0

���! A
0 a

1

���! A
1 a

2

���! A
2 ���! . . .

??y↵

0 ���! B
q
0

���! Q
0 q

1

���! Q
1 q

2

���! Q
2 ���! . . .

where the lower row is a complex with the Q
i

injective and the upper row is an acyclic

complex. Then ↵ extends to a morphism of complexes given by the diagram:

0 ���! A
a
0

���! A
0 a

1

���! A
1 a

2

���! A
2 ���! . . .

??y↵
??y↵0

??y↵1

??y↵2

0 ���! B
q
0

���! Q
0 q

1

���! Q
1 q

2

���! Q
2 ���! . . .

Moreover, any two such extensions are chain homotopic. In particular, any two injective

resolutions of A are homotopy equivalent.

4. DERIVED FUNCTORS

Derived functors remedy the defect of exactness of left or right exact functors.

Construction 4.1. Let A, B be abelian categories and F : A! B an additive functor.
Assume that A has enough projectives. Then the left derived functors LiF of F are
defined as follows. Given an object A in A, choose a projective resolution P• ! A

and consider the complex F (P•), then set LiF (A) := Hi(F (P•)). Given a morphism
↵ : A ! B in A, choose projective resolutions P

A

• ! A, PB

• ! B. By Lemma 3.9
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the map ↵ induces a morphism of complexes ↵• : P
A

• ! P
B

• . Define LiF (↵) :=

Hi(F (↵•)).
Dually, when A has enough injectives, the right derived functors R

i
F of F are

defined by choosing an injective resolution A ! Q
• for an object A, and setting

R
i
F (A) := H

i
(F (Q

•
)). Given a morphism ↵ : A! B in A, the morphism R

i
F (↵) is

defined by lifting ↵ to a morphism of injective resolutions using Lemma 3.11, and
then taking the i-th cohomology.

Lemma 4.2. The definition of LiF (A) does not depend on the choice of the projective reso-

lution P•, and that of LiF (↵) on the choice of the lifting ↵• of ↵.

Similar statements hold for the right derived functors R
i
F .

Proof. We do the case of LiF . If P• ! A, P 0• ! A are two projective resolutions, they
are homotopy equivalent by by Corollary 3.10. Applying the functor F we get that
the complexes F (P

0
•) and F (P

0
•) are also homotopy equivalent via F (�) and F (�

0
).

It follows that F (�) induces canonical quasi-isomorphisms F (P•) ! F (P
0
•). The

well-definedness of LiF (↵) follows from the second statement of Lemma 3.9. ⇤

Proposition 4.3. Assume that A has enough projectives and moreover F is a right exact

functor. Then L0(F ) ⇠= F , and given a short exact sequence 0 ! A ! B ! C ! 0 of

R-modules, there is an associated long exact sequence of the form

· · ·! LiF (A)! LiF (B)! LiF (C)! Li�1F (A)! · · ·

ending with F (C)! 0.

Similarly, when A has enough injectives and F is left exact, we have R
0
(F ) ⇠= F , and a

short exact sequence 0! A! B ! C ! 0 induces a long exact sequence of the form

· · ·! R
i
F (A)! R

i
F (B)! R

i
F (C)! R

i+1
F (A)! · · ·

starting with 0! F (A).

The proof uses a lemma.

Lemma 4.4 (Horseshoe Lemma). Assume given a short exact sequence

0! A! B ! C ! 0

in A and projective resolutions P
A

• ! A, P
C

• ! C. There exists a projective resolution

P
B

• ! B fitting in a short exact sequence of complexes

0! P
A

• ! P
B

• ! P
C

• ! 0
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and a commutative diagram

0 ���! P
A

• ���! P
B

• ���! P
C

• ���! 0
??y

??y
??y

0 ���! A ���! B ���! C ���! 0.

A similar statement holds if we have injective resolutions A! Q
•
A

, C ! Q
•
C

.

Proof. Notice first that any short exact sequence 0 ! P1 ! P2 ! P3 ! 0 of pro-
jective modules splits as a direct sum P2

⇠= P1 � P3 (lift the identity map of P3 to
a map P3 ! P2). So if the lemma is true, we must have P

B

i
⇠= P

A

i
� P

C

i
for all

i. We therefore set PB

i
:= P

A

i
� P

C

i
and construct the maps in the required short

exact sequence of resolutions by induction on i. First, by projectivity of PC

0
the map

pC : P
C

0
! C lifts to a map P

C

0
! B. Taking the sum of this map with the composite

map P
A

0
! A ! B defines a map P

A

0
� P

C

0
! B, i.e. a map pB : P

B

0
! B making

the diagram
0 ���! P

A

0
���! P

B

0
���! P

C

0
���! 0

??ypA

??ypB

??ypC

0 ���! A ���! B ���! C ���! 0

commute. Using the Snake Lemma we see that the surjectivity of pA and pC implies
that of pB and moreover the sequence 0 ! ker(pA) ! ker(pB) ! ker(pC) ! 0 is
exact. Now we have a commutative diagram

0 ���! P
A

1
���! P

B

1
���! P

C

1
���! 0

??y
??y

0 ���! ker(pA) ���! ker(pB) ���! ker(pC) ���! 0

with surjective vertical maps, so by repeating the above argument we get a surjec-
tive map P

B

1
! ker(pB) making the diagram commute. Continuing the procedure

we obtain the required short exact sequence of resolutions. ⇤

Proof of Proposition 4.3. The statements L0(F ) ⇠= F and R
0
(F ) ⇠= F under the stated

exactness assumptions follow from the definitions. We now derive the long exact
for left derived functors, the other one being similar. Apply the construction of the
Horseshoe Lemma to get an exact sequence 0! P

A

• ! P
B

• ! P
C

• ! 0 of projective
resolutions. As already remarked, here in fact P

B

i
⇠= P

A

i
� P

C

i
for all i, so that

F (P
B

i
) ⇠= F (P

A

i
) � F (P

C

i
) by additivity of F . Thus we have a short exact sequence

of complexes 0 ! F (P
A

• ) ! F (P
B

• ) ! F (P
C

• ) ! 0 to which we apply Proposition
3.5. ⇤

Remark 4.5.
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(1) For a projective object P we have LiF (P ) = 0 for i > 0 as we may take 0 !
P ! P ! 0 as a projective resolution. Similarly, Ri

F (Q) = 0 for i > 0 when Q is
injective. This gives rise to an important technique called dimension shifting which
we explain for left derived functors. Given an object A we may choose an exact
sequence 0 ! K ! P ! A ! 0 with P projective. The long exact sequence then
induces isomorphisms LiF (A)

⇠! Li�1F (K) for i > 1. In this way, if we have to
prove a property of LiF for all A and all i > 0, we may reduce to the case i = 1

using induction.

(2) There is an additional functoriality property of derived functors that is often
useful: given a commutative diagram

0 ���! A ���! B ���! C ���! 0
??y

??y
??y

0 ���! A
0 ���! B

0 ���! C
0 ���! 0

of short exact sequences, the diagram

LiF (C) ���! Li�1F (A)
??y

??y

LiF (C
0
) ���! Li�1F (A

0
)

of boundary maps in the associated log exact sequences commutes for all i, and
similarly for right derived functors. We omit the verification.

We now come to fundamental examples for the category of modules over a ring.

Examples 4.6. Let A be an R-module.

(1) The functor A ⌦R is right exact. Its i-th left derived functor is denot-
ed by Tor

R

i
(A, ). Thus for every R-module B we have an isomorphism

Tor
R

0
(A,B) ⇠= A⌦R B and every short exact sequence 0! B1 ! B2 ! B3 !

0 of R-modules induces a long exact sequence

· · ·! Tor
R

1
(A,B1)! Tor

R

1
(A,B2)! Tor

R

1
(A,B3)! A⌦RB1 ! A⌦RB2 ! A⌦RB3 ! 0.

(2) The functor HomR(A, ) is left exact. Its i-th right derived functor is denot-
ed by Ext

i

R
(A, ). Thus for every R-module B we have an isomorphism

Ext
0

R
(A,B) ⇠= HomR(A,B) and every short exact sequence 0 ! B1 ! B2 !

B3 ! 0 of R-modules induces a long exact sequence

0! HomR(A,B1)! HomR(A,B2)! HomR(A,B3)! Ext
1

R
(A,B1)! Ext

1

R
(A,B2)! · · ·

One can define derived functors of contravariant functors by the same method
as for covariant ones; the only difference is that left derived functors are defined
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via injective resolutions and right derived functors via projective ones. The basic
example is:

Example 4.7. Let B be an R-module. The contravariant functor HomR( , B) is left
exact. Its i-th right derived functor, denoted by Ext

i

R
( , B), is defined by tak-

ing a projective resolution P• ! A of an R-module A and setting Ext
i

R
(A,B) :=

H
i
(HomR(P•, B)). We have an isomorphism Ext

0

R
(A,B) ⇠= HomR(A,B) and every

short exact sequence 0 ! A1 ! A2 ! A3 ! 0 of R-modules induces a long exact
sequence

0! HomR(A3, B)! HomR(A2, B)! HomR(A1, B)! Ext
1

R
(A3, B)! Ext

1

R
(A2, B)! · · ·

Now an important question arises: we have defined the groups Exti
R
(A,B) in two

ways, via a projective resolution of A and an injective resolution of B. Do the two
methods give the same result? Similarly, we have defined the groups Tori(A,B) via
a projective resolution of B; does using a projective resolution of A yield the same
groups? The answer is yes in both cases - we’ll seeit in the section on total derived
functors.

5. EXT AND TOR

Now that we have Ext functors at our disposal, we can give another characteri-
zation of projective modules.

Proposition 5.1. The following are equivalent for an R-module A.

(1) A is projective.

(2) Ext
i

R
(A,B) = 0 for all i > 0 and all R-modules B.

(3) Ext
1

R
(A,B) = 0 for all R-modules B.

Proof. The implication (1) ) (2) is a special case of Remark 4.5 (1), (2) ) (3) is
obvious, and (3)) (1) follows from the long exact sequence of Ext. ⇤

For injective modules we have a similar characterization, but it can be sharpened
using Baer’s criterion.

Proposition 5.2. The following are equivalent for an R-module B.

(1) B is injective.

(2) Ext
i

R
(A,B) = 0 for all i > 0 and all R-modules A.

(3) Ext
1

R
(A,B) = 0 for all R-modules A.

(4) Ext
1

R
(R/I,B) = 0 for all ideals I ⇢ R.
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Proof. The equivalence of (1)–(3) is proven as above and (3) ) (4) is obvious. Now
consider the exact sequence 0 ! I ! R ! R/I ! 0 for an ideal I ⇢ R and
apply the functor HomR( , B). The associated long exact sequence together with
assumption (4) shows that the map HomR(R,B) ! HomR(I, B) is surjective, so (1)
holds by Baer’s criterion.

There is a similar characterization for flat modules as well.

Proposition 5.3. The following are equivalent for an R-module A.

(1) A is flat.

(2) Tor
R

i
(A,B) = 0 for all i > 0 and all R-modules B.

(3) Tor
R

1
(A,B) = 0 for all R-modules B.

(4) Tor
R

1
(R/I,A) = 0 for every ideal I ⇢ R.

Proof. To prove (1) ) (2) we use dimension shifting. Take an exact sequence 0 !
K ! P ! B ! 0 with P projective. The long exact sequence of Tor gives an exact
sequence

Tor
R

1
(A,P )! Tor

R

1
(A,B)! A⌦R K ! A⌦R P

Here Tor
R

1
(A,P ) = 0 because P is projective, hence Tor

R

1
(A,B) = 0 as tensoring by

A is left exact by assumption. In view of Tori(A,P ) = 0 for i > 0 the continuation
of the sequence gives isomorphisms

Tor
R

i
(A,B)

⇠! Tor
R

i�1(A,K)

for all i > 1, whence (2) by induction on i.
The implications (2)) (3)) (4) being obvious, only (4)) (1) remains. Assume

� : B0 ! B is an injective map of R-modules. To prove that � ⌦ idR : A ⌦R B0 !
A ⌦R B is also injective we may assume using Proposition 2.6 that B0 and B are
both finitely generated. In this case we find t1, . . . , tr 2 B so that B = hB0, t1, . . . , tri.
Setting Bj := hB0, t1, . . . , tji for all 1  j  r we obtain a finite filtration B0 ⇢ B1 ⇢
· · · ⇢ Br = B such that Bj/Bj�1 ⇠= htji ⇠= R/Ij for the ideal Ij ⇢ R annihilating tj .
But then tensoring the exact sequence 0 ! Bj�1 ! Bj ! R/Ij ! 0 by A gives an
exact sequence

Tor
R

1
(R/Ij, A)! A⌦R Bj�1 ! A⌦R Bj

where Tor
R

1
(R/Ij, A) = 0 by assumption. Therefore A⌦R B0 ! A⌦R B is injective,

being the composite of the injective maps A⌦R Bj�1 ! A⌦R Bj . ⇤

Using Proposition 5.3 it is easy to prove a structure theorem for finitely generated
flat modules over Noetherian local rings.
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Proposition 5.4. Let R be a Noetherian local ring with maximal ideal P and residue

field k, and let A be a finitely generated R-module. If A is flat over R, or more general-

ly Tor1(A, k) = 0, then A is free over R.

Proof. Let a1, . . . an 2 A be elements such that their mod PA images form a basis
of the k-vector space A/PA. By Nakayama’s lemma they generate A, so the map
� : R

n ! A sending (r1, . . . , rn) to r1a1 + · · · + rnan is surjective, giving rise to
an exact sequence 0 ! B ! R

r ! A ! 0. Now tensor this sequence by k over
R. Since Tor1(A, k) = 0, the long exact sequence of Tor implies the exactness of
0! B/PB ! R

r
/PR

r ! A/PA! 0, whence B = PB. Since R is Noetherian, B is
finitely generated, hence 0 by Nakayama’s lemma. ⇤

Finally we explain the origin of the names of the functors Tor and Ext. For Tor
the name comes from ‘torsion’:

Proposition 5.5. Let R be a ring and A an R-module. If r 2 R is a non-zerodivisor, then

Tor1(R/(r), A) ⇠= {a 2 A | ra = 0}.

The module on the right hand side is called the r-torsion in A. The module A is
called torsion free if it has no r-torsion for any r. In the case R = Z and n 2 Z we
get back the notion of n-torsion in an abelian group. It can be shown that in this
case the whole torsion subgroup is isomorphic to Tor1(Q/Z, A).

Proof. Consider the exact sequence 0 ! R
r! R ! R/(r) ! 0. Since R is projec-

tive as an R-module, part of the associated long exact Tor-sequence gives an exact
sequence

0 = Tor
R

1
(R,A)! Tor

R

1
(R/(r), A)! A

r! A

whence the statement follows. ⇤

Corollary 5.6. Over a principal ideal domain a module is torsion free if and only if it is flat.

Proof. If R is a principal ideal domain and I ⇢ R is an ideal, then I = (r) for some
r 2 R and therefore Tor

R

1
(R/I,A) = Tor

R

1
(R/(r), A). The vanishing of this group for

all r 2 R is equivalent to A being torsion free by the proposition and to A being flat
by Proposition 5.3. ⇤

The Ext functor received its name from its relation to extensions. An extension of
an R-module C by A is an R-module B fitting in a short exact sequence

0! A! B
p! C ! 0.
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The extension is split if there is a map i : C ! B with p � i = idC . In this case B is
isomorphic to the direct sum A� C.

Two extensions B and B
0 are equivalent if there is an R-module map � : B ! B

0

fitting in a commutative diagram

0 ���! A ���! B ���! C ���! 0
??yid

??y�
??yid

0 ���! A ���! B
0 ���! C ���! 0.

The Snake Lemma shows that in this case � must be an isomorphism, whence it
follows that we have indeed defined an equivalence relation. Denote by Ext(C,A)

the set of equivalence classes of extensions of C by A.

Construction 5.7. We construct a map Ext(C,A) ! Ext
1

R
(C,A) as follows. Take a

projective resolution P• ! C. By Lemma 3.9 the diagram

. . . ���! P2

p2���! P1

p1���! P0

p0���! C ���! 0
??yid

. . . ���! 0
b2���! A

b1���! B
b0���! C ���! 0

can be filled in as

. . . ���! P2

p2���! P1

p1���! P0

p0���! C ���! 0
??y

??y↵1

??y↵0

??yid

. . . ���! 0
b2���! A

b1���! B
b0���! C ���! 0

where ↵1�p2 = 0. This shows that ↵1 2 HomR(P1, A) is contained in Z
1
(Hom(P1, A)),

whence a class e 2 Ext
1

R
(C,A). Since any two projective resolutions of C are chain

homotopy equivalent by Corollary 3.10, the class e does not depend on the choice
of P•. Finally, equivalent extensions give rise to the same class e 2 Ext

1

R
(C,A) by

construction.
In case of a split extension the splitting i : C ! B induces a commutative diagram

. . . ���! P2

p2���! P1

p1���! P0

p0���! C ���! 0
??y

??y0

??yi�p0
??yid

. . . ���! 0
b2���! A

b1���! B
b0���! C ���! 0

so that the associated class is 0.

Remark 5.8. There is another way to construct the extension class e: apply the func-
tor HomR(C, ) to the exact sequence 0 ! A ! B ! C ! 0. The resulting long
exact sequence gives rise to a coboundary map HomR(C,C) ! Ext

1

R
(C,A). Define

e as the image of the identity map of C by this map. One can check that it depends
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only on the extension class of B and the resulting map Ext(C,A) ! Ext
1

R
(C,A) is

the same as the one constructed above.

Proposition 5.9. The map Ext(C,A)! Ext
1

R
(C,A) constructed above is a bijection send-

ing the class of the split extension A� C to 0.

The proof uses the pushout construction: given an exact sequence of R-modules
0 ! A ! B ! C ! 0 and an R-module map � : A ! A

0, define an R-module
X as the quotient of A0 � B by the submodule of elements of the form (�(a),�a)
for a 2 A. The natural projection A

0 � B ! B induces a map X ! C sitting in a
commutative diagram with exact rows

0 ���! A ���! B ���! C ���! 0
??y�

??y
??yid

0 ���! A
0 ���! X ���! C ���! 0.

Moreover, X has the following universal property: for any X
0 sitting in a diagram

of the above type there is an R-module map X ! X
0 inducing an equivalence of

extensions of C by A
0. All this is straightforward to verify.

Sketch of proof of Proposition 5.9. We have already noted that the split extension class
goes to 0. We construct an inverse map Ext

1

R
(C,A)! Ext(C,A) as follows. Choose

projective resolution P• ! C as above. A class in Ext
1

R
(C,A) is then represented by

a homomorphism � : P1/Im (p2)! A. Now form the pushout of the extension 0!
P1/Im (p2)! P0 ! C ! 0 by � and take the associated class in Ext(C,A). As in the
above construction, one verifies using Lemma 3.9 that choosing another projective
resolution gives rise to the same extension class. It follows from the constructions
that the two maps are inverse to each other; we leave details to the reader. ⇤

Remark 5.10. It is possible to define an abelian group structure on Ext(C,A) so that
the above bijection becomes an isomorphism of abelian groups. Besides pushout,
this also uses the analogous pullback construction: given an exact sequence of R-
modules 0 ! A ! B

p! C ! 0 and an R-module map  : C
0 ! C, define an

R-module Y as the submodule of B � C
0 given by {(b, c0) : p(b) =  (c

0
)}. The

inclusion A ! B induces an inclusion A ! Y sitting in a commutative diagram
with exact rows

0 ���! A ���! Y ���! C
0 ���! 0

??yid

??y
??y 

0 ���! A ���! B
p���! C ���! 0.

Here Y has a similar universal property as the pushout.
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Now assume 0 ! A ! B ! C ! 0 and 0 ! A ! B
0 ! C ! 0 represent two

classes in Ext(C,A). Form first the direct sum extension

0! A� A! B � B
0 ! C � C ! 0,

then take pushout by the map A � A ! A, (a1, a2) 7! a1 + a2, and finally take the
pullback of the resulting extension of C �C by A by the diagonal map C ! C �C.
The resulting extension is the Baer sum of the extensions given by B and B

0. It can be
checked that the construction respects the equivalence relation on extensions and
gives Ext(C,A) the structure of an abelian group with zero element A � C so that
the map Ext(C,A) ! Ext

1

R
(C,A) is an isomorphism. (Note: it is enough to check

that the map Ext(C,A) ! Ext
1

R
(C,A) respects addition, then the group axioms for

Ext(C,A) follow from those in Ext
1

R
(C,A).)

Remark 5.11. There is a generalization of the above construction to higher Ext
groups due to Yoneda. Elements of the Yoneda Ext groups YExt

n
(C,A) are rep-

resented by n-fold extensions

0! A! B1 ! B2 ! · · ·! Bn ! C ! 0.

A morphism of n-fold extensions is a morphism of complexes inducing the identity
map on A and C. Equivalence of extensions is then defined as the coarsest equiv-
alence relation under which two extensions are equivalent if there is a morphism
between them. Baer sum and a map YExt

n
(C,A) ! Ext

n

R
(C,A) are defined by

straightforward generalizations of the case n = 1. One then proves that the map
YExt

n
(C,A)! Ext

n

R
(C,A) is a group isomorphism.

Yoneda’s construction of Ext groups has several advantages. One is that it is very
explicit. Moreover, it does not use the existence of enough projectives or injectives,
and therefore makes sense in a general abelian category. Also, is that it is very
easy to define a product structure YExt

n
(C,B) ⇥ YExt

m
(B,A) ! YExt

n+m
(C,A)

by splicing an n-fold extension 0! B ! C1 ! C2 ! · · ·! Cn ! C ! 0 and an m-
fold extension 0! A! B1 ! B2 ! · · ·! Bm ! B ! 0 together in an (n+m)-fold
extension 0! A! B1 ! B2 ! · · ·! Bm ! C1 ! C2 ! · · ·! Cn ! C ! 0.

6. HOMOLOGICAL DIMENSION

In this section and the next we employ the notation A for rings and M,N for
A-modules.

Definition 6.1. Let A be a ring, M is an A-module. We say that M has a projective
resolution of length i if there exists an exact sequence

0! Pi ! · · ·! P0 !M ! 0
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with all Pj projective.
The projective dimension pd(M) of M is defined as the smallest i for which M has

a projective resolution of length i; it may be infinite. The global dimension of A is

gldim(A) := sup{pd(M) | M is an A-module}.

It can be infinite as well.

Proposition 6.2. The following are equivalent for an A-module M :

(1) pd(M)  d,

(2) Ext
i

A
(M,N) = 0 for all A-modules N and i > d,

(3) Ext
d+1

A
(M,N) = 0 for all A-modules N ,

(4) If 0! Md ! Pd�1 ! · · ·! P0 ! M ! 0 is exact and the Pi are projective, then

Md is projective.

Proof. The implications (4) ) (1) and (2) ) (3) are obvious. (1) ) (2) follows
because we may calculate the Ext functors using a projective resolution of length
 d. To prove (3)) (4), we split the exact sequence of (4) in short exact sequences
of the form 0!Mi ! Pi�1 !Mi�1 ! 0 (here M0 = M). Since the Pi are projective,
the associated long exact sequences for Ext give isomorphisms Extd+2�i

A
(Mi�1, N) ⇠=

Ext
d+1�i
A

(Mi, N) for all N and all 0  i  d. Then (3) implies Ext
1

A
(Md, N) = 0 for

all N , so Md is projective by Proposition 5.1. ⇤

Corollary 6.3. The global dimension of A is the smallest (possibly infinite) d such that

Ext
d+1

A
(M,N) = 0 for all A-modules M,N .

Example 6.4. The global dimension of a field is 0. The global dimension of Z is 1.
Indeed, given an abelian group B, we may embed it in an injective abelian group
Q. For abelian groups being injective is the same as being divisible, whence we get
that the quotient Q/B is also injective. This means that B has an injective resolution
of length 2, whence Ext

2

Z(M,B) = 0 for every abelian group M . (Alternatively, we
could have deduced gldim(Z) = 1 from the fact that any subgroup of a free abelian
group is free.) We shall see a vast generalization of this fact in Theorem 7.3 below.

Remarks 6.5.
1. One can define the injective dimension of a module as the length of the shortest
possible injective resolution and prove an analogue of Proposition 6.2 for injective
dimension. This shows that the global dimension of A is also the supremum of
injective dimensions of modules because the previous corollary can be reproven
using injective resolutions.

2. Quite generally, one can define the homological dimension of an abelian category
A as the smallest d such that ExtiA(A,B) = 0 for all i > d and all objects A,B in A.
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(Here the Ext-groups are defined, for instance, using the Yoneda method.) The
above notion is the special case of module categories.

The following proposition allows us to restrict to finitely generated modules.

Lemma 6.6. Let A be a ring and i � 0 an integer. The following are equivalent:

(1) Ext
i

A
(M,N) = 0 for all A-modules M , N .

(2) Ext
i

A
(M,N) = 0 for all A-modules N and all finitely generated A-modules M .

(3) Ext
i

A
(A/I,N) = 0 for all A-modules N and ideals I ⇢ A.

Proof. The implications (1)) (2)) (3) being obvious, we show (3)) (1). Take an
injective resolution 0! N ! Q

• of N , and truncate it as

0! N ! Q
0 ! Q

1 ! · · ·! Q
i�2 ! N

i�1 ! 0

By a similar dimension-shifting argument as in the previous proof we have an i-
somorphism Ext

i

A
(M,N) ⇠= Ext

1

A
(M,N

i�1
), so that Ext

i

A
(M,N) = 0 for all M if

and only if Ext1
A
(M,N

i�1
) = 0 for all M . By Proposition 5.2 this is equivalent to

N
i�1 being injective, and also to Ext

1

A
(A/I,N

i�1
) = 0 for all ideals I ⇢ A. This

in turn is equivalent to saying that Exti
A
(A/I,N) = 0 for all i, again by dimension

shifting. ⇤

Corollary 6.7. gldim(A) = sup{pd(M) | M is a finitely generated A-module}.

In the local case projective dimension can also be calculated by Tor.

Proposition 6.8. Let A be a Noetherian local ring with maximal ideal P and M a finitely

generated A-module. Then pd(M)  d if and only if Tor
A

d+1
(M, k) = 0, where k = A/P .

Proof. The ‘only if’ part follows by calculating Tor by means of a projective resolu-
tion of length  d. We prove the ‘if’ part by induction on d. The case d = 0 follows
from Proposition 5.4. For the inductive step use the fact that M is finitely generated
to obtain an exact sequence 0 ! N ! A

n ! M ! 0 with some n. Here N is also
finitely generated because A is Noetherian. The associated long exact Tor-sequence
implies Tor

A

d
(N, k) ⇠= Tor

A

d+1
(M, k) for d > 0, so pd(M)  pd(N) + 1  d by induc-

tion (for the first inequality note that a projective resolution of N can be extended
by A

n to obtain a projective resolution of M ). ⇤
We can now prove a characterization of global dimension for Noetherian local

rings which involves a single module.

Corollary 6.9. If A is a Noetherian local ring with residue field k, then

gldim(A) = pd(k) = max {d : Tor
A

d
(k, k) 6= 0}.
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Proof. The second equality follows from Proposition 6.8 applied with M = k. To
prove the first one, note that by Corollary 6.7 and Proposition 6.8 we have gldim(A) 
d if and only if TorA

d+1
(M, k) = 0 for all finitely generated M over A. If pd(k)  d,

then Tor
A

d+1
(M, k) = 0 follows by using a projective resolution of length  d. Con-

versely, if TorA
d+1

(M, k) = 0 for all finitely generated M , then in particular this holds
for M = k, whence pd(k)  d by Proposition 6.8. ⇤

On the other hand, computing the global dimension of a Noetherian ring can be
reduced to the local case:

Proposition 6.10. Let A be a Noetherian ring. Then

gldim(A) = sup {gldim(AQ) : Q ⇢ A is a maximal ideal}.

The proof uses a base change property for Ext groups (we also include the case
of Tor for later use).

Lemma 6.11. Let A be a ring, B a flat A-algebra and M,N A-modules.

(1) If A is Noetherian and M is finitely generated, we have isomorphisms

Ext
i

A
(M,N)⌦A B ⇠= Ext

i

B
(M ⌦A B,N ⌦A B)

for all i � 0.

(2) We also have isomorphisms

Tor
A

i
(M,N)⌦A B ⇠= Tor

B

i
(M ⌦A B,N ⌦A B)

for general A and M .

Proof. (1) First we treat the case i = 0 and M free. Tensoring a homomorphism
M ! N by B gives a map HomA(M,N) ! HomB(M ⌦A B,N ⌦A B) which factors
through a map HomA(M,N)⌦AB ! HomB(M⌦AB,N⌦AB) since the target is a B-
module. For M = A this map identifies with the identity map of N ⌦A B and hence
is an isomorphism. Using compatibility of the Hom and tensor product functors
with finite direct sums we obtain an isomorphism when M is free.

Since M is finitely generated and A is Noetherian there exists a resolution P• !M

with the Pi finitely generated and free. (Indeed, there is a surjection p : P0 ⇣ M

with a finitely generated free A-module P0; since A is Noetherian, the kernel K of
p is again finitely generated and we may repeat the process starting with K.) By
flatness of B we have

Ext
i

A
(M,N)⌦A B = H

i
(HomA(P•, N))⌦A B ⇠= H

i
(HomA(P•, N)⌦A B)

and by the previous paragraph the latter group identifies with

H
i
(HomB(P• ⌦A B,N ⌦A B)) = Ext

i

B
(M ⌦A B,N ⌦A B).
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(2) The case of Tor is easier: take a projective resolution P• ! M . Then by flatness
of B over A the complex P• ⌦A B is a projective resolution of M ⌦A B over B (in
particular, each Pi ⌦A B is a direct summand of a free B-module), and so

Tor
B

i
(M ⌦A B,N ⌦A B) ⇠= Hi((P• ⌦A B)⌦B (N ⌦A B)) ⇠=

⇠= Hi((P• ⌦A N)⌦A B) ⇠= Hi(P• ⌦A N)⌦A B ⇠= Tor
A

i
(M,N)⌦A B,

again using flatness of B over A. ⇤

Proof of Proposition 6.10. First we prove that gldim(AQ)  gldim(A) for every maxi-
mal ideal Q ⇢ A. This is obvious when gldim(A) is infinite, so we may assume it is a
finite number d. Then for every maximal Q the A-module k := A/Q has a projective
resolution P• ! k of length  d. But then by flatness of AQ over A the complex
P• ⌦A AQ is a projective resolution of k ⇠= k ⌦A AQ over AQ, and we conclude by
Corollary 6.9.

On the other hand, suppose gldim(A) = d for some d. Then there are A-modules
M,N such that Extd

A
(M,N) 6= 0; by Lemma 6.6 we may assume M is finitely gener-

ated. By Lemma 2.20 (1) we find a maximal ideal Q such that Extd
A
(M,N)⌦AAQ 6= 0.

Since AQ is flat over A, Lemma 6.11 (1) gives Extd
AQ

(M⌦AAQ, N⌦AAQ) 6= 0, so that
gldim(AQ) � d also holds. The same argument shows that gldim(A) = 1 implies
that for any d we can find a maximal ideal Q with gldim(AQ) � d. ⇤

We now state one of the most important results about homological dimension.

Theorem 6.12. (Serre) A Noetherian local ring A is regular if and only if gldim(A) <1.

In this case gldim(A) = dim (A).

We shall give several proofs of Serre’s theorem in these notes. The proof given in
this section will use induction along regular sequences. In Section 8 we shall give
a second proof of one implication and prove a refined statement using the Koszul
complex. Finally, in Section 12 we shall present a recent proof that uses derived
categories.

We begin with some auxiliary statements.

Proposition 6.13. Let A be any ring, x 2 A a non-zerodivisor and M an A/(x)-module

such that pd
A/(x)

(M) <1. Then pd
A
(M) = pd

A/(x)
(M) + 1.

Proof. We proceed by induction on pd
A/(x)

(M). If it is 0, then M is projective over
A/(x). Since x is a non-zerodivisor, we have a short exact sequence

0 // A
·x // A // A/(x) // 0 .
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This is a projective resolution of A/(x) over A hence pd
A
(A/(x))  1. Now pd

A
(A/(x)) =

0 would mean that A/(x) is projective over A, hence a direct summand of a free A-
module F . That is impossible because x is a non-zerodivisor in A, hence in F but
a zero-divisor on A/(x). So pd

A
(A/(x)) = 1 and therefore pd

A
(F ) = 1 for any free

A/(x)-module F . This also implies pd
A
(M) = 1 since M is a direct summand of a

free A/(x)-module.
For the inductive step assume pd

A/(x)
(M) > 0 and take an exact sequence of

A/(x)-modules
0 // K // P // M // 0

where P is projective over A/(x). We have two associated long exact Ext-sequences
of the form

(2) Ext
i
(P,N) // Ext

i
(K,N) // Ext

i+1
(M,N) // Ext

i+1
(P,N) ,

one over A/(x) and one over A. Over A/(x) we have Ext
i
(P,N) = 0 for all i > 0

hence Ext
i

A/(x)
(K,N) ⇠= Ext

i+1

A/(x)
(M,N) for all i > 0. This implies

(3) pd
A/(x)

(M) = pd
A/(x)

(K) + 1.

By induction, we then have

(4) pd
A
(K) = pd

A/(x)
(K) + 1.

On the other hand, over A we have Ext
i
(P,N) = 0 for all i > 1 as we have proven

pd
A
(P ) = 1 above. Hence Ext

i

A
(K,N) ⇠= Ext

i+1

A
(M,N) for all i > 1. This gives

pd
A
(M) = pd

A
(K) + 1

provided that pd
A
(M) > 1. This proves the proposition for the case pd

A
(M) > 1.

To conclude, we show that pd
A/(x)

(M) > 0 implies pd
A
(M) > 1. Assume this is

not the case, i.e. pd
A
(M) = 1. This implies Ext

i

A
(M,N) = 0 for i > 1 and all N .

Since P is projective over A/(x), we know it has projective dimension 1 over A, so
Ext

i

A
(P,N) = 0 for i > 1 and all N as well. From the long exact sequence (2) we get

Ext
2

A
(K,N) = 0 for all N , and therefore pd

A
(K)  1. Here pd

A
(K) = pd

A/(x)
(M) by

equations (3) and (4). So we have to exclude the case pd
A
(M) = pd

A/(x)
(M) = 1.

Choose an exact sequence of A-modules

0 // C // F // M // 0

with F free. Then C is projective by Proposition 6.2 since pd
A
(M) = 1. So this is, in

fact, a projective resolution of M . Tensoring the sequence with A/(x) yields

Tor
A

1
(F,A/(x)) // Tor

A

1
(M,A/(x)) // C/xC // F/xF // M/xM // 0
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where the first term is 0 because F is free and M/xM = M since M is an A/(x)-
module. Since C/xC and F/xF are already projective over A/(x) and pd

A/(x)
(M) =

1, we get that TorA
1
(M,A/(x)) is projective over A/(x) by Proposition 6.2 (applied

with d = 2 > 1). By Proposition 5.5 we have Tor
A

1
(M,A/(x)) = {m 2 M | xm =

0} = M , and therefore M is projective over A/(x), a contradiction. ⇤

Combining the proposition with Corollary 6.9 gives

Corollary 6.14. If A is a Noetherian local ring with maximal ideal P , x 2 P is a non-

zerodivisor and gldim(A/(x)) <1, then

gldim(A) = gldim(A/(x)) + 1.

We now prove a similar transition statement for A-modules.

Proposition 6.15. Let A be a ring, M be an A-module and x a non-zerodivisor on both A

and M . Then

pd
A
(M) � pd

A/(x)
(M/xM)

If moreover A is a Noetherian local ring with maximal ideal P , M is finitely generated and

x 2 P , then equality holds.

Proof. We may assume d := pd
A
(M) < 1. We proceed by induction on d. If d = 0,

then M is projective over A and then so is M/xM over A/(x). For d > 0, choose an
exact sequence of A-modules

(5) 0 // K // F // M // 0

with F free. Then as in the previous proof pd
A
(K) = d�1 and hence pd

A/(x)
(K/xK) 

d � 1 by induction (note that since x is a non-zerodivisor on A, the same holds for
F and hence K). Tensoring the above sequence by A/(x) we get an exact sequence

Tor
A

1
(M,A/(x)) // K/xK // F/xF // M/xM // 0

where Tor
A

1
(M,A/(x)) = {m 2 M | xm = 0} = 0 by Proposition 5.5. Therefore

either pd(M/xM) = 0 and the inequality holds trivially, or the argument with the
long exact sequence of Ext gives pd

A/(x)
(M/xM) = pd

A/(x)
(K/xK)+1  d. The first

statement is proven.
We prove the second statement by induction on n = pd

A/(x)
(M/xM) starting with

n = 0. In this case M/xM is projective over A/(x), hence free by Proposition 2.15.
We claim that M is also free over A, which will prove the case n = 0. Let m1, . . . ,mr

be a free generating system of M/xM over A/(x). By Nakayama’s lemma, it is also
a generating system over A since x 2 P . Now, assume that a1m1 + · · · + armr = 0
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for some ai 2 A. We know that ai 2 (x) since modulo (x) there is no nontrivial
relation. Therefore we find a

0
i
2 A with ai = a

0
i
x for all i and may rewrite the

relation as (a0
1
m1 + · · ·+ a

0
r
mr)x = 0. Since x is a non-zerodivisor on M , this implies

a
0
1
m1 + · · · + a

0
r
mr = 0. But then a

0
i
2 (x) and so, after repeating the argument

infinitely many times, finally obtain ai 2 \n(xn
) ⇢ \nP n for all i. This gives ai = 0

by Krull’s Intersection Theorem.
For the inductive step assume n > 0. From the proof of the first statement we

already know pd
A/(x)

(M/xM) = pd
A/(x)

(K/xK) + 1, and from exact sequence (5)
we get pd

A
(M) = pd

A
(K) + 1 since pd

A
(M) � n > 0 by the first statement. We

conclude by applying the inductive hypothesis to K. ⇤

Before starting the proof of Serre’s theorem we need to recall some basic facts
about associated primes.

Facts 6.16. An associated prime in a ring A is a prime ideal P ⇢ A such that P =

{x 2 A : ax = 0} for some a 2 A. Not every ideal of this form is a prime ideal but
every such ideal is contained in an associated prime. Consequently the union of all
associated primes is the set of zero-divisors in A. When A is Noetherian, there are
only finitely many associated primes in A.

Proof of Theorem 6.12. Assume first A is regular. We proceed by induction on d :=

dim (A). If d = 0 then A is a field, so every A-module is free and the global di-
mension is 0. If d > 0, then let x be a non-zerodivisor in the maximal ideal P (take
an element in a regular sequence). We know that A/(x) is a regular local ring of
dimension d� 1. On the other hand gldim(A/(x)) = gldim(A)� 1 by Corollary 6.14
provided that gldim(A/(x)) <1, but that is true by induction. By induction we al-
so know that dim (A/(x)) = gldim(A/(x)), so gldim(A) <1 and gldim(A) = dim (A)

follow.
For the converse we use induction on gldim(A). If it is zero, then all A-modules

are projective, hence the finitely generated ones are free by Proposition 2.15. In
particular, the module k := A/P is free which is only possible if A = k, so A is
regular of dimension 0.

If gldim(A) =: d > 0, we prove first that there exists a non-zerodivisor x 2 P \P 2.
For this it will be enough to show that P is not an associated prime of A, because
then the existence of x will follow from the Prime Avoidance Lemma applied to
P

2 and the associated primes of A. Suppose P is the annihilator of some x 2 A.
Sending 1 to x induces a homomorphism A! A with kernel P ; let C be its cokernel.
We thus have an exact sequence of A-modules

0! k ! A! C ! 0.
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Part of the associated long exact Tor-sequence reads

Tor
A

d+1
(C, k)! Tor

A

d
(k, k)! Tor

A

d
(A, k)

where Tor
A

d
(A, k) = 0 because A is a free A-module and Tor

A

d
(k, k) 6= 0 by Corollary

6.9. But then Tor
A

d+1
(C, k) 6= 0, contradicting the assumption gldim(A) = d.

So let x 2 P \ P 2 be a non-zerodivisor. Assume for a moment that we know that
gldim(A/(x)) <1. Then by Corollary 6.14 we have gldim(A/(x)) = gldim(A)�1, so
by induction A/(x) is regular. Lifting a regular sequence generating P mod (x) and
adding x we obtain a regular sequence generating P . This proves that A is regular.

We still have to justify that gldim(A/(x)) <1 if gldim(A) <1. In view of Propo-
sition 6.8 we have to prove pd

A/(x)
(k) <1. Using the exact sequence

0 // P/(x) // A/(x) // k // 0

of A/(x)-modules we reduce to proving pd
A/(x)

(P/(x)) < 1. By the second part of
Proposition 6.15,

pd
A/(x)

(P/xP ) = pd
A
(P ) <1

But P/(x) is not the same as P/xP . So to finish the proof we shall show that the
exact sequence

0 // (x)/xP // P/xP // P/(x) // 0

splits. This will suffice, since then P/(x), being a direct summand of P/xP , will also
have finite projective dimension (use the Ext criterion provided by Proposition 6.2).

As x 2 P\P 2 there exist x2, . . . , xr 2 P such that x, x2, . . . , xr modulo P
2 is a basis

of P/P 2. Then (x) \ ((x2, . . . , xr) + P
2
) ✓ xP . Indeed, if not, then there would exist

y 2 (x2, . . . , xr) + P
2 such that y = xu where u 2 A \ P is a unit. However, then

x = u
�1
y 2 (x2, . . . , xr) + P

2, contradicting the choice of (x2, . . . , xr). Now consider
the sequence of maps

P/(x)
=! ((x)+(x2, . . . , xr)+P

2
)/(x)

⇠=! ((x2, . . . , xr)+P
2
)/((x)\((x2, . . . , xr)+P

2
))!

! P/xP ! P/(x).

The composition is the identity as one can check, and we get the required splitting.
⇤

Remark 6.17. Notice that if we knew that the statement of Corollary 6.14 holds
without the assumption gldim(A/(x)) < 1, the whole last section of the above
proof (and hence also Proposition 6.15) would be unnecessary.

This is what we shall prove in Section 12: more precisely, we shall construct a
direct sum decomposition

Tor
A

i
(k, k) ⇠= Tor

A/(x)

i
(k, k)� Tor

A/(x)

i�1 (k, k)
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assuming only that A is local with residue field k (but assuming x /2 P
2 which is

harmless), from which the required statement follows in the Noetherian case by
Corollary 6.9.

7. APPLICATIONS OF SERRE’S THEOREM

We now discuss structural results for regular rings whose proof is enabled, or
at least greatly simplified, by homological methods. We begin with the following
statement whose non-homological proof is quite cumbersome.

Corollary 7.1. Let A be a regular local ring and Q ⇢ A a prime ideal. Then AQ is also

regular.

Proof. Since gldim(A) <1 by Serre’s theorem, we have a projective resolution

0 // Pd
// Pd�1

↵ // . . . // P0
// A/Q // 0.

Tensoring by the flat module AQ the sequence remains exact, and the Pi ⌦A AQ are
projective over AQ (as direct summands of free modules). Moreover, A/Q⌦A AQ

⇠=
AQ/QAQ which is the residue field of AQ. Hence we get a finite free resolution for
the residue field of AQ over AQ, whence we conclude by Corollary 6.9. ⇤

Another consequence is:

Corollary 7.2. A Noetherian local ring A is regular if and only if its completion bA (with

respect to any ideal I ⇢ A) is regular.

Proof. Since bA is flat over A, Lemma 6.11 (2) gives isomorphisms Tor
bA
i
(k, k) ⇠=

Tor
A

i
(k, k) ⌦A

bA for all i. Since moreover bA is faithfully flat over A (Proposition
2.9), we conclude that Tor bA

i
(k, k) 6= 0 if and only if TorA

i
(k, k) 6= 0. The corollary

now follows from Theorem 6.12 and Corollary 6.9. ⇤

Recall now that a Noetherian ring is regular if all of its localizations by maximal
ideals are regular local rings. By the Corollary 7.1 this is the same as requiring that
all localizations by prime ideals are regular local rings. Now combining Theorem
6.12 with Proposition 6.10 we obtain:

Corollary 7.3. If A is a Noetherian ring of finite Krull dimension d, then A is regular if

and only if gldim(A) = d.

In particular, since polynomial rings over fields are regular, we have:

Corollary 7.4. (Hilbert’s Syzygy Theorem) If k is a field, then gldim(k[x1, . . . , xd]) = d.
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Remark 7.5. In fact, over k[x1, . . . , xd] every finitely generated projective module is
free. This was a conjecture of Serre, solved independently by Quillen and Suslin.
Consequently, every finitely generated module over k[t1, . . . , td] has a finite free res-
olution.

The last classical result about regular rings is:

Theorem 7.6. (Auslander – Buchsbaum) A regular local ring is a unique factorization

domain.

For the proof we need several auxiliary statements.

Lemma 7.7. A Noetherian integral domain A is a unique factorization domain (UFD) if

and only if every height 1 prime ideal in it is principal.

For the proof recall the following basic criterion for unique factorization: a do-
main A is a UFD if and only if the principal ideals satisfy the ascending chain con-
dition (this is automatic for A Noetherian) and every irreducible element is a prime.
Here p 2 A is called irreducible if it cannot be written as a product of two non-units
and a prime if (p) is a prime ideal.

Proof. If A is a unique factorization domain, every height 1 prime ideal P contains
a prime element p (take a prime divisor of some nonzero a 2 P ), so that there is
an inclusion (p) ✓ P of prime ideals which must be an equality since ht(P ) = 1.
Conversely, if every height 1 prime ideal is principal and p 2 A is an irreducible
element, take a minimal prime ideal P containing p. Since A is a domain, the Haup-
tidealsatz gives ht(P ) = 1. By assumption we then have P = (a) for some a 2 A

which must therefore divide p. As p is irreducible, we get P = (p). ⇤

Remark 7.8. The criterion of the lemma has an interesting geometric interpretation:
for a local ring of some variety at a point P it means that every codimension 1
subvariety can be defined, at least locally around a point, by a single equation, or in
other words by cutting with a hypersurface. Therefore the theorem will imply that
this always holds around smooth points.

The next lemma is:

Lemma 7.9. (Nagata) If A is a Noetherian integral domain such that Ax is a unique
factorization domain for some prime element x 2 A, then A is a unique factorization
domain.

Here Ax denotes the localization of A by the subset {1, x, x2
, x

3
, . . . }.
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Proof. We use the criterion of the previous lemma. Take a height 1 prime ideal
P ✓ A. If x 2 P , then P = (x) since (x) is a prime ideal and ht(P ) = 1, so we
are done. So assume x /2 P . In this case the lemma shows that there exists p 2 P

such that PAx = pAx. We may assume that p /2 (x) \ P . Indeed, if p = ax for some
a 2 A, then a 2 P as P is a prime ideal and x /2 P . If a 2 (x) we repeat the process,
obtaining an ascending chain of prime ideals (p) ( (a) ( (a1) ( (a2) ( · · · which
must stop at some ideal (ai) as A is Noetherian. Here ai is not contained in (x) but
pAx = aiAx, so we may replace p by ai.

We now show P = (p). So far we know that for all y 2 P there exists a 2 A and
m,n > 0 such that y/xn

= p(a/x
m
) since A is a domain. This means that xk

y 2 (p)

for big enough k, so it is enough to show that xy 2 (p) implies y 2 (p). If xy = ap,
then a 2 (x) as (x) is a prime ideal and p /2 (x). Therefore a = bx for some b, hence
xy = ap = bxp and finally y = bp because A is a domain. ⇤

Next a lemma which is basically linear algebra.

Lemma 7.10. (Kaplansky) If A is an integral domain and I1, . . . , In, J1, . . . , Jn ✓ A

ideals such that
nM

i=1

Ii
⇠=

nM

i=1

Ji

as A-modules, then I1 · · · · · In ⇠= J1 · · · · · Jn as A-modules.

The lemma is easiest to prove using exterior products, about which we recall
some basics.

Facts 7.11. Let A be a ring, M an A-module and n � 0. The n-th exterior power (or
wedge power) of M is defined by

⇤
n
M := M

⌦n
/hm1 ⌦ · · ·⌦mn | 91  i < j  n : mi = mji

where ⇤0
M = A and ⇤1

M = M . We denote the image of m1 ⌦ · · ·⌦mn in ⇤n
M by

m1 ^ · · · ^mn. The following properties hold:

(1) The A-module ⇤n
M is characterized by the following universal property:

for all A-modules N and all n-linear maps ' : M ⇥ · · · ⇥M ! N such that
'(m1, . . . ,mn) = 0 if mi = mj for some i 6= j there exists a factorization
M ⇥ · · ·⇥M ! ⇤

n
M ! N where the first map is the natural surjection.

(2) Every A-module map M ! N induces maps ⇤n
M ! ⇤

n
N for all n � 0.

(3) There are natural associative product maps ⇤n
M ⇥ ⇤m

M ! ⇤
n+m

M. These
two properties follow from the corresponding properties of the tensor prod-
uct.
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(4) If B is an A-algebra, there are canonical isomorphisms

⇤
n
(M ⌦A B) ⇠= (⇤

i
M)⌦A B.

Indeed, one checks that the right hand side verifies the universal property
characterizing the left hand side.

(5) In ⇤n
M we have the relations for all i:

m1 ^ · · · ^mi ^mi+1 ^ · · · ^mn = �m1 ^ · · · ^mi+1 ^mi ^ · · · ^mn

(6) If M ⇠= A
r is free with basis e1, . . . , er, then ⇤n

M is free with basis

{ei1 ^ · · · ^ ein | 1  i1 < i2 < · · · < in  r};

in particular, for r = n it is free of rank 1. If v1, . . . , vr are r elements in A
r,

then v1 ^ · · · ^ vr = det(aij)e1 ^ · · · ^ er, where [aij] is the matrix of the linear
map M !M given by ei 7! vi for i = 1, . . . , r.

(7) For all A-modules M,N we have isomorphisms

⇤
n
(M �N) ⇠=

M

i+j=n

⇤
i
M ⌦ ⇤j

N.

(The isomorphism is induced by the maps (m1 ^ · · ·^mi)⌦ (n1 ^ · · ·^ nj) 7!
m1 ^ · · · ^mi ^ n1 ^ · · · ^ nj for mi 2 M , nj 2 N . That this map is indeed an
isomorphism is easy to verify in the case when M and N are free modules
using the previous fact, and that will be the only case we’ll need. For general
M and N the argument is a bit more involved.)

Proof of Lemma 7.10. Let K be the fraction field of A, and put M := I1�· · ·�In. Then
M ⌦A K ⇠= K

n since I ⌦A K = K for all ideals I . Therefore by property (4) above
⇤

n
M⌦AK

⇠= ⇤n
(M⌦AK) ⇠= K which, composed with the map ⇤n

M ! ⇤
n
M⌦AK

given by m 7! m⌦ 1, gives a map � : ⇤
n
M ! K. We now describe Im(�) ⇢ K. Let

e1, . . . , en be the standard basis of Kn coming from the isomorphism M ⌦AK ⇠= K
n.

Use property (6) above to write a generator m1 ^ · · · ^mn of ⇤n
M as

m1 ^ · · · ^mn = det(aij)e1 ^ · · · ^ en 2 ⇤n
K

n

with aij 2 Ii for all i, so that �(m1 ^ · · · ^ mn) = det(aij) 2 K. Since I1 · · · · · In =

hdet(aij) | aij 2 Iii ✓ K, we get Im(�) = I1 · · · · · In. The same argument gives
Im(�) = J1 · · · · · Jn, whence the lemma. ⇤

Finally, a homological input.

Lemma 7.12. (Serre) If A is a ring and P is a projective A-module such that there exists

a finite free resolution of length n, then P is stably free, i.e. there exist free modules F and

F
0
such that P � F

0 ⇠= F . If moreover A is Noetherian and P is finitely generated, then we

may find finitely generated F and F
0
.
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Proof. Pick a resolution

0 // Fn

'n // Fn�1
'n�1

// . . . // F1

'1 // F0

'0 // P // 0

where we may choose finitely generated Fi when A is Noetherian and P is finitely
generated. As P is projective, the map '0 has a retraction, so F0

⇠= P � Im('1) and
Im('1) is projective. We can iterate this, obtaining Fi

⇠= Im('i) � Im('i+1) for all i,
hence finally

P � F
0
:= P �

nM

i=1

Im('i)
⇠= P �

M

i odd

Fi
⇠=

M

i even

Fi =: F

so the statement holds. ⇤

Proof of Theorem 7.6. : Let A be a regular local domain of dimension d. We proceed
by induction on dim (A), the case dim (A) = 0 being clear. Pick an x 2 P\P 2. It is
known that A/(x) is again regular and local,hence an integral domain. This means
that (x) is a prime ideal, so by Lemmas 7.7 and 7.9 it is enough to prove that every
prime ideal Q ✓ Ax of height 1 is principal.

If M is a maximal ideal of Ax, then (Ax)M is the localization of A by the prime
ideal M \ A, hence it is also regular by Corollary 7.1. Here dim (Ax)M < dimA

because x /2 M , so M \ A is not maximal. By induction (Ax)M is then a unique
factorization domain. Hence Q(Ax)M is a principal ideal, since either Q ⇢ M and
then Q(Ax)M is still of height 1, or else Q(Ax)M = (1). In other words, Q(Ax)M is a
free module of rank 1 over (Ax)M . This being true for all maximal ideals M ⇢ Ax,
we conclude from Proposition 2.19 that Q is projective as an Ax-module.

On the other hand, we know that Q \ A ⇢ A is a prime ideal satisfying Q =

(Q \ A)Ax. From Theorem 6.12 we also know that Q \ A considered as a finitely
generated A-module has a finite free resolution. But then Q has a finite free reso-
lution as well, since we can tensor the resolution of Q \ A with Ax. Therefore by
Lemma 7.12 there exist m and n such that Q � (Ax)

m ⇠= (Ax)
n. Here m = n � 1

because tensoring with (Ax)M gives Q(Ax)M � (Ax)
m

M
⇠= (Ax)

n

M
where we have seen

above that Q(Ax)M is a free module of rank 1. Hence we can conclude by Lemma
7.10 applied with I1 = Q, Ii = Ax for i = 2, . . . , n and Ji = Ax for all i = 1, . . . , n. ⇤

8. THE KOSZUL COMPLEX

We now introduce a technical tool that is very useful for the study of regular
sequences.
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Definition 8.1. Let A be a commutative ring, M an A-module and f : M ! A an
A-linear map. The Koszul complex K(f) of f is defined as

. . . // ⇤n
M

d
n�1
f
// ⇤n�1

M

d
n�2
f

// . . . // ⇤2
M

d
1
f
// M

d
0
f
// A ,

where d
0

f
= f and

d
n�1
f

(m1 ^ · · · ^mn) =

nX

i=1

(�1)i+1 · f(mi) ·m1 ^ · · · ^mi�1 ^mi+1 ^ · · · ^mn

Note that the map d
n�1
f

exists by the universal property of the wedge product. It
is straightforward to check that dn�1

f
� dn

f
= 0.

Remark 8.2. It follows from the definition that for x 2 ⇤i
M and y 2 ⇤j

M we have

(6) d
i+j�1
f

(x ^ y) = d
i�1
f

(x) ^ y + (�1)ix ^ d
j�1
f

(y)

If we view the direct sum of the ⇤n
M as a graded A-algebra with multiplication

induced by the wedge product, the d
n�1
f

give it the structure of a differential graded

algebra: a graded A-algebra equipped with an A-module endomorphism d sending
the degree n part to the degree n � 1 part and satisfying the compatibility above
with respect to the multiplicative structure.

Example 8.3. Consider the case M = A. Every A-module homomorphism f : A! A

is given by multiplication by the element x := f(1). The Koszul complex of K(f) is
of the form A

x! A, with H0(K(f)) ⇠= A/xA. Moreover, H1(K(f)) ⇠= ker(A
x�! A),

so that H1(K(f)) = 0 if and only if x is a non-zerodivisor.
Tensoring by a general A-module M we obtain

H0(M ⌦A K(f)) ⇠= M/xM, H1(M ⌦A K(f)) ⇠= ker(M
x�!M).

We shall be particularly interested in the case when M = A
r is a free A-module

of finite rank. In this case the Koszul complex of a map A
r ! A has a particularly

simple form which we now proceed to determine. We first need the notion of tensor
products of complexes.

Definition 8.4. Let C• and D• two chain complexes of A-modules concentrated in
nonnegative degrees in the homological numbering. Their tensor product C ⌦D)•
is the complex whose degree n term of (C ⌦D)• is given by

(C ⌦D)n =

M

i+j=n

Ci ⌦A Dj

and the differential by the formula

(7) d
C⌦D
n

(x⌦ y) = d
C

i
(x)⌦ y + (�1)ix⌦ d

D

j
(y).
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Remarks 8.5.
(1) One defines the tensor product of two cohomological complexes concentrated
in nonnegative degrees in the same way.
(2) We note for later use that there are natural maps

Hi(C•)⌦A Hj(D•)! Hi+j((C ⌦A D)•)

defined as follows. If x 2 ker(d
C

i
) and y 2 ker(d

D

j
), then x⌦ y defines an element in

ker(d
C⌦D
i+j

). If moreover x = d
C

i+1
(x
0
) for some x

0 2 Ci+1, then d
C⌦D
i+j+1

(x
0 ⌦ y) = x ⌦ y,

so we have a map Hi(C•)⌦A ker(d
D

j
)! ker(d

C⌦D
i+j

). By a similar argument it factors
through the image of dD

j+1
to give a map on homology as stated.

Example 8.6. Let f1, f2 : A! A be two A-module homomorphisms. Then K(f1)⌦
K(f2) is the complex

(8) A

d
1
f
// A� A

d
0
f
// A

where the differential d0

f
is given by (x, y) 7! f1(x) + f2(y) and d

1

f
by x ⌦ y 7!

(f1(x)y,�f2(y)x). Here we have identified A ⌦A A with A via the multiplication
map x⌦ y 7! xy.

Now consider the A-module map (f1, f2) : A � A ! A. Since we have canonical
isomorphisms ⇤2

(A � A) ⇠= A ⌦A A ⇠= A (see below or apply Fact 7.11 (6)), the as-
sociated Koszul complex K(f1, f2) has the shape (8). Moreover, one checks that the
differentials are the same as those described above, so we obtain an isomorphism
K(f1)⌦K(f2)

⇠= K(f1, f2).

More generally, we have:

Proposition 8.7. Given A-modules M,N and A-module maps f1 : M ! A, f2 : N ! A,

set f = (f1, f2) : M �N ! A.

There is a canonical isomorphism K(f) ⇠= K(f1)⌦K(f2).

Proof. The corresponding terms of K(f) and K(f1)⌦K(f2) are canonically isomor-
phic by Fact 7.11 (7). To show that the differentials are the same, notice that they are
the same in degree 0, and in both cases they can be built out of d0 using the formula
d(x ^ y) = d(x) ^ y + (�1)ix ^ dy. ⇤

Now consider f = (f1, . . . , fr) : A
r ! A and set xi := fi(1). We then have

f(a1, . . . , ar) = ⌃iaixi. Introduce the notation

K(x) = K(x1, . . . , xr) := K(f).

By Fact 7.11 (6) it is a complex of free A-modules of length r. The previous proposi-
tion gives:
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Corollary 8.8. With notation as above we have an isomorphism of complexes

K(x) ⇠= K(x1)⌦ · · ·⌦K(xr).

Now we come to the main result of this section.

Theorem 8.9. If x1, . . . , xr is a regular sequence in A, then K(x) is acyclic in degrees > 0

and therefore defines a finite free resolution of A/(x1, . . . , xr).

For the proof of the theorem we need:

Lemma 8.10. If C• is any complex of A-modules and x 2 A, there exists an exact sequence

of complexes

(9) 0 // C• // C• ⌦A K(x) // C•[�1] // 0

where (C•[�1])i = Ci�1. Moreover, in the corresponding long exact sequence

. . . // Hi(C•) // Hi(C• ⌦A K(x)) // Hi�1(C•) // Hi�1(C•) // . . .

the map Hi�1(C•)! Hi�1(C•) is multiplication by (�1)i�1x.

Proof. We know that K(x) = A
x! A. Thus in the complex C• ⌦ K(x) the degree i

term is
(C• ⌦K(x))i = (Ci ⌦A A)� (Ci�1 ⌦A A) ⇠= Ci � Ci�1

with the differential Ci � Ci�1 ! Ci�1 � Ci�2 given by
"
@ (�1)i�1x
0 @

#

where @ is the differential of C•. This differential is the middle vertical map in the
commutative diagram

0 // Ci
//

@

✏✏

Ci � Ci�1 //

✏✏

Ci�1 //

@

✏✏

0

0 // Ci�1 // Ci�1 � Ci�2 // Ci�2 // 0

whose rows assemble to the exact sequence of complexes (9). To compute the con-
necting homomorphism in the long exact sequence, we applying the Snake Lemma
to the above diagram: take ↵ 2 Ker(Ci�1 ! Ci�2), lift it to (0,↵) 2 Ci � Ci�1, map
this element to ((�1)i�1x↵, 0) 2 Ci�1�Ci�2 by applying the matrix above and finally
take the component in Ci�1. It is (�1)i�1x↵ as stated. ⇤

The long exact sequence of the lemma gives:

Corollary 8.11. There exists an exact sequence

0! Hi(C•)/xHi(C•)! Hi(C• ⌦A K(x))! Ker(Hi�1(C•)
x! Hi�1(C•))! 0.
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Proof of Theorem 8.9. We proceed by induction on r, the case r = 1 being Example
8.3. Moreover, applying the results of Example 8.3 to M = Hi�1(C•) and M =

Hi(C•) we may rewrite the exact sequence of Corollary 8.11 as

0! H0(Hi(C•)⌦A K(x))! Hi(C• ⌦A K(x))! H1(Hi�1(C•)⌦A K(x))! 0.

For the inductive step, set C• = K(x1, . . . , xr�1), yielding K(x) ⇠= C• ⌦A K(xr) in
view of Proposition 8.7. By the inductive hypothesis Hi(C•) = Hi�1(C•) = 0 for all
i > 1, so the above short exact sequence applied with x = xr gives Hi(K(x)) = 0

for all i > 1. We still need to compute H1(K(x)). Since H1(C•) = 0, the above
short exact sequence reduces to an isomorphism H1(K(x)) ⇠= H1(H0(C•)⌦AK(xr)),
where H0(C•) ⇠= A/(x1, . . . , xr�1). But then by Example 8.3

(10) H1(K(x)) ⇠= Ker(A/(x1, . . . , xr�1)
xr! A/(x1, . . . , xr�1))

which is 0 since x is a regular sequence. ⇤

When A is a Noetherian local ring, the converse of Theorem 8.9 also holds. In
fact, the following is true:

Proposition 8.12. If a sequence x = (x1, . . . , xr) contained in the maximal ideal P of a

Noetherian local ring A satisfies H1(K(x)) = 0, then it is a regular sequence.

Proof. The case r = 1 is again Example 8.3, and for r > 1 we can use induction on
r. Apply Corollary 8.11 with C• := K(x1, . . . , xr�1). Since C• ⌦ K(xr)

⇠= K(x), the
assumption H1(K(x)) = 0 gives H1(C•)/xrH1(C•) = 0. But xr 2 P , hence H1(C•) =

0 by Nakayama’s lemma. Therefore by induction x1, . . . , xr�1 is a regular sequence,
and moreover xr is a non-zerodivisor modulo (x1, . . . , xr�1) by the vanishing of
H1(K(x)) and the isomorphism (10). ⇤

Remark 8.13. The above proposition yields another proof of the fact that in a Noe-
therian local ring every permutation of a regular sequence is regular.

We shall use the theorem through the corollary:

Corollary 8.14. If I = (x1, . . . , xr) with the xi forming a regular sequence, then

Tor
A

i
(A/I,M) ⇠= Hi(K(x)⌦A M)

Ext
i

A
(A/I,M) ⇠= H

i
(Hom(K(x),M))

for all A-modules M .

Application 8.15. The corollary makes it possible to give a quick proof of one half
of Serre’s theorem: If A is a regular local ring of dimension d, then A has global dimension

d.



NOTES ON HOMOLOGICAL ALGEBRA 43

Indeed, applying the first statement of the corollary with I the maximal ideal of
A and M its residue field k, we obtain that TorA

i
(k, k) is just the degree i term of

K(x) ⌦A k for all i; indeed, the differentials K(x) ⌦A k are all 0 since the xi map to
0 in k. But by construction of the Koszul complex the degree i term of K(x) ⌦A k

is a k-vector space of dimension
✓
d

i

◆
; in particular it is nonzero for i = d and 0 for

i > d. Now apply Corollary 6.9.

We can use the above proof to give a ‘numerical’ criterion for a Noetherian local
ring to be regular.

Corollary 8.16. Let A be a Noetherian local ring with maximal ideal P and residue field k,

and set r := dim kP/P
2
. The ring A is regular if and only if Tor

A

i
(k, k) is a k-vector space

of dimension

✓
r

i

◆
for all i.

Proof. When A is regular of Krull dimension d, we have r = d and we have seen the
conclusion above. Conversely, if the dimension of TorA

i
(k, k) is as in the statement,

it is 0 for i > r, and we conclude from Corollary 6.9 and Serre’s theorem. ⇤

Remark 8.17. In the situation of the corollary there is a natural way to construct an
isomorphism Tor

A

1
(k, k) ⇠= k

r, generalizing the argument in the regular case. This
is done using minimal resolutions: a free resolution F• ! M of a finitely generated
A-module M is minimal if each Fi is finitely generated and Zi(F•) ⇢ PFi for all i. It
follows from the defining property that the differentials of the complex F• ⌦A k are
all 0. One can construct F• inductively. First one takes a k-basis x1, . . . , xn of M/PM ,
sets F0 = A

n and defines the map F0 !M by lifting the obvious map F0 !M/PM .
In the inductive step the same procedure is applied to Zi(F•) in place of M . For
M = k one starts with F0 = A and then proceeds with a map A

r ! A lifting the
natural map A

r ! P/P
2 ⇠= k

r. Thus indeed Tor
A

1
(k, k) ⇠= H1(F• ⌦A k) ⇠= k

r.
To sum up: TorA

1
(k, k) always has the ‘correct’ dimension, it is some of the higher

Tor’s that differ in the non-regular case.

The isomorphisms Tor
A

i
(k, k) ⇠= ⇤

i
Tor

A

1
(k, k) of Application 8.15 are part of an

even stronger statement. Quite generally, for a module M over a ring A one can
equip the direct sum

⇤
•
(M) :=

1M

i=0

⇤
i
(M)

with a product structure induced by the product maps of Fact 7.11 (3). The resulting
A-algebra is the exterior algebra of M .
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For A regular and M = k we can consider the direct sum

Tor
A

• (k, k) :=

1M

i=0

Tor
A

i
(k, k)

which, as an A-module (or k-vector space) identifies with⇤•
Tor

A

1
(k, k) by the above.

On the other hand, the k-vector space Tor
A

• (k, k) already carries a product structure
which is compatible with the wedge product structure on ⇤•

Tor
A

1
(k, k). We now

explain the details. We shall need the easy lemma:

Lemma 8.18. If P1, P2 are projective A-modules, then so is P1 ⌦A P2.

Proof. We have to show that HomA(P1 ⌦A P2, ) is an exact functor. But

HomA(P1 ⌦A P2, ) ⇠= HomA(P1,HomA(P2, ))

where the right hand side is a composition of two exact functors by assumption. ⇤

Construction 8.19 (Internal product for Tor). Let A be a commutative ring and R an
A-algebra. We construct an associative A-linear multiplication

Tor
A

i
(R,R)⇥ Tor

A

j
(R,R)! Tor

A

i+j
(R,R)

for all i, j � 0 called the internal product.
It will be enough to construct maps

(11) Tor
A

i
(M1, N1)⇥ Tor

A

j
(M2, N2)! Tor

A

i+j
(M1 ⌦A M2, N1 ⌦A N2)

for all A-modules M1,M2, N1, N2 (the external product). Indeed, setting M1 = M2 =

N1 = N2 = R and applying the multiplication map R ⌦A R ! R in both variables
we then obtain the internal product.

Choose projective resolutions P
1

• ! M1, P 2

• ! M2, P• ! M1 ⌦A M2. Recall that
the groups TorA

i
(M1, N1) and Tor

A

j
(M2, N2) are computed by tensoring P

1

• by N1 and
P

2

• by N2, respectively, and then taking homology. On the other hand, the tensor
product complex (P

1 ⌦S P
2
)• has projective terms by Lemmas 8.18 and 2.12 (2).

Moreover, the maps P
1

0
! M1, P 2

0
! M2 induce a map (P

1 ⌦S P
2
)• ! M1 ⌦A M2,

so by Lemma 3.9 the identity map of M1 ⌦A M2 induces a morphism of complexes
(P

1 ⌦A P
2
)• ! P•. It follows that we have a morphism of complexes

(12) (P
1

• ⌦A N1)⌦A (P
2

• ⌦A N2)
⇠= (P

1 ⌦A P
2
)• ⌦A (N1 ⌦A N2)! P• ⌦A (N1 ⌦A N2)

On the other hand, by Remark 8.5 (2) we have a natural map

Tor
A

i
(M1, N1)⇥ Tor

A

j
(M2, N2)! Hi+j((P

1

• ⌦A N1)⌦A (P
2

• ⌦A N2))

whence the external product (11) arises by composition with the map induced by
(12) on Hi+j .
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The above product has the following property (called graded-commutativity):

Proposition 8.20. For a 2 Tor
A

i
(R,R) and b 2 Tor

A

j
(R,R) denote by a·b 2 Tor

A

i+j
(R,R)

their internal product. Then

a · b = (�1)ijb · a.

For the proof we need:

Lemma 8.21. Let C• be a homological complex. Taking a 2 Ci and b 2 Cj and sending

a⌦ b to (�1)ijb⌦ a induces a morphism of complexes ⌧ : (C ⌦ C)• ! (C ⌦ C)•.

Proof. We have

⌧(d(a⌦ b)) = ⌧(da⌦ b+ (�1)ia⌦ db) = (�1)(i�1)jb⌦ da+ (�1)i+i(j�1)
db⌦ a,

whereas

d(⌧(a⌦ b)) = d((�1)ijb⌦ a) = (�1)ijdb⌦ a+ (�1)ij+j
b⌦ da.

The two are equal since (�1)ij = (�1)i+i(j�1) and (�1)ij+j
= (�1)(i+1)j

= (�1)(i�1)j .
⇤

Proof of Proposition 8.20. In the construction of the internal product take P
1

• = P
2

• =:

C•. Then the map ⌧ : (C ⌦ C)• ! (C ⌦ C)• of the lemma gives a morphism
of complexes (P

2 ⌦A P
1
)• ! (P

1 ⌦A P
2
)• which, composed with a morphism

(P
1 ⌦A P

2
)• !P• given by Lemma 3.9, gives a morphism of complexes (P

2 ⌦A

P
1
)• ! P•. By construction, the first morphism computes a ⌦ b and the second

one (�1)ijb⌦ a. ⇤

Proposition 8.22. Let A be a ring, I ⇢ A an ideal generated by a regular sequence

x1, . . . , xr and R := A/I . Then we have an isomorphism of graded R-algebras

⇤
•
Tor

A

1
(R,R)

⇠! Tor
A

• (R,R)

induced by the identity in degree 1 and the internal product on Tor
A

• (R,R).

In particular, if A is a regular local ring with residue field k, we have an isomorphism of

graded k-algebras

⇤
•
Tor

A

1
(k, k)

⇠! Tor
A

• (k, k).

Proof. By Corollary 8.14 and the same argument as in Application 8.15 we have
isomorphisms TorA

i
(R,R) ⇠= Hi(K(x)⌦A R) ⇠= ⇤i

(R
r
), where K(x) is the associated

Koszul complex. In particular, for i = 1 we get H1(K(x) ⌦A R) ⇠= R
r, which yields

isomorphisms ⇤i
Tor

A

1
(R,R)

⇠! Tor
A

i
(R,R) for all i.

It remains to check that the wedge product maps

(13) ⇤
i
Tor

A

1
(R,R)⇥ ⇤j

Tor
A

1
(R,R)! ⇤

i+j
Tor

A

1
(R,R)
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become identified with the internal product maps

Tor
A

i
(R,R)⇥ Tor

A

j
(R,R)! Tor

A

i+j
(R,R)

via the above isomorphism. Taking P
1

• = P
2

• = K(x) in the construction of the inter-
nal product above, we have to consider the map K(x) ⌦A K(x) ! K(x) lifting the
multiplication map R⌦A R! R whose existence is stipulated by Lemma 3.9. Such
a morphism of complexes is given in degree n by the sum of the wedge product
maps

M

i+j=n

⇤
i
(A

r
)⌦ ⇤j

(A
r
)! ⇤

n
(A

r
);

that they induce a morphism of complexes follows from comparing formulas (6)
and (7). That this morphism of complexes induces the internal product on Tor fol-
lows from the uniqueness statement of Lemma 3.9; that it induces the map (13)
results from the construction. ⇤

9. THE HOMOTOPY CATEGORY AND ITS EXACT TRIANGLES

To start our work towards the construction of derived categories, we first present
some auxiliary constructions for complexes in an abelian category A that are im-
portant in their own right. We denote the category of complexes in A by C(A).

Construction 9.1. Given a morphism of complexes f : A
• ! B

• in C(A), the cone

C(f) of f is the complex with terms C(f)
i
= A

i+1�Bi and differentials df : C(f)
i !

C(f)
i+1 given by the 2⇥ 2 matrix of morphisms

df =

"
�dA 0

f dB

#

where dA and dB are the differentials of A• and B
•, respectively. (Thus for A the

category of abelian groups, a 2 A
i+1

, b 2 B
i we have df ((a, b)) = (�dA(a), f(a) +

dB(b)).) This is indeed a complex because
"
�dA 0

f dB

#2

=

"
dA � dA 0

�f � dA + dB � f dB � dB

#

which is 0 because A
•
, B

• are complexes and f is a morphism of complexes.
Given a commutative diagram

A
• f���! B

•
??y

??y

A
0• g���! B

0•
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of morphisms in C(A), there is an obvious induced morphism C(f)! C(g); this is
the functoriality of the cone construction.

Quite generally for a complex A
• and n 2 Z the shifted complex A

•
[n] is defined

by
A[n]

i
:= A

i+n
, dA[n]• = (�1)ndA• .

With this notation we have an exact sequence of complexes

(14) 0! B
• ! C(f)! A

•
[1]! 0.

Lemma 9.2. Let f : A
• ! B

•
be a morphism in C(A).

(1) The morphisms H
i+1

(A
•
) ! H

i+1
(B

•
) in the long exact cohomology sequence of

(14) equal H
i+1

(f).

(2) The morphism f is a quasi-isomorphism if and only if C(f) is acyclic.

Proof. For (1), we may assume A is a category of modules and take a 2 Z
i
(A[1]

•
) =

Z
i+1

(A
•
). By the proof of Proposition 3.5 the image of its class in the long ex-

act sequence can be constructed by lifting it to (a, 0) 2 C(f)
i and then taking

df ((a, 0)) = �dA(a) + f(a) = f(a), which indeed represents H
i+1

(f)(a). Statement
(2) follows by the long exact cohomology sequence associated with (14). ⇤

The other standard construction is:

Construction 9.3. Given a morphism of complexes f : A
• ! B

• in C(A), the cylin-

der Cyl(f) of f is the complex with terms Cyl(f)i = A
i+1 �B

i �A
i and differentials

dcyl : Cyl(f)
i ! Cyl(f)

i+1 given by the 3⇥ 3 matrix of morphisms

dcyl =

2

64
�dA 0 0

f dB 0

idA 0 dA

3

75

where dA and dB are the differentials of A• and B
•, respectively. For A a category

of modules we have the formula

(15) dcyl(ai+1, bi, ai) = (�dA(ai+1), f(ai+1) + dB(bi), ai+1 + dA(ai)).

Note that

(16) Cyl(f) = C(C(f)[�1]! A)

where the morphism C(f)[�1] ! A
• comes from (14) after shifting by �1; it is

given by (idA, 0). Indeed, the terms of the two complexes are equal and equality of
the differentials can be read off the matrices. From this it follows that Cyl(f) is a
complex (which can also be checked directly) and that there is an exact sequence

(17) 0! A
• ! Cyl(f)! C(f)! 0
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in C(A), by combining (14) and (16).

The cylinder has important chain-homotopical properties:

Proposition 9.4. Let f : A
• ! B

•
be a morphism of complexes.

(1) The natural map of complexes i : B
• ! Cyl(f) induced by the inclusion of B

•
in

the second component gives a chain homotopy equivalence between B
•

and Cyl(f).

(2) Another morphism of complexes g : A
• ! B

•
is homotopic to f if and only if there

is a morphism of complexes Cyl(�idA) ! B
•

which composed with the natural

inclusions A
• ! Cyl(�idA) in the second and third component gives back f and g,

respectively.

Proof. For (1), define a morphism of complexes p : Cyl(f)! B
• by sending (ai+1, bi, ai)

to �f(ai) + bi. This is a morphism of complexes because

(p � dcyl)(ai+1, bi, ai) = f(ai+1) + dB(bi)� f(ai+1)� f(dA(ai)) = dB(�f(ai) + bi).

By construction p � i = idB, and now we check idCyl(f) � i � p = k � dcyl + dcyl � k,
where k : Cyl(f)

i ! Cyl(f)
i�1 is given by k(ai+1, bi, ai) = (ai, 0, 0). Indeed,

(k � dcyl)(ai+1, bi, ai) = (ai+1 + dA(ai), 0, 0),

(dcyl � k)(ai+1, bi, ai) = dcyl(ai, 0, 0) = (�dA(ai), f(ai), ai);
on the other hand,

(ai+1, bi, ai)� (0,�f(ai) + bi, 0) = (ai+1, f(ai), ai).

For (2) suppose k induces a chain homotopy between f and g and consider the
map Cyl(�id) ! B

• induced by the triple (k, f, g); it indeed gives back f and g

after composing with the natural inclusions. We compute using formula (15) for
(ai+1, āi, ai) 2 A

i+1 � A
i � A

i

((k, f, g)�dcyl)((ai+1, āi, ai) = �(k�dA)(ai+1)�f(ai+1)+f(dA(āi))+g(ai+1)+g(dA(ai))

and
(dB � (k, f, g))((ai+1, āi, ai) = (dB � k)(ai+1) + dB(f(āi)) + dB(g(ai))

Since f and g are morphisms of complexes, equality of the two is equivalent to

g(ai+1)� f(ai+1) = (dB � k + k � dA)(ai+1)

which holds precisely because f and g are homotopic via k. The converse follows
by reversing the argument.

As a first application, note the following. Given an exact sequence

0! A
• ! B

• ! C
• ! 0
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in C(A), we have a commutative diagram with exact rows

0 ���! A
• ���! Cyl(f) ���! C(f) ���! 0

id

??y �p
??y h

??y

0 ���! A
• f���! B

• g���! C
• ���! 0

where the upper row is (17), p : (ai+1, bi, ai)! �f(ai)+bi is the homotopy inverse of
i constructed in the above proof and h is the map induced on cokernels (explicitly,
h(ai+1, bi) = �g(bi)).

Corollary 9.5. The map h : C(f)! C
•

is a quasi-isomorphism.

Proof. This follows from Proposition 9.4 (1) and Corollary 3.7.

Remark 9.6. In general h is not a homotopy equivalence, even though id and i are
(see Remark 9.13 below).

We now come to a crucial definition:

Definition 9.7. The homotopy category K(A) is the category with the same objects as
C(A) but with morphisms

HomK(A)(A,B) := HomC(A)(A,B)/{� 2 HomC(A)(A,B) : � ⇠ 0}

where ⇠ denotes homotopy equivalence of morphisms of complexes. The quotient
makes sense because the � homotopic to 0 form a subgroup in HomC(A)(A,B). Com-
position is induced from composition of morphisms in C(A).

Remark 9.8. The category K(A) is additive but not abelian general. Example: let
A be the category of abelian groups, and consider the morphism � : Z ! Z/2Z as
a morphism in C(A) of complexes concentrated in degree 0. This morphism has a
kernel in C(A), namely 2Z viewed again as a complex, but not in K(A). Indeed,
if � had a kernel in K(A), it would be represented by 2Z because every morphism
Z ! A with A an abelian group induces a morphism in K(A) . Now consider the
morphism of complexes  given by

· · · ���! 0 ���! Z ���! Z/2Z ���! 0 ���! · · ·
??y

??y
??y

??y

· · · ���! 0 ���! Z ���! 0 ���! 0 ���! · · ·

Then � �  ⇠ 0, a homotopy being given by the identity of Z/2Z in degree 1 and
by the zero map elsewhere. Now if 2Z were a kernel for �, then  would factor
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through a morphism

· · · ���! 0 ���! Z ���! Z/2Z ���! 0 ���! · · ·
??y

??y
??y

??y

· · · ���! 0 ���! 2Z ���! 0 ���! 0 ���! · · ·

in K(A) but that’s impossible (there is no such factorization in C(A) and no homo-
topy to help as the only map Z/2Z! Z is the zero map).

Since exact sequences do not make sense in K(A) by the above remark, we con-
sider a substitute. A triangle in K(A) is a sequence of morphisms

A
• ! B

• ! C
• ! A

•
[1]

in K(A). The basic example to have in mind is the triangle

A
• ! B

• ! C(f)! A
•
[1]

coming from (14). An exact (or distinguished) triangle in K(A) is a triangle

A
• ! B

• ! C
• ! A

•
[1]

for which there is a commutative diagram

A
• ���! B

• ���! C
• ���! A

•
[1]

??y↵
??y�

??y�
??y↵[1]

A
0• ���! B

0• ���! C(f
0
) ���! A

0•
[1]

with some f
0
: A

0• ! B
0• in K(A) such that all vertical maps are isomorphisms

in K(A). (Note that, viewed as a diagram in C(A), the squares only commute
up to homotopy!). The following statements are more or less immediate from the
definition:

Lemma 9.9.

(1) The composition of any two consecutive maps in an exact triangle is 0 in K(A).

(2) If A
• ! B

• ! C
• ! A

•
[1] is an exact triangle, there is an associated long exact

sequence

· · ·! H
i
(A

•
)! H

i
(B

•
)! H

i
(C

•
)! H

i+1
(A

•
)! · · ·

in A.
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Proof. In (1) the triviality of the composite map B
• ! C

• ! A
•
[1] follows from exact

sequence (14), and that of A• ! B
• ! C

• from exact sequence (17) and Proposition
9.4 (1). The sequence in (2) identifies with the long exact sequence associated with
the exact sequence of complexes (17).

The next lemma is a bit less straightforward.

Lemma 9.10.

(1) A triangle

A
• ! B

• ! C
• ! A

•
[1]

in K(A) is exact if and only if the shifted triangle

C
•
[�1]! A

• ! B
• ! C

•

is exact.

(2) Given a commutative diagram

A
• ���! B

• ���! C
• ���! A

•
[1]

??y↵
??y�

??y↵[1]

A
0• ���! B

0• ���! C
0• ���! A

0•
[1]

of exact triangles in K(A), there is a morphism � : C
• ! C

0•
in K(A) making the

diagram commute.

Proof. The ‘if’ part of (1) follows by applying the ‘only if’ part twice and shifting.
So suppose A

• f! B
• ! C

• ! A
•
[1] is exact. We may assume C

•
= C(f) and by

Proposition 9.4 (1) we may replace B
• by Cyl(f) in K(A). But

C(f)[�1]! A
• ! Cyl(f)

• ! C(f)

is an exact triangle by the isomorphism (16).
For statement (2) we may again assume C•

= C(f) (and similarly for C 0•), whence
the statement follows by functoriality of C(f).

The two statements of the proposition are parts of the general formalism of tri-

angulated categories, an axiomatic theory extracted from properties of exact triangles
in K(A). To show the power of the formalism we derive some consequences.

Corollary 9.11.

(1) For every object X
•

in K(A) applying the functor HomK(A)(X
•
, ) to the first row

of the diagram in Lemma 9.10 (2) induces an exact sequence of abelian groups

HomK(A)(X
•
, A

•
)! HomK(A)(X

•
, B

•
)! HomK(A)(X

•
, C

•
).
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Similarly, applying the contravariant functor HomK(A)( , X
•
) to the first row of

the diagram in Lemma 9.10 (2) induces an exact sequence

HomK(A)(C
•
, X

•
)! HomK(A)(B

•
, X

•
)! HomK(A)(A

•
, X

•
).

(2) If any two of the maps ↵, �, � in Lemma 9.10 (2) are isomorphisms in K(A), then

so is the third one.

Proof. The sequence of statement (1) is a complex by Lemma 9.9 (1), so assume
f : X

• ! B
• becomes 0 in K(A) after composing with the map B

• ! C
•. Noting

that C(X
• ! 0) = X

•
[1], we have a diagram of exact triangles

(18)

X
• ���! 0 ���! X

•
[1]

id���! X
•
[1]

??yf

??y0

??yf [1]

B
• ���! C

• ���! A
•
[1] ���! B

•
[1].

By Lemma 9.10 (2) there is a map X
•
[1] ! A

•
[1] making the diagram commute, so

after shifting we obtain a map X
• ! A

• whose composition with A
• ! B

• is f . The
proof of the contravariant case is similar.

To prove (2) it is enough to consider the case where ↵, � are isomorphisms by
Lemma 9.10 (1). We apply the contravariant form of statement (1) with X

•
= C

•

to the triangles in Lemma 9.10 (2). Combined with Lemma 9.10 (1) we obtain a
commutative diagram with exact rows

Hom(A
•
, C

•
)  ����� Hom(B

•
, C

•
)  ����� Hom(C

•
, C

•
)  ����� Hom(A

•
[1], C

•
)  ����� Hom(B

•
[1], C

•
)

x??↵⇤

x??�⇤

x??�⇤

x??↵⇤[1]
x??�⇤[1]

Hom(A
0•
, C

•
)  ����� Hom(B

0•
, C

•
)  ����� Hom(C

0•
, C

•
)  ����� Hom(A

0•
[1], C

•
)  ����� Hom(B

0•
[1], C

•
).

If ↵, � are isomorphisms, so are all vertical maps in the diagram by the five lemma,
so there is �0 : C 0• ! C

• in K(A) with �0 � � = idC0 . This �0 makes the diagram

A
0• ���! B

0• ���! C
0• ���! A

0•
[1]

??y↵�1

??y��1

??y�0
??y↵�1

[1]

A
• ���! B

• ���! C
• ���! A

•
[1]

commute, so repeating the argument gives �00 : C
• ! C

0• in K(A) with �
00 � �0 =

idC• . But then composing with � on the right gives �00 = �, so �0 is an inverse of � in
K(A).

We can now prove a stronger form of Lemma 9.2 (2).

Corollary 9.12. A morphism f : A
• ! B

•
in C(A) is a homotopy equivalence if and only

if C(f) is homotopically trivial (i.e. the identity map of C(f) is homotopic to 0).
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Proof. Apply the second statement of the previous corollary to the commutative di-
agram of exact triangles

A
• ���! A

• ���! 0 ���! A
•
[1]

??yid

??yf

??y0

??yid

A
• ���! B

• ���! C(f) ���! A
•
[1]

where the upper triangle is obtained by applying Lemma 9.10 (1) to the upper tri-
angle in (18).

Remark 9.13. We can now give an example showing that an exact sequence 0 !
A

• ! B
• ! C

• ! 0 in C(A) does not necessarily give rise to an exact trian-
gle A

• ! B
• ! C

• ! A
•
[1] in K(A). Consider the exact sequence of abelian

groups 0 ! Z/2Z
f! Z/4Z ! Z/2Z ! 0 viewed as an exact sequence of com-

plexes concentrated in degree 0. We have C(f) = [Z/2Z ! Z/4Z] which is in-
deed quasi-isomorphic to [0 ! Z/2Z] via the natural projection p but not homo-
topy equivalent. Indeed, the only possible homotopy inverse could be the nat-
ural injection i : [0 ! Z/2Z] ! C(f) which indeed satisfies p � i = id, but
i � p : [Z/2Z ! Z/4Z] ! [Z/2Z ! Z/4Z] cannot be homotopic to the iden-
tity because it is not surjective in degree 0 and no homotopy induced by a map
Z/4Z! Z/2Z can remedy that.

Now were there a map g : Z/2Z ! Z/2Z[1] such that the triangle Z/2Z
f!

Z/4Z ! Z/2Z
g! Z/2Z[1] is isomorphic in K(A) to some A

0• f
0
! B

0• ! C(f
0
) !

A
0•
[1], the isomorphisms identifying the sources and targets of f and f

0 would
induce a map C(f) ! C(f

0
) in K(A) by Lemma 9.10 (2) which would be an i-

somorphism by Corollary 9.11 (2). But C(f
0
) ⇠= Z/2Z by assumption whereas

C(f) 6⇠= Z/2Z by the above.

10. THE DERIVED CATEGORY

There is another way of constructing the homotopy category, via localization.

Proposition 10.1. Let C be a category and S a collection of morphisms in C containing all

identity maps of objects and all compositions s � t when t 2 HomC(A,B), s 2 HomC(B,C)

are both in S.

There is a category S
�1C and a functor Q : C ! S

�1C such that

(1) For every s 2 S the morphism Q(s) is an isomorphism;

(2) Every functor F : C ! D that sends the elements of S to isomorphisms in D factors

uniquely through Q.
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The category S
�1C is called the localization of C with respect to S. The pair (S�1C, Q)

is unique up to unique isomorphism.

Proof. One construction is as follows. Let S�1C have the same objects as C. For two
objects A,B we define HomS�1C(A,B) as follows. Consider all possible chains of
morphisms A · · ·   ! · · ·  !! · · ·B where leftward morphisms are in S. We
let HomS�1C(A,B) be the quotient of this set by the coarsest equivalence relation
containing the following equivalences:

(1) A · · · f! g! · · ·B ⇠ A · · · g�f! · · ·B;

(2) A · · · s t · · ·B ⇠ A · · · s�t · · ·B;

(3) A · · · s s! · · ·B ⇠ A · · · id! · · ·B for s 2 S;
(4) A · · · s f! · · ·B ⇠ A · · · g! t · · ·B whenever g � s = t � f .

Morphisms are composed in the obvious way and there is a natural functor Q from
C to this category that sends elements of S to isomorphisms by property (3). It sat-
isfies the universal property (send a chain to a composition of F (s)

�1’s and F (f)’s
for each leftward s and rightward f in the chain).

Lemma 10.2. If A is an abelian category, then K(A) is the localization of C(A) by the

collection of homotopy equivalences.

Proof. Suppose F : C(A) ! D is a functor sending homotopy equivalences to iso-
morphisms. Recall from Proposition 9.4 (1) that for each complex A

• the natural
map i : a 7! (0, a, 0) induces a homotopy equivalence between A

• and Cyl(�idA)
with homotopy inverse p : (ai+1, āi, ai) 7! āi + ai. Thus F (p) = F (i)

�1.
Now consider the map j : A

• ! Cyl(�idA) given by a 7! (0, 0, a). We have
p � j = idA, so

F (i) = F (i) � F (p � j) = F (i) � F (p) � F (j) = F (j).

Now suppose f, g : A
• ! B

• are homotopic via a map k. By Proposition 9.4 (2) the
map (k, f, g) induces a morphism of complexes � : Cyl(�idA)! B

• with � � i = f ,
� � j = g. But then

F (f) = F (�) � F (i) = F (�) � F (j) = F (g)

which means that F factors through the homotopy category K(A).

Definition 10.3. The derived category D(A) of an abelian category A is the localiza-
tion of C(A) with respect to the collection of quasi-isomorphisms of complexes.

Corollary 10.4. One can also obtain D(A) as the localization of K(A) with respect to the

collection of morphisms represented by quasi-isomorphisms of complexes.
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Proof. The universal functor Q : C(A) ! D(A) factors through K(A) by Lemma
10.2 and satisfies the universal property for the collection of quasi-isomorphisms in
K(A) by definition. ⇤

The description of morphisms in the derived category furnished by the general
localization construction is impractical. Here is a notion which brings it closer to
the calculus of fractions for rings.

Definition 10.5. A collection S of morphisms in a category C is a multiplicative system

if it satisfies the following axioms.

(1) All identity morphisms of objects of A are in S and if t 2 HomC(A,B), s 2
HomC(B,C) are both in S, so is s � t;

(2) Given f 2 HomC(A,B) and a morphism s : A ! A
0 in S, there are mor-

phisms f 0 2 HomC(A
0
, B
0
) and t : B ! B

0 in S making the diagram

A
f���! B

s

??y
??yt

A
0 f

0
���! B

0

commute. Similarly, if f 0 and t are given, we may complete the diagram with
f and s.

Construction 10.6. Given a multiplicative system S of morphisms in a category C,
we construct a category S

�1C as follows. The objects of S�1C are to be the same as
those of C. Morphisms in S

�1C are to be equivalence classes of pairs

A
s A1

f! B

with s 2 S, f 2 HomC(A1, B), subject to the following equivalence relation: two
pairs A

s1 A1

f1! B and A
s2 A2

f2! B are equivalent if there is a third such pair
A

s3 A3

f3! B fitting in a commutative diagram

A
s1 ��� A1

f1���! B

id

x??
x??

x??id

A
s3 ��� A3

f3���! B

id

??y
??y

??yid

A
s2 ��� A2

f2���! B.
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Composition of morphisms in S
�1C is defined as follows. Given A

s A1

f! B and
B

t B1

g! C, we first use property (2) of multiplicative systems to find a diagram

(19)

A
0 f

0
���! B1

g���! C

t
0

??y
??yt

A
s ��� A1

f���! B.

We then define the composite to be the equivalence class of A s�t0 � A
0 g�f 0
�! C. One

checks that this composition rule indeed preserves equivalence classes.
Finally, define a functor Q : C ! S

�1C to be the identity on objects and sending
each morphism f 2 HomC(A,B) to the class of A id A

f! B. This is indeed a functor
because the composition of A id A

f! B and B
id B

g! C is A
id A

g�f�! B, as can
be seen by taking f

0
= f and t

0
= id in the above diagram.

Proposition 10.7 (Gabriel–Zisman). Together with the functor Q the category S
�1C con-

structed above is the localization of C with respect to S.

Proof. We check the properties in Proposition 10.1. Property (1) follows because the
two-sided inverse of the class of A id A

s! B is represented by B
s A

id! A. Prop-
erty (2) holds, because if F : C ! D sends the morphisms in S to isomorphisms,
we may factor it uniquely through S

�1C by sending the class of A
s A1

f! B

to F (f) � F (s)
�1. That this construction respects equivalence classes follows from

the definition of the equivalence relation. For it to define a functor S
�1C ! D we

have to check that the composition of A s A1

f! B and B
t B1

g! C is sent to
F (g � f 0) � F (s � t0)�1, with f

0
, t
0 as in diagram (19). This is because applying F to

the diagram implies

F (g) � F (t)
�1 � F (f) � F (s)

�1
= F (g) � F (f

0
) � F (t

0
)
�1 � F (s)

�1

and F preserves composition.

Remarks 10.8.
1. Localization by a multiplicative system can also be defined using ‘right fractions’
represented by pairs of morphisms A f! B1

t B; the argument is similar. One can
even combine the two and consider triples A s A1

f! B1

t B.

2. In the literature one usually finds an additional axiom for multiplicative systems
called the cancellation property. It was not used in the above construction; it is
necessary when one wants to prove the stronger property that the Hom-sets in the
category S

�1C arise as filtered direct limits of Hom-sets in C.
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Proposition 10.9. If S is a multiplicative system of morphisms in an additive category A,

then S
�1A is also additive.

Sketch of proof. Given two morphisms A
s A1

f! B and A
s
0
 A

0
1

f
0
! B, we define

their sum by introducing a ‘common denominator’. Apply axiom (2) of multiplica-
tive systems to find a commutative diagram

C
r
0

���! A1

r

??y
??ys

A
0
1

s
0

���! A

with r 2 S. By axiom (1) t := s
0 � r = s � r0 2 S and we may represent the two

morphisms above by the equivalent morphisms A
t C

f�r0! B and A
t C

f
0�r! B.

Define their sum by the equivalence class of A t C
f�r0+f

0�r�! B. One checks that this
definition is well posed and the axioms for an additive category hold (0 and A� B

are the same objects as in A). ⇤

Now we apply the above to the derived category.

Proposition 10.10. Let A be an abelian category and let K(A) be the associated homotopy

category. The collection of quasi-isomorphisms in K(A) is a multiplicative system.

Consequently, every morphism in D(A) can be represented by a pair A
s A1

f! B with

s a quasi-isomorphism and f a morphism in K(A).

Proof of Proposition 10.10. We only have to check property (2) of multiplicative sys-
tems. Assume given morphisms f : A

• ! B
• and s : A

• ! A
0• in K(A), with s a

quasi-isomorphism. Using Lemma 9.10 (1) we have an exact triangle

C(s)[�1] g! A
• ! A

0• ! C(s)

which, using Lemma 9.10 (2), can be inserted in a commutative diagram of exact
triangles

C(s)[�1] g���! A
• s���! A

0• ���! C(s)
•

??yid

??yf

??y
??yid

C(s)[�1] f�g���! B
• ���! C(f � g) ���! C(s).

We claim that the middle square of the diagram is the one we were looking for
(in particular we may take B

0
= C(f � g)). For this we have to check that the

map B
• ! C(f � g) in the lower triangle is a quasi-isomorphism. Since s is a

quasi-isomorphism, the cone C(s) is acyclic by Lemma 9.2, but then the long exact
sequence associated with the lower triangle implies the claim. The proof for the
other part of the square is similar. ⇤
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Corollary 10.11. The derived category D(A) is additive.

Proof. This follows from the two previous propositions.

For all i 2 Z the functors H
i
: C(A) ! A given by A

• 7! H
i
(A

•
), f 7! H

i
(f)

map quasi-isomorphisms to isomorphisms by definition, so by the universal prop-
erty of localization induce functors H

i
: D(A) ! A. Also, as in K(A), define an

exact triangle in D(A) to be a triangle isomorphic in D(A) to a triangle of the form
A

• ! B
• ! C(f) ! A

•
[1]. Then the statements of Lemmas 9.9 and 9.10 and their

corollaries all hold for exact triangles in D(A). But notice a new feature:

Corollary 10.12. An exact sequence

0! A
• ! B

• ! C
• ! 0

in C(A) gives rise to an exact triangle

A
• ! B

• ! C
• ! A

•
[1]

in D(A).

Proof. This follows from Corollary 9.5.

Construction 10.13. Important exact triangles in D(A) coming from the above corol-
lary are constructed as follows. Given a complex A

• in C(A), define its (canonical)

truncations in degree n by

⌧n(A
•
) := [· · ·! A

i ! A
i+1 ! · · ·! A

n�1 ! Z
n
(A

•
)! 0! 0! · · · ]

and

⌧�n(A
•
) := [· · ·! 0! 0! A

n
/B

n
(A

•
)! A

n+1 ! · · ·! A
i ! A

i+1 ! · · · ]

By definition, there are natural morphisms of complexes ⌧n(A•
) ! A

• and A
• !

⌧�n(A
•
) which are quasi-isomorphisms in degrees  n and � n, respectively, and

zero maps elsewhere (notice that H
n
(⌧n(A

•
)) = H

n
(⌧�n(A

•
) = H

n
(A

•
).) Also,

given a quasi-isomorphism A
• ! B

•, the induced maps ⌧n(A•
) ! ⌧n(B

•
) and

⌧�n(A
•
)! ⌧�n(B

•
) are quasi-isomorphisms as well. Thus ⌧n and ⌧�n induce func-

tors D(A)! D(A).
Now for each n we have an exact sequence of complexes

0! ⌧n�1(A
•
)! ⌧n(A

•
)! [A

n�1
/Z

n�1
(A

•
)! Z

n
(A

•
)]! 0

where the last complex is concentrated in degrees n � 1 and n. The natural mor-
phism of complexes

[A
n�1

/Z
n�1

(A
•
)! Z

n
(A

•
)]! [0! H

n
(A

•
)]
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(where the second complex is placed in the same degrees) is a quasi-isomorphism.
Thus using the above corollary we have an exact triangle

(20) ⌧n�1(A
•
)! ⌧n(A

•
)! H

n
(A

•
)[�n]! ⌧n�1(A

•
)[1]

in D(A), where H
n
(A

•
) is considered as a complex concentrated in degree 0.

Similarly, there is an exact triangle

(21) H
n
(A

•
)[�n]! ⌧�n(A

•
)! ⌧�n+1(A

•
)! H

n
(A

•
)[�n+ 1].

coming from the exact sequence of complexes

0! [A
n
/B

n
(A

•
)! B

n+1
(A

•
)]! ⌧�n(A

•
)! ⌧�n+1(A

•
)! 0.

These exact triangles are very useful in inductive arguments on complexes.

Remark 10.14. Given a morphism A
• ! B

• in D(A), we may insert it in an exact tri-
angle A

• ! B
• ! C

• ! A
•
[1] in D(A) as follows. First we represent the morphism

by a pair A• s A
•
1

f! B
• of morphisms in K(A) with s a quasi-isomorphism. Set-

ting C
•
:= C(f) we have an exact triangle A

•
1

f! B
• g! C

• h! A
•
1
[1] in K(A), hence

in D(A), and we may construct a triangle A
• ! B

• g! C
• h! A

•
[1] isomorphic to

it in D(A) via s and the identity maps. Note that C• is unique up to isomorphism
in D(A) but not up to unique isomorphism. One sometimes calls C

•
a cone of the

morphism A
• ! B

• in D(A).

Using the above remark we can verify:

Corollary 10.15. A morphism � : A
• ! B

•
in D(A) is an isomorphism in D(A) if and

only if it induces isomorphisms H
i
(�) : H

i
(A

•
)! H

i
(B

•
) for all i.

Note that the corollary does not imply that � comes from a quasi-isomorphism in
C(A)!

Proof. The ‘only if’ part follows because the H
i are functors on D(A). Assume now

the H
i
(�) are all isomorphisms, and let C• be a cone of � as in the above remark.

Then H
i
(C

•
) = 0 for all i, and so the map 0! C

• in C(A) induces an isomorphism
in D(A). In the commutative diagram of exact triangles

A
• id���! A

• ���! 0 ���! A
•
[1]

id

??y �

??y
??y

??yid

A
• ����! B

• ���! C
• ���! A

•
[1]

three of the vertical maps are then isomorphisms, and hence so is �.

Now consider full subcategories of C(A) defined as follows: C
+
(A) is the full

subcategory spanned by objects A
• such that Ai

= 0 for all i ⌧ 0. Similarly, C�(A)
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is spanned by objects A
• with A

i
= 0 for all i � 0 and C

b
(A) is spanned by objects

with A
i 6= 0 for all but finitely many i. Denote their respective essential images in

K(A) and D(A) by K
+
(A), K�(A) and K

b
(A) as well as D+

(A), D�(A) and D
b
(A).

Here the essential image of a functor F : C ! D is defined as the full subcategory
of D spanned by objects D isomorphic in D to some F (C) with C an object of C; we
apply this notion with F the natural functors C(A)! K(A) and C(A)! D(A).

Lemma 10.16. The category D
+
(A) is the full subcategory of D(A) spanned by objects A

•

such that H
i
(A

•
) = 0 for all i⌧ 0; similar statements hold for D

�
(A) and D

b
(A).

Proof. If H
i
(A

•
) = 0 for i < n, then the natural morphism A

• ! ⌧�n(A
•
) is an

isomorphism in D(A), and by definition ⌧�n(A•
) is in the essential image of C+

(A)

in D(A). The other proofs are similar.

Recall now that two categories C and D are equivalent if there are functors F :

C ! D and G : D ! C such that F �G ⇠= idD and G � F ⇠= idC as functors. Here F is
called a quasi-inverse for G and vice versa.

Lemma 10.17. The category D
+
(A) is equivalent to the localization of K

+
(A) with respect

to the collection of quasi-isomorphisms in K
+
(A). Similar statements hold for D

�
(A) and

D
b
(A).

Proof. Denote by S+ the collection of quasi-isomorphisms in K
+
(A). The natural

functor K+
(A)! D

+
(A) maps the elements in S+ to isomorphisms in D(A), hence

factors through a functor S
�1
+

K
+
(A) ! D

+
(A). We construct a quasi-inverse as

follows. For every object A• in D
+
(A) the natural map �A : A

• ! ⌧�n(A
•
) is an iso-

morphism in D(A) for suitable n; we fix such an isomorphism �A for each A
•. Given

a morphism � : A
• ! B

• in D
+
(A), the composite �B �����1A

can be represented by
a pair ⌧�n(A•

)
f! B

•
1

t ⌧�m(B
•
) of morphisms in K(A) by Remark 10.8 (1). Since t

is a quasi-isomorphism here, the canonical map t1 : B
•
1
! ⌧�m(B

•
1
) must be a quasi-

isomorphism as well. So the pair ⌧�n(A•
)

t1�f�! ⌧�m(B1)
• t1�t � ⌧�m(B

•
) represents the

same morphism in D(A) but in fact represents a morphism in S
�1
+

K
+
(A). Sending

A
• to ⌧�n(A•

) and � to the above morphism gives the required quasi-inverse.

Assume now A has enough projectives and define K
�
(P) to be the full subcat-

egory of K�(A) spanned by complexes with projective terms. Similarly, if A has
enough injectives, define K

+
(I) to be the full subcategory of K+

(A) spanned by
complexes with injective terms.

Proposition 10.18. If A has enough projectives, the composite functor

K
�
(P)! K

�
(A)

Q! D
�
(A)
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induces an equivalence of categories between K
�
(P) and D

�
(A).

Similarly, if A has enough injectives, we have an equivalence of categories between

K
+
(I) and D

+
(A).

We need a lemma.

Lemma 10.19. Assume A has enough projectives (resp. injectives).

(1) Every complex C
•

in C
�
(A) is quasi-isomorphic to a complex P

•
with projective

terms.

Similarly, every complex in C
+
(A) is quasi-isomorphic to a complex I

•
with

injective terms.

(2) An acyclic complex in C
�
(A) with projective terms is homotopically trivial, and so

is an acyclic complex in C
+
(A) with injective terms.

Proof. We postpone the proof of (1) to the end of this section. As for (2) in the pro-
jective case, notice that an acyclic complex A

• breaks up in short exact sequences
0 ! B

i
(A

•
) ! A

i ! B
i+1

(A
•
) ! 0 for all i. If n is the largest index for which

A
n 6= 0, we have A

n
= B

n
(A

•
); in particular, Bn

(A
•
) is projective and the above

sequence for i = n � 1 splits as a direct sum A
n�1 ⇠= B

n�1
(A

•
) � B

n
(A

•
). But then

B
n�1

(A
•
) is also projective, so continuing inductively we have decompositions Ai ⇠=

B
i
(A

•
)�B

i+1
(A

•
) for all i. Now

"
0 0

idBi 0

#
: B

i
(A

•
)�B

i+1
(A

•
)! B

i�1
(A

•
)�B

i
(A

•
)

induces the required homotopy A
i ! A

i�1 between idA• and 0. The proof in the in-
jective case is similar.

Corollary 10.20. Every quasi-isomorphism in K
�
(P) (or K

+
(I)) is an isomorphism.

Proof. Let s : P
•
1
! P

•
2

be a quasi-isomorphism in K
�
(P). By Lemma 9.2 (1) the

cone C(s) is acyclic, hence homotopically trivial by part (2) of the above lemma. We
conclude by Corollary 9.12.

Proof of Proposition 10.18. We do the case of K�(P). If S�1K�(P) denotes its local-
ization by the collection of quasi-isomorphisms in K

�
(P), the canonical functor

K
�
(P) ! S

�1
K
�
(P) is an isomorphism by the previous corollary, so since the

functor K
�
(P) ! D

�
(A) of the proposition factors through S

�1
K
�
(P), it will be

enough to construct a quasi-inverse for the induced functor S�1K�(P)! D
�
(A).

The method is the same as in the proof of Lemma 10.17. For each object A• in
D
�
(A) fix an isomorphism �A : P

•
A

⇠! A
• in D

�
(A) with an object of D�(P); this

is possible by Lemma 10.19 (1). Given a morphism ⇢ : A
• ! B

• in D
�
(A), the

composite ��1
B
� ⇢ � �A is a morphism P

•
A
! P

•
B

in D
�
(A). Thus we may represent

�
�1
B
� ⇢ � �A by a pair P •

A

s C
• f! P

•
B

in K
�
(A), with s a quasi-isomorphism. Use
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again Lemma 10.19 (1) to find a quasi-isomorphism t : P
•
C
! C

• where P
•
C

is an
object in K

�
(P). Then P

•
A

s�t P
•
C

f�t! P
•
B

still represents ��1
B
�⇢��A in D

�
(A) but s� t,

f � t are now morphisms in K
�
(P), so we have in fact a morphism in S

�1
K
�
(P);

note that it does not depend on the choice of t. Now the required quasi-inverse is
defined by A

• 7! P
•
A

, ⇢ 7! (s � t, f � t). ⇤

It remains to prove Lemma 10.19 (1). It could be done via a direct construction,
but we prefer to introduce a general technique that will also serve later.

Definition 10.21. A double complex A
•,• in an abelian category A is a system of ob-

jects A
i,j indexed by Z ⇥ Z together with morphisms d

i,j

h
: A

i,j ! A
i+1,j (horizontal

differentials) and d
i,j

v
: A

i,j ! A
i,j+1 (vertical differentials) satisfying

(22) d
i+1,j

h
� di,j

h
= 0, d

i,j+1

v
� di,j

v
= 0, d

i+1,j

v
� di,j

h
+ d

i,j+1

h
� di,j

v
= 0

for all i, j.
A morphism of double complexes ' : A

•,• ! B
•,• is a family of morphisms

'
i,j

: A
i,j ! B

i,j for all pairs (i, j) compatible with the horizontal and vertical
differentials.

A picture of a double complex looks like:

...
...

...
x??

x??
x??

· · · ���! A
i,j+2

d
i,j+2
h���! A

i+1,j+2
d
i+1,j+2
h�����! A

i+2,j+2 ���! · · ·

d
i,j+1
v

x?? d
i+1,j+1
v

x?? d
i+2,j+1
v

x??

· · · ���! A
i,j+1

d
i,j+1
h���! A

i+1,j+1
d
i+1,j+1
h�����! A

i+2,j+1 ���! · · ·

d
i,j
v

x?? d
i+1,j
v

x?? d
i+2,j
v

x??

· · · ���! A
i,j

d
i,j
h���! A

i+1,j
d
i+1,j
h���! A

i+2,j ���! · · ·
x??

x??
x??

...
...

...

Construction 10.22. A double complex A
•,• is called biregular if for all n 2 Z the set

{(i, j) : i + j = n andA
i,j 6= 0} is finite. This is the case, for example, if there exists

k 2 Z such that Ai,j
= 0 for i < k, j < k or if Ai,j

= 0 for i > k, j > k.
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Given a biregular double complex A
•,•, we define the associated simple complex sA

•

by setting

sA
n
:=

M

i+j=n

A
i,j

and d
n
: sA

n ! sA
n+1 given in the (i, j)-component by d

i,j

h
+ d

i,j

v
. The formulas (22)

ensure that this is indeed a complex.
A morphism ' : A

•,• ! B
•,• of double complexes induces a morphism s' :

sA
• ! sB

• of associated simple complexes. It is defined in degree n by the direct
sum of the maps 'i,j . Thus s is a functor from the category of biregular double
complexes to that of simple complexes. This functor is exact because a direct sum
of exact sequences is exact (exact sequences of double complexes are defined term
by term, as for usual complexes).

Proposition 10.23. Let ' : A
•,• ! B

•,•
be a morphism of biregular double complexes.

If ' induces quasi-isomorphisms A
•,j ! B

•,j
for each row, then s' : sA

• ! sB
•

is a

quasi-isomorphism.

Same conclusion if ' induces quasi-isomorphisms A
i,• ! B

i,•
for each column.

Proof. We do the case of columns. We have to show that the maps Hn
(s') : H

n
(sA

•
)!

H
n
(sB

•
) are isomorphisms for all n. Since the double complexes are biregular, only

finitely many A
i,j and B

i,j contribute to H
n
(sA

•
) and H

n
(sB

•
) for fixed n. So we

may assume A
i,j

= B
i,j

= 0 except for finitely many pairs i, j by setting the terms
in the uninteresting range to 0. In particular, we may assume that Ai,•

= B
i,•

= 0

for i outside an interval [a, b] ⇢ Z. Thus the morphism ' can be represented by the
diagram

(23)

0 ���! A
a,• ���! A

a+1,• ���! · · · ���! A
b,• ���! 0

??y
??y

??y

0 ���! B
a,• ���! B

a+1,• ���! · · · ���! B
b,• ���! 0

We proceed by induction on b � a. If b � a = 0, then A
•,• and B

•,• are both con-
centrated in a single column and the assertion holds by assumption. Now assume
we have proven the cases with b � a < n. Introduce the notation A

�a+1,• for the
double complex obtained from A

•,• by setting A
i,j

= 0 for i < a + 1, and similarly
for B

�a+1,•. We have a commutative diagram of morphisms of double complexes
with exact rows

0 ���! A
a,• ���! A

•,• ���! A
�a+1,• ���! 0

??y
??y

??y

0 ���! B
a,• ���! B

•,• ���! B
�a+1,• ���! 0
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where on the left hand side we have the a-th columns of A•,• and B
•,• considered

as double complexes with 0’s elsewhere. Applying the exact functor s we obtain a
commutative diagram of morphisms of simple complexes with exact rows

0 ���! A
a,• ���! sA

•,• ���! sA
�a+1,• ���! 0

??y
??y

??y

0 ���! B
a,• ���! sB

•,• ���! sB
�a+1,• ���! 0

Here the first vertical map is a quasi-isomorphism by assumption and the last
one by induction. Hence so is the middle one by Corollary 3.7. ⇤
Corollary 10.24. If A

•,•
is a biregular double complex whose rows (resp. columns) are

acyclic, then sA
•,•

is acyclic.

Proof. Apply the proposition with B
•,•

= 0.

Remark 10.25. There is a variant of the proposition which is often useful. Denote
the cohomology groups of the j-th row of A

•,• by H
i,j

h
(A

•,•
) for all i and the co-

homology groups of the i-th column of A
•,• by H

i,j

v
(A

•,•
) for all j. The identity

d
i+1,j

v
� di,j

h
+ d

i,j+1

h
� di,j

v
= 0 implies that the differentials ‘in the other direction’

induce complexes

· · ·! H
i,j�1
h

(A
•,•
)! H

i,j

h
(A

•,•
)! H

i,j+1

h
(A

•,•
)! · · ·

and
· · ·! H

i�1,j
v

(A
•,•
)! H

i,j

v
(A

•,•
)! H

i+1,j

v
(A

•,•
)! · · ·

called the i-th column and j-th row of cohomology, respectively. Now the variant
states: if ' : A

•,• ! B
•,• induces quasi-isomorphisms on each row (or column) of

cohomology, then s' : sA
• ! sB

• is a quasi-isomorphism. The proof is similar to
the above, using canonical truncations ⌧�a+1,•(A

•,•
) of rows, instead of the ‘stupid’

ones used above.

Proof of Lemma 10.19 (1). We may assume A
i
= 0 for i > 0. We shall construct a

double complex P
•,• with P

i,j
= 0 for i > 0 or j > 0 whose terms are projective

and is equipped with a morphism of double complexes P
•,• ! A

•, where A
• is

considered as a double complex with a single nonzero row. This morphism will
induce a quasi-isomorphism on columns, i.e. each column of cohomology of P •,•

will give a projective resolution of A
i. Proposition 10.23, together with the fact

that finite direct sums of projectives are projective, will then show that the induced
morphism sP

•,• ! A
• is a quasi-isomorphism we were looking for.

To construct P •,• we revert to homological indexing. For each i consider the exact
sequence

0! Bi(A•)! Zi(A•)! Hi(A•)! 0.
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Choose projective resolutions P
B

i,• ! Bi(A•) and P
H

i,• ! Hi(A•), respectively. By
Lemma 4.4 there is a projective resolution P

Z

i,• ! Zi(A•) fitting in an exact sequence
of complexes

0! P
B

i,• ! P
Z

i,• ! P
H

i,• ! 0.

Now repeat the procedure with the exact sequence

0! Zi(A•)! Ai ! Bi�1(A•)! 0.

and the projective resolutions P
B

i�1,• ! Bi�1(A•) and P
Z

i,• ! Zi(A•). It gives a pro-
jective resolution P

Z

i,• ! Ai fitting in an exact sequence of complexes

0! P
Z

i,• ! Pi,• ! P
B

i�1,• ! 0.

Now construct a double complex P•,• out of the Pi,• with horizontal differentials
induced by the composite maps

Pi,j ! P
B

i�1,j ! P
Z

i�1,j ! Pi�1,j

coming from the above diagrams and vertical maps those of the Pi,• multiplied by
(�1)i. With this sign rule P•,• becomes a double complex and by construction there
is a morphism P•,• ! A• with the required property. The proof in the injective case
is similar. ⇤

Remark 10.26. The proof shows that P•,• satisfies much more than stated in the
beginning: it induces projective resolutions of each Ai, Zi(A•), Bi(A•) and Hi(A•)

as well. Such double complexes are called Cartan–Eilenberg resolutions.

11. TOTAL DERIVED FUNCTORS

Let F : A! B be an additive functor between abelian categories. It then extends
uniquely to an additive functor C(A) ! C(B) and also to a functor K(A) ! K(B)
on the associated homotopy categories (any homotopy between maps f and g in-
duces a homotopy between F (f) and F (g)). Moreover, F : K(A) ! K(B) is a
triangulated functor, i.e. it sends exact triangles to exact triangles (this property is
the natural analogue of exactness for functors between homotopy or derived cate-
gories). Now consider the following question: does there exist a triangulated func-
tor D(A)! D(B) making the diagram

K(A)
Q���! D(A)

F

??y

K(B) Q���! D(B)
commute?
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When F : A ! B is an exact functor, the answer is yes. Indeed, notice first that
if A• is an acyclic complex in C(A), then F (A

•
) is also acyclic (because F preserves

exactness of the short exact sequences 0 ! Z
i
(A

•
) ! A

i ! Z
i+1

(A
•
) ! 0), so by

Lemma 9.2 (2) F preserves quasi-isomorphisms. But then the composite functor
K(A)

F! K(B) Q! D(B) factors through D(A) by the universal property of localiza-
tion and the resulting functor is triangulated because F and Q are.

In general such an extension to D(A) does not exist and even in good cases one
has to restrict to the full subcategories D

+
(A) or D�(A). Here is the formal defini-

tion.

Definition 11.1. Let F : K
�
(A) ! K

�
(B) be a triangulated functor. A left de-

rived functor for F is a triangulated functor LF : D
�
(A) ! D

�
(B) together with

a morphism of functors " : LF � Q ! Q � F that is universal in the following
sense: For every pair (G, ⌘) with G : D

�
(A) ! D

�
(B) a triangulated functor and

⌘ : G � Q ! Q � F there is a unique morphism of functors ↵ : G ! LF with
⌘ = " � ↵ �Q.

Similarly, if F : K
+
(A) ! K

+
(B) is a triangulated functor, a right derived functor

for F is a triangulated functor RF : D
+
(A)! D

+
(B) together with a morphism of

functors " : Q�F ! RF �Q such that for every pair (G, ⌘) with G : D
+
(A)! D

+
(B)

a triangulated functor and ⌘ : Q�F ! G�Q there is a unique morphism of functors
↵ : RF ! G with ⌘ = " � ↵ �Q.

Of course, when LF or RF exists, it is unique up to unique isomorphism. In the
case where F comes from an additive functor A ! B, one sometimes calls LF and
RF total derived functors of F .

Proposition 11.2. If A has enough projectives (resp. injectives), the left (resp. right)

derived functors of F exist.

Proof. We do the case of LF . Let R : D
�
(A) ! K

�
(P) be a quasi-inverse to the

functor of Proposition 10.18, and set LF := Q � F |K�(P) � R. To define ", pick
A

• 2 K
�
(A) and take the quasi-isomorphism �A : P

• ! A
• in K

�
(A) used in

the construction of R, where P
• has projective terms. Now �A induces a mor-

phism F (�A) : F (P
•
) ! F (A

•
); applying Q we have the required morphism

"A : (LF � Q)(A
•
) ! (Q � F )(A

•
). The definition of " on morphisms is similar,

using the induced morphisms in K
�
(P) constructed in the proof of Proposition

10.18.
To construct ↵ : G ! LF , consider again the above A

• and �A. The inverse of
(G � Q)(�A) in D

�
(A) induces an isomorphism (G � Q)(A

•
)
⇠! (G � Q)(P

•
) which
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we may compose with (G �Q)(P
•
)

⌘! (Q � F )(P
•
) = LF (Q(A

•
)). This defines ↵ on

objects; the definition on morphisms is left to the reader.
We still have to check that LF is a triangulated functor. Suppose

(24) A
• ! B

• ! C
• ! A

•
[1]

is an exact triangle in D
�
(A). Then

(25) R(A
•
)

g! R(B
•
)! R(C

•
)! R(A

•
)[1]

is a triangle in K
�
(P) isomorphic in D

�
(A) to the previous one. Moreover, it is also

isomorphic in D
�
(A) to the triangle

R(A
•
)! R(B

•
)! C(g)! R(A

•
)[1]

by the version of Lemma 9.10 (2) and Corollary 9.11 (2) for derived categories. But
these last two triangles have terms in K

�
(P), so they are also isomorphic in K

�
(P)

by Corollary 10.20. In particular, (25) is an exact triangle in K
�
(A), and hence ap-

plying the triangulated functor F to it we obtain an exact triangle in K
�
(B). Since

Q is a triangulated functor by definition, we have proven that LF maps (24) to an
exact triangle.

In the course of the above proof we have shown:

Corollary 11.3. When A has enough projectives, for each object A
• 2 K(A) we have

LF (A
•
) ⇠= F (P

•
), where P

• ! A
•

is a quasi-isomorphism and P
•

has projective terms.

Similarly, when A has enough injectives, for each object A
• 2 K(A) we have RF (A

•
) ⇠=

F (Q
•
), where A

• ! Q
•

is a quasi-isomorphism and Q
•

has injective terms.

Note that by construction if we choose two quasi-isomorphisms P
• ! A

•  P
0•

in the corollary above, P • and P
0• will be homotopy equivalent and hence so will

be F (P
•
) and F (P

0•
), giving isomorphic objects in D(B). This independence of P •

was built in the construction.

Definition 11.4. For i 2 Z define the i-th left (resp. right) derived functor of F by
LiF := H

�i � LF (resp. Ri
F := H

i �RF ) assuming that LF or RF exists.

Since LF and RF are triangulated functors, we have:

Corollary 11.5. Given an exact triangle A
• ! B

• ! C
• ! A

•
[1] in D

�
(A), there is a

long exact sequence

· · ·! LiF (A
•
)! LiF (B

•
)! LiF (C

•
)! Li�1F (A

•
)! · · ·

Similarly, for an exact triangle in D
+
(A) there is a long exact sequence

· · ·! R
i
F (A

•
)! R

i
F (B

•
)! R

i
F (C

•
)! R

i+1
F (A

•
)! · · ·
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Remark 11.6. There is a natural functor E : A ! D
b
(A) sending an object A to the

object in D
b
(A) represented by the complex with A in degree 0 and 0 elsewhere.

When A has enough projectives or injectives and F is an additive functor A !
B, the composite functors LiF � E and R

i
F � E are exactly the derived functors

introduced in Section 4. This follows from Corollary 11.3.

In the remainder of the section assume A is the category of modules over a fixed
commutative ring R; in particular it has enough injectives and projectives. Recall
that the tensor product of two complexes in C

�
(A) was defined in Definition 8.4.

Using the language of double complexes it can be restated as follows: (A⌦R B)• is
the simple complex associated with the double complex C

•,• with C
i,j

= A
i ⌦R B

j ,
horizontal differentials given by d

i

A
⌦ idB and vertical differentials by (�1)iidA⌦d

j

B
.

Proposition 11.7. For a fixed complex B
•

in K
�
(A) the functor K

�
(A)! K

�
(A) given

by A
• 7! A

•⌦B
•

has a left derived functor D
�
(A)! D

�
(A) denoted by A

• 7! A
•⌦L

B
•
.

Moreover, the functor B
• 7! A

• ⌦L
B

•
respects quasi-isomorphisms, inducing a trian-

gulated functor D
�
(A)! D

�
(A).

All in all, (A•
, B

•
) 7! A

•⌦L
B

• induces a triangulated bifunctor D
�
(A)⇥D�(A)!

D
�
(A) (i.e. a triangulated functor in both variables).

Proof. Only the second statement needs a proof. By Corollary 11.3 A
• ⌦L

B
• is com-

puted by P
• ⌦ B

•, where P
• ! A

• is a quasi-isomorphism and P
• has projec-

tive terms. If B• ! B
0• is a quasi-isomorphism of complexes in C

�
(A), then so is

P
i ⌦R B

• ! P
i ⌦R B

0• for each i 2 Z because P
i is flat over R. Now Proposition

10.23 implies that P • ⌦ B
• ! P

• ⌦ B
0• is a quasi-isomorphism. That the resulting

functor is triangulated will follow from the remark below.

One defines Tori(A
•
, B

•
) := H

�i
(A

• ⌦L
B

•
). In the case when A

• and B
• are

one-term complexes, this is the same Tor as before.

Remark 11.8. Notice that if P •
A
! A

• and P
•
B
! B

• are quasi-isomorphisms with
complexes having projective terms, we have isomorphisms in D

�
(A)

A
• ⌦L

B
• ⇠= P

•
A
⌦ B

• ⇠= P
•
A
⌦ P

•
B

by the proposition above. Moreover, by the same argument in the above proof,
tensoring with P

•
B

on the right also respects quasi-isomorphisms, hence we also
have

A
• ⌦L

B
• ⇠= P

•
A
⌦ P

•
B
⇠= A

• ⌦ P
•
B
.

This shows that we may compute A
• ⌦L

B
• and hence also the groups Tori(A•

, B
•
)

indifferently by using P
•
A

in the first variable or P •
B

in the second.
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Now we come to the Hom-functor. For A
• in C

�
(A) and B

• in C
+
(A) define a

double complex Hom(A,B)
•,• by

Hom(A,B)
i,j

:= Hom(A
�i
, B

j
), d

i,j

h
:= (�1)j�i+1

Hom(d
�i�1
A

, B
j
), d

i,j

v
:= Hom(A

�i
, d

j

B
).

One checks that in this way we obtain a biregular double complex, so we can set

Hom(A,B)
•
:= sHom(A,B)

•,•
.

Thus the degree n term of Hom(A,B)
• is

Hom(A,B)
n
=

M

i+j=n

Hom(A
�i
, B

j
) =

M

j�i=n

Hom(A
i
, B

j
)

so its elements are represented by finite collections of morphisms f
i
: A

i ! B
i+n,

with the differential given by d(f
i
) = dB � f i

+ (�1)n+1
f
i+1 � dA.

Remark 11.9. For future reference let us compute the group H
0
(Hom(A,B)

•
).

Z
0
(Hom(A,B)

•
) = {(f i

: A
i ! B

i
) : dB � f i � f

i � dA = 0} = HomC(A)(A
•
, B

•
).

On the other hand,

B
0
(Hom(A,B)

•
) = {(f i

: A
i ! B

i
) : f

i
= dB�ki

+k
i+1�dA for some (ki

) 2 Hom(A,B)
�1}.

Thus
H

0
(Hom(A,B)

•
) ⇠= HomK(A)(A

•
, B

•
).

Proposition 11.10. For a fixed complex A
•

in K
�
(A) the functor K

+
(A) ! K

+
(A)

given by B
• 7! Hom(A,B)

•
has a right derived functor D

+
(A) ! D

+
(A) denoted by

B
• 7! RHom(A

•
, B

•
).

Moreover, the functor A
• 7! RHom(A

•
, B

•
) respects quasi-isomorphisms, inducing a

triangulated functor D
�
(A)

op ! D
+
(A).

Proof. Same as that of the previous proposition, using quasi-isomorphisms B• ! Q
•

this time, where Q
• has injective terms.

Remark 11.11. We now have a triangulated bifunctor D�(A)
op ⇥D

+
(A) ! D

+
(A)

given by (A
•
, B

•
) 7! RHom(A

•
, B

•
). As in the previous remark, we can compute

RHom(A
•
, B

•
) ⇠= Hom(A,Q)

• ⇠= Hom(P,B)
•

where P
• ! A

• is a quasi-isomorphism and P
• has projective terms.

We set Exti(A•
, B

•
) := H

i
(RHom(A

•
, B

•
)). In the case of one-term complexes this

again gives back both the covariant and the contravariant Ext functors. But there is
a bonus:
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Proposition 11.12. For all A
•

in D
�
(A), B

•
in D

+
(A) and i 2 Z we have functorial

isomorphisms

Ext
i
(A

•
, B

•
) ⇠= HomD(A)(A

•
, B

•
[i]).

Proof. Replacing B by B[�i] we reduce to the case i = 0. Choose a quasi-isomorphism
B

• ! Q
•, where Q

• has injective terms. We compute

Ext
0
(A

•
, B

•
) = H

0
(Hom(A,Q)

•
) = HomK(A)(A

•
, Q

•
)

by Remark 11.9.
On the other hand, an element of HomD(A)(A

•
, Q

•
) can be represented by a pair

A
• g! C

• t Q
• where t is a quasi-isomorphism. Choosing a quasi-isomorphism

t
0
: C

• ! Q
0•, where Q

0• has injective terms, we see that A• t
0�g! Q

0• t
0�t Q

• represents
the same morphism in D(A), but t0 � t is an isomorphism in D

+
(A) by Corollary

10.20. This shows HomD(A)(A
•
, B

•
) ⇠= HomD(A)(A

•
, Q

•
) ⇠= HomK(A)(A

•
, Q

•
). ⇤

Remark 11.13. The above discussion of RHom works in an arbitrary abelian catego-
ry having enough injectives. However, defining Ext

i
(A

•
, B

•
) as HomD(A)(A

•
, B

•
[i])

can be done in an arbitrary A, and this is the most convenient and general definition
of Ext functors. It is possible to identify the Ext functors defined in this way with
the Yoneda Ext functors of Remark 5.11. The product defined there corresponds to
composition of morphisms in D(A).

12. HOMOLOGICAL DIMENSION REVISITED

As an application of derived functor techniques, we can now give a recent proof
of Serre’s homological characterization of regular local rings (Theorem 6.12) due to
Jagadeesan, Landesman (and Gaitsgory).1

Proposition 12.1. Let A be a local ring with residue field k, and let x 2 P \ P
2

be a

non-zerodivisor. There is an isomorphism

k ⌦L
A
A/(x) ⇠= k � k[1]

in the derived category D of A/(x)-modules.

Corollary 12.2. Assume moreover A is Noetherian. Then gl.dim(A/(x)) = gl.dim(A)�1.

1R. Jagadeesan, A. Landesman, A new proof of Serre’s homological characterization of regular
local rings, Res. Number Theory (2016) 2:18.
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Proof. We have an isomorphism

k ⌦L
A
A/(x)⌦L

A/(x)
k ⇠= k ⌦L

A
k

in D. (Indeed, we may compute the right hand side as P• ⌦A k with a projective
resolution P• ! k over A. But then P•⌦AA/(x) computes k⌦L

A
A/(x) and moreover

gives a projective resolution of k as an A/(x)-module, so we compute the left hand
side as P• ⌦A A/(x)⌦A/(x) k

⇠= P• ⌦A k.)
On the other hand, the proposition implies

(k ⌦L
A
A/(x))⌦L

A/(x)
k ⇠= k ⌦L

A/(x)
k � (k ⌦L

A/(x)
k)[1]

so that

Tor
A

i
(k, k) = H

�i
(k ⌦L

A
k) ⇠= H

�i
(k ⌦L

A/(x)
k)�H

�i
((k ⌦L

A/(x)
k)[1]) =

= Tor
A/(x)

i
(k, k)� Tor

A/(x)

i�1 (k, k).

Therefore Tor
A

i
(k, k) = 0 if and only if TorA/(x)

i
(k, k) = Tor

A/(x)

i�1 (k, k) = 0, and the
statement follows from Corollary 6.9.

Remark 12.3. Let us recall that Theorem 6.12 follows quickly from the above corol-
lary: if A is regular, then we can choose x to be part of a regular system of pa-
rameters and conclude gl.dim.(A) = dim (A) by induction on dim (A); conversely, if
gl.dim.(A) = d <1, we show first that there is a nonzerodivisor x 2 P \P 2 as in the
first proof, and then by induction on d obtain a regular sequence generating P/(x)

in A/(x) that we may complete with x to a regular system of parameters of A.

The first step of the proof of the proposition is given by:

Lemma 12.4. We have an isomorphism C(f) ⇠= k ⌦L
A
A/(x) in D, where f : P/xP !

A/(x) is the natural map.

Proof. Consider the exact triangle coming from the exact sequence of A-modules

0! P ! A! k ! 0.

Applying the functor ⌦L
A
A/(x) induces an exact triangle

P ⌦L
A
A/(x)! A⌦L

A
A/(x)! k ⌦L

A
A/(x)! P ⌦L

A
A/(x)[1]

in D.
Here the first term can be computed by tensoring the projective resolution [A

x!
A] of A/(x) by P , obtaining [P

x! P ]. Since x is not a zero-divisor, the the only
nontrivial cohomology of P⌦L

A
A/(x) is in degree 0, where it is P/xP . Thus we have

P ⌦L
A
A/(x) ⇠= ⌧�0(P ⌦L

A
A/(x)) ⇠= P/xP . Also, A⌦L

A
A/(x)

⇠! A⌦A A/(x) ⇠= A/(x)

as A is free over itself, so the first map in the triangle identifies with the image of f
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in D. The lemma follows by applying the derived category version of Lemma 9.10
(2) and Corollary 9.11 (2).

Proof of Proposition 12.1. We may also compute the derived tensor product k ⌦L
A
A/(x)

by tensoring the projective resolution [A
x! A] of A/(x) by k, obtaining [k

x! k].
Here multiplication by x is the zero map, so we get isomorphisms H�1(k ⌦L

A
A/(x)) ⇠=

H
0
(k ⌦L

A
A/(x)) ⇠= k and ⌧��1(k ⌦L

A
A/(x)) ⇠= k ⌦L

A
A/(x). The exact triangle

H
�1
(k ⌦L

A
A/(x))[1]! ⌧��1(k ⌦L

A
A/(x))! H

0
(k ⌦L

A
A/(x))! H

�1
(k ⌦L

A
A/(x))[2]

coming from (21) thus identifies with an exact triangle

k[1]! k ⌦L
A
A/(x)! k ! k[2].

Now according to the lemma we have isomorphisms

k ⌦L
A
A/(x)

⇠! C(f) = [P/xP
f! A/(x)]

in D, and in particular isomorphisms

k ⇠= H
�1
(k ⌦L

A
A/(x)) ⇠= ker(f), k ⇠= H

0
(k ⌦L

A
A/(x)) ⇠= coker(f).

Under this identification the exact triangle above comes from the exact sequence of
complexes

0! ker(f)[1]! [P/xP
f! A/(x)]! [(P/xP )/ ker(f)

f! A/(x)]! 0

noting the quasi-isomorphism [(P/xP )/ ker(f)
f! A/(x)]

⇠! [0 ! coker(f)]. It suf-
fices to show that the above exact sequence of complexes splits, for which it is e-
nough to split the inclusion map ker(f) ! P/xP ). We may compose it with the
natural projection P/xP ! P/P

2. The composite map k ⇠= ker(f) ! P/P
2 is

nonzero since x mod xP is in ker(f) but x /2 P
2 by assumption. As this is a map

of k-vector spaces, it must be injective with a splitting P/P
2 ! k. But then the

composite P/xP ! P/P
2 ! k is a splitting as required. ⇤


