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Preface

This book has its origins in my PhD thesis, written during the years 1988 —
1991 at the University of Nijmegen, under supervision of Henk Barendregt.
The thesis concerned categorical semantics of various type theories, using
fibred categories. The connections with logic were not fully exploited at the
time. This book is an attempt to give a systematic presentation of both logic
and type theory from a categorical perspective, using the unifying concept of
a fibred category. Its intended audience consists of logicians, type theorists,
category theorists and (theoretical) computer scientists.

The main part of the book was written while I was employed by NWQO,
the National Science Foundation in The Netherlands. First, during 1992 -
1994 at the Mathematics Department of the University of Utrecht, and later
during 1994 - 1996 at CWI, Center for Mathematics and Computer Science, in
Amsterdam. The work was finished in Nijmegen (where it started): currently,
am employed at the Computing Science Institute of the University of Nijmegen
as a Research Fellow of the Royal Netherlands Academy of Arts and Sciences.

This book could not have been written without the teaching, support, en-
couragement, advice, criticism and help of many. It 1s a hopeless endeavour
to list them all. Special thanks go to my friends and (former) colleagues at
Nijmegen, Cambridge (UK), Utrecht and Amsterdam, but also to many col-
leagues in the field. The close cooperation with Thomas Streicher and Clau-
dio Hermida during the years is much appreciated, and their influence can
be felt throughout this work. The following persons read portions of the
manuscript and provided critical feedback, or contributed in some other way:
Lars Birkedal, Zinovy Diskin, Herman Geuvers, Claudio Hermida, Peter Lietz,
José Meseguer, Jaap van Oosten, Wesley Phoa, Andy Pitts, Thomas Streicher,
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Hendrik Tews and Krzysztof Worytkiewicz. Of course, the responsibility for
mistakes remains entirely mine.

The diagrams in this book have been produced with Kristoffer Rose’s Xy=pic
macros, and the proof trees with Paul Taylor’s macros. The style files have
been provided by the publisher.

Bart Jacobs,
Nijmegen, August 1998.
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Preliminaries

A brief account will be given of the organisation of this book, of what is
presupposed, and of some of the notions and notations that will be used.

Organisation of the book

The contents form a mixture of logic, type theory and category theory. There
are three Chapters 1, 7 and 9 dealing explicitly with (fibred) category the-
ory. The other chapters have mixed contents. Chapter 1 starts off with an
introduction to the basic concepts of fibred category theory. This material
will subsequently be used in the Chapters 2, 3, 4, 5, and 8, respectively on
simple type theory, equational logic, first and higher order predicate logic
(over simple type theory) and on polymorphic type theory. Only basic fibred
category theory is needed here, since there is no type dependency. The first
few sections (of these chapters) give introductions to the relevant systems of
logic and type theory. It should be possible to skip the first chapter and start
reading the beginning of these subsequent Chapters 2, 3,4, 5, and 8. A return
to Chapter 1 may then take place on a call-by-need basis. In such a way, the
reader may oscillate between logical and type theoretical expositions on the
one hand, and categorical expositions on the other. Towards the end of Chap-
ter 8 on polymorphic type theory some extra material on the effective topos
(from Chapter 6) and on internal categories {from Chapter 7) is used.

In the last two Chapters 10 and 11 on first and higher order dependent
type theory the distinction between logical and type theoretical elements on
the one side and categorical elements on the other, becomes less pronounced.

xi
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Familiarity with fibred category theory (from Chapters 1, 7 and 9) is assumed
at this stage.

The essential dependencies between the various chapters are sketched in the
following diagram.

1. Introduction to
fibred category theory

/

2. Simple type theory

v

3. Equational logic

v

4. First order
predicate logic

v

5. Higher order 6. The effective 7. Internal
predicate logic topos category theory

; ﬁ// ]
8. Polymorphic 9. Advanced fibred

type theory category theory

T~ e

10. First order
dependent type theory

v

11. Higher order
dependent type theory

Prerequisites

The reader is assumed to be familiar with the basic notions of category the-
ory, such as adjunctions, (co)limits and Cartesian closed categories (CCCs).
Familiarity with predicate logic is assumed, and also some nodding acquain-
tance with type theory is presupposed. But this is not essential, for example
for readers who are mainly interested in categorical aspects. Also, in examples
of models we shall use some basic notions and results from domain theory and
recursion theory.
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We shall be more specific, especially about notational conventions.

Category theory

Arbitrary categories will be written as A, B, C, ... in open face. Specific cat-
egories like Sets, PoSets and Eff will be written in bold face. (But also
arbitrary internal categories A, B, C, ... will be in bold face.) We use capital
letters for objects, and write X € C to express that X is an object of the cat-
egory C. Small, non-capitalised letters are used for morphisms in a category
(also called maps, or arrows). The homset (or class) C(X,Y) is the collection
of morphisms from X to Y in a category C. The notations f: X — Y and

X 2 Y are also used for f € C(X,Y). We use special arrows X — Y for
monic maps (also called monos) and X — Y for epic maps (or epis). We
recall that a category C is called locally small if all its collections C(X,Y") of
homomorphisms are small sets (as opposed to proper classes). And C is called
small if additionally its collection of objects is a small set. The opposite of a
category € will be written as C°P. In the context of a fibration we generally
use letters like I, J, K and u,v,w for objects and morphisms of the “base”
category and letters like XY, Z and f, g, h for objects and morphisms of the
“total” category.

The identity morphism on an object X isidx: X — X, or simply id: X —
X. Composition of morphisms f: X — Y and ¢9:Y — Z is usually written as
go f: X — Z. Sometimes we write gf: X — Z for this composite, especially
when f and ¢ are functors. Occasionally we use a double arrow notation
f,9: X =2 Y to express that f and g are two parallel morphisms. A natural
transformation o between functors F, G: A = B is usually written with double
arrow = as a: F = (G, for example, in a diagram:

A

This = notation will, more generally, be used for 2-cells in a 2-category. And it
will sometimes also occur as alternative X = ¥ = Y X for an exponent object
Y in a Cartesian closed category (CCC). We generally use 1 for a termi-
nal object (also called final object or empty product) in a category. Binary
Cartesian products are written as X x Y with projections m: X xY — X,
7: X xY =Y and tuples (f,9):Z - X xY for f:Z -5 X and ¢: Z = Y.
As a special case of tupleing, we often write 6 or 6(X) for the diagonal
(id,id): X — X x X on X, and d or §(/, X) for the “parametrised” diag-
onal (id,7'): I x X — (I x X) x X, which duplicates X, with parameter I.
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Associated with the abovementioned exponent object Y in a CCC there are
evaluation and abstraction maps, which will be written as ev:Y¥ x X - Y
and A(f): Z > YX for fiZxX Y.

An initial object (or empty coproduct) is usually written as 0. For binary
coproducts we write X +Y with coprojections k: X - X +Y , k.Y 5 X +Y
and cotuples [f,¢]: X +Y — Z, where f: X = Z and g:Y — Z. The codiag-
onal V = [id,id]: X + X — X is an example of a cotuple.

For functors £: A — B and G:B — A in an adjunction (F - ) the homset
isomorphism B(F X,Y) = A(X,GY) is often written as a bijective correspon-
dence between morphisms f: FX — Y and g: X — GY via double lines:

f

FX —Y Ix X —Y
—_— e.g. for exponents:

X —g> GY Z =YX =X=Y

In such a situation, transposition is sometimes written as (f: FX - Y) —
(f¥: X -5 GY)and (¢: X = GY) — (¢": FX = Y), or more ambiguously, as
f — f and g — . We reserve the symbols 7 for the unit natural transforma-
tion id = GF, and ¢ for the counit natural transformation G = id of an
adjunction (F' 4 G). We recall that these natural transformations have com-
ponents 7x = (idpx )" and ey = (idgy)”. In case both n and ¢ are (natural)
isomorphisms, the categories A and B are called equivalent. This is written as
A~B

For the rest, we generally follow usual categorical notation, e.g. as in
the standard reference [187]. Another (more recent) reference text is [36].
And [186, 19, 61] may be used as introductions.

Logic

Logic as presented in this book differs from traditional accounts in three as-
pects. (1) We standardly use many-typed (predicate) logic, in which variables
occurring in predicates need not be restricted to a single type (or, in more
traditionally terminology, to a single sort). {2) We do not restrict ourselves to
logic over simple type theory, but also allow logics over polymorphic and de-
pendent type theories. (3) Contexts of variable declarations will be explicitly
written at all times.

Hence a logical entailment

n+5=7T7Fn=2
is seen as incomplete, and will be written with explicit variable declaration as

n:N[n+5:'7 Fn=2



Preliminaries XV

The sign ‘|’ is used to separate the type theoretic context n: N from the logical
context n + 5 = 7. These contexts will also be present in derivation rules.
The reason for carrying contexts explicitly along comes from their important
categorical réle as indices.

We use as propositional connectives L for falsum (or absurdity), Vv for
disjunction, T for truth, A for conjunction and O for implication. Negation
— will be defined as - = ¢ O L. Existential 3 and universal ¥V quantifi-
cation will be written in typed form as 3z:0.¢ and Vz:6.¢. And we simi-
larly use the notation =, for typed equality (on type ¢). All these proposi-
tion formers will be used with their standard rules. (But for 3,V and =, we
also use the equivalent—but less standard—adjoint rules, see Lemmas 4.1.7
and 4.1.8.) Higher order logic will be described via a distinguished (con-
stant) type Prop: Type, which enables quantification over propositions, like
in Ya: Prop. ¢.

By default, logic will be constructive logic. Non-constructive, classical logic
(with the additional double negation rule: - entails ¢) will not be very im-
portant, since the logic of most of the models that we consider is constructive.
See [67, 23, 335] for more information on constructive logic.

Type theory

Mostly, standard type theoretical notation will be used. For example, exponent
types are written as ¢ — 7 and (dependent) product types as [lz:¢. 7. The
associated introduction and elimination operations are lambda-abstraction
Az:o. M and application M - N, or simply MN. (Sometimes we also use
“meta-lambda-abstraction” Az. f(z) for the actual function z — f(z), not
in some formal calculus.) We standardly describe besides “limit types” also
“colimit types” like coproduct (disjoint union) o + 7, dependent sum Xz: 0. 7,
equality Eq,(z,2’) and quotient o/ R. There is no established notation for the
introduction and elimination operations associated with these type formers.
The notation that we shall use is given in Figure 0.1. The precise rules will
be given later. For these “colimit” type formers there are typical “commuta-
tion conversions” (involving substitution of elimination terms) and “Frobenius
properties” (describing commutation with products). We write (e.g. in the
above table) M[N/z] for the result of substituting N for all free occurrences
of z in M. This applies to terms, types or kinds M, N. In a type theoretic
context, an equation M = N between terms usually describes convertibility.
We shall use = to denote syntactic equality (following [13]).

Familiarity with the propositions-as-types correspondence (between deriv-
ability in logic and inhabitation in type theory) will be convenient, but not
necessary. For basic information on type theory we refer to [14, 98]. Also the
standard textbook [13] on the untyped lambda calculus is relevant, since many
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“ introduction elimination
+ kM:o+ 7, kK'N:o+ 1 unpack P as [kx in @,y in R]
o+
(for M:o,N:T) (for P:o + 7,Q(x), R(y): p where z:0,y:7)
5 (M,N):Zz:0.7T unpack P as {z,y) in Q:p
z:i0.7T
(for M:0,N:7[M/z]) (for P:Xz:0.7,Q(z,y): p where z:0,y:7)
Eao(2,2") ro(M):Eqq (M, M) Q with 2’ = z via P:p
T,z
i (for M: o) (for P:Eqqs(z,z’), Q(z): o[z /2] where z,2": o)
/R [Mlp:0/R pick z from P in Q:p
a
(for M:0) (for P:o/R,Q(x): p where z:0)

Fig. 0.1. Introduction and elimination terms for “colimit” types

of the typed notions stem from the untyped setting.

Order theory

We briefly mention some of the ordered sets that will be used. A set X =
(X, <) carrying an “order” relation < C X x X which is reflexive and transitive
is called a preorder. And it is a partially ordered set (or poset, for short) if
the order is additionally anti-symmetric. A function f: X — Y between the
underlying sets of two preorders or posets X, Y is called monotone if it satisfies
z <z = f(z) < f(z') for all z,2' € X. Posets with monotone functions
form a category PoSets. A poset is a lattice if it contains a bottom element
L € X,atopelement T € X, ameet Ay € X and a join zVy € X
for all elements z,y € X. Such a lattice is a Heyting algebra (HA) if it
additionally admits an operation D: X x X — X with z < ¢ D y if and
only if z Az < y. Hence a Heyting algebra is a poset bicartesian closed
category. A Boolean algebra (BA) is a Heyting algebra in which -—z < z
holds, where -z = ¢ O L. Heyting algebras and Boolean algebras forrn models
of constructive and classical propositional logic (respectively).

A poset X is called a complete lattice if every subset @ C X has a join
Va € X. Every subset @ C X then also has a meet given by Aa =
V{z | z is a lower bound of a}. A complete Heyting algebra (CHA)—also
called a frame, or a locale—is a Heyting algebra, which is complete as a poset.
A poset X is a directed complete partial order (dcpo) if every directed subset
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a C X has a join \/a € X, where a subset a C X is directed if a is non-empty
and satisfies: for all z,y € a there is a z € a with ¢ < z and y < z. For
emphasis we sometimes write \/T instead of \/ for a join of a directed subset.
A function f: X — Y between dcpos is (Scott-) continuous if it is monotone
and preserves suprema of directed subsets. Dcpos with continuous functions
form a category Dcpo, which is Cartesian closed. Also complete lattices with
continuous functions from a CCC. For more information, see e.g. [69, 3, 170].

Recursion theory

The categories of PERs and of w-sets (and also the effective topos) will occur
in many examples. They involve some basic recursion theory. We assume some
coding (¢n)nen of the partial recursive functions, and use it to describe what
is called Kleene application on natural numbers:

_Jen(m) il pn(m) ] (ie if pn(m) is defined)
nem= 0 otherwise (i.e. undefined, otherwise).

For a partial recursive function f:N? x N — N we let & — Ay. f(Z,y) be
the partial recursive function s7(e,—):N” — N that is obtained from the
“s-m-n-theorem” by writing

F(Z,y) = pe(@,y) = sn(e,a)(y)-

Then (Ay. f(Z,y)) - z =~ f(F, z), where ~ is Kleene equality; it expresses that
the left hand side is defined if and only if the right hand side is defined,
and in that case both sides are equal. We further use a recursive bijection
(—,—):N x N 5 N with recursive projection functions p,p":N = N. See
e.g. [66, 294, 236] for more information.
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Chapter 0

Prospectus

This introductory chapter is divided into two parts. It first discusses some
generalities concerning logic, type theory and category theory, and describes
some themes that will be developed in this book. It then continues with a
description of the (standard) logic and type theory of ordinary sets, from the
perspective of fibred category theory—typical of this book. This description
focuses on the fundamental adjunctions that govern the various logical and
type theoretic operations.

0.1 Logic, type theory, and fibred category theory

A logic is always a logic over a type theory. This statement sums up our ap-
proach to logic and type theory, and forms an appropriate starting point. It
describes a type theory as a “theory of sorts”, providing a domain of reason-
ing for a logic. Roughly, types are used to classify values, so that one can
distinguish between zero as a natural number 0: N and zero as a real number
0:IR, and between addition +:N x N — N on natural numbers and addition
+:R x R — R on real numbers. In these examples we use atomic types N
and R and composite types N x N - N and R x R — R obtained with the
type constructors x for Cartesian product, and — for exponent (or function
space). The relation ‘:” as in 0: N, is the inhabitation relation of type theory.
It expresses that 0 is of type N, i.e. that 0 inhabits N. It is like membership ¢
in set theory, except that € is untyped, since everything is a set. But a string
is something which does not inhabit the type of natural numbers. Hence we

1



2 Chapter 0: Prospectus

shall have to deal with rules regulating inhabitation, like

4 n:N
an —_—
0:N succ(n): N
The first rule is unconditional: it has no premises and simply expresses that
the term 0 inhabits the type N. The second rule tells that if we know that n
inhabits N, then we may conclude that succ(n) also inhabits N, where suce(—)
may be read as successor operation. In this way one can generate terms, like
succ(succ(0)): N inhabiting the type N.

In predicate logic one reasons about such terms in a type theory, like in

Ve:N. Jy: Ny > suce(z).
This gives an example of a proposition. The fact that this expression is a
proposition may also be seen as an inhabitation statement, so we can write
(Vz:N.3y:N. y > suce(z)) : Prop
using a type Prop of propositions. In this particular proposition there are

no free variables, but in predicate logic an arbitrary proposition ¢: Prop may
contain free variables. These variables range over types, like in:

z > 5: Prop, where 2: N or z > 5: Prop, where z:R.

We usually write these free variables in a “context”, which is a sequence of
variable declarations. In the examples the sequence is a singleton, so we write

z:NFxz>5:Prop and z:RFx>5: Prop.

The turnstile symbol - separates the context from the conclusion: we read the
sequent z: N F z > 5: Prop as: in the context where the variable z is of type N,
the expression z > 5 is a proposition. Well-typedness is of importance, since
if z is a string, then the expression ¢ > 5 does not make sense (unless one has
a different operation > on strings, and one reads ‘5’ as a string).

This explains what we mean with: a logic is always a logic over a type
theory. Underlying a logic there is always a calculus of typed terms that one
reasons about. But one may ask: what about single-sorted logic (i.e. single-
typed, or untyped, logic) in which variables are thought of as ranging over
a single domain, so that types do not really play a réle? Then one still has
a type theory, albeit a very primitive one with only one type (namely the
type of the domain), and no type constructors. In such situations one often
omits the (sole) type, since it has no role. But formally, it is there. And what
about propositional logic? It is included as a border case: it can be seen as
a degenerate predicate logic in which all predicates are closed (i.e. do not
contain term variables), so one can see propositional logic as a logic over the
empty type theory.
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We distinguish three basic kinds of type theory:

o simple type theory (STT);
e dependent type theory (DTT);
e polymorphic type theory (PTT).

In simple type theory there are types built up from atomic types (like N,
R above) using type constructors like exponent —, Cartesian product x or
coproduct (disjoint union) +. Term variables x: o are used to build up terms,
using atomic terms and introduction and elimination operations associated
with the type constructors (like tuples and projections for products x). Types
in simple type theory may be seen as sets, and (closed) terms inhabiting
types as elements of these sets. In dependent type theory, one allows a term
variable &: ¢ to occur in another type 7{x): Type. This increases the expressive
power, for example because one can use in DTT the type Matrix(n, m) of
n X m matrices (say over some fixed field), for n:N and m:N terms of type
N. If one thinks of types as sets, this type dependency is like having for each
element ¢ € I of a set I, another set X (7). One usually writes X; = X(¢) and
sees {Xi)ier as an I-indexed family of sets. Thus, in dependent type theory
one allows type-indexed-types, in analogy with set-indexed-sets. Finally, in
polymorphic type theory, one may use additional type variables « to build up
types. So type variables & may occur inside a type o(a), like in the type list(«)
of lists of type «. This means that one has types, indexed by (or parametrised
by) the universe Type of all types. In a set theoretic picture this involves a set
Xa = X(A) for each set A. One gets indexed collections (X 4)aesgets of sets
Xa.

These three type theories are thus distinguished by different forms of n-
dexing of types: no indexing in stimple type theory, indexing by term variables
z: o 1n dependent type theory, and indexing by type variables a: Type in poly-
morphic type theory. One can also combine dependent and polymorphic type
theory, into more complicated type theories, for example, into what we call
polymorphic dependent type theory (PDTT) or full higher order dependent
type theory (FhoDTT).

What we have sketched in the beginning of this section is predicate logic over
simple type theory. We shall call this simple predicate logic (SPL). An obvious
extension 1s to consider predicate logic over dependent type theory, so that
one can reason about terms in a dependent type theory. Another extension is
logic over polymorphic type theory. This leads to dependent predicate logic
(DPL) and to polymorphic predicate logic (PPL). If one sees a typed calculus
as a (rudimentary) programming language, then these logics may be used as
program logics to reason about programs written in simple, dependent, or
polymorphic type theory. This describes logic as a “module” that one can
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plug onto a type theory.

This book focuses on such structural aspects of logic and type theory. The
language and techniques of category theory will be essential. For example, we
talked about a logic over a type theory. Categorically this will correspond to
one (“total”) category, capturing the logic, being fibred over another (“base”)
category, capturing the type theory. Indeed, we shall make special use of
tools from fibred category theory. This is a special part of category theory,
stemming from the work of Grothendieck in algebraic geometry, in which
{continuous) indexing of categories is studied. As we already mentioned, the
various forms of type theoretic indexing distinguish varieties of type theory.
And also, putting a logic on top of some type theory (in order to reason about
it) will be described by putting a fibration on top of the categorical structure
corresponding to the type theory. In this way we can put together complicated
structures in a modular way.

Fibred category theory is ordinary category theory with respect to a base
category. Also, one can say, it is ordinary category theory over a base cate-
gory. Such a base category is like a universe. For example, several concepts in
category theory are defined in terms of sets. One says that a category C has
arbitrary products if for each set I and each I-indexed collection (X;);es of
objects X; € C there is a product object [[;c; X; € C together with projec-
tion morphisms 7;: ([ [;c; Xi) = X, which are suitably universal. In category
theory one is not very happy with this privileged position of sets and so the
question arises: is there a way to make sense of such products with respect to
an object I of a ‘universe’ or ‘base category’ B, more general than the cate-
gory Sets of sets and functions? This kind of generality is needed to interpret
logical products Va: . ¢ or type theoretic products Ilz: ¢. 7 when the domain
of quantification & 1s not interpreted as a set (but as some ordered set, or
algebra, for example).

Another example is local smallness. A category C is locally small if for each
pair of objects X,Y € C the morphisms X — Y in C form a set (as opposed
to a proper class). That is, if one has homsets C(X,Y) € Sets as objects in
the category of sets. Again the question arises whether there is a way of saying
that C is locally small with respect to an arbitrary universe or base category
B and not just with respect to Sets.

Fibred category theory provides answers to such questions. It tells what it
means for a category [E to be ‘fibred over’ a base category B. In that case we

where the arrow £ — B 1s a functor which has a certain property
that makes it into a fibration. And in such a situation one can answer the
above questions: one can define quantification with respect to objects 7 € B
and say when one has appropriate hom-objects Hom(X,Y) € Bfor X,Y € E

1 {
write 1

)
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The ways of doing this will be explained iré: this book. And for a category
Fam

C there is always a ‘family fibration’ si’i: of set-indexed families in C.

The fibred notions of quantification and local smallness, specialised to this

family fibration, are the ordinary notions described above. Thus, in the family

fibration we have our standard universe (or base category) of sets.

There are many categorical notions arising naturally in logic and type the-
ory (see the list below). And many arguments in category theory can be
formulated conveniently using logic and type theory as “internal” language
(sometimes called the “Mitchell-Bénabou” language, in the context of topos
theory). These fields however, have different origins: category theory arose in
the work of Eilenberg and Mac Lane in the 1940s within mathematics, and
was in the beginning chiefly used in algebra and topology. Later it found ap-
plications in almost all areas of mathematics (and computer science as well,
more recently). Type theory is also from this century, but came up earlier
in foundational work by Russell in logic (to avoid paradoxes). Recently, type
theory has become important in various (notably functional} programming
languages, and in computer mathematics: many type theories have been used
during the last two decades as a basis for so-called proof-assistants. These are
special computer programs which assist in the verification of mathematical
statements, expressed in the language of some (typed) logic. The use of types
in these areas imposes certain restrictions on what can be expressed, but fa-
cilitates the detection of various errors. We think it is in a sense remarkable
that two such fundamental fields (of category theory and of type theory)—
with their apparent differences and different origins—are so closely related.
This close relationship may be beneficial in the use and further development
of both these fields.

We shall be especially interested in categorical phenomena arising within
logic and type theory. Among these we mention the following.

(i) Every context of variable declarations (in type theory) or of premises
(in logic) is an index. It is an index for a ‘fibre’ category which captures the
logic or type theory that takes place within that context—with the declared
variables, or under the assumptions. The importance of this categorical role
of contexts is our motivation for paying more than usual attention to contexts
in our formulations of type theory and logic.

(i1) Appropriately typed sequences of terms give rise to morphisms be-
tween contexts. This is the canonical way to produce a category from types
and terms. These context morphisms induce substitution functors between
fibre categories. The structural operations of weakening (adding a dummy as-
sumption) and contraction (replacing two assumptions of the same kind by a
single one) appear as special cases of these substitution functors: weakening
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is substitution along a projection 7, and contraction is substitution along a
diagonal é. These = and & may be Cartesian projections and diagonals in sim-
ple and polymorphic type theories, or ‘dependent’ projections and diagonals
in dependent type theory.

(iii) The basic operations of logic and type theory can be described as
adjoints in category theory. Such operations standardly come with an intro-
duction and an elimination operation, which are each other’s inverses (via
the so-called (3)- and (n)-conversions). Adjoint correspondences capture such
situations. This may be familiar for the (simple) type theoretic constructors
1, x, 0, + and — (and for their propositional counterparts T, A, L, V and
D), since these are the operations of bicartesian closed categories (which can
be described via standard adjunctions). But also existential Jz:0.(—) and
universal Vz: o. (—) quantification in predicate logic over a type o, dependent
sum Xz:o.(—) and product ITz: o. (=) in dependent type theory over a type
o, and polymorphic sum Ea: Type. (—) and product IIa: Type. (=) in polymor-
phic type theory over the universe Type of types, are characterised as left and
right adjoints, namely to the weakening functor which adds an extra dummy
assumption x: o, or «: Type. Moreover, equality =, on a type ¢ 1s charac-
terised as left adjoint to the contraction functor which replaces two variables
z,y:0 by a single one (by substituting z for y). By ‘being characterised’ we
mean that the standard logical and type-theoretical rules for these operations
are (equivalent to) the rules that come out by describing these operations as
appropriate adjoints.

The most important adjunctions are:

existential 3, sum ¥ - weakening

weakening - universal V, product I1
equality - contraction
truth 4 comprehension (or ‘subsets types’)
(but also: equality - comprehension, via a different functor)
quotients - equality.

The first four of these adjoints were recognised by Lawvere (and the last two
are identified in this book). Lawvere first described the quantifiers 3,V as left
and right adjoints to arbitrary substitution functors. The above picture with
separate adjoints to weakening and to contraction functors is a refinement,
since, as we mentioned in (ii), weakening and contraction functors are special
cases of substitution functors. (These operations of weakening and contraction
can be suitably organised as a certain comonad; we shall define quantification
and equality abstractly with respect to such comonads.)
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(iv) As we mentioned above, the characteristic aspect of dependent type
theory is that types may depend on types, in the sense that term variables
inhabiting types may occur in other types. And the characteristic aspect of
polymorphic type theory is that type variables may occur in types. Later we
shall express this as: types may depend on kinds. These dependencies amount
to certain forms of indexing. They are described categorically by fibred (or
indexed) categories. Thus, if one knows the dependencies in a type theory, then
one knows its underlying categorical structure. The additional type theoretic
structure may be described via certain adjunctions, as in the previous point.

(v) Models of logics and type theories are (structure preserving) functors.
From a specific system 1n logic or type theory one can syntactically build a
so-called ‘classifying’ (fibred) category, using a term model—or generalised
Lindenbaum-Tarski—construction. A model of this system is then a (fibred)
functor with this classifying (fibred) category as domain, preserving appropri-
ate structure. We shall make systematic use of this functorial semantics. It
was introduced by Lawvere for single-typed simple type theories. And it ex-
tends to other logics and type theories, and thus gives a systematic description
of models of (often complicated) logics and type theories.

(vi) If o = o(a) is a type (in polymorphic type theory) in which a free type
variable o occurs, then, under reasonable assumptions about type formation,
the operation 7 — o[r/a] of substituting a type 7 for «, is functorial. This
functoriality is instrumental in describing the rules of (co-)inductively defined
data types in terms of {co-)algebras of this functor. And the reasoning princi-
ples (or logic) associated with such data types can also be captured in terms
of (co-)algebras (but for a different functor, obtained by lifting the original
functor to the logical world of predicates and relations).

(vii) A logical framework is a type theory 7 which is expressive enough so
that one can formulate other systems S of logic or of type theory inside 7.
Categorically one may then describe (the term model of) S as an internal
category in (the term model of} 7. We briefly discuss dependent type theory
as a logical framework in Section 10.2, but we refer to [87] for this connection
with internal categories.

This is not a book properly on logic or on type theory. Many logical and
type theoretical calculi are described and some illustrations of their use are
given, but there is nothing about specific proof-theoretic properties like cut-
elimination, Church-Rosser or strong normalisation. Therefore, see [14]. The
emphasis here lies on categorical semantics. This is understood as follows.
Category theory provides means to say what a model of, say predicate logic,
should look like. It gives a specification, or a hollow structure, which captures



8 Chapter 0: Prospectus

the essentials. A proper model is something else, namely an instance of such a
structure. We shall describe both these hollow structures, and some instances
of these. (But we do not investigate the local structure or theories of the
example models, like for example in [197] or in [13, Chapter 19].)

So what, then, is the advantage of knowing what the categorical structures
are, corresponding to certain logics and type theories? Firstly, it enables us to
easily and quickly recognise that certain mathematical structures are models
of some logical or type theoretical calculus, without having to write out an
interpretation in detail. The latter can be given for the ‘hollow categorical
structure’, and need not be repeated for the particular instances. One only has
to check that the particular structure is an instance of the general categorical
structure. For example, knowing that a particular category (of domains, say)
is Cartesian closed yields the information that we can interpret simple type
theory. Secondly, once this is realised, we can turn things around, and start
using our calculus (suitably incorporating the constants in a signature) to
reason directly and conveniently about a (concrete or abstract categorical)
model. This is the logician’s view of the mathematician’s use of language:
when reasoning about a particular mathematical structure (say a group G),
one formally adds the elements a € G as constants g to the language, and
one uses the resulting “internal” language to reason directly about G. The
same approach applies to more complex mathematical structures, like a fibred
category of domains: one then needs a suitable type theoretic language to
reason about such a complex (indexed) structure. The third advantage is
that a clear (categorical) semantics provides a certain syntactic hygiene, and
deepens the understanding of the various logical and type theoretical systems.
For example, the principle that a (possibly new) operation in logic or type
theory should correspond to an adjoint gives certain canonical introduction,
elimination and conversion rules for the constructor. Fourthly, models can
be used to obtain new results about one’s logical or type theoretical system.
Consistency, conservativity and independence results are often obtained in
this manner. Finally, and maybe most importantly, models provide meaning to
one’s logical or type theoretical language, resulting in a better understanding
of the syntax.

There are so many systems of logic and type theory because there are certain
“production rules” which generate new systems from given ones.

(1) There are three basic type theories: simple type theory (STT), depen-
dent type theory (DTT) and polymorphic type theory (PTT).

(it} Given a certain type theory, one can construct a logic over this type
theory with predicates ¢(&): Prop containing free variables # inhabiting types.
This allows us to reason about (terms in) the given type theory.
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(ili) Given a logic (over some type theory), one can construct a new type
theory (extending the given one) by a propositions-as-types upgrade: one con-
siders the propositions ¢ in the logic as types in the new type theory, and
derivations in the logic as terms in the new type theory.

This modularity is reflected categorically in the following three points.

(1) There are three basic categorical structures: for STT (Cartesian closed
categories), for DTT (what we call closed comprehension categories) and for
PTT (certain fibred Cartesian closed categories).

(i1) Putting a logic on a type theory corresponds to putting a preorder
fibration on top of the structure describing the type theory. For logic one
uses preorder structures, since in logic one is interested in provability and not
in explicit proofs (or proof-terms, as in type theory), which are described as
non-trivial morphisms.

(111) Under a propositions-as-types upgrade one replaces a preorder fibra-
tion by an ordinary fibration (with proper fibre categories), thus making room
for proof-terms as proper morphisms.

(Both second points are not as unproblematic as they may seem, because one
may have complicated type theories, say with two syntactic universes of types
and of kinds, in which there are many ways of putting a logic on top of such
a type theory: one may wish to reason about types, or about kinds, or about
both in the same logic. Categorically, there are similarly different ways in
which a preorder fibration can be imposed.)

By the very nature of its contents, this book is rather descriptive. It contains
few theorems with deep mathematical content. The influence of computer
science may be felt here, in which much emphasis i1s put on the description of
various languages and formalisms.

Also, it is important to stress that this is not a book properly on fibred
category theory. And 1t i1s not intended as such. It does contain the basic
concepts and results from fibred category theory, but only as far as they are
directly useful in logic or type theory (and not in topology, for example).
Somie of these basic results have not been published previously, but have been
folklore for some time already. They have been discovered and rediscovered by
various people, and the precise flow of ideas is hard to track in detail. What
we present in this book is not a detailed historical account, and we therefore
apologise in advance for any misrepresentation of history.

We sketch what we see as the main lines. In the development of fibred
category and categorical logic one can distinguish an initial French period
starting in the 1960s with Grothendieck’s definition of a fibration (:.e. a fibred
category), published in [107]. It was introduced in order to study descent. The
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ensuing theory was further developed by Grothendieck and (among others)
Giraud [100] and Bénabou. The latter’s work is more logical and foundational
in spirit than Grothendieck’s (involving for example suitable fibred notions
of local smallness and definability), and is thus closest to the current work.
Many of the basic notions and results stem from this period.

In the late 1960s Lawvere first applied indexed categories in the study of
logic. Especially, he described quantification and equality in terms of adjoints
to substitution functors, and showed that also comprehension involves an
adjunction. This may be seen as the start of categorical logic (explicitly, in his
influential “Perugia Lecture Notes” and also in [192, 193]}. At about the same
time, the notion of elementary topos was formulated, by Lawvere and Tierney.
This resulted in renewed attention for indexed (and internal) categories, to
study phenomena over (and inside) toposes. See for example [173, 169] and
the references there.

Then, in the 1980s there is the start of a type theoretic boom, in which
indexed and fibred categories are used in the semantics of polymorphic and
dependent type theories, see the basic papers [306, 307, 148] and the series
of PhD theses [45, 330, 75, 185, 318, 252, 260, 7, 154, 89, 217, 86, 60, 289,
125, 4, 198, 133]. This book collects much material from this third phase.
Explicitly, the connection between simple type theory and Cartesian closed
categories was first established by Lawvere and Lambek. Later, dependent
type theory was related to locally Cartesian closed categories by Seely, and to
the more general “display map categories” by Taylor. The relation between
polymorphic type theory and certain fibred (or indexed, or internal) Cartesian
closed categories is due to Seely, Lamarche and Moggi. Finally, more compli-
cated systems combining polymorphic and dependent systems (like the calcu-
lus of constructions) were described categorically by Hyland, Pitts, Streicher,
Ehrhard, Curien, Pavlovié, Jacobs and Dybjer. This led to the (surprising)
discovery of complete internal categories by Moggi and Hyland (and to the
subsequent development of ‘synthetic’ domain theory in abstract universes).

Interestingly, fibred categories are becoming more and more important in
various other areas of (theoretical) computer science, precisely because the as-
pects of indexing and substitution (also called renaming, or relabelling) are so
fundamental. Among these areas we mention (without pretension to be in any
sense complete): database theory [295, 151, 9], rewriting [12], automata the-
ory [175, 10], abstract environments [279], data flow networks [310], constraint
programming [219], concurrency theory [345, 131], program analysis [230, 25],
abstract domain theory [146] and specification [152, 327, 48, 159].

Many topics in the field of categorical logic and type theory are not discussed
in this book. Sometimes because the available material is too recent (and un-
settled), sometimes because the topic deviates too much from the main line,
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but mostly simply because of lack of space. Among these topics we mention
(with a few references): inductively and co-inductively defined types in depen-
dent type theory [70, 71], categorical combinators [63, 290, 116], categorical
normalisation proofs [147, 238, 5], fixed points [16], rewriting and 2-categorical
structure [308, 278], modal logic [93], u-calculi [313], synthetic domain the-
ory [144, 331, 264], a fibred Giraud theorem [229], a fibred adjoint functor
theorem [47, 246], descent theory [168] (especially with its links to Beth de-
finability [208]), fibrations in bi-categories [315, 317], 2-fibrations [127], and
the theory of stacks [100].

The choice has been made to present details of interpretation functions for
simple type theory in full detail in Chapter 2, together with the equivalent
functorial interpretation. In later chapters interpretations will occur mostly in
the more convenient functorial form. For detailed information about interpre-
tation functions in polymorphic and (higher order) dependent type theories we
refer to [319, 61]. As we proceed we will be increasingly blurring the distinction
between certain type theories and certain fibred categories, thus decreasing
the need for explicit interpretations

0.2 The logic and type theory of sets

We shall now try to make the fibred perspective more concrete by describing
the (familiar) logic and type theory of ordinary sets in fibred form. Therefore
we shall use the fibrations of predicates over sets and of families of sets over
sets, without assuming knowledge of what precisely constitutes a fibration. In
a well-known situation we thus describe some of the structures that will be
investigated in more abstract form in the course of this book. We shall write
Sets for the category of (small) sets and ordinary functions between them.

Predicates on sets can be organised in a category, that will be called Pred,
as follows.

objects pairs (I, X) where X C [ is a subset of a set [; in this
situation we consider X as a predicate on a type I, and
write X (i) for i € X to emphasise that an element 7 € |
may be understood as a free variable in X. When [ is clear
from the context, we sometimes write X for the object
(X CI).

morphisms ([, X) — (J,Y) are functions u: [ — J between the under-
lying sets satisfying

X(¢) implies Y (u(¢)), for each i ¢ [I.

Diagrammatically, this condition on such a function
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u: I = J amounts to the existence of a necessarily unique
(dashed) map

indicating that u restricts appropriately.

There is an obvious forgetful functor Pred — Sets sending a predicate to
its underlying set (or type): (/, X) + I. This functor is a “fibration”. And

although it plays a crucial role in this situation, we do not give it a name, but
Pred
simply write it vertically as S its to emphasise that it describes predicates as

living over sets.

For a specific set I, the “fibre” category Pred; is defined as the subcategory
of Pred of predicates (X C I) on I and of morphisms that are mapped to
the identity function on I. This category Pred; may be identified with the
poset category (P(I), C) of subsets of I, ordered by inclusion. For a function
u: [ — J there is “substitution” functor u*: P(J) — P(I) in the reverse
direction, by

(YCJ)— ({ilu@) eY}C ),
Clearly we have Y C Y’ = u*(Y) C u*(Y’), so that u* is indeed a functor.
Two special cases of substitution are weakening and contraction. Weakening
is substitution along a Cartesian projection 7:I x J — [I. It consists of a
functor

P(I) == P(IxJ) sending X — {(i,j)]|i€ X and j € J}

by adding a dummy variable j € J to a predicate X. Contraction is substitu-
tion along a Cartesian diagonal §: 1 — I x . It i1s a functor

*

P xI) N P(I) givenby Y e {iel|@ieY}).

It replaces two variables of type I by a single variable.

Each fibre category P(I) is a Boolean algebra, with the usual set theoretic
operations of intersection N, top element (I C I), union U, bottom element
(B C I), and complement I\{(—). These operations correspond to the propo-
sitional connectives A, T,V, L, - in (Boolean) logic. They are preserved by
substitution functors u* between fibre categories.

The categorical description of the quantifiers 3,V is less standard (than
the propositional structure of subsets). These quantifiers are given by oper-
ations between the fibres—and not inside the fibres, like the propositional
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connectives—since they bind free variables in predicates (and thus change the
underlying types). They turn out to be adjoints to weakening, as expressed
by the fundamental formula:

47" 4V.
In more detail, we define for a predicate Y C I x J,
AY) = {iel|3el.(i,j))eY}
YY) = {icel|VjeJ (ij)eY}.
These assignments Y — 3(Y) and Y — V(YY) are functorial P(I x J) =3
P(I). And they are left and right adjoints to the above weakening functor

n*: P(I) = P(I x J) because there are the following basic adjoint correspon-
dences.

Y Cr*"(X) overIxJ ™(X)CY overIxJ
IY)C X over/! X CVY(Y) overl

(Where the double line means: if and only if.)

For a set (or type) I, equality { = ¢ for elements 7,’ € I forms a predicate
on I x I. Such equality can also be captured categorically, namely as left
adjoint to the contraction functor §*: P(I x I) — P(I). One defines for a
predicate X C I the predicate Eq(X) on [ x [ by

Eq(X)={(;,/)eIxT|i=7and i€ X}.
Then there are adjoint correspondences
Eq(X)CY overlxI
X C6°(Y) overl

Notice that the predicate Eq(X) is equality on I for the special case where X
is the top element I. See also Exercise 0.2.2 below for a description of a right
adjoint to contraction, in terms of inequality.

The operations of predicate logic can thus be identified as certain structure
Pred
in this fibration Sits , namely as structure in and between its fibres. Moreover,

1t is a property of the fibration that this logical structure exists, since it can
be characterised in a universal way—via adjoints—and is thus given uniquely
up-to-isomorphism. The same holds for the other logical and type theoretical
operations that we identify below.

Comprehension is the assignment of a set to a predicate, or, as we shall
say more generally later on, of a type to a predicate. This assignment takes
a predicate to the set of elements for which the predicate holds. It also has
a umversal property. Therefore we first need the “truth” functor 1: Sets —
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Pred, which assigns to a set I the truth predicate 1(I/}) = (I C I) on [I; it is
the terminal object in the fibre over I. Comprehension (or subset types, as
we shall also say) is then given by a functor {—}: Pred — Sets, namely

{(Yc)={jelIY()}=Y

Hence {—}:Pred — Sets is simply (Y C J) — Y. It is right adjoint to
the truth functor 1: Sets — Pred since there is a bijective correspondence
between functions u and v in a situation:

1(I) —— (Y CJ) in Pred

I — {(Y € J)} in Sets

In essence this correspondence tells us that Y'(j) holds if and only if j € {(Y C
J)}.

Quotient sets can also be described using the fibration of predicates over
sets. We first form the category Rel of (binary) relations on sets by pullback:

Rel Pred
|- |
Sets ——— > Sets
I—»IxI

Via this pullback we restrict ourselves to predicates with underlying sets of
the form I x I. Explicitly, the category Rel has

objects pairs (I, R) where R C I x [ is a (binary) relation on
I € Sets.

morphisms (I, R) — (J,S) are functions u: I — J between the under-
lying sets with the property

R(7,7') implies S(u(i), u(¢")), foralli,¢ € I.

The functor Rel — Sets in the diagram is then (I, R) — I. It will turn out to
be a fibration by construction. The abovementioned equality predicate yields
an equality functor Eq: Sets — Rel, namely

J - Eq(J)={{7,7) |7 € J}.

Quotients in set theory can then be described in terms of a left adjoint @ to
this equality functor Eq: a relation R C I x I is mapped to the quotient set
I/R, where R C I x I is the least equivalence relation containing R. Indeed
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there is an adjoint correspondence between functions v and u in:

Q(I,R) = I/JR —> J in Sets

R— Eq(J) in Rel

This correspondence can be reformulated as: for each functon u: I — J with
u(i) = u(¢’) for all 4,4’ € I for which R(z,') holds, there is a unique function
v:I/R --+ J in a commuting triangle

quotient

I 1/

map

x|

|
| v
u ¥
J
Finally we mention that predicates over sets give us higher order logic.
There is a distinguished set 2 = {0, 1} of propositions, with special predicate

({1} C 2) for truth: for every predicate (X C I) on a set I, there is a unique
function char(X C I): 1 — 2 with

(X CI)=char(X C )" ({1} C 2).

This existence of “characteristic morphisms” is what makes the category of
sets a topos. It allows us to quantify via this set 2 over propositions.

This completes our first glance at the fibred structure of the logic of sets. In
the remainder of this section we sketch some of the type theoretic structure of
sets, again in terms of a fibration, namely in terms of the “family” fibration
Fam(Sets

S(elts ) of set-indexed-sets. It captures the dependent type theory (with
type-indexed-types) of sets.

The category Fam(Sets) of families of sets has

objects pairs ({, X') consisting of an index set J and a family X =
(Xi)ier of I-indexed sets X;.

morphisms (I, X) — (J,Y) are pairs (u, f) consisting of functions

u fi
I—>J and f=(X = Yui)is
There is a projection functor Fam(Sets) — Sets sending an indexed family
to its underlying set index set: (I, X) — I. It will turn out to be a fibration.
Essentially this will mean that there are (appropriate) substitution or rein-
dexing functors: for a function u: [/ — J between index sets, we can map a



16 Chapter 0: Prospectus

family Y = (Yj);es over J to a family over I via:
(Yj)jes — (Yug))ier-

We shall write u* for this operation. It extends to a functor between “fibre”
categories: for an arbitrary set K, let Fam(Sets)x be the “fibre” subcategory
of Fam(Sets) of those families (K, X) with K as index set, and with mor-
phisms (idg, f) with the identity on K as underlying function. Then u: I — J
yields a substitution functor «*: Fam(Sets); — Fam(Sets);.

Notice that there is an inclusion functor Pred < Fam(Sets) of predicates
into families, since every predicate (X C I) yields an I-indexed family (X;)ies
with

X — {x} ifie X
P71 0 otherwise.

It is not hard to see that this yields a full and faithful functor Pred —
Fam(Sets), which commutes with substitution. It is a ‘morphism of fibra-
tions’.

Our aim is to describe the dependent coproduct [] and product ] of fami-
lies of sets as adjoints to weakening functors, in analogy with the situation for
existential 3 and universal V quantification in the logic of sets. But in this sit-
uation of families of sets we have weakening functors 7* induced not by Carte-
sian projections 7: I x J — I, but by “dependent” projections m: {I | X} — I,
with domain {/ | X} given by the disjoint union:

{I} X}={(@,z)|i€and x € X;}

which generalises the Cartesian product. The weakening functor 7* associated
with this dependent projection m:{I { X} — I sends a family Y = (Y;)iers
over I to a family 7*(Y') over {I | X} by vacuously adding an extra index z,
as in:

™(Y) = (Yi)iercex.)-

(As we shall see later, the projection m: {I | X} — I arises in a canonical way,
since the assignment (I, X) — {I | X} yields a functor Fam(Sets) — Sets,
which is right adjoint to the terminal object functor 1: Sets — Fam(Sets),
sending a set J to the J-indexed collection ({*});es of singletons. The counit
of this adjunction has the projection 7 as underlying map. Thus, the operation
(I, X))~ {I| X} is like comprehension for predicates, as described above.)
The claim is that the dependent coproduct | [ and product [] for set-indexed
sets are left and right adjoints to the weakening functor #*. Therefore we have
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to define coproduct [] and product [] as functors

I

—_— T
Fam(Sets)(;| x} <—n* Fam(Sets);
———
I1
{1x) _ I

acting on an {I | X}-indexed family Z = (Z(; ¢))ier zex, and producing an
I-indexed family. These functors are given by

H(Z)i = {(z,2) |z € X; and 2 € Z(; )}
[1(2) {p: Xi —> UxEX, Ziizy | Ve € Xip(x) € Z(i )}
We then get the fundamental relation
A= 411

since there are bijective adjoint correspondences between families of functions
fand g in:

Z—f—>7r*(Y) over {I | X} 7 (Y) ——>f Z over {I| X}
and
11(%) 5 Y over [ Y 5 [1(Z) overI

Also in this situation, there are adjoints to contraction functors §* (induced
by dependent diagonals), given by equality and inequality. But we do not
further pursue this matter, and conclude our introduction at this point. What
we have sketched is that families of sets behave like dependent types, and that
subsets behave like predicates, yielding a logic over (dependent) type theory.
We have shown that the basic operations of this logic and of this type theory
can be described by adjunctions, in a fibred setting. In the course of this book
we shall (among many other things) be more precise about what it means
to have such a logic over a type theory and we shall axiomatise all of the
structure found above, and identify it in many other situations.

Finally, the next few exercises may help the reader to become more familiar
with the structure described above.
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Exercises
0.2.1.  Define a left adjoint F:Fam(Sets) — Pred to the inclusion functor
F
[
Pred _ Fam(Sets)
Sets
such that: (1) F makes the triangle commute (so it does not change the
index set), and (2) F' commutes with substitution.
0.2.2.  Define for a subset X C [ the relation nEq(X) C J x I by
nEq(X) = {(i,#') |t #1 ori € X}
and show that the assignment X — nEq(X) is right adjoint to contraction
§*: P(I x I} = P(I). Notice that nEq(.X) at the bottom element X = 0 is
inequality on I.
0.2.3.  Show that the equality functor Eq: Sets — Rel also has a right adjoint.
0.2.4.  Check that the operation (I, X) — {I | X} yields a functor Fam(Sets) —

Sets, and show that it is right adjoint to the terminal object functor Sets —
Fam(Sets), mapping a set J to the family of singletons ({*#});ecs. Describe
the unit and counit of the adjunction explicitly.



Chapter 1

Introduction to fibred category theory

This first proper chapter starts with the basics of fibred category theory; it
provides the foundation for much of the rest of this book. A fibration, or fibred
category, is designed to capture collections (Cr)jep of categories Cy varying
over a base category B, generalising for example collections of sets (X;)ier
varying over a base, or index, set I. The main categorical examples are the
indexed collections of categories

(B/]) IeB (SUb([))Iema (B//]) I€B

consisting of slice categories B/I over I, posets Sub(J) of subobjects of I, and
what we call ‘simple slice categories’ Bf I over I. The ordinary slice categories
will be used for dependent type theory, the posets of subobjects for predicate
logic, and the simple slice categories for simple type theory (whence the name).
The slice categories B/I will be used as leading example in the first section
when we introduce fibrations. The other examples Sub(/) and BjI will be
introduced soon afterwards, in Section 1.3.

In all of these cases, a morphism u: I — J in the base category B induces a
substitution functor, commonly written as u*, acting in the reverse direction.
That is, there are substitution functors:

*

B/J o B/I  Sub(J) -S> Sub(D)  BJJ —“> BJI

Weakening functors and contraction functors arise as special cases of sub-
stitution functors u*, namely (respectively) as n*, where 7 is a projection
morphism in B, and as §*, where § is a diagonal morphism in B.

19
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These two aspects—indexing and substitution—will be studied systemati-
cally in this first chapter, in terms of fibrations. The notion of ‘fibred category’,
or ‘fibration’, is due to Grothendieck [107].

This chapter develops the basic theory of fibrations and shows how various
notions from ordinary category theory—such as adjunctions, products and
coproducts—make sense for fibred categories as well. In the last section 1.10
we describe the notion of ‘indexed category’; a common alternative formu-
lation of variable category, and explain why an indexed category should be
regarded as simply a particular kind of fibrations (namely as a ‘cloven’ one).
Chapter 7 describes internal categories, which also correspond to certain fi-
brations, namely to so-called ‘small’ fibrations.

The ten sections which together form this chapter contain the essentially
standard, first part of the theory of fibrations, geared towards use in categor-
ical logic and type theory. The main notions are: Cartesian morphism, sub-
stitution functor, change-of-base, fibred adjunction, fibred (co)product and
indexed category. These will be introduced together with many examples.
Sometimes the theory is further developed in exercises, but mostly, the ex-
ercises of a section serve to familiarise the reader with the new material in
that section. There is a later chapter (Chapter 9) which continues the study
of fibrations.

1.1 Fibrations

Basically, a fibration is a categorical structure which captures indering and
substitution. Since the formal definition of a fibration is a bit technical—see
Definition 1.1.3 below—we start with the following introductory observations.
These focus on the special case of a codomain fibration, and will lead to
the general definition of fibration towards the end of this section. The exer-
cises contain many elementary results about fibrations, which should help the
reader to get acquainted with the concepts involved.

Indexing

Suppose we wish to consider a family of sets, ranging over some index set [.
There are two ways of doing so.

(a) Pointwise (or split) indexing: as a collection (X;)ies, where each X;
is a set. Probably this way is most elementary and comes first to one’s mind.
One can think of this collection as being given by a function (or functor)
I — Sets, namely ¢ — X;.
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(a) (b)

Fig. 1.1. Pointwise indexing (a) and display indexing (b) of set-indexed-sets

(b) Display indexing: as a function ¢p: X — I. The sets in the family
then appear as fibres “over ¢”

e ) ={ze X |p(z) =1}

for each 7 € 1.

A picture suggesting the difference between these ways of indexing is pre-
sented in Figure 1.1.

These descriptions are equivalent: given a collection (X;)ies as in (a), take
X to be the disjoint union J[;c; Xi = {(i,z) | ¢ € I and z € X;}; it comes
equipped with a projection function m:[];c; Xi — I sending (i, z) — i. Up-
to-isomorphism, the fibre 71 (i) over i is the original X;. Conversely, given a
function ¢: X — I as in (b), put X; = p~!(i). This yields a collection (X;):es
as in (a), together with an isomorphism [],., X; = X.

(For the set theoretic purist we remark that the passage from (a) to (b)
relies on the Axiom of Replacement. Also we should mention that the fibres
¢~ 1(i) in (b) are necessarily disjoint, whereas the sets X; in (a) need not be
disjoint. But that is not essential at this stage.)

Although pointwise indexing (a) seems more natural at first, display in-
dexing (b) has the great advantage that it generalises to arbitrary categories,
since it only involves the notion of a morphism, see Definition 1.1.5 below.
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Hence in the sequel we often describe a family of sets as a function ¢: X — I
as in (b). We then loosely speak about the fibres X; = ¢~!(i) and say that
X is a family over [ and that ¢ displays the family (X;). In order to em-

phasise that we think of such a map ¢ as a family, we often write it vertically
IxX

X
as ( }30 ) . A constant family is one of the form }7" , where 7 1s the

Cartesian product projection; often it is written simply as I*(X). Notice that
all fibres of this constant family are (isomorphic to) X.

X
Such families }cp of sets give rise to two categories: the slice cate-

gory Sets/I and the arrow category Sets™. The objects of Sets/I are the
I-indexed families, for a fixed set I; the objects of Sets™ are all the I-indexed
families, for all possible I. Here are the definitions.

X
Sets/I objects families ( JI"'O )
morphisms Jj;%o —f—> %1/) are functions f: X — Y

making the following diagram commute.
f
X ———Y
x %
I
Notice that f can thus be seen as a collection of functions f;: X; — Y;—where

X; = ¢~1(i) and Y; = ¥~ 1(i) are the fibres involved (for i € I). Composition
and identities in Sets/I are inherited from Sets.

X
Sets™ objects families ( JI:SO ) , for arbitrary sets I.

To) wh (1
morphisms %90 —3 }]w are pairs of functions
u:l—J and f:X =Y for which the following



Section 1.1: Fibrations 23

diagram commutes.
X Y
4 l l ¥
I J

Hence, objects in the arrow category Sets™ involve an extra function u be-
tween the index sets. Notice that one can now view f as a collection of func-
tions fi: Xj — Yy (i, since for z € p~1(¢), f(x) lands in ¢~!(u(z)). Composi-
tion and identities in Sets™ are component-wise inherited from Sets.

We further remark that there is a codomain functor cod: Sets™ — Sets;
it maps

—_—
u

X
( }30> — and (u, f) — u.

Also, for each I, there is a (non-full) inclusion functor Sets/I — Sets™.

Substitution

Y
Suppose a family }]d’ over a set J is given. Substitution involves changing

the index set J. More specifically substitution along a function u:1 — J
involves creating a family of sets with the domain I of u as new index set and
with fibres Y, (;y for ¢ € I. Thus the family (Y;);ecs is turned into a family
(Xi)ier with X; = Y, (;). This family (X;)ies can be obtained in the following
way. Form the pullback of ¥ against u:

X f Y
=]~ |v (*
I J

u

That is, form the set X = {(i,y) € I xY | u(d) = +¥(y)} with obvious

X
projection functions I & X J, Y. One obtains a new family ( }90) over |
with fibres

Xi=p '@ ={yeY |¥(y) = u()} = ¢ (u(i)) = Yuw).
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One normally writes u*(y) for the result ¢ of substituting ¢ along u.

1.1.1. Examples. The following four special cases of substitution along a
map u are worth mentioning separately.
(i) Suppose u is an element j € J, that is, u is of the form j:1 — J
where 1 = {x} is a one-element (terminal) set. Then u*(¢) = j*(¥) becomes
Xj

the family i . It can be identified with the fibre X;. Thus, substituting

along a specific element j yields the fibre X; over this element j.
(i) Substitution of an ordinary (non-indexed) set X, described as a family

X
< + ) over a singleton set 1, along the unique map / —-+ 1 yields the constant

1
IxX
family I*(X) = < } ) This is because the pullback of two maps I — 1

and X — 1 with the terminal object 1 as common codomain, is the Cartesian
product I x X of their domains.

(iil) In case u is a projection m:J x I — J, then 7*(¢) is ¥ x id, since the
following diagram is a pullback square.

One obtains as fibre over (j,7) € J x [

(@) 7168 = (W xid) 76D = {(,4,9) | ¥lw) = 5} =97 x T
which shows that there is an extra “dummy” index variable ¢ in the family
7* () which plays no réle. Later in Section 3.1 (explicitly in Example 3.1.1) we
shall see that in logical terms, substitution along a projection is weakening

(i.e. adding an extra assumption).
(iv) The dual (in some sense) of (iii) is substitution along a diagonal §: J —

Y
J x J. For a family J;L("/’]) the fibre of 8*(¢)) over j € J 1s

(W) ={yeY |¥(y) = (5,5)} =Y,
which is the family Y(; ;) restricted to j = j’. This is contraction: replacing
two variables j, j' by a single one via substituting [j/5'].

Notice that the pair (u, f) in the pullback diagram (x) above is a mor-
phism u* (%) — 9 in the arrow category Sets™. For a moment let us call this



Section 1.1: Fibrations 25

pair (u, f) the “substitution morphism” (later it will be called a Cartesian
morphism). This substitution morphism has a universal property: suppose we

have another morphism,
VA v Y
R L O
K J

in Sets™ such that v: K — J factors through u:/ — J, say via w: K — [
with v = u o w, as in

>
—
<ﬁ—><
L
\
e
<

Then there is a unique morphism

A X
K I

in Sets™ which is sent to w by the codomain functor cod: Sets™ — Sets,
and for which the composite

B H==0) = O=0)

This holds because X was constructed as a pullback:

g
24;?*1/
I
K I J
\_/

The presence of such ‘best possible substitution morphisms’ u*(¢) — ¢
is the cardinal property of the codomain functor cod: Sets™ — Sets that
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makes it a fibration. Definition 1.1.3 below captures this property abstractly
in purely categorical terms. And in Section 1.4 we shall see how this property
induces—by choosing substitution morphisms—substitution functors u*.

We introduce some notation and terminology. Let p:[E — B be a functor. It

E
can be seen as a (display) family ﬁp of categories: for an object I € B,
the fibre or fibre category E; = p~!(I) over [ is the category with

objects X € Ewith pX = L.

morphisms X — Y in E; are morphisms f: X — Y in E for which pf
1s the identity map on [ in B.

An object X € E such that pX = I (i.e. an X € Ey) is said to be above
I; similarly, a morphism f in E with pf = u 1s said to be above u. This

E
terminology is in accordance with our ‘vertical’ notation %p. A morphism
in E will be called vertical if it is above some identity morphism in B, that
is, when it is in a fibre category. For X|Y € E and u:pX — pY in B we
sometimes write

E,(X,Y)={f:X >Y inE| f is above u} CE(X, Y).

E
When considering such a family of categories %p , we call B the base cate~
gory and [E the total category.

Sets™
1.1.2. Examples. (i) Consider the codomain functor sits . An object

X
above I € Sets is a family ( ‘}(’0) over I; a vertical morphism has the form

f
X Y
901 lw
1—>id I

Thus the fibre category above I € Sets can be identified with the slice cate-
gory Sets/I of families over I and commuting triangles. Notice that the fibre
Sets/1 (or slice) over a singleton (terminal) set 1 can be identified with the
base category Sets itself.

(i1} For a functor p:E — B, the fibre category E; over I € B can be
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constructed via a pullback: one has a pullback of categories

E; E X;

- B

[ p Jjust like
B 1

~ —— %

1

is a pullback of sets, as described in Example 1.1.1 (i).
Finally, we come to the definition of ‘fibration’.

1.1.3. Definition. Let p:[E — B be a functor.

(1) A morphism f: X - Y in[Eis Cartesianover uw:/ — JinBifpf = u
and every g: Z — Y in [ for which one has pg = u o w for some w:pZ — I,
uniquely determines an h: Z — X in [E above w with f o h = g. In a diagram:

pZ

uow=pg
]B \
w

| —J
u
We call f: X — Y in the total category E Cartesian if it is Cartesian over its
underlying map pf in B.
(it) The functor p: E — B is a fibration if for every Y € E and u: I — pY
in B, there 1s a Cartesian morphism f: X — Y in E above u. Sometimes a
fibration will be called a fibred category or a category (fibred) over B.

We often say that a Cartesian morphism f: X — Y above u:/ — pY is a
terminal or Cartesian lifting of u in a situation:

(Later, in Section 9.1, we shall describe ‘opfibrations’ as functors p: E — B in
which one has ‘initial’ or ‘opcartesian’ liftings of maps pX — J in B.)
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The previous two diagrams embody a convention that will be used through-
out: if a diagram is drawn in two parts, one above the other, then “above” in
the diagram means “above” in the categorical sense described before Exam-

E
ple 1.1.2. Further, a fibration is written vertically as { and is pronounced as
‘E over B’. Often the name of the functor is omitted if it is clear what ‘over’
means.

1.1.4. Proposition. Cartesian liftings are unique up-to-isomorphism (in a
slice): if f and f' with codf = codf’ are both Cartesian over the same map,
then there is a unique vertical isomorphism ¢: X 3 X’ with f o =f. O

(The proof is left as Exercise 1.1.1 (i) below.)

The reader is now invited to check that with respect to the codomain functor
cod: Sets™ — Sets the Cartesian morphisms in Sets™ are precisely the
pullback squares in Sets and that the functor cod is a fibration.

The following is a mild generalisation of what has been considered above
for the category of sets.

1.1.5. Definition. For an arbitrary category B, the arrow category B~

X
has families ‘}30 as objects; thus maps ¢: X — [ in B are objects of B™.

A morphism ‘}'90 - 3‘/’ in B~ consists of a pair of morphisms

u:I—=J, f:X =Y inBsuch that Yo f =u o ¢.

For an object I € B the slice category B/[ is the subcategory of B~ of
families over I (i.e. with codomain I) and morphisms (u, f) where u = id;.
Sometimes, a slice category is simply called a slice.

1.1.6. Proposition. Consider the codomain functor cod: B~ — B.
(1) The fibre category over I € B is the slice category B/I.
(i1) Cartesian morphisms in B™ coincide with pullback squares in B.
(iii) The functor cod is a fibration if and only if B has pullbacks. In that
case it called the codomain fibration on B. |

(The proof is also left as an exercise.)

The notation B™ for the category of arrows of B comes from the fact that
B~ can be seen as the category of functors from - — - to B, and natural
transformations between them. Similarly we write B~ for the category of
functors from - —-—- to B. Notice that B>~ is not the same as (B~ )_’.

Alternatively, one can see B~ as the comma category (B | B), see [187]. In
—

writing 1% we always refer to the codomain fibration on B (and not to the
domain fibration described in Exercise 1.1.8 below).
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We started this section by describing set-indexed families of sets, either as

X
(a) pointwise (X;)ies or as (b) display } :

We emphasise that it is important to have both pictures in mind “at the same
time”. There 1s a great similarity with indexed families of categories; they can
be presented either as

(a) (Er)rep  oras  (b)

In (b) one gets a picture as given by fibrations, and in (a) as given by so-called
‘indexed categories’. It turns out that there is also a way of switching between
(a) and (b) for categories, given by the ‘Grothendieck construction’, which
is an extension of what we have for sets. The details are in the last section
of this chapter, together with a short discussion on fibrations versus indexed
categories.

For the time being however, we concentrate on (b) for categories, in order
to become more familiar with fibred categories. But it is good to keep (a} in
mind. For example, when confronted with a fibration, always ask what the
fibres are.

Exercises 1-4 collect some useful facts about Cartesian morphisms and fi-
brations. We will often make use of them.

e

FExercises

1.1.1. (i) Prove Proposition 1.1.4.
(ii) Suppose f is Cartesian and g and h are above the same map. Show
that f o g = f o h implies g = h.
1.1.2. Let p:[E - B be a functor; assume f: X — Y is in [E and put u = pf. Show
that f is Cartesian if and only if for each Z € [E and v:pZ — pX in B, the
function

fo(=)

E (2, X) Euou(2, Y)

is an isomorphism.
1.1.3.  Consider the total category of a fibration. Show that
(i) every morphism factors as a vertical map followed (diagrammatically)
by a Cartesian one;
(if) a Cartesian map above an isomorphism is an isomorphism. Especially
a vertical Cartesian map is an isomorphism.

1
1.1.4. Let %p be a fibration. Prove that

(i) all isomorphisms in [ are Cartesian;
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(i) if L4 isa composable pair of Cartesian morphisms in [E then also

their composite 2% is Cartesian.

Hence it makes sense to talk about the subcategory Cart(lE) — [E having
all objects from E but only the Cartesian arrows. We write |p| for the
composite Cart(E) — E - B.

(i) Let 2, % be a composable pair in E again. Show now that if g and
g o f are Cartesian, then f is Cartesian as well.

(iv) Verify that a consequence of (iii) is that the functor |p|: Cart(E) —» B
is a fibration. From (ii) in the previous exercise it follows that all fibres
of |p] are groupoids (:.e. that all maps in the fibres are isomorphisms).

[This |p| will be called the fibration of objects of p.]

Verify that the following two results—known as the Pullback Lemmas—are

a consequence of (ii) and (iii) in the previous exercise. Consider

RN

(i) If (A) and (B) are pullback squares, then the outer rectangle is also a
pullback square.

(i1) -If the outer rectangle and (A) are pullback squares, then (B) is a pull-
back square as well.

Consider a functor p:[E — B. We describe a slightly weaker notion of Carte-

sianness, than the one above. Call a morphism f: X — Y in [E weak Carte-

sian if for each g: Z — Y with pf = pg there is a unique vertical h: Z —+ X

with f o h = g. Show that the functor p is a fibration if and only if both

(a) every morphism u:/ — pY in B has a weak Cartesian lifting f: X — Y;

(b) the composition of two weak Cartesian morphisms is again weak Carte-

sian.
Check that the following are (trivial) examples of fibrations
BXC B B X
Jist Jid J 1
B B 1={s} b

where X, I are sets (i.e. discrete categories).

For an arbitrary category B, consider the domain functor dom: B~ — B.

(i) Describe the fibre category above I € B. It is usually called the opslice
category or simply opslice and written as I\B.

(i) Show that dom is a fibration (without any assumptions about B).

(i11) Show also that for each I € B the domain functor dom;:B// — Bis a
fibration.

Assume B is a category with pullbacks. Show that the functor B>~ — B~

. . . . d
sending 4 % to 3 is a fibration. Is the composite B>~ — B* 5 B

also a fibration?
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1.1.10. Show that the object functor Cat — Sets is a fibration. Also that the
forgetful functor Sp — Sets is a fibration—where Sp is the category of
topological spaces and continuous functions.

1.1.11. Let Fld be the category of fields and field homomorphisms; Vect is the
category of vector spaces: objects are triples (K,V,-) where K is a field of
scalars, V is an Abelian group of vectors and - K x V — V is an action
of scalar multiplication (which distributes both over scalar and over vector
addition). A morphism (K,V,-) = (L,W,.) in Vect is a pair (u, f) where
u: i{ = L is a field homomorphism and f:V — W a group homomorphism
such that f(a-xz) =u(a): f(z) forall a € K and z € V.

Check that the obvious forgetful functor Vect — Fld is a fibration. What
are the fibres? Which maps are Cartesian?

1.2 Some concrete examples: sets, w-sets and PERs

In this section we shall describe some specific fibred categories which will be
used as leading examples. They involve firstly families indexed over sets and
secondly the categories of w-sets and of partial equivalence relations (PERs).
The latter will provide important examples of models of various type theo-
rtes. Later we shall describe the three categories of sets, w-sets and PERs as
(reflective) subcategories of the effective topos Eff. This topos thus provides
a framework for studying them together. The subsections about w-sets and
PERs contain little fibred category theory; they only contain the basic def-
initions and properties of w-sets and PERs. Fibred aspects will be studied
later.

Set-indexed families

Assume C is an arbitrary category. We will describe a category Fam(C) of
set-indexed families of objects and arrows of C. As objects of Fam(C) we take
collections (X;);er where for each element 7 of the index set I, X; is an object
of C. Objects of Fam(C) may thus be seen as pairs (I, X) with J a set and X
a function X: I — Co—where Cy is the collection of objects of C.

What, then, is a map (X;)ier = (Y;);e57 We take it to consist of a function
u:l — J between the index sets together with a collection of morphisms
fi: Xi = Yyu) in C, for ¢ € I. Composition in Fam(C) is done as follows.
Given two morphisms

(u, (fi)ier) (v, (95)jer)

(Xi)ier ————— (Yj)jes ———— (Zk)rek
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involving for ¢ € I and j € J maps in C:

i 9;
x L Yoy 4 Y s 2y

Thus, for each i € I, we can form a composite in C

fi Gu(i)

Xi — Yu()y — Zuu(i))-

So that we obtain a composite morphism (v o u, (gu(i) © fi)ier) in Fam(C)
from the family (X;);er to the family (Zx)rek -

There is a projection functor p: Fam(C) — Sets which maps families to
their index sets:

(Xi)iEI =l and (u, (fi)iEI) — Uu.

From what we have seen in the previous section we may expect that such a
functor from indexed collections to index sets is a fibration. And indeed p is a
fibration: given a function u:I — J and an indexed collection (¥;);cs above
J we can find a Cartesian lifting in a diagram

5
("i)ier —— - - - > (Yj)jes
u
I J
”
The obvious choice is to take 7?; = Yy(;). Then as map --» one can take

(u, (idyu('))jej), which is above u. The verification of the required universal
property of this lifting is left to the reader.

Fam(C)
1.2.1. Definition. The above fibration sits will be called the family fi-
bration of C. The fibre over I € Sets is the (functor) category C' of I-
indexed families of objects and arrows in C.

Recall that the category C is a parameter in this construction. Especially

we can take C = Sets (like in the Prospectus). The resulting family fibration
Fam(Sets)

Sit of set-indexed sets gives a precise description of pointwise indexing
eLrs

of families of sets as in (a) in the beginning of the previous section. On the
Sets™

other hand, the arrow fibration Sits captures display indexing as con-

sidered under (b). The fact that pointwise indexing of sets is essentially the

same as display indexing finds its precise categorical formulation in the state-

ment that the categories Fam(Sets) and Sets™ are equivalent. In fact, the
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Fam(Sets) Sets™

fibrations 1 and Sits are equivalent in a sense appropriate to
ets
fibred category theory, see Section 1.7. For the time being, we formulate this

as follows.

1.2.2. Proposition. There is an equivalence of categories in (the top line
of ) a commuting triangle

Fam(Sets) — = > Sets™

N

Sets

where the functor Fam(Sets) — Sets™ sends

]—L‘EI Xi

(Xi)ies —> the projection }7" i o

w-Sets

Our next example in this section involves the category w-Sets of so-called
omega sets. [t combines the set-theoretic with the recursion-theoretic and
will play an important réle in the sequel. An informative source is [143], but
see also [199] and later sections in this book.

Recall that we write e - n for Kleene application: e - n is the outcome @, (n)
of applying the e-th partial recursive function ¢, to n. A code or index for a
partial recursive function f will be written as Az. f(z).

1.2.3. Definition. An w-set (i.e. an object of the category w-Sets that we
are about to describe) is a set X together with for each element z € X a
non-empty set of natural numbers, written as

E(z) CN
One calls F the existence predicate of the w-set. We then write (X, E')—or
sometimes (X, Ex)—for the object itself. A morphism f: (X, F) - (Y, E) in
w-Sets is a function f: X — Y between the underlying sets, for which there
is a code e¢ € N which tracks f in the sense that
for 2 € X and n € Ex(z) one has: e - n is defined and e - n € Ey(f(z)).

Notice that only the existence of such a code and not the code itself, is part
of the definition of a morphism. The identity function (X, E) — (X, E) is then
tracked by a code Az.z for the identity function on N. And for morphisms

(X, E) EN (Y,E) % (Z,E) in w-Sets, say with f tracked by e and g by d, the



34 Chapter 1: Introduction to fibred category theory

composite (X, E) 94 (Z, E) is tracked by a code Az.d- (e z) for the function
z+— d - (e-z). This constitutes a category which will be denoted by w-Sets.
It comes with an obvious forgetful functor w-Sets — Sets which forgets the
existence predicate.

In the future, in writing e-n € E(f(z)) as above, we implicitly assume that
e - n is defined.

1.2.4. Proposition. The category w-Sets has finite limits and erponents.

Proof. The constructions on the underlying sets are as for sets. Some extra
care is needed to deal with the codes. For example, one has a Cartesian product

(X,E) x (Y,E) = (X x Y, E)
with
E(z,y) = {{n,m) eN|n€ E(z) and m € E(y)}

where (—, —) 1s an effective coding of N x N into N. The projections in w-Sets
are the projections X +— X x Y — Y in Sets tracked by codes for the
projection functions associated with the effective coding. The exponent is
given by

(X,E) = (Y,E) = ({f € Y* | f is tracked by some e € N}, E)
with
E(f) ={e €N|e tracks f}. m)

Since the category w-Sets has pullbacks, the codomain functor

(1,E)
w-sets indexed by w-sets, as described in (b) in the beginning of the previous
section. At the end of Section 1.4 it will be shown how to describe w-set-
indexed w-sets pointwise as in (a), and how to get an equivalence result like
Proposition 1.2.2 for w-sets.

Next we describe the relation between sets and w-sets as: Sets is a reflective
subcategory of w-Sets. Obviously any set X can be turned into an w-set (X, E)
with E(z) = N for each € X. One obtains a functor V:Sets — w-Sets in
this way, since for a function f: X — Y any code of a total recursive function
can be used to get f: VX — VY in w-Sets. Thus V is full and faithful.

This functor V turns out to be right adjoint to the forgetful functor

(X,E)
is a fibration, see Proposition 1.1.6. This yields display families ( i of
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w-Sets — Sets, since there is a bijective correspondence

f
(X,E) —= VY in w-Sets

X —=Y in Sets

One uses the fact that the code of f in w-Sets is irrelevant in this case. Thus
Sets is a reflective subcategory of w-Sets, in a situation,

forget

- T .
Sets ¢ w-Sets with forget 4 V.

v
full and faithful

Later in Section 6.2 we shall see that the categories of Sets and w-Sets
can be described as the categories of sheaves and separated objects for the
double negation nucleus in the effective topos Eff. It explains the reflection
Sets & w-Sets.

Partial equivalence relations

Next we introduce the category PER. of partial equivalence relations (on the
natural numbers) and show how it forms a reflective subcategory of the above
category w-Sets. PERs were first introduced in [302], and have since then been
used extensively in the semantics of various type theories, see e.g. [143, 41,
199, 81, 31, 26, 197], or [33] for a recent reference—where categories of PERs
are identified within exact completions—with many pointers to the literature.

1.2.5. Definition. A partial equivalence relation (abbreviated as ‘PER’)
on N is a subset B C N x N which, as a relation, is symmetric and transitive.
For such a PER R one writes

|IR| = {neN|nRn} for domain
[n] = [n]Jrg = {m €N|mRn}
N/R = {[n]|n € |R|} for quotient

PER = {RCNxN|RisaPER}.

Notice that a PER R is an equivalence relation on its domain |R|, so formally
we should write |R|/ R instead of N/ R for the quotient. But the latter notation
is clearer. Every equivalence relation S on a subset of N forms a PER S C
N x N, see Exercise 1.2.5.
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It is easy to see that PERs are closed under arbitrary intersections. Hence,
ordered by inclusion, they form a complete lattice with joins

V.Si={Re€PER|R2U; S}
A category of PERs is formed with

objects R € PER.

morphisms R — S are functions f:N/R — N/S between the quotient
sets, which are tracked (or, have a code). That is, for
some code e € N, one has

Vn € |R|. f([n]r) = [e - n]s.
We shall write PER to denote this category.

1.2.6. Proposition. The category PER. has finite limits and exponents.

Proof. As terminal PER one can take {(0,0)}, or N x N. For the product of
R and S one can use the relation

R x S = {(n,m) | pnRpm and p'nSp’m}

where p, p’ are the recursive projection functions associated with the effective
pairing (—, —):N x N 3 N. The equaliser of f,g: R = S is R — R where

R ={(n,m) € R| f([n]) = g([m]}}.
And the exponent of R S is
R=>S={(n,n) |Vm,m e NNmRm' = n-mSn'-m'}. O
Since the category PER has finite limits, we have a codomain fibration

:E: of PER-indexed PERs in display style (like in (b) in the beginning
of the previous section). As for sets and for w-sets, there is also pointwise
indexing as in (a) for PERs, see Proposition 1.5.3.

An important point to note at this stage is that the category PER is a full
subcategory of the category w-Sets of w-sets introduced earlier in this section.

The inclusion PER — w-Sets is given by
R~ (N/R,€)

where € is the existence predicate € ([n]) = [n] = {m € N | nRm}. Indeed a
morphism f: (N/R, €) — (N/S, €) in w-Sets is a function f:N/R — N/S for
which there is a code e € N such that

V[n] e N/R.VYm € [n].e-m € f([m])
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But this is equivalent to
¥m € |R].[e - m] = £([m])

and this precisely says that f is a morphism R — S in PER, tracked by e.
Thus we have a full and faithful functor PER. < w-Sets, which is the identity
on morphisms.

One can show that this functor PER < w-Sets preserves finite limits
and exponents. This is left to the reader. What we will describe is a left
adjoint r(—): w-Sets — PER to this inclusion, which is obtained by forcing
the existence sets E(z) C N to be disjoint, see explicitly in Exercise 1.2.9. For
an w-set (X, E') with elements z, 2’ € X, put

r—z & E@)NE@)+#0
and write ~ for the transitive closure of — in X. Define
r(X,E) = {(m,m') | 3z,2" € X.m € E(z) and m' € E(z’) and = ~ z'}.

There is then a bijective correspondence in

f
r(X,EF) —= R in PER

(X,E) 5 (N/R,€) in w-Sets

given as follows.

e Assume f:r(X,FE) — R in PER, say tracked by e. Define a transpose
FY:(X,E) = (N/R, €) in w-Sets by

f¥(z) = f([m]), where m € E(z) is arbitrary
(recall E(y) # @ for each y € X)
and where [m] is the class of m in r(X, E).

Then e also tracks f¥ in w-Sets.
o Conversely, given g: (X, E) — (N/R, €) in w-Sets, say tracked by d, then
one easily checks that g is constant on ~-equivalence classes, i.e. that:

o~ = g(a) = g(a').

But then we may define a transpose ¢*:r(X, F) -+ R in PER by
g™ ([m]) = g(z), where m € E(z).

This yields a well-defined function, which is tracked in PER by d.
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It is easy to see that the passages f — f¥ and g — g” are each others inverses.
Thus, also PER is a reflective subcategory of w-Sets:

r

- T
PER ¢ w-Sets with r 1N/(-).

N/(-)
full and faithful

The relations that we have established between sets, w-sets and PERs are
summarised in the following result.

1.2.7. Proposition. There is a diagram of functors,

AN

w-Sets

//

PER

Sets

in which the —’s are full and faithful functors (preserving finite limits and
exponents), with the arrows in opposite direction as left adjoint. Thus both
Sets and PER. are reflective subcategories of w-Sets. ]

Exercises

1.2.1.  Prove that a morphism (u,(f:)ier) in Fam(C) is Cartesian if and only if
each f; is an isomorphism in C.

1.2.2.  Consider a map f = (fi:X: = Yi)ies in the fibre Fam(C); = C' over
I € Sets. Prove that f is a mono in this fibre if and only if each f; is a
mono in C.

1.2.3.  For an arbitrary category BB, let B, be the category with pointed families

X
as objects; these are pairs ( %30 ,8) where s is a section of ¢ (i.e. a map

X Y
s:I—)Xwithgoos:id).Amorphism(( }50>,s) — (( :l}w),t)

in B.® consists of a pair of morphisms u: I — J, f:X — Y in B with
Yo f=uoyandalso fos=1tou Thus morphisms of pointed families
preserve the points (i.e. sections) of the families. Prove that



1.2.4.
1.2.5.

1.2.6.

1.2.9.

1.2.10.
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(i) if the category B has pullbacks then the functor By — B sending

X
(( J[#P ) ,8) to the index object [ is a fibration;

(ii) for B = Sets, there is an equivalence of categories Fam(Sets,) —=»
Sets;” like in Proposition 1.2.2, where Sets, is the category of pointed
sets: objects are sets containing a distinguished base point, morphisms
are functions preserving such points.

Check that for a PER R one has R C |R|%.

Let I be a set. A partition of [ is a collection Q@ C P([I) of subsets of |

satisfying (1) every set in Q is non-empty (2) if a,b € Q and anb # 0,

then @ = b (3) | JQ = I. A partial partition of [ is a subset Q C P(I)

satisfying (1) and (2) but not necessarily (3). Show that

{i) there is a bijective correspondence between partitions and equivalence
relations and between partial partitions and partial equivalence rela-
tions {(on [);

(i1) there is a bijective correspondence between partial equivalence rela-
tions on I and equivalence relations on subsets of I.

Notice that for R € PER, the “global sections” or “global elements” homset

PER(1, R) is isomorphic to the quotient N/R. And also that all homsets

in PER and in w-Sets are countable.

(i) Prove that for each w-set (I, E) the slice category w-Sets/([,E) is
Cartesian closed, i.e. that w-Sets is a locally Cartesian closed category
(LCCC).

(ii) Show that also PER is an LCCC.

Show that a map VX — (N/R, €) in w-Sets is constant (where X Is a set

and Ris a PER).

(i) Prove that the unit 5 x, gy of the reflection PER & w-Sets at (X, F) €
w-Sets is an isomorphism if and only if the existence predicate E: X —
PN has disjoint images (i.e. satisfies E(z) NE(y) # 0 = = =y).
Conclude that PER is equivalent to the full subcategory of w-Sets on
these objects with such disjoint images. These w-sets are also called
modest sets (after D. Scott). In this situation the existence predicate
E: X — PN may equivalently be described via a surjective function
U — X, where U C N (i.e. via a subquotient of N), see e.g. [143,
Definition 1.1].

(i1) In view of (i}, describe the reflector r:w-Sets — PER as ‘forcing
images to be disjoint’, by taking a suitable quotient

(X = PN) - (X/~ —> PN).

(i) Let Eq(N)= {(n,n) | n € N} C N x N be the ‘diagonal’ PER. Show
that it is a natural numbers object (NNO) in PER. Also that the
resulting w-set N = (N, €) with € (n) = {n} 1s NNO in w-Sets.

(i) Check that the maps Eq(N) — Eq(N) in PER, i.c. the maps N = N
in w-Sets, can be identified with the (total) recursive functions N — N.
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1.2.11. Show that the category w-Sets has finite colimits. And conclude, from the

reflection PER & w-Sets that PER also has finite colimits.

1.2.12. Prove that the reflector r:w-Sets — PER preserves finite products, but

does not preserve equalisers.

[Hint. For a counter example, consider in Sets on the two-element set 2 =

{0, 1} the identity and twist maps id, ~:2 == 2, with empty set § — 2 as

equaliser. By applying V:Sets — w-Sets we get an equaliser diagram in

w-Sets (since V is right adjoint). But it is not preserved by the reflector r,

since r(V2) is terminal, and r(V®) is initial.}

1.2.13. (i) Prove that Fam(—): Cat — Cat is a (2-)functor. (One has to ignore
aspects of size here, because categories Fam(C) are not small; for ex-
ample, Fam(1) is isomorphic to Sets.)

(1) Show that Fam(C) is the free completion of C with respect to set-
indexed coproducts. This means that Fam(C) has set-indexed coprod-
ucts and that there is a unit C — Fam(C) which is universal among
functors from C to categories D with set-indexed coproducts H'. eI Xi.

(iii) Prove that a category C has arbitrary coproducts if and only if the
unit C — Fam(C) has a left adjoint.

[The Fam(—) operation forms a so-called ‘KZ-doctrine’, see [180].]

1.3 Some general examples

]B—}
So far we have seen codomain fibrations ]{B for categories B with pullbacks
Fam(C)
(in Proposition 1.1.6), and family fibrations . (in Definition 1.2.1) for

e
arbitrary categories C. In this section we shall introduce ‘simple fibrations’
s(B) Sub(B)
1 for categories B with Cartesian products, and fibrations Iﬁ and

Rel(B)
]%E of subobjects and relations (for categories B with pullbacks).

Simple fibrations

This first construction will be of central importance in the next chapter on
simple type theory. Let B be an arbitrary category with Cartesian products
x. We write s(B) for the category having

objects pairs (I, X) of objects of B.

morphisms (I, X) — (J,Y) are pairs of morphisms (u, f) in B with
wl—Jand f:Ix X =Y.



Section 1.3: Some general examples 41
The composite of (I, X) — @4 (JY) —= v.g) (K,Z)is (v ou, go{uomnf)),

where the second component is obtained as composite

(uom,f) g

IxX JXY —> 7

And the identity on (I, X) is the pair (ids, #’) with 7’ the second projection
I x X = X. There is then an obvious projection functor s(B) — B given by

(I, X)—1 and (u, f) — u.

Intuitively, maps f: X — Y in the fibre s(B); over I € I are I-indexed families
fi: X = Y, for i € I, where the objects are kept fixed. Remember the family
fibration from the previous section where we had maps f;: X; — Y; over [.

The above functor will be written as sg:s(B) — B and called the simple
fibration on B. It is a fibration indeed, since for (J,Y) € s(B) and w: I — J
in B one finds a Cartesian lifting of u as:

1.3.1. Definition. For a category B with Cartesian products, the simple
s(B)
fibration on B is the above projection functor {
The fibre s(B); over I € B will often be written as Bj/I and called the
simple slice over I. (Its objects are X € B and its maps X — Y are I x X —
Y in B)

Notice that all these simple slices BfI have the same objects, namely the

objects from B. There is an obvious functor I*:B — B/l by X — X and
IxX

f— fonx’'. There is a similar functor /*:[B — B/ given by X — %’T

and f — idy X f, as used earlier in Section 1. We write I* for both these
functors B — B/ and B — B/I. These simple and ordinary slices have much
in common (see Exercises 1.3.2 - 1.3.4 below, and Corollary 1.10.16). For
example, if B additionally has a terminal object 1, then for both the simple
and the ordinary slice there are isomorphisms of categories

* *

1 1
B?B//l and B?]B/l
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It 1s useful to present an immediate generalisation of this ‘simple’ construc-
tion. It is based on the following notion from [156].

1.3.2. Definition. (i) A CT-structure is a pair (B, T) where B is a cate-
gory with finite products and T is a non-empty collection of objects from IB.
Such a CT-structure will be called non-trivial if there is at least one object
X € T equipped with an arrow 1 — X from the terminal object to X.

(i1) A morphism of CT-structures from (B, T) to (A, S) is a finite prod-
uct preserving functor K:B — A which satisfies K[T] C S (i.e. X € T implies
KX € S).

This condition of non-triviality for CT-structures usually expresses that
some domain is non-empty and can be seen as a non-degeneracy condition.
The ‘C’ and the ‘T’ in ‘CT-structure’ stand for ‘context’ and ‘type’. As will be
explained in the next chapter, in such a CT-structure (B, T) one can view B as
a category of contexts and T as a collection of types; the inclusion ' C Obj B
can then be seen as identification of a type ¢ with the corresponding singleton
context (z:¢). The two extreme cases are 1" is Ob} B and T is a singleton.

An example of a CT-structure is B = w-Sets and T = objects of the form
VX (where X is a set).

1.3.3. Definition. Suppose (B,T) is a CT-structure. Let s(T') be the cate-
gory with

objects pairs (I, X) with /€ Band X €T
morphisms (I, X) — (J,Y) are pairs (u, f) in B with u:I — J and
FIxX Y.

This generalises the earlier definition of s(IB) by restricting the second com-

ponent of objects to the types T
s(T)

As before, one obtains a fibration %ST . It will be called the simple fi-
bration associated with the CT-structure (B, T').

Notice that the original construction sg:s(lB) — B is the special case
s7:8(T) — B where T consists of all objects of B. The other extreme is
where T is a singleton, say T = {Q2}. We then omit the curly braces {—} and
write sp:s(22) — B for the resulting simple fibration. CT-structures with one
type (i.e. of the form (1B 2)) will be used for the semantics of the untyped
lambda calculus—because ‘untyped’ is the same as ‘typed with a single type’,
see Section 2.5.

The generalised “CT” version of a simple fibration involves a restriction to
a subset of the objects. A similar generalisation exists for codomain fibrations,
involving a restriction to a subset of the arrows. This leads to the notion of
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a display map category and—in a further generalisation—to the notion of a
comprehension category. The details are in Chapter 10 on dependent type
theory, especially in Section 10.4.

Monos and subobjects

5
In the codomain fibration E we took all maps of B as families. An obvious
restriction is to consider monic maps X ~ [ only. In the case B = Sets, a
fibre of such a monic (injective) map can have at most one element, so it
is either empty or a singleton. We write Mono(B) for the full subcategory

of B~ consisting of monic families. If the category B has pullbacks, then
Mono(B)

the (restricted) codomain functor ]ﬁ is a fibration; it will be called the

fibration of monos (of B). This functor is a fibration because a pullback

of a mono along an arbitrary map is a mono again. Notice that the fibres of
Mono(B)
this fibration + are all preordered categories. Such a fibration will be
called preordered, or a fibred preorder. But notice that the total category
Mono(B) itself, is not a preorder.
The preorder C of monos, say in the fibre over I, is given as follows. For

X 2 Iand Y = I one has m C n if and only if there is a (necessarily
unique, monic) map f: X — Y with n o f = m. One can then form the
“poset reflection” of this preorder C on the monos over I. It yields a poset
with equivalence classes of monos as elements (where m ~ n if and only if
both m C n and n T m, if and only if there is an isomorphism ¢: X S Y
with n o ¢ = m). These equivalence classes are called subobjects (of I}; the
resulting poset will be written as Sub(7).

Usually one does not distinguish notationally between a mono and the corre-

sponding subobject. We write Sub(B) for the category obtained from Mono([B)
Sub(B)
by taking subobjects as objects. One gets the fibration niis of subob-
jects in B. The fibres Sub([l) are partial orders. For B = Sets the subobject
Sub(Sets) Pred
fibration Sl was written as Slt in the Prospectus. For a specific set

ets ets

I € Sets, the fibre Sub(J) above I is the (partially ordered) category (PI, C)
of subsets of .

1.3.4. Remark. At this stage we have already seen the three fibrations that

s(B)
will play a crucial role in this book. They are the simple fibration lll% , the
B Sub(B)

codomain fibration It and the subobject fibration HlB . The last fi-
bration will be used to describe the so-called internal (predicate) logic of B;
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this will become clear in Chapters 3 and 4. The first two will be used in the
categorical description of type theories. The simple fibration will be used for
simple type theory and the codomain fibration for dependent type theory. We
therefore often jointly refer to these two fibrations as the type theoretic
fibrations.

Relations

A (binary) relation on an object I in a category B with finite limits is a
subobject R — I x I. The category Rel(IB) has such relations as objects; a
morphism from R — I x I to S — J x J in Rel(B) isamap u: ] — J in B
giving rise to a commuting diagram

Notice that there is no need to mention the (name of the) top dashed ar-
row, because there can be only one such map. Set-theoretically the diagram
expresses that ¢Ri’ implies u(#)Su(i’'). The functor Rel(B) — B sending a re-
lation R — I x I to its carrier [ is then a fibration—again, since monos are
stable under pullback. -
Often we are interested in special relations. Categorically, a relation
(r1,r2): R— I x I is called
(i) reflexive if the diagonal §; = (id,id): I — I x I factors through R
I x I, i.e. if there 1s a map

I-—-->R
PN
IxT

(ii) symmetric if there is a ‘swap’ map

R >R
| | N

Ix] — I x1I
<7l.l,7r IxI

(iit) transitive if, after forming the pullback T of triples (in which both
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the first two and the last two components are related by R) as on the left

,
T———>R T--~-- ~ R
r12 l - 17’1 one gets \ /
t (r1,72)
R 1 Ix1
T

where t = (r; o 713, r2 0 ro3): T — I x I. It is not hard to see that in Sets
these definitions coincide with the usual formulations.

Then, a relation R ~ I x [ is called an equivalence relation if it is
reflexive, symmetric and transitive. It is a partial equivalence relation

if 1t is symmetric and transitive, but not necessarily reflexive. One obtains
ERel(B) Per(B)
{

corresponding fibrations l%x and i

Exercises

s(B
1.3.1. (i) Show that in the total category s(IB) of a simple fibration (It) a mor-
phism (u, f): (I, X) — (J,Y) is Cartesian if and only if there is an
isomorphism h: I x X 5 IxY in Bsuch that roh = rand n' o h = f.
IxX
(ii) Show that the assignment (I,X) — I*(X) = ‘]Lﬂ_ extends to

a full and faithful functor s(B) — B™. Prove that it maps Cartesian
morphisms to pullback squares.

[This functor restricts to a full and faithful functor BfI — B/1.]
s{B
1.3.2.  Consider a simple fibration (ﬁ) for a category [B with finite products (1, x).
Prove that
(i) each fibre BJI has finite products, and I*:B — Bf/I preserves these
products;
(i1) the following are equivalent:
(a) B is Cartesian closed;
(b) each fibre Bf I is Cartesian closed,;
(c) each functor I*:B — BJI has a right adjoint I = (—).
1.3.3. In case a category B has finite limits (i.e. additionally has equalisers with
respect to the previous exercise), prove that B is Cartesian closed if and
only if for each I € B, the functor I*:B — B// (to the ordinary slice)

IxX
mapping X to I*(X) = ( ‘l/f ) has a right adjoint [,
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1.3.4.

1.3.5.

1.3.6.

1.3.7.

1.3.8.
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X
[Hint. One obtains a right adjoint HI by mapping a family ( %‘P) to

the domain of the equaliser e in

Iz
e —
H1(¢)>———>(]:>X) (I=1. ]
~—~——
A(r)

Let BB be a category with finite products and I an object in [B.
(i) Show that the functor [ x (=):B —+ B forms a comonad on B.

(ii) Show that the simple slice BfI is the Kleisli category of this comonad
I'x (—) and that the ordinary slice B/ is its Eilenberg-Moore category.

I J
a mono in B~ if and only if both its components I — J and X — Y are
monos in [B.
A regular mono is a mono that occurs as an equaliser. Write RegSub(IB)

for the full subcategory Sub(IB) consisting of (equivalence classes of ) regular
RegSub(B(
monos. Show that the codomain functor ng is a fibration.

X Y
Let B have finite limits. Prove that a map of families ( + ) - ( + ) is

Let B be a category with finite limits.
N

(i) Show that if B is a CCC then also B~ is a CCC and It is a functor
which strictly preserves the CCC-structure.

(ii) Show that the same holds for Sub(IB) instead of B~ .

X Y
[Hint. For families ( %30) and ( :ljd) ) construct the exponent family

¢ = 9 over the exponent object / = J in B as in the following pullback
diagram.

U (X=Y)
lJ
o> lX¢t/)
I=zJ) ————— (X =) ]

p=>J

Give a categorical formulation of anti-symmetry of a relation R~ | x I.
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1.3.9.  Verify in detail that the following functors are fibrations.

Sub(B) Rel(IB) Per(BB) ERel(IB)
} | | }
B B B B

1.3.10. Define an alternative category of relations R — I x J on two possibly
different objects in a category B, which is fibred over B x B.

E
1.3.11. Let %P be a fibration. Prove that p is preordered (i.e. all its fibre categories
are preorders) if and only if above each map pX — pY in B there is at
most one arrow X = Y in E (i.e. if p is faithful). Conclude that in the total
category of a preorder fibration, a vertical morphism is monic.

1.4 Cloven and split fibrations

The definition of a fibration is of the form “for every ¢ and y there is a z
such that ...”. This does not imply that we are given for each pair z,y an
explicit z, unless we make use of the Axiom of Choice. The differences in
the way the structure of a fibration may be given will concern us in this
section. Briefly, a fibration is called cloven if it comes together with a choice
of Cartesian liftings; and it is called split if it is cloven and the given liftings
are well-behaved in the sense that they satisfy certain functoriality conditions.
These fibrations behave more pleasantly, and therefore we prefer to work with
fibrations in split form (if this is possible). Cloven and split fibrations give
rise to so-called indexed categories B°P — Cat. These generalise set-valued
functors (or presheaves) B°P — Sets.

E
We recall that a functor %P 1s a fibration if for every map u: I — J in the
base category B and every object X € E above J in the total category, there
1s a Cartesian lifting « — X in [E. Assume now we choose for every such u
and X a specific Cartesian lifting and write it as

a(X)

(X)) — = X

(By Proposition 1.1.4 we can only choose up-to vertical isomorphisms.)

We claim that, having made such choices, every map u: I — J in B deter-
mines a functor u* from the fibre E; over J to the fibre E; over I. (Note the
direction!) The recipe for u*:E; — Ey is as follows.

o for an object X € [E; one has pX = J and so we take u*(X) € Ey to be the
domain of the previously determined Cartesian lifting u(X): u*(X) = X;
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e for a map f: X =Y in E;, consider the following diagram in E.

The composite f o T(X): u*(X) — Y is above u, since f is vertical. Because
u(Y') is by definition the terminal lifting of u with codomain Y, there is a
unique map u*(X) --» u*(Y), call it w*(f), with ©(Y) o u*{f) = f o T(X).

By uniqueness, u* preserves identities and composition. Thus one obtains a
functor u*:[E; — [E;. Such functors u* are known under various names: as
reindexing functors, substitution functors, relabelling functors, inverse
image functors or sometimes also as change-of-base or as pullback func-
tors. We mostly use the first two names.

1.4.1. Convention. An unlabelled arrow u*(X) — X in a diagram is always
a (chosen) Cartesian morphism Z(X):u*(X) — X as above. Omitting these
labels makes diagrams more readable. Choosing an object u*(X) will often be
called substitution or reindexing (along u).

1.4.2. Example. Assume 1?; is a category with chosen pullbacks and consider

B
the codomain fibration i . Recall that the fibre over I € B can be identi-

fied with the slice B/I. A morphism u: I — J induces by the above recipe a
substitution functor u*:B/J — B/I by pullbacks (as described before Exam-
ple 1.1.1). Usually it is called the pullback functor induced by u. As a special
case we have I*: B = B/1 — B/I resulting from the unique map !y: I — 1 from
I to the terminal object 1 € B. It sends an object X € B to the Cartesian

IxX
projection( } )

E
We return to our general fibration %P (with chosen liftings). A good ques-
tion is the following: given two composable morphisms

[ — ] K
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in B, are the two resulting functors Ex =3 Ey, namely

*

v* u
/> Es \
]EK IEI
\__—/'

(vou:r

equal? It turns out that in general they are not equal but naturally isomorphic:
one gets a unique mediating map as in the diagram on the left below.

o (X) — v*(X) X id
! [
= | o |
v ¥
(vou)(X) X d*(X) — X
u v . id
I J K ) m———

This isomorphism u*v* (X) = (v o u)*(X) arises because Cartesian morphisms
are closed under composition, so that there are two Cartesian liftings of v o u
at X, as indicated.

There is a similar phenomenon for identities, as in the diagram on the
right, since identities are Cartesian. Hence, in general the substitution functor
(ids)* induced by the identity on I € B, is only naturally isomorphic—and
not equal—to the identity functor on the fibre category E;.

Sometimes these morphisms u*v*(X) =+ (v o u)*(X) and X =5 id*(X)
are identities—we then call the fibration split—but often this does not hap-
pen (e.g. in the above pullback example with B = Sets and with canonical
pullbacks in Sets).

(The case of identities is not problematic since we can always choose
(idr)* = idg,.)

It is not hard to check that the maps determined in the diagrams (for every
X) yield natural isomorphisms id = (id)* and v*v* = (v o u)*. Moreover,
they satisfy certain coherence conditions, which will be given below.

Thus, when we work with reindexing functors, lots of (coherent) isomor-
phisms crop up. It is time to sum up the above discussion in a few definitions
and results.

1.4.3. Definition. (i) A fibration is called cloven if it comes equipped with
a cleavage; that is, with a choice of Cartesian liftings. This cleavage then
induces substitution functors u* between the fibres.



50 Chapter 1: Introduction to fibred category theory

(i) A split fibration is a cloven fibration for which the induced substitution
functors are such that the canonical natural transformations are identities:

id = (id)* and  u'v' = (vou).
The cleavage involved is then often called a splitting.

Fam(C

The family fibration it( ) is an example of a fibration which can be
equipped with a splitting. In fact the choice of lifting described in the begin-
ning of Section 1.2 makes the fibration split.

By using a version of the Axiom of Choice of suitable strength in the meta-
theory, one can always provide a fibration with a cleavage. We usually indicate
explicitly when we do so. Later in Corollary 5.2.5 it will be shown that every
fibration is equivalent (in a fibred sense) to a split one. The construction used
there involves the fibred Yoneda Lemma. For some codomain examples, like for
set-indexed sets in Proposition 1.2.2, and similarly for w-sets and PERs below,
we can give an elementary equivalent split description, see Propositions 1.4.9
and 1.5.3 below.

E
By choosing substitution functors one obtains from a cloven fibration { an

assignment I — [E; which is almost a functor B°®? — Cat. It yields a so-called
‘pseudo-functor’.

1.4.4. Definition. (i) An indexed category —or, to be more precise, a
B-indexed category—is a pseudo functor ¥:B°? — Cat. It consists of
a mapping which assigns to each object I € B a category ¥(/) and to each
morphism u: I — J a functor ¥(u): ¥(J) — ¥(I); note the reverse direction.
Such a functor ¥(u) is often simply denoted by u* when no confusion arises.
Additionally, a pseudo functor involves natural isomorphisms

nrid = (id;)” for I € B
Puy: W0 = (vou) for | 2 J - K in B
which satisfy certain coherence conditions:

*

u
nru* u*ng u
for I — J
(id[)*u* u* u* (idj)*

Hid;u Huid ;
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*
U oy w . .
vttt —mmMmmm > u (w o ”U)

Py W™ fuwos for I 5 J K 5L

(vou)*w* m) (wovou)*

There is a formal similarity with the diagrams for a monad. It is made explicit
in Exercise 1.10.7.

(i1) A split indexed category is a functor ¥:[B°? — Cat; it is an indexed
category for which the n’s and p’s in (i) are identities.

What we have said in the beginning of this section can now be summarised
in the following result.

E
1.4.5. Proposition. Let %p be a fibration with a cleavage. The assignment

I—E and u — (the substitution functor u*)

determines a B-indezed category. This indexed category is split whenever the
cleavage of p is a splitting. O

Notice that in this definition of indexed category, the coherent isomorphisms
7, p are part of the structure. In fibrations, one does not have such structure,
but it follows from the universal property of lifting, once a choice of liftings is
made. For a more detailed discussion on fibrations versus indexed categories,
see 1.10.4.

We have seen in Proposition 1.2.2 that the non-split codomain fibration

Sets ™ ] Fam(Sets)
can equivalently be described as a split family fibration 1
Sets Sets

Remember that the codomain fibration captures display indexing with substi-
tution by pullback, whereas the family fibration captures pointwise indexing
with substitution by composition. The latter gives a split fibration. There are
similar phenomena for w-sets and for PERs.

(Later, in Section 1.7 we will see that the equivalence below is an equivalence
in a sense appropriate for fibred categories.)

1.4.6. Definition. Let UFam(w-Sets) be the category of “uniform families”
of w-Sets. It has:

objects omega-sets (I, E') together with for each element i € / an
w-set (X;, E;). We shall often simply write (X;, Ei)ic(r p)
for such objects.
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morphisms  (X;, Ei)ie(r,gy — (Y, Ej)jesE) are pairs (u,(fi)ier)
where u: (I, E) — (J, F) is a morphism in w-Sets between
the underlying index objects and (fi: X; — Yugi))ier 1s a
collection of functions between the fibres, which is ‘tracked
uniformly’: there is a code e € N such that for every i € [
and n € E(7) one has that e - n tracks f;. Explicitly, for
some ¢ € N, we have

Vie I.Vn € E(i).Vx € X;.Vm € E;(z).
e-n-me€ Ey;)(fi(z))-

We leave it to the reader to verify that one obtains a category. There is a
first projection functor UFam(w-Sets) — w-Sets—which is a split fibration,
much in the same way as for Sets. This category UFam(w-Sets) captures
w-sets pointwise indexing w-sets. It is related to the arrow category w-Sets™
capturing display indexing, in the following manner.

UFam(Ww-Sets)

1.4.7. Proposition. The projection functor w si . given by the map-
-oets
ping (Xi, Ei)ie(r,p) = (I, E), is a split fibration. Moreover, there is an equiv-

alence of categories in a commuting triangle.

UFam(w-Sets) ——————» (;-Sets™

\4

w-Sets

where the functor UFam(w-Sets) — w-Sets™ sends
(HiEIiXi ’E)

Xi, Ei)i 7r ,
( ) €(,E) — (I.E)

with the existence predicate E on the disjoint union [[;.; Xi given by

E(i,z) = {{n,m) | n € E[(i) and m € E;(z)}.
UFam(Ww-Sets)

Proof. The functor w-Slets is a fibration because for u: (I, E) — (J, E)
in w-Sets, and a family (Y}, E;);eg) over (J,E), we can form a fam-
ily w*((Yj, Ej)je,g)) over (I,E) as (Yuqu), Ei), where Ei(y) = Euu(y)
There is then an associated Cartesian lifting (u, (id)): u*((Y;, Ej);e(0,8)) —

(Y;, Ej)je(a,E) over u. This choice of liftings forms a splitting.
The projection 7 is well-defined, since it is tracked by a code for the first
projection (n,m) — n. We get a functor P: UFam(w-Sets) — w-Sets™ by
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sending a morphism

(u, f)

(Xi, Ei)ie,) ——— (Y}, Ej)jeu.m)

to the square

(Hie[ Xi»E) {u,f} (UjEJ YJ')E)
(I, E) - (J, E)

where {u, f} is the function (i,z) — (u{i), fi(z)), tracked by Az.{e- (pz),d-
(pz) - (p’2)), in which e is a code for u and d is a code for the family of
functions f = (fi)ier. We leave it to the reader to verify that P is a full and
faithful functor.
(X,E)

In the reverse direction, one maps a family (]‘l'g) in w-Sets™ to the
), where for ¢ € I the set X; is the fibre ¢~ !(i) over i € I,
Ex(z). This is evidently functorial, and yields an equivalence
ts) = w-Sets™, commuting with the functors to w-Sets. D

family (X;
and Eji(z
UFam(w-

i, Ei
) =
Set

UFam(Ww-Sets)

Notice that in the split fibration sl e one has substitution by com-
-Se
w-Sets™

position, whereas in l one has substitution by pullbacks. The former

is evidently functorial, whereas the latter is only ‘pseudo-functorial’. This is
Fam(Sets) Sets

precisely as for l and i in Proposition 1.2.2.

Recall that there is a a full subcategory PER — w-Sets of partial equivalence
relations inside the category of w-sets. One may thus restrict the indexed ob-
jects in the definition of the category UFam(w-Sets) to PERs. This yields

a category UFam(PER) of w-set-indexed-PERs, instead of w-set-indexed-
UFam(PER)
w-sets. We get another example of a split fibration 1 , which will

-Sets
play an important role in the sequel. Therefore we spell out its definition in
detail.

1.4.8. Definition. Let UFam(PER) be the category with

objects collections (R;);e; of PERs R; indexed by an w-set (I, F).
As above, these are often written as (R;)ic(r E)-
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morphisms  (R;)ic(1,E) = (Sj)je(s,E) are pairs (u, f) where u: (I, E) —
(Y, E)) is a morphism in w-Sets and f = (fi: Ry = Su(i))ier
1s a collection of functions between the fibres, which is
tracked uniformly: there is an ¢ € N such that for every
i € I and n € E(7) the code e - n tracks f; in PER.

UFam(PER)

1.4.9. Proposition. The first projection w é . mapping (R:)ic(1,E) —
-oets

(1, E) is a split fibration. Substitution is by composition, precisely as above. O

In the next section we shall see how one can further restrict the index
objects to PER «— w-Sets via what is called change-of-base.

We close this section with a simple lemma which turns out to be very useful
in calculating with fibrations. It is essentially a reformulation of Exercise 1.1.2,
and tells us that a morphism in a total category corresponds to a morphism
in the basis together with a vertical map. It enables us to switch smoothly
between global structure in the total category and local structure in the fibres.

E
1.4.10. Lemma. Let P bea fibration. For every cleavage one has an 1so-

morphism of sets (or classes)

Ex, V)= JI Ex(X «(m)
u:pX —=pY

where [] s disjoint union. The isomorphism is natural in X and Y, between
functors E°P x E =3 Sets.

Proof. Given f: X —» Y in E take u = pf:pX — pY and f: X — u*(Y) to
be the vertical part of f, i.e. the unique vertical map with (Y) o f' = f.
Conversely given u:pX — pY and f: X — u*(Y) above pX one obtains
f=u(Y)o f: X = Y. Naturality is left as exercise. o

Finally, there is a principle of mathematical purity that deserves attention.
One should not define a property for fibrations in terms of a specific cleavage;
definitions should be ‘cleavage-free’ or ‘intrinsic’. Sometimes it can be subtle
that a certain property is intrinsic: consider as example,

“every substitution functor u* has a left adjoint [[,”

This property does not depend on a cleavage: two different cleavages induce
naturally isomorphic substitution functors (see Exercise 1.4.3 below); so one
of them has an adjoint if and only if the other has an adjoint.

Exercises

1.4.1.  Describe weakening functors n* and contraction functors §* (both on
objects and on morphisms) for projections #:I x J — I and diagonals



1.4.2.

1.4.3.

1.4.4.

1.4.5.

1.4.6.

1.4.7.

1.4.8.
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§={d,n'):I xJ — (I xJ)xJ in a family fibration, a codomain fibra-
tion, a subobject fibration, and in a simple fibration.

Prove that if a map u:[ — J in the base category of a fibration is an
isomorphism, then so is a Cartesian lifting u(X):u*(X) — X, for each X
above J.

Given a fibration with two cleavages. Show that for each morphism in the
basis tEhe two induced substitution functors are naturally isomorphic.

Let %p be a fibration, and consider the squares (a) in E over (b) in B

ph
U ———h-——> X pU ——— = X
5\ (a) y over px (b) \l:f
V——Y py ————— > pY
k pk

where h and k are both Cartesian. Prove that (a) is a pullback square in E

if and only if (b) is a pullback square in B.

[Notice that as a result, the square defining u* on morphisms in the begin-

ning of this section, is a pullback in the total category.]

Show that any poset fibration (all of whose fibre categories are posets) is

split.

Assume functors B 5 C & A and form the comma category (K | L). Show
K|L

that the (first) projection functor ( ]; ) is a split fibration.

[The second projection is an “opfibration”, see Lemma 9.1.6.]

Show that the split indexed category induced by the family fibration
Fam(C)

Slt sends a set [ to the (functor) category €' of I-indexed families
eLs

of objects and morphisms of C. What is the morphism part of this functor?
The following tells that choosing a cleavage is functorial—in a suitable
sense. Let p: [E — B be a functor. Form the pullback in Cat

(Bip)=ExgB’ —————> B~

p' (COd) l l cod

E » B
and define a functor F:[E7 — Exg B~ by (f: X' - X) — (X,pf). Prove
that pis a cloven fibration if and only if F has a ‘right-adjoint-right-inverse’,
i.e. a right adjoint with identity FG 5 id as counit.
[This result may be found in [105], where it is attributed to Chevalley.
It shows the ‘algebraic nature’ of the concept of (cloven) fibration; it is
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comparable to the result that chosen products x may be given by an adjoint
functor. The result forms the basis for a 2-categorical formulation of the
concept of fibration in [315, 317], see Definition 9.4.1 later on.]
1.4.9. Check that the natural isomorphisms 7:id == id* and p: u*v* = (v o u)*
in a cloven fibration make the diagrams in Definition 1.4.4 commute.
1.4.10. Later in Section 1.10 it will be shown that each indexed category gives rise
to a cloven fibration; the latter is split whenever the indexed category is
split. Try to find this construction now already.
[Hint. Have another look at the first part of Section 1.1 and try to generalise
the disjoint union which is used to go from pointwise to display indexing.]

1.5 Change-of-base and composition for fibrations

So far we have seen several examples of fibrations. In this section we introduce
two basic techniques for constructing new fibrations from old, namely change-
of-base (or pullback) and composition. This will give rise to new examples of
fibrations, but also to a rediscovery of some old ones.

E
1.5.1. Lemma (Change-of-base). Let %p be a fibration and K: A — B be a
functor. Form the pullback in Cat

AxpE —— > E

K*(p)l_l lp
A B

K

In this situation, the functor K*(p) is also a fibration. It is cloven or split in
case p is cloven or split.

We should point out that we are using the ordinary pullback of categories
here: A xp [E has pairs I € A, X € E with KI = pX as objects. So we use
equalities between objects, instead of isomorphisms.

Proof. Given an object (J,;Y) € A xg E (so KJ = pY) and a morphism
u:l = Jin A Let f: X = Y in E be a Cartesian lifting of Ku: K1 — KJ in
B. The pair (u, f) is then K*(p)-Cartesian over u:
u
AxpE (I,X)----~- > (J,Y)
k)|
A I J o
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1.5.2. Examples. In general change-of-base is a useful tool for defining (fi-
bred) categories. For example, it can be used to take out a certain part of a
fibration.

(i} Let FinSets — Sets be the category of finite sets. Change-of-base

FinFam(C) ———— Fam(C)
|- l
FinSets > Sets
FinFam((C)
yields the fibration 4 . of finite families of objects and arrows in C.
moets
Such a diagram will often be called a change-of-base situation.
(i1) Let C be a locally small category with terminal object 1. By change-

of-base along the global sections functor I' = C(1, —): C — Sets one obtains
the so-called scone Sc(C) and the injective scone iSc(C) in

Sc¢(C) —————— Sets™ 1S¢(C) —————— Sub(Sets)
|- | |- |
cod and
(® Sets C Sets
r r

The previous lemma yields that the scone and injective scone of C are fibred
over C. Sometimes the scone Sc(C) is called the Freyd cover of C, see [85]
or {186]. It can also be described as the comma category (Sets | I').

Next we show how two specific fibrations that we already know can be re-

constructed via change-of-base. For the first example, recall from the previous
UFam(PER)

section the fibration w-Slets of w-set-indexed-PERs. This fibration can be
turned into a fibration of PER-indexed PERs by restricting the index objects
to PER < w-Sets via change-of-base. What we get is a split fibration, which
turns out to be equivalent to the codomain fibration on PERs.

UFam(PER)

1.5.3. Proposition. Form the split fibration PéR of PER-indexed

PERs in the following change-of-base situation.
UFam(PER) ———— UFam(PER)

N |

PER ¢ w-Sets
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There 1s then an equivalence of categories in a commuting triangle:

UFam(PER) —————— PER™

\A

PER
relating pointwise and display indexing of PERs.

Using the same notation UFam(PER) for different total categories here may
seem confusing, but is rather convenient, and should not lead to problems as

. UFam(PER) UFam(PER)
long as we use the entire fibration, as in 1 and w sl o 1.e. the
-oets

total category together with the base category; then one can still see the
difference.

Proof. One maps a family of PERs (R|s))jnjen/a indexed by a PER A, to
the projection m: {A | R} = A, where {A | R} is the PER

{4 | R} = {(n,m) | pnApm and p'nR(p,p'm}
and = is the projection given by [(n,m)] — [n].
In the reverse direction, one maps a family j’f in PER™ to the
collection Ry, for n € |A| where Ry, is the fibre
Rpny = {(m,m’) € R| p([m]) = [n]}-

Further details of the equivalence are left to the reader. m]
UFam(PER)
Notice that we have obtained a fibration PéR by change-of-base

PER™
which is equivalent to the fibration PéR . In such a situation we also say
that there is a change-of-base situation

PER™* —— > UFam(PER)

|- |

PER ¢ w-Sets

But notice also that this diagram is not a pullback in Cat, in the sense that
we used before. We shall be similarly sloppy in the next result.

But first recall (e.g. from [42]) that in a category C with finite limits and
finite coproducts (0,+) one says that coproducts are universal if in a dia-
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s X'J z I_Y’
J l | g
X X+Y - Y

the left and right squares are pullbacks, then the top row is (also) a coproduct
diagram (i.e. the induced cotuple X’ + Y’ — Z is an isomorphism). And
coproducts are called disjoint if the coprojections &, ' are monos and form

a pullback square
0
' _|
X

Below we use the fact that if coproducts are universal, then the initial object
0 is strict: every map X — 0 is an isomorphism, see Exercise 1.5.6.

Notice that these notions easily extend to coproducts [];; X; indexed by
an arbitrary set /. This is what we shall use.

KI

b

X+Y

K

1.5.4. Proposition. Let C be a category with finite limits and set-indezed
coproducts [ [;c; Xi, which are uniwersal and disjoint. There is then a copower
functor

Sets ———C by I —1-1=]],(1)

where 1 € C 1s the terminal object. This yields an equivalence of categories

C/ 1) — (CI, natural in I € Sets.
Then we can obtain the family fibration on C in a change-of-base situation,
Fam(C) c
| |
cod
Sets C
By this result, we have a correspondence between pointwise indexing (X; }ier

X
of an I-indexed family in C and display indexing ( 4 ) , over index objects

)
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[1() = [I;e; 1 € C—assuming that C has a suitably rich coproduct-structure.

Proof. For a function u:1 — J one takes [[(u):[I(7) — [[(J) to be the
unique map with [[(u) o ki = ky(iy: 1 = [, 1 = (V).
One can define two functors

Fy
— T

c! /D)

v
Gr

as follows. For a collection X = (X;);er in !, take

ies Xi
F((X:)ier) < ELIWX
)

where wx is the unique map with 7rx o k; = k; o!x,. In the reverse direction,

one takes
Z def
G Hl(’(’; = (Zi)ier,

where each Z; (for i € I} is obtained in a pullback square:

)

1 L1(7)

Ki

There is a natural isomorphism FG = id since by universality the maps
Z; — Z in this diagram yield a cotuple isomorphism [[; Z; & Z. In order
to prove GF 2 id one applies the definition of G to F((X;)ier), leading
to pullbacks of mx (as above) along ;. This gives us the original collection
(Xi)ier, since there are pullback squares

X; [Lier Xi
-

1 ——— 1I0)
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by the following argument. Assume u: K’ — Hiel X; with mx ou = k; o Ig.
Then for each j € I, one can form the pullback square as on the left

1\']'
\

K; K

l - lu which yields
(for i # 4)

Hiel Xi

=~
L

}

0
X.
S — |
1
so that we get an isomorphism K; = 0 (since the initial object 0 is strict).

Hence K = [[..; K; = K;, which yields the required mediating map K — X;.
(m}

1
-
—— L)

Ki

Jeil

The second way of constructing new fibrations is simply by composition.
This shows that repeated indexing is a form of indexing.

E B
1.5.5. Lemma. Let %p and k" be fibrations.

(1) The composite krp is then also a fibration, in which
f in E is rp-Cartesian < f is p-Cartesian and pf is r-Cartesian.

In case both p and r are cloven (or split), then the composite fibration rp is
also cloven (or split).

(In such a situation one often calls p a fibration over r, see also Sec-
tion 9.4.)

(i) For each object I € A one obtains a functor py from By = (rp)~1(1)
to By = r=1(I) by restriction. All of these p;’s are fibrations.

Proof. (i) Given Y € E and u:I — rp(Y) in A. Let f be an r-Cartesian
lifting of u and ¢ a p-Cartesian lifting of f; one obtains that g is rp-Cartesian
over u:

I _ . rp(Y)
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(iij Left to the reader. O
1.5.6. Example. Let B be a category with pullbacks, and write
— .-+ —> (n times)

for the linear order of length n, considered as a category. Consider then the
sequence of functor categories and generalised codomain functors:

it — B —— B B B 1

sending
<i"_)‘)2’__.)1 ﬂ)) — (fz)l L))

Then each of these functors is a fibration, and all (finite) composites are
fibrations.

The last two exercises 1.5.6 and 1.5.7 below contain some useful facts about
universal and disjoint coproducts, which are there for future reference. For
more information, see [42, 51]. There, a category € with coproducts is called
extensive if the canonical functors C/X xC/Y — C/(X +Y') are equivalences.
This definition does not require C to have pullbacks: it can be shown that the
relevant pullbacks for universality and disjointness are induced.

(A comparable property for ‘extensive fibrations’ may be found in Exer-
cise 9.2.13 (iii))

Exercises

1.5.1. See the difference between the (total) categories FinFam(Sets) and
Fam(FinSets).
1.5.2.  Define a split fibration of PER-indexed-w-sets by change-of-base.
E B

1.5.3.  Consider the fibrations %p and :l&r in the ‘composition’ Lemma 1.5.5.
(i) Prove Lemma 1.5.5 (ii).
(i1) Let f:X — Y be a morphism in E and write ] = pX € B. Show
that f is p-Cartesian if and only if it can be written as g o h with g
rp-Cartesian and h pr-Cartesian.

1.5.4. Consider the scone construction from Example 1.5.2 (ii), and prove: if C is
Cartesian closed, then so is Sc(C), and the functor Sc(C) — C preserves
this structure.

[This result can also be proved via more advanced fibred techniques, see
Example 9.2.5 (i).]

1.5.5. Let A be a complete lattice. Check that coproducts Viel z; in A are uni-
versal if and only if A is a frame, i.e. satisfies y A (V'.GI zi) = \/,.El(y/\z;).
And that coproducts are disjoint if and only if A has at most two elements.
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1.5.7.
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(Cockett, see e.g. [51]) Let B be a distributive category, i.e. a category
with finite products (1, x) and coproducts (0,+) which are distributive:
the canonical maps (Z x X)+(Z xY) =5 Z x (X +Y) are isomorphisms.
(Alternatively, universality of coproducts as in diagram (*) on page 59
holds for the special case where Z — X + Y is a Cartesian projection
Zx(X+Y)=>X+Y)

(i) Use distributivity to show that morphisms of the form

£ xid
XxX —m (X+Y)x X

are split monos.

{i1) Prove that coprojections X 5 X +Y £ Y are monos.
[Hint. For f,g: Z = X with ko f =k 0 g, consider the diagram:

yXxX;ﬂ—é(X+Y)XX
Zm) ™

&)

-

X

f

This slightly simplifies the argument in the proof of [51, Lemma 3.1].]

(i) Show that the canonical maps 0 — 0 x Z are isomorphisms. (Hence
a distributive category is characterised by: functors (—) x Z preserve
finite coproducts.)

[Hint. Notice that the codiagonal V = [id,id[: (0x Z)+(0x Z) > 0x Z
is an isomorphism. Hence the two coprojections x,x":0 x Z = (0 x
Z)+ (0 x Z) are equal, and so any two maps 0 x Z =3 Y are equal.}

(iv) Conclude from (iii) that 0 is a strict initial object: every map Z — 0
is an isomorphism.

Prove that in a category B with disjoint and universal coproducts, diagrams

of the form

u u—+u

! J I'+] —m——— J+J
u+v u

I+ K ————— J+ L 1 J

are pullback squares. Show also that the coproduct functor +:B x B — B
preserves pullbacks.
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1.6 Fibrations of signatures

Signatures will be used in this book as the basic structures that generate a
logic or a type theory. They contain the basic types and function symbols
(possibly also predicate symbols) which are used to build a logic or type
theory on. The aim of this section is twofold: first to define signatures and
organise them in suitable (fibred) categories. It turns out that these categories
of signatures can be introduced most conveniently by change-of-base. The
second aim is to use signatures, together with categories of models, to illustrate
the organisational power of fibrations.

In universal algebra and traditional logic one uses ‘sort’ for what we prefer
to call ‘type’. A typical signature consists of a set of basic types, say {N, B, ...},
together with a set of typed function symbols, containing for example

+ : N,N—N
succ : N—N

A :B,B— B

=: NN—B

A sigpature is called single-typed if it has only one basic type and many-
typed otherwise. Many-typed signatures are of fundamental importance for
algebraic data types and specifications, see e.g. [77]. Here (and in the next
chapter) we investigate ‘pure’ signatures without equations. The latter are
included in Chapter 3 on equational logic. And in Chapter 4 on first order logic
we shall have signatures with (many-typed) predicate symbols. Signatures
underlying higher order logic in Chapter 5 have a distinguished type Prop for
propositions.

Alternative, older names for ‘many-typed’ are ‘many-sorted’ and ‘heteroge-
neous’ (as used for example in [34]), which are in contrast with ‘single-sorted’
and ‘homogeneous’. Mathematical interest has been focussed mainly on single-
typed signatures, but the more general many-typed signatures are standard
in computer science.

Formally, a many-typed signature ¥ is a pair (T, F) where T is a set
of (basic) types and F:T* x T — Sets is a mapping which assigns to every
sequence of types {(61,...,0,) € T* and 0,41 € T aset F({01,...,0n),0n+1)
of function symbols taking inputs of type ¢1,...,0, and yielding an output
of type 041 In order to simplify the notation, we shall write for a signature

Y= (T,f),
|E|:T
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for the underlying set of types, and
F:o1,...,0n — Ony1 if FeF({o1, - ,0n),0nt1)-

{Notice that these sets F(a) for a € T* x T need not be disjoint, so we may
have overloading of function symbols, like in:

+:N,N— N and +:R,R— R

See also Exercise 1.6.3 below.)

A morphism £ — ¥’ of many-typed signatures consists of a function
u: |Z] = |X’| between the underlying sets of types together with a family
of functions (fy) between sets of function symbols such that

F:o1,...,00n — 0nt1 = folF):u(or),...,u(on) — u(ont1)

where the subscript a is {({(01,...,0n),0r41). Thus one obtains a category
Sign together with a forgetful functor Sign — Sets sending a signature ¥ to
its underlying set of types |X]. It is a split fibration because for a signature &
and a function u:.S — |X| one can form a many-typed signature over S with
function symbols,

Fioy,...,00 — Opyp1 %:e; F:iu(o1),...,u(on) — u(on41) in X,

This is captured all at once in the following definition of the category of
signatures. (We hope the reader will appreciate its conciseness.)

1.6.1. Definition. The category Sign of many-typed signatures is de-
fined 1n the change-of-base situation

Sign Fam(Sets)

Sets ———— > Sets
Tw—T*xT

where T™ is the free monoid of finite sequences on T' (the “Kleene star”). As an
Sign

immediate consequence of Lemma 1.5.1 we get that sit 1s a sphit fibration.
ets

Often we simply use ‘signature’ for ‘many-typed signature’.

1.6.2. Convention. A morphism ¢: X — ¥’ of signatures consists of a pair
(u, (f)) as describe above. We usually write ¢ both for u and for all of the
f’s. Thus we get

F:O’l,...,ﬂ'n — On41 in ¥
=> ¢(F):d(01),...,0(0n) — ¢(ont1) in XV

This is notationally rather convenient and not likely to cause much confusion.
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Terms

The description below of the terms associated with a signature is as in univer-
sal algebra: it is based on indexed sets of term variables. In the next chapter
we shall give a more type theoretic description (which will be used in the
subsequent remainder of the book), based on a fixed infinite set of term vari-
ables {vp,v1,...} which are linked to a type in a context containing type
declarations of the form v;: o;.

Suppose ¥ is a signature with 77 = |X| as underlying set of types. A
T-indexed collection of sets X = (X,)ser can be seen as providing a set of
variables X, for every type o € T. One can form a new T-indexed collection

(TermsT(X))TeT

where Terms; (X) is the set of terms of type 7. These collections are defined
as follows.

o X, C Terms, (X);
e if Fimy,..., 7y — Tny1 in ¥ and M) € Terms,, (X),..., M, € Terms,_(X)
then F(M,..., M) € Terms,_ ., (X).

Hence a term is a (well-typed) string consisting of variables z € | J,c7 Xo and
function symbols F from X. There are associated notions of free variable
and substitution:

FV(z) = {z}
V(F(My,...,M,)) = FV(My)U-- - UFV(M,)

and for y € X, and N € Terms, (X},
N ifz=y

[N/} = {1’ else
F(My,...,Mp)[N/y] = F(Mi[N/y),..., Ma[N/y]).

In a similar way one defines simultaneous substitution M[N/§]. Notice that
the dependence on the signature X is left implicit in the above definition of
terms.

(Set theoretic) semantics

Let X be a signature, once again with 7' = |X| as its underlying set of types. A
model or algebra for E consists of a T-indexed collection (A4, )oer of carrier
sets together with a collection of suitably typed functions: for each function
symbol F:¢1,...,0, — on41in I, an actual function [ FJJ: Ay, x- - -X Ag, —

Ag,.,, between the corresponding carrier sets.
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Thus a model consists of a pair ((Ag)eer, [-])-

1.6.3. Example. An obvious way to model a signature containing one func-
tion symbol

if:B,N,N — N
for an if-conditional on the natural numbers, is to use carriers
Ag = {0,1} An =N, the set of natural numbers

and a function
IIif]]:ABXAN x Ay —> AN

n ifb=1
b .
(b,n,m) = {m otherwise.
Of course, one can more generally interpret ‘if’ in a distributive category

(with natural numbers object N and B = 1+ 1, see Section 2.6), but here we
restrict ourselves to set theoretic models.

2

Such a model ((As)ser,[-]) for ¥ can be used to interpret X-terms: sup-
pose we have a collection of variable sets X = (X;)ser together with a
valuation

(po:Xo — A")oeT'
Such a valuation consists of functions assigning values in the model to the
variables. Then there is an interpretation consisting of functions
([[_]];:TermsT(X) —3 AT)TET
given by

[z], = pr(2) forz € X;
[[F(Ml’”-an)]]p [IFH([IMIDP:-”v[IMn]]p)

For readability’s sake we have omitted the superscripts 7in [ —]]”. One obtains
a bijective correspondence between valuations and interpretations:

X, —> 4,

(Xe = 40) ser

(Terms, (X) T Ar) e
P
For a valuation (p,: X, = As) together with elements z € X, and a € 4,
one defines a new valuation p(z ~— a) by

ple > o)) = {

a fy==c
ply) else.
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A term M € Terms,;(X) contains only finitely many variables, say z; €

Xoyy-o-y&n € Xg, . Such a term thus induces a function
[M]
Ag, X -+ X Ay, ————— A,
by
(al) Sy an) — [IM]]p(xp—ml,..A,x,,-—)an)-

In the expression on the right hand side, the valuation p does not play a réle
anymore. Interpreting a term as such a map (without valuations) gives a more
categorical description.

1.6.4. Definition. The category S-Model of (set theoretic) models of many-
typed signatures has

objects (%, (Ao), [-]) where ((Ac),[-]) is a model for X.
morphisms (¢, (Hs)): (Z, (40),[-]) — (X', (AL),[-]') consist of

e a morphism of signatures ¢: X — ¥’
¢ a |X|-indexed collection of functions

Hy: Ay — A;(a)
such that for each function symbol
Fiop,...,0p —0p1In X

the following diagram commutes.

Hoy -+ % Hop ,
Agpy X - XAg, A¢(01)x~~~><A¢(on)
ml l[[as(F)]]'
!
Aan+x Ha,,+1 A¢(0n+x)

Such set theoretic models of many-typed signatures and their morphisms
are studied in some detail in [34].
There are a projection functors

S-Model Sign Sets
(Ea(AU))[I~]]) t E t |E’

They will play a role below; but first we describe syntactically constructed
models.
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1.6.5. Example. Let ¥ be a signature with T = |X| as set of basic types,
and let X = (X,)oer be a collection of typed variables. The sets of terms
Terms, (X) (for 7 € T') form carriers for the so-called term model of &, with
variables from X. A function symbol F:7,..., 7, — T,4+1 has an interpre-
tation as a function

Terms,, (X) x - - x Terms,, (X) — Terms,,,, (X)

described by
(My,...,Mp) —— F(My,..., M,).

The term model on the empty collection of variables (#),¢r is usually called
the initial model of X. It is initial object in the fibre category over X of the
fibration described in (i) below.

. S-Model ) ) )
1.6.6. Lemma. (i) The functor Siign sending a model to its underlying

signature is a split fibration. The fibre over ¥ € Sign is the category of models

with signature X..
. S-Model ) . R
(i1) The functor Slt which sends a model to its underlying set of types

is a split fibration. Theesﬁbre over T € Sets is the category of models of
signatures with T as set of types.

(iti) For every set of types T, the fibre category (models of signatures over
T) is fibred over the category (signatures over T').

Proof. (i) Given a model (¥, (A4'),[-]) and a signature morphism ¢: X —
¥’ one obtains a model ((Ay),[-]) over £ by putting

Ay, end  [FIE[s(A)].

A, =
. . Sign
(i1) + (iii) Directly by Lemma 1.5.5, using that slt is a split fibration. O
els
This lemma exhibits a general pattern which can be described roughly as
follows. Given a notion P and another notion Q(a) involving a parameter o
of type P, then, in general, the category of Q(a)’s is fibred over the cate-
gory of P’s, provided the Q(a)’s are suitably closed under substitution along
morphisms of P’s. To put it more concisely as a slogan:

if Q’s depend on P’s then @Q’s are fibred over P’s

In the above lemma, we have models—involving signatures and thus sets of
types—fibred over signatures and thus fibred over sets. A similar example is
given by the vector spaces which involve fields and are fibred over fields, see
Exercise 1.1.11.
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However, this slogan is not entirely correct since the Q’s can also be ‘op-
fibred’ over the P’s, which happens in case substitution acts covariantly (see
Section 9.1).

But the point is that fibrations have a great organisational strength. They
provide appropriate ways of layering mathematical structures, by making ex-
plicit what depends on what. This is the reason which makes elementary
lemmas like the above one important.

In later chapters, this aspect will be crucial in modelling logics and type
theories: for a type theory with, say, propositions depending on types (in a
sense to be made precise in Section 11.5) the underlying structure involves a
category of propositions fibred over a category of types.

Single-typed signatures

1.6.7. Definition. (i) We recall that a signature ¥ is called single-typed
if its underlying set of types || is a singleton.

(i1) The category Signst of single-typed signatures is defined by the
change-of-base situation

Signgt ————— Sign

- |
1l ———— Sets

1

where 1 is the (one-object one-arrow) terminal category and the functor 1: 1 —
Sets points to a singleton set.

(1ii1)) The category S-Modelst of (set-theoretic) models for single-typed
signatures arises in the change-of-base situation

S-Modelst ————— S-Model

|- |

SigngT Sign

where the functor Signgr —» Sign comes from (ii). Thus also models of
single-typed signatures are fibred over their underlying signatures.

As we mentioned earlier, many mathematical texts on signatures are re-
stricted to the single-typed case. A signature for a monoid acting on a set is
then not described by function symbols

m:MM— M, e() — M, aMX—X
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but by a collection of function symbols

a,: X — X

one for each element z in the carrier Apy of M. Such a single-typed description
is not only artificial but it also involves a mixture of syntax and semantics
(namely M and Ajpy). Such practices which have arisen in mathematics are
not necessarily well-fitted for applications in computer science.

Exercises

1.6.1.

1.6.2.

1.6.3.

1.6.4.

1.6.5.

1.6.6.

Write down a (single-typed) signature for groups and also a (many-typed)
signature for vector spaces.

A many-typed signature is called finiteif it has only finitely many types and
function symbols. Define the subcategory of FinSign < Sign consisting
of finite signatures by change-of-base.

Many-typed signatures are sometimes defined (like in [343] or in [282, 2.2.1])
as objects of the category Sign’ which arises in the following change-of-base
situation.

Sign’ ——————— Sets™

e

Sets Sets
T—T*xT

(1) Describe the category Sign’ in elementary terms.

(ii) Show that the categories Sign and Sign’ are equivalent.

(111) One often prefers Sign to Sign’ because signatures in Sign allow over-
loading of function symbols: for example the use of + both for addition
of integers and for addition of reals. Explain.

Sign

[Another advantage of Sign is that Selgts is a split fibration.]

Describe the category S-ModelgT of models of single-typed signatures in

detail.

The category Sign captures signatures of functions. A signature of

predicates consists of a set of types T together with predicate symbols

R:oy,...,0, where each o; is a type (element of T'). Define an appropriate

category of such signatures of predicates by change-of-base. Define also a

category with both function and predicate symbols by change-of-base.

[Such a category will be introduced in Definition 4.1.1.]

Let = be a signature and T = |X] its set of types. We write S-Model(X)
S-Model
for the fibre category over X of the fibration Silgn . This is the category

of ¥-models.



72 Chapter 1: Introduction to fibred category theory

(i) Show that the assignment

X =(Xo)oer — (Termsr(X))TeT

extends to a functor from the category Fam(Sets)r = Sets? of
T-indexed families of sets to S-Model(Y).

(i) Assume (Ao)oer,[-]) is a Z-model. Verify that an interpretation
[-15: Terms,(X) — A- is a morphism of Z-models.

1.6.7. Let ((As),[-]) be a Z-model and p a valuation (X, — Ag).
(i) Show that
[MIN/2]]p = [M Dozt V)

(i) Let ((Bs),[-]) be another -model and (Hq: A, — Bs) be a mor-
phism of E-models (i.e. a morphism in the fibre of S-Model over ).
Show that

H([M],) = [M]#op-

1.7 Categories of fibrations

In this section we shall introduce and study “fibred functors” as appro-
priate morphisms between fibred categories (preserving the relevant struc-
ture). Also we shall describe “fibred natural transformations” between such
fibred functors—just like ordinary natural transformations are morphisms be-
tween morphisms of ordinary categories (i.e. functors). We shall describe four
(2-)categories of fibrations according to the following table.

” over a fixed basis B | over arbitrary bases

split Fibsplit(IB) Fibsplit

not necessarily split Fib(B) Fib

By laying down what appropriate morphisms of fibrations are, we can use
categorical language to talk about fibrations as objects. This enables us to ex-
press some elementary facts about fibrations. Also, we say what fibred natural
transformations (2-cells) are. Then we can apply various 2-categorical notions
in the context of fibrations, like equivalence, and adjointness; the latter is
studied in the next section.

We start with the category named Fib, because it is most general among
the categories in the table: it contains the other three as subcategories.
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E D
1.7.1. Definition. (i) A morphism ( %P) — ( kq> of fibrations con-
sists of a pair of functors K:B — A and H:E — D such that the diagram

H
E D
”l 1q
B———>A
K

commutes and H sends Cartesian morphisms in E to Cartesian morphisms in
D. Such a functor H will be called fibred. This yields a category which will
be written as Fib.

(i1} The subcategory Fibgpii¢ <> Fib has split fibrations as objects and
morphisms (K, H) as above where H preserves the splitting on-the-nose (that
1s, up-to-equality and not up-to-isomorphism).

Notice that in (i) we require the square to commute on-the-nose, not up-
to-isomorphism. As it stands, the notion of morphism of fibrations is easy to
work with and does what we want. For a more abstract approach, see [317].

Here 1s a first result that we can now express.

1.7.2. Lemma. The functors

Fib Fibsplit
l and l
Cat Cat

sending a (split) fibration to its base category are fibrations themselves. Rein-
dexing 1s done by change-of-base, see Lemma 1.5.1. ]

1.7.3. Definition. (i) For a fixed category B, the category Fib(B) of fibra-
tions with B as base category is defined to be the fibre over B of the above

Fib
fibration CJ;“ It thus has fibrations with basis B as objects. A morphism

E
( %p) - ( %Q> in Fib(BB) is then determined by a functor H:E — D

making the triangle

H

N

B

E D
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commute and preserving Cartesian morphisms. We call such a functor a fibred
functor (as before) or a functor over B.

(1) Similarly the category Fibgpi¢(B) is defined to be the fibre over B of
Fibnplit
the fibration Clt . Morphisms in Fibgpe(B) are fibred functors H as in

the triangle, which preserve the splitting on-the-nose. They will be called split
functors.

(ii)) If H:E — D is a fibred or split functor as in (i) or (ii), then for each
object I € B one obtains by restriction a functor £y — Dy between the fibres
over I; it will be written as Hj.

Often the name ‘Cartesian functor’ is used for what is called a “fibred func-
tor’ here. This predicate ‘Cartesian’ is not very appropriate, because such
functors are not Cartesian morphisms for some fibration.

Notice that the category Fib(1) of fibrations on the terminal category 1
can be identified with the category Cat of categories.

1.7.4. Lemma. The categories Fib(B) and Fibgpiie(B) have finite products;
these are preserved by change-of-base.

B
Proof. The identity functor It is terminal object, and the Cartesian product

E D
of two fibrations %P and %Bq on B is defined in:

ExgD ——D

p*(q) pXxg q

E—B
This yields a fibration p x ¢ by Lemmas 1.5.1 and 1.5.5 (since it is obtained
by change-of-base and composition). O
The next two lemmas give examples of morphisms of fibrations.

1.7.5. Lemma. Let A and B be categories with pullbacks and let K: A — B
be a pullback preserving functor. There are then extensions of K to morphisms

Sub(4) Sub(B) A™ B
(1) —=(F) = (F)—(1)

between the corresponding subobject and codomain fibrations.
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Proof. The functor K preserves monos, since m: X — I is a mono if and
only if the following diagram is a pullback.

X X
a) |m
X I

Thus one can define a functor Sub(A) — Sub(B) by

id

—_—

—_—
m

(x =2 1) — (KX =22 k1),

It preserves Cartesian morphisms because K preserves pullbacks.
The extension to codomain fibrations is obvious. o

1.7.6. Lemma. Let K:(A,S) — (B, T) be a morphism of CT-structures (see

Definition 1.3.2). One obtains an extension of K to a morphism between the
s(S) s(T)
corresponding simple fibrations ‘t — ﬂlB which preserves the splitting on-

the-nose.

Proof. By definition K preserves finite products, so let vy j: KT x KJ 5

K(I x J) be the inverse of the canonical map (K7, K#’'). One can define a

functor s(K):s(S) — s(T') on objects by (I, X) — (KI, KX) and on arrows

(u, f): (I,X) = (J,Y)—where u:] — J and f:I x X — Y—by (u, f) —
(Ku, K f oy x). The splitting is preserved since

s(K)(u, ') = (K(u), K(7') o v) = (K (u), 7). o

As special case, a finite product preserving functor A — B induces a mor-

s(4) s(B)
phism ‘J& - I!ls between the corresponding simple fibrations.

2-categorical structure

It turns out that the homsets

Fib(p, ¢) and  Fib(B)(p, q)

(and their split versions) are categories themselves. One thus gets 2-categories
of fibrations. This extra structure enables us to express various 2-categorical
notions—Ilike adjunctions, equivalences or (co)monads—for fibred categories.
In general, these notions will be quite different in Fib and in Fib(B), see {125-
127] for an investigation. We shall not make deep use of the 2-categorical
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aspects. And we usually spell out the details of the 2-categorical notions that
we use for fibrations. But we do find it convenient to have the language of
2-categories at hand.

E
1.7.7. Definition. Assume (K, H) and (L,G) are morphisms ( %p) =

D
( iq) in Fib (i.e. l-cells) as below. A 2-cell (K,H) = (L,G) in Fib
consists of a pair of natural transformations oK = L and 1 H = G in a
diagram:

H

— T
E_ V¥ D

J ; I

p q
K

—T T

L

such that 7 is above o; that is, for X € E, the component 7x is above the
component o,x. This may be expressed as: the two 2-cells ¢/ = ¢G and
Kp = Lp in the diagram are equal. One obtains that Fib is a 2-category,
with identities and composition of 2-cells inherited from Cat.

The 2-cells in the category Fibgpii¢ are as in Fib. And a 2-cell in Fib(BB)
or Fibgpii¢(B) is given by a diagram

in which every component of 7 is vertical. Such a 2-cell in Fib(B) or
Fibgp,i(B) is often called a vertical or fibred natural transformation.

Since ‘equivalence’ is a 2-categorical notion we have that two fibrations
E D

1P and 19 with the same basis B are equivalent (formally: equivalent
in Fib(B), or over B) if there are fibred functors F:E — D and G:D —» E
with vertical natural isomorphisms GF 2 idg and FG = idp. Several of the
equivalences between total categories that we have seen before (see Proposi-
tions 1.2.2,1.4.7, 1.5.3 and Exercise 1.2.3) are actually fibred equivalences.
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1.7.8. Proposition. There are fibred equivalences over Sets:

Fam(Sets) —= > Sets™ Fam(Sets, ) = Sets,’
Sets Sets

and over w-Sets and PER.:

UFam(w-Sets) = . LSets™ UFam(PER) =, PER™
w-Sets PER O

Notice that all the fibrations on the left of ==+ are split, because they involve
pointwise indexing.

We mention two lemmas involving fibred 2-cells. The first one is easy.
1.7.9. Lemma. Let K: A — B be a functor. Change-of-base along K yields
a 2-functor K*: Fib(B) — Fib(A).

It restricts to Fibgplie(B) — Fibgpiic(4). |

The second lemma is more involved and may be skipped at first reading.
The essential point about fibrations is that (single) morphisms in the base
category can be lifted. By the universal property of such liftings one can also
lift a natural transformation. This is the content of the next result. Since a

natural transformation consists of a family of arrows, one needs to lift many
maps at the same time, and so we require a cleavage.

1.7.10. Lemma. Assume that two functors K,L:A = B are given with a
E

natural transformation o: K = L between them. Let 1P be a cloven fibration;
then there is a lifting 7 K'(c) = L' of 0: K = L in a diagram,

AXKE

S

AXLIE
p

L*(p)

K
/——\
Y W

L
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where (o) 1s the functor which sends (I, X) to (I,07(X)). The pair (0,7) is a
2-cell in Fib from (K, K'{o}) to (L,L'). All components of the lifted natural
transformation @ are Cartesian.

This lifting of o to @ enjoys a certain universal property, which will not be
made explicit here. But the reader may consult [171] (or also [252, II, 1.7}).
In [171] such lifting of natural transformations is described as lifting of 2-cells
in a 2-category, and used to give a definition of when a l-cell E — B is a
fibration (in this 2-category). This yields an alternative to the (2-categorical)
definition based on Exercise 1.4.8.

(Later in Exercise 9.3.8 we shall relate (families of) adjoints to reindex-
ing functors o}:Ep; — Eg; between fibres to adjoints to the above functor
(0): A xg E— A xr, E between total categories.)

Proof. The component of & at (I, X) € Axy E is obtained from the cleavage,
as:

_ def . 71(X) )

(@) x) = (KA X) = K'(1,07(X)) = 0(X) ——> X = L'(I,X))

using that X € E is above the codomain of ¢;: K1 — LI = pX in B. This
7 is a natural transformation since for a morphism (u, f): (I, X) = (J,Y) in
A xy FE—where u:/ — J in A and f: X — Y in E with pf = Lu—one has a
naturality square in B:

———)L[——pX

.

KJ —>LJ pY

And above this diagram in [E

o3 (X) (@),x) ¥
‘: L'(u, f)
K'(o)(u, f) = Ku ~s
o3(Y) Y

(@) y)

where the dashed arrow is the unique one above Ku making the square com-
mute (because (7)(sy) is Cartesian). Thus, basically, @ is a natural transfor-
mation by definition of (). =
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Exercises
1.7.1.  Show that the categories Fib and Fibgp);¢ both have finite products.
E D
1.7.2.  Let %P and ﬁ%q be fibrations and H:E — D a functor with ¢H = p.
(1) Assume H is full and faithful; prove that H reflects Cartesianness,
i.e. that H f is Cartesian implies that f is Cartesian.
[Hint. Use Exercise 1.1.2]
(ii) Assume now that H is a fibred functor, i.e. that it preserves Carte-
slanness. Show that
H:E—+Disfull & every Hri:IE; — Dy is full.
And that the same holds for ‘faithful’ instead of ‘full’.
1.7.3. Let 2 be the two-element poset category {1, T} with L < T. Describe an
Fam(2) Sub(Sets)
isomorphism of fibrations | = 1 in Fib(Sets).
Sets Sets
Fam((C)
1.7.4.  Verify that the assignment C — Slt extends to a (2-)functor
ets
Cat — Fibgpyit(Sets).
B/I
1.7.5.  Check that the assignment [ > %dom[ yields a functor B —
Fibgpii¢(B) which preserves finite products.
1.7.6. Let A B be categories with finite products and let K:A — B be a functor
s(4) s(B)
preserving these. Lemma 1.7.6 yields a map (K, s(K)): ‘J& — 1{13 be-
tween the associated simple fibrations. Show that the functor s(K'):s(4) —
s(B) between the total categories, restricted to a fibre AfI — BJKI, pre-
serves finite products (see also Exercise 1.3.2).
1.7.7.  (See [105, Theorem 3.9].) Notice that (as a special case of Exercise 1.4.6),
(BLF)
for every functor F: A — BB, the projection functor ]é from the comma
category to B is a split fibration. Prove that the assignment
4 (BLF)
JF
(&r)o ("
yields a functor Cat/B — Fibgp)j¢(IB), which is left adjoint to the inclu-
sion (in the reverse direction). Describe concretely how each functor factors
through a split fibration.
1.7.8.  Verify that {(¢) in Lemma 1.7.10 is a fibred functor L*(p) —» K*(p).
E
1.7.9.  Let %P be a fibration. A fibred monad on p is a monad on p in the

2-category Fib(BB). It is thus given by a fibred functor T:E — E together
with vertical unit n:idgc = T and vertical multiplication u:T? = T, satis-
fying poTn=id =ponr and pp o Ty = p o T as usual.
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(i) Show that the (ordinary) Kleish category [Er is fibred over BB.

(ii) Show also that the Eilenberg-Moore category of algebras ET of the
monad T is fibred over B. (Note that every algebra is automatically
vertical.)

ET £T

[These fibrations é and ]é are the Kleish- and Eilenberg-Moore-

objects in the 2-category Fib([B) (see [314] for what this means). The con-

structions in Fib are quite different, see [129].]

1.8 Fibrewise structure and fibred adjunctions

In ordinary categories one can describe binary products x or coproducts + in
familiar ways, for example in terms of their universal properties. The question
arises whether such structure also makes sense for fibred categories, and if
so, what does it mean. One answer here will be: products x in every fibre,
preserved by reindexing functors u* between these fibres. This gives “fibrewise
structure”. It will be our first concern in this section.

In a next step one notices that (chosen) products x for ordinary categories
can equivalently be described in terms of ordinary adjunctions; that is, in
terms of adjunctions in the 2-category Cat of categories. It turns out that such
fibrewise structure can similarly be described in terms of suitable adjunctions
between fibrations. Formally, such “fibred” adjunctions are adjunctions in a
2-category of fibrations Fib{B) over a fixed base category B. This will be our
second concern.

(There is also an alternative answer which is of a global nature and will
be of less interest here. It involves structure defined by adjunctions in the
2-category Fib of fibrations over arbitrary bases. See for example Exer-
cises 1.8.10 and 1.8.11. In the latter one finds how adjunctions in Fib reduce
to adjunctions over a fixed basis.)

1.8.1. Definition. Let ¢ be some categorical property or structure (for ex-
ample some limit or colimit or exponent)

(i) We say a fibration has fibred {’s (or also, fibrewise {’s) if all fibre
categories have {’s and reindexing functors preserve {’s. A split fibration has
split fibred ¢’s if all fibres have (chosen) {’s and the reindexing functors
induced by the splitting preserve {’s on-the-nose.

(The predicate ‘fibred’ is sometimes omitted, when it is clear that we talk
about fibred categories.)

E (K.L) D
(i) A morphism ( ﬁ%p> — kq of fibrations with {’s preserves
(fibred) ¢’s if for each object I € B the functor L;:[Ey — Dk preserves ’s.
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For the split version, one requires preservation on-the-nose.
The following notion deserves explicit attention because of its frequent use.

1.8.2. Definition. A (split) fibred CCC or Cartesian closed fibration
is a fibration with (split) fibred finite products and exponents.

1.8.3. Examples. (i) Usually, ordinary categorical structure exists in a cat-

egory C ifFan((iC;:)nly if the corresponding fibred structure exists in the family
am

fibration ! . For example:
Sets

Fam(C)
C is a CCC (with chosen structure) < sde is a split fibred CCC.

The implication (=) follows from a pointwise construction: e.g. the Cartesian
product of families (X;);es and (Y;)jes in the fibre over J is (X; x Yj);es.
Reindexing preserves this structure on-the-nose: for u: I — J in Sets we get:

w((X))jes x (Yp)jes) = w((X; x Yj)jer)

(Xug) % Yu))ier

(Xu@y)ier X (Yuq))ier

w (Xy)ses) x w((¥i)jes)-

The implication (<=) in the reverse direction follows from the fact that the
category C is isomorphic to the fibre Fam(C); above the terminal object 1—

which 1s a CCC, by assumption.

(ii) Exercise 1.3.1 almost contains the result that for a category B with
s(B)
finite products, the simple fibration 1{13 has split finite products. The only

It

It

requirement that should still be verified is that reindexing functors preserve
the fibrewise structure. This 1s easy. Moreover, this result can be extended to:
s(B)

1{1@ is a split fibred CCC if and only if B is a CCC.

IB—}

(ii1) For a category B with finite limits, the codomain fibration { on

B always has fibred finite limits. The same holds for the subobject fibra-
Sub(B)

tion I%B on B. And for a finite limit preserving functor F: A — B be-
tween categories A, B with finite limits, the induced morphisms of fibrations

A~ B~ Sub(4) Sub(B)

i - ni% and ‘t - I%B (see Proposition 1.7.5) preserve fibred
finite himits.

(iv) A category B with finite limits is a locally Cartesian closed cate-

gory (LCCC)—i.e. all its slice categories B/I are Cartesian closed—if and
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-
only if the codomain fibration 1%3 is a fibred CCC. The (if)-part of the
statement is obvious by definition of LCCC. For (only if), it remains to verify
that the reindexing functors (given by pullback) preserve the exponents in
the fibres (often called local exponentials). This will be postponed until
Exercise 1.9.4 (iii).

(v) Recall from Section 1.2 that the categories PER and w-Sets have
finite limits and are Cartesian closed. By a pointwise construction (as in (i)
above) this structure lifts to split fibrewise finite limits and exponents for the

UFam(W-Sets) UFam(PER) UFam(PER)
fibrations { , L and 1 of w-sets and PERs over
w-Sets PER

Ww-Sets
w-sets, and of PERs over PERs.
The following result is often useful.

1.8.4. Lemma. Let { be as in Definition 1.8.1. If a (split) fibration p has
(split) fibred {’s, then so has a fibration K*(p) obtained by change-of-base.
Moreover, the associated morphism of fibrations K*(p) — p preserves {'s.

Proof. Suppose p has fibred {’s. The fibre of K*(p) above I is isomorphic
to the fibre of p above K'I. Hence K*(p) has ¢’s in its fibre categories. They
are preserved under reindexing, since the reindexing functors of K*(p) are
obtained from those of p. o
1.8.5. Example. The category Sets has all (small) limits and colimits.

Fam(Sets)
Hence by Example 1.8.3 (i) the family fibration is of set-indexed sets
has these limits and colimits in split form. Recall from Definition 1.6.1 that the
Sign
fibration _{ of many-typed signatures is obtained by change-of-base from
S
this family fibration. Hence the fibration of signatures has split limits and

Sign Fam(Sets)
colimits. Moreover, the morphism of fibrations Slt — slt preserves
ets ets

these.
Adjunctions between fibred categories

We begin the study of fibred adjunctions with an example. Recall that an
ordinary category C has a terminal object if and only if the unique functor
C --+ 1 from C to the terminal category 1 has a right adjoint (written as
1:1 — C). The situation iisimilar for fibred categories. Consider for example

B
a codomain fibration It . Every fibre B/J has a terminal object, namely

J
the i1dentity family 1J = ( yd ) The assignment J — 1J then extends to

a functor 1: B — B~ . It has the following properties.
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(i) This functor 1 can be described as a fibred functor idg — cod as in

' = cod
— T T
IB_»\L/B

1
cod idg

B

where the identity functor idg is the terminal object in the category Fib(B)
of fibrations over B.

(i1) The functor 1 is right adjoint to the unique morphism cod --» idp in
Fib(B): there are obvious adjoint correspondences

X J
( }s0>——>( }id>:1J in B~

X
cod }30 =]——J mB

Moreover, the unit and counit of this adjunction are vertical in the above
triangle.

These two points establish that the fibred terminal object functor 1: B —
B~ obtained by taking fibrewise terminal objects, is a ‘fibred right adjoint’ to
the functor cod --» idg—just like in the case of ordinary categories a terminal
object in C is given by a right adjoint to the functor C —» 1.

Below we present the general formulation of the notion of fibred adjunction.
Formally, it is an adjunction in a 2-category of fibrations over a fixed base
category.

E D
1.8.6. Definition. (i) Let ﬁ%p and ﬁq be fibrations with the same base
category B. A fibred adjunction over B is given by fibred functors F, G in

together with vertical natural transformations n:idg = GF and ¢: FG = idp
satisfying the usual triangular identities Ge o G = id and ¢ F' o Fp = id. This
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is an adjunction in the 2-category Fib(B); it obviously involves an ordinary
adjunction (F 4 G).

(ii) A split fibred adjunction over B is an adjunction in the 2-category
Fibgpiie(B); it consists a fibred adjunction as above in which the fibrations
p and ¢ are split and also the functors F and G are split (i.e. preserve the
splitting).

Notice that verticality of the unit 5 of an adjunction (F 4 G) between fibred
functors as above 1mplies verticality of the counit, and vice-versa.

1.8.7. Examples. (i) Every ordinary adjunction (F 4 G) in:

CZ__ 1 =D
G

lifts to a split fibred adjunction (Fam(F') 4 Fam(G)) over Sets in:

Fam(F)

Fam(C) 1 Fam(D)

—

\Fam(c‘?)/

Sets

by a pointwise construction. Essentially this follows from the 2-functoriality
of Fam(—) in Exercise 1.7.4.
(i1) In a similar way, the reflection

e
PER C__, w-Sets

from Proposition 1.2.7 lifts to a fibred reflection

UFam(PER) c » UFam(w-Sets)

N

w-Sets

again by a pointwise construction.

(But this lifting over w-Sets is less trivial than over Sets in the previous
example, since one needs to check that the (pointwise defined) units and
counits have uniform realisers.)
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The earlier example involving fibred terminal objects for a codomain fibra-
tion can now be described for arbitrary fibrations.

i
1.8.8. Lemma. A fibration 11%1) has a fibred terminal object if and only if
the unique morphism from p to the terminal object in Fib(B) has a fibred right

adjoint, say 1, in
1
P idg

B

Proof. Assume that each fibre category E; has a terminal object 1/, and
that these terminal objects are preserved by reindexing functors: for u: I — J
in B one has u*(1J) -» 17 over I. Then one gets a functor 1: B — E, since a
morphism u: [ — J in B can be mapped to the composite 17 = u*(1J) — 1J
over u. Thus p o 1 = idg. Moreover, 1 is a fibred functor in the above diagram,
since each map lu is Cartesian by construction. Further, there are adjoint
correspondences

u
pX —=J inB

X—>1J inE
f

given by u — (X BN IpX B 1J) and f — pf. The resulting unit is the unique
map 1 X -—» 1pX (which is p-vertical) and counit is the identity plJ S J
(which is idg-vertical).

Conversely, if the above functor p: p —-+ idp has a fibred right adjoint 1: B —
[E, then for each object I € B the object 17 is terminal in the fibre [E; over
I: the counit component ¢ is idg-vertical and therefore an identity plI S 1.
Hence the transpose of a map f: X — 17 is pf:pX — I, so that there is
precisely one vertical map X — 11.

Further, reindexing functors preserve these fibred terminal objects: a map
u:J = I in B is idp-Cartesian over itself; hence 1u:1J — 17 is p-Cartesian
over u, since 1 is by assumption a fibred functor. But by definition, also the
lifting w(17): w*(1/) — 1/ is Cartesian over u. This yields an isomorphism
u*(11) -=» 1J, since Cartesian liftings are unique, up-to-isomorphism. o

Having seen this lemma, one expects that in general the structure induced
by a fibred adjunction is induced fibrewise and is preserved under reindex-
ing. The following result states that this is indeed the case. The preservation
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is expressed by a so-called ‘Beck-Chevalley condition’, which may be a bit
puzzling at first sight. We elaborate later on.

(We should emphasise that not all fibrewise structure comes from fibred ad-
junctions. For example, a fibration may have fibrewise a monoidal structure.)

E D
1.8.9. Lemma. Let %p and I%q be fibrations and let H:IE — D be a fibred

functor. This functor H has a fibred left (resp. right) adjoint if and only if
both

(a) For each object I € B the functor Hy:Ey — Dy restricted to the fibres
over I has a left (resp. right) adjoint K(I).

(b) The Beck-Chevalley condition holds, i.e. for every map u:I — J in B
and for every pair of reindexing functors

*

#
Es LA Ey Dy —u—>D1

the canonical natural transformation
K(Du# = u"K(J) (resp. u*K(J) == K(I)u¥)
1s an isomorphism.
The lemma describes global adjunctions K 4 H (or H 4 K) in terms of

local adjunctions K (I) 4 Hy (or Hr 4 K(I)) which are suitably preserved by
reindexing functors. In the local left adjoint situation:

*

]EJ “ IEI
[&"(J) 41 Hy ]X’(I) | Hy
DJ ]DI
u#

the canonical map K (I)u# = u*K(J) arises as the transpose of

u#(n =~
wt ——— e H K(J) —> Hyu* K(J)
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Alternatively, it may be described as the following (pasting) composite.

u# K(I)
Dy Dy 1
x6
Hy X H
% [ o= I[
Dy E, Fy
K{J) u*

Proof. First, in case K:D — [E is a fibred left or right adjoint to H, then one
obtains adjunctions between the fibres since the unit and counit of a fibred
adjunction are vertical. For a morphism u: I — J in B and an object Y € D
over J € B, we get two Cartesian liftings of u at Y in a situation:

K@*(Y)) _K(u(Y))
|
~ KY

\d
w(KY) T B(RY) (*)

I J

An appropriate diagram chase shows that this map K (u#(Y)) -5 w*(KY) is
the canonical isomorphism induced by the adjunction.

Conversely, assume local adjunctions satisfying Beck-Chevalley. We shall do
the left adjoint case. We claim that for each object Z € D, say above I € B,
the (vertical) unit component nz:Z7 — H(K(I){(Z)) is a (global) universal
map from Z to H. Indeed, for a morphism f:Z — HY in D, say above
wl— JinB write f = H(®(Y)) o f: Z — H(u#(Y)) - HY. By the local
adjunctions K (I) 4 H; we get a unique vertical map f": K(I)(Z) — u#(Y)
with H(f") onz = f'. Then f* =w(Y) o f": K(I)(Z) = Y is the required
unique map with H(f*) o9z = f in:

7 - H(K(I)(2)) K(I)(2)
gl ) SN
) TS N
¥ ~
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The assignment Z — K (pZ)(Z) now extends to a functor K:ID — E, which
is left adjoint to H (see e.g. [187, IV, 1, Theorem 2]). What remains is to
show that K is a fibred functor. This follows because, by universality of 7, the
triangle of the above diagram () commutes. D

There is a similar result for split fibred adjunctions.

E D
1.8.10. Lemma. Let ( ép) A, ( éq) be a split functor between split

fibrations. Then H has a split fibred left/right adjoint if and only if one has
like in the previous lemma, (a) and the Beck-Chevalley condition (b), but this
time with the canonical map being an identity. n|

1.8.11. Excurs on the Beck-Chevalley condition. The above lemmas
express that a (split) fibred adjunction corresponds to fibrewise adjunctions,
involving adjunctions between fibres and reindexing functors preserving this
structure. The latter is formulated by a Beck-Chevalley condition, which re-
quires a certain natural transformation to be an isomorphism. We shall have
a closer look at this condition via an example.

Let C be an ordinary category with Cartesian products, given by a right
adjoint x:C x C — C in Cat to the diagonal A:C — C x C. The unit 5z
is usually described as the diagonal (idz,idz):Z — Z x Z and the counit
€(x,y) as the pair (m,7'): (X x Y, X x Y) — (X,Y) of projections in C x C.
If D is another category with Cartesian products then one says that a functor
F:C — D preserves these products if the pair F(mxy), F(n y) forms a
Cartesian product diagram in . Put a bit differently, one requires that the
canonical map

(F(rx,y), F(m'x v)) (%)
F(XxY) FXxFY

is an isomorphism. It arises as transpose of the pair

(F(rxy), F(mx y))
(F(X x Y), F(X x Y)) (FX,FY)

in D x D. That is, of

(Fx F)(X xY,X xY) U= B)eoxn) (F x F)(X,Y)

which is a specific case of the above general description of canonical map. We
have thus shown that the canonical map formulation as used in the Beck-
Chevalley condition corresponds to the usual formulation of preservation for
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Cartesian products. The correspondence is a general phenomenon, which is
described in more detail in Exercise 1.8.7 below.

In the above Lemma 1.8.10, dealing with split fibred adjunctions and ad-
junctions between fibres, it is required that the canonical map is the identity.
In the example of Cartesian products, the requirement that the map (x) is the
identity contains much more information than merely F(X xY) = FX x FY:
it implies that (F x F){ex,y) = ¢rx gy, where ¢’ is the counit of the adjunc-
tion associated with the Cartesian products on ID. It also implies F(nz) = Nrz»
since

Npz = (trz,rz,7rzrz) o (F(idz), F(idz))
(F(rz2,2), F(ry 7)) o F(idz,idz)
F(idz,idz)

= F(nz).

I

Thus, the requirement that the canonical map () is an identity morphism
leads to a so-called “map of adjunctions” (see [187]), namely from the ad-
junction (A 4 x) on C to the adjunction (A 4 x) on [, as in the following
diagram.

F
C D
A Al x
CxC DxD
FxF

Conversely one easily establishes that if this diagram forms a map of ad-
junctions, then the canonical map () is an identity. Again, this holds more
generally, as made explicit by the next lemma below. The proof is easy and
left to the reader.

E D
1.8.12. Lemma. Let < %p) A, ( %‘1) be a split functor between split
fibrations p and q. Then H has a split fibred left/right adjoint if and only if
both

(a) For each object I € B the functor Hy:Ey — Dy restricted to the fibres
over I has a left (resp. right) adjoint K(I).
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(b) for every map u:I — J in B, the pair of reindexing functors u*:E; — Ey,
u#:D; — Dy induced by the splitting, forms a map of adjunctions in

uﬁl

EJ IEI
Hy ( )K(J) Hy ( )1{(1)
Dy 4 Dy -

In the sequel we shall often describe a specific fibred adjunction by a col-
lection of fibrewise adjunctions and leave verification of the Beck-Chevalley
condition as an exercise. It usually follows in a straightforward way when the
adjunctions between the fibres are defined in a suitably uniform manner.

Since a fibred adjunction involves ordinary adjunctions between fibre cate-
gories it is immediate that a fibred right adjoint preserves fibred limits, and
that a fibred left adjoint preserves fibred colimits (see e.g. [187, V, 5, Theo-
rem 1]). There are also fibred versions of the adjoint functor theorems, but
we shall not need them and we refer the interested reader to [47] and [246].
They involve suitable fibred notions of generators and well-poweredness.

Exercises

1.8.1.
1.8.2.

1.8.3.

1.8.4.

1.8.5.

Explain in detail what a ‘fibred LCCC’ is.
Let (B, T') be a non-trivial CT-structure. Prove that the associated simple
s(T

fibration It has a fibred terminal object if and only if the collection of

types T contains a terminal object (in [B).

(i) Prove that a category with Cartesian products has distributive coprod-
ucts (see Exercise 1.5.6) if and only if its simple fibration has fibred
(distributive) coproducts.

(i) And similarly, that a category with pullbacks has (finite) universal
coproducts if and only if its codomain fibration has fibred (universal)
coproducts.

E
Show in detail (as in Lemma 1.8.8) that a fibration ép has fibred Carte-

sian products x if and only if the diagonal A:p — p x p in Fib(IB) has a
fibred right adjoint.

E D
Consider fibrations %p and %Bq together with a (not necessarily fibred)

functor F:[E — D with right adjoint G such that (a) ¢F' = p and pG = g,
and (b) the unit and counit of the adjunction (F 4 G) are vertical. Prove
that G is then a fibred functor.



1.8.6.

1.8.7.
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[Hint. For a short proof, use Exercise 1.1.2, but see also [344, Lemma 4.5].]
Let SignVar be the category of ‘signatures with variables’ obtained in the
following change-of-base situation,

SignVar ——— > Fam(Sets)

I |
Sign X Sets

Thus an object of SignVar is a many-typed signature X together with a
|Z]-indexed collection X = (Xs)oe)z) of sets (of variables). Show that the
term model assignment

(2, X) = (Terms- (X))

described in Example 1.6.5 extends to a left adjoint to the forgetful functor
S-Model — SignVar which sends a model (%, (As),[-]) to (£, (4s)) in

—TT e
SignVar S-Model
< —

N

Sign
Check that it is not a fibred adjunction (as noted by Meseguer).
Consider two adjunctions in the following (non-commuting) diagram.

K
C (04
Fl4d}G F' 4| G
D
L i)

Following [157] we say that a pseudo-map of adjunctions from (F 4 G)
to (F' 4 G') consists of a pair of functors K:C — ', L:D - [V together
with natural isomorphisms ¢: F'K 2 LF and v:G'L % KG satisfying
YFoGyonK=Knand Le 0 oG o F'ty = ¢'L, where n,¢ and n’, ¢’ are
the unit and counit of the adjunctions (F 4 G) and (F' 4 G’).
[A map of adjunctions, as defined in [187], has ¢ = id and v = id. But
see also loc. cit. Exercise 1V 7 4, where there is a weaker notion (due to
Kelly—with natural transformation ¢ and ¢~! as above, except that they
need not be isomorphisms.]
(i) These isomorphisms ¢ and ¥ turn out to determine each other: given
an isomorphism F'K = LF, show that one obtains a pseudo-map
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1.8.9.
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of adjunctions if and only if the canonical map KG = G'L is an
isomorphism. The latter is obtained by transposing F'KG = LFG =
L.

(ii) Formulate and prove a dual version of (i).

(ili) Show that a result like Lemma 1.8.12 can be obtained for arbitrary
(non-split) fibrations with ‘map of adjunctions’ in (b) replaced by
‘pseudo-map of adjunctions’.

E
Let J be a category (thought of as index) and ﬁp be a fibration.

(i) Show that the composition functor (p o —): I — BY between functor
categories is a fibration.

Let 6: B — B’ be the diagonal functor which maps I € B to the constant

functor J — B that maps everything to I (z.e. the exponential transpose of

the projection B x J — B). Form the exponent fibration P by change-of-

base,

BxpE ———m— @

/|7 =

B 5 B

(i1) Describe the resulting fibred diagonal functor A:p — p’ over B.

(iii) Show that the fibration p has fibred limits (resp. colimits) of shape J
if and only if this A has a fibred right (resp. left) adjoint.

(iv) Give a similar analysis for split (co)limits.

Exponents in an ordinary category can be described in terms of adjunctions

involving a parameter, see [187]. This approach does not generalise readily

to fibred categories. We sketch an alternative approach, as taken in [157].

Let C be a category with Cartesian products, say described by the functor

x:Cx C — C. Write |C] for the discrete category underlying C, of objects

only. We extend the Cartesian products to a functor prod: |C] xC — |C|xC

by (X, X') = (X, X x X').

(i) Check that the category C has (chosen) exponents if and only if this

functor prod has a right adjoint.
E

(ii) Show that for a fibration %P with Cartesian products, one can define
in a similar way a fibred functor prod: |p| x p = |p| X p, where |p| is the
object fibration associated with p, as introduced in Exercise 1.1.4.

(ii) Prove now that such a fibration p has fibred exponents if and only if
this functor prod has a fibred right adjoint.

E

(iv) Assume next that %p is a split fibration with split Cartesian prod-
ucts. Write Split (IF) for the subcategory of £ with arrows obtained from
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Split (E)
the splitting and %”P” for the resulting split fibration. Show that p
has split exponents if and only if the split functor prod: ||p||xp — ||p||xp
has a split fibred right adjoint.
[For a split fibration p, ||p|| (instead of |p|) is the appropriate fibration
of objects of p.]

1.8.10. Definition 1.8.6 describes adjunctions in the 2-category Fib(B) for a fixed
base category [B. One can also consider adjunctions in the 2-category Fib
of fibrations over arbitrary bases.

1.8.11.

(i)
(i)

Describe such adjunctions in Fib in detail.

Recall from Exercise 1.7.1 that the category Fib has Cartesian prod-
ucts. Show that a fibration p has fibred Cartesian products plus
Cartesian products in its base category if and only if the diagonal
A:p — p x pin Fib has a right adjoint in Fib, i.e. if p has Cartesian
products in Fib.

In this exercise we relate adjunctions in Fib{—) and adjunctions in Fib,

E
following [125-127]. Consider a fibration %P and a functor F: A - B

(i)

Show that a (ordinary) right adjoint G:B — A to F induces a right
adjoint in Fib to F*(p) — p.

[Hint. For X € E above I € B, consider the pair (GI,e7(X)) in the
total category A xp IE of F*(p), where ¢ is the counit of the adjunction
(FAG)]

D
Assume now that F has a right adjoint G. Let i'q also be a fibra-
tion and let F":D — [E form together with F: A — B a morphism
(F, F'):q — pin Fib. Show that there is a right adjoint (G,G'):p = q
in Fib to (F, F’) if and only if there is a right adjoint in Fib(A) to the
induced functor ¢ — F*(p).

1.9 Fibred products and coproducts

In the previous section we have studied structure inside the fibres of a fi-
bration. Now we move to structure between the fibres, given by adjoints to
(certain) substitution functors. It will be described as fibred products [] and
coproducts [].

Two forms of such quantification [],]] will be discussed in this section:
the first one is “simple” quantification along Cartesian projections in a base
category, and the second one is quantification along arbitrary morphisms (in
a sense to be made precise). These two forms of quantification will turn out
to be instances of a general notion, to be described in Section 9.3. For the
moment we are satisfied with elementary descriptions.
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Recall that an ordinary category C has set-indexed products if for every set
I and every I-indexed collection (Y;)ier of objects in C, there is a product
object H,-E, Y; in C. Put differently, if each diagonal A;:C — C! has a right

adjoint []; (using the Axiom of Choice). We can express this also in terms of
Fam(C)
the family fibration slc on C. The category C' is isomorphic to the fibre

Fam(C); over I and the lQiagonal Ay is the composite

1%

C = Fam(C), 1, Fam(C); = C!

where !] is the reindexing functor associated with the unique map !y: 7 —- 1.

Thus, set-indexed products in C can be described in terms of right adjoints to
Fam(C)
certain reindexing functors of the family fibration S :t on C. It is precisely
S

E

this aspect which is generalised in the present section: in a fibration 1P the
objects and morphism in the total category [E are understood as indexed by
B. Thus right adjoints to reindexing functors '} (for I € B) will yield suitably
generalised products of an /-indexed collection X € [Ey in the fibre over I. In
this way one defines quantification with respect to an arbitrary base category
B—and not just with respect to Sets. This leads to a truly general theory of
quantification, which finds applications later on in describing ¥, 3 in logic and
I1, ¥ in type theory.

Actually, it will be more appropriate to describe quantification in terms
of adjoints to reindexing functors #* induced by Cartesian projections
n:Ix J — I, instead of just to !7. The latter then appear via projections
m:1 x I ——+ 1. Such a description involves quantification with a parameter.

E
1.9.1. Definition. Let B be a category with Cartesian products x and i%p

be a fibration. We say that p has simple products (resp. simple coprod-
ucts) if both

e for every pair of objects I, J € B, every “weakening functor”

*
TrJ
IE] —_—> ]EIxJ

induced by the Cartesian projection 7y j:I x J — I, has a right adjoint

[1;s,5) (resp. a left adjoint Lir,5);
e the Beck-Chevalley condition hofds: for every u: K »> I'in B and J € B, in
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the diagram

E . Eg

o] ]

E]x,] ———_—>EK><J
(u x id)*

the canonical natural transformation
u’ H(I,J) = [Tx.g (u x1d)"
(resp. ]_I(KJ) (u x id)* = u* H(,J) )

is an isomorphism.

Later, in Section 9.3, this form of quantification will be described in terms
of simple fibrations. That is why we call this ‘simple’ quantification. As in the
previous section, the Beck-Chevalley condition guarantees that the induced
structure is preserved by reindexing functors (and hence that it is essentially
the same in all fibres). This Beck-Chevalley condition is not a formality: 1t
may fail, see Exercise 1.9.10 below. Recall from Example 1.1.1 (iii) that we
call functors of the form n* ‘weakening functors’ because they add a dummy
variable.

One can formulate appropriate versions of quantification (in Definition 1.9.1
above and also in Definition 1.9.4 below) for split fibrations. The canonical
isomorphism mentioned in the Beck-Chevalley condition is then required to
be an identity (for the adjoints to the reindexing functors induced by the
splitting).

The next result shows that the above simple quantification gives us what
we expect in the situation of the standard fibration over sets.

1.9.2. Lemma. For an arbitrary category C one has:

Fam(C)
the family fibration slt has (split) simple products/coproducts
ets

< C has set-indexed products/coproducts.

Proof. We shall do the case of products.
(<) For sets I,J one defines a product functor H(I}J):Fam(C)IxJ —
Fam(C); by

(Y(z',j))(i,j)uxJ = (HjEJY("J'))iEI'

Then one obtains the following isomorphisms, establishing an adjunction
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71,0 10
Fam(C)rxs (75 5 ((Xi)ier), (Vi) Gierxs)
Fam(C)IxJ((Xi)(i,j)eIxJa (Y(i,j))(i,j)EIxJ)

IT o(x: vep)

(i.5)elIxJ

IT I (%, vis)

i€l jeJ
= TT (X5, ies Yo)
el
= Fam(C)I((Xi)ieh H(I,J)((Y(i,j))(i»j)EIXJ))'
Beck-Chevalley holds, by an easy calculation.
(=) Let 1 be a one-element, terminal set. For each set I, the diagonal
functor Ay: C — C! is the composite,

iR

R

*

T I
C = Fam(C); — Fam(C);x; = C'.

Since this weakening functor 7 ; has a right adjoint [, j, also the diagonal
Ay has a right adjoint. Thus C has I-indexed products, for each set I. a
1.9.3. Proposition. Let B be a category with finite products.

s(B)
(i) The simple fibration 1{1'3 on B always has stmple coproducts.
(ii) And it has simple products if and only if B s Cartesian closed.

Proof. (i) For a projection w: 1 x J — [ we can define a coproduct functor
I_I(I,J)
S(]B)]x_] = ]B//([ X J) —_— B//] = S(]B)[

between the corresponding simple slices by X — J x X, since:

BY(I x J)(X, = (¥V)) = B{((IxJ)x X, Y)
B(Ix (JxX),Y)
B/ 1( L1, (%), Y).
(i1) If the category B is Cartesian closed, we can define a product functor
H 1y :BJ(I x J) = BJI by X — J = X. This yields simple products. And

conversely, if the simple fibration has simple products, then B is Cartesian
closed by Exercise 1.3.2 (ii), because each functor I*:B — B/ has a right

adjoint (since it can be written as composite B = B/ 1 AN BJI). a

IR

1R
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We turn to the second “non-simple” form of quantification; it does not deal
with quantification solely along Cartesian projections, but along all morphisms
in a base category.

E
1.9.4. Definition. Let B be a category with pullbacks and %p a fibration
on B. One says that p has products (resp. coproducts) if both

e for every morphism u: I — J in B, every substitution functor u*:[E; — E;
has a right adjoint [], (resp. a left adjoint [],);
o the Beck-Chevalley condition holds: for every pullback in B of the form

K —U>L

rlJ |

I—u_)J

the canonical natural transformation
s* . =1L, (resp. I], ™ = s*1],)
is an isomorphism.

It is easy to see that this second form of quantification is really an extension
of the earlier ‘simple’ one. If one has quantification along all morphisms, then
in particular along Cartesian projections; and the Beck-Chevalley condition
holds since for every u: K — I and J € B the following diagram is a pullback.

u x id

We emphasise that the simple form of quantification is described in terms
of adjoints to weakening functors #* (induced by Cartesian projections )
and the subsequent one in terms of adjoints to arbitrary substitution functors
u*. The latter is the formulation first identified by Lawvere in [192]. For the
quantifiers V,3 in logic and II, ¥ in simple or polymorphic type theory, it
suffices to have quantification along projections. But in dependent type theory
the above Cartesian projections will have to be generalised in a suitable way
to ‘dependent’ projections, see Section 10.3.

Equality can be captured in terms of (left) adjoints to contraction functors
d* induced by diagonals §, see Chapter 3.
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It is probably worth noting the following. Adjoints are determined up-to-
isomorphism, so the left and right adjoints [[,, and [];4 to an identity substi-
tution function id* = id are themselves (naturally) isomorphic to the identity:
[Li4 =id = [],4. For composable maps v, u in the base category, there is an
isomoporphism (v o u)* = u* o v*, see Section 1.4. It leads to isomorphisms
U,ou = L, o I, and [],,, =1, o I1, since adjunctions can be composed,
see [187, Chapter IV, 8 8].

Our first example of this second form of quantification again involves fam-
ily fibrations. It extends Lemma 1.9.2. Notice the explicit use of equality in
the definition of [], in the proof. It returns in more abstract form in Exam-
ple 4.3.7.

1.9.5. Lemma. Let C be an arbitrary category. Then:

Fam(C)
the family fibration Slt has (split) products/coproducts
ers
& C has set-indexed products/coproducts.

Proof. The interesting part is the implication («<). For u:I — J in Sets
define product and coproduct functors [],,, [[,: Fam(C); = Fam(C); by

(Yi)iel i (H{Y' | u(d) = j})jeJ

(Yi)iej = (I_I{Yz | u(i) = j})je,]' o
UFam(PER)
1.9.6. Lemma. The fibration w .':‘I;et of PERs over w-sets has both prod-

ucts and coproducts (along all maps in w-Sets).

Proof. This follows in fact from the fibred reflection UFam(PER) &
UFam(w-Sets) ~ w-Sets™ over w-Sets in Proposition 1.8.7 (ii), using the
reflection lemma 9.3.9 later on. Here we give the explicit formulas: for a mor-
phism u: (I, E) — (J, E) in w-Sets and a family R = (R;)ic(1,E) over (I, E)
we get a product and coproduct over (J, E) by

[1.(R); {{(n,n') |Vie L.u(i)=j = Ym,m' € E({).n-mR;n' - m'}
Hu(R)j = r(uu(i):jN/Ri) E)

where r is the left adjoint to the inclusion PER <« w-Sets, and E is the
existence predicate on the disjoint union [[,,;,-; N/R; given by E(i, [n]r,) =
{{n,n’) | n € E(¢) and n’ € [n]g,}. o

The following result is often quite useful. The proof is left as an exercise.

1.9.7. Lemma. Consider a fibration for which each reindexing functor has
both a left || and a right [] adjoint. Then Beck-Chevalley holds for coproducts
11 if and only if it holds for products []. O
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The next result for codomain fibrations is the analogue of Proposition 1.9.3
for simple fibrations. The third point is due to Freyd [83].

1.9.8. Proposition. For a category B with finite limits, the codomain fibra-
]B—}

tion ]lE on B has
(i) coproducts [1,,; they are given by composition;
(i1) simple products H(I,J) if and only if B 1s Cartesian closed;

(iil) products [, if and only if B is locally Cartesian closed.

u

Proof. (i) For u: ] — J one defines a coproduct functor [],:B/J — B/J by
(x B0 o (x"“2F) and <¢f>¢> - ((uw)i»(uw)) .

The adjunction (J], - »*) then follows from the bijective correspondence
between maps f:[[, ¢ — ¢ over J and g: ¢ — u* () over [ in:

X f
_N
Yy ——Y
0 = |
u” (¥) (0
[——>J

Beck-Chevalley follows from the Pullback Lemma (see Exercise 1.1.5).
(i1) The proof is essentially as in Exercise 1.3.3, except that we have to deal
with an extra parameter object. In case B is Cartesian closed we can form a

X
simple product of a family (1;&?) over I x J along a projection m: [ x J — [

P
as the family ( } ) over I, 1n the pullback diagram:

J=> X

lJ:Mo
J= (I xJ)

P_I
H(I,J)(‘P)l
I

A(idrxg)

Informally, P consists of the pairs (¢, f) with ¢(f(j)) = (¢, j), for all j.
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Conversely, if the codomain fibration has simple products, then in particular
each functor I*: B — B/I has a right adjoint. Hence B is Cartesian closed by
Exercise 1.3.3.

(iii} If B has finite limits, then each slice B/ has finite products. Hence

B is an LCCC <« each slice B/I is Cartesian closed
< for each object u:J — I in B/I, the functor
u B/ — (B/I)/u=B/J
has a right adjoint [[, (see_)Exercise 1.3.3)
& the codomain fibration ]]lB has products [],,.

This last step is justified by the fact that Beck-Chevalley always holds by the
previous lemma. ]

For an explicit formulation of the Cartesian products and exponents in the
slices B/ in terms of [] and [], see Exercise 1.9.2 below.

1.9.9. Corollary. If a category B with finite limits is Cartesian closed/locally
Sub{B)
Cartesian closed, then its subobject fibration Iﬁ has simple/ordinary prod-

ucts [].

Proof. Since right adjoints [] preserve monos, they restrict to functors be-
tween (posets of) subobjects. O

The following result tells how simple and ordinary products are related. It
shows that ordinary products are simple products relativised to all slices of
the base category. This is sometimes called localisation, see e.g. [246].

E
1.9.10. Theorem. Let %p be a fibration on a base category B with pull-

backs. For each object I € B, write I*(p) for the fibration obtained by change-
of-base in

B/[ X]BE__——)IE

o
I*(p) = domy (p) l lp
B/I

B
domy

Then p has (ordinary) products [], if and only if each fibration I*(p) has
simple products H(v,w)‘
A similar result holds for coproducts [].
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Proof. Assume p has products [], along an arbitrary morphism u in B. Let
v: K — I and w: L — I be objects of the slice B/I and consider their pullback

T
Kx;L —— [
o U XWw w

K——p—1
A simple product H(U w) along the Cartesian projection mg:v X w — v in B/[
1s then given by

X = I, (X).

As a result of the Beck-Chevalley condition for products in p one gets in I*(p)

that for u: J — K,
w* Tl =TTy, (u % id)°

where Aq is the first projection (v o u) x w — (v o u) in B/I. This is the
appropriate formulation of Beck-Chevalley for simple products.

Conversely, assume that each fibration I*(p) has simple products. Then
for a map w:J — [ in B, the fibration /*(p) has a product [], along the
‘projection’ Y, = u:u -—+ idy in B/I. Beck-Chevalley also holds: for v: K — I
consider the following pullback square in B/1.

v =1, xid
v X u u
v*(u)l l!u =u
v ld[
l,=v
It yields v* [], = HU.(U) v'™* as required. O

1.9.11. Definition. A fibration is called complete if it has products [],
and fibred finite limits. Dually, a fibration is cocomplete if it has coproducts
[1, and fibred finite colimits.

The codomain fibration associated with a locally Cartesian closed cate-

gory is thus complete. And fibrations that we know to be equivalent to
Fam{Sets) UFam(Ww-Sets)

codomain fibrations of LCCCs are complete, like ! , i and
Sets W-Sets
UFam(PER) UFam(PER)
lR . Also w é . is complete, see Lemma 1.9.6. And the family
-2ets

PE
fibration of a complete category is complete.
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Ordinary categories are complete in case they have arbitrary products and
equalisers. Above we have required all finite limits instead of just equalisers.
Under certain technical assumptions, it is possible to obtain fibred finite prod-
ucts from products [], and fibred equalisers, so that we get all fibred finite
limits, see Exercise 9.5.11. But in general it is more convenient to require
explicitly the presence of all fibred finite limits.

In Section 7.4 it will be shown how every small diagram in a complete
fibration has a limit. The difficulty in getting such a result lies in saying what
a small diagram in a fibred category is.

The following technical result will be used frequently in the categorical de-
scription of logics and type theories. It deals with distribution of coproducts
L] over Cartesian products x in the fibres. It is a generalisation of the distri-
bution of \/ over A in a frame, see Exercise 1.9.6. In logic it corresponds to the
equivalence of 3z: . (p A9 (z)) and ¢ AJz: 0. ¢ (z), if £ does not occur free in
. It also occurs as an equivalence between va. (P || n*(Q)) and (vz. P)}| @ in
process theory, where v is restriction and || is parallel composition, see [219].

E
1.9.12. Lemma (Frobenius). Let 1P be a fibred CCC.

(1) Suppose p has simple coproducts. For each pair of objects I,J € B in
the basis and each pair of objects Y € E;, Z € E;«y in appropriate fibres, the
canonical morphism

Ui 0y(#7 () x Z2) — Y x [{; ()

s an isomorphism.

(11) Suppose now p has coproducts. Then for each w:1 — J in B, Y € Ej
and Z € [y, the canonical morphism

[ (v (Y) x 2) — Y x[1.(2)

ts an isomorphism.

Proof. Wedo only (i). First of all, the Frobenius map is obtained as transpose
of the composite

N id X Nz * *
m1g(Y) x Z ———— 77 ;(Y) x 77 (L1 5)(2))

| =

7r},J(Y x H(I,J)(Z))~
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It is an isomorphism by Yoneda:

H(I,J)(ﬂ';,J(Y) XZ) —> W

1Y) x Z —— 77 4,(W)

7z ——mp;(Y) =7 (W)= ”;,J(Y = W)

H(],J)(Z) —Y =W

Y x ]_[(I,J)(Z) — W O

Notice that the Frobenius map is an isomorphism because reindexing func-
tors preserve exponents. Even if there are no fibred exponents around, the
Frobenius map can still be an isomorphism. In that case we shall speak of
(simple) coproducts with the Frobenius property, or briefly, of (sim-
ple) coproducts satisfying Frobenius.

Finally we should also say what it means for a morphism of fibrations to
preserve the above (simple) products and coproducts.

E (K.L) D
1.9.13. Definition. Let ]%p — kq be a morphism of fibra-

tions.
(i) Assume that p and ¢ have simple products (resp. coproducts). Then
(K, L):p — q preserves simple products (resp. coproducts) if both

e K:B — A preserves binary products, say with s ; as inverse of the canon-
ical map K (I x J) = KI x KJ;
e for each pair I, J € B, in

Er Dk 1

* *
"'1,J< > ”KI,KJ( >

Erxg —————— > Draxy —*i> Exrxkg)
H Yr.J

the canonical natural transformation
H H(I,J) = H(KI,KJ) s H
(resp. [(krksy 710 H = H 1)

is an isomorphism.
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(i1) Assume now that p and ¢ have products (resp. coproducts). The map
(K,L):p — q preserves products (resp. coproducts) if both

e K:B — A preserves pullbacks;
e for every u: I — J in B, the canonical natural transformation,

H Hu :>HKu H (resp. HKu H= H Hu )
18 an isomorphism.
This notion occurs in the following useful lemma on quantification and

change-of-base.

E
1.9.14. Lemma. Let ﬁ%,p be a fibration and K:A — B a finite limit (prod-
uct) preserving functor. Then

p has (simple) products/coproducts
= RK*(p) has (simple) products/coproducts.

Moreover, the morphism of fibrations K*(p) — ¢ preserves these. ]
Fam(Sets)
1.9.15. Example. By Lemma 1.9.5 the family fibration Slt has both
ets
Sign

products and coproducts. Hence also the fibration _{ of many-typed signa-
tures has products and coproducts, because it is obtained by change-of-base,

see Definition 1.6.1, and because the functor T — 7™ x T preserves pullbacks.
Sign Fam(Sets)
The morphism of fibrations Slt — Sit then preserves these induced
ets ets

products and coproducts.
Exercises

1.9.1.  Fill in the details of the proof of Lemma 1.9.5 and pay special attention to

the Beck-Chevalley condition. R

1.9.2.  Assume B is a category whose codomain fibration Hiﬁ is complete. By
Proposition 1.9.8 (ii1) we know that B is then locally Cartesian closed. Show
that for objects ¢, ¥ in the slice B/I, the Cartesian product and exponent
are given by the formulas:

exy =]l ¢"(¥) and e=y=[[ ).

1.9.3.  Conclude from Propositions 1.9.3 (ii) and 1.9.8 (iii) that (finite) coproducts
are automatically distributive in a CCC, and universal in an LCCC.

1.9.4. (i) (Lawvere [193], p.6) Show that Lemma 1.9.12 (ii) can be strengthened

in the following way. Consider a fibration with fibred finite products



1.9.5.

1.9.6.

1.9.7.

1.9.8.

1.9.9.
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and coproducts Uu, in which each fibre category has exponents. Then:

the Frobenius property holds
& reindexing functors preserve exponents.

(i1) Assume B has finite limits; show that the codomain fibration E
has coproducts satisfying the Frobenius property.

(111) Conclude from (i) and (ii) that if B is locally Cartesian closed (i.e. every
slice is Cartesian closed), then the codomain fibration on B is Cartesian
closed. This fills the gap in Example 1.8.3 (iv).

E

Let a fibration %p have coproducts I_Iu. Prove that for a mono m: I’ — [
in B the coproduct functor Um:Ep — I, is full and faithful.
[Hint. Write the mono in a pullback square, and use Beck-Chevalley.]

Let C be a category with finite products and set-indexed coproducts. The
Fam(C)
family fibration Slt then has fibred finite products and (simple) coprod-
ets
ucts. Show that the Frobenius property holds if and only if the coproducts
in C are distributive (i.e. if functors X x {—): C — C preserve coproducts:
the canonical maps [[.(X x Yi) = X x (], ¥:) are isomorphisms).
Fam(A)
[Especially, for every frame A the family fibration sl has fibred finite

ets
products and coproducts satisfying Frobenius.]

E
Let IJBEP be a fibred CCC with simple products and coproducts.
(i) Show that for X € [E;«s and Y € [£; there is an isomorphism over [

(H(I’J)X) =Y H(],J)(X = 7' (Y))

[Recall from logic the equivalence of ((3z:0.¢) D ) and (Vz:0.(¢ D
¥)) if = is not free in ¥.]

(i1) Formulate and prove a similar result for non-simple coproducts ]_[u
and products Hu.

Let B be an LCCC. Describe the associated coproduct H and product H

along morphisms in B as fibred functors in a situation:

Let B be an LCCC. Show that complete distributivity (or the Axiom of
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1.9.10.

1.9.11.
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Choice, see Exercise 10.2.1) holds: the canonical map
I U, () <— L7 o [T e"®)

is an isomorphism—where u’ is the pullback of u along Hu (¢) and ¢ is the

counit of the adjunction (u* 4[], ) at ¢.

Let Dcpo be the category of directed complete partial orders (dcpos) and

(Scott-)continuous functions. A subset A of a dcpo X is Scott-closed if A

is a lower set closed under directed joins. (This means that A is closed in

the Scott topology on X.)

(1) Define a fibration of Scott-closed subsets (ordered by inclusion) over
Dcpo.

(ii) Show that a left adjoint I_I(
exists and is given by

A {zeX|IyeY.(z,y) € A}

where (+) is Scott-closure.
(iii) Show that in case Beck-Chevalley would hold, one would get

er(X,Y)(A) & JyeY.(r,y) €A

i.e. that {z € X | Jy € Y. (z,y) € A} is already Scott-closed.
[Hint. Consider the pullback of m: X x Y — X and z:1 - X ]

(iv) Check that the latter is not the case: consider X = N U {co} with the
usual total order of N plus a top element, and ¥ = N U {oo} with
discrete order. Take A = {(z,y) e Nx N |z <y y} C X x Y, where
<n is the usual order on N.

[This gives an example where one has left adjoints to #*’s but no Beck-

Chevalley. This example (or counter example) is due to Pitts (see also [61,

Chapter 1, Exercise (7)].]

In Exercise 1.2.13 one finds that a category C has set-indexed coproducts

if and only if the unit C — Fam(C) has a left adjoint. We describe an

analogue of this result (due to Bénabou) for fibred categories.

xY) along a projection m: X xY —» X

E
Let %p be a fibration, where B has pullbacks. Define the fibration Fam(p)
to be the composite cod o dom*(p) in

Famp(E) ———  E

dom*(p) l 1 p
dom

Fam(p) B ———— B

cod i

B
and define n,: [E = Famp(E) = B~ xp E by X — (idpx, X)-



Section 1.10: Indezed categories 107

(1) Show that n, is a fibred functor p — Fam(p).
(ii)) Prove that p has coproducts if and only if i, has a fibred left adjoint.

1.10 Indexed categories

We recall from the first section 1.1 that there are two ways of describ-
ing I-indexed families of sets: (a) pointwise indexing via indexed collections

{Xi)ier, or {b) display indexing via functions (}; ) The collection in (a) may
be described as a functor from the discrete category I to Sets. Equivalently
as a functor I°? — Sets. It has been shown that (a) and (b) are essentially
the same for sets.

The reader may already have noticed that similar descriptions exist for
indexing of categories: one has (a) indexed categories B°? — Cat and (b)

E
fibrations &P, giving pointwise and display indexing for categories. Propo-
sition 1.4.5 describes how to go from (b) to (a)—for a cloven fibration—by
mapping an object I of the base category B to the fibre category [E; over
I. In this section one finds the so-called ‘Grothendieck construction’ which
establishes a passage in the reverse direction from (a) to (b). It occurs in
Grothendieck’s original paper [107] on fibred categories.
A discussion on fibrations versus indexed categories is included.

1.10.1. Definition (Grothendieck construction). Let ¥:B°® — Cat be an
indexed category. The Grothendieck completion [, (¥) (or simply [¥) of
¥ is the category with

objects (1, X) where ] € B and X € ¥(I).
morphisms ({,X) — (J,Y) are pairs (u, f) with u:/ — J in B and
fX 2w (Y)=U¥(u)(Y)in ¥(J]).
Composition and identities in f]B(\II) involve the isomorphisms 7 and p from
Definition 1.4.4. The identity (1, X) — (I, X) in ¥ is the pair (id, n;(X)),
where 7y is the natural isomorphism idg(s) = (id;)*. And composition in [¥
of

(I, X) (. f) (J,Y) —~——>(v’g) (K, Z)
1.e. of
[ —> J—— K
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is defined as

[ —>J 25K

—_—n gy (Y} —— u*v* (7 —E» vou) (Z
X 7 Y) @) ) ) (vou)(2)

The required equalities for identity and composition follow from the coher-
ence diagrams in Definition 1.4.4. In fact, these coherence conditions capture
precisely what is required for [¥ to be a category.

]
1.10.2. Proposition. (i) The first projection It is a cloven fibration. It is

split whenever the indexed category ¥ 1s split.
(ii) Turning a cloven fibration first into an indexred category (as in Proposi-

tion 1.4.5) and then again into a fibration yields a fibration which s equivalent
to the original one.

(ii1) Also, turning an indezed category first into a fibration and then into an
indezed category yields a result which is “essentially the same” as the original.

Proof. (i) Foru:I — J in B and Y € ¥(J) there is a cleavage

(i1) Easy.

(ii1) In order to make the statement precise one first has to introduce a
notion of equivalence for indexed categories. We leave this to the meticulous
reader. Below one does find the appropriate notions for split indexed cate-
gories. a

1.10.3. Examples. (i) The family fibration F:i:(:) arises by applying the
Grothendieck construction to the split indexed category Sets°® — Cat given
by I — CI.

(i1) The previous example can be extended to categories in the following
way. For a fixed category C one obtains a split indexed category Cat®® — Cat

by A — [the functor category C*]. The resulting split fibration will be written
Fam(C)

as Cit and called the family fibration over Cat.
al
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(iii) For a category B with finite products, one gets a split indexed category

B°P — Cat by mapping / € B to the simple slice category B/ I. The resulting

s(B)
fibration is the simple fibration lﬁ on B.

(iv) For a category B with explicitly given pullbacks, the assignment /
B/I extends to an (in general non-split) indexed category B°? — Cat. Its
—

associated fibration is the cloven codomain fibration
Later on in this section, these latter two type theoretic fibrations will reap-
pear in connection with indeterminates.

1.10.4. Discussion. We have seen that the two ways (a) (= pointwise) and
(b) (= display) of indexing sets (and the associated pictures) as described in
Section 1.1 extend to categories: indexed categories correspond to pointwise
indexing (a) and (cloven) fibrations to display indexing (b). In the following
comparison of these two forms of indexing (for categories), we shall discuss
one conceptual difference and a number of technical differences.

(i) The notion of indexed category involves some explicit structure
(namely reindexing functors and mediating isomorphisms id 5 id* and
u* o v* 5 (v o u)* in Definition 1.4.4), which is left implicit in fibrations.
So an indexed category has a structure where a fibration has a property. The
defining property of a fibration determines such structure once a choice of
cleavage has been made, see Section 1.7. In general in category theory one
prefers properties to structures.

We mention the following two disadvantages of working with explicit rein-
dexing functors and mediating isomorphisms.

(a) It means that one has to check every time explicitly whether a property
1s zntrinsic or not, i.e. whether or not it depends on the specific structure. For
instance, in the indexed category [ — B/ in Example 1.10.3 (iv) above, each
reindexing functor (given by pullback) has a left adjoint (by composition).
This property does not just hold for the given indexed category arising from
the explicitly given pullbacks, but for all such indexed categories arising from
all possible choices of pullbacks. In fibred category theory one leaves this
structure implicit, which enables a natgral and intrinsic formulation of this

property of the codomain fibration E , see Proposition 1.9.8 (i).

(b) Dealing explicitly with the mediating isomorphisms 7:id 5 id* and
p:(u® o v*) S (v ou)* (and the associated coherence conditions) is cumber-
some. Of course one can ignore them, but that means pretending there is no
problem. This is dangerous, because coherence conditions may fail.

(i1) In Section 1.6 we saw that fibrations are closed under composition.
Of course a similar result can be formulated for indexed categories (try it!),
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but it lacks the smoothness and clarity that one has with fibrations. Thus
simple and clarifying results like Lemma 1.6.6 fall outside the direct scope of
indexed categories. Later we shall make crucial use of this closedness under
composition in the categorical description of logics and type theories which
involve different levels of indexing, see Sections 8.6, 9.4, 8.6, 11.2 and 11.3.

(i) This last point is related to another advantage of fibrations over
indexed categories, namely that the notion of fibration makes sense in a
2-category, see e.g. [317, 171]. This is like display indexing of families, which
makes sense in any category.

(iv) Some constructions are easier for indexed categories. Change-of-base is
slightly simpler (for indexed categories) because it is done by composition (see
Proposition 1.10.6 below). Considerably more elementary is the construction
which yields the opposite: for an indexed category ¥ one takes the opposite of
the fibre categories ¥(I). Probably the easiest way to understand the opposite
of a fibration is: first turn it into an indexed category, take the opposite fibre-
wise and turn the result back into a fibration. An explicit fibred construction
is described in Definition 1.10.11 below.

(v) The categorical semantics of simple and polymorphic lambda calculi
can easily be described in terms of indexed categories, as in [307, 156, 61].
But, if one wishes to use indexed categories also for the semantics of type
dependency, one ends up describing the relevant structure in terms of the
associated Grothendieck completions. In general, if one uses the Grothendieck
completion all the time, one might as well use fibrations from the beginning.

Finally one sometimes hears that indexed categories are more elementary
and easier to understand and use than fibrations. We disagree at this point.
Properly explained and exemplified, fibrations give a clearer picture of index-
ing and are more convenient to use. Eventually, of course, one tends to think of
indexed categories and (cloven) fibrations interchangeably. But, and here we
quote Bénabou [29, p. 31, in (v)]: “An indexed category is just a presentation
of a fibred category”.

On a more practical note, we shall often use split indexed categories—in
particular, as a means to introduce a split fibration—but hardly ever non-split
ones. In those situations we prefer to use fibrations. In line with this approach
we will describe 1- and 2-cells for split indexed categories only.

1.10.5. Definition. A morphism of split indexed categories from
U:B°P — Cat to &: A°° — Cat is a pair (K, a) where K:B — A is a functor
and a: ¥ = ®K°P is a natural transformation. Notice that the components
of a are functors ay: ¥(I) — ®(KI). This determines a category ICat.

ICat
1.10.6. Proposition. The functor C‘l;at , which sends an indered category to
its base, is a split fibration. The fibre above a category B will be denoted by
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ICat(B), it contains split indered categories with base B and natural trans-
formations between them.

Proof. For an indexed category ¥:B°® — Cat and an arbitrary functor
K:A — B, put K*(¥) = ¥ o K°P: A°’ — Cat and K(¥) = (K, (ide(x1))1ea)
in ICat. O

1.10.7. Theorem (Grothendieck). The Grothendieck construction from Def-
inition 1.10.1 gives an equivalence of fibrations:

ICat ———— Flbspllt

\/

Proof. The Grothendieck construction determines the object part of a func-
tor G:ICat — Fibgpie. For a morphism (K,a): (¥:B°P — Cat) —
(®: A°® — Cat) in ICat, one defines G(K,a) = (K, [ a), where [a: [[ ¥ —
J,, @ is layed down by (I, X) = (KI,a;(X)) and (u, f) = (Ku,ar(f))—with
I the domain of u.

In the reverse direction there is a functor Z: Fibgpiie — ICat; it maps a split

E
fibration ﬁp to the functor Z(p):B°? — Cat which maps I — Er and u —

u*, as described in Proposition 1.4.5. Clearly, for a morphism < lp) (KA

D
iq) in Fibgpie, one takes Z(K, H) = (K, (Hr)rea), where Hp:Ey — D

is the restriction to the fibres. Naturality in [ is obtained from the fact that
H preserves the splitting on-the-nose. The required fibred equivalence follows
readily. O

Notice that the above result gives a categorical version of the equivalence
Fam(Sets) = Sets™ in Proposition 1.2.2 involving set-indexed families of
sets.

Next we mention 2-cells for split indexed categories. In order not to com-
plicate matters too much, we restrict ourselves to a fixed base category B
(and so we allow only K = id:B — B as functor between base categories in
Definitton 1.10.5).

1.10.8. Definition. Let ¥ and & be split indexed categories B°P =2 Cat
and a, 8: ¥ = ¢ natural transformations (i.e. 1-cells in ICat(B)). A 2-cell
oo = (3 in ICat(B) is defined to be a modification (see e.g. [176]), i.e. a
family oy: ar = B; of natural transformations such that for each u: I — J in



112 Chapter 1: Introduction to fibred category theory

B one has
o1 ¥(u) = ®(u) oy.

In a diagram:

¥(J) i) ¥(I)
ay | 2L | By ar| 2L\ B
®(J) () ®(1)

The proof of the following result is left to the interested reader.

1.10.9. Proposition. The fibred equivalence ICat = Fibgpye in Theo-
rem 1.10.7 gives rise to an equivalence

ICat(B) —— > Fibgpiit(B)

of 2-categories, for each category B. m]

As we already mentioned in the discussion in 1.10.4, there is considerable
difference between taking opposites for (split) indexed categories and for fi-
brations. We shall briefly describe both constructions.

1.10.10. Definition. For a split indexed category ¥:[B°P — Cat with basis
B, define the opposite split indexed category W°P as the “fibrewise opposite”
YoP: B°P — Cat given by

Iow(n®  and (1% 7) e (\II(J)"" v, \11(1)°P> .

This definition of opposite for indexed categories is nice and simple. In
contrast, the opposite for fibred categories is rather involved. The opposite
p°P of a fibration p should mean: fibrewise the opposite. The requirement
that such a construction be intrinsic makes the definition below somewhat
complicated. For split fibrations it is much simpler (see Exercise 1.10.9), since
1t 1s essentially as for split indexed categories.

Recall that an arrow in the total category of a fibration factors as a vertical
morphism followed by a Cartesian one. The intuition behind the definition of
the opposite is that all vertical maps in such composites are reversed.



Section 1.10: Indexed categories 113

E
1.10.11. Definition (Bénabou [28]). Let %p be a fibration. A new fibra-
Elo®
tion (with the same basis) written as %pop will be described which is fibre-
wise the opposite of p. Let

CV = {(f1, f2) | /1 is Cartesian, f, is vertical and dom(f;) = dom(f2)}.

An equivalence relation is defined on the collection CV by

(fr, f2) ~ (91,92)

< there is a vertical h with gy o h = fy and goo h = fo, as in
i
R .
;k ; /
The equivalence class of (f1, f2) will be written as [fi, fa].

The total category E(°P) of p°P has X € E as objects. Its morphisms X — Y
are equivalence classes [fi, f2] of maps fi, fo as in:

X
al
h
— >V

Composition is described by the following diagram

in which the horizontal dashed arrow is a Cartesian lifting, and the vertical
dashed arrow is induced. The functor p°P:E(°P) — B is then defined by X

pX and [f1, fo] = p(f1).
The proof of the following result is left to the reader.

E
1.10.12. Lemma. Let ﬁp be a fibration. One has that
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E(°P)
(1) the functor %pop is a fibration; and a morphism [fy, fo] in E°P) 4s
Cartesian if and only if the vertical map fp ts an isomorphism,
(11) this fibration p°P is the fibrewise opposite of p, that is, for each object
I € B there is an isomorphism of fibre categories

(]E(Op))I = (E )Op, natural in I;
(i11) there is an isomorphism of fibrations (p°?)°P = p over B. O

In ordinary category theory, a category C has limits of shape J if and only
if the opposite category C°P has colimits of shape J. Similar results exist for
fibred categories, because the opposite of a fibration is taken fibrewise.

1.10.13. Lemma. For a fibration p one has:

p has fibred limits of shape J <> p°P has fibred colimits of shape J
p has simple products < p°P has simple coproducts;
p has products < p°P has coproducts. m]

We close this section with an investigation of adjoining indeterminates
(or adding elements) to a category. It gives rise to indexed categories, and
shows in particular how the type theoretic simple and codomain fibrations
arise from the same pattern.

Let B be a category with terminal object 1 and let I be an object of B. One
can form a new category B[z : I]-—or B{z: 1 — I] in the notation of [186]—by
adding an indeterminate z of type I as follows. Consider the underlying graph
of B and add an extra edge z: 1 — I, where z is a new symbol. Let Bz : I] be
the free category with terminal object 1, generated by this extended graph,
Incorporating the terminal object 1 € B and the equations that hold in B. It
comes equipped with an inclusion n;: B — B[z : I] which preserves the termi-
nal object. This functor together with #:1 — I in B[l : I] is universal in the
following way. For any terminal object preserving functor F: B — C together
with a morphism a:1 — FI in C, there is an (up-to-unique-isomorphism)
unique terminal object preserving functor F: B[z : I] — C such that Fz = a
in

B SN Blz: 1]

|
I'F such that Fz =a
L F ¥
Wlth C
a:l— FI
Below we are particularly interested in the case where the category B has

finite products or finite limits. This structure can then be extended to Bz : 1]
and the universal property holds for functors preserving such structure.
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1.10.14. Proposition. The assignment I — B[z : I] extends to an indexed
category B°P — Cat.

Proof. For u: [ — J in B one obtains a functor u*:Bly : J] = Bz : I] by the
universal property applied to

nJ
B —— Bly: J]
|
0 v
i
with B[;, h
1515 ’ o

In the particular cases where the category B has finite products or finite
limits, there are simpler ways to describe the category B[z : I]. The following
can be found in [186]: (i) in Section I, 7 and (ii) in Exercise 2 in 1I, 16.

1.10.15. Proposition. (i) In case B has finite products, Bz : I] is equivalent
to the simple slice category Bj/ 1.

(it) In case B has finite limits, Bz : [] 1s equivalent to the ordinary slice
category B/1I.

Proof. It is not hard to verify that the functors I*:B — B/ [ and [*:B — B/J
satisfy the appropriate universal properties. a

1.10.16. Corollary. Applying the Grothendieck construction to the indexed

category I — B[z : I} from Proposition 1.10.14 yields
s(IB)
(1) the sumple fibration 11l5 in case B has finite products;

IB—)
(i1) the codomain fibration E in case B has finite limats. 0

The ‘type theoretic’ simple and codomain fibrations thus arise by the
same procedure of adjoining indeterminates. For more information, see [125]
or [129]. There one finds a description of adding indeterminates to fibred cat-
egories.

Exercises

UFam(W-Sets)

1.10.1. (i) Give the split indexed category yielding the fibration w Sl .
-2ets
from Section 1.2 upon application of the Grothendieck construction.
S-Model

{i1) Do the same for the fibration Silgn from Section 1.6.
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1.10.2.

1.10.3.

1.10.4.

1.10.5.

1.10.6.

Chapter 1: Introduction to fibred category theory

(i) Show that the Grothendieck construction applied to a (representable)
functor B(—, 7):B°? —» Cat—which is a split indexed category with
B/I
discrete fibre categories—yields the domain fibration %doml .

E
In line with this result, one calls a fibration %p representable if it is

equivalent (as a fibration) to dom; for some / € B.

(ii) Show that a presheaf H:[B°P — Sets is representable (in the ordinary
sense) if and only if the associated Grothendieck fibration is repre-
sentable (as a fibration).

[Representability will be further investigated in Section 5.2.]

Show that the category ICat(BB) of indexed categories with basis B has

finite products.

Show that a (split) indexed category ¥:B°P — Cat and a functor K: A —

B give rise to a pullback diagram of categories:

[(@oK) ———> [¥
|

l |

A % B

Say that a split indexed category ¥:[B°? — Cat has (indexed) Cartesian

products x if the diagonal A: ¥ — ¥ x ¥ in ICat(IB) has a right adjoint

in the 2-category ICat([B).

(i) Describe what this means concretely.

(i1) Verify that ¥ has indexed Cartesian products if and only if its associ-
ated Grothendieck fibration has split fibred Cartesian products.

) D
For two fibrations lﬁp and ﬁ%q over B we write Fib(B)(p, g) for the

hom-category of fibred functors p — q over BB and vertical natural transfor-
mations between them. For I € B consider the assignment

I~ Fib(B)(domI X p, q).

(i) Show that it extends to a split indexed category B°? — Cat.
(ii) Write p = ¢ for the resulting split fibration. Show that there is an
equivalence of categories

Fib(]B)(r X p, q) o~ Fib(lB)(r, p= q).

(i) Now assume that the above p, g are split fibrations and consider the
split fibration (for which we also write p => q) resulting from the in-
dexed category,

I+ Fibgpie(B)(dom; x p, q).



1.10.7.

1.10.8.

1.10.9.

1.10.10.

1.10.11.
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of split fibred functors. Show that one now gets an isomorphism of
hom-categories,

Fibspiic(B) (7 x p, ¢) = Fibypie(®(r, p= q).

[Thus p = ¢ behaves like an exponent, see also [36, 11, Lemma 8.4.4]. Its

definition can be understood in terms of the Fibred Yoneda Lemma 5.2.4.

If p and ¢ are presheaves (i.e. discrete fibrations), then p = g is the usual

exponent of presheaves (see Example 5.4.2).]

(i) Check that one gets a category f\II as described in Definition 1.10.1
in case i and p are natural transformations satisfying the coherence
conditions (but are not necessarily isomorphisms as in Definition 1.4.4),
but that the result need not be fibred over B.

{(n) Show that a monad (7', n, ) on a category A corresponds to a “pseudo-
functor” A: 1°P — Cat, without the requirement that the maps n and
u are isomorphisms.

(i) Show that in the situation of (ii), the Grothendieck construction as
in (i) corresponds to taking the Kleisli category of the monad (T, n, u1).

Inv(B
Let B be a category with finite limits. We write Hi: ) for the opposite
IB—}
of the codomain fibration lﬁ . The category Inv(B) is sometimes called

the inverse arrow category of [B.

Inv(B)
(i) Describe the fibration ]i in detail.
(1) Show that its fibre above the terminal object is (isomorphic to) B°P.
Let p be a split fibration. Show that the opposite fibration p°P can also be
obtained by turning p first into a split indexed category, taking the opposite
of all fibres and changing it back into a fibration.
Let p be a Cartesian closed fibration. Describe the (fibred) exponents via

a fibred functor =:p°? x p — p.
s(C)

Let C be a category with pullbacks; consider the simple fibration %Sc .

There is a functor {~}:s(C) — C given by (I, X)— I x X and (u, f) —
(u o 7, f). Form the fibration ¢ by change-of-base

Sub(C)
_|
q
s(C) C
{-}
and let r be the fibration (s(c o q°p)0p: DC — C. Describe the total cate-

gory DC in detail.
[It is the dialectica category of de Paiva [243].]
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Chapter 2

Simple type theory

In this chapter we introduce the first and most elementary type theory, namely
simple type theory (STT), which goes back to Church [49]. Here we use the
terminology simply typed for type theories without type variables and poly-
morphically typed for type theories which do have such type variables. Chap-
ter 8 is devoted to these polymorphic type theories (PTTs). Although there
are no type variables a: Type in STT, term variables v: ¢ inhabiting types
o: Type do exist. But these are allowed to occur only in terms—and not in
types, like in dependent type theories (DTTs) (see Chapter 10).

In the present chapter we give categorical semantics of simple type theory,
both in (traditional) terms of ordinary categories, and also in terms of fibred
categories. We begin with the syntax of calculi of types and terms, starting
from a many-typed signature as defined in Section 1.6. From now on, terms
will be described systematically in contexts. These are finite sequences of
variable declarations v;: oy, describing the types o; of free variables v;. The
rules for term formation will guarantee that variables only appear free in a
term, if they occur in the context of the term. This calculus types and terms
gives in a canonical way rise to a category, which is commonly called its
classifying category. A model of a calculus can conveniently be described in
terms of a suitable structure preserving functor from its classifying category
into some other ‘receiving’ category. This is the essence of Lawvere’s functorial
semantics. In Section 2.2 it will first be described for ordinary categories. Later
on, this functorial semantics will also be used for fibred categories.

STT is commonly studied with the following constructors for the formation
of new types: exponents — (or function spaces), finite products (1, x} and fi-

119
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nite coproducts (0, +) (or disjoint unions). Models of calculi with (—, 1, x) are
easily described in terms of Cartesian closed categories, see e.g. [186, 63, 61].
Additional coproduct types (0, +) can be described with categories having ad-
ditionally finite coproducts. Under the propositions-as-types perspective, the
study of these type formers (—, 1, x, 0, +) amounts to the study of the proof
theory of the propositional connectives {D, T, A, L, V). It turns out that the
minimal calculus, with exponent types only, is most difficult to capture cate-
gorically. This is because categorical exponents are not described in isolation,
but require (binary) products.

Using fibred categories one can resolve this difficulty. In a fibred description
of a type theory (or of a logic), contexts form objects of a base category. The
fibre above such a context contains what happens in that context. This view
is fundamental. For simple type theory it suffices to consider simple fibrations
(introduced in Section 1.3), since types do not contain any (term or type)
variables and hence do not depend on a context. It will turn out that exponent
types — can then be described by right adjoints to weakening functors 7*,
1.e. by what were called simple products in Section 1.9. This will be done
in Section 2.4. Additionally, Cartesian product types x are captured as left
adjoints to these weakening functors #*. This description of — and X is in fact
a special case of IT and X in a situation where II becomes — and ¥ becomes
x because there is no type dependency (see also Example 10.1.2 later on).

Historically, Church’s untyped A-calculus came before his simple type theory.
In this untyped A-calculus there is no typing discipline and each term may
be applied to every other term (including itself, which gives self-application,
like in the term Az.zz). But the untyped A-calculus may be understood as
a simply typed A-calculus with only one type, say Q, with @ — Q = Q.
Specialising the fibred description of exponents to this particular case with
one type, naturally gives us a notion of model for the untyped A-calculus. This
will be done in Section 2.5. In our fibred approach we thus get (the semantics
of) untyped A-calculi as a special case of (the semantics of) simply typed
calculi. It comes almost for free.

In the final section 2.6 of this chapter one can find how simple fibrations
may also be used to give a suitable description of data types with (simple)
parameters.

2.1 The basic calculus of types and terms
Starting from a many-typed signature we will define various simply typed

calculi: in this section we introduce the basic calculus which gives a detailed
description of the terms associated with a signature. Later, in Section 2.3 we
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will define the calculus Al by adding exponent types via a type construc-
tor —, and extensions of this Al with finite product types (1, x) and finite
coproduct types (0,+). With all these calculi one associates in a canonical
way a classifying category: it is obtained as a term model (or generalised
Lindenbaum-Tarski) construction. It will play a crucial role in the Lawvere’s
functorial semantics in the next section.

Let ¥ be a many-typed signature with 7" = |X| as its underlying set of
types. We assume a denumerably infinite set Var = {v;, vz, ...}, elements of
which will be called (term) variables. A context T’ is then a finite sequence
of variable declarations written as 4

I'=(vy:01,...,0m:00).

By convention, we list the variables in a context starting with v;. We can
concatenate contexts I' = (v1:0'1, cyUp O'n) and A = (vlz Tly-e.yUnt ‘rm) as

TVA=(v1:01,.. ., Un: On, Ung1: T, - s Ungm’ T )-

This precise use of variables v; has two advantages: it prevents name clashes of
variables and is fairly close to a categorical description. There is nothing deep
to it since variables are merely placeholders. The extra book-keeping which it
requires is bearable. And in situations where i1t does not matter which of the
variables v; is being used, we freely use meta-variables z,y, z, . . . Especially in
later chapters we shall use mostly these meta-variables, but for the moment
it is better to be precise.

Terms are thus described with respect to a fixed collection of variables,
which receive their types in contexts. And not, as in universal algebra (see
Section 1.6), with respect to various collections (X, )¢ of sets X, of variables
which are already typed.

In type theory one uses the notation

r-M:7

to express that M is a term of type 7 in context I'. In such a situation one
sometimes says that M inhabits 7, or just that r is inhabited (by M, in
context I'). A typical example of such an inhabitation sequent is

n:N,m:N I plus(times(m,n}, m): N.

Such a typing sequent can be obtained by successive applications of the
following basic rules.

identity

viio Fvio
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function symbol
'r-My:oy -+ T'FM,o0o,
T l‘F(Ml,...,Mn)ZO',H.l

(for F:o1,...,0n — Opn41 in X)

Plus the following structural rules:

weakening

V1:01,...,Vn:0n EM:T

VIO, ..y UniOn, Upy1:0ny1 W M:T
contraction

FLvp:0,0n41:0 F M:T

T,vp:0 b Mlvp/vnga]i T

exchange

Loviionvig1i o, AFM:T

U, vi: 0541, Vip1: 05, A B M[vi/vig1, vig1/vi]: 7

These last three rules allow us to add an extra variable declaration, to replace
two variables of the same type by a single one and to permute assumptions.
Often, these structural rules are not listed explicitly. But here we empha-
sise them, because weakening and contraction play an important role in the
categorical description of type constructors. (Also it is good to be explicitly
aware of such rules, because their use may be restricted, as in linear logic,
see [97, 98].)

We thus have rules for deriving inhabitation sequents I' = M:o. Formally
we say that such a sequent is derivable if there is a derivation tree consisting
of the above rules, with the sequent I' F M : o as conclusion. In that case we
sometimes write

»p ' FM:0o

for: I' - M: ¢ is derivable.
As an example, consider a signature with two function symbols:

plus: N, N — N, if:B,N,N — N.
Then one can derive an inhabitation statement

v1: B, v2: N F if(vy, va, plus(va, v2)): N.



Section 2.1: The basic calculus of types and terms 123

Formally, this is done as follows.

vi:N Foi:N vi:N Fo:N
vi:N Fo:N vi:N F plus(vy,v1): N
E— w
v1:B Fv:B v1:N,va2: N Fov:N (W) v1:N,v2: N F plus(vy,v1):N

(W) (E) (E)
v1:B,v2:N Fv;:B vi:N,v2: N Fwa:N vi:N,v2: N F plus(va, v2): N

v1: B, va: N Fif(vy, v, plus(vz, v2)): N

The annotations (W) and (E) indicate applications of the Weakening and
Exchange rules. In similar fashion, one can write a derivation tree for

v1:Nyva: Ny vg: B, va: N, vs: B = if(vs, plus(vy, v4), v2): N.

Intuitively, this may be clear, but the formal derivation is involved. In Exer-
cise 2.1.1 below, we present some extra (derivable) rules which make it easier
to form such terms.

This calculus of types and terms may be called the term calculus of a
signature ¥.

Substitution M[N/v,] of a term N for a variable v, in M is best defined
on ‘raw’ terms (z.e. not necessarily well-typed terms), as

N ifm=n
vm[N/vn] = {vm else

F(My,...,M,)[N/v,] = F(M\[N/va],..., My[N/v,]).
As a derived rule one then has
substitution
Dvgo W M: T 'FN:o
T+ M[N/v,]: T

This rule expresses that if the term N and variable v, have the same type,
then performing substitution [N/v,] transforms well-typed terms into well-
typed terms. The rule is consequence of a much more general substitution
result, which is presented as Exercise 2.1.2.

It is useful to emphasise once again the difference between the above term
calculus and the sets of terms Terms; (X) of type 7, built upon a T-indexed
collection of sets of variables X = (X,)ser, as described in Section 1.6. The
main difference lies in the fact that in the latter approach the sets of variables
(Xs)oer form a parameter. This is usual in universal algebra. In the type
theoretic approach in this section {and in the rest of this book) we fix in
advance the set from which variables can be taken.
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There 1s a way to switch for individual terms between these descriptions.
IfT = (v1:01,...,vp:0,) and T F M: 7 in type theory are given, then one
can form sets X, = {v € Var | v:o occurs in I'}. This yields a collection
X = (Xs)oer of term variables and the term M can now be described as a
term M € Terms,(X). In particular, in a X-algebra (A,,[—]) as described
in Section 1.6 the term M yields a function

[THFM:r]}=
Ad. [[M]]p(ﬁr—-)a)

Ao, X -+ x Ag,

as described before Definition 1.6.4.

Conversely, assume an arbitrary collection X = (X,)ser of term variables
and a term M in Terms,(X), as in the alternative description. We know that
M is formed in a finite number of steps and can thus contain only a finite
number of variables z; € X,,, say, with 1 < i < n. Replacing these z; € X,
by vi: oy, one gets a term v1:01,. .., V50 F M[U/Z]: 7 as in type theory.

We close this section by showing how contexts and appropriately typed (se-
quences of) terms form a category. The intuition behind terms-as-morphisms
is the following. A term in context vy:01,...,v,: 0, = M: T may be seen as an
operation which maps inputs a;: o; on the left of the turnstile F to an output
M@/ %]: T on the right, via substitution. Thus one expects such a term to form
a morphism

Oy X -+ X Op ——>T

in a suitable category, so that, roughly, F becomes —. This is formalised in
the next definition. Morphisms will not be individual terms, but sequences of
terms. Such sequences are often called context morphisms.

2.1.1. Definition. The above term calculus on a signature £ will serve as a
basis for the classifying category (or term model) C/(X) of . Its objects
are contexts I' of variable declarations. And its morphisms I' — A-—where
A= (v1:71,...,Um: Tm)—are m-tuples (M, ..., My,) of terms for which we
can derive I' F M;:7;, foreach 1 < i < m.

The identity on an object T' = (v1: 01, ...,v5:05) in C4(X) is the n-tuple of
variables

(vl,...,vn)
r r

And the composite of context morphisms

(M, ..., My) (N, ..., Ng)
r A e
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is the k-tuple (Lq,..., L) defined by simultaneous substitution:
L,’ = N,'[Ml/vl, .. .,Mm/vm].

It is then almost immediate that identities are identities indeed. Associa-
tivity requires a suitable substitution lemma, see Exercise 2.1.3 below.

We notice that the construction of a classifying category of a type theory is
like the construction of the Lindenbaum algebra of a (propositional) logic. In
the first case a turnstile - in type theory becomes an arrow — in a category,
and in the second case a turnstile F in logic becomes an inequality < in a
preorder (or poset). Under a propositions-as-types reading, the preorder that
one obtains is the underlying preorder of the classifying category.

2.1.2. Proposition. The classifying category C{(X) of a signature ¥ has fi-
nite products.

Proof. The empty context @ is terminal object, since for any context T there is
precisely one morphism I' —» @, namely the empty sequence (). The Cartesian
product of contexts I' = (vi:01,...,00:0p) and A = (vi:7y,...,Um:Tm) 18
their concatenation I', A with projection morphisms:

(U],...,’Un) (Un+1,...,'Un+m)
r (r,A) A 0

Exercises

2.1.1.  Prove that the following ‘extended’ structural rules are derivable.
D vn: o, A Ungm:p, O F M: T

(@)
[ vn: 0, A Vngm: 0,0 F M[va/Unim, Ungm/Un]: T
ve:o, A FM: 7
(i)
T, A vngm:0 F M[Ungm/Un, Un/Vnt1, -, Untm—1/Untm]: T

oo, A vpym: 0,0 W M: 1

(iii) Ivp:o,A,© F
M['Un/vn-l»-my Un+m/Un+m+l Yooy Un+m+k—1/vn+m+k]: T

'r'EM:r
Ik Mvi/vng1,.. onfvan]i T
2.1.2.  Derive the following substitution rule.
INvnio, A FM: 1 ®FN:o
I,0,AF M [N*/v,):7

(iv)
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where, assuming A to be of length m and © of length k,
M* = M[Un+k/Un+1,---,Un+k+m—1/Un+m]
N# — Nlvn/vi,. .., Ungr—1/vk]-

2.1.3. (i) Prove the following substitution lemma (see also [13], 2.1.16) for
‘raw’ terms.

M[N/va)[L]vm] = M[N[L/vm]/va], if v is not free in M.

(The sign = is used for syntactical identification, as opposed to con-
version later on.)

(ii) Show that—as a result—composition in classifying categories C{(¥) is
associative.

2.2 Functorial semantics

In Section 1.6 we have seen the notion of model (or algebra) for a many-
typed signature X. It consists of a collection of sets A, for types ¢ in X,
and of an actual function [ F']: A, X --- x A, — Ag,,, for each function
symbol F:oy,...,0, — 0p41 In X. Below we shall re-describe, following
Lawvere [191], such a model as a finite product preserving functor /(X)) —
Sets from the classifying category of X to sets. This alternative formulation
of model of a signature admits generalisation to model functors C¢(X) — B

nto receiving categories B other than Sets.
. X . S-Model
But first we re-describe set-theoretic models. Recall the fibration Silgn

of set theoretic models of many-typed signatures over their signatures from
Section 1.6. The fibre category of X-models will be written as S-Model(X).

2.2.1. Theorem. For each many-typed signature ¥, there is an equivalence
of categories
S-Model(T) ~ FPCat(C/(T), Sets)

where the right hand side denotes the hom-category of finite product preserving
functors and natural transformations between them.

Thus, set-theoretic ¥-models correspond to finite product preserving func-
tors from the classifying category of ¥ to Sets and morphisms of X-models to
natural transformations between the corresponding functors. Above, FPCat
stands for the 2-category which has categories with finite products as objects
and functors preserving such structure as morphisms; 2-cells are ordinary nat-
ural transformations.

Proof. For the passage S-Model(X) — FPCat(Cﬂ(E), Sets) ,let (Ao)oer
be a X-model, where T = |X| is the set of types underlying ¥. One defines an
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associated model functor A: ({(X) — Sets by

I'=(vi:01,...,05:00) = Ap, X - X Ag,
(Ml,...,Mm)ZF—-)A > )}\(al,...,an).([[M]]]p(g._,a),...,U:Mm]]p(gHa))
= ([T+HM:nl,. . [TFMym]),

where [T F M;: 7; ] is the interpretation of the term I' = M;: 7; as a function
Ag, X -+ x Ay, — A:, (as we described before Definition 2.1.1).
As an example we show that A:C¢(X) — Sets preserves identities.

A(dr) = A(vi,...,vn)
= /\(al,...,an).(ﬂvlﬂp(g._,a),...,an]]p(g,_,a))
= X(al,...,an).(al,...,an)

From Exercise 1.6.7 (1) it follows that A preserves composition. It 1s almost
immediate that A4 preserves finite products. But note that products are not
preserved on-the-nose, due to an implicit use of bracketing in A,, x---x A, .

A morphism of X-models (H(,:A(7 — BU)UET induces a natural trans-
formation A = B between the corresponding functors, with component at
I'=(v1:01,.. ,vn:0,) given by

Mai,...,an). (Hg,(a1),...,Hy, (an)) = Hoy X -~ x Hy_ .

Naturality follows from Exercise 1.6.7 (i1).
In the reverse direction, a finite product preserving functor M: () —
Sets determines a set-theoretic model of ¥ with carrier sets

(Mo & M(v1:0)

and interpretation of X-function symbol F: o1, ..., 0, — 0p41,

)UET

def
[F]1<= M(F(vl,...,vn):(vlzal,...,vnzon) - (v110n+1)) o ¢,
where ¢ 1s the isomorphism in

M(vltal,...,vnzan) (f— M(vl:al) ><~-><M(v1:0n)
; Malx...xMan

making [ F] a well-typed function. A natural transformation a: M = N
between functors M, N:C{(X) = Sets determines a morphism of models,
with functions

(Ma — Na)

g€eT’
given by
Aa EMa.a(le,)(a)‘ (]
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The next definition embodies a crucial step in functorial semantics; it gen-
eralises models of a signature in Sets to an arbitrary category with finite
products. The previous theorem suggests to define such models simply as fi-
nite product preserving functors with the classifying category of the signature
as domain.

2.2.2. Definition. Let ¥ be a many-typed signature and B a category with
finite products. A model of ¥ in B consists of a functor

a(z) —M

B

preserving finite products. A morphism between two such X-models
M N:C{(X) = B in B is then a natural transformation M = N.
Hence the category of ¥-models in B is defined to be the hom-category

FPCat(C/(T), B).
More explicitly, a model of a signature ¥ in a category B is given by an
object
[c]eB
for every type o € |X| and a morphism
IFl:[loall x - x[on] — [ons1] in B,

for every function symbol F: o4, ...,0, — 0,41 in E. The force of the above
definition lies in the fact that it tells us what a model of a signature is in an
arbitrary category with finite products. It is completely general. For example,
a continuous YL-algebra is defined in [101] as a X-algebra whose carriers
are directed complete partial orders (dcpos) (posets with joins of directed
subsets) and whose interpretations of function symbols are continuous func-
tions (preserving these joins). Thus, such a continuous Y-algebra is a model
Cl(¥) — Dcpo of ¥ in the category Dcpo of dcpos and continuous functions.
Another example (involving partial functions) may be found in Exercise 2.2.1
below.

2.2.3. Example. Among all the models a signature ¥ can have there is one
very special: it is simply the identity functor C¢(X) — C¢(X). This model of &
in (4(X) is called the generic model of . It is the categorical version of the
term model constructed in Example 1.6.5 in the style of universal algebra.

In a category of models FPCat (CE(E), IB) —Ilike in any category—one may
have initial and terminal objects. These are initial or terminal models of ¥ in
B. They play a distinguished role in the semantics of data types.

The following two results gives a clearer picture of what such categorical
models are.
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2.2.4. Lemma. (i) There is a forgetful functor

Sign(—) :
FPCat Sign

gtven as follows. For a category B € FPCat the underlying signature
Sign(B) of B has objects from B as types and function symbols given by

F: X, ., Xn — Xny1 in Sign(B)
g F is a morphism X1 x - x Xp, = Xpy1 in B
(i1) In the reverse direction, taking classifying categories yields a functor
C(-):Sign — FPCat.

For a morphism of signatures ¢:X — ¥’ in Sign one obtains a functor
Cl(p): CU(Z) — CUX') by replacing every X-type and function symbol by its
image under ¢. For a term M we shall often write ¢ M for Ct(¢)(M).
Proof. (i) For a morphism K:A — B in FPCat—i.e. for a finite prod-
uct preserving functor—one has a signature morphism Sign(K): Sign(A) —
Sign(B) which sends X € Ato KX € Band amap X; x...x X, = X;,41 In
A to the composite KX; x ... x KX, 2 K(X; x...x X;;) > KX,41 n B.

(i1) Easy. O

(Here, we should allow signatures with classes (as opposed to sets) of types

and function symbols if we wish to define Sign(B) for a non-small category
B—with finite products.)

2.2.5. Theorem. For a signature ¥ and a category B with finite products,
there is a bijective correspondence (up-to-isomorphism) between morphisms of
signatures ¢ and models M as in

AN Sign(B)

M

We do not obtain a precise correspondence (but only “up-to-isomorphism”)
between the ¢ and M in the theorem because first translating a model M into
a morphism of signatures ¢ o and then back into a model M4, does not pre-
cisely return M, because M preserves finite products only up-to-isomorphism.
Thus, in a suitable 2-categorical sense, the functor C/(—) is left adjoint to the
forgetful functor Sign(—): FPCat — Sign, and C¢(X) is the free category
with finite products generated by the signature .

Proof. The proof is essentially a reformulation of the proof of Theorem 2.2.1
with the receiving category Sets replaced by the category B. For a morphism
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of signatures ¢: £ — Sign{(BB), one defines a model M:¥¢(E) — B by

I'=(vi:01,...,0n:00) = ¢(01) X -+ X ¢(0y)
(My,...,Mp) T 5 A —» MTFM:n),...,M(T F Mp:m))

where A = vy:7y,...,9m: Tm. This operation M(—) is a mapping which in-
terprets a term I' F M: 7 in context I' = vy:0,...,v,: 0, as a morphism in
B:
M+ M:T)
$(o1) x -+ x ¢(0z) = M(T) M(v1:7) = o(r)

It is defined by induction on the derivation of I' - M: 1 as:
¢ identity.
M(vi:o Fopio) = id: ¢(c) — é(0).
¢ function symbol. For F:7my, ..., 7 — Tht1,
M(F F F(Ml, .. .,Mm)l Tm+1)
= ¢(F)o(M(T F My:m), ..., M(T F Mu:7m0)).
e weakening. Suppose I' - M: 7. Then
M oo M) = MIT FM:T)or.
e contraction. Suppose I',v,:0,vp41:0 = M: 7. Then
M(T,v,:0 b M[va/vng1]:7)
= M(T,vp:0,vp41:0 B M:7) o (id, 7).
e exchange. Suppose I', v;: 04, vi41: 0541, [ = M:7. Then
M(T, v 051, vig1: 0, T B M{vifvig1, vig1/vi]: )
= M(T,vi:05,vig1: 0541, ' F M:7) oid x (7', 7) x id.
Further details are left to the reader in Exercise 2.2.2 below.
In the reverse direction, given a model M:(¢(X) — B one obtains a mor-

phism of signatures ¥ — Sign(B) by ¢ — M(vi:0) and F — M(F) o ¢,
where ¢ is a mediating isomorphism, like in the proof of Theorem 2.2.1. O

Notice in the above proof the importance of projections m I xJ —
I for the interpretation of weakening and of (parametrised) diagonals
d={@d,n'): I x J = (I x J) x J for contraction.

2.2.6. Definition. The adjunction ¢/(—) 4 Sign(—) in the previous theorem
gives rise to a monad T = Sign(C¢(—)) on the category Sign of signatures.
The resulting Kleisli category—written as Sign.,—will be called the cate-
gory of signatures and translations. Thus a translation ¢:X — ¥’ is
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understood as a mapping of types to contexts and of function symbols to
terms (instead of: types to types and function symbols to function symbols,
as in the category Sign). Formally, such a translation ¢ is a morphism of
signatures ¥ — Sign(C/(X')).

The category Signy, is in fact more useful than Sign: translations occur
more naturally than morphisms of signatures, as the following examples illus-
trate.

2.2.7. Examples. (i) The classic example of a translation of signatures in-
volves two (single-typed) signatures for groups, see [212], Definitions 1.1
and 1.2. For reasons of clarity we provide the following two signatures with
equations; but they do not play a role at this stage.

(1) Let £; be the signature with one type G and three function symbols

m:G, G — G, e () — G, :G—G

giving a multiplication, unit and inverse operation. The equations are the
familiar ones for groups:

v1:G F me,v1) =g 01 v1:G + m(i(v1), 1) =g e

1 =
v1:G F m(v1,e) =g vy v1:G F m(vy,i(v1)) =g e
v1:G,v2:G,v3: G F m{vy, m(v2, v3)) =g m(m{vy, v2), vs).
Such equations will be studied systematically in the next chapter.
(2) Less standard is the following signature £, for groups. It has again one
type G but only two function symbols,

d:G,6— G and a:() — G
satisfying a single equation
v1:G,v9:G,v3:G F
d(d(d(vg, d(’Ul s d(’l}l , U1 ))), d(’U3, d(vg, d(’l)l s ‘Ul)))), Ul) =G V2.
Notice that the second function symbol (or constant) a does not occur in this
equation; its sole réle is to ensure that groups have at least one element. (It
is not present in [212], so that groups may be empty there.)

There is a translation ¥, — X; which maps the type G to itself, and the
function symbol d to the X;-term

v1:G,v2: G F m(i{vy), v2): G

and a to an arbitrary term in G, e.g. e. This is a translation—and not a
morphism of signatures—because the function symbol d of ¥, is mapped to
a term of ¥j—and not to a function symbol of ¥;. For more details, see
Exercise 2.2.3 below.
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(i) Boolean logic can be described by the (functionally complete) pair of
connectives
-:B— B and A:B,B— B

of negation and conjunction. Alternatively, negation and implication can be
used:
-:B—B and >:B,B— B

Or also the Sheffer stroke
|:B,B— B.

The standard definitions
v1 D vg = —(vg A wa) and v1lve = (v A vg)

yield translations from the last two signatures into the first one.

Exercises

2.2.1. (i) Let Sets, be the category of pointed sets as described in Exercise 1.2.3.
It can be seen as the category of sets and partial functions. Show that
Sets, has finite products.
(if) Let ¥ be a signature. Define a partial Z-algebra (or model) to be
a finite product preserving functor C¢4(X) — Sets,. Describe such a
partial algebra in detail.
2.2.2.  Consider the interpretation M associated with a morphism of signatures
¢: £ — Sign(B) in the proof of Theorem 2.2.5.
(i) Let ' = (vi:01,...,vn:0n) be a context with a term I' b M: 7 such
that the variable v in I' does not occur (free) in M. Prove that

MT FM:o)= MI* - M*:0) o (m1,..., ko1, Tht1y. .., Tn),
where
r* = V1101, ... Ukl Ok, Uk Okt ly-- -, Une1: On
Mk = M[vk/vk+1,...,vn_1/vn],
and = is the obvious projection map M(o1) x - - - x M(6,) > M(0y).
(ii) Next, for T = V1101, ..., UniOn, consider a term ' + N:7, and a
context morphism M:A — I'. Prove that
M(A F N[M/#):7) = M(T F N:7)o
(M(A F Miioy),...,M(A F Mp:on)).
(iii) Conclude from (i) and (ii) that M preserves identities and composition.
2.2.3. (i) Check that the translation in Example 2.2.7 (i) of d as m(i(v1),v2)

satisfies the equation for d.
(it} Find also a translation of signatures ¥, — 2.
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(iii) In (ii) of the same example, define a translation from the first signature
with - and A into the last one with the Sheffer stroke |.
We describe a category of categorical models of signatures. Let
C-Model be the category with
objects (2, A, M) where M: (X)) = A is a finite product pre-
serving functor.
morphisms  (Z,A, M) = (T, A', M') consist of a triple (¢, K,a)
where ¢: ¥ — ¥’ is a morphism of signatures, K: A —
A’ is a finite product preserving functor and « is a nat-
ural transformation K’ M = M’ C¢(¢) in

()
(D) ——— ()

M 7 lM’
A ————
K

C-Model
(i) Show that the projection Silgn is a fibration.

(i1) Verify that this fibration has fibred finite products.
C-Model
[In Section 9.1 it will be shown that the fibration Silgn comes from a

canonical construction as one leg of a fibred span. There is also a projection
C-Model

functor FPlC C which is an ‘opfibration’, since reindexing works in the
a

other direction.}
Let M:C{(X) — B be a £-model. For terms I’ N, N': ¢ write

MEN=, N for  M(N)=M(N')

where on the right hand side, N and N’ are treated as morphisms I' =3
o in ¢(3). Let ¢: X — I’ be a morphism of signatures. Show that the
‘satisfaction lemma’

M EON =4s ¢N' & ¢"(M)EN =, N

boils down to a tautology—where ¢*(M) is the outcome of reindexing along
@, see (i) in the previous exercise.
[This property is fundamental in the definition of an institution [152].]

2.3 Exponents, products and coproducts

In this section we discuss three simply typed A-calculi, which will be written as
Al, Al and Al(x 4. The calculus Al has exponent (or arrow) types o — 7;
Al additionally has finite product types 1,0 x 7 which allow one to form
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finite tuples of terms (including the empty tuple); and in Al(y 1) one has
finite coproduct types 0,0 + 7. With these one can form finite cotuples. These
calculi are built on top of a many-typed signature. A brief discussion of the
propositions-as-types analogy is included.

(We shall not discuss the rewriting properties of these type theories. We
refer to [186] for proofs of Church-Rosser and strong normalisation for type
theories with — and x—building on ideas of Tait and de Vrijer. A singleton
type is included in [64].)

At this stage we begin to be more sloppy in the use of variables: instead
of the formally numbered variables {v, | n € N} we now start using meta-
variables u, v, w, z, y, z. This is more convenient for human beings {(as opposed
to computers). We shall require that no two variables occurring in a context
I are equal. In particular, in writing an extended context I', z: ¢ it is assumed
that « does not occur in T.

Al-calculi

Let ¥ be a many-typed signature with 7' = |X| as its underlying set of types.
Let T3 be the least set containing T, which is formally closed under —, i.e. T' C
Ty and o, 7€ Ty = (6 — 7) € T1. We now call elements of 77 types, and if
we wish to stress that ¢ € T} actually is a member of T', then we call it an
atomic or basic type. In order to spare on parentheses one usually writes

oL —>09 = —>0pn_1 > 0p

for
o1 = (02— = (0po1 = 0n) ).

Instead of extending 7" to 71 we can also say that there are the following
two type formation rules.

— (forceT) F o: Type F 7: Type
Fo: Type F o — 7: Type

Notice that in these type formation statements of the form F o¢: Type we
have an empty context because types in STT are not allowed to contain any
variables. This will be different in calculi with polymorphic or dependent
types.

The simply typed A-calculus A1(X) built on top of X has all the rules
of the term calculus of ¥—described in Section 2.1—plus the following intro-
duction and elimination rules for abstraction and application.

FvetbM: 7 F'EMo—>r1 FFN:o
F'Flxoe Moo T'-MN:T
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Intuitively one thinks of the abstraction term Av:o. M as the function a —
M{[a/v], so that & — 7 is the type of functions taking inputs of type ¢ and
returning an output of type 7. The term former Av:o. (—) binds the variable
v. The application term M N (sometimes written as M - N) describes the
application of a function M:¢ — 7 to an argument N:o. Notice that this
application is required to be well-typed in an obvious sense.

This explains the associated two conversions

FvebFM: T 'EN:o TrFMo—or
T+ (Avie. M)N = M[N/v]: T rriveMv=Mo—>r
where in the latter case it is assumed that v is not free in M. The first of
these rules describes what is called (3)-conversion, and the second describes
(n)-conversion. This (3) is evaluation of a function on an argument, and {7)

is extensionality of functions. Here we have written these conversions as rules,
with all types explicitly present. Often they are simply written as

(Avie. M)N = M[N/v] and Avie. Mv =M

like in:
(Av:N.plus(v,3)) 4 = plus(4, 3).
Substitution is extended to these new abstraction and application terms by
(Avie. M)[L/w] Avio. (M[L/w])
(MN)[L/w} = (M[L/w])(N[L/w])

under the (usual) proviso that » is not free in L (to avoid that a variable which
is free in L becomes bound after substitution; this can always be avoided
by a change of name of the bound variable v in Av:o. M). We write = to
indicate that this involves a syntactic identification. One further extends the
conversion relation = to become an equivalence relation which is compatible
with abstraction and application in the sense that

FverFM=M:1
I' X o M= o M:ic—>r
FreM=Mo->r TFN=N"0¢
' MN=MN"r
see [13]. The first of these rules is often called the (£)-rule.
Thus, A1(X) extends the signature ¥ with means for introducing functions
and applying them to arguments. This calculus gives rise to a syntactically

constructed category (f1(X), called the Al-classifying category of X. Its
objects are contexts

I

I'=(vi:01,...,0:0) with o; € T1.
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Note that the Al-classifying category has arrow types occurring in its objects.
A morphism I' =& A in (f1(X), where A = (v1:71,...,Um: Tm), is an m-tuple
of equivalence classes (with respect to conversion =) of terms

([Mi],...,[Mn]) with T'F M;:n in A1(Z).

Thus a second difference between the Al-classifying category (¢1(X) and the
classifying category C/(X) described Section 2.1, is that in the former one takes
equivalence classes of terms—instead of terms themselves—as constituents of
context morphisms.

2.3.1. Proposition. The Al-classifying category CC1(X) of a signature ¥ has
finite products. If T = |X| is the underlying set of types of ¥, then (¢1(%)
together with the set of types Ty (obtained by closing the set of basic types T
under — ) is a CT-structure (see Definition 1.3.2); it is non-trivial if and only
of T is non-empty.

Proof. Finite products in (/1(X)} are as in C¢4(Z): the empty context is ter-
minal and concatenation of contexts yields Cartesian products. The inclusion
Ty — Obj (¢1(X) involves identification of a type o with the corresponding
singleton context (v;:0). . O

The identification used in the proof is very handy. We shall freely make use
of it and consider a type o as an object of a classifying category by identifying
it with the singleton context (v;:0).

The above proposition describes the context structure in Al-classifying cat-
egories in terms of finite products. An appropriate categorical description of
the structure induced by the exponent types o — 7 may be found in the next
section. It uses that the pair (C{(X), T1) is a CT-structure.

Propositions as types

Let T be a non-empty set, elements of which will be seen as propositional
constants. And let Ty be the formal closure of T under —, as above. The
elements of T} may be seen as propositions of minimal intuitionistic logic
(MIL, for short), since they are built up from constants using only — (or D)
for implication. For oy, ...,0,, 7 € T} we can write

o1, 00 T

if 7 is derivable from assumptions o, ..., 0, in minimal intuitionistic logic.

The (non-structural) rules of MIL are —-introduction and —-elimination.
Let A now be a collection of such sequents oq,..., 0, F 7, which we regard

as axioms (with oy, 7 € T'). That is, for each sequent S € A, we have a rule

S
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expressing that S is derivable without further ado. We wish to consider which
other sequents are derivable, assuming these axioms in A. For example, if A
contains the sequent ¢ F 1, then we can derive ¢ — x F ¢ — x as follows.

Yarx P x p tEx
o=+ x FY—=x e, = x F
e, v = x Fx

boaxFe—=x

Let ¥4 be the signature constructed from a set .4 of axioms in the following
way. Take the set T of atomic propositions as atomic types in X 4, and choose
for every sequent oy, ...,0, F 71n A a new function symbol F:¢0q,...,0, —
7. Think of F as an atomic proof-object for the axiom.

If we assume in the above example a function symbol F:¢ — % cor-
responding to the axiom ¢ F ¢, then there is a A-term which codes the
derivation, namely

vip = x FAwip.v(Fuw)e— x.
More generally, one can prove that

O1,...,0pn b 7 1s derivable from A

< there is a term M with vj:01,...,v:0, F M:7in A1(Z4).

This gives an example of what is known as the paradigm of propositions-
as-types or better as propositions-as-types and proofs-as-terms. This
perspective was first brought forward clearly in Howard [140], but goes back
to Curry and Feys [65]. The above bi-implication < depends on the fact
that derivations in MIL correspond directly to Al-terms. In particular, the
introduction and elimination rules for implication in logic have the same form
as the introduction and implication rules for exponents in type theory.

As a result, provability in logic corresponds to inhabitation in type theory. A
term M: o — 7 may be seen as a proof of the proposition ¢ — 7: M transforms
each proof N:o of ¢ into a proof M N: 7 of 7. This is the so-called Brouwer-
Heyting-Kolmogorov interpretation of the —-connective in constructive logic,
see [140, 335]. This interpretation extends to finite conjunctions (T,A) and
disjunctions (L, V), which, by including proofs, may be read as finite products
(1, x) and coproducts (0, +). Later in Section 8.1 we shall see how the quan-
tifiers V, 3 in predicate logic correspond to product [] and sum [] of types
over kinds in polymorphic type theory.

The analogy between derivations and terms goes even further: the (3)- and
(17)-conversions for Al-terms correspond to certain identifications on deriva-
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tions, namely to:

Ul—‘T

I

Fo crf;‘r

Fr

Fo—T Fo
T

l-(r'—-)‘r cto ( : )
ckr I—o.—)‘r

Fo—r1

=

Via (f)-conversion one can thus remove an introduction step which is imme-
diately followed by an elimination step. And (7) does the same for elimination
immediately followed by introduction. For more details, see {280, 140].

(We have been overloading the arrow — by using it both for exponent
types ¢ — 7 and for implication propositions ¢ — . This is convenient in
explaining the idea of propositions-as-types. But from now on we shall be
using D instead of — for implication in logic.)

From the way the Al-classifying category C£1(X) was constructed, we im-
mediately get another correspondence:

O1,...,0pn k7 1s derivable from A

< there is a morphism oy X -+ X o, = 7 in Z1(Z4).

where we identify ¢ with the singleton context {v;:¢) in ({1(X) as discussed
after Proposition 2.3.1. Here we have an elementary example of propositions-
as-objects and proofs-as-morphisms. This basic correspondence forms the
heart of categorical logic, as often emphasised by Lawvere and Lambek.

Al -calculi

Let ¥ be a many-typed signature. The calculus Al () will be introduced as
A1(X) extended with finite product types. This new calculus A1y (X) has all
the rules of A1(X) plus the following type formation rules.

Fo: Type F 7 Type

F 1: Type F o x r: Type

We use 1 as a new symbol (not occurring in |X|) for singleton (or unit) type
(empty product). Additionally, there are in Al (X) the following associated
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introduction and elimination rules for tupleing and projecting.
r-M:o r-N:7

FQ:1 F-(M,N)oxr
I'FPoxr I'+Pioxr
I F#P:o r-«pP.r

Formally it would be better to give insert appropriate indices, as in
To,r P, 7, . P, but that would make the notation rather heavy.

Associated with these introduction and elimination rules there are the follow-
ing conversions.

'-M:1 Fr'-M:0o 'EnN:T
TFM=(:1 [ Fn(M,N)=M:o
'-M:o 'EN:T 'FPoxr
F+a'(M,N)=N:1 ' (rP,m'P)=PioxT
Substitution is extended to the new terms by
O/ = O (M, N)[L/v} = (M[L/v], N[L/v])
(wP)[L/v] = m(P[L/v]) (='P)[L/v] = ='(P[L/v]).

We continue to write = for the compatible equivalence relation generated by
the above conversions plus the (3)- and (5)-conversions of Al.

The advantage of having finite product types around is that one no longer
needs to distinguish between contexts and types. Terms with multiple vari-
ables

V1:01,...,Up:0, EM:T

correspond bijectively to terms with a single variable
viioy X ---xXo, FN:T
where the product type o1 x - - X 0, is the singleton type 1 if n = 0.
We thus define the Aly-classifying category (f14(X) of ¥ with
objects types o, built up form atomic types and (1, x, —).

morphisms o — 7 are equivalence classes (with respect to conversion)
[M] of terms vy:0 F M: 7.

The identity on o is the equivalence class of the term vy: ¢ F v1: 0 and com-
position involves substitution.

2.3.2. Proposition. The Al -classifying category Cl1,(X) of a signature X
is Cartesian closed.
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Proof. It is easy to see that the type 1 is terminal and that the product
type o x 7 is a Cartesian product of ¢ and 7 in f14(X). This holds, almost
by definition of 1, x. It will be shown that the exponent type ¢ — 7 is the
exponent object in (¢14(X).

Assume an arrow p x ¢ — 7 in ({1,(X), say given by a term

zipxo - M:T
Then one can form the abstraction term
zipbAyo Mz, y)/z):0 > T
which supports the following definition of categorical abstraction.
A([M]) = [Ay:0. M[(z,y)/2]]: p — (0 —= 7).

Remember that the outer square braces [—] denote the equivalence class with
respect to conversion and that the inner ones are part of the notation for
substitution. In a similar way, the term

wi(c = 1) x o b (mw)(r'w): T
gives rise to the evaluation morphism
ev = [(rw)(r'w)]: (6 > T)x o — T

The categorical (8)- and (n)-conversions follow from the syntactical ones: first,
for z:p x o,

ev o A([M]) x id [ (rw) (7' w)[{(Ay: 0. M[{z, y)/2])[rz/=], 7'z} fwl]
(s 0. MGz, 4/ 1) (7'2) |

[M[(nz,7'2)/2]]

= [M] and
Alev o [N] xid) = [Ay:o. (mw) (7' w)[(N, y)/w] ]
= [/\y:a'.Ny]
= [N]. a

Al(x,4)-calculi

In a next step we form on top of a signature X a calculus Al(x 4)(X) which has
exponent and finite product types as in Al (X), but additionally Al(x (%)
has finite coproduct types (also called disjoint union types). This means that
there are additional type formation rules:

F o: Type F . Type
F0: Type ko + 7: Type
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where 0 is a new symbol for the empty type (or, empty coproduct). There
are the following introduction and elimination rules for these coproduct types
(0,+).

'-M:o TFN:T
F'FPio+rT FzobEQ:p Ly:TFRip
[ + unpack P as [z in Q,&"y in R]:p L z:0F{}:p

Thus, instead of projections =, 7’ for products, we now have coprojections &, k'
for coproducts. The variables  in () and y in R become bound in the “un-
pack” or “case” term unpack P as [kz in @, 'y in R]. It can be understood as
follows. Look at P:o + 7;if P is in o, then do Q with P for z; else if P is in
7, do R with P for y. This explains the conversions:

r-M:o FzeobQ:p Fy:r - Rip
[ + unpack kM as [kz in Q,k'y in R] = Q[M/z]:p

FFN:T FzobFQ:p Iy:rFRip
[ F unpack x'N as [kz in Q,k’y in R] = R[N/y]: p

'-Pio+r Fzie+7FRip
[ F unpack P as [kz in R[(kz)/z], &'y in R[(x'y)/z]] = R[P/z]:p

0 M:p
[z0FM={}:p

The latter rule tells that in a context in which the empty type 0 is inhabited,
each term M must be convertible to the empty cotuple {}.
The following commutation result is often useful in calculations.

2.3.3. Lemma. In the above calculus with coproduct types + one has the
following commutation conversion.
Fr'-Po+r Fz:o-Q:ip Lyt FRip CozipbELip

I' b L{(unpack P as [kz in Q,k'y in R])/Z]
= unpack P as [kz in L[Q/z],k"y in L[R/z]]: p

1t tells that cotupleing (or unpacking) commutes with substitution.
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Proof. Because
L{(unpack P as [kz in Q,x'y in R])/z]
= L[(unpack w as [kz in Q, &'y in R]}/z][P/w]
= unpack P as | kz in L[(unpack kz as [kz in @,y in R])/z],

&'y in L{(unpack 'y as [kz in @, k'y in R])/7]]
= unpack P as [kz in L[Q/z],K'y in L[R/z]]. O

Such a commutation conversion is typical for “colimit” types, like +, X,
quotients and equality (which are described categorically by left adjoints). We
use it for example in the proof of the next result, establishing distributivity
of x over + in type theory. Essentially, this follows from the presence of the
“parameter” context I' in the above +4-elimination rule. The second point
gives a type theoretic version of the argument sketched in Exercise 1.5.6 (i)

and (i1).

2.3.4. Proposition. (i) Type theoretic coproducts + are automatically dis-
tributive: the canonical term

u: (o X 1)+ (o X p) I—P(u)d:ef

unpack u as [kz in (e, k(m'z)), &'y in (Ty, &' (Fy)]: o x (r+ p)

is invertible—without assuming exponent types.
(ii) Type theoretic coprojections k,k’ are automatically “injective”: the

rules

F'eM =M :0+T1 I'F&'N=k'N:c+r
and

TtFM=M:0c Fr-N=N":r
are derivable, where = denotes conversion.

Proof. (i) We have to produce a term “in the reverse direction”:
viex (14 p) FQM): (e x 1)+ (0 xp)

with conversions P[Q(v)/u] = v and Q[P(u)/v] = u. First we notice that
there is a term

z:o,w:T+ p b unpack w as [ky in k(z,y), 'z in K'(z,2)]: (6 x T) + (o x p).

Hence if we have a variable v: ¢ x (7 + p), then we can substitute [wv/z] and
[7'v/w] in this term, so that we can define

Q(v) def unpack 7'v as [ky in k(mv,y), &'z in K'(mv, 2)].

Using the commutation conversions from the previous lemma, we show that
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these terms P and @ are each other’s inverses:
P[Q(v)/u] = unpack 7'v as [ ky in Plk{mv,y)/u],
Kz in Plk'(mv,z)/u]]

= unpack 7'v as [ky in {7v, Ky), K’z in (v, K'Z)]

= {(mv,7'v)

= v.

Q[P(u)/v] = unpack u as | kz in Q[{mz, k(n'z))/v],
K’y in Q(my, &' (1'y))/v]]
= unpack u as [kz in k{mz,m'2), Ky in &'(Ty, 7'y)]
= unpack u as [kz in Kz, K'Yy in K'Y]
= u
(i1) For a variable w: (¢ + 7) X o we define a term
L(w) % unpack 7w as [z in (z, 'w), &'y in (*'w, 7'w)]: o x 0.
Then for z, z: ¢ we get a conversion
L{{kx,z)/w] = unpack kz as [kz in (z,2), &'y in (z,2)] = (z, z).
Hence we reason as follows. For terms I' - M, M’: 7,
kM = kM’ = (kM,M) = (xM' M)
=> (M,M)=L{(skM,M)/w] = L{cM’ ,M)/w] = (M', M)
=> M=aM,M)=n{M' M)=M". a
We also describe classifying categories (¢1(,4(%) involving type theoretic
exponents, finite products and coproducts. The definition is as for Cf14 (%)
above: types—but this time also with finite coproducts—are objects and mor-
phisms ¢ — 7 are equivalence classes [M] of terms vy:0 - M:T—where the

conversion relation of course includes the above conversions for finite coprod-
ucts.

2.3.5. Proposition. Categories C¢1(x 1)(X) are Cartesian closed and have
finite coproducts.

Such a Cartesian closed category with finite coproducts is sometimes called
a bicartesian closed category (BiCCC).

Proof. Cartesian closure is obtained as in the proof of Proposition 2.3.2. We
concentrate on finite coproducts.

The empty type 0 is initial object in Cf1(x 4)(X), since for every type o
we have a term z:0 F {}:0. And if there is another term 2:0 + M: ¢, then
2:0 F M = {}:0,s0 that [M] = [{}]:0 = ¢ in Cl1(x +)(Z).
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The coproduct type o+ is also the coproduct object: there are coprojection
maps ¢ = (0 + 7) « 7 given by terms

.o FKkrio+T and y:rF&yo+T
And for each pair of morphisms ¢ — p, 7 — p, say described by
ok Q:p and y:rFRp
we have a cotuple 0 + 7 = p given by the unpack term
z:0+ 7 b unpack 2z as [kz in Q, 'y in R]:p. o

With this proposition in mind, the above Lemma 2.3.3 can be understood
as saying that for f:oc =5 p, g:7 > pand h:p - ponehas ho[f,g] =[h o
f, h o g]—where the square braces [—, —] are used for (categorical) cotupleing.

Distributive signatures

In this section we have seen various ways of forming new types starting from
a set of atomic types. Signatures as first introduced in Definition 1.6.1 involve
function symbols F: 01, ...,0, — 0n4+1 Where each o; is an atomic type. This
restriction to atomic types o; is not really practical. For example, a signature
for natural numbers with zero, addition and predecessor may be given by an
atomic type N and function symbols

0:1— N, plus:N x N — N, pred:N — 1+ N

involving the derived (non-atomic) type Nx N and 1+N. Here, the construction
1+ (—) is used to deal with partial operations: the predecessor pred yields an
outcome in 1 if applied to zero, and in N otherwise. Similarly one can describe
a subtraction function symbol min:N x N — 1 4+ N via coproducts.

In order to get this kind of expressiveness, one needs to have functions sym-
bols F:04,...,0, — 0n41, where the o; may be formed from atomic types
using finite products and coproducts. This leads to what we call distributive
signatures, see [160]; they are called distributive graphs in [342]. Notice that
in the presence of finite product types (1, x) we may restrict ourselves to
function symbols F: 0 — 7 with precisely one input type. This leads to the
following description, which is much like Definition 1.6.1.

2.3.6. Definition. For aset T (of atomic types) let us write T for the closure
of T under finite products (1, x) and coproducts (0, +). A category DistrSign
of distributive signatures is defined by the following change-of-base situa-
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tion.
DistrSign ——— Fam(Sets)
- l
Sets —— Sets
TTxT

There are special kinds of distributive signatures which are useful to de-
scribe inductively and co-inductively defined types. These will be called
Hagino signatures, after [111, 110, 112]. They occur in two forms, namely
the inductive form and the dual co-inductive form. Here we only give the

description of these Hagino signatures. They will be further investigated in
Section 2.6 in STT, and also in Section 8.2 in PTT.

2.3.7. Definition. Let T be a set (of atomic types) and X a fresh symbol
which is not in T. It serves as a type variable. A Hagino signature is a
distributive signature with one single function symbol, which is either of the
form

constr destr
X or X
where o is a “Hagino” type in the closure TU {X} of TU {X} under finite
products and coproducts. Sometimes we shall write o(X) for o to emphasise
the possible occurrence of X in o.

In case this ¢(X) is of the form o1 (X) + - - - + 0, (X) the constructor constr
may be understood as an n-tuple of function symbols constr;(X):0; — X.
Dually, if 6(X) is of the form ¢1(X) x - -+ x 0,(X) the destructor destr cor-
responds to an n-tuple destr;: X — 0;(X).

Examples of Hagino signatures are

14X — X for natural numbers
l+4axX — X for finite lists of type «
X —axX for streams (or infinite lists) of type a.

In the first case the constructor is understood as the cotuple [0,5]: 1+ X — X
of zero and successor. And for the finite lists one has a constructor nil: 1 — X
for the empty list and a constructor cons: a x X — X which turns an element
of type a together with a list into a new list. In the third example one has
two destructors: one for the head and one for the tail of an infinite list.

As another example, one can use these Hagino signatures to describe the
connectives in propositional logic, for example with (cotupled) constructors:

[T,A,L,Vv,D]

I+(X x X)+14+ (X x X))+ (X x X)
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The idea behind a Hagino signature of the form ¢ — X is that X is the free
type generated by the constructor. Later in Section 2.6 it will be described as
a suitably initial fixed point o(X) & X of an associated polynomial functor

X —o(X)

where we have written the occurrences of X in o explicitly. And in the dual
case X — o one thinks of X as the cofree type generated by the destructor. It
corresponds to a fixed point X 5 ¢(X), which is terminal in a suitable sense.
Finally, there is no need to restrict oneself to the finite product and coprod-
uct type constructors in defining a category of signatures. One can also use
exponent types; this leads to so-called higher type signatures, see e.g. [275].

Exercises

2.3.1. Let ¥ be a signature. Define finite product preserving functors
U(Z) —— ULUE) — U1 (Z) — Ul (x 4(E).

2.3.2. (i) Give a proof of the above propositions-as-types bi-implication relating
provability in MIL and inhabitation in A1.
(i) Formulate and prove similar results for A1x and Al(x ).

2.3.3.  Give the precise correspondence in A1y between terms vi:o1,...,vn:0, F
M: 7 in contexts of arbitrary length and terms vi: (01 X--- X 0,) F N:7in
contexts of length one.

2.34. Give a concrete description of the category DistrSign of distributive sig-
natures.

2.3.5.  Consider the following alternative description of a classifying category, say
Ce1{, +)(X), with prime '. Objects are types o as in (f1(x,4)(Z), but as
morphisms ¢ — T we now take equivalence classes [M] of closed terms
F M:0 — 7. Show that one gets a category CZlEx,H(E) in this way and
that it is isomorphic to the category C¢1(« 4)(X) described above.

2.4 Semantics of simple type theories

In the previous section we introduced firstly Al-calculi with exponent types,
and secondly the (slightly) more complicated calculi A1, and Al(x 4y, which
are obtained by adding finite product and coproduct types. The (categorical)
semantics of such calculi will be described in reverse order. The Al «-calculi
have a straightforward (functorial) interpretation in Cartesian closed cate-
gories, as described e.g. in [186, 63, 61]. The finite product and exponent
types in the calculus can be interpreted simply as finite product and expo-
nent objects in a Cartesian closed category. Similarly, Al(x 4)-calculi can be
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interpreted in bicartesian closed categories (which additionally have finite co-
products).

The semantics of Al-calculi—with exponent types only—is more subtle,
since there is no identification of contexts and types involved. As a result
there is no straightforward way to describe exponent types o — (—) as right
adjoints to product type functors o x (—). Whereas there are no finite products
of types in Al, one does have finite products of contexts (given by concate-
nation). Especially there are context projections 7:(I',v:¢) — T, inducing
weakening functors #*, which add an extra dummy variable v: ¢. It turns out
that exponent types ¢ — (—) can be captured categorically as right adjoints
to such a weakening functors 7* in simple fibrations. This approach does not
rely on product types o x 7. Actually, these product types ¢ x (—) can be
captured dually as left adjoints to these #*’s. This view on exponents and
products in the simple type theory comes from [156].

Unravelling the structure induced by right adjoints to #*’s leads to an el-
ementary formulation in Lemma 2.4.7 of what a ‘Al-category’ is. It will be
useful in the next section on the untyped A-calculus.

But, as promised, we start with the calculi Alx and Al(y ;). Let CCC
denote the category of Cartesian closed categories and functors preserving
this structure. Similarly, let BICCC — CCC be the subcategory of Carte-
sian closed categories with finite coproducts, and functors preserving all this
structure. Recall from Propositions 2.3.2 and 2.3.5 that the classifying cate-
gories ({1, (X) and (¢1(y ;) are objects of CCC and BiCCC respectively.

2.4.1. Definition. Let ¥ be a signature. A model for the calculus A1, (X)
in a Cartesian closed category A is a functor

M

Cf1,(S) A inCCC.

Similarly, a model of Al(x 4)(X) in a bicartesian closed category A is a functor

M
Cel(x,+)(2)

A in BiCCC.

We have a closer look at what a model is in the bicartesian closed category
Sets of sets and ordinary functions. Suppose [ — [: Cf1(x +)(X) — Sets is such
a model. It involves

e a model of the signature ¥ in Sets. Formally it is obtained by pre-
composition with the inclusion functor C/(X) < Cl1(x 4)(X) described in
Exercise 2.3.1.

e a one-element, terminal set [ 1] = {*} and the empty set [0] = 0.

e binary products [ox 7] = [o] x [7] and coproducts [oe+7] = [oe]+[7]
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of sets (where the coproduct + of set is given by disjoint union).
e function spaces [¢ — 7] = [r]i°1.

But Definition 2.4.1 covers models in any bicartesian closed category—and
not just in Sets. The last three points are then modified according to the
particular BICCC-structure of the category involved.

There are results (similar to Theorem 2.2.5) for Al and Al(y 4y which give
a correspondence between functorial models and morphisms of signatures.
We merely state these results here and leave the proof to the meticulous
reader. Recall that for a category B with finite products there is an associated
signature Sign(B), see Lemma 2.2.4.

2.4.2. Theorem. Let ¥ be a many-typed signature.
(i) For a Cartesian closed category B there is a bijective correspondence
(up-to-isomorphism) between morphisms of signatures and models in

= —¢> Sign(B) in Sign

(f14(L) —= B in CCC
M

(i1) Swmilarly, for a Cartesian closed category C with finite coproducts there
15 a correspondence

) —¢> Sign(C) in Sign

Cfl(xy_l,)(Z) —7\4——) C @ BiCCC a

We turn to Al-calculi. Their categorical semantics will be described in terms
s(T)

of a simple fibration i associated with a CT-structure (B, T). We recall
from Section 1.3 that the latter consists of a category B (of contexts) with
finite products and a collection (of types) T'C ObjB. Such a CT-structure is
non-trivial if there is a type X € T and an arrow 1 — X from the terminal
object 1 € B to X.

First we describe how simple quantification, as described in Section 1.9,
extends to these CT-structures, yielding quantification over types (¢.e. over
objects in T).

E

2.4.3. Definition. Let (B, T) be a CT-structure and %P a fibration. We say
that p has simple T-products if for each / € B and X € T, every weakening
functor 7r1 x:Er = Erxx induced by the projection 7y x:1 x X — I has a
right adJ01nt ]_[( 1,X) ——plus a Beck-Chevalley condition as in Definition 1.9.1.
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Similarly one defines simple T-coproducts in terms of adjunctions
H(I,X) n ﬂ';,x

So in defining products and coproducts with respect to a CT-structure
(B, T) we restrict the projections mr x: 1 x X — [ along which one has
quantification, to those with X € T, the set of types. Thus we quantify
over types only, and not over all contexts. The simple products and coprod-
ucts as described in Definition 1.9.1 come out as special case, namely where
T = ObjB. The other extreme, where T is a singleton, will also be of im-
portance, namely for the untyped A-calculus and also for the second order
polymorphic A-calculus A2.

We have prepared the grounds for a categorical description of exponent
types —, without assuming Cartesian product types x. Notice that we do
assume Cartesian products in our base categories, but these correspond to
context concatenation. For convenience, we restrict ourselves to the split case.

2.4.4. Definition ([156]). (i) A Al-category is a non-trivial CT-structure
s(T)
(B,T) for which the associated simple fibration ]é has split simple
T-products.
(ii) A morphism of Al-categories from (B, T) to (', T’) consists of a
morphism of CT-structures K: (B, T) — (B',7”) whose extension to a mor-

s(T) s(T')
phism of fibrations % — 4 (see Lemma1.7.6) preserves simple products.
i

The content of this definition is that the exponent types of a Al-calculus
are simple products (with respect to the set of types). Before going on, let us
check that this works for syntactically constructed classifying categories.

2.4.5. Example. Let ¥ be a signature with non-empty underlying set 7' =
|Z| of atomic types. The latter ensures that the associated CT-structure

(C1(X), T1) is non-trivial, see Proposition 2.3.1. Consider the resulting fi-
s(T))
bration cell(v)' For each context I' € (f1(X) and type o € Ty, the projection

morphism m: T' x ¢ — I' in C£1(X) gives rise to the weakening functor between
the fibres:

*
s(11)r —————s(Ti)rxo

given by
{ (L,p) = (I'xo,p)
(Fxplﬂpg) — (I‘xaxplw—lpg).
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1.e. by
(F p:Type) — (F p:Type)
(Tyzipr EM:ips) = (D,zio,z:p1 B M:pa).

This #* adds an extra hypothesis of type o. We should define a right adjoint

H(F,a)

s(T1)rxo s(T1)r
in the reverse direction. It naturally suggests itself as

(Txor)—~ (T,o—T1) i.e. as (F 7: Type) — (F o — 7: Type).
We then have to establish a bijective correspondence

(M]

™[, p) = (T x0,p) (T xo,7)

(', p) —W (To—=1)= H(I‘,a)(r X 0,7)

between terms M, N in
Iz:o,z:pbM:7

FzzipkN:io—> 1

It is given by abstraction and application:
Moo M and Nw— Nz

The fact that these operations are each others inverse corresponds precisely
to the (8)- and (n)-conversions described in the previous section. We conclude
that (C¢1(X),T1) is a Al-category.

In view of this example, and in analogy with Definition 2.2.2, the following
definition describes functorial semantics for Al.

2.4.6. Definition. Let T be a signature with S = |X| as set of atomic types.
A A1-model is a morphism of Al-categories M: (X1(X), S1) — (B, T).

Next we give a more amenable description of Al-categories.

2.4.7. Lemma. Let (B, T) be a non-trivial CT-structure. The following two
statements are equivalent.

(1) The pair (B, T) forms a Al-category.

(i1) The collection T C Ob) B is closed under exponents. That is, for types
X,Y €T there is an exponent type X = Y € T together with an evaluation
morphism ev: (X = Y) x X = Y such that for each object I € B and map
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fiIxX =Y inB there is a unique abstraction map A(f): 1 - X =Y with
evoA(f) xid=f.

Proof. (ii)) = (i). For / € B and X € T we can define a product functor
H(I,x)is(T)IxX — s(T); by Y — X = Y. Then we get correspondences in
the fibres:

”;,X(Z) =Z ——>Y overIxX

UIxX)xZ —Y inB

IxZ—X=Y mB

7z — Il x)(Y) over!

This describes (simple product) adjunctions 77 x 4 ][/ x)-
(1) = (ii). For types X,Y € T, we consider Y as an object (1 x X,Y) of
the fibre over 1 x X and thus we can take

def
X=Y = H(I,X)(Y) el

Notice that for an object I € B, reindexing along !;y: I --+ 1 in B yields
X=Y = (X =Y)

{0 ()
= Il x)((tr xid)"(Y)) by Beck-Chevalley

= H(I,X)(Y)~

The counit (at V) of the adjunction n} x <[]/ x, is 2 morphism

(1,X)
Ey
H(],x)(y) Y

in the fibre over I x X. For I = 1, it forms a map in B

XD
Y
(IxX) x [ Y) ———— v

Hence we can define an evaluation map

i (1,X)
(. m) (1><X)><(X:>Y)EY—>y)

evxy d:ef ((X = Y) x X

The definition of abstraction is a bit tricky. Since (B,T') is by assumption
non-trivial, we may assume an object Z € T with an arrow z5:1 — Z.
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For a map f:IxX — Y in B (with ] € B and X,Y € T) one has
fom(IxX)xZ — Y in B and thus fomn}x(Z) — Y in the fibre
over I x X. Taking the transpose across the adjunction nj x - H(I,X)
yields a morphism (f o #}V:Z — H(I,X)(Y) in s(T);. As noticed above,
X =Y =T[;x)(Y)and thus (fo7n)*":/ x Z = X =Y in B. Hence we take

id, zg o! om)Y
(SR e

(The auxiliary type Z is first used to introduce a dummy variable which is
later removed by substituting z¢.)

The validity of the categorical (8)- and (n)-equations follows from com-
putations in the fibres. We shall do (3) and write o for composition in the

fibres.
ev o A(f) xid

= M%) o ('), ) o A(f) x id

= % o (1 xid) x id o (id, A(f) o 7)
= (1 xid)* (™)) o (id, A(f) o )

= &I"%) o (id, A(f) o m)

= eg,l’x) o {id, H(],x)(foﬂ) o (w,n(ZI’X)) o (id,zg o!) o )

= Eg/l,x) o (m, H(I’X)(f ox)omxid) o (m, n(ZI’X) o xid)
o (id,zg o)
1,X) I,X)

= I o Tl (fom) o mhx (15 o (id, z0 o)

= (fom) o e, o mx(f ™) o (id 20 01)

= (fom) eid o (id,zp o)

= fomo (id,zpo!)

= f. a
2.4.8. Corollary (Proposition 1.9.3 (ii)). A category B(]Bwith finite products

1s Cartesian closed if and only if the simple fibration 1#3 on B has simple
products (i.e. forms a Al-category).

Proof. Take T'= ObjB in Lemma 2.4.7. ]

The semantics of Alx-calculi can thus be seen as a special case of Al-calculi
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(where the collection of types T contains all objects). The other extreme where
T is a singleton describes the semantics of the untyped A-calculus; this will
be the subject of the next section.

We close this section with an example of a Al-category, involving Scott-
closed subsets as types.

2.4.9. Example. Let D be a directed complete partial order (dcpo). Non-
empty closed subsets X C D (with respect to the Scott topology) are often
called ideals.. They are the non-empty directed lower sets X, satisfying (i)
X # 0, or equivalently, L € X, (i) z <y € X = z € X, and (iil) directed
aC X = \/Tae X. We show that ideals can be used (as types) to model
simply typed calculi with exponents (provided one has an interpretation of
the signature). Therefore, we form a base category B with finite sequences
(X1,...,X5) of such ideals X; as objects. These sequences may be understood
as contexts. A morphism (X1,...,X,) = (Y1,...,Yy) in B is given by a
sequence (i, ..., fm) of continuous functions f;: D" — D satisfying f; [)2] -
Y;. That is, for all ; € X;, one has f;(¥) € Y;. The empty sequence is then
terminal object in B and concatenation of sequences yields Cartesian products
in B.

Now let us assume that D is reflexive, i.e. that it isomorphic to its own space
of continuous functions [D — D}, via continuous maps F: D — [D — D] and
G:[D — D] — D satisfying F o G = id and G o F = id. An example of
such a depo is D. Scott’s Dy, see [301, 13]; it forms a model of the untyped
A-calculus, as will be explained in the next section. In a standard way one
forms an exponent of ideals X,Y C D by

X=>Y={:eD|VzeX.F(z)(x)eY}.
One easily verifies that X = Y is an ideal again.
Let T C ObjB be the collection of ideals (i.e. of sequences of length one).

One obtains a CT-structure (B, T). We claim that it is a Al-category. Using
the above Lemma 2.4.7 this is readily established: one has an evaluation map

Azy. F(z)(y) v)

ev = ((X:>Y,X)

And for f: (Z, X) — Y one takes as abstraction map
AzZ. G(Az. f(7,z))

Ay = (2 (X =2 Y))

Exercises

2.4.1.  Verify that the Beck-Chevalley condition in Example 2.4.5 corresponds pre-
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2.4.2.
2.4.3.

2.4.4.

2.4.5.

2.4.6.

2.4.7.

2.4.8.
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cisely to the proper distribution of substitution over abstraction and appli-
cation (as described in the previous section).

Check the (n)-conversion A(ev o g X id)} = g in the proof of Lemma 2.4.7.
Extend Lemma 2.4.7 to morphisms, in the sense that a morphism of
Al-categories corresponds to a morphism of CT-structures which preserves
the relevant exponents.

Show that the inclusion functor (£1(X) — (f14(X) extends to a morphism
of Al-categories. Conclude that every Aly(X)-model is a A1{X)-model.
Consider a model M of a propositional logic £ in a certain poset (X, <), for
example in a Heyting algebra. Show that such an M can also be understood
as a functorial model M:LA(L) — X, from the Lindenbaum algebra LA(L)
of propositions (modulo ¢ ~ ¥ & ¢ F ¢ and ¥ F ¢) into X. Check
that interpretation of the logical connectives T,A,D etc. corresponds to
preservation of this structure by M.

Let (B, T) be a Al-category. Define T to be the smallest collection contain-
ing T which satisfies

1eT and X,YeT = XxYeT.

Hence T is obtained by closing T under finite products. Let T also denote

the full subcategory of B with objects in this collection.

(i) Show that T is Cartesian closed.

(ii)) Show that—as a result—A1l-classifying categories (f1(X) are Cartesian
closed. Describe an exponent (vi: o1, v2:02) = (v1: 71, v2: T2, Us: T3) €X-
plicitly.

Let (B, T) be a CT-structure. Show that the associated simple fibration

s(T

(HL% ) has simple T-coproducts H if and only if the collection of types T is
closed under binary products x. Hence binary product types are described
by left adjoints to weakening functors.

[Details of the proof may be found in [156].]

Formulate and prove a result like Theorem 2.4.2 for Al-categories.

2.5 Semantics of the untyped lambda calculus as a corollary

As a general point we observe that untyped can be identified with typed in a
universe with only one type. In the untyped A-calculus (see [13]) one can build
terms from variables v via application M N and abstraction Av. M, without
any type restrictions (because there are no types). We can see this untyped
A-calculus as a (typed) Al-calculus with a single type £ satisfying @ = Q — Q.
Every untyped term M (%) can then be typed as v1:Q,...,v,: 2 - M: Q.
The notions and results developed for the simply typed A-calculus in the
previous section are based on CT-structures. Specialising to such structures
with only one type (i.e. to the single-typed case) yields appropriate notions for
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the untyped A-calculus. This constitutes a precise mathematical elaboration of
the point of view—stressed by D. Scott—that the untyped A-calculus should
be seen as a special case of the (simply) typed one. The notion of ‘A-category’
that we arrive at through this analysis, is in fact a mild generalisation of an
early notion of Obtulowicz, see [233, 235]. More information on the semantics
of the untyped A-calculus can be found in [301, 303, 304, 221, 181, 13, 186,
63, 156, 158, 274].

2.5.1. Definition. A A-category is a category B with finite products con-
taining a distinguished object 2 € B, such that the (single-typed) CT-struc-
s(Q2

(
ture (B, {Q}) is a Al-category, i.e. such that simple fibration Ié has simple
Q-products.

The following is then a special case of Lemma 2.4.7.

2.5.2. Lemma. Let B be a category with finite products and let Q € B be a
non-empty object (i.e. with non-empty hom-set B(1,Q)). The pair (B, Q) is
then a A-category if and only if there is a map app: 2 x & — Q such that for
each f: I x Q — 2 there is precisely one A(f): I — Q with app o A(f) xid = f.

Proof. Lemma 2.4.7 requires the singleton set {2} of types to be closed under
exponents. This is the case if and only 1if € itself is the exponent € = 2. The
result follows easily by reading app for ev and A(f) for A(f) in the formulation
of Lemma 2.4.7. O

2.5.3. Examples. (i) Cousider a signature with one atomic type € and no
function symbols. Identify the exponent type Q@ — Q with Q. In the resulting
Al-calculus on this signature we can provide every untyped term M (¥) with
a typing v1:Q, ..., v,: 2 F M:Q. The classifying Al-category can then be
described as follows.

objects n € N.

morphisms n — m are m-tuples ([M],...,[Mp]) of Bn-equivalence
classes of untyped A-terms M; with free variables among
Vi,...,Un.

The object 0 is then terminal and n+m is the Cartesian product of the objects
n and m. The object 1 plays the role of 2 in the above lemma: there is an
application map

[v102]
app = (2 E—— 1)
And for each morphism [M]:n+1 — 1 there is an associated abstraction map

1)

{/\Un+1. M]

AM[M)) = (n
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satisfying the required properties.

The result is a categorical version of what is called the closed term model
in [13]. It is the (pure) A-classifying category; ‘pure’, because there are no
function symbols involved.

(i1) Let D be a dcpo which is “reflexive”, i.e. which is isomorphic to
the dcpo of its own continuous endofunctions, i.e. D = [D — D], say via
continuous F: D — [D — D] and G:[D — D] - D with F o G = id and
G o F =id, as in Example 2.4.9. The first example of such a D is D. Scott’s
Do, see [301, 13]. It will be described as a Al-category. A base category D
is formed with n € N as objects; the object n i1s the context consisting of
n variables. Morphism n — m are sequences (fi,..., f,m) where each f; is a
continuous function D® — D. Composition in D is done in the obvious way
and identities are sequences of projections. The object 0 € D is terminal and
n + m is a Cartesian product of n, m. As distinguished object (“Q”) we take
1 € D. Notice that 1 is a non-empty object since the set D is non-empty: it
contains, for example, the identity combinator I = G(idp).

One has app:1 + 1 — 1 as a continuous function D x D — D described by
(z,y) — F(z)(y). For fin+ 1 — 1 in D one takes A\(f)(Z) = G(Ay. f(Z,y)),
which yields a morphism n — 1. Then

(app o A(f) x id)(Z,2) = F(G(Ay. f(Z,9))) (2) = f(Z, 2).

It is easy to see that A(f) is unique in satisfying this equation.

(iii) The previous example can be generalised in the following sense. Let B
be a Cartesian closed category containing an (extensional) reflexive object
2. This means that there is an isomorphism Q = (2 = Q), say via maps
FQ5 Q=0 and G:(Q2=2>0Q) - Q with FoG =idand G o F = id.
Then we can define application and abstraction operations, namely:

app:(QxQ evo Fxid Q)

And for f: I x 2 — Q there 1s:
G o A(f)

M) = (1 Q)
One obtains a A-category as described in Lemma 2.5.2.

The notion of a CCC with reflexive object was used by D. Scott as a cat-
egorical model of the untyped A-calculus. The above notion of A-category is
more economical in the sense that it does not require all exponents in the am-
bient category, but only the relevant one, namely Q = 2. But a A-category
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can be described as a reflexive object in a richer (presheaf) environment, see
Exercise 2.5.1 below.

Obtulowicz [233, 235] introduced what he called a Church algebraic theory.
It is a A-category (B, €2) in which the collection of objects of B is of the form
{Q" | n € N}—as in Examples (i) and (ii) above. In fact, Obtulowicz defined
a non-extensional version, as in Exercise 2.5.2 below.

Exercises

2.5.1. Let B be a category with finite products and {2 € B be a non-empty object.
Show that (B, Q) is a A-category if and only if the associated representable
presheaf B(—, 2): B°P — Sets is a reflexive object in the (Cartesian closed)
(“topos”) category Sets®”” of presheaves.

[Familiarity with the Cartesian closed structure of SetsP” is assumed here;

see Example 5.4.2. Especially with the fact that the Yoneda embedding

X — B(—, X) preserves exponents.]

2.5.2. The formulation below is based on [156] and uses semi-adjunctions
from [119]. These provide general categorical means to describe non-
extensionality.

A non-extensional A-category is given by a non-trivial CT-structure

s(

(1B, €2) such that the associated simple fibration (ﬁ) has ‘semi-products’;

that is, every =7 o has a right semi-adjoint and for every u: I — J in B the

pair (u*, (u xid)*) forms a morphism of semi-adjunctions. See [119] for the
details of these ‘semi’ notions.

(i) Show that a (non-trivial) CT-structure (B, Q) is a non-extensional
A-category if and only if there is an application map app: 2 x 2 — Q
such that for each f:1 x Q2 — Q there is a (not necessarily unique)
abstraction map A(f): I — § subject to the equations

appo A(f) xid=f and Afogxid)=A(f)og.

(it} Let D be a dcpo such that the continuous endofunctions [D — D] form
a retract of D, say via F: D — [D — D] and G:[D — D] - D with
F o G = id, but not necessarily G o F' = id. An example of such a dcpo
is Pw, see [13]. Show that the construction in Example 2.5.3 (ii) applied
to such a dcpo yields an example of a non-extensional A-category.

2.6 Simple parameters

In the preceding two sections we have been using simple fibrations for the
semantics of simple type theory. Here we show how these simple fibrations can
also be used to systematically describe data types with simple parameters.
We shall first briefly describe finite coproducts with simple parameters, next
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natural numbers with simple parameters, and finally arbitrary inductively
defined data types {as given by Hagino signatures) with simple parameters.
For the latter we shall make essential use of so-called strong functors. This
approach comes from [160], where it is presented in terms of simple slice
categories {instead of simple fibrations).

Recall that for a category B with finite products there is a simple fibration
s(B)
ng on B, with fibred finite products. The fibre over I € B is written as Bj [

and 1s called the simple slice over I. Its objects are X € B, and its morphisms
X —>Yaremaps/ x X Y inB.

Distributive coproducts

A coproduct object X + Y comes, by definition, equipped with {natural)
bijective correspondences

X —=Z Y — 7
X+Y —2Z

Say we have coproducts with simple parameters if for each parameter
object I € B there are bijective correspondences

IxX — 7 IxXY —7

(*)
Ix(X+Y)—2Z

natural in X,Y, Z. Then we have the following result.

2.6.1. Proposition. Let B be a category with binary products x and coprod-
ucts +. The following statements are then equivalent.

(1) B has coproducts with simple parameters (as described above).
s(B)
(i1) The simple fibration é on B has fibred coproducts.

(ii1) B has distributive coproducts: the canonical maps
(IxX)+(IXxY) ———> Ix(X+Y)

are isomorphisms.

Proof. (i) & (ii). Almost immediate: the correspondence (*) above precisely
says that each simple slice BJ I (i.e. fibre over I) has coproducts. Preservation
by reindexing functors is obvious. And (i1) &< (iii) is Exercise 1.8.3 (i). o

This correspondence between data types (coproducts in this case) with
simple parameters and a fibred version of such data types in a simple fibration
will be elaborated further.
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Natural numbers

Recall that in a category with finite products a natural numbers object
(NNO) consists of a zero and successor diagram

0 S

l— N—>N

which is initial in the sense that for an arbitrary diagram of the form 1 5
X 5 X there is a unique h: N —-» X making the following diagram commute.

0 S
1 N N
| !
H h h
Y Y
1 X X
z g

In functional notation, this is written as:
h0==z and h(Sn)=g(hn).

Recall that in Sets this mediating map h: N -—-» X is obtained by iteration

as: O(p) — &
h(n) = g(")(;c) where { g("g+1)E$; - g(g(n)(l.))

We say that 1 2, N 25 N is an NNO with simple parameters if for
each parameter object I and pair of maps f:/ x1 > X and g: I x X — X,
there is a unique h: [ x N —» X making the following diagram commute.

idx 0 id x S

Ix]l ———>[xN ——">xN
| |

| (m, h) | {m, h)
A ¥

Ix] — T x X I xX
T, z) (m,g

where we have written f: 1 x 1 — X instead of f:I — X for purely formal
reasons. In functional notation we now have equations:

h{i,0) = fi and h(i, Sn) = g (i, h(i, n)).

They emphasise that such an NNO involves an extra parameter i. By taking
the terminal object 1 as parameter object one sees that an NNO with simple
parameters is an ordinary NNQO. The reverse direction can be obtained in
Cartesian closed categories. Below we give alternative descriptions of such
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NNOs with simple parameters: they are fibred NNOs in simple fibrations.
Therefore we need the following fibrewise notion. It is in fact a special case of
Definition 1.8.1.

2.6.2. Definition. A fibration with a fibred terminal object has a fibred
natural numbers object if each fibre has an NNO and reindexing functors
preserve NNOs (i.e. if 0,5 form an NNO, then so do u*(0), u*(S)).

2.6.3. Proposition. For a category B with finite products, the following
statements are equivalent.

(i) B has an NNO with simple parameters.

(i) B has an NNO 0,S and for each I € B, the functor I*:B — B/I

applied to 0,5 yields an NNO I*(0), I*(S) in the simple slice BJfI over I.
s(B)
(iii) The simple fibration 1%13 on B has a fibred NNO.

Proof. (i) < (ii). By definition of NNO with simple parameters.

(i1) = (iii). Each fibre Bj/I has an NNO I*(0), I*(S). These are preserved
under reindexing, since for u: I — J in B one has u* o J* = [*.

(iii) = (ii). Assume the simple fibration on B has a fibred NNO. Then B has
an NNO 0,5, since B is isomorphic to the simple slice Bf1 over 1. Moreover,
the pair [*(0), /*(S) is an NNO in B/, since reindexing functors preserves
NNOs. o

Hagino signatures and strong functors

Recall from Definition 2.3.7 that a Hagino signatureinvolves a set .S of atomic
types, a type variable X and either a constructor function symbol constr: ¢ —
X (in the inductive case) or a destructor function symbol destr: X — & (in
the co-inductive case), where o is a type in the closure SU {X} of the set
SU{X} under finite products (1, x) and finite coproducts (0,+). A model of
the set (or subsignature) S in a category B consists of a functor 4: S — B,
i.e. of a collection (A;);es of objects A; € B. Such a model assigns values
in B to the atomic types s € 5. The category of models of S in B is the
functor category B°, in which a morphism f: (As)ses = (Bs)ses consists of
a collection f = (f;: As = B;)ses of morphisms in B.

Models of a Hagino signature can be described conveniently in terms of
associated polynomial functors. This will be done first.

2.6.4. Definition. Each model A:S — B of a set of atomic types S in a
distributive category B together with a type o € SU{X} determines a poly-
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nomial functor T(A),:B — B which follows the structure of o:

the constant functor A, ifeo=ses

the 1dentity functor fo=X
T(A), def the constant functor 0 ?f c=0

the constant functor 1 fo=1

Yo T(A), (Y)+ T(A)o, (V) f o =0, + 02

Yo T(A)e, (V) x T(A)o,(Y) if 0 =01 X 02.

For an arbitrary endofunctor 7: B — B an algebra (or T-algebra) consists
of a “carrier” object Y € B together with a morphism ¢:T(Y) — Y. Dually,
a co-algebra is a pair (Z,1) consisting of a carrier object Z and a map
Y. Z — T(Z) pointing in the reverse direction. In both the algebraic and in the
co-algebraic case one can understand the functor T as describing a signature of
operations. For instance, if T(X) = 1+ X x X+ X, then a T-algebra T(Y') - Y
consists of a carrier Y on which we have three operations 1 - Y, Y xY - Y
and Y — Y. Every group G carries such a T-algebra structure 7(G) —» G
consisting of the cotuple of unit, multiplication and inverse operations. Co-
algebras Z — T(Z) generally describe “dynamical systems” (in an abstract
sense), where Z is the state space, and the map Z — T(Z) is the dynamics, or
transition function, acting on the state space (see e.g. [167}). Typical examples
arise from automata: if ¥ is a finite alphabet, then the functor T(X) = (1 +
X)¥ is polynomial. A co-algebra Z — T(Z) may be described as a transition
function Z x ¥ — 1+ Z which yields for every state z € Z and input symbol
a € X either an outcome in 1, if the computation is unsuccessful, or a new
state in Z. It is a certain automaton.

One forms a category Alg(7T) with T-algebras as objects and as morphisms

(T(v) ? Y) h (T(Z)—¢>Z)

maps h:Y — Z in the underlying category B between the carriers for which
the following diagram commutes.

Dually, there is a category CoAlg(T) of co-algebras and similar, struc-
ture preserving morphisms between carriers. In these categories of alge-
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bras and co-algebras one can study initial and terminal objects. An ini-
tial algebraindexSInitial!- algebra for a functor 7:B — B is a terminal co-
algebraindexSTerminal!- coalgebra for T°P: B°P — B°P. Notice that an initial
algebra of the functor X — 1+ X is a natural numbers object. In terms of
these (co-)algebras one can describe many more data types than just natural
numbers.

But first we mention the following basic result.

2.6.5. Lemma (Lambek). An initial T-algebra o:T(Y) = Y is an isomor-
phism.

Thus initial algebras are fixed points T(Y) = Y of functors. By duality,
a similar result holds for terminal co-algebras. In Exercise 2.6.4 below, we
sketch the standard construction of such fixed points, generalising Tarski’s
fixed point construction in posets.

Proof. Considering the T-algebra T'(¢): T%(Y) — T(Y). One obtains by ini-
tiality an algebra map f:¢ —-» T'(¢), i.e. a morphism f:Y — T(Y) in B with
Fop=T(g)oT(f). But then, ¢ o f is an algebra map ¢ — ¢ and must be
the identity. Thus also fo @ =T (p) o T(f) =T(p o f) = T(id) = id. 0

2.6.6. Definition. Consider a type ¢(X) built with finite product and co-
products from S U {X} and a model S:A — B of the atomic types in a
distributive category B. A (initial) modeln B of an inductive Hagino signa-
ture

constr

o(X) ————— X
is an (initial) T(A),-algebra, written for convenience with the same name, as:

T(A)e (X) constr X
A (terminal) model of a co-inductive Hagino signature destr: X — o(X)
is a (terminal) co-algebra destr: X — T(A),(X) of the associated functor.

Hagino signatures ¢ — X or X — o are often used in programming lan-
guages to define a new type X recursively. The inductive case, say of the
form {61 + --- + 0,) = X occurs in the functional programming language
ML [224, 251] with syntax

datatype X = Cy of 01| --- | Cp of opy
where C}, ..., C, are constructors. Categorically, one combines these C; into
a single constructor constr = [Cy,...,Cp]: (01 + - -+ on) = X via a cotuple.

Describing constr as initial algebra of the functor associated with the type
(614 --+0,)(X) provides appropriate elimination rules for such data types,
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which are used to define operations on them. Initiality tells us that it is the
freely generated structure, and hence how it behaves with respect to arbitrary
such structures. Co-algebras can be used to describe infinite data structures
(and more generally, dynamical systems [167]), for example in object-oriented
languages, see [283, 162, 164]. Terminal co-algebras are minimal realisations,
in which all behaviourally indistinguishable (bisimilar) states are identified,
see also [298].

In the programming language CHARITY, see [562], one can define both these
initial and terminal types. Thus one can define for example a type of trees of
finite depth with nodes having infinitely many branches.

These recursively defined types with initial or terminal characterisations
occur already in [6], but were first investigated systematically from a type
theoretic perspective by Hagino [111, 110, 112].

The above 1s standard theory. Here we show how we can use simple fibra-
tions in order to get appropriate versions with parameters of such data types.
The approach comes from [160], but there, the language of fibred categories
1s not used. What we need first is the notion of a strong functor.

2.6.7. Definition. Let B be a category with finite products. A functor
T:B — B is called strong is it comes equipped with a strength natural
transformation st with components sty x:{ x TX — T(I x X) making the
following two diagrams commute.

Ix TX —2% (I x X)
\ lT(Tr/)
™
TX

id x st
Ix(JxTX)—l—XS—>1><T(J><X) st

| St

(IxJ)xTX T((I x J) x X)

(R

2.6.8. Examples. (i) Every functor T: Sets — Sets is strong with strength
I'xTX —T( x X) given by

(i,a) = T(Az € X. (i, z))(a).

For example, for a set A, let list(A) (or A*) be the set of finite sequences
of elements of A. The assignment A +— list(A) forms a functor on Sets with
strength [ x list(4) — list(I x A) given by

(i, {ar,. .- an)) = (G 1), .., (5, a)).
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(i1) On a distributive category B, identity functors and constant functors
are strong. Moreover, if 7, 5:B — B are strong, then so are
Y= T(Y) x S(Y) and Y »T(Y)+ S(Y).
Hence every polynomial functor T(A),:B — B in Definition 2.6.4 is strong.

The following basic result, due to Plotkin, gives an alternative description
of strong functors in terms of simple fibrations.

2.6.9. Proposition. Let B be a category with finite products. There is a bi-
jective correspondence

strong functors B —— B

s(B) — s(B)
split functors N v
B

Given this correspondence, we shall write TJI:BffI — BJI for the endo-
functor on the simple slice over I, associated with a strong functor T: B — BB.

Proof. Let (T,st) be a strong functor on B. We define a split functor
T:s(B) — s(BB) by
(LX)~ (1, T(X)) and  (u,f) = (u,T(f) o st).
s(B)
Conversely, let R:s(B) — s(B) be a split endofunctor on LIt leads by

restriction to functors Ry:B/I — B/I on the fibres. Hence we get a functor
R on B, via the functor R; over the terminal object 1:

o

B= (B — BJ1 —

Bj1 —> ]B)
It satisfies I* o R = R; o I* and hence in particular for X € B, R(X) =
R;(X). A strength map st: I x R(X) = R(I x X) is obtained as follows. The
identity map I x X — I x X in B forms a morphism I — I x X in BjI. Thus
by applying the functor Ry one obtains a morphism R;(X) — R;(/ x X) in
B/ I. 1t corresponds to a map I x R(X) = R(I x X) in B.

We leave it to the reader to verify that 7 = T and R = R. ]
The following definition contains a compact reformulation of a notion used

by Cockett and Spencer [52, 53] in their description of initial models of Hagino
signatures with parameters.

2.6.10. Definition. An algebra ¢:TX — X for a strong functor T:B — B is
called initial with simple parameters if for each object I € B, the functor
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I":B — BJ/I maps ¢ to an initial algebra I*(¢) for the functor T/I:BjI —
B/ I on the simple slice category over [.

Notice that this really is a fibrewise definition: it essentially says that in
s(B

each fibre B/ of the simple fibration (]ﬁ) the associated functor TJ/I:BJI —
B/I has an initial algebra ¢! = I"(yp), and that these initial algebras are
preserved under reindexing. Since the category B can be identified with the
fibre BJ/1 over 1, it suffices to have an algebra there, which is preserved by
each reindexing functor [*:B — B/ I associated with the map I — 1 (as in
Proposition 2.6.3).

If we spell out initiality with simple parameters of ¢:T(X) — X as de-
scribed above, then we come to the formulation used by Cockett and Spencer.
It says that for each parameter object I € B and for each “algebra with pa-
rameter” ¥: I x T(Y) — Y in B, there is a unique map h: [ x X ~-+ Y making
the following diagram commute.

(mr, st) id x Th
IxT(X) ———————— I xT{Ux X) ———> I xT(Y)
idxgol lt/)
IxX h Y

The reader may wish to check that an algebra of the functor X — 1+ X
which 1s initial with simple parameters, 1s an NNO with simple parameters,
as explicitly described in the beginning of this section.

We have only sketched the basics of the theory of {co-)inductively defined
types, with emphasis on simple parameters. If one replaces the simple fibration
by the codomain fibration, then one gets a theory with dependent param-
eters. For example, one can say that an NNO wich dependent parameters
0,5 in a category B is an NNO 0,5 in B such that for each parameter object
I € B, the functor I*: B — B/I (to the ordinary slice category) maps 0,S to
an NNO I*(0), I*(S) in B/I. This can alternatively be described as a fibred
NNO for the codomain fibration on B. In this dependent setting there is the
following analogue of Proposition 2.6.9. It stems from unpublished work of
Paré, see also [172, Proposition 3].

2.6.11. Proposition. Let B be a category with finite limits. There is a bijec-
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tive correspondence (up-to-isomorphism) between

strong, pullback preserving functors B —— B

B? —— B
fibred, fibred pullback preserving functors N
B

Proof. Assuming a strong, pullback preserving functor 7:B — B, we define

X X!
a functor T: B> — B~ by sending a family ( }90 ) to the composite ( } )

in the following diagram.

)I l_j T(X)

It is not hard to see that because 1" preserves pullbacks, this T is a fibred
functor, which preserves fibred pullbacks.

Conversely, given a fibred functor R: B — B~ preserving fibred pullbacks,
we get a pullback preserving functor

= (B = B R‘ B/l — B)

on B. Because R is a fibred functor, the Cartesian morphism in B on the
left below, is sent to the Cartesian morphism on the right.

IxX ——X I x R(X) — R(X)
v - | x| - |
I 1 I 1

As a result, the functor R:B® — B~ restricts to a split functor R':s(B) —
s(B), since the full subcategory s(B) < B~ consists of Cartesian projections.
By Proposition 2.6.9, the restriction of R’ to the fibre over 1 is then strong.
But this is R, as described above. m]

A different extension of the basic theory, to be elaborated in Section 9.2,
goes as follows. Given a polynomial functor 7: B — B on the base category of a
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fibration E , then, under suitable assumptions, one can lift 7: B — B to a fibred
functor Pred(7T):[E — E on the total category of the fibration. It turns out
that algebras of this lifted functor Pred(T) capture the induction principles
which are needed to reason about the (initial) data type associated with T
And dually, co-algebras of Pred(T) may be used to reason about (terminal)

E
co-algebras of T'. This approach exploits a fibration 1{1'5 as providing a logic of
predicates in IE to reason about types in the base category B. This view on
fibrations will be developed in the next three chapters.

Exercises

2.6.1.

2.6.2.

2.6.3.

2.6.4.

2.6.5.

2.6.6.

Consider a distributive category and define n =1+ --- 4+ 1 (n times).
(i) Provethatn+m=n+mandnxm=nxm.
(i1) Show that 2 carries the structure of a Boolean algebra.
[Hint. Use 2 x 2 2 2 4+ 2 to define conjunction A:2 x 2 — 2 via the
cotuple of cotuples [[«, k], [k,&']]:2+2 — 2]
{iii) Define a choice operation if:2 x X x Y - X + Y.
[For more such programming in distributive categories, see [341, 52, 53].]
Show that in a poset category with finite products (T, A) and finite coprod-
ucts (L, V), distributivity of A over V implies distributivity of V over A and
vice-versa. In that case one has a distributive lattice. Note that this corre-
spondence between distributivities does not hold for arbitrary categories.
Show that the assignment A +— T(A), in Definition 2.6.4 extends to a
functor B° — [EB.
Show that the initial algebra of an endofunctor T: B — B can be constructed
from the colimit X of the w-chain,

| T( T2(!
0 ——> T(0) J) T2(0) 0 73(0) X

in case this colimit exists in B and is preserved by T—where 0 € B is initial
object. This is as in [309].

Prove that, dually a terminal co-algebra can be constructed as limit Y of
the w-chain,

T(! T2(!
1(_!_ T(1) L:ﬂ(n ® T3(1) Y

provided 7' preserves such w-limits.

Prove that, on a distributive category B, the assignments ¥ — T(Y)x S(Y)
and Y — T(Y) + S(Y) are strong functors B — B, assuming that both S
and T are strong functors (as claimed in Example 2.6.8 (ii)).

Following [50] we say that a category B with finite products has list objects
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2.6.7.

2.6.8.

2.6.9.

2.6.10.
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if for each A € B there is an object list(A) equipped with a pair of maps
nil: 1 — list( A) and cons: A x list(A) — list(A)

such that for each X € B which comes together with maps r:1 — X
and g: A x X — X, there is a unique morphism h:list(A) --+ X with
honil=z and hocons =g oid x h.

(i) Formulate appropriate fibrewise list objects and list objects with simple
parameters such that a result like Proposition 2.6.3 can be obtained.

(i1)) Show that a list object on A is an initial algebra of the functor X —
14+ (A xX).

(i) Check that the formulation with simple parameters from (i) coincides
with the one in Definition 2.6.10.

Show that in a Cartesian closed category an initial algebra is always initial

with simple parameters.

Define what a terminal co-algebra with simple parameters is. Show that

each terminal co-algebra is automatically terminal with simple parameters.

Consider a comonad G:C — C and a functor T:C — C with a natural

transformation o: GT = TG.

(i) Say what it means that (7, ¢) forms a map of comonads G — G,
i.e. that ¢ commutes appropriately with the comonads counit ¢ and
comultiplication §.

(1) Assume that C has Cartesian products x. Prove that a natural trans-
formation st: (x o T x id) = (T o x) makes the functor T strong if
and only if for each object I € C, the induced natural transformation
st!: T(=) x I = T({(—) x I) forms a map of comonads.

[Recall from Exercise 1.3.4 that the functor (=) x I: C — C carries a
comonad structure.]

Let B be a category with finite products. A strong monad on B is given by

a 4-tuple (T, 1, 4, st), where (T, 1, 1) is a monad on B and (7, st) is a strong

functor. Additionally, the following two diagrams are required to commute.

i T(st)
t
IxxﬁﬂleX [xT?X —> T(I x TX) — T*(I x X)
st idx,ul lu
n
T(I x X) IxTX T((I x X)

st

(i) Show that the (finite) lists and powerset operations X — list(X) and
X — P(X) are strong monads on Sets.
(ii) Show in line with Proposition 2.6.9 that there is a bijective correspon-

dence between strong monads on B and split monads on the simple
s(B)
fibration I%B (see Exercise 1.7.9).



Chapter 3

Equational Logic

At this point we start the categorical investigation of logic. This chapter will
be about a logic of equations between terms in simple type theory (STT).
First order logic with more general predicates on terms (than equations) may
be found in the next chapter. And the subsequent chapter 5 deals with higher
order logic, in which there is a special type Prop of propositions. This leads to
higher order quantification. All these logics are many-typed logics with types
(and terms) as in STT. Or, as we like to put it, these are “simple” logics
(fibred) over STT. Later we shall also see logic over polymorphic type theory
(PTT) and over dependent type theory (DTT). These have greater expressive
power at the level of types.

But for the moment we restrict ourselves to equational logic over simple
types. There, one has equations between terms as propositions. Propositions
form a new syntactic universe (besides types). They are the entities that one
reasons about, and occur in the relation - of logical entailment. We start this
series of chapters on logic (3, 4, 5) with a few remarks on logics in general and
with an explanation of the (logical) terminology and notation that we shall be
using in the rest of this book. Starting from these generalities we can already
construct a fibration from a logic as a term model (or classifying fibration},
capturing the essential context structure of the logic. The subsequent sections
in this chapter contain an exposition of the traditional approach to the se-
mantics of non-conditional equational logic in terms of categories with finite
products, and also an exposition of the fibred approach. The latter makes use
of Lawvere’s description of equality via left adjoints to contraction functors.
This fibred approach presents equality as an “internal” notion, in the logic

169
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of a fibration. It is very general and close to syntax. And it fits nicely into a
uniform categorical description of logics. This fibred line will be pursued in
subsequent chapters.

The way in which a fibred category E provides us with means to reason
about what happens in the base category B, is described in Section 3.5. In
particular, in Definition 3.5.3, validity of equations in a fibration (admitting
equality) is introduced. This shows how E gives us a logic over B. We will
show how choosing different fibred categories on the same base category gives
different logics (with different notions of equality) to reason about this base
category, see Examples 3.5.4 and 3.5.5. In the subsequent and final section 3.6
the functorial semantics from the previous chapter is extended from ordinary
categories to fibred categories. It enables us to capture models of logics as
certain structure preserving morphisms of fibrations.

3.1 Logics

A logic 1s a formal system for reasoning. There are various such systems, with
variation determined by, for example:

e what to reason about; this determines the form of the atomic propositions;

e which means to use; this determines the logical connectives used to build
compound propositions;

e which rules to follow; for example whether to follow the constructive or
classical rules for negation.

In this chapter we study many-typed equational logic. It has equations
between terms from STT as atomic propositions, and so it may be called
stmple equational logic (in contrast to polymorphic or dependent equational
logic, for example). Our (categorical) account of equational logic does not
involve any connectives. These can be added later and studied separately, see
the next chapter. In order to describe a (not necessarily equational) logic over
STT, we start with a (many-typed) signature, containing the atomic types and
function symbols, that will generate an underlying simply typed calculus (as
in the previous chapter). In predicate logic the signature may contain atomic
predicate symbols, but in equational logic one restricts oneself to equations
as (atomic) propositions. In general, a signature together with a collection
of propositions (serving as axioms) will be called a specification. And a
specification in which the collection of axioms is closed under derivability will
be called a theory.
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Usually, a statement in a logic is written as

Ply---,¥n }_w

where ¢1,...,pn and i are propositions. Such a sequent expresses that
follows (as conclusion) from the assumptions @1, ..., ¢,. These propositions
©®1,--.,¥n, ¥ may contain (free) variables of certain types. The context in
which these variables are declared is left implicit in the above formulation.
Contexts are very important in a categorical description of logic—since they
are indices—and therefore we prefer to use statements of the form

Tley,...on b9

in which the context I' containing all the free variables of ¢1,...,¢, and ¥,
is written explicitly. The sign ‘|’ is used as a separator and has no logical
meaning. Its rdle is to separate the type context I' from the proposition
context 1, ..., pn, much like ‘|’ in the standard notation {i € I | ¢(4)} for
comprehension separates the set-theoretical from the logical. In [186] the type
context I' is written as a subscript of the turnstile k. It leads to sequents of
the form ¢y,...¢, ki ¥. But this notation is not very convenient when we
deal with rules (like for ¥V or 3) that change the type context I'. So we put the
type context T' at the beginning of the sequent.
As an example, in equational logic one can have a sequent

vi:N,va: N vy =Ny 3,va+v1 =N B Fvp =N 2.

with type context v;: N, vs: N, proposition context v1 =§ 3,v2 + v =N 5 and
conclusion vy, =y 2. Such a sequent involves ingredients (such as N,+,3,5,2
in this case) which come from an underlying signature as in STT, describing
the basic types and function symbols that we use. This signature determines
which terms (like vs + v; above) can be formed, and hence also which equa-
tions (between terms) can be used. Additionally, we may wish to have certain
equations as axioms in equational logic. For example, the monoid equations in
reasoning about monoids. An equational specification consists of a signature
¥ together with a set A (for axioms) of equations between I-terms. A precise
definition will be given in the next section. Later on, in predicate logic, we will
use slightly different specifications, consisting of a triple (X, 11, .A), where ¥ is
a signature, II is an additional set of typed predicate symbols P:oy, ..., 0o,
and A is a set of axioms.

Context rules

In Figure 3.1 we list the context rules which will be used in all of the logics
that we consider. We write I for a type context of the form z,:64,...,2,:0,
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axiom identity
—— (if(T|OFY) EA T 4:Prop
riery T —
Ty kEe
cut weakening for propositions
T|OFy L0, ¢ty riory I + ¢:Prop
rNee +y IOty
contraction for propositions exchange for propositions
INECR NN S I'0,0,x,0" k¢
FNe,ekvy I{O,x,p0 ¢
weakening for types contraction for types
riery Tz.o,y:0|O o
Tz:o|OFy [,z:0|Olz/y] b y[z/y]
exchange for types substitution
I z:0i,y:0i41, 1" |©O Y r-M:o Az:o,A|O ko

T,y:0i41,2:0, T |O F ¥ AT A |O[M/z] - ¢Y[M/x]

Fig. 3.1. Context rules in logic

in which (term) variables z; are declared of type o, and © for a proposition
context consisting of a sequence ¢y, . .., ¢, of propositions. In combined con-
texts T' | © we ensure that all the free variables occurring in (the propositions
in) the proposition context © are declared in I'. Further, sometimes we apply
substitution ®[M/v] to proposition contexts. It means substitution p{M/v]
applied to all the propositions ¢ in O.

In the “axiom” rule in Figure 3.1 it is assumed that there is a given set of
axioms A. If there is no such set specified, the rule does not apply.

Notice that the “identity” rule starts from the assumption I' F ¢: Prop
that 1 is a well-formed proposition in type context I'. How such statements
are obtained depends on the specific logic that we are using. For example, in
equational logic one only has equational propositions I' I : Prop with ¢ of
the form M =, M’, where M, M’ are terms of type o in context T.

As in STT, in concatenated contexts ', A we always assume that the vari-
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ables in ' and A are distinct. Especially, in writing ', z: ¢ it is implicitly
assumed that the variable £ does not occur in T'.
We sometimes write

»T|OFp

to express that the sequent I' | © F ¢ is derivable. This means that there
is a derivation tree regulated by the above rules (and possibly some extra
rules specific to the logic) with T | © F ¢ as conclusion. Notice that in the
formalism that we use all assumptions are explicitly present at every stage of
the derivation in the type and proposition contexts.

The following rule is in general not valid.

strengthening
Iz:0|O F ¢

z not free in O, ¢
riekrs ( )

The problem lies in the fact that (the interpretation of) the type o may
be empty. The (then absurd) assumption z:¢ that ¢ is inhabited may lead
to conclusions, which can not be obtained without the assumption z: 0. See
Exercise 3.1.3 for more details.

Fibrations of contexts in logic

The above rules suffice to describe the basic categorical structure in a logic
over a simple type theory. Let (X,0) be a specification for some system of
logic, where ¥ is a many-typed signature and O is something extra, deter-
mined by the specific logic; it may consist of collections of additional atomic
symbols and/or axioms. For example, for equational logic, O will be a set
of equations which serve as axioms. And in predicate logic it will consist of
predicate symbols plus axioms. Given X and O we can start forming sequents.
The categorical way to understand these sequents is as follows.

index object in
the base category

1301, .., Tni0n | Y1, 6m F ¥
(R —
inequality < in the

fibre over the index

A type context I' = (z1: 01, ..., 2,:0y,) 1s thus an index for a logic describing
what happens in this context. This is a basic theme.
We can formalise this view. The specific logic that we have gives rise to a
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fibration of contexts:

with the classifying category C¢(X) of the signature % as basis. This fibration
has the following properties.

(a) The fibre over a type context I' € (¢(X) contains the logic in context I':
its objects are sequents of the form I' | ©; a morphism (I' | ©) — (T' | ©)
exists if each proposition ¢ in ©’ is derivable from © in type context I, ¢.e. if
b I'|© F o for each ¢ in ©@'.

(b) The fibration is a fibred preorder, i.e. all fibre categories are preorders.
This is typical for ‘logical’ fibrations (in contrast to ‘type theoretic’ fibrations),
because in logic one does not distinguish between different proofs of the same
proposition: there are no explicit proof-objects or proof-terms, which can serve
as (proper) morphisms.

(¢) The base category (¢(%) has finite products; as we have seen in the pre-
vious chapter, these are given by concatenation of type contexts.

(d) The fibration has fibred finite products; this structure is obtained from
concatenation of proposition contexts.

We proceed to describe the total category £(X,0) in detail.

objects pairs I' | © consisting of a type context ' and a propo-
sitions context @, such that all free (term) variables in
propositions in © are declared in T'.

morphisms (I' | ©) — (I | ©') are context morphisms M:T — I” in
(X)) such that for each proposition ¥ in ©’' one can derive
IO Fy[M/i]

where [1\;[/17] is simultaneous substitution for the variables
v; declared in T”.

Identities in £(X, 0) are identities in (/(X), by the identity rule. Also com-
position is inherited from C¢(X): for morphisms in £(X, O),

- —

(r1e) s (11| 0r) =L (17 | 0)

let L = N o M be the composite in the base category C¢(X)—which means
L; = N;[M/v]. This map L is also a morphism (I | ©) — (I | ©”) in
the total category £(X,0). This follows from a combination of the cut and
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substitution rule: for each proposition v in ©” one can derive
I'|© Fy[N/d]
(with @ declared in I'”) and thus by substituting M one can also derive
T e[ /3] + plL/a).

But for each ¢ in ©’
IO Fe[M/v]

is derivable, which yields, by repeated application of the cut and contraction
(for propositions) rules, that

T'|© + L/

is derivable. This makes L a morphism in £(Z,0).
£(2,0)

The projection functor cz(lz) given as (I' | ®) — T is a split fibration.
The fibre over I' € (/(X) indeed contains the logic in T, as stated in (a)+(b)
above. As to (d), the terminal object in the fibre over type context I'is ' | 0
(T with empty proposition context) and the Cartesian product of T' | © and
I'|©isT] 6,0 (I with concatenated proposition contexts).

3.1.1. Example. Consider type contexts
(T==z1:01,...,20:04) and A=(y1:7, Ym: Tm)

together with a context morphism M:I' = A, so that T’ M;: 7;. The (cat-
egorical) substitution functor (1\2)* associated with M is a functor from the
fibre over A to the fibre over I'. It maps a proposition context @ in type
context A to a proposition context in context I' by performing substitution
[M/§) in syntax:

(a10) = (T | OL1/7).

There are two special cases of this general description of substitution which
should be singled out, namely weakening and contraction (see also Exam-
ple 1.1.1).

(1) Let us write
(T, z:0) S

for the context morphism (21, ..., z,) consisting of the variables in T. Then
we get an associated substitution functor #* which performs weakening. It
acts as follows.

(T'|©)—(T,z:0]|0).
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That is, it adds a dummy variable declaration (or assumption) z: . In syntax
this is not an explicit operation, since there is no notation for weakening.
Only when one moves to a categorical level, it becomes an explicit operation.
It makes things more cumbersome, but it better brings forward the structural
aspects. For example, in the next chapter on predicate logic we shall see how
one can capture existential 3 and universal V quantification as left and right
adjoints to these weakening functors 7*.

{Pavlovié {256] proposes explicit notation in syntax for weakening: given a
proposition T' + ¢: Prop, he writes T', z: 0 + ¢(¢#): Prop for ¢ with this dummy
variable # added by weakening.)

(i1) Now write

(T,z:0) —6—> (T,z:0,y:0)

for the diagonal context morphism (z1,..., 2y, z, ). The associated substitu-
tion functor §* performs contraction:

(T,z:0,y:0|©) = (T,z:0 | Bz/y)).

It replaces two variables &,y of the same type by a single variable occurring
in both places via substitution [z/y] of & for y. This is an operation which
can be described explicitly in syntax. Later in this chapter we shall capture
equality via left adjoints to such contraction functors é*.

FExercises

3.1.1.  Prove that a morphism M:(I'| ©) — (I'|©') in_£(X,0) is Cartesian if

and only if for each ¢ in © one can derive T' | ©'[M /4] F ¢.
£(z,0)

3.1.2.  Verify in detail that the fibration CEJ’E has fibred finite products. Show
that the total category £(Z,0) also has finite products: ® | @ is terminal
object and the Cartesian product of ' |© and I'' | ®' is T, T" | ©, 0.

3.1.3.  Check that the following is an example showing that the strengthening rule
is not valid. Consider in Sets two functions f,g: X =3 Y. Since Sets is a
distributive category, we have X x0 = 0,sothat for=gom X x0 > Y.
This means that we have validity of

2:X,2:0|0 F f(z) =y g(z),
with z:0 not occurring on the right of |. But evidently, me may not conclude
z:X |0 F f(z) =v g(z)

since f and g are arbitrary functions.
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3.2 Specifications and theories in equational logic

The present section deals with the syntactic aspects of equational logic over
simple type theory (STT). We investigate the rules which are specific for rea-
soning with equations between terms (in STT). The main result in this section
is the reformulation (in Lemma 3.2.3) of the standard rules of equational logic
in a single ‘mate’ rule (after Lawvere). It prepares the ground for a categorical
description of equality in terms of left adjoints to contraction functors ¢* in
Section 3.4.

First we have to make precise what kind of atomic propositions may be
used in equational logic. These will be equations of the form M =, M’, for
terms M, M’ of the same type ¢ in STT. Formally:

Equational proposition formation
I'-M:0o '-M:o
M=, M':Prop

The type subscript ¢ in =, is used to emphasise that we are dealing with
equality of terms of the same type o. But more importantly, to distinguish
propositional equality M =, M’ from conversion M = M’, as we have seen
in the previous chapter, which comes with the type formers —, x,1,4,0 in
STT. These should not be confused: conversion = belongs to type theory,
whereas propositional equality =, is part of logic. Sometimes we call con-
version external equality and propositional equality internal equality. The
latter because =, can only be established within formal logic. This is in line
with categorical terminology.
Internal equality contains external equality via the following rule.

From external to internal equality
I'+M:o r-M:o r'trM=M:0
M=, M

It says that convertible terms are (propositionally) equal in logic. As a con-
sequence, in logic, terms are considered up-to-conversion. One may also pos-
tulate a rule in the reverse direction (so that internal and external equality
become the same, in what is sometimes called “extensional” logic), but we
shall not do so in general.

In equational logic we shall only use atomic propositions M =, M’ and no
compound propositions with connectives, like A,V,D. The reason is that we
wish to study equality in isolation. The sequents in our logic thus have the
following form.
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3.2.1. Definition. Let X be a signature.
(i) A X-equation is a sequent of the form

T | M =4, M{,...,Mp =0, M) F My, =01 7Il+1

where for each i, both M; and M/ are X-terms of type o; in context I', so that
M; =,, M/ is a well-formed proposition.

Such an equation will be called non-conditional or algebraic if n = 0,
that is, if its proposition context is empty. We then write the sequent as

F0+-M=, M or simply as I'-M=, M.

(ii) An equational specification is a pair (X, H) where ¥ is a signature
and H (for Horn) is a collection of X-equations. An algebraic specification
is a pair (X,.4) where A is a collection of algebraic equations.

Notice, by the way, that the notation I' b M =, M’ in this definition was
already used in the earlier rule that described internal equality resulting from
external equality.

3.2.2. Examples. (i) In Example 2.2.7 (i) one finds two algebraic specifica-
tions for groups: ¥; with five axioms and X, with one axiom.

(11) The classical example in algebra of a conditional specification is of a
torsion free group, i.e. of a group G without elements with finite period,
except its unit. This specification has infinitely many conditional axioms, one
for each n € N:

z2:G|lze -rex=gelz=ge,
n times
where o is the multiplication of the group G, and e: G its unit.

(iii) Assume a signature in which for a type ¢ one also has a type Po
intended as type of finite subsets of o. For a cardinality operation card: Po —
N one may expect a conditional equation

z:0,y: Po | elem(z,y) =g ff I card (add (2, y)) =N card (y) + 1

where ff: B is the boolean constant ‘false’ and elem and add are the obvious
set theoretic operations.

Next we describe the typical rules of equational logic—besides the standard
context rules from the previous section. They will also be used in any of the
later logics with equality. We start with substitution; one puts

(N =, N')[M/z] = (N[M/z] =, N'[M/z])

where = means syntactic identification. Categorically, this distribution of sub-
stitution over equations will be captured—as always—by a Beck-Chevalley
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condition, see Definition 3.4.1. The corresponding substitution rule is

substitution

_)
I'-M:o A,z:a,A’|ﬁ:;N'I-L:pL’

AT, A | N[M/z] =7 N'[M/z] + L[M/z] =, L'[M/z)
which we explicitly mention as a special case of the substitution rule in the

_)
previous section. The vector notation 1—\; =z N’ is a shorthand for a sequence
of assumptions Ny = 7y N{, ..., Ny = . NJ.
The next four rules are the basic rules of equational logic.

reflexivity symmetry
I'EM:o rNerM=,M
rerM=,M TOFM =, M
transitivity

rerM=,M T|OFM =,M"
r0+M=, M

replacement
FOFM=,M T z:c b N:7
I'®FN[M/z]=, N[M'/z]

The next lemima gives a more concise formulation of these rules, and paves
the way for Lawvere’s categorical account of equality—which is in Section 3.4.
It describes equality via left adjoints to contraction functors. Remember that
the latter replace two variables z,y: o of the same type by a single one, using
substitution [z/y], see Example 3.1.1 (ii).

3.2.3. Lemma. Consider for terms ', z:0,y:0 + N, N': 1 the following rule.
Lawvere equality
[,z:0 |0 F N[z/y] =, N'[z/y]
[zoyo|Q =yt N= N

(=-mate)

Under the assumption of the substitution rule, the above four basic rules of
equational logic are equivalent to this equality rule of Lawvere.

The double line indicates that the rule may be applied in both directions.
Note that it is implicit in the notation that the variable y does not occur in
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the proposition context ©O.

Proof. Assume Lawvere’s rule. Reflexivity follows by applying it upwards:

zoyo|lr=yte=5y

z:0 |0 F (elz/y] = vla/s]) = (2 = 2)

We can immediately use reflexivity to obtain symmetry in:

0|0 F (2= )= (y[z/y] =0 z[x/y])

royo|le=syty=cz

And transitivity is got by taking:

o yo|lr=,yt(2=cy) = (zly/z] =0 z[y/z])

T:0,y:0,2.0 |2 =0 Y, Y=o 2z F 2 =4 z

which is an instantiation of Lawvere’s rule with I' = (z: 0) and © = (2 =, y).
Finally, in order to derive replacement, assume

rNe+-M=,M and T,z:0bFN:7.
Let N’ = N{y/z]. Then,
lz:obN:T
[ z:0|© F N[z/y] = N'[z/y]
I z:oy:0|0,2 =,y N=, N
F16, 8 =, M’ F N[M/s] =, N M7
T|OFM=, M  T|0 M=, M'FN[M/z]=, N[M'/z]
IO+ NM/zl=, N[M'/z]

In the reverse direction, assume the four basic rules (plus substitution), and
consider two terms I', z:0,y: 0 = N, N': 7. Lawvere’s rule downwards is then
obtained as follows. First one deduces

(refl)

(=-mate)

(subst)

(cut)

Tz.oy0|0,z=ytaec=5y T ,2:0,y:0,2:0 b N[z/z]: T
[ z:0,y:0| 0,2 =5 y b N[z/z][z/z]) =r N[z/z][y/?]
= (N =, Nly/a)).

repl)

Similarly one gets

,z:0,y:0|0,2 =,y - N =, N'[z/y].
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But then, using the assumption N[z /y] =, N’[z/y], we are done by symmetry
and transitivity.
And Lawvere’s rule in upward direction is deduced as follows.

Te:okzo T,z:0,y:0|0, 2=,y - N=, N’
Nzo|®kz=52 [z:0|0,2 =,z t+ Nz/y|=, N'[z/y]
T,z:0|© F Nlz/y] =- N'[z/y]

(subst)
{cut)

The above formulation of Lawvere’s rule can be strengthened a bit, so that
the variable y is allowed to occur in the proposition context ©. This will be
relevant later in connection with the Frobenius property.

3.2.4. Lemma. The above equality rule of Lawvere ts equivalent to the fol-
lowing rule.

Lawvere equality with Frobenius
T,2:0|Ofz/y] F N[z/y] = N'[z/y]
Iz.o,y:0|0,2=,ybtN=, N’

(=-mate)

Proof. This extended equality rule in upward direction follows simply by
substituting [z/y] and using reflexivity (which follows from the earlier Lawvere
rule). Downwards, it suffices to prove for terms I', z: 0, y: 0 F L, L': p that the
following sequent is derivable.

T,zio,y:0| Llx/yl =, L'[e/yl,e=cy F L=, L.

Since then one can apply the cut rule to all equations L =, L’ in ©. One
derives this sequent via an immediate application of Lawvere’s rule:

D@0 | L{z/y] =, L'[z/y] F Llz/y] =, L'[z/y]
Cyz:o,y:0 | Lz/y) =, L'[z/yl,z =sy F L=, L’ m]

3.2.5. Definition. (i) An equational specification (X,H) will be called a
theory if its set of equations H is closed under derivability. This means that if
there is a derivation of an equation £ = (I',© F M =, M’) from assumptions
Ei,...,E, € H, then F must be in #. The rules which can be used in such
a derivation are the context rules of the previous section plus the above four
basic rules of equational logic (or, equivalently plus Lawvere’s equality rule).
Similarly, an algebraic specification (X,.4) is called a theory if the set A of
algebraic (non-conditional} equations is closed under derivability—where the
same rules as above may be used, but with empty proposition context ©.
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(ii) Every equational specification (X, %) gives rise to a theory by closing
‘H under derivability: one takes H to be the least collection satisfying
e HCH, . .
¢ if equation F is derivable from Ey,...,E, € H, then E € H.
We write Th(Z,H) = (,H) for the theory associated with (X,%#). Some-
times we write £ € Th(X, H) instead of £ € .

Similarly there is a theory Th(X, A) associated with an algebraic specifica-
tion (X, A).
3.2.6. Definition. (i) The category EqSpec has
objects equational specifications (X, H).
morphisms (X, H) — (£/,H’) are morphisms ¢: & — ¥’ of signatures
such that
EeH = ¢E e Th(Z,H),
where ¢ F is obtained from E by applying ¢ to all types
and terms in E.

Such a morphism ¢ in EqSpec will be called a morphism of equational
specifications.

(i1) In the same vain there is a subcategory AlgSpec — EqSpec, ob-
jects of which are algebraic specifications; its morphisms are morphisms of
signatures which map non-conditional equations to derivable non-conditional
equations (using only the rules with empty proposition context).

Exercises

3.2.1.  Show that the following rule is derivable (or: admissible) in equational logic.
TNoe+M=,M Ire|®FN=, N
T'|©+FN[M/z]=- N'[M'/z]

3.2.2.  Consider the first equational signature for groups in Examples 2.2.7 (i).
Give a formal derivation of the following basic result about groups.

z:6,y:G Fi(m(z,y)) =g m(i(y), i(z)).
3.2.3.  Check that the projections

EqSpec AlgSpec
! and 1
Sign Sign

are split fibrations.
[Recall the discussion after Lemma 1.6.6 about the organisational power of
fibrations.]
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3.3 Algebraic specifications

In Section 2.2 we have described the semantics of a many-typed signature ¥ in
terms of finite product preserving functors M: (X)) — B, where (¢(X) is the
classifying category of . In this section we investigate how to model algebraic
equations in a similar fashion, using ordinary categories. In the subsequent
three sections of this chapter we use fibred categories to model arbitrary,
conditional equations in a systematic manner.

Suppose we have a model M:C¢(X) — B of ¥ in a category B and two terms
' F N, N":o in the term calculus of . An algebraic X-equation

FN=,N'

is said to be valid (or to hold) in M if the two resulting maps

M(N")

are equal in B. Thus, an equation holds under an interpretation, if the two
terms are interpreted as equal maps.

For a set A4 of algebraic equations, we write M = A if all equations in A4
are valid in M.

3.3.1. Example. Consider the first specification of groups as in Exam-
ple 2.2.7 with one type G and three function symbols m:G,G — G,e: () —
G,1: G — G and the familiar equations:

v1: G + me,v1) =g v1 v1: G F m(i(vi),v1)

1) =G ¢
v1:G F m(vi,e) =g v v1: G F m(vy,i(v1))

=ge

v1:G,v2: Gyv3: G F m(vy, m(ve, v3)) =g m(m(v1, va), v3).

A model M of this specification in a category B with finite products, then
consists of an object G = M(G) € B together with maps,

m = M(m) e = M(e) ¢ = M()

GxG G 1 G G G

such that the above equations hold. This means explicitly that, for example,
mo {eolid) =mo (id,e o!) = idg.

In a similar way one can describe the other three equations above as equations
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in B. One gets precisely the diagrams of an internal group in B:

idxe e xid (id, 7) (¢,id)
Gx1l—>GxG=——1xG G

A NS

idxm
GxGxG———> GxG

mxidl lm

GxG G

m

E

G

We briefly mention validity of equations with conditions. This can be ex-
pressed in case the receiving category B additionally has equalisers. We write
Eq(u, v) for the (monic) equaliser map of u, v in

Eq(u, v u
1/>L)>1/—_\J
~—

v

Whenever convenient, we also use Eq(u, v) for the corresponding subobject.
Recall that for a category B with finite limits, the posets Sub(7) of subobjects
of an object I € B have finite products (i.e. intersections). These will be
denoted by A and T.

Let E be a conditional X-equation,

| M =, M{,...,M, =5, M, F N =, N’

We say that £ holds in a model M:Z(X) — B, or that M validates E, in
case the intersection of the equalisers of the assumptions is contained in the
equaliser of the conclusion:

Eq(M(M1), M(M])) A -+ AEQ(M(My), M(M;)) < Eq(M(N), M(N"))

where < is the order of the poset Sub(M(T)).
Since M preserves finite products, the left hand side is isomorphic to a
single equaliser, namely to the equaliser of the two context morphisms

MMy, ..., My,)
MO T M
M(M],..., M)

(1 X -+ X 0p)
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Notice that this definition restricts to the earlier one for non-conditional
equations—since for n = 0 the empty meet is T (and T < Eq(u,v) & u = v).
We call a rule
51

S2
sound if validity of the sequent S; implies validity of the sequent S>. At this
stage we only know what it means for an equational sequent ' | M =3 M’ F
N =, N’ to be valid, but in the next chapter we shall see validity for more
general sequents.

3.3.2. Lemma (Soundness). Let (X,.A) be an algebraic specification and let
M:(Z) = B be a model of A. Then every (algebraic) equation derivable
from A holds in M. Thus M is a model of the theory of (2, .A).

Proof. One shows that all derivation rules are sound. Reflexivity, symmetry
and transitivity are obvious. For replacement assume validity of T F M =,
M’; then for each term [',z:0 F N:7 we get validity of I' - N[M/z] =
N[M'/z]: T from

M(N[M/z]) = M(N)o(id, M(M)) by Exercise 2.2.2
= M(N) o (id, M(M’))
= M(N[M'/z]).

In a similar way one obtains soundness of the substitution rule (using Exer-
cise 2.2.2 again). o

We next describe classifying categories for algebraic specifications. They be-
have like classifying categories for signatures—and are constructed as suitable
quotients of these.

3.3.3. Definition. Let (¥, 4) be an algebraic specification. We say that
Y-terms I' - N, N': o are equivalent modulo A if the equation I' F N =,

N’ is derivable using the equations from A as axioms. We define a classifying
category Cf(X,.A) with

objects contexts T'.

morphisms T — A are sequences (|Mi|,...,|Mn|) of equivalence

classes (modulo A) of terms M:T' — A in the classifying
category Cl(Z) of X.

(Notice the following subtlety of notation: we use |M| for the equivalence
class of M modulo propositional (or internal) equality, where we used [M] for
the equivalence class modulo conversion (or external equality) in the previous
chapter.)
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Thus the classifying category C/(Z, A) of an algebraic specification (X, 4) is
obtained by making certain identifications (induced by the axioms A) in the
classifying category C¢(X) of the signature . As a result, there is a canonical
quotient functor C(X) — (X, A).

With this definition of classifying category of an algebraic specification
(3,.4), we can understand a model of (X,.4) in a category B functorially,
namely as a finite product preserving functor C/(X,.4) — B. This is the con-
tent of the following result.

3.3.4. Theorem. A classifying category CL(%, A) has finite products. More-
over, there is a bijective correspondence between

ax, A A B in FPCat

Proof. The finite product structure in C/(X, A) is given by concatenation of
contexts as in C/(X). For a functor M:¢(3, A) — B in FPCat one obtains a
functor M as composite ¢¢(X) — C¢(%, A) — B satisfying M }= A because for
every equation I' F N =, N’ in A4, the terms N and N’ are equivalent modulo
A, and thus give rise to the same morphism in C¢(X, A). This is because the
functor C¢(X) — (X, A) maps context morphisms M to their equivalence

classes |7\?|

In the reverse direction, for a model N: C4(2) — B of & with A/ |= A one has
by soundness that if N, N’ are equivalent modulo A, then N (N) = N(N').
Thus N restricts to a well-defined functor C4(X, A) — B. O

By this result, we can take a model of an algebraic specification (%, .4) in
a category B (with finite products) to be a finite product preserving functor
¢E,A) - B
3.3.5. Corollary (Completeness). Let (£,.4) be an algebraic specification.
An (algebraic) equation is derivable from A if and only if it holds in all models
of (£,A4).
Proof. The (only-if) follows from the soundness Lemma 3.3.2. For (if), there
is the ‘generic’ model id: C¢(X, A) — CU(Z, A) of (X, .A) in its own classifying
category. If an equation holds in all models, then it certainly holds in this
particular model. Then, by the previous result, it holds in C/(X) — C4(X, A).
But this latter model validates precisely the equations which are derivable
from A. O

In Lemma 2.2.4 we saw how every category with finite products induces a
many-typed signature. Below we show that it actually induces an algebraic
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specification: the equations that one gets are precisely those that hold in the
category.

3.3.6. Definition. Let B be a category with finite products and let Sign(B)
be its associated signature (as in Lemma 2.2.4). Then one can form terms
I' - M:X and equations I' F M =x M’ using this signature. Recall from
Theorem 2.2.5 that there is a model €: C(Sign(B)) — B of the signature of B
in itself.

We write A(B) for the set of non-conditional Sign(B)-equations which hold
in ¢ (as described in the beginning of this section). The pair (Sign(B), A(B))
is the algebraic specification associated with B. By the previous theorem we
get a model C¢(Sign(B), A(B)) — B, which we also denote by e.

3.3.7. Example. The underlying signature Sign(B) of a category B with fi-
nite products has function symbols

pair proj proj’
Xl,Xz———>X1><X2 X1><X2————>X1 X1><X2 ———>X2

which arise from the following maps in B, see Definition 2.2.5 (i).

e(pair) e{proj) e(proj’
X1, X2 (. Xix Xy Xy x Xy ———> X X1><X2~—(——,)> 2
=1 = =7

These function symbols come equipped with equations in A(B),
z: X1,y: X2 F proj(pair (z,y)) =x,
z: X1,y: X2 b proj (pair (z,y)) =x, ¥
z: X1 x X b pair (proj (z), proj (z)) =x,xx. 2
Similarly, there is an ‘empty tuple’ function symbol in Sign(B)

] ~—<>—> 1 with equation FFM= (.

Combining these we obtain an isomorphism of context objects in the classify-
ing category C{(Sign(BB), A(B)), namely
(1: X1, 2a: X)) Z (2 X1 X - X Xp).
The latter isomorphism will be used in the proof of the next result. It states
that every category with finite products can be understood as a classifying

category, namely of its own algebraic specification. Hence one can identify
(following Lawvere) and algebraic theory with a category with finite products.

3.3.8. Theorem. A category B with finite products is equivalent to the clas-
stfying category C¢(Sign(B), A(B)) of its own theory of algebraic equations.
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Proof. One can define a functor 8:B — (/(Sign(B), A(B)) by mapping an
object to the associated singleton context: X — (z: X). Then

(o) (X) = e(z:X)
= X.

(Goe)(zi: X1,...,en: Xpn) = 6(Xy x---x Xp)
= (2: X1 x - x Xy)
= ($11X1,...,l'nIXn). ()

This is a useful result; it shows that instead of the diagrammatic categor-
ical language one can use a type theoretic “internal” language to establish
certain results in a category B with finite products. Explicitly, if we wish to
prove that two arrows in B that we can describe as terms are equal, then it
suffices to prove the equality between these terms in the equational logic with
specification (Sign(B), A(B)) associated with B. The weakness of this result
however, lies in the fact that the terms that occur in our equational logic are
of very simple form. For example, if we have a group object in B—as described
in Example 3.3.1—then we can use the language of types and terms and the
assoclated equational logic to prove things about such an object (living in
an arbitrary universe IB). This is what is usually done in mathematics (form
a logician’s point of view): one uses a suitable internal language to reason
directly in a particular structure—but usually with a language which is more
expressive than the one we consider so far.

Also, one can understand every finite product preserving functor F: B — C
as a functorial model of the specification (Sign(B),.A(B)} of B in the category
C. Thus F:B — C is a model of (the theory of) B in C.

Similar correspondences between certain kinds of categories and certain
kinds of theories have been established. Most famous is the correspondence
between categories with finite limits and “essentially algebraic” theories
(see [83]). In these essentially algebraic theories one has (hierarchies of) par-
tial operations, with the domain of an operation described by the extension of
a finite conjunction of equations involving operations which are lower in the
hierarchy.

Exercises

3.3.1.  Check in detail that the equations in Example 3.3.1 lead to the diagrams
describing an internal group.
3.3.2.  The following is based on Exercise 1.2.3.
(i) Show that the category Sets, of pointed sets {or of sets and partial
functions) has finite limits.
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3.3.4.

3.3.5.

3.3.6.
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(1) Let £ be a many-sorted signature and M:Cl(¥) — Sets, be a finite
product preserving functor (i.e. a partial Z-algebra). Find out what it
means for a conditional 3-equation to hold in M; pay special attention
to undefinedness.

Consider a category B with finite products. Show that the following

Sign (B)-equations hold.

(1) For an object X € B

z: X Fidx(z) =x =.

(i) For composable maps X Ly4zZmB
z: X F(go f)(z) =2z g(y)[f(z)/y]-

Let (2, .4) be an equational signature. For a category B with finite products,
let Mod((Z, A), B) be the category of models of (%,.4) in B consisting of fi-
nite product preserving functors C¢(Z,.4) — B and natural transformations
between them.

(i) Show that each functor K:B — A in FPCat induces a functor

Mod((£, 4),B) —— Mod((Z, 4),A)

by composition with K.
(i) Show also that each morphism ¢: (X', 4’} — (X, A) of algebraic speci-
fications induces a functor

Mod((Z,4), B) — Mod((Z',4"),B).

[Thus morphisms of receiving categories and of algebraic specifications act
in opposite directions on models. This gives rise to a “fibred span”, see
Definition 9.1.5.]

Let (X,.4) and (X', A’) be algebraic specifications and consider a functor
(X, A) - ¢(X', A’) in FPCat. Explain how (the categorical notion of)
faithfulness of this functor corresponds to (the logical notion of) conser-
vativity: if an equation holds after translation, then it must already hold
before the translation.

For an algebraic specification (Z,A), let (14(Z,A) be the (Cartesian
closed) category formed as follows. Its types are obtained by closing the
atomic types in £ under 1, X, —. And its morphisms |M|: ¢ = T are equiv-
alence classes |M| of terms z:¢ + M: 7, where two terms are equivalent if
one can prove from the axioms in A that they are (propositionally) equal.
(In this case the conversions associated with 1, X, — are included in the in-
ternal equality, via the rule (from external to internal equality), described
in the beginning of the previous section.)

(1) Check that (14(%,.4) is a CCC, and that for an arbitrary CCC C
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there is a bijective correspondence
1x(X,A) — C in CCC
(£,4) —— (Sign(0), A(C)) in AlgSpec

(1) Let B be a category with finite products, and C be a Cartesian closed
category. Establish a correspondence

Ct1y (Sign(B), A(B)) —— C in CCC
B —> C in FPCat

[A standard gluing argument shows that the resulting functor B —
Cf1 4 (Sign(IB), A(B)) is full and faithful, see e.g. [183, Anneze C] or [61,
4.10]. This means that adding exponents to an algebraic theory does not in-
troduce new terms between old types, or new equations between old terms.}

3.4 Fibred equality

We start with a categorical description of equality in terms of adjunctions; to
be more precise, in terms of left adjoints to contraction functors 4*. It was
first put forward by Lawvere in [193]. This approach captures the mate rule
for equality in Lemma 3.2.3 categorically. The present section contains the
technical prerequisites, and the next section shows how this fibred equality is
used for the semantics of conditional equations. The goal is the fundamental
Definition 3.5.3 of validity of an equation in a fibration.

In a (base) category with Cartesian products x we shall write for objects
I1,J

d=4(1,J)=(@d,n")
IxJ (IxJ)yxJ

for the ‘parametrised’ diagonal which duplicates J, with parameter 1. It is
used to interpret contraction for types, see for example in the proof of Theo-
rem 2.2.5 (ii1). Notice that such a diagonal is a split mono: it is a section of
the two projections (I x J) x J = I x J.

E
3.4.1. Definition. Let ﬁ%p be a fibration on a base category B with Carte-
sian products. )
(1) This p is said to have (simple) equality if both

o for every pair I, J € B, each contraction functord(I, J)* has a left adjoint

Eary =I5 g
Erxs IxJ)xJ -
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e the Beck-Chevalley condition holds: for each map u: K — I in B (between
the parameter objects) the canonical natural transformation

EquJ(u X id)* p— ((u X ld) X id)*Eq]”]
is an isomorphism.

(i1) If p is a fibration with fibred finite products x, then we say that p has
equality with the Frobenius property (or briefly, equality satisfying
Frobenius) if it has equality as described above in such a way that for all
objects X € [F(;xs)xs and Y € Erx s, the canonical map

EquJ((s*(X) X Y) —_— > X X EC“}J(Y)

1s an 1somorphism.

The canonical Beck-Chevalley map is obtained in the standard way by trans-
posing the composite

(u x id*(n) . . .
(u X id)* —_ (u X ld)*dl’JEQI’_] = 5;(.]((11 X ld) X ld)*EquJ

With this notion of equality we will be able to define validity of an equation
between morphisms (terms) in a base category, see Definition 3.5.3 in the
next section. In this section we concentrate on the technicalities of such fibred
equality.

Note that the above definition speaks of simple equality. This is to distin-
guish it from other forms of equality, to be described later in Section 9.3. The
name ‘simple’ refers to an involvement of simple fibrations, see Exercise 3.4.1
below. In this and the next few chapters we shall only use simple equality and
therefore we can safely omit the word ‘simple’ for the time being.

Above, we only consider left adjoints to the contraction functors §*. In
presence of fibred exponents, these left adjoints induce right adjoints to 6*,
see Exercise 3.4.2.

E
3.4.2. Notation. Let %p be a fibration with equality as described before.
Assume p has a terminal object functor 1:B — [E, see Lemma 1.8.8. For
parallel maps u,v: I = J in B we write

Eq(u, v) ef ((id,u),v)*(EqLJ(l)) € E
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in a situation:

Eq(u,v) ———— Eq;,4(1) 1

((id, u), v)

]————————— (IxJ)xJ«=————IxJ

where 1 = 1(/ x J) is the terminal object in the fibre over I x J. This yields an
equality predicate Eq(u, v) in the fibre over the domain I of the maps u, v. One
thinks of the predicate Eq(u, v) at ¢ € I as expressing the truth of u(i) =5 v(7)
in what may be called the “internal logic of the fibration”, i.e. in the logic
which is based on what holds in this fibration, see the next chapter. We thus
say that u,v: I =3 J are internally equal if there is a “proof” 1 — Eq(u, v)
over I. This need not be the same as external equality of u,v: I = J, which
simply means equality u = v of u, v as morphisms of the base category. Below,
in Lemma 3.4.5 we shall formally prove that internal equality is reflexive, so
that external equality implies internal equality. The converse need not be
the case—see the next section for examples. In case internal equality in a
fibration does imply external equality we will say that the fibration has very
strong equality. The logic then often called extensional. This terminology
using strength is borrowed from type theory where “strong” and “very strong”
forms of equality exist, see Section 11.4 later on.
Substitution in such equality predicates Eq(u, v} is done by composition:

w*(Eq(u,v))

({(id, u), v) o w)"Eq(1)

((w x id) x id) o {(id, u o w), v o w})*Eq(1)

{(id, u o w), v o w)* ((w x id) x id)*Eq(1)

((id, u o w), v o w)*Eq(w x id)*(1)) by Beck-Chevalley
((id, u o w), v o w)*Eq(1)

Eq(u o w,v o w).

R IR

R He

1%

As a special case of Frobenius one obtains for the projection morphism
m (I xJ)xJ—1IxJ that

EC”’J(X X Y) = EqI,J(é*r*(X) X Y) = 71'*(X) X quyJ(Y).
And so in particular for Y =1 we get
ECU,J(X) =~ 7I'*(X) X EQI’J(l).
This latter isomorphism is often useful. Informally it says that

Ea(X) (5,51 = Xy AT =1 7).
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We continue with a basic observation.

3.4.3. Lemma. A fibration with coproducts [], (satisfying Frobenius) has
equality Eq (satisfying Frobenius).

E
Proof. Suppose %p has coproducts. Since every reindexing functor »* has a
left adjoint [ [, , we especially have left adjoints (] J; 4 6*) to contraction func-
tors §*. Beck-Chevalley holds, since for u: K — I the following is a pullback
diagram in B.

ux1id
KxJ IxJ

6(K,J):<$IJ Ia:a(u)

(KxJ)yxJ ——— (I xJ)xJ
(u x 1d) x id

In case p has fibred finite products and the coproducts of p satisfy the Frobe-
nius property, then Frobenius obviously holds for equality as well. O

3.4.4. Examples. (i) By the previous result (plus Proposition 1.9.8 and
-

Lemma 1.9.7), each codomain fibration !  has equality satisfying Frobe-
nius. For parallel arrows u,v: I = J in B one has, following 3.4.2, an equality
predicate,

Eq(u, v) = ((id, u), v)* ( [1;(1)) = ((id, u), v)*(6)

in a pullback situation:

K I'xJ
Eq(u, v) - IJ =4(1,J)
I (I xJ)yxJ

((id, u}, v)

It is easily established that Eq(u, v) is then the equaliser of u and v: this is in
fact the standard way to get equalisers via pullbacks and products. Thus the
notation Eq(u, v) for the equaliser of u, v (as used for example in the previous
section) coincides with the notation introduced in 3.4.2 above.
Sub(B

(1) The situation for a subobject fibration l( ) is similar: since monos
are closed under composition and the diagonal 6 = (id, ') is monic, each
pullback functor 6* has a left adjoint by composition. Hence equality comes
for free in subobject fibrations. It is easily verified that Frobenius holds.
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(i) Suppose C is a category with initial object 0. The family fibration
Fam(C)
sl then has equality: for a family X = (X(; j))( j)erxs of C-objects over

ets
I x J one defines a family over (I x J) x J by

Xy 5 =7
Eq(X) @540 = { 0 4 else.

We get a bijective correspondence
(Ea(X)ii4.5n) — Vigan)

(X)) — Yii50) = 6" (Yii,5,59)

In case the category C additionally has finite products in such a way that
functors Z x (—):C — C preserve the initial object (which simply means
0 --» Z x 0 is an isomorphism), then the family fibration has finite products
as well (by Example 1.8.3 (i)) and equality satisfies the Frobenius property:
for a family Y = (Y{; ; ;1) over (I x J) x J,

. Y.’.y. XXI‘,') 1f]:],
Eq(0™(Y) x X) 551 = { 0(1“) " otherwise

Yo x Xagy ifj=j
(et = {0

4.5.5") Y jjn X 0 = 0 otherwise.
The Frobenius property is thus a distributivity condition (like in Exer-
cise 1.9.6).

Notice that for functions u,v: I =3 J the family Eq(u, v) over I (see 3.4.2)
is given by
1 if u(i) = »(9)
0 else.

Eq(u,v)i = {

(where 1,0 are terminal and initial object in C).

(iv) Let (3,H) be an equational specification, consisting of a signature X
and a set M of possibly conditional equations between X-terms. In the first
section of this chapter we outlined a general construction which produces a

term model fibration that captures the logic involved. We claim that this fibra-
L(SH)

tion ce(iz) thus associated with this equational specification (X, #) admits

equality satisfying Frobenius. For contexts I', T € ({(X) we must exhibit a

left adjoint to §*, where & is the parametrised diagonal I', TV — I',T’, T’ in

the base category C{(X). For convenience we suppose I to be (z: o) of length

one. We then define an equality functor, using propositional equality =, from
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equational logic:
Eq(T,z:0| ©) L (T,z:0,y:0 |0,z =, y).
The required adjunction boils down to a bijective correspondence
[,z:0,y:0|0, 2=,y 6O
[z:0|0 FO'[z/y =6 (0)

which is (essentially) Lawvere’s equality rule as described in Lemma 3.2.3.
The Frobenius property holds because
Eq((T,z:0 | O[z/y]) x (T,z:0 | ©))
Eq(T,z:0 | ©z/y],®)
(T,z:0,y:0 | Olz/y],0,z =5 y)
(T,z:0,y:6 10,02 =, y)

IR

= (Tzioyo|O)x (T zio,y:0 0,2 =5 y)

= (Iz:0,y:0|0) x Eq(T',z:0 | ©)
where the isomorphism = follows from Lawvere’s extended equality rule in
Lemma 3.2.4. The Frobenius property is thus a result of the parametrised
formulation of this rule involving a proposition context ©.

One easily verifies that for parallel context morphisms M,N: ' =2 Ain
(X)) equality is given by the proposition context

Eq(M,N) = (T | M =5 N).

Hence these morphisms J\Zf, N in the base category are internally equal in the
fibration if one can prove (using the axioms from #) that

T|0FM = N;.
for each . Hence by using a different set of axioms H' one gets a different
(=1
fibration lz: on the same base category, in which other internal equalities

hold. This gives us a different logic to reason about morphisms in the base
category C¢(X), i.e. about L-terms.
This concludes the series of examples.

The following lemma gives some standard combinators for equality.

E
3.4.5. Lemma. Let %p be a fibration with fibred finite products and equal-
ity satisfying Frobenius. Then, for parallel morphisms u,v,w: I 3 J and
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t:I x J— K inB there are the following vertical combinators in E.

1 il Eq(u, u)
sym
Eq(u, v) = Eq(v,u)
Eq(u,v) x Eq(v, w) trans Eq(u, w)
repl
Eq(v, v) Eq(t o (id, u), t o (id, v))
u*(X) x Eq(u, v) subst v (X)

These are preserved under reindering and make some ‘obvious’ diagrams com-
mute, e.g.,

1 x Eq(u, v) u*(X) x 1

reﬂxidl \ idxreﬂl \

Eq(u,u) x Eq(u,v) —— Eq(u,v)  u*(X) x Eq(u,u)
trans subst

u” (X)

Proof. By reindexing the unit 7: 1 — §*Eq(1) above I x J along (id, u): I —
I x J, one obtains the reflexivity combinator refl as composite

id, u)*
12 (id, u)*(1) (_)_(772 (id, u)*0*Eq(l) = {{id, u), u)*Eq(1) = Eq(u, u).

Let 4 be the parametrised twist map (7 xid, 7’ o 7): (IxJ)xJ 5 (IxJ)xJ
which exchanges the first and second J. Then

Eq(u,v) = ((id, u),v)*Eq(1)
{(id, u), v)* 7" Eq(1)
((id’ v)’ U>*Eq(1)
Eq(v, u)

This yields the symmetry combinator sym. The transitivity combinator trans
arises as follows. Consider above (I x J) x J the first projection

e e

Eq(1) x 1 —— Eq(1) = §*(7 x id)*Eq(1).

By transposing across (Eq - 6*) and using that 1 2 (7 x id)*(1) on the left
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hand side, one obtains
Fa(Ea(1) x (r x id)" (1))
= 7*Eq(l) x Eq((7 x 1d)*(1)) by Frobenius
7 Eq(1) x ({7 x id) x id)*Eq(1) by Beck-Chevalley.

Thus we have a map

(R

m*Eq(1) x ((m x id) x id)*Eq(1) —— (7 x id)*Eq(1)

above ((I x J) x J) x J. By reindexing along the 4-tuple (((id, u), v}, w): I —
((I x J) x J) x J one gets the required transitivity combinator.

For the replacement combinator rep!, assume a map ¢: I X J — K in B, and
consider above I x J the composite

1 Ba(t,t) = Eq(tomodton xidod)

3*(Eq(t o m,t o 7 x 1d))

IR

It yields a morphism above (I x J) x J by transposition:
Eq(l) —— Eq(t o 7, t o 7 x id)

Hence by reindexing along ((id,u),v): I — (I x J) x J one obtains the re-
quired map

Eq(u,v) —— Eq(t o (id, u), % o (id, v))

Finally for the substitution combinator subst notice that ='*(X) =
§*7’*(X), so we have over I x J a projection map

(X)) x 1 —= §*7"™(X)
By transposing and using Frobenius we get
m*r™*(X) x Eq(l) — #"*(X)
The subst combinator arises by reindexing along ((id, u), v}. 0

The next result gives an application of these combinators; the proof requires
some elementary, but non-trivial, categorical manipulations. The result states
that two tuples are equal in the internal logic of a fibration if and only if their
components are equal. It also occurs in Lawvere’s paper [193] (as the second
corollary on page 10}, but some stronger form of Beck-Chevalley is used there.
See Exercise 3.4.7 below.

For convenience, we present the result for fibred preorders.
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3.4.6. Proposition. Consider a fibred preorder with fibred finite products and
equality satisfying Frobenius. Then there is a vertical isomorphism

Eq({u1, u2), (v1,v2)) = Eq(u1, v1) A Eq(us, v2).

Proof. Assume the morphisms uq, v1, 42, v2 in the base category are given as
follows.

Uy Uz
‘T T g
~— I —_— > K

Y1 (%

The (<)-part of the result is easy, since by applying the above replacement
combinator one obtains

Eq({u1, u2), (v1,v2)) < Eq(mon’ o (id, (u1,us)), m o 7’ o (id, {v1, v2)))
= Eq(uy,v1)

and similarly for Eq(us, va).
The (>)-part requires more work. Our first aim is to prove

Eq(u; o m,v1 o 7) < Eq(uy x id, v1 x id). (%)

Consider therefore the diagram

(I xK)xJ (I x K)x(JxK)
JI Ia
(IxK)yxJyxJ 4ﬂ> (I x K)x (Jx K))x(JxK)

which commutes for the “obvious” maps

(m,(x', 7’ o 7))

B = {(mom (n' om, ' omwom)), (n', 7' omwo m)).

i

a

The terminal object 1 above (I x K) x J comes together with a morphism

*

a*(n)
1=a*(1) < a*§"Eq(l) = 8" #"Eq(1)

which yields by transposition
Eq(1) < B*Eq(1) above (I x K) x J) x J.

Reindexing along ((id,u; o w), vy o w): I X K — ((I x K) x J) x J yields the
required map (*).
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Using the inequality () we get:

Eq(u,v1) = (id, v2)*7*Eq(u, v1)
= (id, v2)*Eq(uy o m, v, o m)
< {id, v2)"Eq(u; x id, v; x id)

Eq((u1,va), (v1,v2)).
Further, from replacement we obtain
Eq(uz,v2) < Eq(up x id o {(id, u2), u; x id o {id, v2))
= Eq((ur, u2), (u1, v2)).

But then
Eq(u1,v1) A Eq(ua,v2) = Eq(ua,va) A Equ, v1)
< Eq((u1, u2), (u1,v2)) A Eq((u1, v2), (v1, v2))
< Eq((ui, ua), {v1,v2)),

the latter by transitivity. ]

For future use, we mention at the end of this section what it means for a
morphism of fibrations to preserve equality Eq.

E g
3.4.7. Definition. Let %p (ﬁf;) Bi/pl be a morphism of fibrations. We say

that (K, L) preserves equality (or, is a morphism of fibrations with
equality) if K:[B — B preserves finite products and for each pair of objects
1, J € B, the canonical natural transformation

Edgrxnn L =7 LEau,

is an isomorphism—wherey,: KIxKJ 5 K(IxJ) and vo: (KIxKJ)xKJ 5
K((I x J) x J) are the canonical isomorphisms.

Exercises

3.4.1. Let B be a category with finite products.
(i) Extend the assignment (/,J) — §(I,J) = (d,x"): I x J - (I xJ)yxJ
to a functor é:s(B) - B~ .
(i1) Show that é sends Cartesian morphisms (for the simple fibration on B)
to pullback squares in B (i.e. Cartesian morphisms for the codomain
functor on B).

E
3.4.2. Assume ﬁp is a fibred CCC with equality.
(i) Show that the Frobenius property for equality holds automatically.
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3.4.3.

3.4.4.

3.4.5.

3.4.6.

3.4.7.
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(ii) By definition, each contraction functor §(1, J)* has a left adjoint [[,.
Show that it also has a right adjoint H 4+ given by

(Erxs 3 X) = (Bars(1) = 7°(X) € Erxnxs)-

[Notice that equality = is left adjoint H s abt 1 and inequality # is right
adjoint [], at 0.]

£(SH)
Verify that the Beck-Chevalley condition for the fibration Ce(iE) in Ex-
ample 3.4.4 regulates the proper distribution of substitution over equations.
Describe the isomorphism 22 which was used in proving the Frobenius prop-
erty.
Describe how the canonical natural transformations in Definitions 3.4.1
and 3.4.7 are obtained.
Consider the projections n’' o w, n': (I x J) x J =2 J in the base category of
a fibration with equality. Show that

Eq(x’ o m,n’") = Eq(1).
E r’ ,
Let ﬁp 5 l,p be a morphism between fibrations p and p’ with fibred

terminal object and equality.

(i) Assume (K, L) preserves the terminal object and equality. Verify that
for parallel arrows u, v in B the canonical vertical map

Eq'(Ku, Kv) — L(Eq(u,v)) (*)

is an isomorphism

{(i1) Assume that p and p’ also have fibred finite products and that (K, L)
preserves all of these. Assume additionally that Frobenius holds both
for p and for p’. Show that if the maps () in (i) are isomorphisms (for
all parallel u, v), then (K, L) preserves equality.

[Hint. Use the previous exercise.]
The point of this exercise is to check the details of Lawvere’s proof

E
(from [193]) of Proposition 3.4.6 for a fibration %P with coproducts [T,

satisfying Frobenius. By Lemma 3.4.3 this fibration then has equality sat-
isfying Frobenius. Check that

(1) waid(”.(Xl) X Tr“(Xz)) =~ T(" Hw(Xl) X K’*(Xz).
(i) 1, o, (7" (X0) x 7 (X2) 2 2 [T, (X0) x 7 [T, ((X2).
(1) sz, 0x20) (1) = Wiz, (1) X Ls(z,1(1), using that there is a pullback
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square

I'x(JxK) (IxJ)x({IxK)

- |
5 5
(I x (J x K))x (J x K) — (I x J) x J) x (I x K) x K)

in which the horizontal arrows are the obvious maps.
(iv) And finally, that Eq({u1, u2), {(v1,v2)) = Eq(ui1,v1) A Equz, v2).

3.5 Fibrations for equational logic

In this section we give meaning to equations in fibrations with equality, as
described in the previous section. This fibred approach has as main advantages
that it is very general and flexible and that it scales up smoothly to other
logics. We start with the definition of validity of a (conditional) equation in
a fibration. Then we show how different fibrations on the same base category
can capture different notions of equality for arrows in this base category. This
is what we mean by the flexibility of the fibred approach: using different logics
to reason about one (base) category can be done by putting different fibrations
on this same base category.

3.5.1. Definition. An Eqg-fibration is a fibration which
(i) is a fibred preorder (i.e. all its fibre categories are preorders);

(i1) has fibred finite products (T, A) and finite products (1, x) in its base
category;

(ii1) has equality Eq satisfying Frobenius.

We impose the restriction to fibred preorders in (i) because we limit our
attention in this chapter to models of logics, interpreting provability and not
proofs (like in type theories).

3.5.2. Examples. (i) An important example of an Eq-fibration is the syn-
L(Z,H)
tactically constructed fibration ceiz: associated with an equational specifi-
cation (X, #H), see Example 3.4.4 (iv). It will be called the classifying Eq-
fibration of (X, H).
Sub(B)

(1)) For each category B with finite limits, the fibration ]ﬁ of subobjects

of B is an Eq-fibration, see Example 3.4.4 (ii).

(ili) Let X be a poset (or a preorder) with finite meets and a bottom
Fam(X)

element. The family fibration Slt 1s then an Eqg-fibration, see Exam-
ets

ple 3.4.4 (iii).
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In the beginning of Section 3.3 we briefly described what it means for a
conditional equation to hold in a category with finite limits. Below we show
that validity of equations can be described more generally in Eq-fibrations,
with the special case of subobject fibrations capturing this earlier mentioned
situation.

3.5.3. Definition (Validity in Eqg-fibrations). Consider a situation

w P

C(x) B

where p is an Eqg-fibration and M is a model of the signature ¥ in the base
category B. We say that a L-equation

UM =, M{,...,. My, =5, M, W N =, N’
holds in M or is validated by M with respect to p if
Eq(M(My), M(M])) A~ - A Eq(M(Mn), M(M})) < Eq(M(N), M(N"))

in the preorder fibre category above the interpretation M(T) of the type
context I' in B. Often we simply say that such an equation holds in M without
reference to the fibration p if the latter is understood from the context.

E
Thus it becomes clear that a fibred category ]ﬁ on B provides us with a

logic to reason about what happens in B. This shows how fibred (preorder)
categories play a role in logic. We will expand on this point shortly, but first,
we notice that for a model M:¢(X) — B in a category B with finite limits
one has a situation

Sub(B)

V.

a(x) B

in which an equation holds in M as defined above with respect to the sub-
object fibration if and only if it holds in M as described in the beginning of
Section 3.3 (after Example 3.3.1). Thus we can conclude that the previous
fibred definition does not lead to ambiguity and that its notion of validation
of equations extends the earlier one for ordinary categories.

In Example 3.4.4 (iv) we saw how different equational specifications (X, )

£(ZH) (s,
and (X,H') give rise to different fibrations ¢ ~ and {  to reason
a(z) c(E)

about the same base category. Next we give two mathematical examples of
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this phenomenon: we show how different notions of equality—for continuous
functions between dcpos, and for relations (as morphisms) between sets—can
be captured by different fibrations on the base category Depo of depos and
continuous functions, and on the base category REL of sets and relations.
These different notions of equality really require different fibrations because
equality is determined by its defining adjunction (Eq 4 §*), and is thus directly
linked to the fibrations reindexing operation (—)*.

Recall from 3.4.2 that two parallel arrows u, v in the base category of an
Eqg-fibration are internally equal if an inequality T < Eq(u, v) holds over their
domain. External equality simply means u = v.

3.5.4. Extended example. The category of directed complete partial or-
ders (dcpos) and (Scott-) continuous (7.e. directed suprema \/T-preserving)
functions will be written as Dcpo. The singleton dcpo forms a terminal ob-
ject, and the Cartesian product of the underlying sets of two dcpos, with
componentwise order, yields the product in Depo. A subset 4 C X of a depo
X is called admissibleif it is closed under directed suprema: for each directed
a C X with a C A one has \/Ta € A. A category ASub(Dcpo) is formed with
such admissible subsets as objects. We consider these as certain predicates
on dcpos. A morphism (A C X) — (B CY) in ASub{Dcpo) is a continuous
function f: X — Y with the property that z € A implies f(z) € B, for all
z € X. This means that there is a commuting diagram (in Sets or in Dcpo)

A-—---- > B
P,
X Y
ASub(Dcpo)
There is an obvious forgetful functor ! , namely (A C X) » X

Dcpo
sending a predicate to its carrier (type). It is a split fibration, with reindexing
B CY along f: X — Y given by

f(B)={z e X | f(z) € B}.

In particular we have for a diagonal § = §(X,Y) = (id,7'): X x Y — (X x
Y) x Y and for an admissible subset B C (X x Y} x Y that

6"(B) ={(z,y) | (z,y,y) € B} C X x Y.
A left adjoint Eq to this 6* is then defined by
Eq(4) = {(z,3,¥) ly=9 and (z,y) € A} C (X x V) x Y.

Notice that this is an admissible subset again. Hence the usual definitions for
sets work in this case as well. For parallel arrows f,9: X = Y in Dcpo the
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corresponding equality on X is

Eq(f,9) = {z € X | f(2) = g(z)}.
Since the terminal object over X € Depo is (X C X) we get

f, g are internally equal < X C Eq(f,9)
& Vee X f(z) =g(2)
S f=gX—=>Y
& f, g are externally equal.

We now put a different logic on Depo by taking different subsets as predi-
cates. Call a subset A C X down closed if y < z and ¢ € A implies y € A.
These down closed subsets are organised in a category DSub(Dcpo) as be-

fore: a morphism (A C X) — (B CY) is a continuous function f: X —» Y
DSub(Dcpo)
with f(z) € B for all £ € A. Again we get a split fibration Dl by

cpo
(A C X) — X, with reindexing as above. The earlier definition of equality
does not yield a down closed subset, so we now define for A C X x Y,

Eq(A) = {(z,y,¢¥) |2 €Y.y< zand y < z and (z,2) € A}.
We then get bijective correspondences
Eq(A) C B over (X xY)xY
ACéH(B) over X xY

as follows.

o Assuming Eq(A) C B we have for (z,y) € A that (z,y,y) € Eq(4) C B, so
that (z,y) € 6*(B).

e And assuming A C §*(B), we get for (z,y,y') € Eq(A), say with y,y < 2
where (z,2) € A, that (z, z,z) € B. Since B is down closed and (z,y,y") <
(z,z,2) we have (z,y,y') € B.

For f,g: X =2 Y in Dcpo we now get
Eq(f,9) ={x € X |3z €Y. f(z) <z and g(z) < 2}
so that
f, g are internally equal < X C Eq(f,9)
& Vee X Jz€Y. f(z) <zand g(z) < 2.

DSub(Dcpo)
This fibration Dl thus captures a different logic to reason about
cpo
Dcpo: in the logic incorporated by this fibration two morphisms f,g: X = Y
are equal if and only f(z), g(x) have an upper bound in Y, for each z € X.
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We describe a similar phenomenon for relations.

3.5.5. Extended example. We write REL for the category of sets and re-
lations. Objects are sets I, and morphisms I — J are relations R C I x J.
Often one uses the notation R:] —— J to indicate that R is a relation from
I to J. The identity I — I is then the diagonal relation (or equality) on I,
and the composite of R: I —++ J and S:J — K is the relational composite:

So R=1{(i k)| 3j € J.R(i,j) and S(j, k)} C I x K.

A relation R: I — J can be understood as a multifunction / — J. That
is, as a function I — PJ, given by i = R; = {j € J | R(4, )}, which may
have many outputs. Under this view one considers the category REL as the
Kleisli category of the powerset monad P on Sets.

The terminal object in REL is the empty set @, and the Cartesian product
of sets I, .J is the disjoint union I + J, with graphs of the coprojections «: I —
I+ J and &’:J — I + J as projections:

r={(z,4) |z =xi} and 7 ={(z,5) |z =~«'j}.
The tuple of two maps R: K = [ and §: A —— J is the relation,
(R,S) ={(i,2) | (- = xi and R(3,j)) or (2 = £’i and S(3,j)}.

Thus REL has finite products. Actually, it also has finite coproducts, given
by these same formulas §} and 7 + J (on objects).

There may be different notions of equality for multifunctions R, S: I = PJ.
For example, there is the extensional view that such multifunctions are equal
if and only if they yield the same output sets for each input. But one may
also consider two multifunctions R, S as equal if for each input ¢ the output
sets R; and S; have elements in common (i.e. are not disjoint).

The point of this example is to show that these different notions of equality
live in different fibrations on top of the category REL of sets and relations.
These give us different ways to reason about relations. The two fibrations

incorporating the two abovementioned notions of equality, will be written as
PredREL EPredREL

and i , where the latter fibration gives the extensional
REL REL

view that relations R, S: 1 =3 J are equal (in the logic of the fibration) if and
only if the subsets R, S C I x J are equal.

We start with the ‘non-extensional’ example. The total category PredREL
1s a category of relations with predicates. It has

objects pairs (I, X) where I is a set and X C PI is a set of subsets
of I.

morphisms (X C PI} = (Y C PJ) are relations R C I x J from
I to J satisfying: for each non-empty a € X, there is a
non-empty b C | J;, Ri withb e Y.

1€a
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Identities and composites in PredREL are as in the category REL of rela-
PredREL
tions. This gives us a forgetful functor r:{lii:L by (I,X) — I. In the fibre

over I € REL we define a preordering:

for each non-empty a € X,

XY &
> { there is a non-empty b Ca with b€ Y.

In this preorder the predicate PI C PI is top element T.
PredREL . . .
The functor R%BL 1s a fibration, since for a relation R: I — J and a

predicate Y C PJ on J, we can substitute along R by
R(Y)={aCIT|BC|JRib#Dandbe Y}
i€a
In particular, for the diagonal 6:J —— J + J we get
F(Y)={aCJ|WCk(a)UK'(a).b#Band be Y}

where k(a) = {kj | j € a}. For a predicate X C PJ on J, we define an
equality predicate Eq(X) C P(J + J) as

Eq(X)={cCJ+J|x )UK Ic) € X and
VieJkjEe & k'jEc)
Then we get a bijective correspondence,
Eq(X)-—-+Y overJ+J
X -+ 8"(Y) overJ

which is given as follows.

o Assume Eq{X) — Y, and let a € X be non-empty. Then x(a) U «'(a) €
Eq(X), so there is a non-empty b C k(a) U «’(a) with b € Y. But then
a€s{Y).

o In the reverse direction, assume X — §*(Y), and let ¢ € Eq(X) be non-
empty. Then k™ 1(c) Ux'~!(c) € X is non-empty, so there is a non-empty
a C k71(c) Uk'~1(c) with @ € §*(Y). The latter yields a non-empty & C
k(a) U k'(a) with b € Y. But then b C ¢, since for z € b, either z = kj or
z = k'j with j € a C k73(c) U'"(c); in both cases we get z € ¢ since
ViedJrkjee & k'jeec.

Notice that—for reasons of simplicity—we define equality without parameters.
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Now we are in a position to compute the equality predicate Eq(R, S) for
two parallel maps R, S: I = J in the base category REL as

Eq(R, S)

= (R, S5)"Eq(T)

= (RSy{bCJ+J|VjeJkjeb & kjEDb}
{aCT |3 CU;c (R, S)i.-b#DBand Vi€ J.kjEb & K'j€b).

1€a

where T = (PI C PI) is the top element over 1. Our claim is then the follow-
PredREL
ing. Two maps R,S: [ =3 J are equal in the logic of the fibration ;EL ,

that is, there is a map T < Eq(R,S) over I, if and only if for each 7 € [
there is a j € J for which R(i, j) and S(4, 7) both hold. The latter can also be
expressed as: R; NS; # 0, for each ¢ € I. This is the second view of equality
of multifunctions mentioned above (which is thus captured by the fibration).

To support the claim, assume T < Eq(R, S) over I. Then for each i € I,
we have {i} € 1 = PY, so there is a non-empty a C {i} with ¢ € Eq(R, S).
Thus @ must be {i}, which yields that there is a non-empty b C (R, S); with
b € Eq(1). Let z € b; if 2 = kj, then also x’j € b and vice-versa, so we may
assume a pair {kj, k’j} C (R, S);. This yields both R(4, j) and S(%, j).

In the reverse direction, if for each ¢ € I there is a 7 € J with R(,j) and
S(1, j), then for each non-empty a € PI, say with i € a, we can find a j € J
with R(i, j) and S(7,j). Then {i} C Eq(R, S), since b = {kj,£’j} € (R,S); is
non-empty and is in Eq(T). This m%}]ﬁxs T < Eq(R S).

I

We turn to the second fibration , which gives us a logic incor-
porating the ‘extensional’ equality. WeREL]l be a bit more sketchy and leave
details to the reader. The total category EPredREL has

objects pairs (I, X) where [ is a set and X C PI.

morphisms (X C PI) = (Y C PJ) are relations R C I x J such that
for each a € X we have | J;c, Ri €Y.

Identities and composites are inherited from REL, so that we get a forgetful
EPredREL
functor Rt‘,L . In the fibre over I we define X --» Y if and only if

X CY. Reindexing of Y C PJ along R:I =+ J is given by R*(Y) = {a C

I'| Ujeq Ri}- In particular 6*(Y) = {a | (a) Ux'(a) € Y'}. Equality Eq(X) is

defined as before. We then get for R, S: T = J that
Eq(R,S)={aCI|Vj€J.(Fi€a.R(:,j)) & (3i€a. SN}

The maps R,S are equal in the logic of this second fibration on REL if

and only if T = PI C Eq(R,S) if and only if for each i € I one has Vj €
J.R(#,7) & S(i,j), if and only if R and S are ‘extensionally equal’. This
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concludes the example.

In Example 3.3.1 we saw what it means to have validity of the defining
equations of a group in a category. At this stage we recognise this as external
equality. We can also describe internal equality of these equations in a fibra-
tion. This will give us the notion of an “internal group in a fibration”. It is a
fibration with in its base category an object carrying the operations of a group
(multiplication, unit, inverse) which internally satisfy the group equations.

We conclude with the following two lemmas which together yield familiar
soundness and completeness results for equational logic in Eq-fibrations.

3.5.6. Lemma (Soundness). Let (Z,H) be an equational specification. In
case a model M:C¢(X) — B validates all equations in H (with respect to
some Eg-fibration with base B), then it validates all equations in the theory of
(2, H).

Proof. By Lemma 3.4.5, which gives the appropriate combinators for the
soundness of the rules specific to equational logic. As the reader may verify,
all the context rules from Section 3.1 are sound, so we are done. ]

We should be more explicit about what is going on in this proof with respect
to substitution: syntactic substitution [L/z} in a proposition M =, M’ is
interpreted by categorical substitution (or reindexing) in a fibration. This is
because

Eq(u o w,v o w) = w*Eq(u, v)
as already mentioned in 3.4.2. Notice that composition u o w,v o w on the
left hand side is substitution in terms, whereas w* on the right hand side is
substitution in propositions. Syntactically this equation 1s

(M[L/z) = M[L/2)) = (M =, M')[L/2].

The weakening and contraction rules are handled as special cases of substitu-
tion, see Example 3.1.1.

3.5.7. Lemma (Completeness). For an equational specification (X,H), con-
sider the situation:

L(E,H)
L
eU(8) ——— CUE)
This generic model of ¥ validates precisely the equations in the theory of
(X, ). o

As a result, an equation is derivable from an equational specification (X, )
if and only if it holds in all (fibred) models of (£, H).
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Exercises
i DSub(Dcpo) PredREL
3.5.1.  Check that internal equality in the fibrations { and {
Dcpo REL

is not transitive. Conclude that the Frobenius property does not hold.
[Hint. Inspect the construction of the transitivity combinator in the proof

of Lemma 3.4.5.]
DSub(Dcpo)
3.5.2.  Prove that in the fibration Dl internal and external equality co-

cpo
incide on Y € Decpo if and only if the order on Y is discrete.

3.5.3. Let Sp be the category of topological spaces and continuous functions.
ClSub(Sp)

(i) Define a poset fibration Sl of closed subsets (A C X) over
P

topological spaces X.

(ii) Show that a contraction functor §* associated with a diagonal §: X x
Y 5 X x Y x Y in Sp has a left adjoint Eq, given on a closed subset
ACX xY by

EqA) = {(z,y,¥) € X xY xY | (z,y) € Aand y = y'}.

(1) Prove that equality on Y € Sp is very strong (:.e. that internal equality
and external equality on Y coincide) in this fibration of closed subsets
if and only if Y is a Hausdorff space.

3.6 Fibred functorial semantics

In this section we start by describing appropriate morphisms between Eq-fib-
rations preserving the relevant structure. These allow us to describe func-
torial models of an equational specification in a fibration as morphisms of
Eq-fibrations with the classifying fibration of the specification as domain. We
also associate an equational specification with an Eg-fibration so that an ad-
Joint correspondence between morphisms of Eg-fibrations and morphisms of
equational specifications can be established (see Proposition 3.6.5).

In the last part of this section we show how every Eq-fibration gives rise
to a (quotient) Eq-fibration in which internal and external equality are forced
to be equal. This quotient enjoys a universal property, which is described in
terms of morphisms of Eg-fibrations.

3.6.1. Definition. A morphism (or map) of Eq-fibrations p — ¢ is a mor-
phism of fibrations p — ¢ which preserves the structure of Eq-fibrations: it
preserves finite products in the base category, finite products in the fibre cat-
egories and equality Eq.

In this way we obtain a subcategory EqFib — Fib of Eg-fibrations. We
may see EqFib as a 2-category, by letting the inclusion be full and faithful
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on 2-cells. Thus, 2-cells between maps of Eq-fibrations are the same as 2-cells
between these maps as maps of fibrations.

If we have a morphism of Eg-fibrations in a situation

|

B ————A
K

then it is obvious that K:IB — A preserves external equality: u = v in B
implies Ku = Kv in A. But K also preserves internal equality, since
u, v are internally equal = T < Eq(u,v)
= T = H(T) < H(Eq(u,v)) = Eq(Ku, Kv)
(see Exercise 3.4.6)

=> Ku, Kv are internally equal.
As an example, every finite limit preserving functor B — A between cate-

‘ Sub(B) Sub(4)
gories B, A with finite limits induces a map of Eqg-fibrations nls - X

between the corresponding subobject fibrations. This map between fibrations
is described in Lemma 1.7.5.

E
3.6.2. Definition. Let (X,#) be an equational specification and ip an
Eg-fibration. A model of (£,H) in p is a morphism of Eq-fibrations:

() —(¥)
c(s) B

This fibred functorial definition of model will be justified by the following
result.

E
3.6.3. Theorem. Let (X,H) be an equational specification and let ép be
an Eq-fibration. Every model M in B

E
E
M B

validates the equations in H (with respect to p) if and only if it extends to a

c(x)
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{(up-to-isomorphism unique) morphism of Eg-fibrations:

L(X,H) M E
| &
(L) Iy B

A model of equations can thus be identified functorially as a morphism of
Eq-fibrations. This extends functorial semantics from ordinary categories (see
Sections 2.2 and 3.3) to fibred categories.

Proof. Suppose M validates the equations in H with respect to p. We can
then define a functor M’: L(Z,H) — E by
(T VM =5, M{,.... My, =5, M) —
Eq(M(M1), M(M{)) A--- A Eq(M(M), M(M)).
By soundness (Lemma 3.5.6) M’ extends to a functor. The resulting pair

(M, M) preserves equality by Exercise 3.4.6.
Conversely, given the above extension M’, for terms T' F N, N': & we have

M/(T| N =, N') = M'(Eq(N,N")) = Eq(M(N), M(N')).

This shows that M’ is determined up-to-isomorphism by M. Further, because
M’ is a functor preserving fibred finite products, we obtain
T|N=3N' M=, M is derivable (from H)
= Eq(Ni,N{)A---AEq(Nm, N.,)
<Eq(M,M'} in L(E,H)
= M'(Bq(Ny, N))) A+ - A M (Bq(Nm, Ny,))
< M'(Eq(M,M")) inE
= Eq(M(N1), M(N{)) A+~ AEq(M(Nm), M(N7,))
< Eq(M(M), M(M"))
= [|N=3 NNFM=, M holdsin p.
Hence M validates the theory of the equational specification (X,%), and thus

certainly its subset H of axioms. m]

In Section 3.3 we have defined for an (ordinary) category with finite prod-
ucts an assoclated theory of non-conditional equations. Similarly, for an
Eqg-fibration we will define a theory of conditional equations. Then, a model
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as above in Definition 3.6.2, can alternatively be described as a morphism of
equational specifications using this induced theory.

E
3.6.4. Definition. Let %p be an Eg-fibration. The underlying signature
Sign(B) of B comes naturally equipped with a set of equations H(p), namely:

i M=, M{,...,. My =5, Mj, - N =, N’
is in H(p), if and only if
Eq(eM1,eM{) A --- NEq(eM,,eM,) < Eq(eN,eN’)
holds in the fibre over e['—where ¢ is the model C/(Sign(B)) — B of the
signature of B in B itself. Thus H(p) contains all Sign(BB)-equations which
hold in
E
I»
B

C/(Sign(B)) ———

E
3.6.5. Proposition. Let (X,H) be an equational signature and %p an
Eg-fibration. There is a bijective correspondence (up-to-isomorphism)

L(Z,H) (M, N) B . )
4 %p in EqFib

a(x)

(2,H) (Sign(B),H(p)) in EqSpec

L(S,H)
which makes the classifying fibration ce(iz:) the free Eq-fibration generated

by (Z,H).

Proof. Remember from Theorem 2.2.5 the bijective correspondence

(%) A B in FPCat

L —¢> Sign(B) in Sign

It is then easy to see that M validates the equations in H with respect to
p if and only if ¢ extends to a morphism of equational signatures (X, #) —
(Sign(B), H(p)). This because M and ¢ are related via e: for a term N one
has M(N) =g(¢N). O
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The above result gives rise to a model

£(Sign(B),#(p)) E
(ot ) — ()
Ce(Sign(B)) B
of the theory of an Eq-fibration p in p itself. One can ask whether it is in
general an equivalence, z.e. whether our equational logic is rich enough to re-
construct an Eq-fibration from its signature—as in the case of non-conditional
equations for categories with finite products, see Theorem 3.3.8. The answer
here is no, because an Eqg-fibration may have many more ‘predicates’ (objects
in the total category), than just equations Eq(u, v)—which are the only propo-
sitions that we have in equational logic. In the next chapter on (first order)
predicate logic we describe how these extra predicates can be incorporated in
logic.

3.6.6. Remark. The notion of morphism between Eq-fibrations introduced
in Definition 3.6.1 1s in a sense the obvious one. But there is a reasonable alter-
native. One may wish to consider the functors between the base categories up-

to internal equality: call two morphisms of Eq-fibrations (K, H),(K',H'):p =
E D

g between Eqg-fibrations ép and kq equivalent if

e H=H"E —ID and on objects K = K":ObjB — Obj A;
e Ku and A’u are internally equal in ¢, for each morphism u in B.

Equivalence classes of such morphisms then yield an alternative notion of map
between Eq-fibrations. Its usefulness may be illustrated via the following two
very stmple algebraic specifications.

e ¥, has one type 2, one function symbol a: () — £ and no equations; so
the set H; of equations in this specification is empty.

e ¥, also has one type §, but two function symbols b: () — @, ¢: () — Q
with a singleton set of equations H» containing § | # F b =g c.

One would expect these specifications to be (logically) equivalent (in an infor-
mal sense). Certainly, the signature X5 has two function symbols, but they are
required to be (internally) equal in the logic of (£, H2). The classifying cat-
egories C¢(2,) and C¢(X,) of the signatures—without the equations—are not
equivalent, simply because Y9 has more function symbols. Hence the classify-

) i £(Z),Hy) £(Zg,H2) ) . i
ing Eqg-fibrations 4 and 4 are not equivalent with the notion of
Czy) Ct(Ea)

morphism in Definition 3.6.1. But we do have an equivalence of Eg-fibrations
if we use the adapted notion of morphism that we just described, since it takes
internal equality into account.
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E
We have seen that putting an Eqg-fibration ép on a base category B allows
us to consider certain parallel morphismsin B as (internally) equal. This gives
the possibility to 1dentify these morphisms in B in a quotient category. Doing
so actually leads to a quotient fibration p — p/Eq in which internal and
external equality are forced to coincide. We shall use the following notation
for p — p/Eq.

E __771E—> E/Eq

I e

B——— > B/Eq

E
3.6.7. Definition. For an Eg-fibration %p we define two categories B/Eq
and E/Eq as follows.

B/Eq objects IeB

morphisms [u]: ] — J are equivalence classes [u] of morphisms
u: I — J in B, where u,u': I 3 J in B are equivalent
if they are internally equal, i.e. if T < Eq(u, u’) holds
in the fibre E;.

E/Eq objects X ek
morphisms [f]: X — Y are equivalence classes of maps f: X —
Y in E, with f, f: X =2 Y equivalent if pf,pf’ are
equivalent in B.

These categories B/Eq and E/Eq are quotients of B and E via obvious functors
7p: B — B/Eq and ng: E — E/Eq.

Finally, the functor p/Eq:E/Eq — B/Eq is defined by X — pX and
([/1: X = Y) = ([pfl: pX — pY).

E/Eq
3.6.8. Proposition. (i) The functor E/%”/Eq introduced above is an Eq-fib-
q
ration in which internal and external equality coincide.
(it) The pair of functors n = (np,ng) forms a morphism of Eq-fibrations
n:p — p/Eq, which is universal in the following sense: every map of Eq-fib-
rations p — ¢ to an Eg-fibration q in which internal and external equality
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cotncide factors via a unique map of Eg-fibrations p/Eq -+ ¢ as:

n
P ———>p/Eq
|

|
\i
q

Before we give the proof, we recall that Eqg-fibrations—like all preorder
fibrations—are faithful, as functors, see Exercise 1.3.11. And in these preorders

~

we have vertical isomorphisms u*(X) = v*(X) for internally equal parallel
maps u, v, since by the substitution combinator from Lemma 3.4.5 we get:

(X)) Zu (X)AT =2u"(X) AEq(u,v) < v (X).

The inequality «*(X) > v*(X) is obtained by symmetry.

Proof. (i) We first show that p/Eq is a fibration. For an object Y €
Obj (E/Eq) = Obj (E) and a morphism [u]: I — pY in B/Eq, we choose a
representative u:/ — pY in B, and a Cartesian lifting @(Y): u*(Y) = Y of
u in E. It gives a morphism [a(Y)]:u*(Y) — Y in E/Eq over [u]: ] — pY in
B/Eq. We claim that it is a p/Eq-Cartesian lifting: for a map [f1: X 2 Y in
E/Eq with [f] = [u] o [v] in B/Eq, so that T < Eq(pf,u o v), we obtain a
mediating map X — u*(Y) in E as composite:

X < () (Y) = (uo v) (V) 2 v u*(Y) — u*(Y)

It yields the required mediating map in E/Eq.

We notice that the fibre category of p/Eq over I € B/Eq is the same as the
fibre category of p over I € B. Hence p/Eq has fibred finite products (T, A)
and equality Eq as in p. By construction:

[u],[v]: I = J in B/Eq are internally equal in p/Eq
o T < Eq(u,v)
& [u]=[v]

< [u],{v] are externally equal.

D
(it) Assume kq is an Eqg-fibration in which internal and external equality
coincide, and (K:B — A H:[E — D) is a morphism of Eq-fibrations p — g.
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We define two functors K, H in

B—P o B/Eq E—F o F/Eq
| |
P 7
A D
by
F:{ u I — KIKu F:{ 0 X — HI o
(I =5J) = (I1=5J) (X =5Y) —» (HX =5 HY)

These functors K, H are well-defined, since

u~u' inB = T<Eq(y,v)inE
= T <Eq(Ku,Ku')inD
= Ku=Ku'

The last implication holds because internal and external equality coincide in
q. Similarly:

f~f mnE = T<Eq(pf,pf)inE
= T < Eq(Kpf,Kpf')=Eq(qH f,qHf)inD
= gHf=qHf
= Hf=Hf (see Exercise 1.3.11).

Since p/Eq inherits its Eq-fibration structure from p, this pair (K, H) forms

a morphism of Eg-fibrations. ]
Exercises
3.6.1. Show that for an Eq-fibration p, the result K*(p) of change-of-base along

3.6.2.

a finite product preserving functor K is again an Eq-fibration and that the
morphism K *(p) — p involved forms a morphism of Eqg-fibrations.
E

Let ﬁkp be an Eqg-fibration, and let Eq(E} < E be the full subcategory
of those X € E for which there is a vertical isomorphism X 2 Eq(u, v), for

Eq(E)

certain maps u,v:pX =3 ¢ in B. Prove that ]%B is also an Eg-fibration,

and that the inclusion

Eq(E) —E

NS
B
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i1s a morphism of Eq-fibrations.

[Remember Proposition 3.4.6 and Exercise 3.4.5.]

Consider the category B/Eq in Definition 3.6.7 and show in detail that

(1) 1its composition can be defined from composition in B via representa-
tives;

(i1) it has finite products.
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Chapter 4

First order predicate logic

Equational logic, as studied in the previous chapter, is not very expressive.
It allows us to formulate statements like z:N | z +2 =5y 5 F ¢ =y 3, but
not much more. In the present chapter we will study (first order) predicate
logic (over simple type theory), in which we can formulate more interesting
statements like z,y:Q | 2 <@ y F 32: Q.2 <@ 2 A z <g y. This requires more
general atomic propositions £ <g y than just equations z =g y. And further,
it requires additional logical operations like A, 3.

In this chapter we consider first order predicate logic where one can quan-
tify over types o, in propositions of the form Vz:o. ¢ and Jz: 0. . In the next
chapter we study higher order predicate logic in which one can additionally
quantify over propositions and predicates, like in Va: Prop. ¢ and Ja: Prop. ¢.
What we consider here is simple predicate logic (SPL},indexSSimple!- predi-
cate logic or predicate logic over simple type theory, in contrast to dependent
predicate logic (over dependent type theory) or polymorphic predicate logic
(over polymorphic type theory), see Sections 8.6 and 11.1. This means that the
types in our simple predicate logic are types from simple type theory, which
do not contain (term or type) variables: they are built up from constants, us-
ing type constructors like +, x, — as studied in Chapter 2. In standard texts
on mathematical logic it is common to consider only single-typed (or single-
sorted, in more traditional terminology) predicate logic with only one type,
but in computer science, many-typed logic is more natural.

The categorical models that we shall use to describe predicate logics are
certain kinds of preordered fibrations. The preorderedness makes these fibra-
tions so-called proof-irrelevance models in which provability, and not proof,

219
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is captured: ¢ F 9 in predicate logic means that there is a proof of ¢ which
assumes . This makes the turnstile - a preorder relation. In contrast, formal
(type theoretic) systems with explicitly proof-terms z:¢ F P:¢—providing
an actual proof of ¢, assuming a proof z:¢ of p—lead to non-preordered
models with proof-terms as arrows ¢ — 9.

The operations in predicate logic are described categorically via adjunctions
in these fibrations for predicate logics. Existential 3 and universal ¥V quantifi-
cation form left and right adjoints to weakening functors, equality =, forms
left adjoints to contraction functors, subset types {z:0|¢} form a right ad-
joint to a truth predicate functor, and quotient types o/ R form a left adjoint
to an equality relation functor. Equivalently, one can describe subset types by
a right adjoint to this equality relation functor. The adjunctions for 3,V, =,
are between fibre categories, whereas the adjunctions for {z:0|¢} and o/R
are between the total and base category of a fibration. The introductory Sec-
tion 0.2 gives a brief presentation of these adjunctions for the familiar logic
of predicates on sets.

Lawvere may be seen as the first to use fibred (or indexed) categories in
logic, for example in [193]. Some of the details involved are elaborated in [305].
Fibred categories for predicate logic are used subsequently for example in [62,
209, 210, 336]. Since the 1970s much of categorical logic has been done in
direct contact with topos theory. As a result, logic is often described in terms
of subobject fibrations, see for example [211] and [85]. Here we use general
fibred categories for predicate logic, and subobject fibrations occur as special
instances. The advantages of this more general approach are that it provides

o more flexibility: a base category B may carry different logics, and not just
its subobject logic, see Examples 3.5.4 and 3.5.5 where we have two different
logics on the category B = Rel of relations given by two different fibrations.

e natural, unified presentations of examples as they come from realisability,
frames (complete Heyting algebras), Kripke models, or cylindric algebras,
see Section 4.2.

¢ aframework in which all the logical operations can be studied separately. In
subobject fibrations much structure comes for granted, like equality, unique
existence 3! or subset types, see Section 4.9.

e a presentation which scales up from logic to type theory in a direct manner.

This chapter starts with appropriate signatures for predicate logic, contain-
ing not only typed function symbols F:o4,...,6, — 041 but also typed
predicate symbols P: o1, ...,0,. With these one can form besides equations
M =, M’ also other atomic propositions P(My,..., M,), for example for
reasoning with inequalities M <, M’. Next, in Section 4.2 we describe fibra-
tions for first order logic—and for the subsystems of what is called regular
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and coherent logic. The main novelty is that the quantifiers 3 and V are left
and right adjoints to weakening functors. A series of examples of such fibra-
tions is included. Especially we shall elaborate classifying fibrations (or term
models) built up from syntax. Predicate logic is rich enough to reconstruct
the fibration we use from the classifying fibration of its own signature. The
logic thus associated with a fibration will be called its internal language, or
internal logic. This language facilitates dealing with fibrations of predicate
logic, because it allows one to replace categorical calculation by logical reason-
ing. The internal language will be described and used in Section 4.3. Then,
in Sections 4.4 and 4.5 we concentrate on subobject fibrations. Among the
fibred categories used to model predicate logics, subobject fibrations are very
special (for example because of their role in topos theory) and will therefore
they be investigated separately. The subsequent three sections will be about
subset types and quotient types. With these fundamental mathematical con-
structions we can form new types of the form {z: ¢ | ¢}, where ¢ is a type and
¢ a proposition, and of the form /R, where R is a binary relation on ¢. Both
subset types and quotient types can be described categorically by adjoints.
We conclude this chapter with a characterisation of subobject fibrations. They
are fibrations for predicate logic in which one has: very strong equality, full
subset types, and unique choice 3!.

4.1 Signatures, connectives and quantifiers

Up-to-now we have studied (typed) terms and equations between them in
equational logic. These equations are the only kind of propositions that we
have seen so far. Our next step 1s also to allow predicates as atomic proposi-
tions and form derived propositions using logical connectives, like implication
D or existential quantification 3. In this section we describe the syntactic
aspects of these extensions. It will involve signatures which not only have
function symbols but also predicate symbols, and specifications, which are
signatures together with a collection of axioms. After these preliminaries on
how to form the atomic propositions, we describe the (standard) rules of first
order predicate logic. In the end we reformulate the rules for typed equal-
ity =, universal Vz:¢. (—) and existential 3z: 0. (—) quantification as ‘mate’
rules. These essentially exhibit these logical operations as adjoints.
In equational logic one only has equations

M=, M

for terms M and M’ of the same type o, as (atomic) propositions. In this
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chapter we will also allow atomic propositions
P(M,...,M,)

where P:o1,...,0, Is a predicate symbol and Mi:04,..., M,: 0, are ap-
propriately typed terms. To allow such predicate symbols, we have to extend
our notion of signature.

We say that a signature with predicates is a pair (£,II) where ¥ is a
many-typed signature and II is a function |E[* — Sets, which yields for each
sequence oy, ..., 0, of types a set II(oy,...,0,) of predicate symbols of this
type. We shall write

P.oy,...,0n for Pelloy,...,on).

A morphism ¢: (2,1T) — (X', II') of such signatures with predicates consists of
three mappings, sending types to types, function symbols to function symbols,
and predicate symbols to predicate symbols, in such a way that arities are
preserved. Following Convention 1.6.2, we shall use the symbol ¢ for all three
mappings. This yields the following requirements.

Fio1,...,00 — Ons1 = ¢(F):6(01),...,0(0n) — ¢(0n+1)
Pioy,...,on = #(P):¢(01),...,¢(0n).

As a result, we get a category, which is written as SignPred. Using change-
of-base, it can be obtained simply as follows (see also Definition 1.6.1).

4.1.1. Definition. The category SignPred of signatures with predicates
arises in the following change-of-base situation.

SignPred Fam(Sets)
- |
Sets Sets

T (T* x T) + T*

(In the first section of the next chapter on higher order logic we use many-
typed signatures containing a distinguished type Prop of propositions. In such
signatures there is no need for predicate symbols P: oy, ..., oy, since they can
be described as function symbols P:¢,..., 0, — Prop.)

One can view a signature with predicates as a first order specification—
without axioms yet; these will be added in Definition 4.1.3 below.

4.1.2. Example. In a signature containing a type N of natural numbers to-
gether with a type NList of finite lists of these, one may have function and
predicate symbols

insert: N —» NList, IsEmpty: NList, Occurs?: N, NList
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where the latter predicate tells of a natural number n and a list £ whether or
not n occurs in £. One expects as an axiom

n:N | @ F Occurs? (n,insert (n)).

Let (X,1I) be a signature with predicates. The associated atomic propo-
sitions have the form

M=,M and P(M,..., M)

where M, M’ are of the same type o, and P:oy,...,0, is a predicate symbol
with appropriately typed terms M;: ;. A bit formally, using a new syntactic
category (or universe) Prop, we can write these as formation rules:

atomic equation proposition
r-M:o PFM:o
T+ (M=, M'):Prop
atomic predicate proposition
r-m:eqy --- THM,.0,
T+ P(My,...,M,): Prop
Substitution over these atomic propositions takes the form
(M =, M")[N/z] = (M[N/z]) =, (M'[N/z})
P(My,. .., M,)[N/z] P(My[N/z],..., M [N/z]).

The following connectives or logical operations may be used in first
order logic to construct new propositions.

(for Pio1,...,04)

L falsum, absurdity, the universally false proposition;
T truth, the universally true proposition;
-  negation: not ¢;
@ A conjunction: ¢ and y;
¢ V¢ disjunction: ¢ or ¥;
v D ¥ 1mplication: if ¢ then ;
Vz: 0. universal quantification over type o: for all z in o, ¢;

dz: 0. existential quantification over type o: for some z in o, ¢.

In the last two cases the term variable z becomes bound in the quantified
propositions Yz: 0. p and 3z: ¢. p. Formally, one can write all of these as for-
mation rules. For example,

I' + :Prop ' F:Prop I,2:0 F ¢:Prop
'@ AY:Prop I' - 3z:0.0: Prop
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but that is a bit cumbersome, really. Then, given propositions
'k e:Prop, -+ T F n:Prop, I' - ¢:Prop

we can form a sequent,
Tlet,..;on by

which is read as: assuming term variable declarations z:¢ in [, then the
proposition % follows as conclusion from propositions ¢q, ..., v,. The latter
sequence 1, . .., @, will be called the proposition context; we often abbreviate
it as ©, =, like in the previous section. Recall that T is called the type context.

For completeness, we list the natural deduction rules of predicate logic in
Figure 4.1 (apart from the context rules, as already described in section 3.1).
These rules have all of the assumptions explicit at every stage, in type and
proposition contexts I' and ©.

Recall that a sequent T' | @ F ¢ is derivable if there is a derivation tree
regulated by these rules, with I' | © F ¢ as conclusion. The sequents at the
top of this tree may be axioms. We sometimes write

IO Fp
to express that the sequent I' | © F ¢ is derivable. For example, one has
> e (pAd)DxF¥Dx

for propositions T' + ¢, ¥, x: Prop in type context I', as shown by the following
derivation.

Flebke Ty k9
I'lpv ko Tl 9

Tl(pAY)Dx F(pAY)Dx Tlov FoAy
Ple,(pAd) Dx, ¥ F(pA¥) DX Il (eAY) DX, ¥ FoAy

Tl (pA¥)Dx, ¥ Fx

I'lo(pAd)DxF¥Dx
The reader may notice that negation (-} does not occur among these rules.
The reason is that negation is defined as

P & ¢D L.
Classical logic is then obtained by adding the rule
reductio ad absurdum
e —~pkL
I'Nekey
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TlerT

Tl0Fe T|OFy
T{OFpAY

T|OFeAY
rery
rery

Frerevy

re,etky

Fretkedy

Iz:oc|®F9

'l +-Ve:o. ¢
(z not free in ©)

reLry
T|OFpAy
rotrey
Tk
T|OFpVy
Fe,¢ekFx T|O0,¢%Fx
[, 10,oVy Fx

FroOokredy rfeokrey
rierqy
r-M:o e FYao ¢
I'1© Fy[M/z]

'M:o |6 Fy[M/z) roet3zey Iz:0|E,¥ Fx
IoeF3zoy rie,zky
{(z not free in Z, x)
r-M=M:0c Fre+M=, M rfermM=, M"

T|©FM=, M

T|OFM=, M
TIOFM =, M

T|OFM=, M

T|OFM=, M T|0OF¢[Mi

I'|© Fy[M/z]
(this rule will be called replacement)

Fig. 4.1. Rules for (many-typed) first order predicate logic
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This rule says that if it is absurd to assume that ¢ is false, then ¢ must be
true. It is an indirect, non-constructive principle of reasoning. One can show
that it is equivalent to the excluded middle ¢ V ~yp axiom, also called tertium
non datur, see Exercise 4.1.3. This rule will not be assumed, unless stated
explicitly.

As another abbreviation, we shall use

def
PXY = (P DUV)A(Y Do)
for logical equivalence.
The following rule in this list,

Fr-M=M:0
T|OFM=, M’

deserves some special attention. It tells us first of all that convertible terms
(M = M’:0) in the underlying type theory give rise to derivable equality
propositions (M =, M’) in the logic. Thus propositional equality includes
conversion, or in different terminology, internal equality includes external
equality. The converse may also be required as a rule, but that is not done
here. Because conversion in type theory is reflexive, this rule tells us in par-
ticular that logical equality =, is reflexive. (Symmetry and transitivity of =,
are given by explicit rules.) And in case one considers an elementary term cal-
culus without basic conversions (e.g. because there are no type constructors
like —, x or 4), then one may still consider M = M: o as part of a trivial
conversion relation, gnaranteeing the presence of a reflexivity rule.

Since term variables z: ¢ may occur in propositions ¢, the question arises
how propositions p[M/z] and [{M’/z] for convertible terms M = M': o are
related. It turns out that they are equivalent-—i.e. that o[M/z]3Cp[M'/z]
is derivable: the conversion M = M’.¢ leads to a proposition M =, M’
by the above rule, which can be used to derive ¢[M/z] from ¢[M’'/z] by
the replacement rule, and thus to derive p[M/z] D ¢[M’/z]. The reverse
implication is obtained similarly.

Substitution over these propositions is done in the familiar way, i.e.,

T[L/)z) = T

(p AY)L/2] = (p[L]2]) A (H[L]2])
1[L/z] = L

(pVY)L/z] = (p[L/2]) V (¥[L/z])

I

(v > ¥)[L/2]
(Ve:o. 9)[L/ 2]
(3z:0.Y)[L/?]

(plL/2]) O (¥[L/z])
Ve:o. (Y[L/z])
Jz:o. (Y[L/z])

Ik
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where in the latter two cases it is assumed that the variable z is different
from z and does not occur free in L. By renaming of bound variables, this can
always be assured.

In what we call (full) first order logic all of the above connectives and
quantifiers can be used. We mention two interesting subsystems explicitly:

regular logic only has = A,T,3
coherent logic only has =AT,v, 1,3

The expressions ‘regular’ and ‘coherent’ will also be used for propositions
in these logics (which may contain only the above symbols as connectives).
We note that classical coherent logic—with a negation operation ¢ — —p
behaving as in the reductio ad absurdum rule—is the same as classical (full)
first order logic, since in classical coherent logic D and V are definable. So a
restriction to coherent logic is only meaningful in a constructive setting.

4.1.3. Definition. (i) A first order specification is a triple (X,II,.A)
where (2,1I) is a signature with predicates and A is a collection of axioms;
the latter are sequents in the language of (X, II).

(it) A regular (or coherent) specification has regular (or coherent) propo-
sitions as axioms.

4.1.4. Definition. (i) A first order specification (X, 11, 4) is a first order
theory if the collection A of axioms is closed under derivability. Every such
specification evidently determines a theory Th(X, I, 4) which can be obtained
by closing A under derivability.

(ii) A morphism of first order specifications (X, 11, .4) — (3,1’ A)
is a morphism ¢: (X, IT) — (X', IT') of signatures with predicates such that for
each sequent

roery

in A, one has that the sequent obtained by ¢-translation

¢() | ¢(0) + é(x)

is in Th(X, I, A’). This yields a category FoSpec.
Similar definitions can be given for regular and coherent signatures.

4.1.5. Remark. Earlier we have been careful in distinguishing equality in
internal (propositional, in the logic of a fibration) and external (in the base
category) form. Axioms, as described in the previous definition, can only cap-
ture internal equations. If we wish to have external equations in our logic,
then we have to add these explicitly as an additional set of (algebraic) equa-
tions, like in Definition 3.2.5 (i). In general, we shall not do so, except when
reconstructing a fibration from its internal logic, see Section 4.3 (notably in
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Definition 4.3.5). A morphism preserving the structure of such extended spec-
ifications is a morphism as in (ii) above, which is additionally a morphism of
algebraic specifications, as in Definition 3.2.6.

In the remainder of this section, we shall reformulate the rules for =,3
and V in Figure 4.1 in order to make them more amenable to a categorical
description in the next section. First we take a closer look at the last four rules
on equality in Figure 4.1. We show that replacement rule from equational logic,
denoted as (EL-R) for convenience, and the replacement rule from predicate
logic, written as (PL-R), are of equal strength. This shows that there is no
omission in the list of rules in Figure 4.1.

4.1.6. Lemma. The replacement rule from equational logic (see Section 3.2),
T0rM=,M Tz:o - N:7
I'|®+FN[M/z]=; N[M'/z]
1s a consequence of the replacement rule from predicate logic

rfer™M=, M I'|OFp[M/2]
IO F oM/

as given in Figure 4.1. In the reverse direction, the rule (PL-R) restricted to
equations follows from the rule EL-R. Here we assume reflexivity, symmetry
and transttivity of equality in the background.

Proof. Assume the rule (PL-R) and let ¢ be the equation N[M/z] =, N.
Notice that the variable z occurs free in ¢, only in N on the right hand side.
By reflexivity one has

(EL-R)

(PL-R)

[0 Fp[M/z]

and thus by (EL-R)
L|© F p[M'/a]

I'|© + N[M/z)=, N[M'/z].

In the reverse direction, assume (EL-R). Let ¢ be an equation N =, N’.
Then, the assumption

['|®F N[M/zl=, N'[M/z]
together with the two conclusions of (EL-R), applied to N and to N’,
I'|®FN[M/z]=; NIM'/z] and T |O© F N'[M/z]=, N'[M’/z]
yield by symmetry and transitivity the required result:

T|©F N[M/z)=, N'[M'/a]. o
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We continue with an adaptation of Lemma 3.2.3 to first order logic. It en-
ables us to use Lawvere’s description of equality as left adjoints to contraction
functors also in predicate logic; it will be used in the next section.

4.1.7. Lemma. The last four rules in Figure 4.1 about equality are of the
same strength as the (double) rule

Lawvere equality
T,z:0|0 F ¢lz/y]
Ie.oyo|O,z=,ykey

(Eq-mate)

nvolving a proposition ¢ in type context I',z: 0,y 0.

The extended “Frobenius” version of this result (involving a proposition
context of the form O[z/y] instead of © above the lines), as in Lemma 3.2.4
is left to the reader in Exercise 4.1.6.

Proof. Let us split this rule of Lawvere’s in (Eq-TD), for top-down, and (Eqg-
BU), for bottom-up. Assuming this rule, we obtain reflexivity, symmetry and
transitivity as in the proof of Lemma 3.2.3. The replacement rule is obtained
as follows. For a proposition ¢ with free variables declared in T',z:0, put

¢' = ¢ly/z]. Then

Tz:0]0,0F¢'z/y)

(Eq-TD)
Fz:0,y:0 0,0, =5y F ¢’
{subst)
O Fe[M/z] T]0,¢M/c],M=c M' & o[M'/z] (cut)
cut
T|OFM=, M T|0,M =, M+ o[M'/z]
(cut)

U0 kM)

In the reverse direction, assuming these last four equality rules from Fig-
ure 4.1, one obtains (Eq-BU) simply by substituting « for y and using re-
flexivity (as in the proof of Lemma 3.2.3). We shall derive (Eq-TD) from
replacement.

L2:0 |0 F plz/y
Iz:o,y:0|0,zc =yt o=y [z:0,y:0|0,2 =, y + [z/y]

Iz:oy:0]0,0 =, y t ¢ly/y| =

The next result paves the way for a categorical characterisation of existential
and universal quantification in terms of left and right adjoints to weakening
functors adding a dummy assumption to the type context, see Example 3.1.1.
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4.1.8. Lemma. The rules for existential 3 and universal ¥ quantification in
Figure 4.1 can equivalently be described as the following two (double) rules.
roe,3zecyt F'©,¢ VY209
| L4 (3-mate) | (V-mate)
| R R O VN ) T z:010,p ko
These rules express that 3 is left adjoint and V is right adjoint to weakening
(T F x:Prop) = (T, z: 0 - x: Prop).

Proof. We shall do the case of 3, since V is much simpler. The rules in the
proposition follow from the rules for 3 in Figure 4.1, since

Iz:obzo T,z:o| v Fya/z] re,3zecyte
T,z:o| ¢ F 309 Iz:o|©,3z:0.¢ Fop
Fe:o|O,¢ o

and

I'|3z:0.¢ F3z:0.¢ Iz:o|O,¢¥ Fop
roe,dz:c.¢y ko

Conversely, assuming the above (3-mate) rule, we can derive the two rules
for 3 in Figure 4.1.

Ie,3z:e9y Fdz:0.¢

(3-mate)
r-M:o Ie:o|O,¢ FIxio. ¢
(subst)
I'|© Fy¢[M/z] I'|O©,¢yM/e] -0 ¢
e tr3zoey
and
Feo|Z ¢ F
=¥ X(B—mate)
IO t+3zre¢ I'Z3z:0¢Fy
I'©,EytFx 0

We close this section by examining a subtle point in many-typed predicate
logic which is related to “empty types”. We recall from Section 3.1 that the
rule

strengthening
T,z:o|w1,...,on b ¥
F|$017~~-a<Pn }“’gb

(if  not free in ¢1,...,¢n,¥)
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will not be assumed. It may fail in models where the interpretation of o is
empty, see Exercise 3.1.3. This rule can be used without harm in single-typed
logic because there, one has the common requirement that the interpretation
of the single type is non-empty. This point often leads to confusion. For ex-
ample in [102, 11.8], one finds the following reasoning against the rule Modus
Ponens {or, D-elimination): for a variable x: o both

(z =, ) D (3z:0.2 =, z) and T=¢ 2
hold if the interpretation of o is empty; but then
Jdzicz=,x

does not hold. If we recast this line of thought in our notation with explicit
type contexts of term variables, it becomes clear that there is an illegal use of
the above strengthening rule involved, and that there is nothing wrong with
implication.

riotzxo rolr=pztr=p2
rvo|le=,zFIrocr=z r:obxo
(refl)
z:o Db (z=52)D(3z:0.2 =5 x) rolbbrr=5z

zo|PFIrio =5z

pl@tTz0cr =5z

(strengthening!)

This point is also stressed in [186, top of p. 131].
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Exercises

4.1.1.  Consider the rules for the connectives A of conjunction and V of disjunction.
Show that A and V distribute over each other, i.e. that the following two
equivalences are derivable.

FIOFen(YVX)X(eAY)VIeAX)
PO F eV AX)X(eVY)A(eVx).

See also Exercise 2.6.2.
4.1.2. In the same vain, assume r does not occur free in ; derive
(i) T}0F3Azo (e AY)X(eA(3x:0.9));
(i) T|0 FVzio. (9 De)X((Fz:0.¢) D o).
[Related to (ii) is Exercise 1.9.7.]
4.1.3. Show that the reductio ad absurdum rule is equivalent to the excluded
middle (or tertium non datur) rule:

T F :Prop
TjO0F eV
4.1.4.  Assume a proposition z:¢ + ¢:Prop. Is it possible to derive
0|0 F (Vzi0.9) D (3z:0.9) ?

4.1.5. Prove Lemma 4.1.8 for V.

4.1.6. Give a strengthened, “Frobenius” version of the rule in Lemma 4.1.7 in
which the variable y is also allowed to occur in the proposition context ©
(as in Lemma 3.2.4).

4.1.7. A ring is called local if it has a unique maximal ideal. Show that a ring R
is local if and only if it satisfies the (coherent!) proposition

RO F(By:Rzr-y=1)v(Ay:R.(1—2) y=1)).

[This is the standard example of a notion definable in coherent logic.]

4.2 Fibrations for first order predicate logic

In the previous section the syntax of first order predicate logic was given—
and of the subsystems of regular logic (with =, A, T,3) and coherent logic
(with =, A, T,3,V,1). In this section we shall define appropriate fibrations
to captures such logics categorically. Further, we shall describe several stan-
dard examples of such fibred categories. These include the topological model

by Tarski, the realisability model by Kleene, and so-called Kripke models.
UFam(PN)

Among these, the ‘realisability’ fibration lt incorporating Kleene’s re-
ets
alisability interpretation of constructive logic will play an important role in
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the sequel (in the construction of the effective topos). Also subobject fibra-
tions form important examples, but since they are rather special, they will be
investigated separately in the later Sections 4.4, 4.5 and 4.9.

The categorical structure used for the connectives and quantifiers can be
read off almost immediately from their rules—by keeping in mind the syn-

L(Z,T1,4

tactic fibrations (ceiz) ) from Section 3.1 (built on top of a signature with
predicates (X, II) with set of axioms .A): the connectives T, A, 1,V, D corre-
spond to fibred finite products (T, A), coproducts (L, V) and exponents D.
Equality = is described by fibred equality as in Section 3.4 (that is, by left
adjoints to contraction functors §*, using Lemma 4.1.7), and the quantifiers
3,V are described by simple coproducts and products (i.e. by left and right
adjoints to weakening functors 7* as in Lemma 4.1.8) from Section 1.9. We
thus come to the following definitions.

4.2.1. Definition. (i) A regular fibration is an Eqg-fibration with simple
E
coproducts satisfying Frobenius. That is, ﬁp is a regular fibration if

e pis a fibred preorder with finite products in its base category B;

e p has fibred finite products (for T, A);

o p has fibred equality (Eqy y 43(7, J)*) satisfying Frobenius (for =);
e p has simple coproducts (]_[(IJ) 4w} ;) satisfying Frobenius (for 3).

(ii) A coherent fibration is a regular fibration which has fibred finite
coproducts (L, V) which are fibrewise distributive, i.e. X A (Y V Z) Z (X A
Y)YV (X A Z) in each fibre. Thus each fibre is a (preorder) distributive lattice.

(iii) A first order fibration is a coherent fibration which is a fibred CCC
and has simple products H(I,J)'

We recall from Definition 3.5.1 that Eqg-fibrations are preordered. Hence
also regular, coherent and first order fibrations have preordered fibre cate-
gories. For a non-preordered version of a regular fibration, see [256]. There
are obvious “split” versions of the above notions of regular / coherent / first
order fibration, in which all of the relevant structure is split.

The rest of this section will be devoted to examples of the above kind of
fibred categories. Details of interpreting predicate logics in such fibrations may
be found in the next section, but it may be useful to have in mind when reading
the examples below that objects I of the base category are to be thought of
as type contexts (or as types), and objects X of the total category above
I as predicates in context I. Validity of this predicate X corresponds to the
presence of an inequality T(I) < X (over I), where T([) is the terminal object
in the fibre over /. This view will be formalised in the ‘internal language’ of
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such a fibration towards the end of the next section.

4.2.2. Syntactic examples. Let us fix a signature with predicates (X, II),
as introduced in (or before) Definition 4.1.1.

(1) Consider (X,II) with regular logic and assume a collection A of (reg-
£(S,11,4)

ular) axioms. One can construct a (preorder) classifying fibration cz(iz:)

as in Section 3.1. The objects of the total category L(X,II,.A) are type-
plus-proposition contexts (I' | ¢1,...,¢n). In the sequel we usually assume
finite conjunctions T, A in our logic and so we may conveniently assume
this sequence of ¢’s in (I' | ¢1,...,¢n) to be of length one. A morphism
(I + ¢:Prop) = (A F ¢:Prop) is then a context morphism M:T — A for
which one can derive T' | ¢ F (M), using the sequents in A as axioms.

It is easy to see that the rules for T, A induce fibred finite products for
£(S,11,A)

cz(iz:) . As before, in Example 3.4.4 (iv), this fibration has equality satisfy-

ing Frobenius by the rules for = (as formulated suitably in Lemma4.1.7). Sim-
ilarly, for simple coproducts we have to show that for contexts T', T’ € C{(Z),
the reindexing functor 7* induced by the projection 7: (I',I’) — T has a left
adjoint. For convenience we assume I to be z: ¢ of length one. This weakening
functor 7* then sends

I F ¢: Prop to I'z:0 F ¢:Prop
by adding an extra hypothesis. Its left adjoint sends
I,z:0c F1¥:Prop to ' - 3x:0.9: Prop.

The adjunction Jz: 0. (~) 4 7* requires a bijective correspondence

F|3zoy by

Toiold ke
which follows from the reformulation of the 3-rules in Lemma 4.1.8. By Ex-
ercise 4.1.2 (i) these coproducts satisfy Frobenius. In the general case where
I'" = (z1:01,...,2,:05) need not be of length one, a left adjoint to 7* associ-

ated with the projection m: (T', ') - T sends a proposition I', T’ F ¢: Prop to

Ik 3zy:0y. -3z 0, ¢: Prop. We conclude that the rules of regular logic
L(Z,11,4)
make 4 into a regular fibration.
cs)

(i1) If one further adds finite disjunctions (L1, V) to the logic, then the fi-
£(,11,4)
bration cz(lz: has fibred finite coproducts. These are distributive over con-

(3-mate)

Junctions by Exercise 4.1.1. Thus coherent logic leads to coherent classifying
fibrations.
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(ii1) It will probably not come as a surprise anymore that full first order
logic (obtained by adding D and V) makes the syntactic fibration a first or-
der fibration. Implication yields fibred exponents and universal quantification
induces right adjoints to the weakening functors m* mentioned in (i), which
send

I'z:0 F 1:Prop to ' FVa:o.¢: Prop.
The adjunction ©* 4 Vz:o. (—) involves the bijective correspondence
I'leFVeioy
Dozio|let o

which follows from the reformulation of the V-rules in Lemma 4.1.8.

{(V-mate)

4.2.3. Set theoretic example. Let (£,II) be a signature with predicates.
A (set theoretic) model of (X, II)—or, a (%, IT)-algebra—consists of

(a) a collection (Ay)o¢)x| of ‘carrier’ sets, indexed by the underlying set
|Z| of types of the signature;

(b) for each function symbol F:o1,...,0, — op41 in X a function
[F]
Ag, X -+ X Ag, ————> As
(c) for each predicate symbol P:¢y,...,0, in Il a subset

[P] “— Ay, x -+ X Ag,.

Note that (a)+(b) constitute a X-algebra as described in Section 1.6.

For such an algebra ((A,),[—],[—1]) we construct a first order fibration.
Let A be the base category with

objects sequences (01,...,0p) of types o; € |Z].

morphisms (o1,...,0,) = (71,...,Tn) are m-tuples (fi,..., fm) of

functions f;: Ay, x --- X Ay, = As,.

We leave it to the reader to verify that A is a category with finite products.

An indexed category A°P -5 Cat is obtained by

(61,...,00) > the power poset (P(Ay, X --- x Ag, ), C)
F=(fi,..., fm) — the functor f* sending
Y = A{Z | (f1(Z),..., fm(T)) € Y}.

Applying the Grothendieck construction to this indexed category yields a
split fibration over A. The total category of this fibration has as objects
pairs consisting of a sequence (o1, ...,0,) of types together with a predicate
X C Ay, X -+ X Ay, on the associated product of carriers. And morphisms
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((o1,...,00),X) = {{m1,...,™m),Y) consist of an m-tuple of (fi,..., frm) of
functions f;: Ay, X -+ x Ay, = Ay, satisfying (f1(Z),..., fm(Z)) € Y for all
reX.

We claim that this is a first order fibration. The fibre categories P(A4,, x
-+- X Ay, ) are Boolean algebras. Hence we have T, A, L,V and D (and also
reductio ad absurdum as in classical logic). Quantification along the projection
T (01,...,0n,0n+1) = (C1,...,00) Is given by

il

X —= {f€Ahy x - -xA,, |forsomey €A, ,,, (£,y) € X}

I

X &5 {f€A, x--x Ay, |forally€ A,,,,, (F,y) € X}.
And equality along é: (61,...,00,0041) = (01, ..., 00, 0nt1,Tnt1) 18
X {(#,y2)|(#y) € X and y = z}.

4.2.4. Kripke model example. For a signature with predicates (X,1I)
there is a category Alg(X,II) of (£, II)-algebras (as in the previous example).
Morphisms H: {((Ao),[-1, [=1) = ((Bs),[-1.01—1) in Alg(X,II) are col-
lections of functions H = (H,: Ay — Bo)ogx| between the carrier sets which

commute with the interpretations of function symbols F:¢4,...,0, — On41
and predicate symbols P:o,,...,0,, as in:
H, x---x Hg,
Agy X+ X Ay, B, X% By,
1714 |tFp7
Aoy Bs,,
1 Han+l 1
[PjA------------- >~ [P]®
Agy X - X Ag, By, X+ %X By,
7 7 Ho X -~ x Hg, 7 ’

A Kripke model for (X,II) consists of an index poset I = (I, <) together
with a functor
i # Alg(Z)10)
It involves for each element ¢ € I a (X, II)-algebra

K@) = ((K(2)0), [-16), [-1G))
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and for each pair 7, j € I with ¢ < j a morphism K (éj) of (£, II)-algebras. The
latter consists of a collection of K (ij) = (K(éj)s: K(i)o = K(j)s) of functions
commuting with the interpretations of function and predicate symbols, like
the H,’s above. One thinks of the elements of I as stages in (branching) time
and of the algebra K(¢) as the state of knowledge at stage 7 € II.

In order to construct a first order fibration from such a X we need some
notation: for a sequence (oy,...,0,) of types (from X}, there is a functor
K(oy,...,0,):1— Sets given by

i = K)o, X x K(i)s,
i <J = K)oy x - X K(i)o, -
Application of the morphism part of this functor will be abbreviated as follows.
Fori,jeIwithi<jand ¥ € K(oy,...,0,)(i) we write
(&) for (K(if)o, (1), ., K(if)on (xn)) € K(o1,...,04)(f)-
A collection of subsets (X; C K (a1, ..., U")(i))ieﬂ is called monotone if
i<jand £€ X; implies (%) € X;.
Notice that for a predicate symbol P:oy,..., 0, in 11, the interpretations of
P in the K(2)s,
[P](E) CK(t)o, X -+ x K(t)o, = K(01,...,00)(%)

form such a monotone collection, because the K(ij)’s, for ¢ < j, are morphisms
of (3, )-algebras.

In [182] Kripke showed how to interpret intuitionistic (or constructive) pred-
icate logic in such an I-indexed collection K:I — Alg(%,II) of models of

classical first order logic. A proposition I' F ¢: Prop—say with type context
' =z:01,...,2,: 0,—Is interpreted as a monotone collection of subsets

[T F@:Prop](?) C K(o1,-..,00)(%) fori e l.
The main clauses of Kripke’s interpretation are:
[T Fevy:Prop](i) = [T F @:Prop(:) U[T + ¢:Prop]J(s)
[T FoAy:Prop](i) = [T F @:Prop]](;) N[[T F ¢:Prop]i(7)
[T+ Dy:Prop](s) = {&|forallj>i (Z) € [T F ¢:Prop](j)
implies (£)7 € [T F ¢: Prop](j)}
[T F3y:0.9:Prop](i) = {Z|for some y € K(i),,
(Z,y) € [T,y:0  ¢:Prop](i)}
[T FVy:o.¢:Prop]l(7) = {&|forall  >iandye K(j),,
((£),y) € [T, y:0 + 9:Prop](5)}.
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Notice that knowledge whether a proposition involving O or V holds at stage
1, involves knowledge about future stages j > 7. Indeed, these connectives have
far-reaching consequences.

We shall construct a first order fibration (from K) in which these clauses
hold. As base category BB we take

objects sequences of types (o1,...,00).

morphisms o1,...,05) = (71,...,Tm) are natural transformations o
) b b b
between the corresponding functors, as in:

K(o1,...,00)
/’—\

H\Ua/,. Sets
K(ri, oo, ™m)

It is easy to verify that B is a category with finite products. For each sequence
(61,...,04) € B there is a poset fibre category with
objects monotone collections (X; C K(ay, .. ., (Tn)(i))ieﬂ.
morphisms  (X;);er — (Yi)icr exist if and only if X; C Y; foreach 7 € IL.

Every morphism a:(c¢1,...,0n) = (71,..., ) in B determines a reindexing
functor a* between the fibres, by pointwise inverse image:

(Xi CK(m1, ) (8)) ;e = ({F € K(0n, - 00)(3) | i(§) € Xi})ep-
By naturality of «, this new collection is monotone again. Our claim is that
the result is a first order fibration.

Each fibre category—say over {0y, ...,0,)—is a Heyting algebra with struc-
ture L) = 0
(@) = K(o, ..., 00)(9)
(X VY)() = X(i ) ( )
(XAY)() = X(H)NY(3)
(XoY)i) = {£€K(o1,...,00)(@) | for all j > ¢,

(£)) € X; implies (Z)J €Y;}.

We check that X D Y is an exponent, i.e. that there is a bijective corre-

spondence
(ZAX)E) CY() foralliel

Z(E) C (X DY)()) foralliel

For the implication downwards, assume & € Z(i) and for some j > i, () €
X(j). Then by monotony of Z, (£)? € Z(j) and thus (¥ € Z(j) N X(j) C
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Y (j). Hence ¥ € (X D Y)(¢). Upwards, assume ¥ € (2) X (7). Then & € Z(3)
and thus # € (X D Y)(i). Since i > 7 and (%)} = &£ € X (i) one obtains
F € Y (?) as required.

Quantification along a projection 7: (0y,...,0p,0n41) = (61, ..., 0n) takes
the following form.

H(Y)6) = (FeK(or,...,on)() |
for some y € K(i)opr, (7,1) € Y (i)}

[IY)6) = {F€Kion....on)) |
forall j > 1 and y € K(j)an+l’ ((f)j)y) € Y(])}

Equality is left as an exercise below.

4.2.5. Order theoretic examples. Let A be a frame, i.e. a poset with
finite meets and infinite joins such that these joins distribute over meets:
(V;ai) Ab = \;(a; Ab). A frame is sometimes called a complete Heyt-
ing algebra or a locale. The prime examples of such a structure are posets
(O(X), C) of open subsets of a topological space X. For such a frame A, the
Fam(A
family fibration iis) is a coherent fibration: the finite meets and joins in
A induce fibred finite products and coproducts; arbitrary joins \/ in A induce
simple coproducts, which satisfy Frobenius by the above distribution, see Ex-
ercise 1.9.4. Finally, the bottom element leads to equality satisfying Frobenius,
see Example 3.4.4 (ii1).
Finite meets and infinite joins form the essential structure of frames: mor-
phisms of frames preserve these by definition. But in a frame one can define
infinite meets by

/\_ai = \/{b | b is lower bound of (a;)} = \/{b | Vi.b < a;}
and implication by
an:\/{c|a/\c§b}.

Fam(A)
Thus Sits is actually a first order fibration.

The special case where A is the frame O(X) of opens of a topological space
X captures Tarski’s [328] interpretation of (constructive) first order logic in
the opens of a topological space X, formulated in the 1930s. We mention the
main points. For opens (U; j))(i j)erxs one has

coproduct: U Ui j) and product;: Int(m Ui jy)

jeJ i€l jeJ iel
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where Int(—) is the interior operation. (If J =} we take this intersection to
be X.)

For I-indexed collections (U;);er and (V;)ier one has as implication over I,
the I-indexed implication in the Heyting algebra O(X):

(Usier D (V)ier = (Int((X = U) UVi) )
For more information, see [335, Chapter 9] or [281].

4.2.6. Realisability example. Under constructive reading, a proof of a
proposition consists of a method of establishing it. In 1945 Kleene [178]
gave the so-called realisability interpretation of constructive logic (see
also (333, 23, 335]), in which such a proof is understood as a code of a partial
recursive function. Kleene introduced a relation nre, to be read as ‘n € N
realises proposition ¢’. That is, n is a code for a partial recursive function
m — n - m which is a method for establishing ¢. Kleene stipulated,

nr(p AY) < nis (recursive) pair (ny, ng) with nyry and nery
nory ifny =0
nory ifny =1
nr(p DY) & for each m with mro one has (n - m)ry.

nr(p V) < nis (recursive) pair (n, ny) with{

See e.g. [335, 23] for more information on realisability. In order to deal with
first order logic, we shall describe a set-indexed version of this interpretation.
We write PN for the powerset of N. For an arbitrary set I, consider the set
of functions (PN)! from I to PN. Elements of (PN)’ are also called non-
standard predicates on I. Such a predicate X € (PN)? is called valid

' (ﬂ X(i)) #0.

iel
Thus X is valid if there is a single natural number which is member of all
X,"S.
In line with Kleene’s stipulations, put for X,Y € (PN)!,
(XAYY(E) = {{n,m)|n€ X({) and m € Y{(i)}
(XVvY)@i) = {(0,n) ne X} U{{1,m) [meY()}
(X DY)(i) = {n|foreach me X(i),n -meY(i)}.

The latter gives rise to a preorder on (PN)! by

X<y & (ﬂX(i) 3Y(i)> #0.

i€l
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Notice that this ordering is not pointwise but uniform: a single code must
be member of every X (¢) D Y (¢). For more information on this ordering, see
Exercise 4.2.5.

There is a bottom element L = Xi € .0 and a top element T = Ai € I.N
in (PN)’. In this way (PN, <) becomes a Heyting pre-algebra (or a preorder
bicartesian closed category).

The quantifiers are described as follows. For a predicate X € (PN)?*’ one
takes

H(I,J)(X)(i) = U X(i,3), H(I,J)(X)(i) = ﬂ X(1,5)
JjeJ JjeJ
where we understand the latter intersection to be N in case J is empty.

The assignment I — (PN)! extends to a functor (or split indexed category)
Sets®? — Cat with reindexing by pre-composition. The fibration resulting
from this indexed category (via the Grothendieck construction) will be writ-

UFam(PN
ten as Sit(s ) in which the letter ‘U’ in ‘UFam’ emphasises the uniform
character of vertical maps. This will be called the realisability fibration. In
Example 5.3.4 in the next chapter it will be shown how, more generally, one
can construct a similar fibration from a ‘partial combinatory algebra’ (like the

Kleene structure (N, -) used here).
UFam(PN)
We claim that i is a first order fibration. In fact all the relevant

structure, except equafittsy, has already been described above. Equality is given
as follows. For X € (PN)!*J put,
Con e ey

()i, = { i 5=
4.2.7. Recursive enumerability example. Recall that a relation X C N?
is recursively enumerable (‘r.e.’) if and only if there is a partial recursive func-
tion f:N"® — N such that £ € X & f(&) ] (i.e. f(£) is defined precisely on
I € X); also that such r.e. relations on N” are closed under intersection N and
union U. Hence r.e. relations on N ordered by inclusion form a distributive
lattice (with bottom @ and top N™). Further, for an r.e. relation Y C N*+!
the set

{Z eN"| forsomey €N, (Z,y) €Y}

is r.e. again. All this suggests there is a coherent fibration (with T, A, L)V
and 3, =) involved.

We first form a base category PR of partial recursive functions: objects are
n € N and morphisms m — n are n-tuples (fi,..., fn) of partial recursive
functions f;:N™ — N. Composition is done in the obvious way. One has that
0 € PR is terminal and that n + m is the product of n and m.
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The next step is to define an indexed category PR°P — Cat. We assign
to n the poset of r.e. relations on N”| ordered by inclusion. Reindexing along
(fi,-.-, fa):m > n in PR is done by substitution:

XCN' = {FeN" | (f1(¥),..., [a(§)) € X} CN™.
Obviously, the relation on the right hand side is r.e. again. The resulting
RE

fibration will be written as PlR. The above ingredients yield fibred finite
products and coproducts and simple coproducts. Equality is given as follows.
For X C N**+™ put,

Eq(X) = {(#,7,7) € N"+™*+™ | (£, 7) € X and § = 7}.

Since the base category PR of this fibration :lz is an ‘algebraic theory’ (this
means that the objects are of the form 17 for n € N) one obtains a structure
in which one can interpret single-typed coherent logic: the object n in the base
category stands for the type context in which n term variables (of this single
type) are declared.

We close this section by sketching how so-called cylindric algebras give
rise to (single-typed, classical) first order fibrations. These cylindric algebras
have been introduced by Tarski (see [121]) as algebraisations of predicate
logic. They essentially consist of a Boolean algebra with distinguished opera-
tions (the ¢, and d,, ,n, below) for existential quantification and equality. This
Boolean algebra is to be thought of as the collection of all propositions (with
free term variables). What is lacking in this approach is the presence of sepa-
rate structures for each type context (which is such a prominent aspect of the
indexed/fibred approach). We will briefly discuss a way to construct a first
order fibration from a cylindric algebra.

4.2.8. Cylindric algebra example. A cylindric algebra (“of dimension
w”) consists of a Boolean algebra A = (4, L, T, A, V) together with cylindri-
fication operations ¢,: A — A and diagonal elements d,, », € A4, for n,m € N,
satisfying the following seven postulates.
(1) enl = 1;
(1) z <cpx
(ii1) ep(z A cny) = cpx Acpy,
{(iv) cnema = cment;
(V) dpn=T,;
(vi) dp i = cm(dn,m Adm k), for n# m k;
(vi1) cn(dn,m AZ)Acp(dnm A—z) =1, for n £ m.
The intuition that one should keep in mind is that ¢,z is the proposition
Jv,. z{v,) and that d, ., is the proposition v, = v, assuming we have a
countable collection (vn) of term variables (corresponding to dimension w).
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An arbitrary set U gives rise to a cylindric algebra P(UN) consisting of
subsets a of functions ¢: N — U, with obvious Boolean algebra structure, and
with cylindrification and diagonalisation operations:

en(@) = Userdelz/nl | p €}, dam = {p € UN | p(n) = p(m)}

where @[z /n] is the function which is  on n, and ¢(m) on m # n. See [121]
for more information.

In order to turn a cylindric algebra A as above into a fibration, we first
need a base category B. We take

objects natural numbers n € N. For such an object n € B we write
[n] for the finite set {0,1,...,n — 1} of numbers below n
(so that [0] = ).

morphisms n — m are functions [m] — [n]. Identities and composites
are as for functions, except that the order is reversed.

This category B has finite products: 0 € B is terminal object, and n 4+ m € B
is the Cartesian product of n,m € B: the projections m:n+m — n and
m:n+m— maregivenoni € [n]={0,...,n—1}and j € [m] ={0,...,m—
1} by n(3) = ¢ and 7'(j) = n + j; and the pairing of f:k -5 n and g:k - m
as a function (f,g):[n + m] — [k] is {f,¢)(¢) is given by: f(i) if i < n, and
g(i — n) otherwise. Notice that a diagonald:n+m > (n+m)+minB, as a
function 6:[n+ 2m] — [n + m] is defined as: §(¢) is¢if i <n+m,andi—m
otherwise.

The next step is put an appropriate indexed category A:B°? — Cat on B
with Boolean algebras as fibres. To this end we identify sub-Boolean algebras
A(n) — A, meant as fibres, as follows.

An) ={z € A|Vm > n.cpz = z}.

(We thus only consider the “finitary” part of the cylindric algebra A.) It
follows from the above postulates that the Boolean algebra structure from A
restricts to A(n). The main difficulty is to construct for a morphism f:n - m
in B a substitution functor f*: A(m) — A(n). One can do this by first defining
f*:A—> Aon A, and by subsequently checking that f* restricts appropriately.
In the theory of cylindric algebras there are substitution operators s§: A — A,
for k,£ € N, defined as

ko Jz ifk={
et = cx(di ¢ A z) otherwise

It may be understood as “substitution of variable v, for v;”. These functions
sf will be used to describe categorical substitution f*, but they cannot be
used directly, because we need simultaneous substitution, in which unintended
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overwrites should be avoided. The standard trick to avoid such clashes is to
use a “parking area”: let k¥ = max{n, m}; the area above k can safely be used
for parking, so that for : < m

i@ = 2lf(0)/i) = 2lk + i/ilF(0)/k +4] = il 0.
In this way we can define for ¢ € A
* k k 1
f(z) =Sp0) S Et:ln 11)Sk “Skm-1%-

(Any k > max{n,m} yields the same outcome.) The verifications that f*
restricts to A(m) — A(n) and preserves the Boolean algebra structure, and
additionally, that the assignment f — f* preserves identities and composition,
are quite involved. We are especially interested in the cases where f is a

projection m:n 4+ m — n or a diagonal :n + m - n + 2m. In that case one
can calculate that

™(z)==z and §*(x) = sPt™ .. szifnm Tl
Left adjoints H(n,m) and Eq(,,m) to these 7" and ¢* are obtained as:

H(n,m)(‘r) = Cn " Cnym-1T
EQ(n,m)(x) =zA dn,n+m A A dn+m—1,n+2m—1-

(A right adjoint to 7* is then induced because we are in a Boolean situation.)
We check the adjunction correspondence H(n’m)(z) <y z <y, for
y € A(n) and z € A(n +2m): if [, ,)(z) <y, then z < en - cppmrz =
L m)(z) <y =7"(y). For the converse, if z < 7*(y) = y, then Hn,m(z) =
Cn Cngm—-1% < Cn *Cnym-1Y = Y, SInce y € .A(Tl), 80 CnpiY = Y.

FExercises

4.2.1.  Check that the coproducts in Example 4.2.2 satisfy Beck-Chevalley.

4.2.2. In the same Example 4.2.2 check that the weakening functor 7* associated
with a (general) projection m: (I',I’} — T, with I'" not necessarily of length
one, has both a left and a right adjoint.

4.2.3.  Consider the fibration constructed in Example 4.2.4 from a Kripke model
K:1 - Alg(%,10).

(i) Prove that [J(Y) and [](Y) are monotone collections (for Y mono-
tone).
(i1) Establish the bijective correspondence

™ (X)(5) C Y(i) foralliel
X() C I(Y)(1) foralliel

which produces the adjunction required for simple products.




4.2.4.

4.2.5.

4.2.6.

4.2.7.
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(i) Define equality.

{(iv) Check that each (X, IT)-algebra forms a Kripke model 1 — Alg(%, II)
and that the fibration associated with this Kripke model (as in Exam-
ple 4.2.4) is the same as the fibration associated with the algebra (as
in Example 4.2.3).

Consider a fibration with simple coproducts satisfying Frobenius. Prove

that for objects X over I xJ and Y over [ x K there is a vertical isomorphism

s (i x 7")(X) x (id x 7)*(Y)) = L7 X) % T oY)

over [. Explain the logical meaning of this isomorphism.
This exercise shows that the order in the fibres (PN)’ of the realisability
UFam(PN)
fibration lt is not the pointwise order. We consider I = 2 = {0, 1}.
ets
Fix an arbitrary subset A C N, and consider the following two predicates

X,Y:23 PN.

N\A ifn=0 {0} ifn=0
()“{ ifn=1, Y("):{{l} ifn=1.

(i) Check that X(0) < Y(0) and X (1) < Y(1), so that X is pointwise less
than Y.

(i1) Prove that if X <Y, say viae € (X(0) D Y(0))Nn(X(1) D Y(1)), then
¢ yields a decision code for A. But A C N is arbitrary, so we may take
A to be the halting set.

Check that for a proposition ¢ in predicate logic, the result ¢[ve/vk] of
substituting a term variable v, for a different variable vi is logically equiv-
alent to the proposition Jvk. (vx = veA ). This a logical justification of the
definition of the substitution operation s¥ in Example 4.2.8.

In which of the examples in this section does one have classical logic? That
is, ==X < X, where negation =(—) is (—) D 1, so that each fibre is a
Boolean algebra.

E
A coherent (or first order) fibration ﬁ%p will be called Boolean if for each

X € [E above I € B there is a complement X’ above I with vertical
isomorphisms X A X’ 2 1| and X v X' = T. In that case, each fibre is a
Boolean pre-algebra, see e.g. Example 4.2.3.

(i) Show that such a complement X’ is unique up-to-isomorphism.

Suppose now p is Boolean and choose for each X € [E such a complement

and write it as = X.

(ii) Show that — forms a functor E;? — E;, which commutes with substi-
tution.

(iii) Prove that a Boolean coherent fibration is already a (Boolean) first
order fibration.
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4.3 Functorial interpretation and internal language

In the previous section we introduced appropriate fibrations for predicate logic
and listed a series of examples. Here we turn to the (functorial) interpretation
of predicate logics (as described in Section 4.1) in such fibrations. It leads to
the concept of the internal language, which gives us a convenient means to
reason directly in such fibrations, as will be shown in several examples.

We start with validity in a fibration, as first described in Definition 3.5.3
for equations. Here it will be extended to arbitrary predicates. Let therefore
(X, 1) be a signature with predicates. Consider a situation

I

(%) B

where p is a preorder fibration with finite products both fibrewise and in its
base category, and where M is a (functorial) model of ¥ in B. A model of

E
(Z,1I) in ﬁp consists of such a model M of ¥ in the base category B of p
together with for each predicate symbol P: oy, ..., 0, in Il, a predicate object

N(P) € E above M(z1:01,...,25:0,) EM(o1) X --- X M(o,) € B

Such a model of (X,1II) in p can be identified with a morphism in the category
Fib of fibrations,

L(Z, 1) N E
| )
ax) v B

(s,

where cfeiz ) is the syntactically constructed classifying fibration from Sec-
tion 3.1, which has only predicates from II as (basic) propositions. This is
because the only rules that can be used in this restricted logic are the context
rules from Section 3.1 (which are unaffected by the presence of the atomic
predicates in IT). And these context rules are sound, as we already saw in
Lemma 3.5.6. Like in Example 4.2.2 we shall use finite conjunctions (T, A)
and logical contexts of length one in this classifying fibration.

Assume now that p is a regular fibration. Then one can extend the above
interpretation A to propositions with =, T, A, 3. In a straightforward way one
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puts

N M =, M":Prop) = Eq(M(M), M(M"))
(where Eq is as in 3.4.2)
N({@T FT:Prop) = T
N( FpAy:Prop) = N(T + ¢:Prop) AN(T F : Prop)
N(T F 3z:0.9:Prop) = [ sy mio) (MN(T,z:0 F ¢: Prop))

where H(I,J) is the coproduct functor Eyxy — Ey, left adjoint to the weak-
ening functor 77 ;.

We say that a sequent I' | ¢ F ¢ holds or is valid in the above model
(M, N) if

N(T F ¢:Prop) < N(T F ¢: Prop)

in the fibre above M(T'). And that a predicate T' + ¢: Prop holds or is valid
in case the sequent T' | T F ¢ holds (i.e. in case T < N(I' F ¢: Prop) over
M(T)).

As we have seen in Lemma 4.1.8, the rules for 3 can be cast in ‘mate’ form:

Iio,dz:c oty

[Le:o|O,p k1

We shall write x for the finite conjunction of the propositions in ©. Soundness
of this (double) rule then follows from the adjointness ([] - 7*) with indices
M(T) and M(o), together with the Frobenius condition:

['|x,3z:0.¢0 F 9 is valid
N( F xA(Bz:0.9): Prop) < N(T' F ¢: Prop)
N( F x:Prop) A]JN(T,z:0 + ¢: Prop) < N(T + ¢: Prop)
1 (ﬂ'*N(F F x:Prop) AN (T, z:0 F ¢ Prop)) < N(T F ¢:Prop)
N(T,z:0 + x:Prop) AN(T,z:0 F ¢:Prop) < #*N (T  +: Prop)
N(T,z:0 F x Ap:Prop) < N([',z:0 + 9:Prop)
[ z:0 | x Ay F 9 is valid.

tsted e

E
The fact that the rules for 3 hold in such a model %p can alternatively be
expressed by: the morphism (M, N) of fibrations (in the previous diagram)
preserves simple coproducts [, where the coproducts in the classifying fibra-
tion arise as in Example 4.2.2.
Thus, given a set A of regular axioms for (X, IT), we can say that the above
model satisfies A if all sequents in A are validated. In that case one obtains
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a morphism of fibrations

L(X,1I, A) il E
| p
C(z) B

where the classifying fibration on the left captures the logic with axioms from
A. The total category £(X,II,.4) contains the propositions I' F ¢: Prop that
can be formed from equations M =, M’ and from atomic predicates from II.
The fibred preorder structure (I' F ¢:Prop) < (T F ¢:Prop) in £(3,11, A)
over I' € (¢(X) is given by derivability of the sequence T' | ¢ + ¢ from the
axioms in A.

In case this fibration p is coherent {i.e. additionally has distributive fibred
coproducts), then one can interpret finite digjunctions as

N(T F L:Prop) 1
N(T F oV :Prop) = N(T F p:Prop) V N(T F ¢: Prop).

And if p is a first order fibration, then one can interpret the remaining
logical operations of implication and universal quantification as

N(T F ¢ D ¢:Prop) N(T F @:Prop) D N(T F ¢: Prop)
N(T FVzia.9:Prop) = Tl amr) mio)) (N(T,z:0 F ¢:Prop)).

Validity of the rules involved is left as an exercise below.

We see that the main aspect of Lawvere’s functorial semantics can be used
also for the interpretation of predicate logic: namely that interpretation is
preservation of the relevant structure.

We proceed along (by now) fairly predictable lines: firstly we say formally
what a morphism of regular / coherent / first order fibrations is; this enables us
to say what a (functorial) model of a predicate logic is. Secondly, we describe
the signature with predicates (plus the axioms) associated with a regular
/ coherent / first order fibration; then a bijective correspondence between
models and morphisms of specifications can be given.

4.3.1. Definition. A morphism of regular fibrations is a morphism of
Eq-fibrations which preserves simple coproducts []. A morphism of coher-
ent fibrations additionally preserves fibred finite coproducts (L,V) and a
morphism of first order fibrations is a morphism of coherent fibrations
which also preserves fibred exponents D and simple products [].

The appropriate 2-cells are as for (Eqg-)fibrations, see Definition 3.6.1 (ii).
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4.3.2. Definition. A model of a regular / coherent / first order spec-
L

ification (X, 11, A) consists of a regular / coherent / first order fibration ﬁ%p
together with a morphism

£(Z,I1,A) E
(et ) —(¥)
c(x) B

of regular / coherent / first order fibrations.

Recall from Remark 4.1.5 that a specification in predicate logic may be ex-
tended with external equations, so that it becomes a four-tuple (£, 11, 4;, A.),
where A; is the set of internal axioms (as used so far), and A, are the addi-
tional external equations. In this extended case one should describe a functo-
rial model as a structure preserving morphism

( £(Z,T1,4;) )

e )
CE(T, Ae)
involving a quotient base category C¢(X) — C{(¥, A,) incorporating the addi-
tional identifications.

The following two lemmas form the basis for soundness and completeness
results.

Be=

4.3.3. Lemma (Soundness). Let (X,11,.4) be a regular / coherent / first or-
der signature. Every (3,11)-sequent which is derivable from A in regular /
coherent / first order logic, holds in a model of (X,11, A). O

4.3.4. Lemma (Completeness). Let (X,11,.4) be a regular / coherent / first
order signature. A (X,11)-sequent is derivable from A in regular / coherent /
first order logic if and only if it holds in the generic model:

< L(E,H,A)) = (L(E,H,A))
4 — 1 0
a(x) (T)

T
4.3.5. Definition. (i) Let %p be a (regular) fibration. The many-typed

signature Sign{lB)—containing objects I € B as types and morphisms u: [; X
-+ x I, = J in B as function symbols—can be extended to a signature with
predicates (Sign(B), I1(p)) where

X:Ii,..., I, isin II(p) if and only if X €Er % .x1,-

There is an obvious functorial model of the signature with predicates of the
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fibration p in p itself:

£(Sign(B, 1I(p)) ——~ E

| X

Cl(Sign(B)) ——B

(11) The collection A(p) of axioms of p contains the (Sign(B),II(p))-
sequents of the form

ol | X(7) FY(5) where X,Y € Esatisfy X <Y in[E.
The model in (i) can be extended to a morphism of fibrations

£(Sign(B, TI(p), A(p)) ——

| I

Ct(Sign(B), A(B))

€

by interpreting the specification of p in p itself—where A(B) is the collection
of (external) equations which hold in the base category B, as described in
Definition 3.3.6. A fibration thus gives rise to an extended specification as in
Remark 4.1.5.

E
4.3.6. Theorem. Let (X,11, A;, A.) be a regular signature and %p a reqular
fibration. There is a biyjective correspondence between

L{ZILA;) E
reqular models < { ) — ( lp)
CL(z,Ae) B

maps of regular specifications (L,11, A;, A.) — (Sign(B), I1(p), A(p), A(B))

The ‘counit’ regular model in (i1} in the previous definition is an equivalence.
Similar results hold for coherent and first order fibrations.

Proof. The correspondence follows from a by now standard argument. In
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order to obtain the equivalence, we have to define functors ¢ and ¢’ in:

’

E—————— E(Sign(Br H(p), .A(p))

g |

B ; C{(Sign(B))

The functor #” maps a predicate X € E; to the predicate ¢: I F X(¢): Prop in
the internal language of p. It is a functor since a map X <Y in [y yields an
axiom i: [ | X(i) F Y (i) in A(p).

The functor # maps I € B to the context x: I. It is easy to see that ¢ o § = id.
Using the operations from Example 3.3.7 one obtains that there are maps
(8 o €) = id, the composites of which are equal to identities in the classifying
category (¢(X,.A). Here we crucially need the equations from B as external
equations in the logic. m]

Internal language

The starting point in the remainder of this section is our last Theorem 4.3.6.
It tells us that a regular / coherent / first order fibration can be reconstructed
from its specification, i.e. from its signature with predicates plus its axioms.
Therefore we can conveniently use the logical language associated with this
specification in order to reason in such fibred categories. Below, we present
several examples of this approach, but many more examples occur in the
course of this book, where the internal language of a (preorder) fibration will
be used frequently. .

For a fibration ép we shall call the predicate logic built on top of its
signature with predicates (Sign(B),II(p)) the internal language of p. And
the internal logic of p is the logic which starts from the specification
(Sign(B), I1(p), A(p)) of p. This logic incorporates everything that holds in
p (via its axioms).

In this internal language, an object I € B is a type and an object X € E
above I € B is a proposition in context ¢: I, i.e. a predicate on I. Therefore
we often write such an X as

it/ F X:Prop oras @It X(¢):Prop oras I+ X;:Prop.

In the latter two cases we have made the dependence on I explicit in X ()
and X;. This is convenient notation. Also for example, when X € [E;.; is a
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predicate on a product type, we can write this as
©:1,5:J F X j): Prop
And if we have X,Y € [y, then,

i:I| X; FY; isderivable in the internal logic of p
if and only if X <Y over I.

The result of reindexing a predicate Y = (j:J & Y;:Prop) € Ey in p over J
along a morphism (or term) u: [ — J in the basis will be written as

u*(Y) = (i:1 F Yy(): Prop).

As a special case we could write weakening of X € E; by adding a dummy
assumption j:J as i:1,j:J & Xg(; j): Prop. This is would be different from
ordinary predicate logic, where weakening is not an explicit operation—but
see the explicit notation of [256], as mentioned in Example 3.1.1 (ii).

We will use =7, T, A, L,V,D,3,V with obvious meaning in the underlying
fibration. The internal language (or logic) has the advantage that it is easy
to manipulate, in contrast to categorical calculations, which are often more
complicated. This will be illustrated in the next series of examples.

E
4.3.7. Examples (Quantification). (i) Let ﬁp be a regular fibration. By
definition, each weakening functor 7#* induced by a Cartesian projection 7
then has a left adjoint. We shall show in the internal language of p that in
fact each functor u* has a left adjoint [],. Later in Section 9.1 we shall see
that this makes p an ‘opfibration’.
Assume an arbitrary map u: I — J in B; the functor [], is defined as

X = (i:1 F X;:Prop) v (j:J + Ji: 1. (u(s) =7 j A X;): Prop).
The adjunction (], 4 v*) follows from the following derivation.
S| (u(d) =jAX:) FY;
i1j:d Ju(@) =, X: F Y,
“1] X F Yo

Notice that the Beck-Chevalley condition need not hold: it is an external
condition involving pullbacks in the base category. These are not required to
exist and—in case they happen to be there—they need not be expressible in
the internal language. See ]g']xercise 4.9.2 for some more relevant details.

(i1) Assume now that 1P is a first order fibration. One can now show that
each reindexing functor has a right adjoint as well. For u:/ — J in B define
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[1.(X) by
X = (i:1 F Xi:Prop) — (j: J | Vi: I. (u(i) =5 j D X;): Prop).

Then
Y BEVE L (u(d) =7 D Xi)

i1, | Y; Fu(i)=j DX,
g J | Yu(@)y =5 FX;
i:IIYu(i) }‘X,'

Notice that the formulas for [ [, and [], are the familiar set-theoretic ones,
as used for example in Lemma 1.9.5.

Next we show how one can conveniently describe in the internal language
a category of relations associated with a regular fibration.

4.3.8. Example (Relations). Recall from Example 3.5.5 that the category
Rel of sets and relations has sets as objects and relations R C I x J as
morphisms I — J. One usually writes R: I — J for R C [ x J in this
setting. Identity morphisms and composition in Rel can be expressed using
the connectives =, A, 3 of regular logic, see the beginning of Example 3.5.5.
This leads us to the followiI;E]g construction.

For a regular fibration %p let Rel(p) be the category with

objects I eB
morphisms [ —+> J are equivalence classes of objects R € [E above
I xJ.

The equivalence relation is the one induced by the preorder of entailment in
the fibres {i.e. equivalence in the internal logic). Often we shall write R: I —
J in the internal language as a predicate

i:1,7:J F R(4, j): Prop.
The identity I —— I is then given by (internal) equality on I:
oI, 7.1 Fi=;¢:Prop.
And composition of R: I —+> J and §:J —> K by the ‘composite’ relation:
il k: K+ 35:J.R(3,5) AS(4,k): Prop.

One easily checks that Rel(p) is a category; for associativity of composition

of
R
1%]%‘]{?11
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one can reason informally:
((T o S) o R)(i,8) & 3j:J.R(i,j) A Fk:K.[S(j, k) A T(k,2)]
& 3k K.[3j:J. R(i,5) A S(4, k)] A T(k,0)
& (To(SoR)(Y.

One can similarly describe the subcategory FRel(p) < Rel(p) of functional
relations. This category FRel(p) has objects I of the base category as objects.
A morphism I — J in FRel(p) is a morphism R:] —+ J in Rel(p) which
is internally single-valued and total, as expressed by the following two
sequents.

i:1,5:J,7: J | R(,5),R(3, 7Y F =3 F, 1|0+ 35:J R, ).

It is easy to check that identities and composition from Rel(p) can be used in
FRel(p), so that we get an inclusion functor FRel(p) — Rel(p).

The expressiveness of first order predicate logic allows us to formulate var-
ious mathematical notions in a very general situation where one has a fibred

E
category %B which allows us to reason about B in the logic of this fibration.
As an easy example we mention the following.

E
4.3.9. Definition. Consider a regular fibration ép . A morphism u: I = J
in the base category B is called internally injective if the following sequent
in the internal language of p holds in p.

LT u(d) =5 u{t') Fi=p 7.
Similarly, u is internally surjective if
IO F L =5 u(i)
holds.

Notice that ‘internal injectivity’ and ‘internal surjectivity’ are relative no-
tions in the sense that they are not intrinsic to the base category, but depend
on the fibration that one puts on top of the base category (to get a certain
logic).

It is not hard to see that if internal and external equality coincide in a
fibration, then ‘internally injective’ means ‘monic in the base category’. This is

more subtle with internal surjectivity, due to the occurrence of the existential
Fam(A)
quantifier 4. Consider for example a family fibration {4  for a frame A.
€ets
For a set I and an I-indexed collection X = (X;)ier of objects X; € A over I,

the proposition 3i: 1. X holds in this fibration if and only if the join Vie[ X; is
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the top element T in A. But this need not mean “external existence”, i.e. that
there is an actual element X;, in this collection X for which X;, = T. We
can conclude that internal existence (3:: 1. X; holds) need not imply external
existence (X;, holds for some specific 7: 1 — I).

Conversely, external existence trivially implies internal existence. We return
to this delicate matter of existence at the end of Section 4.5 in connection with
the Axiom of Choice, especially in Exercises 4.5.4 and 4.5.5.

Exercises

4.3.1.

4.3.2.

4.3.3.

4.3.4.

4.3.5.

4.3.6.

(i) Prove the soundness of the ‘traditional’ rules for 3 as in Figure 4.1 in
a regular fibration.

(i1) Verify that the rules for implication D and universal quantification ¥
are sound with respect to the interpretation described above.

Give a purely categorical proof of the inequality

H(],K)(id xu)*(X) < H(J,J) X
for u: ' — J and X over I x J. That is, of the entaillment
]| 3k K. X (2, u(k) F 350 J. X (4, 5)-

Show that the reductio ad absurdum rule of classical logic (see Section 4.1)
is sound in a Boolean coherent fibration, as defined in Exercise 4.2.8.
Investigate internal injectivity / surjectivity in the fibrations

DSub(Dcpo)
(i) Dcl o of down closed subsets on dcpos, in Example 3.5.4;

PredRI;l
(i) Pj'el in Example 3.5.5.
Consider an Eg-fibration on a distributive base category. Prove that
the coproduct coprojections k,x’ are internally injective, see Proposi-
tion 2.3.4 (ii).

E

In an Eg-fibration ﬁp there are left adjoints I_Ls“) = Eq to contraction
functors 6(1)*, where §(I) = (id,id):1 — I x [ is the (unparametrised)
diagonal on /. Prove that the implication

u is mono in B = wu is internally injective

holds if and only if these H(su)’s satisfy the Beck-Chevalley condition with
respect to pullback squares of the form
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4.3.7.  Give a purely categorical argument to show that a reindexing functor of a

regular fibration has a left adjoint, as in Example 4.3.7 (i).
E

4.3.8. For a regular fibration %p , describe a sequence of functors

B —— FRel(p) — Rel(p)

mapping a morphism [ — J in B to its graph relation I — J.

4.4 Subobject fibrations I: regular categories

This section is entirely devoted to examples of regular fibrations which arise
Sub(B

from subobject fibrations i( ) . We shall find conditions on a category B
ensuring that subobjects in B form such a regular fibration. A category will
then be called a regular. In the next section we concentrate on the case where
the subobject fibration is a coherent or first order fibration. All the material
in this (and the next) section is standard (early sources are [17] and [284]),
but usually it is not presented in terms of fibrations. For a slightly different
approach to regular categories, in which not all finite limits are assumed to
exist, see {36, II, Chapter 2].

Subobject fibrations have received much attention because they incorporate
the logic of toposes, see Section 5.4 later on. These fibrations are in fact rather
special. For example, they always support very strong equality and full subsets
(or comprehension). Later, in Section 4.9 we will give a precise characterisation
of subobject fibrations in terms of logical structure. Part of this structure
is given by the following result, which can be interpreted as saying that in
subobject fibrations one always has unique choice (3!), see Proposition 4.9.2.

Sub(B)
4.4.1. Observation. Each subobject fibration ]ﬁ admits quantification
along monos: if m: X ~— I is a mono, then composition with m forms a left
adjoint [],,, to reindexing m* along m. Moreover, these [[’s satisfy a Beck-
Chevalley condition: for every pullback square

Y > g

= |

v u

X—
m

the canonical natural transformation [, v* = w*[], is an isomorphism.
Further, these coproducts satisfy the Frobenius property: there is a (canon-
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ical) isomorphism [],,(m*(n) A k) = n A 1],,(k). Both Beck-Chevalley and
Frobenius follow from the Pullback Lemma (see Exercise 1.1.5).

Later in Section 10.5, we develop tools to give an alternative formulation of
this result; then we shall say that the ‘comprehension category Sub(B) — B~
has (very strong) coproducts’.

The following definitions are standard.

4.4.2. Definition. (i) A category has images if every morphism has an im-
age factorisation; that is, every morphism u: I — J factors as

where m(u) is the least mono through which u factors: for an arbitrary fac-
torisation I — K — J of u, there is a necessarily unique map Im(u) —-» K
making the diagram below commute.

1
\ )/1
Im(u)

"
|
f
V

(i1) A category with images has stable images if its images are stable
under pullback: if the diagram on the left below is a pullback, then so is the
one on the right,

K —>1 Im(v) — — > Im(x)
S U
L=gJ L——

The map Im(v) --» Im(u) is uniquely determined by the universal property
of the image factorisation of v, since v factors through w*(m(u)).

(ii) A regular category is a category which has finite limits and stable
images.
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4.4.3. Example. In the category of sets the image of a function u: I — J
exists and is given by the subset

{jeJ|Felui)=j} —J

It may be clear that this is the least mono (injection) through which u: I — J
factors.

Note that there is an existential quantifier involved. It is made explicit in
the next result. It shows that regular categories can be characterised in various
ways. Of most interest to us is the equivalence of (i) and (v) below.

4.4.4. Theorem. Let B be a category with finite limits. The following points
are equivalent.

(i) The category B s regqular.

(ii) The inclusion functor Sub(B) — B~ (obtained by choosing represen-

tatives) has a fibred left adjoint.
Sub(B)
(iii) The subobject fibration 1% has coproducts [],, 7 u* satisfying Frobe-

nius.
Sub(B)

(iv) The fibration ]%5 has simple coproducts H(I,J) 4 w7 ; satisfying

Frobenius.
Sub(B)

{v) The subobject fibration 1%3 1s regular.

Sub(B)

We recall that for B = Sets, the subobject fibration ]é is the fibration
Pred
Sits of predicates over sets as described in Section 0.2 in the Introduction.

Sub(B)

Proof. The equivalence (iv) < (v) is obvious, because the fibration {
already has fibred finite products and equality satisfying Frobenius. Further,
(iit) = (iv) is immediate. We shall do (i) < (iil) and (iv) = (iii) and leave
the equivalence of (ii) to the other points as an exercise.

(1) = (ii1). For a morphism u: I — J in B and a mono m: X — [ one defines

a coproduct by
I, (m) = (Im(u om) > J)

Notice that [],(m) is simply u o m if u is a mono (as in Observation 4.4.1).
There is then a bijective correspondence

Hu(m) <n

m < u'(n)
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establishing an adjunction (], 4 u*), as follows.

e if m < w*(n), then u o m factors through n and thus [], (m), being the
least mono for which this holds, satisfies [ [, (m) < n.

o if [[,(m) < n, then, using that u o m factors—by definition of image—
through [],(m), one obtains m < w*([],(m)); hence m < uw*([],(m)) <
u*(n).

The stability of the image factorisation ensures that the Beck-Chevalley condi-
tion holds. For Frobenius, consider for u: I = J, m € Sub(I) and n € Sub(J)
the following pullback squares.

Then

(l

n A 11, (m) [, »*(I1.(m)) by definition of A
I, L. (v (n))*(m) by Beck-Chevalley
[T, Ly () (u* (n))*(m)

= [.(u"(n) Am).

(iii) = (1). Given a morphism u: I — J, define the image of u as:

[L.(T) = LL.(id1)
7)

e e

m(u) = (Im(u)
Using the unit 5 in the diagram:
n

I K Im(u)
\ Iu*<uu<id1>) Im(u> - 1, (idy)
idy
I J

u

one obtains that u factors through m(u). If also v = n o f with n monic,
then id; < w*(n) and thus, by transposition, m(u) = [],(id;) < n. Stability
follows from the Beck-Chevalley condition:

w*(m(u)) = w (L, (7)) = Uy ) (T) = m(w* ().

(iv) = (iil). Coproducts along an arbitrary map u: [ — J are obtained by
writing u = 7 o (u,id): I — JxI — J as composite of a mono and a Cartesian
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projection. Since we have coproducts along projections (by assumptions) and
along monos (by Observation 4.4.1) we are done by composition of adjoints.
Beck-Chevalley follows from a similar argument. O

Image factorisation in regular categories gives rise to a class of maps which
are called ‘covers’. The best way to think about these is as surjections, see
explicitly in Lemma 4.4.7 below.

4.4.5. Definition. In a regular category, a morphism u: I — J is called a
cover if its monic part m(u): Im(u) — J is an isomorphism. One often writes
u: [ —> J to indicate that u is a cover.

In Example 4.4.3, the covers in Sets are precisely the surjective functions.
The next lemma lists a series of results about these covers; it includes four
alternative characterisations: in (i), (iii), (vii) and (viii).

4.4.6. Lemma. In a regular category the following holds.
(1) A morphism u is a cover if and only if u is extremal: for each factori-
sation u = m o v’ one has: m is a mono implies that m is an isomorphism.

(i1) A monic cover is an isomorphism.

(i) A morphism u is a cover if and only if the map [[,(T) = T is an
isomorphism, where [[, is the induced left adjoint to u*, see (iii) in Theo-
rem 4.4.4.

(iv) Every isomorphism is a cover. Covers are closed under composition: if
u,v are (composable) covers, then v o u is a cover. Also, if v o u and u are
covers, then v is a cover.

(v) Covers are stable under pullback.

(vi) Every map factorises as a cover followed by a mono.

(vil) A morphism u is a cover if and only if u is orthogonal to all monos.
The latter means that in a commuting square

u
C— .

]

C—

there is a unique diagonal as indicated, making everything in sight commute.
(viii) A morphism u is cover if and only if u is regular epimorphism.

From (vii) one can conclude that the factorisation in (vi) is essentially
unique (in an obvious sense). This yields that the collections (Monos) and
(Covers) form a factorisation system (see [18]) in a regular category.

Most of the results in this lemma are easy to prove, except the implication
(=) in (viii) which tells that covers are regular epis (i.e. epis which occur as
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coequalisers). This is a folklore result. The proof that we present is essentially
as in [169, Theorem 1.52].

Proof. (i) The implication (<=) is obvious by definition of ‘cover’. In the
reverse direction, assume a cover u: [ —>J is written as u = m o u’, where m
is a mono. Then the image m(u) of v must satisfy m(u) < m. But since m(u)
is an isomorphism by assumption, we get that m is an isomorphism as well.

(11) Write u = u o id and apply (=) in (i).
(i) Notice that for a morphism u one has

. (T) =11, (id) = m(u o id) = m(u).

Hence u is a cover if and only if m(u): Im(u) — id is an isomorphism (in the
slice category), i.e. if and only if [[,(T) — T is an isomorphism.

(iv) If u is an isomorphism, then one can take as monic part m(u) = u.
And if u, v are covers, then so is v:

Hooo M=, (U (M) =1L (T) =T

so we are done by (iii). Similarly, if v o u and u are covers, then

T2 Huou(T) = (L (T)) = LL(T).

(v) Consider a pullback square

1%

Then

=
C.
£
3
R

v*(u) (v,* (T))
*(II.(T)) by Beck-Chevalley
v™(T)

R

<

1

R
.

Hence v*(u) is a cover again by (iii).

(vi) Every morphism u:] — J can be written as [ kN Im(u) mﬁ) J. We
show that u’ is a cover using (i). Assume 4’ = n o u”, where n is a mono.
Then u = (m(u) o n) o v and thus m(u) < m(u) o n, since m(u) is the least
mono through which u factorises. But then n must be an isomorphism.
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(vii) First, assume that u is cover in a commuting square

u
I —J

fl |s

Z K
m

Then u factors through the mono g*(m). Hence by (i}, ¢*(m) is an isomor-
phism. This yields the required diagonal J --» Z.

Conversely, if u: I — J is orthogonal to all monos, and u can be written as
u =n o f with n a mono. Then we get a commuting square

I-—>J

N

Y>——J

This yields a fill-in s:J --» Y with sou = f and n o s = id. So n is a split
mono and thus an isomorphism.

(viii) It is easy to see that regular epis are covers: suppose u:l —» J is
coequaliser of f,g: K = I and can be factorised as u = m o v/ where m is a
mono. Then v’ o f = u’ o g so there is a unique n with n o u = u’. Hence
monou=mou = u, which yields m o n = id by the fact that u is epi.
Thus m is an isomorphism and u is a cover by (i).

For the converse we first prove that a cover u:/— J i1s an epi: suppose
f,9:J = K are given with f o u = g o u. Then u factorises through the
(monic) equaliser of f and g. Hence this equaliser must be an isomorphism
by (i). Thus f =g.

We come to the proof that such a cover u: I - J is a regular epi. We form the
kernel pair 71, m3: R =3 I, by taking the pullback of u against itself, and intend
to show that u is the coequaliser of this pair 7, m5. Assume therefore that
v:I = K also satisfies v o m; = v o wo. We factorise the tuple (u,v): I - Jx K

as
(u,v) w m
(1—1xK)=(1 —»W>—>JxK)

and intend to show that m# o m: W — J is an isomorphism; then we are done
since it yields that & = 7’ o m o (r o m)~': J — K is the (unique) required
mediating map with a o u = v (since (1 o m)~! o u = w).

Firstly, m o m is a cover since both w and (7 o m) o w = u are covers, using
(iv). In order to see that 7 o m is monic, assume f,g: Z = W are given with
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momo f =womo g. Form the pullback square

Z' h >7
<f’,g’>l—l l(f,g>

IX] —————>W x W
WX W

Both id x w and w x id can be obtained from w by pullback along a Cartesian
projection. Hence they are covers by (v) and thus w x w = (id x w) o (w x id)
as well. But then also A is a cover and in particular an epimorphism. One has
uo f' = mo(u,v)o f
= tromowo [’
= gmomo foh
= womogoh by assumption about f,g
= uog.
Hence there is a unique k: Z' — R with m; o k = f’ and 79 o k = g’. Then
(FFomof)oh = Tfomormowxwo(f,¢)
= 7 o{u,vyo f
= vomok
= vomgok by assumption about v
= 7 o(u,v)og
= ("' omog)oh.
But then 7’ om o f = 7’ o m o g, since h is an epi. Hence m o f = m o g and

thus f = g, since m is a mono. By (ii) we conclude that 7 o m is isomorphism
and so we are done. ]

The attention in this section has been focussed on monos and covers in
regular categories. It is therefore appropriate to close with the following result,
which tells that monos and covers are the internal injections and surjections in
subobject fibrations (see Definition 4.3.9). Some more information on monos
and covers is given in the exercises.

Sub(B)
4.4.7. Lemma. With respect to a subobject fibration ﬂli of a regular cat-
egory B, a morphism in B s internally injective if and only if it 1s monic in
B, and it is internally surjective if and only if it is a cover in B.

Proof. Consider a morphism u: [/ — J in B. The first part of the statement
that u is internally injective if and only if it is a mono in B follows from
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the fact that internal and external equality coincide in subobject fibrations.
Explicitly, the proposition stating that u is internally injective amounts to

Eq(u o m,uo ') < Eq(m,n') over I x I.

Since equality in subobject fibrations is given by equalisers (see Examples 3.4.4
(i) and (ii)), this reduces to the statement that the equaliser of u o 7 and u o n/
factors through the diagonal § = (id,id): I »— I x I. One easily verifies that
the latter holds if and only if u is a mono in B.

In the same vain, the statement ‘u is internally surjective’ unravels to

Eq(m,uo n'
idJSImageof(o ( )J><I ul J).

But since the equaliser Eq(m, u o 7’) of m and w o 7’ is (u,id): I — J x I, this
amounts to
1dy < Image of u,

which says that u i1s a cover. O
Exercises

4.4.1. Show that images in the category of sets (as described in Example 4.4.3)
are stable.

4.4.2. A split epi is morphism u which has a section (i.e. for which there is an s
with u 0 s =id).

(i) Check that a split ept is an epi.
(it) Show that in a regular category, a split epi is a cover.

4.4.3. Show that for a subobject fibration, the internal description of ]_[u in Ex-
ample 4.3.7 (1) coincides with the description in the proof of Theorem 4.4.4
in terms of images.

4.4.4. In a regular category, consider maps

e u m

K > [ J L

and show that there are the following equalities of subobjects.
(1) Im(u) — Jis Im(u o e) — J;
(ii) Im(u)— J = Lis Im(mou) — L.
4.45. Let I =» I' > J be the factorisation of w:] — J in a regular category.
Form the kernel pairs

o /\0
P u ST €
K I —J and L [ —]
S——7 N7

1 ,\1
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and show that the tuples (m, m1) and (Ao, A1) are the same, as subobjects
of I x [.

4.46. Let I be an object in a regular category. Show that / —>1 (¢.e. the unique
map [ — 1is a cover) if and only if I x I =3 I — 1 is a coequaliser diagram.

4.4.7. Let B be a regular category with an object I € B. Show that the following
statements are equivalent.

(i) I-1;

(ii) The functor [*:B — B/ reflects isomorphisms;

(i1} The functor /*:B — B/[ is conservative (i.e. reflects isomorphisms
and is faithful).

44.8. Let B be a category with finite limits and coequalisers. Show that B is
regular if and only if regular epimorphisms in B are stable under pullback.
(Sometimes one finds (for example in [18]) this latter formulation as defi-
nition of regular category—in presence of coequalisers.)

[Hint. For a map [ — J consider its kernel pair R =2 [ and their coequaliser
I — J’. One gets a mono J’ =~ J which is the image of u.]

4.4.9. Establish that the category Sp of topological spaces and continuous func-
tions is not regular.

[Hint. Use the previous exercise, or see [36, 11, Counterexample 2.4}1.:5].]

4.4.10. In Example 4.3.8 we have associated with a regular fibration 1P two
categories Rel(p) and FRel(p) of types and (functional) relations in p. Here
we define a slightly different category FRelP(p) of predicates and functional
relations. It has

objects objects X € &
morphisms X — Y, say with X over [ and Y over J, are (equiv-
alence classes of) relations R € [Erx; which satisfy
wI,5:J| R, 7) F X, ANY,,
wl, 52,5 J | R(3, 5), R(1,5") b5 =01 ),
el | X F35:JR(4, 7).
Verify that FRelP(p) is a regular category. This is like the construction of

a regular category from a regular theory, like for example in [211, Chap-
ter 8, 2].

4.5 Subobject fibrations II: coherent categories and logoses

We continue our investigation of subobject fibrations. In particular we investi-
Sub(B)

gate when a subobject fibration } is a coherent fibration (z.e. has fibred

distributive coproducts L, V) and when it is a first order fibration (i.e. addi-

tionally has implication O and universal quantification V). In the first case we
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call B a coherent category, and in the second case a logos. In [85] a coherent
category is called a pre-logos, and in [211] it is called a logical category.

4.5.1. Definition. A coherent category is a regular category with

e binary joins V in each subobject poset Sub([), which are preserved by pull-
back functors u*:Sub(J) — Sub(I);

e a strict initial object 0.

Recall that strictness means that each arrow X — 0 is an isomorphism.
The way in which these joins V are usually obtained is as follows.

4.5.2. Lemma. In a regular category with universal coproducts +, the sub-
object fibre Sub(l) over I has joins V of subobjects X — I and Y — I, by
taking the image of the cotuple, as in

X+Y —>XVY

U

I

These V’s are stable under pullback. m|

4.5.3. Theorem. A regular category B s coherent if and only if its subobject
Sub(B)
fibration %B 1s coherent.

Proof. Assume B is a coherent category. We have to show that the subobject
Sub(B)
fibration 1  has a fibred initial object and that its joins V are distributive.

We begin with the latter: one has

LI, n*(my vV my) by definition of A

LI, n*(my) V n* (ms)

L, n*(m) Vv 11, n*(m2) since [],, is left adjoint
{(nAmy) V (n Amg).

1%

n A (my Vms)

IR

IR

Further, for I € B, let Ly be the unique vertical map 0 — I; it is a mono,
since for maps f,g: K =3 0, both f and g are isomorphism with f~! = g~! by
initiality. Thus f = ¢. For each mono m: X — I one obviously has L; < m
in the poset Sub(/) of subobjects on I. And for u: I — J, in the pullback
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diagram,

U/

0
u*(J_J)I __l ILJ
I J

u

the map u’ is an isomorphism by strictness. By initiality one gets that the
composite 0 5 0’ — [ is Ly, so that u*(L;) = 1 over I. Thus the subobject
fibration on B has a fibred initial object.

In the other direction, we follow the argument in [85, 1.61] to show that if
Sub(B

lll: ) is a coherent fibration, then B has a strict initial object (and is thus a
coherent category). Let 0 be the domain of the bottom element L1:0— 1 in
Sub(1). For an object I € B, consider the pullback diagram,

0,
L]
I

= —— D
—
-

1

Assume there is an arrow f:I — 0; we show that f is necessarily an isomor-
phism. The above pullback yields a map f': I — 0’ with Lyo f/ =id; = T;.
But then 1; = T; in Sub(/). Applying this same argument to fom: I x [ —
I — 0 yields Ly = 85 = Trxy, where d; is the diagonal (id,id): I — I x I.
Hence 47 is an isomorphism and so # = n’: I x I — I. The unique arrow
I1:7 — 1 is then monic and so an object of Sub(1). Hence L; < !y which
yields an inverse for f: I — 0.

In particular, & in the above diagram is an isomorphism. We obtain a map
0 — 0/ — I. It is the only map 0 — I, since given two such maps, their
equaliser has codomain 0 and is thus an isomorphism. m]

Next we look at first order subobject fibrations.

4.5.4. Definition. A logos is a coherent category for which each pullback
functor u*:Sub(J) — Sub(/) has a right adjoint [],,.

4.5.5. Theorem. A category B with finite limits is a logos if and only if its
Sub(B)
subobject fibration Iﬁ 1s a first order fibration.

Proof. Assume B is a logos. We first notice that the subobject fibration
Sub(B)
]ﬁ has products: there are adjunctions (u* - [],) and Beck-Chevalley
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holds for these products, because it already holds for coproducts [], (see
Lemma 1.9.7). In particular, this fibration has simple products. It also has
fibred exponents: for my,my € Sub(I) put,
def .
my D my = [, mi(me).

Then, for a subobject m;: X — I with domain X,
Sub([)(n, my D m2) = Sub(X)(mI(n), m’{(mg))

Sub(1)( 1L, mi(n), ms)

Sub([)(m1 An, mg).

The latter by definition of A. Exponents are preserved under reindexing by
Beck-Chevalley for [].

The reverse implication follows from the construction of ], in a first order
fibration, as described in Example 4.3.7 (ii). o

iR

R

We conclude this section with examples of logoses, involving in particular
the categories of sets and of PERs. Logic in w-Sets will be described later in
Section 5.3 (especially in Proposition 5.3.9) in terms of its regular subobjects.
There one also finds a description of regular subobjects in the category PER,
giving rise to classical logic. '

4.5.6. Example. (i) The category Sets of sets and functions is a logos. We

have already seen that it is a regular category. Its posets of subobjects Sub(7),
Sub(Sets) Pred

occurring as fibre categories of the fibration 1 = slt , can be iden-

ets ets
tified with the powersets (PI,C). These posets are Boolean algebras, so we
certainly have distributive joins (namely @ and U) making Sets into a coherent
category. Further, there are products []: Sub(/ x J) — Sub([) by

(XCIxJ)—({i|Vied (i,j)eX}CI).

In the next chapter we shall see that, more generally, every topos is a logos.
(i1) The category PER of partial equivalence relations is also a logos (as

shown in [143]). Recall from Section 1.2 that PER has finite limits. It is not

hard to see that a morphism f: R — S is a mono in PER if and only if the

function f:N/R — N/S between the underlying quotient sets is injective.
For a morphism f: R — S we define the image as the PER,

Im(f) = {(n,n’) € |R| x |R| | f([n]r) = f([n"]R)},

together with the monomorphism,

m(f)

Im(f) >—————> S, [Plim(sy = f([n]r)-
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This is indeed a mono, because the underlying function is injective by con-
struction:

m(f)([nlims)) = m(F)([n'lm)) € Fnlr) = f([7']r)
< [l = [ -

There is then a morphism f': R — Im(f) by [n]r — [n]im(s). It obviously
satisfies m(f) o f/ = f. It is not hard to see that this image Im(f) — S is
appropriately minimal, and stable under pullback. Thus we get that PER is a
regular category. A characterisation of covers in PER 1s given in Exercise 4.5.2
below.

One can conclude that PER is a coherent category from the fact that it
has universal finite coproducts (0, +), using Lemma 4.5.2. The initial object
0 is the empty PER § C N x N, which has quotient set N/@ = §}. And the
coproduct of PERs R, S is

R+ S = {{{(0,n),(0,m)) | nRm} U {({(1, n),(1,m)) | nSm}.

Finally, PER is a logos, because it is locally Cartesian closed, see Exer-
cise 1.2.7. The product functors [[,: PER/R — PER/S between slices re-
strict to product functors []:Sub(R) — Sub(S), because right adjoints pre-
Serve Imonos.

(iii) In Example 4.2.5 we have seen how a frame (or complete Heyting al-
Fam(A
gebra) A gives rise to a first order fibration siis) . It turns out that first
order logic is also present at a different level: the total category Fam(A) of
this fibration is itself a logos. We sketch the main points.

A terminal object in Fam(A) is the family (T).ey consisting of the top
element T € A over a singleton (terminal) set 1 = {*}. The pullback of
morphisms u: (2;)ier — (2x)kex and v:(y;)jes — (zx)kex consist of the
family (z; A ;)i j)erxxos over the pullback I xg J in Sets of w:/ — K
and v:J — K, with obvious pullback projections. A morphism u: (2;)ie; —
(yj)jes is monic in Fam(A) if and only if the underlying function u: I — J
is injective. A subobject of a family (z;)ics may thus be identified with a
“subfamily” (z})iev for V C I with 2} < x;, foralli e V.

For an arbitrary such map u in Fam(A), we can first factorise u:/ — J in
Setsas v':I—=J' = {j € J|3ielu@) = j} followed by m(u): J' — J.
This factorisation can be lifted to Fam(A) as:
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It is easy to verify that this factorisation in Fam({A) is appropriately minimal
and stable under pullback. This shows that Fam(A) is a regular category. It
is coherent since the empty family is a strict initial object, and since for an
arbitrary family (z;)ic; € Fam(A), the join of two “subfamilies” (y:)sevcr
and (z;)ievcr is a family over U UV C T given by:

yi  ifieU\V
(i) V()5 = = ifi e V\U
viveg fielUnV.

These joins are distributive and stable. Finally, we have to produce a right
adjoint [], to pullback u# along a morphism u:(z;);e; — (y;)jes. Notice
that

“#((wj)jevgJ) = (Wu(i))ieu (v)CI-

The required right adjoint is then given by:

M@iever)=| A w
i€uTt(j) JEVL(U)
where V, (U)={jeJ|Viel.u(i)=j=>i€U}.

The second example above, showing that subobjects in PER. form a first
order fibration, leads to the following associated result, showing that also
reqular subobjects in PER. from a first order fibration—but with classical
logic. It is based on a (folklore) correspondence between regular subobjects in
PER and subsets of quotients.

4.5.7. Proposition. (i) For a PER R there is a bijective (order preserving)
correspondence between

(a) subsets A C N/R of the quotient of R;

(b) subsets B C |R| of the domain of R which are saturated: if n € B
and nRn' then n' € B;

(c) regular subobjects R’ — R of R.
RegSub(PER)

(i1) The fibration PER 1s a first order fibration with classical logic.

Proof. (i) The equivalence (a) < (b) is easy, so we concentrate on (b) < (c).
For two parallel morphisms f,g: R =2 S in PER, one can describe their
equaliser by restricting attention to the saturated subset B C |R| given by
B ={n € |R]|| f([n]r) = 9([n]r)}. And conversely, given a saturated subset
B C |R|, define a PER S by

S={{{(i,n),(j,n")) | 1,7 € {0,1} and nRn' and n € B}
U{(0,n),(0,n")) | nRn' and n ¢ B} U {(1,n),(1,n)) | nRn’ and n ¢ B}



Section 4.5: Subobject fibrations II: coherent categories and logoses 271

Then there are morphisms f, g: R =3 S defined by
f(lnlr) =[0,n)]s  and  g([n]r) = [(1,n)]s.

It is not hard to see that the set B C |R} can be recovered from the equaliser
subobject R’ — R resulting from these f,g.

(i) Using (a) in (i), the set-theoretic operations of (classical) first order
logic can be used for this fibration of regular subobjects. a

Exercises

4.5.1.  Prove in a regular category with universal coproducts: if X — Jand Y ~— [
are disjoint (i.e. X AY = L), then X VY =X +Y.
4.5.2.  (From [143]) Show that a map f: R — S in PER is a cover if and only if

3e € N.Vn € |S|. f(le - n]r) = [n]s.

[Notice that such an e need not give us a morphism S — R, since we do
not know that nSm = e-nRe-m.]

4.5.3.  The following combined formulation of O and V comes from {211]. Show that
in a category with finite limits, one has implication in subobject posets and
right adjoints Hu to pullback functor u* if and only if: for each u: I — J
and for each pair of subobjects m: X > [ and n:Y »— I there is a largest
subobject k: Z — J with u*(k) Am < n.

4.5.4. One can say that the Axiom of Choice (AC) holds in a regular category
if and only if every cover c: I —>J splits (i.e. has a section s: J — [ with
cos=id).

(1) Check that this formulation in Sets is equivalent to (one of)) the usual
formulations of (AC).

(if) Verify that (AC) holds in a regular category if and only if the covers
are precisely the split epis (see Exercise 4.4.2).

(ii) Prove that if (AC) holds, then internal and external existence coincide
in the subobject fibration. This means that for a subobject X — [ x J,
the proposition

i1 F35:J.X(4, 7): Prop
holds if and only if there is a map s: I — J such that
11 F X(2,s(z)): Prop

holds.
4.5.5. In a first order fibration with exponents in its base category, we say that
the internal Axiom of Choice (IAC) holds if the following proposition
holds.

fJ! | “f is internally surjective”  “f has a section”

(i) Describe explicitly the predicates “f is internally surjective” and “f
has a section”.
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(ii) Consider a logos B with exponents. Show that (IAC) holds (in the
associated subobject ﬁbration) if and only if for each object K the
exponent functor (—)*:1B — B preserves covers.

[A proof making use of Kripke-Joyal semantics can be found in [188,
Chapter VI].]

4.6 Subset types

Most of the structure of fibrations that we considered so far was structure
in fibres (like A, V) or between fibres (like [],]]). In the next three sections
we shall study subset types and quotient types. These are new in the sense
that they involve structure between a total category and a base category of a
fibration, given by adjoints.

In this section we will give the syntax and categorical semantics of subset
types (or also called subsets). This involves the operation which maps a propo-
sition (z: 0 F ¢: Prop) to a type {z: 0| ¢}: Type. The intended meaning of the
latter is the subtype of ¢ consisting of those terms M:o for which p[M/z]
holds. The categorical description that we give below, will turn out to be a
special case of a general form of comprehension (see Section 10.4).

Subset types involve a new type formation rule, namely:

Each proposition (z: 0 F ¢: Prop) gives rise to a type {z: 0| ¢}.
Formally we write this as a rule,
formation

z:0 + ¢:Prop

F{z:0o|p}: Type
It comes with introduction and elimination rules for terms of this newly formed
type:
introduction
ziokp:Prop T HFMo T|0Fp[M/z]
I Fi(M):{z:0|¢}

elimination
I'FN:{z:0|p} - [z:o|O,p F9Y
wit
I'Fo(N):o L,y {z:0]| ¢} | Olo(y)/z] + ¥lo(y)/x]
The associated conversions are

ofilM))=M and i(o(N)) =N.
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The letters ‘v’ and ‘o’ stand for ‘in’ and ‘out’. It is more appropriate to write
i, (M) and o,(N) with the proposition ¢ explicit as a subscript, but we often
find this notation too cumbersome. In mathematical practice these i’s and o’s
are usually omitted altogether.

We say we have full subset types if we also have the converse of the last
rule:

full subset types

I y:{z: 0|} | Oo(y)/z] +lo(y)/x]
Fz:0|0,p ¢
This is a useful additional rule. Consider for example two propositions
z:0 F o,¢:Prop. With this rule we can conclude that {z:c|¢} is included
in {z:0|¥} if and only if ¢ implies ¥. In one way this obvious; we give a
derivation of the other way, to indicate where fullness is used:
y:{z:olp} Fiylop(y)): {z: 0|9}
yi{z:o|p} |0 F Ploy(y)/]
zo|p kY
As this example suggests, fullness of subset types corresponds to fullness of
an associated functor. This will be made explicit in Definition 4.6.1 below.
Notice that in the above type formation rule, we have a subset type {z: o | ¢}

in which z is the only variable which may occur in ¢. We could have stated a
more general formation rule with type context I',

(full subset types)

I'z:0 F :Prop
I'FA{z:0]|p}: Type

But that leads to type dependency: one gets a type {z: | ¢} which may contain
variables y: 7 of types 7 declared in I'. In the present chapter we only consider
“simple” predicate logic (SPL) over simple type theory, in which we wish to
exclude this type dependency. We postpone such subset types with contexts
to what will be called “dependent” predicate logic (DPL) in Section 11.1. But
we would like to stress here that the extended formation rule is quite natural,
for example in forming the subset type

n:N,m:N = m < n:Prop
n:N F {m:N{m < n}: Type

of natural numbers less than n. This is clearly a type in which a term variable
n occurs. One could say this more strongly: the restricted formation rule
without type context is the more unnatural version.
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E

Categorically, a logic is described by a preorder fibration 1P where we
standardly assume that the base category B has finite products and that the
fibration p has fibred finite products. Objects I € B are seen as types and
objects X € E as propositions. One thus expects that subset types involve a
functor {—}:E — B which maps a proposition Y = (j:J | Y;) € E to a type
{j: J1Y;} € B. One further expects there to be a monic ‘projection’ morphism

G|V — sy

making {j: J|Y;} a subtype of J. Our use of the word ‘projection’ here comes
from the more general treatment of comprehension in Section 10.4. Sometimes
we call the object (or type) {Y'} = {j: J|Y;} the extent of Y.

The natural requirement is that an element k: J is in {j: J|Y;} if and only
if Yy holds. In arrow-theoretic language:

a morphism u: I — J factors through my: {Y} — J
if and only if (%)
the proposition (i: I & Yy(;y: Prop) holds (i.e. T < u*(Y)).

All this structure comes about by the requirement that the functor {—}:E —
B is right adjoint to the terminal object functor T:B — [E. This is (a preorder
version of) what is called a D-category in [74, 75]. It is a simplification of
a structure used by Lawvere to capture comprehension, see Exercise 4.6.7.
Later in Section 10.4 these notions will be studied more systematically under
the name ‘comprehension category with unit’.

E
4.6.1. Definition. A preorder fibration %p with terminal object functor

T:B — E is said to have subsets (or subset types) if this functor T has a
right adjoint.

We usually write {~}:E — B for such a right adjoint. For X € E, the
counit £x: T{X} — X induces a morphism p(£x): {X} = pX in B. We write
nx = p(ex) for this map and call it a (subset) projection.

The assignment X — mx extends to a (faithful) functor E — B~ . We say
that the fibration p has full subset types if this functor m(_):E — B~ is
full (and faithful).

Notice that having subset types is a property of a fibration, because it is
expressed by an adjunction. Later, in Theorem 4.8.3 we shall see an equivalent
description of subset types in terms of a right adjoint to an equality functor.

The next lemma gives several useful results involving subset types. In par-
ticular, in (ii) it is shown that the earlier expected property (*) of subset types
is captured by the above definition.
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E
4.6.2. Lemma. Let ép be a preorder fibration with subset types as described
above.

(1) Each projection morphism mx:{X} — pX in B is monic.
(i1) For each map u:I — J in B and object Y € E over J, there is a
bijective correspondence
T < u™(Y) overl
u-—+ 7y nB/J

This says that u: I — J factors through 7y if and only if T < u*(Y) as in (x)
above.

(ii1) The assignment X — wx extends to a functor P:E — B™ which
maps Cartestan morphisms to pullback squares. This functor restricts to E —

Sub(B) by (7).
(iv) The functor P in (ui) preserves all fibred limits.

Proof. (i) Suppose that parallel maps v,w: K =3 {X} are given with nx o
v = mx o w. The transposes v, w": T == X then satisfy

p(v") =plex o T(v)) = nx ov = 7x o w = p(w").

But then v" = w”", because we have a fibred preorder (see Exercise 1.3.11).
Hence v = w.
(i1) For a vertical map f: T — u*(Y) over I, one obtains a map
u(Y)o f: T = Y in E over u and, by transposition, a map:
F={a)oflon:I —{Y} inB

This fis a map u — 7wy in the slice category B/J, since

Ty © f = p(Ey o T{H(Y) o f} o T'I)[)
p(E(Y) o f) opleT(ry o Tnr)

= u.

Conversely, given v: I — {Y'} satisfying ny o v = u, then by transposition
one obtains a map T — Y over u, by an argument as in (i). Thus one gets a
vertical morphism v: T — u*(Y') over I. These operations f — f and v —> U
are each others inverses.
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(iti) For a morphism f: X — Y in E, there is a commuting diagram in B,

) —

x| IW

pX —— > py

pf

since
Ty o {f} =pley o T{f}) =p(foex) =pf omx.

In case f is Cartesian in E, this diagram is a pullback in B: if maps u: I — pX
and v:I — {Y} are given with pf o u = 7y o v, then v is a morphism
(pf o u) = my in B/pY . Hence one obtains by (ii) a morphism in

Er (T, (pf 0wy (V) = Er(T, w'(pf) (V)
= IEI(T, u*(X)) because f is Cartesian

HB/pX(u, 7rx).

This resulting map in B/pX(u,7x) is the required mediating map.

(iv) We write P for the functor X +— mx, and shall show that P preserves
fibred finite products (which is of most interest at this stage).

Since T is a full and faithful functor, the unit 5;: 7 — {TI} is an isomor-
phism. Thus m(y;) = id; in B//, which shows that P preserves fibred terminal
objects.

For X,Y over J, we have for an arbitrary map u: I — J in B,

B/J(u, P(X x Y))

IR

1%

E (T, (X xY))
Er (T, w(X) x u*(Y))

Er(T, (X)) x E(T, w(Y))
B/pX (u, PX) x B/pX(u, PY). D

R

It is now easy to see that having (full) subset types in a fibration (as in
Definition 4.6.1) gives us validity of the rules of (full) subset types as described
in the beginning of this section: for a term u:/ — J and a proposition ¥ =
(j:J F Yj:Prop) above J, a morphism T < u*(Y') over I induces by (ii) a
map

i(u)

I—{Y} with 7yoi(y)=u.
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This gives validity of the introduction rule. As to elimination, for a term
v:l = {Y} we put o(v) = my o v:/ — J. Further, assume we have an
entailment,

w1, j: )| X5 AY(5) B 2(7),
that is, an inequality above [ x J,
XAY'<Z  where Y =x"(Y).
Then we have to show
il k{5 | Y5} | X (i, 0(k)) F Z(3, o(k)),
which translates into
(id x y)"(X) < (id x 7y)" (2).
This is equivalent to
7(X) < 73(7)  above {Y'},

Since both diagrams below are pullbacks.

' (Y
Ix{Y} ————{¥Y} {r"(V)}={Y"} AT Y}

i - T n:‘_] Ty
S A

J IxJ] —J
il il

The latter in equality 7y, (X) < 73, (Z) follows from X AY’ < Z by applying
7y to X < Z and using T < 7}, (Y”), which is the vertical part of the counit
ey T =T{Y'} =Y.

If we additionally assume that the fibration has full subset types, then the
corresponding full subset rule is valid. Therefore we have to establish the
converse

W;//(X) S W;//(Z) = X /\Y’ S Z
of what we just proved. This is done as follows.

Ty (X) < 7y (2)

= there is a (unique) map 7y,(X) --+ Z over my»
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= there is a (unique) map --» in

(X} <———{m.(X)} - - - - - ~{Z}

S

IxJe———<{V}oo > [xJ
Ty Ty

= mxayn Enx Anyr <7z with 2 from (iv) in Lemma 4.6.2
= XAY' <Z because the projection functor [E — B~ is full.

Notice that the square on the left is a pullback because the projection functor
maps Cartesian morphism to pullback squares (as in (iii) in the lemma).

Sub(B)
4.6.3. Examples. (i) Every subobject fibration }ﬁ has full subset types.

The associated functor {—}: Sub(B) — B takes a representation (m: X — J)
of a subobject to its domain X € B. There is an obvious correspondence

{ d ¥
d ) o m :
( ) ) ( 7 ) in Sub(B)

I]—X={m} inB

establishing that {—} is right adjoint to the terminal object functor 7 —
ids. The resulting projection functor Sub(lB) — B™ sends a subobject to a
representative. It is then a full and faithful (fibred) functor. Hence subobject
fibrations always have full subset types.
Fam(X)
(ii) For each poset X with top element T, the family fibration Sits
comes equipped with a subset functor given by

(zj)jes = {j€J|z; =T}

It singles out the indices of elements that ‘are true’. In general, this does not
lead to a full functor Fam(X) — Sets™.

(111) Consider a predicate logic with (full) subset types, built on top
L(Z,11,4)

of a specification (X,1II,.A). The associated classifying fibration a(iz)

then has (full) subset types in a categorical sense. One defines a functor
{-}:L(Z,I,A) = () by (z:0 F ¢:Prop) = ({z:0]|p}: Type). The re-
quired adjunction T 4 {—} boils down to a correspondence between terms M
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and N in:
M
(y:7 F T:Prop) —— (z:0 F ¢:Prop)

T—N—> {z:0] ¢}
Le. between M and N in:
yrEM(y):o with y7|T Fo[M/z]
y:7 E N:Az: o]}

This correspondence is given by
M —i(M) and N — o(N).

(To make this work, we must have equivalence classes (under conversion)
of terms as morphisms in the base category (¢(X). Also we are assuming
finite products of types here, so that we may restrict ourselves to singleton
type contexts—which may be identified with types—as object of this base
category.)

One gets a functor £(X,.A) — C/(X)™ which maps a proposition (z:¢ F
@: Prop) to the term o(z2): (z: {z: 0| p}) — (2:¢). It is full if and only if it is
fibrewise full. The latter means that for a term z: {z: 0| ¢} F M:{y: 7| ¢} with
oy (M) = o,(z), we have an entailment z:0 | ¢ F ¥ (which is a morphism
over (z:0). Since M = iy(o,(2)), this follows from an argument as in the
beginning of this section, using the full subset rule.

(iv) Next we describe an example of subset types involving ‘metric predi-
cates’. It is an adaptation of a construction in [177] (which is based on [194]).
For a metric space X we conveniently write X for the underlying set and
X (-, —) for the metric involved. That is, for the function X(—, =): X x X —
[0, 0] satisfying for 2, y, 2 € X,

X(x,y):O < =y,
X(z,y) = X(y, ), X(z,y) + X(y,2) < X(z,2).

For convenience we have included oo in the range [0, co] of the distance func-
tion; one can also take [0,1] C R as range.

A function f: X — Y between the underlying sets of two such metric spaces
in called non-expansive if Y(f(z), f(2’')) < X(x,2') for all 2,2’ € X. We
write MS for the resulting category of metric spaces and non-expansive func-
tions.

A metric predicate on a metric space X is a non-expansive map ¢: X —
[0, 00] where [0, 0o} has the obvious metric. One can show that these metric
predicates on X form a metric space with distance between ¢, ¥: X =3 [0, o0]
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given by
sup |p(z) — ¥()|.

reX
They can be ordered by

PCY & Vo eX.p() < o).

Note the inversion. This yields a poset MP(X). One thinks of such a metric

predicate ¢ as absolutely true in z if ¢(z) = 0 and as almost true in z if p(z)
is very small. Thus ¢ C ¢ if and only if ¥ is everywhere more true than ¢.

The assignment X — MP(X) extends to a split indexed category MS°P —
MP

Cat by composition; hence to a split fibration, which will be written as 1\/%5

It has a terminal object functor T: MS — MP which sends a metric space X
to the top metric predicate

TXZ/‘Z'EX.O

in the poset MP(X) of metric predicates on X. We also have a subset functor
{-}: MP — MS by

(X RN [0,00]) —~ {x e X |p(z) =0}, with metricasin X.

It singles out the points where the predicate is absolutely true. The adjunction
(T 4 {=}) is then easily established.
One does not get full subset types.

4.6.4. Remark. Subset types are often used in implicit, hidden form. For
example, one often conveniently writes

(I>0)Ayp(i—1)
where 7 ranges over natural numbers N, and 9 is a predicate on N. Formally,
#:N F 9(¢): Prop. The proposition ¢(i — 1) only makes sense if ¢ > 0 holds,
so we cannot interpret (i > 0) A ¢{¢ — 1) as a predicate on natural numbers.
In fact, ¥/(i) = ¥(i — 1) is a predicate on the extent {z:N|z > 0} of the
predicate ¢(¢) = (i > 0). Then we can correctly write the above conjunction

as:
e(1) ALy, (¥)(0)
= (i>0) AZj: {a:N |2 > 0}. (o) =n i A ¥(o(j) — 1)

so that it becomes a predicate on the natural numbers. Of course, this is
rather cumbersome, especially because it is clear that we should take i(7) as
instantiation of j.

Notice, by the way, that by using Frobenius we obtain: ¢ A H”¢(1/)I) &~
]_[M (mo(p) A¢') = I, (¥). In [262] a new connective ¢ andalso ¢’ (with its
own rules) is introduced for ¢ A I_I”v ().
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We conclude this section with an example of how subset types can be used
to get a factorisation of maps in base categories of regular fibrations. This
gives a more abstract description of the factorisation that we have seen for
regular subobject fibrations in Section 4.4.

E
4.6.5. Example. Let %P be a regular fibration with subset types. An arbi-
trary map u: I — J in the base category B can then be written as composite

(1= ) = (1 25 (LT > )

where ][, is the left adjoint to the reindexing functor u* associated with u,
as in Example 4.3.7 (i). And the morphism ' is then obtained from the unit
of the adjunction (J], - u*) at the terminal object T € Ey over I,

T <u*[[,(T),
which yields a map u':u — L) in the slice B/J, by Lemma 4.6.2 (ii).
Further, this factorisation has the following universal property: for each

object X € E; and morphism v:/ — {X} in B with u = mx o v, there is a
unique map f:[],(T) -—+ X in E; with

This map f is obtained as follows. By the correspondence in Lemma 4.6.2 (ii),
the map v, considered as a morphism u — 7x in B/J, gives rise to a vertical
map T — u*(X) over I, and thus by transposition to the required f: ][, (T) —
X over J. Because this f is vertical one gets mx o {f} = (T Hence

{f} o &/ = v holds because 7x:{X} — J is a monomorphism.
This is precisely the universal property of the image factorisation in Defi-
nition 4.4.2 (i), when considered in the associated subobject fibration.

Exercises

4.6.1. Describe the resulting projection functor Fam(X) — Sets™ in Exam-
ple 4.6.3 (ii) and show that in general it need not be full. Do the same
in Example 4.6.3 (iv).

4.6.2. (i) Check that the category MS in Example 4.6.3 {(iv) has finite limits.
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4.6.3.

4.6.4.
4.6.5.

4.6.6.

4.6.7.

4.6.8.
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MP

(ii)) Show that the fibration N%S has simple products and coproducts.
Fam(X)
Consider the regular family fibration i associated with a (non-

trivial) frame X. Prove that the factorisat?o; of a function u:I = J as
in Example 4.6.5 1s the usual factorisation of u as a surjection followed by
an injection.

Show that a projection {X} — I is an isomorphism if and only if T < X.
Prove that the ‘monic part’ {[] (T} — J of u: [ — J in Example 4.6.5 is
an isomorphism if and only if u is internally surjective.

Show that a fibration with equality and subset types has equalisers “in the
internal logic”: for parallel maps u,v: I =3 J in the base category we have
a diagram

u
_

—_—
v

{Eq(u,v)} " J with T < Eq(uow,vom).

And for each w: K — [ with T < Eq(u o w,v o w) there is a unique
w: K — {Eq(u,v)} with 7 o w = w.
Conclude that if internal and external equality coincide, then the base cat-
egory has (ordinary) equalisers.

E

Let %p be a regular fibration with subset types.

(i) Extend the operation u +— [] (T) to a functor S: B~ — E.

(i1) Show that the projection functor X + wx is right adjoint to this
functor S.

[Lawvere [193] originally described comprehension (or subset types) by re-

quiring such a right adjoint to S; the approach above with a right adjoint

to a terminal object functor is somewhat simpler.]

E
Let %}7 be a fibration with subset types and let P:[E — B~ be the induced
projection functor.
(i) Show that P preserves any kind of fibred limit as defined in Exer-
cise 1.8.8.
(ii) Suppose that p has products [[; prove that P preserves these.

4.7 Quotient types

In the previous section we have presented subset types via a right adjoint
to a truth predicate functor. In an almost dual fashion we shall now present
quotient types via a left adjoint to an equality relation functor. It shows again
the role played by adjunctions in capturing the essentials of the structures
used in logic and mathematics. We split the material on quotients in two
parts: in this section we describe the syntax and use of quotient types in
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(simple) predicate logic. And in the next section we present the categorical
description of quotients, involving an appropriate adjunction. In higher order
logic quotient types become more powerful and behave better; this will be
shown later in Section 5.1. For more information on quotient types, see [132,
135, 133, 21].

We start with the syntax of quotient types (also called quotients, for short).
We assume we are in a predicate logic over simple type theory, with at least
propositional (or internal) equality M =, M': Prop, for terms M, M’ of the
same type o (as in Section 3.2). The following rule tells us how to obtain a
quotient type.

formation
z:0,y:0 & R(z,y): Prop
F o/R: Type

Thus, given a type o with a (binary) relation R on o, we can form the quotient
type o/R. Notice that we do not require that R is an equivalence relation.
Set theoretically, one can think of ¢/R as the quotient by the equivalence
relation generated by R. This can be made more precise in higher order logic,
see Lemma 5.1.8 (but see also Exercise 4.7.3 below). Associated with the
formation rule, we have introduction and elimination rules for quotient types.

introduction
I'FM:0o i I'FM:o r-M-o
EEEE—— wit
I' -[M]gr:o/R I'|R(M,M') F [M]r =o/r [M']r

This yields the equivalence class [M]g associated with an inhabitant M of o.
Often we write [M] for [M]g if the relation R is understood. The associated
equality rule tells that if terms are related by R, then their classes are equal.
We thus get the “canonical” map [-]g:0 — o/R.
elimination
Iz:o b N:v  T,z:0,y:0| R(z,y) F N(z) = N(y)
I a:0/R | pick & fromain N(z): 7

The intuition is as follows: by assumption, the term N (z) is constant on equiv-
alence classes of R. Hence we may define a new term pick z from a in N(z),
which, given a class a: o/ R, picks an element z from the class a, and uses it
in N(z). The outcome does not depend on which = we pick. Notice that the
variable z thus becomes bound in the elimination term pick & from a in N(z).
By a-conversion, this term is then the same as pick y from a in N(y).
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The associated conversions are
B8 pick z from [M]gpin N = N[M/z]
(n) pick z from @ in N[[z]gr/d] N[Q/4].

In the (n)-conversion it is assumed—as usual—that the variable « does not
occur free in N. In the calculations below, (1) turns out to be very useful,
especially in ‘expansion’ form: from right to left. An alternative formulation
of () involving a commutation rule is presented in Exercise 4.7.1.

For completeness we should also mention the behaviour of the new terms
under substitution:

[(M]r[P/z]) = [M[P/Z]]r
(pick z from @ in N)[P/z] pick z from Q[P/z] in N[P/z].
The latter if z does not occur free in P. And also the compatibility rules:
M=M = [Mlg=[MIr
N=N'and Q = Q' = pick 2z from Q in N = pick z from Q' in N'.

in

where in the latter case it is implicitly understood that both N and N’ are
constant on equivalence classes We recall that in these rules the equality
symbol = without subscript refers to conversion, whereas =, with subscript
refers to propositional equality (of type 7).

In the special case where the relation R that we started from is an equiva-
lence relation (provable in the logic), then we can require an additional rule,
which is a converse of the equation in the introduction rule. This extra rule can
be described categorically by the requirement that a certain functor associ-
ated with quotients is full (as will be explained in the next section). Therefore,
it makes sense to speak of full quotients, in case this additional rule is added
(in analogy with full subset types in the previous section). In category theory
one usually calls these quotients effective.

effective or full quotients
Mo Mo
I'|[M]r=o/r [M']r + R(M,M’)
Thus, effectiveness says that inhabitants of & which have the same R-classes
must be related by R.
In the above description of quotients we have restricted the relation R =

R(z,y) on o in such a way that it contains only the variables z,y: 0. If we
drop this restriction, we get a formation rule

(R is an equivalence relation)

I',z:0,y:0 b R(z,y): Prop
' Fo/R: Type
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involving a context T' of term variables. This leads to type dependency: the
newly formed quotient type o/R may contain term variables z in R declared
in T'. A typical example is the group Z, of integers modulo n, obtained as
quotient type Z/nZ, for n: N.

This is very much like what we have seen for subset types in the previous
section. The natural setting in which to use subset and quotient types is what
we shall later call “dependent predicate logic” in Section 11.1. But for the
moment we restrict ourselves to quotient types without type context I' in the
formation rule, so that we remain within simple predicate logic.

Propositional equality =, is essential in formulating the above rules for quo-
tient types. But the presence of these quotients also has an -effect on equality,
as the following result (from [133, 3.2.7]) shows.

4.7.1. Lemma. In the presence of quotient types, propositional equality on
function types is extensional: one can derive

fioorgooT|Veio fe=r 9z F =05, 9.

(The categorical counterpart of this result states that quotients satisfy a
“Frobenius property” (as in Exercise 4.7.6) if and only if the equality functor
Eq preserves exponents, see Section 9.2.)

Proof. Consider the following relation ~ on the arrow type ¢ — T,
fiooTgo—oThHEf~g aef Vz:o. fx =, gz : Prop.

Form the associated quotient type ¢ = 7 def (¢ — 1)/~, with canonical map
[-]: (6 = 7) = (0 = 7). There is a term P in the reverse direction, obtained
via

o, frooaThkH foT z:o,frooTr9037|f~g9F fx =gz

z:0,a:(0c = 7) Fpick f fromain fo: 7

a: (0= 1) F Pa) 4 \2io pick f fromain fe:0 > 7

Obviously, for f:0 — 7,

P([f]) = Az:0. fz = f,
by first using (8} for quotients, and then (n) for —. Thus if f ~ g, then
[f] =o=+ [g], and so f =, g. This completes the proof. Notice by the way,
that one also has that [P(a)] = a, so that we have an isomorphism of types
(com)=(c=>7). D
4.7.2. Notation. Assume we have a relation R on a type o, and a relation
S on a type 7. Then we conveniently write

pick z,y from a,b in N(z,y)
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for
pick z from a in (pick y from b in N(z,y))

whenever the latter expression makes sense. This is the case when we can
derive the following equations.

T zioy,yi7|S(y,¢') F N(z,y) =, N(z,¥)

Iz,z":0,y:7 | R(z,2') F N(z,y) =, N(z',y).
Via the first of these equations we can form the term pick y from b in N(z,y).
By substituting &’ for « we also get pick y from b in N(z',y). We now obtain
the required multiple pick term via the following derivation.

[,z,2"0,y:7| R(z,2') F N(z,y) =, N(z', )

T,z,2":0,b:7/S| R{z,2') F
pick y from b in N(z,y) =, pick y from b in N(z',y)
I'a:o/R,b:7/S F pick = from a in (pick y from bin N(z,y)):p

The first step follows from Exercise 4.7.5.

The remainder of this section is devoted to an elementary example of the
use of quotients in (simple) predicate logic. It involves the construction of the
integers from the natural numbers, as a free Abelian group.

4.7.3. Example. Recall that the set of integers Z can be constructed from
the natural numbers N by considering a pair of natural numbers (n,m) as
representation for the integer m~n. Then one identifies two pairs (n1,m;) and
(ng, m2) of naturals if m; —ny; = mgy—ny. Or equivalently, if ny +my = no+m;.
Thus one introduces Z as a quotient of N x N. One can then define addition
+:ZXZ — Z, zero 0 € Z and minus —:Z — Z via representatives. For
example, one takes for a € Z,

—a ¥ m, n] if a={[n,m].

This construction of Z form N can be described in a slightly more abstract
way as the formation of the free Abelian group on a commutative monoid via
a quotient. Indeed, (Z,0,+, —(*)) is the free Abelian group on (N, 0, +).
In our predicate logic over simple type theory we now assume that we have
a commutative monoid {N, 0,+), consisting of a type N: Type with constants
0, +in
FO:N and z:N,y:N+Fx+y:N

satisfying the commutative monoid equations

0+z=Nn2z, c+y=ny+tz, z+(y+2)=n(z+y) +2,
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for z,y,z: N. We think of these as (internal) equalities which come with the
data type (N, +,0). One may read N as natural numbers, but all we need are
these commutative monoid equations.

We then consider the relation ~ on N x N,

u:N x Nyo:N x N I-u~vd:ef(1ru+7r’v:N 7'u + wv): Prop

which corresponds to the identification of pairs (ny,m1), (n2, ms) via ny +
me = no + my above. We write

Z=(NxN)/~ and [z,y] for [{(x,y)] In NxN -L_—L Z

Of course we think of Z as the type of integers.

The next step 1s to provide Z with an Abelian group structure 0, + and
inverse —. This is done, as in the set-theoretic construction, via representa-
tives. And the syntax we have allows us to reason conveniently with these
representatives inside pick ... terms.

The neutral element is easily obtained as

0 < [0,0]: 2.

The inverse operation —(-) is

def . .
—a = pick w from a in [7'w, 7w]: Z,

which is very much like the set-theoretic minus —(-) mentioned above. Notice
that this term is well-defined because from u ~ v one derives (n'u, mu) ~
{(r'v, wv).

Finally, addition ¥ on Z is then

atfb & pick u,v from a,b in [ru+ mv, 7'y + 7'v]

= pick u from a in (pick v from b in [7u + mv, 7’u + 7'v]).
This operation is well-defined, since we can derive

uy,up: N x Nyor N X N juy ~up b
(ruy + 7v, 7'uy + 7'v) ~ (mus + 7w, 7'up + ')
w:Nx N,vp,va: N X N|v ~vyp

{ru + vy, mu+ 7vy) ~ (Tu + TV, Tu + 7vg).



288 Chapter 4: First order predicate logic

~

Then 0 is neutral element, since we can compute:

at 0 = pick u from a in (pick v from [0,0] in [ru + 7v, 7'u + 7'v])

il

il

(
pick u from a in [ru+ 0, 7'u + 0]
[

pick u from a in [7u, 7'u]

I

pick u from a in [u]

= a.

We leave it to the reader to verify that (Z, ¥, 6, —) is an Abelian group. There-
fore one needs the conversions in Exercises 4.7.1 and 4.7.4 below. We do show
that Z has the appropriate universal property making it the free Abelian group
on N. First, we have an extension map ¢:N — Z by ¢(z) = [0,z]. This is a
monoid homomorphism, since by definition ¢(0) = [0,0] = 0, and

c(z) +c(y) = pick u,v from [0,2],[0,y] in [ru + 7v, 7'u + 7'v]
= [0+0,2+4
c(z +y).

It

Further, if we are given an arbitrary Abelian group (G, e,1,(-)7!) together
with a monoid homomorphism M:N — G, then there is a unique homomor-
phism M:Z - G with M o ¢ = M in,

N————

Y4
b
k M
G, Abelian group
Therefore, write
N(u) = M(r'u) e M(mu)~!: G, foru:NxN
To see that the term
1/\/1\(a) L pick u from a in N(u): G, fora:Z
is well-defined we need to derive

u,:NxNju~vF N(u) =g N(v)

But this follows because G is an Abelian group: if 4 ~ v, then by definition
mu+ 7'v =N ™'u+ wv. Hence M (mu) @ M(n'v) =¢ M(ru+7'v) =g M(nr'u+
mv) =g M(n'u) e M(rv), and so N(u) =¢ M(r'u) e M(mu)~! =g M(x'v) e
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M (nv)~! =g N(v). Then indeed,
(M\o ¢)(xz) = pick u from [0, z] in N(u)

= N((0,z))

= M(z)eM(0)7?

=¢ M(z)e17!

=G M(l’)
We leave it to the reader to verify that Misa homomorphism. And if another
term (-homomorphism) P:Z — G satisfies P(c(z)) =¢ M (), then N(u) =
M(rw'w)eM(ru)~! =g P(c(n'u))eP(c(mu))~! =g P([0, n'u])e P(—[0, 7u]) =¢
P([0, #'u} ¥ [ru,0]) =g P([ru, 7'u]) =¢ P([u]). Hence

ﬁ(a) = pick u from a in N(u) = pick u from a in P([u]) = P(a).

This concludes the example.

The first two of the exercises below give conversions which are quite useful
in computations with quotient types.

Exercises

4.7.1. Prove that in the presence of (8)-conversion for quotients, the (7)-con-
version is equivalent to the combination of
P[(pick z from Q in N)/z] = pick z from Q in P[N/z]
Q.
The first of these is a ‘commutation’ conversion, and is comparable to the

conversion in Lemma 2.3.3 for coproduct types +.
4.7.2. Prove that the term

pick z from @Q in [z]r

z:0 b [r]=,:0/=0s
is invertible.
4.7.3. (i) Let R, S be two relations on the same type o. Show how an entailment
z,2':0 | R(x,x’) + S(x,z') gives rise to a term a:0/R + M(a): a/S.
(it) For a relations R on o, define the reflexive and symmetric closure of R
as two relations on o given (respectively) by

R (z,x") def R(z, 2"y V (. =, z'), R(z,z') def R(z,x") vV R(z', z).
Show that taking S = R" and S = R® in (i) leads in both cases to
invertible terms.
4.7.4.  Prove the following derived conversions.
(i) Incase aterm I' b N:7 that we apply elimination to, does not contain
a variable z of type o, then we get in context I',a: /R a conversion,

pick z fromain N = N.
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(ii) And in case we have two variables I', z,y: ¢ F N(z,y): 7 and equalities
T z:0,y,y":0 | R(y,y') F N(z,y) =- N(z,¥)
T,z,2":0,y:0 | R(z,z') F N(z,y) =r N(z',y)

then in context I',a: 0/ R we have a conversion,
pick z,y from a,a in N(z,y) = pick z from a in N(z,z).
Derive the following replacement rule for internal equality =-.
Ize|®FN= N’
I'ya:0/R | © F (pick x from a in N) =, (pick = from a in N')

(z not in ©)

where both N and N’ are assumed to be constant on equivalence classes.
It is used to justify the multiple pick’s in Notation 4.7.2.

Let types o, p and a relation z,y:0 + R(z,y): Prop be given. Form a new
relation p*(R) on p X ¢ by

up xo,vipxa b p'(R)(u,v) def (ru =, 7v) A R(n'u, x'v): Prop.
Prove that the canonical map
(px a)/p"(R) —————> px(0/R)
given by
a:{(px o)/p*(R) + P(a) &t pick u from a in (mu, [x'u]r): p x (6/R)

is invertible.

[This is shows that a “Frobenius distributivity” for quotient types is inher-

ent in the syntax that we use (with explicitly contexts I' in the elimination

rule). It is like for other ‘colimits’ such as + and 3.]

Consider a predicate logic with a commutative monoid N of natural numbers

as in Example 4.7.3, and with Z as the Abelian group of integers constructed

from N, as in the example.

(i) Give a formal description of the construction of the rationals Q as
quotient of Z x N, where the pair (n, m) represents the rational T

(i1) Assume now that one also has exponent types — and subset types. Try
to formalise the construction of the Cauchy reals (see for Example [335,
Chapter V]).

4.8 Quotient types, categorically

In this section we describe quotient types (in simple predicate logic) in cate-
gorical terms. These quotients, like subsets, involve an adjunction between a
base category and a total category of a fibration. But where subsets involve a
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right adjoint to a truth predicate functor, quotients involve a left adjoint to
an equality (relation) functor. Interestingly, it turns out that subsets can also
be described in terms of a right adjoint to this equality functor.

E
We recall from Definition 3.5.1 that an Eg-fibration %p is a fibred pre-
order which has fibred finite products and finite products in its base category,
and also has equality satisfying the Frobenius property. Below we describe
quotients only for such preordered fibrations, but the main definition 4.8.1
applies to non-preordered fibrations as well. We shall write Eq; for the left
adjoint of the diagonal 6(/) = (id,id): 7 - I x [ in B.
E Rel(E
For such a fibration ﬁp we form the fibration Hl: : of binary predicates
(or relations) in p by the following change-of-base situation.

Rel(f) ———> E

b

I—IxI

A fibre Rel(E); is then the same as the fibre E;; of relations on I € B. Note
however, that in the notation Rel(E) the dependence on the fibration p is left
implicit.

There is then an “equality relation” functor

E
B Rel(E) by I +—— Eq(J) = Eq(T),

where T = T([) is the terminal object in the fibre Ey. A morphism u: I — J
in B is mapped to the composite

Eq(I) = Eq/(T (1)) — (u x v)*(Eqs(T(J))) — Eqs(T(J)) = Eq(J)

where the first part of this map i1s obtained by transposing the following
composite across the adjunction Eqy - §(7)*.

T{) =w(T(J)) o) u*§(J) Equ(T(J)) = 6(1)" (u x u)*Eqs (T (J))

It may be clear that the functor Eq is a section of the fibration of relations.
For a morphism u: I — J we write

Ker(u) % (u x w)*(Eq(J)) € Rel(B)1xs

for the kernel relation (i) = u(¢) on I x I. This operation u ~ Ker(u) can
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be extended to a functor B — Rel(E) commuting with the domain functor
(or fibration} dom: B — B, see Exercise 4.8.8.
We can now state our main notion (in this section).

E
4.8.1. Definition. Let ép be a fibration as above. We say that p has quo-
tients or quotient types if the equality functor Eq:B — Rel(FE) has a left
adjoint.

This left adjoint maps a binary relation R € Rel(E); = Eyx; to the quotient
object I/R € B. The unit ng is a map R — Eq(//R) in Rel(E). Its underlying
map in B will be written as cg: I — I/R. It is the “canonical quotient map”
associated with the quotient.

The next result is the analogue for quotients of Lemma 4.6.2 for subset
types.

E
4.8.2. Lemma. Consider a fibration ﬁp with quotients, as above.
(i} The canonical maps cg: I — I/ R are epis in the base category.
(i1) For each morphism u:I — J in B and for each relation R € By on
1, there is a bijective correspondence

R < Ker(u) in Rel(E)s

cr —» u in I\B

where I\B is the ‘opslice’ category of maps with domain I and commuting
triangles.
(ii1) The assignment R — cg extends to a “canonical quotient map” functor

Cin

which maps ‘opcartesian’ morphisms in Rel(E) to pushout squares in B.

(An ‘opcartesian’ map is for an ‘opfibration’ what a Cartesian map is for a
fibration, as we shall see in Section 9.1. In this situation a morphism f: R — S
in Rel(E) over u: I — J is opcartesian if and only if S <[], ., (R).)

Proof. (i) Consider a situation

CR
[ ———— /R

~ H

J
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where u o ¢cg = v o cg = w. The transposes u*¥ = Eq(u) o ng and v¥ =
Eq(v) o ng are maps R =2 Eq(J) which are both above u o cp = v o ¢cg.
Rel(E

But then u¥ = v, because Hl: ), like ]le, is a preordered fibration (see
Exercise 1.3.11). Hence u = v.

(i) Assume we have an inequality R < Ker(u) = (u x u)*(Eq(J)) over
I. There is then a unique map f: R — Eq(J)} in Rel(E) over w:/ — J. By
transposing it we get a morphism f*:I/R — J in B, satisfying f* o cg = u.
Conversely, assume we have a morphism v: I/R — J in B with v o cg = u.
The transpose v¥: R — Eq(J) is then above u, by an argument as in (i). This
yields the required inequality R < Ker(u) = (u x u)*(Eq(J)) over I.

(ii1) For a morphism f: R — S in Rel(E) over u: I — J we have to find a
map /R --» J/S in a commuting square,

This requires a map cg ——+ (cs o u) in the opslice J\B. By combining the

inequality R < (u x u)*(S) with S < (es x ¢s5)*(Eq(J/S) we obtain the

following inequality.
R (u x u)*(S5)

(u x u)*(cs x cs)"(Eq(J/S)

((es o u) x (cs o u))"(Eq(J/S)

Ker(cs o u).

('R VANNVAN

Then we get the required map by (ii).

If our map f: R — S is opcartesian over u—i.e. if S <[], ,(R)—then
the above square becomes a pushout in B: assume maps v: [/R — K and
w:J — K in B with v o cg = w o u. Then v is a morphism ¢cg — (w o u) in
I\B. This yields R < Ker(w o u), by (ii). Now

S < Huxu(R) because f is opcartesian
o o (v x w)* (w x w)*(Eq(K)) because R < Ker(w o u)
(w x w)*(Eq{K)) by [ 3 (v xu)”
= Ker(w).

Hence we get the required mediating map cs --+ w in J\B by (ii). a

INIA A

Notice that the canonical maps {X} ~— I for subset types are monos,
whereas the canonical maps I — I/R for quotient types are epis. But there
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is a deeper duality between subset types and quotient types, as we will show
next. Recall that we have introduced subset types via a right adjoint to truth,
and quotient types via a left adjoint to equality. It turns out that subset types
can equivalently be described by a right adjoint to equality.

E
4.8.3. Theorem. Let ép be an Eq-fibration. The induced equality functor
Eq:B — Rel(E) then has a right adjoint if and only if p admits subset types.
This result, and its proof below, also hold for non-preordered fibrations.

Proof. Assume the fibration p has subset types, via a right adjoint {—}: E —
B to the truth predicate functor T. For a relation R € Erx; on I we have the
following (natural) isomorphisms.

Rel(IE)(Eq(J), R) = H IEJXJ(Eq(J), (u x u)*(R)), see Lemma 1.4.10

u:J T

> [ Es(T(), 6" (uxw)(R))
u:J=1

= ] E(TW), w6 (R))
uJJT

= E(T(J), 6*(R))
= B(J, {6*(R)}).

Hence R — {6*(R)} is right adjoint to Eq: B — Rel(E).

Conversely, assume that the equality functor Eq has a right adjoint
K:Rel(E) — B. For an object X € E over I € B, put {X} = K(r*(X)),
where = is the first projection / x I — I. Then X — {X} is right adjoint to
truth T:

E(T(), X) = [ E(T(), v'(X)), by Lemma1.4.10
u:J—+1

11 EA(T), won (X))

u:J =1

HIEJ(T ), 6% (u x w7 (X))

uJT
[T Eses(Ba(y), (wx u)n (X))
uJ—1T

Rel(E)( Eq(J), = (X))
B(J, K(m"(X)))

= B(J, {X}). 0

1%

1R

iR

R

IIZ
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We consider the following two additional requirements for quotients in a
fibration.

X
4.8.4. Definition. Let %Bp be a fibration with quotients as above.
(i) We say that the quotients satisfy the Frobenius property in case the
following holds. If for a relation R on [ and an object J € B we form the

relation

J(R) & (r x m)"(Eq(J)) x (' x ©)*(R) onJ x I

then the canonical map
(JxI)/J*(R) ———— J x (I/R)

1s an isomorphism.
(i1) And if pis a preorder fibration, then we say that quotients are effective
or full if for each equivalence relation R on I (in the logic of the fibration p),

the unit map ng: R — Eq{I/R) is Cartesian over ¢g: I — I /R in the fibration
Rel(E)
Hiﬁ of relations.

The canonical map in (1) is obtained by transposing the following composite
J*(R) = (v x m)"(Eq(J)) x (=" x 7')"(R)
lid x (7' x 7')*(n)
(r % ) (Ba(J)) x (« x 7')(Ba(I/R)) = Ba(J x (I/R))

accross the quotient-adjunction. The latter isomorphism comes from the fact
that Eq is a right adjoint and must thus preserve products. In the total cat-
egory Rel(E) these products are given by the formula on the left of =, as we
shall see in more detail in Section 9.2.

We briefly discuss the interpretation of the quotient type syntax from the

E
previous section in a fibration ﬂisp with quotients satisfying the Frobenius
property. The latter is used—as always—to get an appropriate elimination
rule with contexts.

A relation R on a type I € Bis an object R € Erx; = Rel(E);. We can form
the associated quotient type I/R € B with its canonical map cg = [~]r: [ —
I/R satisfying R < (cg X cr)*(Eq(I/R)). This gives us for each i: ] a class
[i]r: I/ R, together with an entailment ¢,7': 1 | R(¢,i") & [i]g =1/p [¢'|r. This
yields validity of the formation and introduction rules.

For the elimination rule, assume we have a term,

A el Fu(jg i K as amapin B Jx I -4 K,
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which is constant on elements related by R:
J i, T R(3, 7)) Fu(y,i) =k u(j,7).
The latter yields an entailment
G T T TR, (7 7) F (i) =k u(f,©),
since J*(R){(4,1), (',#)) = (4 =4 j') A R(i,’). We thus get a map J*(R) —

Eq(K) in Rel(E) over u. Transposition across the quotient adjunction yields
amap (J x I)/J*(R) = K, and so by Frobenius we get our required map

Jx (I/R) — (J x I)/J*(R) — K
which may be read as
j:J,a:I/R F pick i from a in u(j,?): K.

We leave validity of the quotient conversions as exercise to the reader.

What are traditionally called ‘effective’ quotients in category theory may
also be called ‘full’ quotients, because of the following result, and because of
the analogy with ‘full’ subset types.

E
4.8.5. Proposition. Let ﬁp be a (preorder) fibration with quotients. We

write ERel(E) — Rel(E) for the full subcategory of equivalence relations (in
the logic of p). The quotients in p are then effective (or full) if and only if the
“canonical quotient map” functor C: ERel(E) — B™ is full (and faithful).

Proof. Assume quotients in p are effective, and consider a commuting square
in B of the form:
I/JR—2 = j/§
C(R) :CRT Tcs =C(S5)

I ——J

where R, S are equivalence relations. We must show R < (u x u)*(S) to get
fullness of C. This is done as follows.

R (¢r x cr)*Eq({/R) by effectiveness
(cr % cr)™ (v x v)*Eq(J/S)
(u x u)*(cs x cs)"Eq(J/95)

“(

(u x u)*(S5) by effectiveness again.

RN IR

Conversely, we need to show that a unit map ns: S — Eq(J/S) is Cartesian
in Rel(E), for S € Eyjxy an equivalence relation. That is, we need to show
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that Ker(cs) = (cs x ¢s)"Eq(J/S) < S. Since Ker(cs) is (also) an equivalence
relation, it suffices by fullness of the functor C to produce a map cker(cs) ~ s
in J\B. But this follows from Ker(cs) < Ker(cg}, using Lemma 4.8.2 (ii). O

We continue this section with several examples of fibrations with quotients,
starting with subobject fibrations.

4.8.6. Proposition. Consider a category B with finite limats.
Sub(B)

(i) If B has coequalisers, then the subobject fibration ]]li on B has quo-
tients. These are effective if and only if each equivalence relation R — I x I
in B is effective, 1.e. is a kernel pair R = I of some map [ — J in B.

(i) In case B is a regular category the converse of (i) also holds: B has

Sub(B)
coequalisers if and only if 1+B has quotients.
(iii) And in the situation of (ii), the coequalisers in B are preserved by

functors J x (=):B — B if and only if the Frobenius property holds for the
Sub(B)
quotients in Iﬁ

A regular category with coequalisers, as in (ii), is often called an exact
category, see e.g. {36, I, 2.6].

Proof. (i) Assume B has coequalisers. For a relation {rg,71): R — I x I on
I, we find a quotient object //R by forming the coequaliser

To
C
R~ I—-IR
S~
1

This assignment R — I/R yields a left adjoint to the equality functor since
there is a bijective correspondence between morphisms v and v in:

In case R is an equivalence relation, then its quotient is effective—according
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to Definition 4.8.4 (ii)—if and only if there is a pullback diagram

R_j I/R
(ro, 1) IJ

Ix 1 —BZR _(1/R) x (I/R)

This diagram expresses that R is the kernel of its own coequaliser cg. But
that is equivalent so saying that R is the coequaliser of some map I — J in
B.

(i1) If B is a regular category then quotients for the subobject fibration on
B induce coequalisers in B. Given a parallel pair of maps u,v: K = I in B, we
first factorise

(K AL I)=(k ——>R rer) 1)

and then take the quotient of the relation R — [ x I,

CR
I—I/R

The unit map ng: R = Eq(//R) consists of a square
R I/R

(’"07’"1)] I(S

Ix T —BZR _(1/R) x (I/R)

This gives us cg o9 = cr o r1, and thus cr o u = cgpov. Ifalsow: I = J
satisfies w o u = w o v, then, because e is an epi, we get w o rg = w o ry. The
latter tells us that we have a map R — Eq(J) in the category of relations over
w: I — J. By transposition we then get the required mediating map I/R — J.
This shows that cg is the coequaliser of u,v in B.

(ii1) The main point is that for a relation (rg,r): R— I x I on I and an
object J € B the relation J*(R) on J x I in Definition 4.8.4 (i) is the subobject

(JXT(),JX‘I"1>
JxR (JxI)x(Jx1)

Thus, assuming that B has coequalisers that are preserved by functors J x
(=), we obtain: if cg: I — I/R is the quotient of R—i.e. the coequaliser of
rg,71: R = I—then J X cpg is the coequaliser of J x rg, J xri: Jx R=2J x I.
Thus we get (J x I)/J*(R) = J x (I/R).
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Conversely, if the quotients in the subobject fibration satisfy Frobenius, then
coequalisers in B are preserved by functors J x (—). This is because the above
factorisation of the tuple {(u, v} in (ii) yields a factorisation of (J x u, J x v},

J Jxrg,Jxr
Ik X T XD

In this diagram J x e is still a cover because covers are stable under pullback,
and the relation J x R is J*(R). This shows that as coequaliser of J x u and
J x v one can take the quotient J x cg:J x I — J x (I/R) of J*(R). Thus
J x (=) preserves coequalisers. a

In the next series of examples it will be shown that family fibrations (for
a poset) always have quotients, that the classifying fibration of a predicate
logic with quotient types has quotients in the categorical sense, and that a
fibration of “admissible” subsets of complete lattices also has quotients. The
latter order theoretic construction follows [174, Chapter 1].

4.8.7. Examples. (i) Recall from Example 3.4.4 (iii) that if X is a poset
Fam(X)
with bottom L and top T elements, then the family fibration Sl has

ets
equality. For a family = = (x(; j))(,j)er«s over I x J, it is given by

o teapy fi=g
ECI(‘”)(LJ,J )= { 1 otherwise.

Then for a function u: I — J, the kernel relation Ker(u) on [ is given by
T if u() = u(?
Ker(u)(,'y,-/) = { ( ) ( )

1 otherwise.
For a relation 7 = (r(; i1))irer on I in the family fibration on X, consider the
set theoretic relation R = {(4,7') | (i1 # 1} CIxI. Let R C I x I be the

least equivalence relation containing R. Then we get a quotient /7 ef I/R
in Sets, which serves as quotient in the fibred sense. It comes with canonical
map ¢, = [=]:/ — I/R. The adjunction boils down to r < Ker(u) ¢ e,
factors through u, as in Lemma 4.8.2 (i1).

(i1) We can form a classifying fibration of a (simple) predicate logic with
£(Z,11,4)

quotient types using the fibration cz(lz) associated with the logic on the

signature with predicates (X, I} (plus axioms A) as described in Section 3.1.

We can then form the category Rel(L(X,11,.4)) of relations in this logic via

the change of base situation preceding Definition 4.8.1. This category has

relations (z,2":0 + R(z,z’): Prop) as objects. And a morphism (z,z":0
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R(z,z'):Prop) = (y,¥': 7 + S(y,y’): Prop) in Rel(L(Z,11,.4)) is a morphism
M:o — 7 in the base category C¢(X) for which one can derive

z,2":0 | R(z,2') F S(M(z), M(z")).

The equality relation functor Eq: C/(X) — Rel(£(X,I1, A)) is then given by
the assignment 7 — (y,y': 7 b y =, y: Prop).

Quotient types as described in the previous section determine a left adjoint
to this functor Eq. It maps a relation (z,z": ¢ + R(z,z’): Type) to the quotient
object o/R in the base category (¥(X). The adjunction involves a bijective
correspondence between (equivalence classes of) terms M and N in:

(z,2":0 F R{z,z’): Prop) ﬁ) (y,v:7 Fy=; y:Prop)

6/R——>T
N

That is, between terms M and N in:
z:o b M:7 with /m,x’:a | R(z,z') F M(z) = M(z)
“a:0/RFN:T

This correspondence is precisely given by

M (z) v pick z from a in M(z) and N(a) — N[[z]r/a]-

The (3)- and (n)-conversions precisely state that these operations are each
others inverses. And Exercise 4.7.6 tells that the Frobenius property auto-
matically holds. Thus the quotient types in the logic induce quotients for the
fibration associated with the logic.

(ii1) Let CL be the category of complete lattices (posets with joins of all
subsets) and with functions preserving all these joins between them. It is
well-known that requiring the existence of joins of all subsets is equivalent to
requiring the existence of meets of all supsets. A morphism f: X — Y in CL
always has a right adjoint f.:Y — X (between poset categories), given as
f(y) = V{z € X | f(z) < y}. It is easy to see that (g o f)u = f. 0 g. and
that (f«)« = f. (Using these right adjoints one can show that CL is a self-dual
category.) The category CL has finite products in the obvious manner: one
uses finite products of the underlying sets, with componentwise ordering.

Let us a call a subset A C X of a complete lattice X admissible if A is

closed under (all) joins in X. Such subsets can be organised in a fibration
ASub(CL)

ClL in which the total category ASub(CL) has such admissible subsets
(A C X) as objects. A morphism (A C X) - (B CY) in ASub(CL) is then a
morphism f: X — Y in CL between the underlying carrier sets which satisfies:
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z € A= f(x) € B, for all z € X. This fibration has a terminal object functor
T:CL — ASub(CL) sending a complete lattice X to the admissible subset
(X C X). It has (full) subsets, via a functor {—}: ASub(CL) — CL which
maps an admissible subset (A C X) to A, considered as a complete lattice in

itself. Our aim is to show that this fibration also has quotients.
ARel(CL)

We therefore first consider the fibration ClL of admissible relations,
obtained by change-of-base along X +— X x X (as described in the beginning
of this section). There is an equality functor Eq: CL — ARel(CL), mapping
a complete lattice Y to the admissible subset ({(y,y) | y € Y} C Y x Y).
So far, these constructions are all straightforward. The quotient adjoint (to
equality) is less standard. It maps an admissible subset (R C X x X) to the
complete lattice

X/R={ze X |VY(y,¥)eRy<ziff y <z}
It is easy to see that X/R, with order as on X, is closed under all meets.

Therefore it is a complete lattice. The inclusion function i: X/R — X has a
left adjoint cg: X — X/R, given by

cr(z) = /\{z € X/R|z<z}.
Since cg is a left adjoint, it preserve joins and is a morphism X — X/R in
CL (with (¢g)« = i). Obviously, R(z,z') = cr(z) = cr(z’), so that cg is a
map of relations R — Eq(X/R). The quotient adjunction requires a bijective
correspondence between morphisms f and g in:

(RC X x X) ., Eq(Y) in ARel(CL)

X/R——>Y inCL

For f: (R C X x X) = Eq(Y) one takes f = f o i: X/R — Y. And conversely,
given g: X/R — Y, one takes § = g o cg:{R C X x X) — Eq(Y). Then it
is easy to see that g=gocroi=g, because cg o ¢ = id. But showing
that f = f o i o cp = f is harder. First we notice that f.(y) is in X/R,
for y € Y. Indeed, for a pair (z,2') € R we have f(x) = f(z'), and thus
r < fuly) © fl2) <y o flz') <yo i < fiy). But this means that
i(cr(f<(y))) = f«(y). Then we are done, since

f: (fa:)* = (iOCB_ Of*)* = (f*)* < (CR)* Oi* :foiOCR~
This completes the example.

In Example 4.6.5 we have seen how subset types give rise to a certain
factorisation of maps in the base category. One also gets a factorisation from



302 Chapter 4: First order predicate logic

quotients, as we will show next. In higher order logic this factorisation has a
slightly different universal property, see Example 5.1.9 (i} and Exercise 5.1.86.

E
4.8.8. Example. Assume ép is a fibration with quotients. For a morphism

u:l — J in the base category B we can form the kernel relation Ker(u) =
(u x u)*(Eq(J)) on I, and its quotient I/Ker(u) € B. It gives a factorisation,

(1 =t J) = ([ ﬂ‘i) I/Ker(u) - v J)

where the map u':cgeru)y --» % in the opslice category I\B comes by
Lemma 4.8.2 (i) from the inequality Ker(u) < Ker(u).

This factorisation is universal in the following sense. Given an arbitrary
relation R € Fryy on I and a morphism v:I/R — J in B with v o cg = u,
there is a unique map of relations f: R --» Ker(u) over [ such that

I/Ker(u)

This mediating map arises as follows. The morphism v:¢cg — u in the opslice
I\IB gives rise to an inequality f: R < Ker(u) over I. By applying the quotient
functor we get a morphism I/f: /R — I/Ker(u) in B which commutes with
the quotient maps. Finally, v’ o I/f = v holds because cg is an epi.

Exercises

4.8.1. Assume a fibration with quotients. Prove that for a relation R on I, the
canonical map cp:/ — I/R is an isomorphism if and only if R < Eq(/)
over I. (A special case is I 5 I/Eq(]), see Exercise 4.7.2.)

4.8.2. Prove that the ‘epic part’ cker(u):! — I/Ker(u) of u:/ — J in Exam-
ple 4.8.8 is an isomorphism if and only if u is internally injective.

4.8.3. Check that quotients in a predicate logic are effective if and only if the
quotients in the associated fibration—as in Example 4.8.7 (ii)—are effective
in the categorical sense. Describe fullness of the canonical map functor in
Definition 4.8.5 type theoretically.

[Hint. Remember Exercise 3.1.1.]

4.8.4. Show that a relation R »» [ x [ is the kernel pair R =3 [ of its own
coequaliser if and only if it is the kernel of some map I — J.
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E
Let %p be a regular fibration with quotients. For parallel maps u,v: K =3
I in B, form the relation R = H<u v)(T) € E;x; and its quotient

u

kK~ 12 I/R
~—T

v

Show that this forms a coequaliser diagram in the internal logic: one has
T < Eq(cr o u,cr 0 v), and if w:I — J satisfies T < Eq(w o u,w o v),
then there is a unique map w: I/R —+ J with wo cr = w.

Notice that Proposition 4.8.6 (ii) is a special case of this construction—
which is dual to the one for subsets in Exercise 4.6.6. And also that co-
equalisers in Sets are obtained in this way.

Let RRel(E) < Rel(E) be the full subcategory of reflexive relations in an

E

Eq-fibration ép , where R € [E; s is reflexive if and only if T < §(1)*(R),

if and only if Eq(/) < R.

(1) Show that the composite RRel(EE) < Rel(IE) — B is a fibration.

(1) Prove that I — Eq(J) yields a functor B — RRel(EE) which is left
adjoint to the fibration RRel(E) — B.

[Thus, equality on [ is the least reflexive relation on [.]

(111) Check that S — SV EqQ(I)for S € E,x; yields a fibred left adjoint to
the inclusion RRel([E) < Rel([E).

Notice that the restriction to preorder fibrations in Definition 4.8.1 is un-

necessary, and that the definition of quotients applies to arbitrary fibrations

with equality. In particular it applies to codomain fibrations. Prove that a

category B w_i)th finite limits has coequalisers if and only if its codomain

fibration llB has quotients.

[Note that the category Rel(B™) in this situation is the category B— of
parallel arrows in B.]

E
Let %p be a fibration with equality. Describe the kernel operation Ker(—)
as a functor in a commuting diagram,

- Ker Rel(E)

NN

And prove that p has quotients if and only if this functor Ker has a left
adjoint, with vertical unit and countt. This could be used as a definition
of quotients, dual to Lawvere’s definition of subset types as described in
Exercise 4.6.7.
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4.9 A logical characterisation of subobject fibrations

In this chapter on (first order, simple) predicate logic we have seen various fi-
brations capturing various systems of predicate logic. Among these fibrations,
subobject fibrations have received special attention in Sections 4.4 and 4.5.
They will play an important role in later chapters, notably in topos theory. In
this final section we ask ourselves: when is a fibration (equivalent to) a sub-
object fibration? Such a fibration should certainly have the logical operations
that come for free in subobject fibrations, namely full subtypes and so-called
very strong equality. Recall that this means that internal and external equality
coincide, see Notation 3.4.2. There is a third logical operation that is available
in subobject fibrations, namely unique choice 3!. And the combination of these
three: full subset types, very strong equality and unique choice, characterise
subobject fibrations, as will be shown in the present section.
We start with unique choice.

E
4.9.1. Definition. Let ngp be an Eq-fibration with subset types.
(1) A relation R € Erxys is called single-valued if it satisfies

i:1,5,5':J | R(3,7) /\R(i,j/) Fi=y3
Or, more categorically, if above I x (J x J) there is an inequality
(id x m)*(R) A (id x ')*(R) < n"*(Eq(J)).

(t1) The fibration p has unique choice 3! if for each single-valued relation
R € Erxy, the coproduct U(I,J)(R) € [E; exists, and the canonical map —»
in the following diagram

is an isomorphism.
The canonical map 7 o g — M1, (R in the slice category B/I comes
(1.9

by Lemma 4.6.2 (ii) from applying the reindexing functor 7} to the unit map
n:R— 7" [1(; s (R). This yields T < (7 o mp)" ]_[(IJ)(R)

The idea behind this definition is that if for ¢ € I there is a unique j € J
with R(%,j), then the canonical (projection) map

{(3,5) | R(i,5)} —— {i|35. R(, 4)}
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is an isomorphism.
4.9.2. Proposition. Subobject fibrations have unique choice.

Proof. Let B be a category with finite limits, and let (rg,71): R — I x I be
a relation on I which is single-valued. The latter means (id x 7)*(R) A (id x
7')*(R) factors through #'*(6(J)) = id x 4, in a situation,

f
S-——=--=-===-=-- >IxJ
t = (rp 0 50,(ry1 050,71 051)) idxé
I x(JxJ)
where S is obtained in the pullback diagram,
51
S—R
I
S0 ro
R—— 1
To

We will show that the map ro: R — [ is a mono in B. Assume therefore parallel
maps u,v: K = R with rg o 4 = rg o v. There is then a unique map w: K — S
with sg o w = u and s; o w = v. But then ry o u = r; o v, as witnessed by
the following computation.

mou = rposow

ronotow

Il

nonm ocidxdo fow

I

#onocildxdofow

=nonotow

= rios ow

= ryov.
Now we have an equation {(rg,r1) o u = (rg,71) o v, so that we may conclude
u=wv.

We can thus take the coproduct in the usual way by composition:
H(I,J)(R) = mo (rg,m1) = ro: R — I, so that the unique map --+ in Defini-
tion 4.9.1 (ii) is the identity. O

In the formulation of unique choice we have made use of subset types. In a
similar manner we can express very strong equality in a fibration via subset
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types. Recall that equality is very strong if external equality u=v: 1 — J
and internal equality T < Eq(u,v) coincide—for two parallel maps in the
base category.

E
4.9.3. Proposition. Let %‘D be an Eg-fibration with subset types. This fibra-
tion has very strong equality if and only if for each object I € B the canonical
morphism k in the triangle

I {Ea(1)}

J TEq(I)
IxJ

s an isomorphism.
(This morphism k is obtained by Lemma 4.6.2 (ii) from the unit map T <
6(N*Eq(I) = 8(1)*Eqi(T).)

This result may be read as: equality is very strong if and only if diagonals
occur as (subset) projections.

Proof. Assume that the above map «x: I — {Eq(])} is an isomorphism in B.
Then for parallel morphisms u, v: K = I there are equivalences:

u, v are internally equal
& T < Eq(u,v) = (u,v)*Eq(])
< (u,v) factors through mgq(sy by Lemma 4.6.2 (ii)
& (u,v) factors through 6(/) by the isomorphism &
S u=v
& u, v are externally equal.

Conversely, assume that internal and external equality coincide. As candi-
date for the required inverse for k we have m o Tgq(;): {Eq(/)} — I, since

(momEqm) ok =mod(I) =id.
Further, we have above {Eq(I)},

T TeqnBall) by Lemma 4.6.2 (ii)
ThqnEa(m, ) see Exercise 3.4.5

IR IA

IR

Eq(7 o Tgq(1), ™’ © TEq(s)) see Notation 3.4.2.

This tells us that the maps 7 o mgq(ry and 7’ o mgq(ry are internally equal.
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Hence they are also externally equal, by assumption. But then,

TEq(r) © K © (T o TEq(r)) = 6(I) o ™o mEq(n)
= (7o TEq(), ™ © TEq(D))
= (7 o TEq(), T © TEq(r))
TEq(I)s

so that we can conclude k o (7 o Tgq(s)) = id, since the subset projection
TEq(7) 1 @ mono. Hence & 1s an isomorphism. 0O

Given this characterisation, it is immediate that subobject fibrations have
very strong equality, because their equality predicate Eq([) is simply the di-
agonal on 1.

We now come to the main result in this section.

E
4.9.4. Theorem. Let %p be an Eg-fibration. This fibration is (equivalent
to) the subobject fibration on its base category B if and only if

e equality in p 1s very strong;
o p has full subset types;
e p has unique choice.

Proof. It may be clear that a subobject fibration satisfies the above three
properties: it has very strong equality as we just noted, it has full subset types

by Example 4.6.3 (i), and unique choice by Proposition 4.9.3.
E

Conversely, let %P be an Eq-fibration satisfying the above three properties.
We first note that by Exercise 4.6.6—using that equality is very strong—the
base category B has finite limits, so that it makes sense to talk about the
subobject fibration on B. Full subset types give us a full and faithful fibred

functor
(=)
E —— Sub(B)

N

We show that it is a fibred equivalence. We can define in the reverse direction
a functor §:Sub(B) — E by

(J>i> 1) i r,5(Gm) € Er,

where G, is the ‘graph relation’ of m:

Gm =Eq(r,mon’)=(r,mon")*Eq(I) € Erx.
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This relation is single-valued because m is a mono and equality is very strong:
Gm(5,7) AGm(E,J) = i=m(j) Ai=m(j)
=> j=J"
Hence the coproduct S(m) = [(; ;)(Gm) € Er exists by unique choice. Its
subset projection is the original mono m, since there are isomorphisms in B//,

TS(m) = ToTwG, by definition of unique choice
= mo(m,mo w')*(meq(r)) because m(_y is a fibred functor
= mwo(mmon)*(d(I)) since equality is very strong
2 1o (m,id) because of the pullback square,

J " I

(m,id) I - Ia(f)
(m,mo ')
IxJ ——1IxI
= m.
We thus get 7(_y o S = id. But then also § o m(_y = id, since m(_y 1s a full
and faithful functor. u)

In similar fashion we can characterise regular subobject fibrations.

E
4.9.5. Theorem. An Eg-fibration ]%p is (equivalent to) the regular subobject
fibration on its base category B if and only if

e cquality in p is very strong;

e p has full subset types;

e cvery predicate is an equation: for every X € Ey there are maps u,v: I = J

in B with X = Eq(u,v).

Proof. We concentrate on the (if)-part of the statement. As in Exercise 4.6.6,
the base category B has finite limits. And from the way equalisers are con-
structed in B, we conclude that each projection wx:{X} — I (for X € Ey)
is a regular mono, using that X is an equation. We construct a functor
R:RegSub(B) — E as follows. Let m: K — [ be equaliser of u,v:] =3 J.
Put then R(m) = Eq(u,v) € Er. Then mg(yn) = m. But also R(rx) = X,
because X is an equation. O

Exercises

E
4.9.1. Let %p be an Eqg-fibration with subset types. Say that one has unique
choice on J € B if for every single-valued relation R € Erxs from [ to
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J, one has unique choice as in Definition 4.9.1 (ii). And say that equality
on J is very strong if one has a canonical isomorphism §(J) 5 TEq(J)
like in Proposition 4.9.3. Prove that unique choice on J implies very strong
equalit]%' on J.

Let %P be an Eg-fibration with very strong equality and full subset

types.

(1) Express the induced pullbacks in B in the internal language of the
fibration, see Exercise 4.6.6.

(it) Assume now that p is also regular, i.e. additionally has simple co-
products H(”). Prove that the induced coproduct functors Hu from
Example 4.3.7 (i) satisfy the Beck-Chevalley condition.

[Hint. The usual set theoretic argument may be carried out internally.]

(i) Prove also that if p is a first order fibration then the induced products
Hu also satisfy the Beck-Chevalley condition.
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Chapter 5

Higher order predicate logic

Moving from equational logic to first order predicate logic leads to a clear
increase of expressive power. But certain concepts cannot be expressed in
first order predicate logic because they require “higher order” quantification
over subsets (or predicates). A typical example in algebra is the concept of
a Noetherian ring: it is a ring R in which every ideal /] C R has a finite
basis (i.e. is finitely generated). This cannot be expressed in first order pred-
icate logic, because it requires higher order quantification. By the latter we
mean quantification over propositions (inhabitants of Prop) and over predi-
cates (inhabitants of ¢ — Prop, where ¢ is a type). In contrast, in first order
predicate logic one only quantifies over inhabitants of types. So the easiest
way to introduce higher order quantification is to make Prop a type, i.e. to
introduce a ‘higher order’ axiom F Prop: Type. This approach will be followed.
Propositions z1:01,...,2,:0, F :Prop are then terms of type Prop: Type.
Quantification 3,V over types can take the particular form Va: Prop. ¢ and
Ja: Prop. ¢ of quantification over propositions, since Prop is a type. This forms
the essential aspect of higher order logic.

The resulting formal system will be referred to as higher order simple pred-
icate logic, or higher order logic for short. The qualification ‘simple’ refers to
the fact that the underlying type theory is simple (like in the previous chap-
ter), and not polymorphic or dependent. Tool support for higher order logic
is provided by the HoL system [104] (and also by a special configuration of
the ISABELLE system [250]). The pvs system [242, 241] is a tool for depen-
dent higher order predicate logic, see Section 11.1. These tools are used for
machine-assisted verifications in higher order logic.

311
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This chapter contains the syntax of higher order logic in its first section.
The second section is on generic objects. These are the categorical counter-
parts of the earlier mentioned distinguished type Prop, which relates predicates
z:0 - p:Prop on a type ¢ and “classifying” terms o — Prop. For split fibra-
tions this correspondence can be described in a straightforward manner, but
for arbitrary fibrations there are some complications to be investigated. This
will involve a version of the Yoneda Lemma which is suitable for fibred cat-
egories. The third section gives the appropriate fibred structures to capture
higher order logic. Examples include realisability triposes, which generalise
the realisability fibration from the previous chapter, and the regular subob-
ject fibration over w-sets (but not over PERs). In the same section we first
encounter the notion of a topos: 1t is a category for which its subobject fibra-
tion is such a ‘higher order fibration’. This is a distinctly logical definition.
The remainder of this chapter will be devoted to the (standard) theory of
these toposes. In Section 5.4 we present the ordinary ‘elementary’ definition
of a topos, and show that it is equivalent to the ‘logical’ one. Further, we
describe nuclei (or Lawvere-Tierney topologies) in toposes. Such a nucleus j
gives rise to an associated higher order fibration of j-closed subobjects. Also,
for a nucleus one can define separated objects and sheaves in a topos. Espe-
cially the double negation nucleus —— is of logical importance. Its categories
of separated objects and of sheaves come with classical logic (via their regular
and ordinary subobjects).

The expositions on toposes form a preparation for the special example of
the ‘effective topos’ Eff in the next chapter.

5.1 Higher order signatures

We start our description of higher order predicate logic (over simple type
theory) by identifying an appropriate notion of signature for such logic—like
we did for equational logic and for first order predicate logic. For higher order
predicate logic, signatures are actually simpler than for first order predicate
logic: higher order signatures will contain a distinguished type Prop, making
it no longer necessary to describe function symbols and predicate symbols
separately: predicate symbols can be identified with function symbols with
codomain Prop.

In a logical setting, we shall always write Prop for this distinguished type
and we view inhabitants of Prop as propositions. A variable of type Prop is
therefore a proposition variable, for which we shall use letters «, 3,v, . .. from
the beginning of the Greek alphabet. These proposition variables may occur
in propositions—because, in general, variables inhabiting types may occur in
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propositions.

A higher order signature ¥ consists first of all of an underlying set T = |X|
of atomic types containing a special type Prop. Thus, |X| can be understood
as a pointed set. Further, £ contains function symbols F:oq,..., 0, — 0n41
as in ordinary signatures. A morphism ¢: X — ¥’ of higher order signa-
tures consists of a function ¢:|X{ — |¥’| between the underlying sets of
atomic types with ¢(Prop) = Prop (making ¢ a morphism in the category
Sets, of pointed sets), and of a collection of functions (also written as @)
mapping function symbols F:01,...,06, — 0p41 In X to function sym-
bols ¢(F):¢(o1),...,8{(0n),—> ¢(ony1) in L. There are no explicit predi-
cate symbols in a higher order signature, like in a signature with predicates
(see Definition 4.1.1). Instead, function symbols F:¢4,...,0, — Prop are
understood as predicate symbols.

We recapitulate in concise fibred terminology.

5.1.1. Definition. The category HoSign of higher order signatures is
defined in the following change-of-base situation,

HoSign ——— Fam(Sets)
|- l
Sets, Sets
T—T*xT

where Sets, is the category of pointed sets (see Exercise 1.2.3 for the defini-
tion). Implicitly, in the base functor Sets, — Sets there is a coercion turning
a pointed set into an ordinary set.

A higher order signature forms the basis for a logic, much like in the pre-
vious two chapters. What is new is that terms ' F ¢:Prop will be taken
as propositions. They can be built up inductively from atomic propositions
M =, M' and P(M,,..., M), where P is a function (or predicate) symbol
01,...,0, — Prop. Thus, in higher order logic, propositions are not some
external entities but live as terms inside the type theory. Notice that Prop is
itself a (atomic) type. Explicitly, via an axiom:

F Prop: Type

In what we call higher order logic (on top of a higher order signature )
we shall use finite product and exponent types (as in the calculus A1« (%) in
Section 2.3), and connectives and quantifiers as in first order predicate logic.
Thus we have in particular constants T, L: Prop for true and false.
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Since Prop is now a type, we may quantify over 1t as in
Va: Prop. (o D a)

or in

Va:Prop. 3P:a — Prop.dz: a. Pzx.

This gives typical propositions in a higher order logic.

For propositions ¢1,...,pn, % 1n context I' we continue to use sequents
T |¢1,.-.,¢n ¥ as regulated by the rules for first order predicate logic in
Figure 4.1. But there is a crucial difference: in higher order logic, propositions
are special terms (with type Prop), which leads to the question of how logical
equivalence IC (for propositions) is related to (internal) equality =pyop on the
type Prop of propositions (for terms of type Prop). The following rule equates
them (for predicates).

extensionality (of entailment)
' P Q:0— Prop I z:0|0,Pz FQzx Iz:0]|0,Qz + Pz
r I OrP ~a-+Prop Q

See also [91, Definition 2.2.9]. We shall not standardly assume this rule in
higher order logic, and shall mention explicitly when it is used.

5.1.2. Example. An important consequence of this extensionality of entail-
ment rule is that a proposition a: Prop is derivable if and only if the equality
(a =prop T) is derivable. In one direction this is easy via Lawvere’s equality
rule (see Lemma 3.2.3):

DB Fa[T/a]
a:Prop|a =prp T Fa

For the converse one uses the above extensionality of entailment rule with
o =1, so that 1 = Prop = Prop. We then get

a:Prop F o, T:Prop a:Prop|a,a T a:Prop|a, T Fa

a:Prop|a Fa=py, T
Let us summarise.

5.1.3. Definition. Let ¥ be a higher order signature. It gives rise to a higher
order logic with

o for types: finite product 1, x and exponent types —;
o for propositions: finite conjunctions T, A and disjunctions L, V, equality =,,
for o: Type, and existential and universal quantification 3z: 0. (=), Vz: 0. (—)
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over types o (including the important special case were ¢ is Prop), satisfying
the rules in Figure 4.1.

We will say that this higher order logic on ¥ has extensional entailment
if it includes the above “extensionality of entailment” rule.

A higher order specification consists of a higher order signature ¥ to-
gether with a collection A of sequents in the higher order logic associated with
Y; these are taken as axioms. Such a higher order specification determines a
higher order theory, by closing A under derivability.

Notice that we do not standardly include subset types {z: o |} or quotient
types o/ R in higher order logic. Neither the requirement that equality is very
strong. All this may be added separately. Recall that we call a logic extensional
if its equality is very strong (i.e. if its internal and external equality coincide);
this is not related to the above extensionality of entailement rule.

5.1.4. Example. Higher order logic as formulated above contains consider-
able redundancy. For example, one can define

1 = Va:Prop.a
T =1>1
eV = Ya:Prop.(¢ Da) D ((¥ Da) Da)
YAy = Va:Prop. (¢ D (¥ Da)) D a)
dz:0.¢ = Ya:Prop.(Vz:0.(p D a)) D a.
And for terms M, N: o,
(M =, N) = VYP:60 = Prop. PM D PN
The latter definition yields what is commonly called Leibniz equality; it

says that terms are equal if they have the same properties. Thus implication
D and universal quantification V are the essential connectives.

5.1.5. Lemma. The above definitions yield connectives that satisfy the rules
i Figure 4.1.

Proof. We shall do 3 and =, and leave the remaining connectives as an
exercise below. The introduction rule for 3 is obtained as follows.

IT'M:ec T,a:Prop|O,Vz:0.(¢Da) FVYaio. (¢ D a)
[ ,a:Prop|©,Vz:0.(¢ D a) Fp[M/z] D« T|0F p[M/z]
[,a:Prop| O, Ve:o.{p Da) Fa

[,a:Prop|© F (Vz:0. (¢ D)) Da
I'|® FVYa:Prop. (Veio. (¢ D)) Da = dzio.p
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and the elimination rule (with « not in ©, ¢) as

Ie:o|©,p F ¢

' + +:Prop Foer3zoe Iz:o|OFepDY
Mot (Ve:o. (¢ DY) DY ['|© FVz:o.(p D)
N

We turn to Leibniz equality. The reflexivity, transitivity and replacement
rules for equality are easily established. For symmetry, assume (M =, N) =
VP:o0 — Prop. PM D PN. In order to get (N =, M), assume P:o — Prop
with PN. Take

P ' =Xz:0.Pz D PM:0o — Prop.

Then, instantiating the assumption M =, N with P’ yields P’M D> P'N.
Since P'M we get PN = (PN D> PM), and PM follows, as required. m]
Power types

In higher order logic we can write
Po s Prop: Type

for the o-powerset type. We can think of terms in P either as predicates on
o, or as subsets of o. Such a type allows us to quantify over predicates, as
in VYa: Po.a =p, a. It comes equipped with a typed membership relation €,
described by

def
z:o,a:Po bz €, a=a-x:Prop.

There is then the familiar (typed) inclusion relation C, on Po, as:

a:Po,b:PokaCyb Lo (z €5 @) D (x €, b): Prop.

For a proposition &:0,y: 7 F ¢(z,y): Prop it makes sense to write

def
ziob{yer|oley)} = Ay:r p(z,y): Pr.

So that we get a subset term. Note that this is different from subset types
as described in Section 4.6, since there, {y: 7| p{z,y)} was a type. Notice the
difference in notation between the term {z € o | ¥} and the type {z: o |¥}. By
construction, the terms ¢(z,y) and z €, {y € 7 | p(z,y)} are (B)-convertible,
so that we may replace one by the other. In particular, they are logically
equivalent.

We mention some elementary results concerning these constructs.
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5.1.6. Lemma. Assume we are in higher order logic with extensional entail-
ment.
(i) Write for z: o,

{2}e = Az:0. (2 =, 2): Po,
for the singleton predicate associated with x. Then,
z:0,y:0 | {2}s =ps {¥}o F 2 =0 ¥.

(i1} The inclusion relation C, is (internally) a partial order on the power-
type Po:
a:Po,b:Po|aCo b,bCrata=p, b

Proof. (i) If {z}, =ps {¥}s, then we have equalities of propositions

T =prop (¢ =0 ) =Prop {z}o -2 =Prop {y}o -z =Prop (y =0 2).

Hence we get z =, y, by Example 5.1.2.
(11) Assume a C, b and b C, a. Then a,b: Po = ¢ — Prop satisfy the
premises of the extensionality of entailment rule, so that @ =p, b. a

The singleton map {—},:0 — Po described in (i) will play an important
role in the rest of this chapter. Above one sees that it 1s internally injective.
This result thus holds in all models of higher order logic with extensional
entailment.

Quotient types in higher order logic

What we call higher order logic does not include quotient types. But of course
one can additionally require these quotient types. It turns out that within
higher order predicate logic, quotient types behave much better than within
first order predicate logic. For example, we have the following result from [133,
Proposition 5.1.10].

5.1.7. Lemma. In higher order logic with extensional entailment, quotients
are automatically effective: for an equivalence relation R on a type o, one can
derive:

r:0,y:0 | [2]r =o/r YR F R(z,y).

Proof. If we have a relation z:0,y:0 F R{z,y): Prop which is provably an
equivalence relation, then by transitivity and symmetry, we can form the pick-
term

z:0,y:0 F R(z,y): Prop r:0,y:0,z:0 | R(y,z) F R(z,y) =prop R(z,2)

z:0,a:0/R F pick w from a in R(z,w): Prop



318 Chapter 5: Higher order predicate logic

Hence by using reflexivity, we get,
z:o,y:0 | [z]r =o/R Ylr b T =Prop Rz, z)
= pick w from [z]g in R(z, w)
=prop Pick w from [y]r in R(x,w)
= R(z,y). o
When we first introduced quotient types in Section 4.7, we explained that
the quotient o/R by an arbitrary relation R should be understood as the

quotient by the equivalence relation R generated by R. This can be made
precise in higher order logic.

5.1.8. Lemma. For an arbitrary relation z:0,y:0 + R(z,y): Prop one can

form in higher order logic the least equivalence relation R containing R as

z:0,y:0 F R(z,y) M vSoxo— Prop.
(Equiv(S) AIncl(R, S)) D S(z,y) : Prop.

In this expression we use the abbreviations,

Equiv(S) e S(z,z) A Ve,y:0.5(z,y) D Sy, z)
AVz,y,z:0.8(z,y} A Sy, z) D S(z, 2)
Incl(R, S) ef Ve,y:0. R(z,y) D S(z,y).

The relation R then yields the same quotient type as the equivalence relation
R that it generates, in the sense that there is an isomorphism of types,

c/R=0o/R.
Proof. The isomorphism is given by the two terms
a:oc/R F P(a) L* pick z from a in [zlz: o/R

b:o/R + Q(b) e pick y from bin [ylr: o/R,

where Q is well-defined because R(z,y) implies [z]gr =, /R [Y]r, since the
latter is an equivalence relation containing R. Then for b: 0/R,

PlQ(b)/a]
= pick y from b in P[{ylr/qa] by commutation from Exercise 4.7.1
= pick y from b in (pick z from [y]r in [z]7)
= pick y from b in [y]x
= b

In a similar manner one obtains a conversion Q[P(a)/b] = a. O
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We conclude this section with two examples of the use of quotient types in
higher order logic with extensional entailment. The first example involves the
standard factorisation of terms as a surjection followed by an injection. And
the second example describes the Abelian quotient of an arbitrary group.

5.1.9. Examples. Assume we have quotient types in higher order logic with
extensional entailment.

(1) We first notice that for a relation R on o, the canonical map [-]: 0 —
o/ R is always surjective (in the logic). Consider therefore the proposition,

a:oc/R F p(a) e P =o/r 2] : Prop.
Obviously, y:0 | 0 F ¢([y]) =prop T, and thus for a:o/R,

p(a) o pick y from a in ¢([y]) =prop pPick y fromain T =T.

Thus 3z:0.a =, /g [x] holds for a: 0 /R.
This result can be used to factor an arbitrary term z:0 + M(z):7 as a
surjection followed by an injection:

M [-] M
(0- ———)7-) — ((f — g'/](>————> 7—)
In this diagram, K is the kernel relation,

roy o b Kz, y) L (M{x) =, M(y)): Prop

and M(a) = pick z from a in M(z) for a:0/K. Then obviously M([z]) =
M (z). Moreover, this term M is (internally) injective: one can derive
aro/K,b:o/K | M(a) =, M(b) Fa=,/k b.
as follows.
M(a) =, M(b) = pick z,y from a,bin M([z]) =, M([y])
= pick z,y from a,bin M(z) =, M(y)
= pick 2,y from a,bin K(z,y)
= pick z,y from a,b in [z] =,k [y]

= a :a/K b

This factorisation is the one from Example 4.8.8. Its universal property is
described in Exercise 5.1.6 below. This factorisation is also familiar from topos
theory: it is almost literally as in the proof of {169, Theorem 1.52] (describing
the factorisation of an arbitrary map in a topos as an epi followed by a mono).
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(i1) Let G:Type be a type which (internally) carries a group structure
(0,4, —())- Consider the following relation ~ on G,

u,v:G Fu~v YR G x G — Prop. (Equiv(R) A Cong(R)
AVe,y:G.R(z+y,y+2)) D R(u,v): Prop

where the predicates Equiv(R) and Cong(R) express that R is an equivalence
relation, and is a congruence. The latter is described by

Cong(R) Ve, 2o, y1,¥2:G. R(z1,22) A R(y1,92) D R(z1 — y1, 22— ¥2).

It is then easy to see that if we have Equiv(R) A Cong(R) then R(0,0), and
R(z,y) D R(—=z, —y). Also, with some elementary reasoning one obtains that
Equiv(~) A Cong(~), where ~ is the relation on G defined above.

We now put_G e G/~, with canonical map z:G + [z]: G. Then we can
define for a,b: G,

0 < [0

a+b € pick u, v from a, b in [u + v]
e pick u from a in [~u]

so that we get group operations on G via representatives. This yields an
Abelian group structure, as may be verified by the interested reader. The
canonical map [-]: G — G is a universal group homomorphism: for any ho-
momorphism M:G — H into an Abelian group H, we get a unique homo-
morphism M in

-]

k
def

One puts M(a) = pick u from a in M(u). This is well-defined because one
can form the kernel relation z,y:G + K(z,y) = (M(z) =g M(y)): Prop
and show that it is a congruence and an equivalence relation. It also satisfies
K(z+y,y+z),since M(z+y) =g M(z)eM(y) =g M(y)eM(z) =g M(y+z),
because the group operation e of H is commutative. Thus if 4 ~ v, then
K(u,v) and so M(u) =5 M(v).

G
M
H, Abelian

G
[
I
¥
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Exercises

5.1.1.  Use the extensionality of entailment rule to derive in higher order logic,
a:Prop,B:Prop | a D 3,8 D a Fa=py, B

5.1.2. Check that the connectives 1,V,T,A as defined in Example 5.1.4 satisfy
the rules in Figure 4.1.

5.1.3. For a proposition z:0,y:7 F ¢(z,y): Prop in higher order logic with ex-
tensional entailment, show that Vy: 7. (2, y) is logically equivalent to the

equation {y € 7| ¢(z,y)} =p- {y€7| T}
5.1.4.  Prove that in higher order logic with quotient types there are conversions,

pickzx fromain T = T
pick x from a in (¢ Ay) = (pick = from a in @) A (pick z from a in ¥).

Conclude that in higher order logic with extensional entailment the pick-
operation preserves entalment k.
5.1.5.  Define in higher order logic an order < on Prop by

a: Prop, 3:Prop - a < 3 d—_e-fa D 3:Prop,

and show that (Prop, <) is (internally) a Heyting pre-algebra.

5.1.6. Consider the factorisation M = M o [~]x:¢ — 7 from Example 5.1.9
(i), and show that it is universal in the following sense. If we can write
M = Q o P, where Q: p — 7 is internally injective, then there is a unique
term (up-to-conversion) P:o/K — p with conversions P o [~]x = P and
QoP=M.

5.1.7. Let R be a relation on ¢ and S a reflexive relation on ¢/R. Prove that
in higher order logic with extensionality of entailment and with quotient
types, the quotient o/R/S is isomorphic to the type /T, where T is the
relation T(z,z'y = S([z]r,[z']r) on o.

5.2 Generic objects

Higher order signatures as described in the previous section involve a special
atomic type Prop, which is such that predicates on ¢ correspond to “charac-
teristic” terms ¢ — Prop. Categorically, such a correspondence is described
in terms of so-called ‘generic objects’. These can be defined easily for split
fibrations, but for arbitrary fibrations there are some complications. In order
to describe these matters properly, we need a fibred Yoneda lemma. But we
shall start with the easy case of split fibrations.
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E
5.2.1. Definition. A split fibration %p has a split generic object if there
1s an object Q € B together with a collection of isomorphisms

D
—~

B(I,Q) — > Obj [y

14

natural in [; that is, 8;(u o v) = v*(0/(u)) for v:J — I.

It may be clear that the above §2 € B plays the role of Prop, and that 6
identifies terms I — Q with predicates X € E; on I. The following result
gives a slightly different formulation of the same notion.

E
5.2.2. Lemma. A split fibration ]tp has a split generic object if and only
if there is an object T € [E with the property that

VX € E3lu:pX —» pT.w*(T) = X.

E
Proof. Assume ﬁp has a split generic object (£2,6) as described in the

above definition. Take T' = fq(idg) € Eq. Then for X € E; we have that
071 (X): I = Q = pT satisfies

07 (X)"(T) = 67 (X)" (9a(ida)) = 01 (idq o 67 (X)) = X.
And 1t is easy to see that 91_1(X) is unique in satisfying this property: if
X = u*(T) = 0;(u), then u = 87" (X).

In the reverse direction, assume T € E as in the lemma, and write Q = pT €
B. For I € B and u: I — £, let 8;(u) = u*(T). It is then clearly a bijection.
And 0r(u o v) = (uov)*(T) = v*(u*(T)) = v* (8 (u)), for v:J — I. o
5.2.3. Examples. (i} Let C be a category with a small collection = ObjC
of objects. Then Q € Sets forms a split generic object for the family fibration
Fam(C

Sit(s). The set of functions I — € is actually equal to the collection of
objects of the fibre Fam(C)y over I.

In [252] a (split) fibration is called ‘globally small’ if it has a (split) generic
object. This family example provides a justification for this terminology. The
smallness aspect will become more apparent in Proposition 5.2.7 below. Later,
in section 9.5 a fibration is called ‘locally small’ if its fibred homsets are small
(in a suitable sense).

(11) A special case of (i) is C = 2 = {L,T} with L < T. The family

Fam(2) Sub(Sets)
fibration Séts 1s then isomorphic to the subobject fibration Selts on
Sets, see Exercise 1.7.3. The generic object is the set { L, T} in Sets, together
with the isomorphism between subsets of I and ‘characteristic’ functions I —
{L, T}
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£(Z,1,A

(iii) Consider a split classifying fibration (ceiz; ) constructed syntactically
(see Section 3.1) from a higher order specification (2,11, .4). Such a fibration
also has a split generic object, namely the type Prop € (4(X). For an object
(or type) o € (¢(X), the morphisms M:o — Prop in (¢(X) are by definition
the terms z:0 + M:Prop, and thus the propositions in context ¢, z.e. the
objects over o € C{(X).

(iv) Let B be a distributive category. Write = 1+ 1 € B. Then  forms
a boolean algebra, see Exercise 2.6.1. Each homset B(I, 2} is then partially
ordered by ¢ < ¥ & » Ay = p. Hence the assignment I — B(I, Q) yields
an indexed category B°P — Cat. The resulting split fibration has € as split
generic object by construction.

These generic objects can be described on a more abstract level in terms
of a fibred Yoneda lemma. This result—and also the subsequent corollary—
may be found in [27]. We recall from Exercise 1.10.2 that the Grothendieck

construction applied to the representable functor B(—, I):B°? — Cat yields
B/I

the domain fibration  {domr . These fibrations dom; play the role of repre-
sentable objects in fibred category theory.

E
5.2.4. Lemma (Fibred Yoneda). (1) For a cloven fibration %p and an ob-
ject I € B there is an equivalence of categories

Ey ~ Hom(domh p)

between the fibre category over I and the hom-category of fibred functors
B/I — E over B and vertical natural transformations between them.

The equivalence is natural in I in the sense that for each morphism w: I — J
i B, the diagram

Ey — = Hom(dom;, p)
w* —-©° I_Iw

E, — = Hom(domJ, p)

commutes up-to-unique-isomorphism.
(1) In case p 1s a split fibration, the equivalence in (i) is an isomorphism
and the naturality diagram commutes on-the-nose.
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Proof. (i) Each object X € E; gives rise to a functor Fx:B/I — [E by
u — u*(X) on objects, and on morphisms by,

Fx(¢)

VAR

where Fx(#) is the unique arrow in E above ¢ satisfying 7(X) o Fx(¢) =
a(X).

In the reverse direction, every fibred functor G:B/I — E over B gives an
object G(id;) € Ey. These operations X — Fx and G — G(idf) constitute
an equivalence, since

Fx(idr) = id}(X)
~ X.
Fg(id[)(u) = U*G(idI)

G(u*(idy)) since G is a fibred functor

= G(u).
Naturality in I holds, because for w: I — J, one has

Fw.(X)(u) = u*w*(X)

(w0 u)*(X)
= Fx(wou)
= Fx (I, (u)

(11) Obvious, since in the split case, all the above isomorphisms are identi-
ties. ]

IR

R

5.2.5. Corollary. FEvery fibration is equivalent to a split fibration.

E
Proof. For a fibration ﬁ%p , define a split indexed category on B by

I r——%Hom(domI, p) and (I Y, J) — (— o[l )

The resulting split fibration (obtained by the Grothendieck construction) is
by the previous lemma equivalent to p. a

This result may be used to transform fibred models of certain type theories
into equivalent split models, see e.g. [134].
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E

5.2.6. Definition. A fibration %p is representable if it is equivalent to a
B/Q

domain fibration %domﬂ for some object Q € .

E
The fibred Yoneda lemma tells us that if a (cloven) fibration ép is rep-
resentable, say with an equivalence p ~ domg for 2 € B, then there is
an object T € E above Q yielding a functor B/Q =5 E by u — u*(T).
Further, this means that in the reverse direction there is a fibred functor
H:E — B/Q together with vertical natural isomorphisms :id = H(—)*(T)
and ¥:id = H((=)*(T)). But since the fibration domg has discrete fibre

categories ¥ must be the identity and thus H(u*(T)) = u in B/Q.
Split(E)

E
For a split fibration %p there is a split fibration of objects é”p”
where Split([F) is the subcategory of £ with all objects from E, but with
Cartesian maps coming from the splitting only, see also Exercise 1.8.9. Next
we will show how a split generic object for p exists if and only if this fibration
of objects ||p|| is representable.

E
5.2.7. Proposition. A split fibration ép has a split generic object if and
Split(E)
only if the associated fibration of objects #IP“ 1s representable.

Split (E)
Proof. Assume that the split fibration of objects é”p” is representable,
say via H:Split(E) — B/ together with isomorphisms ox: X — HX*(T)
as described above. Then ¢x = id, since ||p|| has discrete fibre categories.
Thus we obtain isomorphisms Obj Ey = Sphit(E); = (B/Q)r = B(/,Q), which
commute (on-the-nose) with reindexing.

Conversely, given  with the isomorphisms #; as in Definition 5.2.1. The
object T' = fq(idn) € Eq induces a fibred functor B/2 — Split(E) by u
u*(T) = Br(u), which is an obvious isomorphism. This shows that ||p|| is
representable. |

Next we turn to generic objects for non-split fibrations. This is a subtle
matter: an equality like in Lemma 5.2.2 has to be replaced by an isomorphism.
There are several alternatives.

E
5.2.8. Definition. Consider a fibration ép and an object T in the total
category E. We call T a
(i) weak generic object if

VX eE.3f: X = T. f is Cartesian,
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or, equivalently,
VX € EJu:pX — pT.3f:u*(T) = X. f is a vertical isomorphism.
(i1) generic object if
VX e EJu:pX - pT.3f: X - T. fis Cartesian over u
or, equivalently,
VX € EJw:pX — pT.3f:u"(T) = X. f is a vertical isomorphism.
(11) and a strong generic object if
VX e E.Jf: X — T. f is Cartesian
or, equivalently,
VX € EJwu:pX — pT.3f:u*(T) - X. f is a vertical isomorphism.

5.2.9. Lemma. Generic and strong generic objects are determined up-to-
isomorphism (but not the weak ones).

In a preorder fibration, there 1s no difference between a generic object and
a strong generic object.

Proof. Exercise. O

For these generic objects we seek a reformulation of the above notions in
terms of representable fibrations. This will be achieved for (ordinary) generic
objects, so that they form the most natural notion among the above three
options {weak, ordinary, and strong).

E
Recall (e.g. from Exercise 1.1.4) that for every fibration ép there is a
Cart(E)
fibration of objects é|P| where Cart(EE) is the subcategory of E with all
objects but Cartesian morphisms only.

E
5.2.10. Proposition. A fibration ﬁp has a generic object if and only if the
Cart(E)
assoctated fibration of objects élpl 1s representable.

Proof. Assume p has a generic object T' € E, say with Q@ = pT € B, satisfying

the description in Definition 5.2.8 (i1). We intend to show that the fibration
Cart(E)

Hpl s equivalent to domg (and thus representable). One defines a functor
H:Cart(E) — B/Q by mapping X to the unique arrow ux:pX — @ with
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u*(T) = X, vertically. For a Cartesian morphism f: X — Y we get uy o pf =
ux, by uniqueness, since
(uy o pf)"(T) = (pf) 3 (T) = (pf)"(Y) = X,

the latter because f is Cartesian. By definition we have (=)*(T) o H = id. We
get H(u™(T)) = u by uniqueness, since by definition H (u*(T))*(T) = u™(T).

Conversely, assume the fibration |p| is representable, say via H: Cart(E) —
B/Q with isomorphisms px: X — HX*(T) natural in X € [E, where
HX:pX — Q. For any u:pX — § which also satisfies u*(T') = X ver-
tically, we get a vertical isomorphism H{u*(7)) = HX in B/, and thus

u=H(u*(T)) = HX. |
Mono(Sets)
5.2.11. Examples. (i) Consider the (non-split) fibration < of
ets

monos (injections) in Sets. The inclusion
T=(1={T}C{L,T}=2)

is a (strong) generic object for this fibration: for every injection m: X — [
there is a unique map y,,: I — 2 for which there is a pullback square,

X —1
—_— 2
Xm
This map X, is then determined by x,, (1) = T < Jz € X.m(x) = 1.
(ii) A weak generic object often arises in the following situation. Let B be
a category with finite limits and a: A — B be an arbitrary morphism. Write

D for the collection of morphism of the form u*(a) which are obtained from a
by pullback along some u. We write D™ for tl_ye full subcategory of B~ with

D
objects in D. Then the codomain functor ]ﬁ 1s a fibration with a as weak
generic object.

E
5.2.12. Remark. Suppose %p is a fibration with a generic object, say given
by T € [Eq. Fibred structure for p then induces structure on €2 which captures
the fibred structure on objects. For example, if p has fibred Cartesian products
x, then one obtains a map &: 2 x Q — Q such that for parallel maps u,v: I =
Q there is an isomorphism:

u(T) x v (T) = (& o (u,v))"(T).

Thus the map & describes the object part of fibred Cartesian products—since
every object X is isomorphic to u*(7) for a unique u.
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This map & comes about as follows. The object part of the Cartesian prod-
uct functor on E works also on Cart(E) and hence—by Proposition 5.2.10—on
B/Q. It leads to a natural transformation with components

B(I, 2 x Q) —B(1, Q)

and thus by the Yoneda lemma to a map &:Q x Q — Q.

In a similar way fibred exponents yield a map =:Q x Q = Q. And if B is
Cartesian closed, simple coproducts and products lead to collections of maps
(for every I € B),

3; Vi
Qo —Q and Qf —Q

A similar phenomenon occurs for split fibrations with split generic objects.
We conclude this section with morphisms and generic objects.
EI
K, L /
( i ) ]},i,lp

E
5.2.13. Definition. Let ( %p) be a morphism between

fibrations p and p’, each with a (weak, strong) generic objects, say T € Eq
and 7" € [Fy,,. We say that (K, L) preserves these generic objects if the
induced Cartesian map LT — T" is an isomorphism.

A bit stronger, (K, L) preserves these generic objects on-the-nose if this
map LT — T" is an identity.

Preservation on-the-nose is most appropriate for split generic objects.
E - £’
K L / ) ) .
5.2.14. Lemma. Suppose ( %p) (—>) ]i,p ts a morphism of split

fibrations with split generic objects. If (K, L) preserves these on-the-nose, then
the following diagram commutes.

Obj E; Obj B},
]
B(I,Q) B(KI,Q)

Proof. Exercise. a
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Exercises

5.2.1.

5.2.2.

5.2.3.

5.2.4.

(From [81, Section 2] Define a PER & = {(n,n’) | n-0l& rn'-0}}.

(1) Prove that for a PER R, there is a bijective correspondence between
maps R - L in PER (or in w-Sets) and subsets A C |R| which are
saturated(i.e. which satisfy: n € A and nRr’ imply n’ € A) and for
which there is a r.e. subset B C N with A = |R| N B. These subsets

are called “natural subobjects” of R.
NatSub(PER)

(i1) Define a fibration PJ’ of natural subobjects, with split
generic object using ¥ € PER

Recall the natural numbers object N = (Eq(N) € N x N) in PER from

Exercise 1.2.10.

(i) Conclude from the previous exercise that maps ~ — N in PER can be
identified with r.e. subsets of N.

(i1)) Check that maps R — 2(= 1+ 1) can be identified with recursive

subsets of N.
E

Consider a fibration %p and a functor F: A — B with a right adjoint, and
the resulting fibration F*(p) obtained by change-of-base along F'.
(i) Assume first that p is split and has a split generic object. Show that
F*(p) also has a split generic object.
(ii) Assume next that p has a generic object, and show that F*(p) also has
a generic object.
E

Let J%Bp be a split fibration on a base category with Cartesian products.

(i) Show that for an object I € IB, the (split) exponent fibration dom; = p
from Exercise 1.10.6 is isomorphic to the fibration obtained from p by
change-of-base along [ x (=):B - B

(i1) Conclude that p has split simple products/coproducts if and only if
each diagonal functor p = {dom; = p) has a split fibred right/left
adjoint.

Recall the category MS of metric spaces and non-expansive functions from

Example 4.6.3 (iv), see also Exercise 4.6.2. A subset A C X of a metric

space X is closedf each limit point of A is contained in A.

(i) Check that these closed subsets are stable under pullback. Organise
them in a (poset) fibration over MS.

(il Show that for a closed subset A C X there is a characteristic metric
predicate ya: X — [0, o] forming a pullback diagram,

A—>1

e
0

X _X-A—)[O’oo]
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[Hint. Define xa(z) = mf{X (z,y) | y € A}.]
CISub(MS)
(iii) Conclude that the fibration N%S of closed subsets has a weak

generic object.

(iv) Use this to show that the regular subobjects (i.e. those subobjects
which have an equaliser as underlying mono) in MS are precisely the
closed subsets.

5.2.6. Prove Lemma 5.2.14.
5.2.7.  Show how the maps 3; and VE] come about in Remark 5.2.12.

5.2.8. Consider a (split) fibration %P with a (split) generic object Q2 on a Carte-

sian closed base category B. Prove that for a morphism u: I — J in B the
following diagram commutes.

Exxs —> B(K x J, @) — B(&, 2’)

(id x u)* lQ“o—

Exxi — B( K x I, @) — B(K, ')

5.3 Fibrations for higher order logic

In this section we define appropriate ‘higher order’ fibrations as models of
higher order logic. Several examples are given as instances of a general “tripos”
construction. But most importantly, a topos is defined as a category B for
Sub(B
which its subobject fibration lﬁ( ) is such a higher order fibration. This will
turn out to be a powerful notion. It can be defined in various other and more
elementary ways (as will be shown in the next two sections), but the approach
via higher order fibrations is appropriate from a purely logical perspective.
Towards the end of this section we also describe the higher order fibrations
resulting from regular subobjects in the categories of w-sets and of PERs.
Definition 5.1.3 in the first section of this chapter describes higher order
logic. The aspects which are not captured in first order fibrations (as described
in the previous chapter) are the presence of a type Prop of propositions and
of exponent types.

5.3.1. Definition. A higher order fibration is a first order fibration with

e a generic object;
e a Cartesian closed base category.
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Such a higher order fibration will be called split if the fibration is split and
all of its fibred structure (including the generic object) is split.

5.3.2. Examples. For a frame (or, a complete Heyting algebra) X, the
Fam(X)

family fibration Slts is a split higher order fibration. It is a first order

fibration as described in Example 4.2.5 and has the underlying set X € Sets

as split generic object by Examples 5.2.3 (i) and (it). Obviously, the base

category Sets is Cartesian closed.
UFam(PN)
In a similar way, the realisability fibration 1 from Example 4.2.6 is

a split higher order fibration. Its split generic objeetgt 1s the set PN € Sets.

We need not say much about the interpretation of higher order logic in
higher order fibrations, since we have already seen how to interpret simply
typed A-calculus in Cartesian closed categories, and predicate logic in (pre-
order) fibrations. But there is something to say about the extensionality of
entailment rule

' W P,Q:0 — Prop I'z:0|0,Pz F Qu I'e:0]|0,Qz F Pz
rie ,_P:a—vpropQ

Fam(X)
since 1t may fail. In a family fibration slc of a frame X, the assumptions

of this rule applied to predicates P,Q:J = X! in Sets express that
PUIE) <QG)E)  and Q7)) < P)(),

for all j € J and i € I—where < is the order on X. Hence we may conclude

that P = @, as required (since internal and external equality coincides).
UFam(PN)
In the realisability fibration sl the same assumptions for P, Q:J =3

ets
(PN)! yield that

(1 PULG) >QUH)G) | #0, (1 QUG D PG| #0.

(J.i)exI (Ji)eIxI

This means that there are realisers inhabiting P(j)(¢) D Q(4)(¢) and Q(j)(¢) D
P(j)(?), for all 7, 7. But this is not enough to conclude P = Q: take for example
P=XjeJAe€l{0})and Q = Xj € J A € [.{1}. In this realisability
example the truth of a proposition ¢ C PN means ¢ # @, which is not the
same as ¢ = T, since T = PN. Hence, this realisability fibration is not a
model of higher order logic with extensional entailment.

These examples both form instances of what is called a tripos in [145, 267].
Mostly, these triposes are considered with Sets as base category. We recall
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that in a higher order fibration we require ‘simple’ quantification [], ] along
Cartesian projections. By the constructions in Examples 4.3.7 (1) and (ii) we
then get quantification [[,, [, along arbitrary maps u in the base category,
but Beck-Chevalley need not hold for these. This Beck-Chevalley condition is
required explicitly for triposes, although it is not needed to model higher order
simple predicate logic (but it does lead to a model of higher order dependent
predicate logic, as in Proposition 11.2.2 (ii)).

E
5.3.3. Definition (See [145, 267]). A tripos is a higher order fibration she

over Sets for which the induced products [], and coproducts [], along an
arbitrary function u satisfy the Beck-Chevalley condition.

(By Lemma 1.9.7 it suffices that Beck-Chevalley holds either for products
or for coproducts.)

These triposes are mostly used as an intermediate step in the construction
of certain toposes (see Section 6.1). But [267] is a study of “tripos theory” on
its own.

5.3.4. Example (Triposes built from partial combinatory algebras). A par-
tial combinatory algebra (PCA) consists of a set A together with a partial
application function : A X A — A and two elements K, S € A such that

Kzl Szl|, Szyl and Kry~wz, Sryz=zz(yz),

where P | means that P is defined and where Kleene equality P ~ ) means
that P is defined if and only if @ is defined, and in that case they are equal.
As above, we often omit the application dot -. The element I = SKK € A
satisfies I-a = a, for all e € A. Examples of PCAs include the natural numbers
N with Kleene application - and all models of the untyped A-calculus, see [32]
for more information.

For such a PCA (A4, ") one can prove combinatory completeness: for every
polynomial terma M (x4, ..., z,) built from variables zy, ..., z,, constants ¢ for
¢ € A, and application -, there is an element a € A such that for all elements
by,...,b, € A,

ab1 . ‘bn ~ [IM]](bl, . ..,bn),
where [ M ] is the function A® — A obtained by interpreting the polynomial
M. One uses Schonfinkels abstraction rules:
Ar.z = I=SKK
Az. M = KM if z 1s not free in M
Az. MN = S(Az. M)(Az. N).

Then one takes a = Azy -+ -z,. M to get combinatory completeness.
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In this way one can define pairing in PCAs as in the untyped A-calculus:
(a,b) © Az, zab = S(SI(Ka))(Kb)

with projections

e ek and e ¥ o(KI).

Then n{a,b) = a and #’{a,b) = b.
UFam(PA)
In [145] it is shown how each such PCA A gives rise to a tripos {

Sets
As predicates on a set [ one takes functions ¢: I — P A. These are pre-ordered

by the relation F, given as:

oy & (ﬂso(i)w(i)) #0

i€l
where for subsets X,Y C A,
XDOY={feA|VaeX.f-al and f-a€Y}.

Notice the uniformity: for ¢ F ¥ to hold, there must be a single “realiser”
a € Awitha€e(t) Dy@d) forallie I
There are the usual propositional connectives for these predicates on I:
Tr = Xiel. A
1y = Xield
AP Aie . {{a,b) | a € ¢(i) and b € (i)}
PV = Ni€L{(K,a)|a€e(i)} UKL be )
DY = XM e (@) DY)
We show that V 1s join and leave the other cases as exercises. We have ¢
¢ V P, since

Ao (z, K) € () e(i) D (v V(i)
i€l
and similarly ¥ F ¢ V 9. Next suppose we have ¢ F x and ¢ F x, say via
realisers

fe(Ne@ox()) and  ge( )% D x().
i€l iel
Then
b= Az (1,0} (m)(x'2) € (Yo v 9)() 5 x():

i€l
Indeed, if (K, a) € (¢ V ¥)(%), with a € ¢(i), then

WK, a) = (f g)Ka=n(f g)a = fa € x(3)
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and similarly h(K1,b) = gb € x(7).
For a predicate ¢: I x .J = PA, we define an equality predicate Eq{¢) by

P .s ] f | = ’
Eq(p) = X(4,5,5") € (I x J x J). { 5(’ ) :)tflerw]ise.

Then it can be shown that Eq(y) F ¥ < ¢ F &(I,J)*(¥). This yields
equality. Finally, for a function u: I — J in Sets and a predicate ¢: I — PA,
we put

ML) = Aje (i) =7 4) D eli)

i€l
[L(p) = Ajed|Jwi) =, i) Apli)

iel

where Lo
(u(@) =s j) = Eq(u o m, 7'} (¢, 5) = { 0 ellse“(l) =1J

(In case I = @, the above intersection over I equals A.} Then one easily
checks that ¥ F [],(¢) & (W ou) Fpand [[,(¢) F¥ © ¢ F (¥ o u).
Beck-Chevalley holds for these products and coproducts.

It may be clear that if we apply this construction to the PCA (N, -) with -
UFam(PN)
for Kleene application, then we get the realisability tripos ! which

was first introduced in Example 4.2.6. But the construction also yeields ‘realis-
ability triposes’ starting from models of the untyped A-calculus, like (D, ) or
(Pw, -); the latter (and especially the resulting topos) is investigated in [261]
within ‘synthetic domain theory’.

There are variations on the above construction: in [147] the starting point is
a ‘right-absorptive C-PCA’ which serves as a bases for a tripos using modified
realisability. The resulting topos (as in Section 6.1) is used to give generic
proofs of strong normalisation for various typed A-calculi. In [239, Chapter IV]
a tripos 1s constructed which captures another version of realisability, namely
Lifschitz’ realisability—and the resulting topos is studied.

Next we turn to an important class of examples of higher order fibrations.
5.3.5. Definition. A topos is a category B with finite limits such that its

Sub(B)
subobject fibration ﬂLB is a (split) higher order fibration.

The subobject fibration of a topos thus has a generic object. In this situation
with a poset fibration it does not matter whether we call this generic object
‘split” or not. The same applies for the rest of the higher order structure.

Such a generic object corresponds to a ‘subobject classifier’, which gives
a correspondence between subobjects and characteristic maps, as in Exam-
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ple 5.2.3 (ii). This will be made explicit in the next result. It forms the core
of a more elementary description of toposes in the next section.

Sub(B)
5.3.6. Lemma. A subobject fibration 1{13 has a (split) generic object if
and only if B has a subobject classifier. The latter is a (monic) map
true: 1 — Q such for each mono m: X — [ there is a unique ‘character-
istic’ or ‘classifying’ morphism char(m): I — Q forming a pullback diagram,

X 1
-]
m true
I Q
char(m)
Sub(B)

Proof. By Lemma 5.2.2 the fibration ]ﬁ has a split generic object if
and only if there is a subobject true: g —  such that for each subobject
m: X — I there is a unique map char(m): I — Q with char(m)*(true) = m,
as subobjects. The latter means that there is a pullback diagram,

X Qo
=]

m true
I Q

char(m)

Thus if B has a subobject classifier true: 1 — € as in the lemma, then the
subobject fibration obviously has a split generic object. The converse holds if
we can show that for the above mono true: {2g — € the object 2 is terminal.
This will be done: for each object I € B, the identity mono [ »— [ yields a
unique map f = char(id): / — € and a pullback diagram as on the left below.
Thus we have at least one map f': I — Qp. If also g: I — Qp, then we get a
pullback as on the right, since true is a mono.

/2
g9
I f Q() I Q0
I _ I , [ _ [
id true id true
I Q I

f trueo g

But then by uniqueness f = true o g. Hence g = f', since trueo g = f =
true o f' and true is monic. m]
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The above notion of subobject classifier was first formulated by Lawvere
and Tierney in 1969 in their axiomatisation of set theory and sheaf theory.
Here we treat a subobject classifier as an instance of a generic object. More
about toposes may be found in the next few sections. At this stage we only
mention that the category of sets is a topos. The subobject classifier is the
generic object 1 — 2 described in Example 5.2.3 (ii).

In toposes the extensionality of entailment rule from Section 5.1 comes for
free.

5.3.7. Lemma. The subobject fibration of a topos i1s a model of higher order
logic with extensional entailment.

Proof. Assume B is a topos, and let f, g: J = Qf be predicates satisfying the
assumptions of the extensionality of entailment rule. This means that

(ev o f x1d)*(true) = (ev o g x id)* (true),

as subobjects of J x I. But then, by uniqueness, one gets ev o f xid = ev o
g x1d, and thus f = g. a

We mention two further examples of a higher order fibration, involving the

fibration of regular subobjects (see Exercise 1.3.6) in the categories of w-sets
RegSub(B

and of PERs. It is left to the reader to check that a split fibration g}é ®
of regular subobjects in a category B with finite limits has a (split) generic
object if and only if the category B has a regular subobject classifier: a
regular mono true: 1 — € such that for any regular mono m: I' — I there is
a unique classifying map [ — Q which yields m as pullback of true.

5.3.8. Lemma. Consider the category w-Sets of w-sets described in Sec-
tion 1.2. Recall that it comes with a left adjoint V:Sets — w-Sets to the
forgetful functor (I, E)w— I.

(i) Regular subobjects of an object (I, E) € w-Sets correspond to subsets

X C I, with existence predicate inherited from (I, E).
RegSub(Ww-Sets)

(i1) The fibration w lets of reqular subobjects in w-Sets has V2 €

w-Sets as (split) generic obsject—where 2={L,T}.
Proof. (i) Given an object (I, E} € w-Sets and a subset X C [ of its carrier
set, consider its characteristic function I — 2 and the function I — 2 which is
constantly T € 2. These form a pair of parallel maps (I, £) = V2 in w-Sets,
the equaliser of which is given by the inclusion (X, E | X) — (I, E).
Conversely, if m: (X, Ex) — (I, Ey) is equaliser of f,g: (I, Er) =3 (J, EJ),
then X' = {i € I'| f(i) = g(¢)} C I comes with an inclusion (X', Ey | X’) —
(I, Ey) which equalises f, g. Therefore it must be isomorphic to m.
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(ii) For (I, E) € w-Sets, there are isomorphisms between the sets of

(a) regular subobjects of (I, E)

(b) subsets X C I

(c) functions I — 2 in Sets

{(d) morphisms (I, E) = V2 in w-Sets

Thus V2 € w-Sets is a split generic object for the fibration of regular subob-
Jects. ]
5.3.9. Proposition. The reqular subobjects in w-Sets give rise to a split

RegSub(Ww-Sets)

higher order fibration . Its logic is classical.

W-Sets
Proof. The generic object comes from the previous lemma. Fibred finite
conjunctions and disjunctions are given by finite intersections and unions.
The exponent X = Y of XY C I for (I,E) € w-Sets is given by
X =Y = (I-X)UY. Thus the negation ~X of X is its complement (I — X).
Quantification along a projection n: (I, E) x (J,E) — (I, E) in w-Sets are
also given by the set theoretic formulas:

product: (X CIxJ) = {iel|VjeJ (i,j)€ X}
coproduct: (X CIxJ) = {i€l|3jeJ (i,])€ X} O

This will turn out to be an instance of a more general result: the regular
subobject fibration of a category of separated objects in a topos is a higher
order fibration with classical logic, see Corollary 5.7.12. This general result
applies, since w-Sets will turn out to be the category of regular objects in the
effective topos Eff, see Section 6.2.

The situation for regular subobjects in the category PER is different.

5.3.10. Proposition. Regular subobjects in the category PER form a first
order fibration, but not a higher order fibration.

RegSub(PER)
Proof. The first order structure of the fibration PéR 1s described

in Proposition 4.5.7. Here we show that it does not have a generic object,
following an argument due to Streicher. Suppose, towards a contradiction,
that 2 € PER. is a generic object. Then for R € PER there should be
isomorphisms

PER(R, Q) = RegSub(R)
P(N/R) by Proposition 4.5.7 (i).
The homset PER(R, ), like any homset in PER, is countable. But the

powerset P(N/R) can be uncountable, for example if R is the natural numbers
object N = (Eq(N) C N x N) with quotient N/N = N. O

IR
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We conclude by noting that these fibrations of regular subobjects in w-Sets
and in PER arise in the following change-of-base situations.

RegSub(PER) ———— RegSub(w-Sets) —— Sub(Sets) = Pred

|- n |

PER © w-Sets ———————————> Sets

Exercises

5.3.1.
5.3.2.

5.3.3.

5.3.4.

5.3.5.

Verify that N with Kleene application - is a PCA.

Check some more details in the realisability tripos construction in Exam-
ple 5.3.4, especially,

(1) that the connectives T, L, A, D in the fibre have the required properties;
(i) that [T ,]], are right and left adjoint to substitution u*;

(ii1) that Beck-Chevalley holds for these products and coproducts.

Show that the category of finite sets is a topos.

E

Let %p be a higher order fibration, say with generic object T € Eq,. For
parallel morphisms u,v: I =2 Q put u < v if and only if u*(T) < v*(T) in
the fibre over 1.
(i) Show that each homset (7, ) is a Heyting pre-algebra.

[Hint. Use Remark 5.2.12.]
(ii)) Show that € is internally complete and cocomplete in the following

sense. For each pair of objects I, J € B, the functor (between preorders)

— 0T

B(1, @) ——— B(1x J, Q)

has both a right and a left adjoint.

(iil) Assume that the equaliser exists of A, m: 2 x @ =3 © and write it as
< — Q x Q—where A is the induced conjunction map on §2 as in
Remark 5.2.12. Prove that for u,v: I = Q one has u < v as above if
and only if {u,v): I — © x © factors through < — 2 x Q.

Prove that a category B with finite limits has a regular subobject classifier
RegSub(B)
if and only if its regular subobject fibration I%B has a (split) generic

object.

5.4 Elementary toposes

In the previous section we introduced toposes as categories whose subobject
fibrations are higher order fibrations. This gives a distinctly logical description
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of toposes. It turns out that there are more elementary formulations of this
notion. The first alternative formulation will be given below. We will show that
it is equivalent to the previous definition. This involves some basic (logical)
constructions in toposes. Two other alternatives will be discussed in the next
section

There is much more to say about toposes than the few logical aspects that
we touch upon below, and in the next four sections. Here, we merely collect
some useful facts for the readers convenience, mainly as a preparation for
the effective topos Eff, to be introduced in the next chapter. Not all details
are given; more information may be found in the extensive literature, see
e.g. [188, 169, 18, 24, 218] and the references given there.

5.4.1. Definition. (i) An (elementary) topos is a category B which has

o finite limits;

e exponents (so that B is Cartesian closed);

e a subobject classifier true: 1 — 2. Thus for each mono m: X — I, there is
a unique characteristic map char(m): I — Q with m = char(m)*(true), as
in,

X 1
-

m true
I Q

char(m)

(i1} A logical morphism between two toposes B, B’ is a functor F: B —» B
which preserves finite limits, exponents and the subobject classifier. The latter
means that the canonical map FQ — Q' is an isomorphism in

F(1)_|E= 1
F(true)] Itrue’
FQ————

We can immediately see (by Lemma 5.3.6) that if a subobject fibration
Sub(B)

]i 1s a higher order fibration—so that B is a topos as defined in the
previous section—then B is an elementary topos. Our aim in this section is
to prove that the converse also holds, i.e. that the elementary description
coincides with the logical description.
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5.4.2. Example. As we have already seen in the previous section, the cate-
gory Sets is a topos with subobject classifier

true = Az. 1

{0,1} =2

More generally, for each locally small category C, the category C = SetsC”
of presheaves C°P — Sets and natural transformations between them, is a
topos. Finite limits are computed pointwise as in Sets. The exponents and
subobject classifier are obtained via the Yoneda Lemma, as will be sketched.

For presheaves F, G: C°P =2 Sets, the exponent F = G:C°P — Sets should
satisfy

(F=G)(X) = €(C(-,X), F= G) by Yoneda

@((C(—,X) x F, G) because F' = G is exponent.

Therefore, one simply defines,

(F = G)(X) ¥ C(c(-, X) x F, G).

1R

The verification that this indeed yields exponents in C is a bit involved, but
in essence straightforward.

A subobject S — C€(—, X) of a representable presheaf C(—, X) can be
identified with a sieve on X &€ C. That is, with a set S of arrows with
codomain X (i.e. S C ObjC/X) which is “down closed”:

—g—-)i) inC } = fogeS$
feSs
Thus an appropriate presheaf 2: C°P — Sets should satisfy
QX) = @((C(—,X), Q) by Yoneda
> Sub((C(—, X)) because 2 classifies subobjects

IR

{S]S is a sieve on X}.

Hence one simply puts

Q(X) &f {S | S is asieve on X}.

And for a morphism f: X — Y in C there is a map Q(f): Q(X) — Q(Y)
defined by
(T, sieveonY)» {g:Y > X | fogeT}.

The generic subobject true: 1 — 2 is then given by maximal sieves:

truex (*) = X = {f € Arr C | cod(f) = X}.
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We leave it as an exercise to verify all remaining details.

5.4.3. Notation. In a topos, we write PI for the power object Qf. It comes
equipped with a membership predicate €; — PI x [; it is the subobject
corresponding to the evaluation map ev: PI x [ — § as ev*(true). For maps
z:J — I and a: J — PI we can then write

z € a < (a,z) factors through €;— PI x I.

Also there is a singleton map { }: I — PI, obtained in the following way.
The diagonal morphism 6(/) = (id,id): I — [ x I on [ has a characteristic
map char(§(1)): I x I — Q. The exponential transpose of the latter is the
singleton map:

A(char(6(1))

(e Q = PI)

Next, consider this singleton map in the mono ({ },id}: I — PI x I, and its
characteristic map Pl x I — Q. Exponentiation yields a morphism s: P —
PI. Informally, s(a) = {z | {x} = a}. We form the lift object LI via the
equaliser:

S
—S

1> PJ Pl

~—

id

In Sets, the power exponent 2! is the ordinary powerset PI of I. And L]
is the lift of I: the pointed set LI = {@#} U {{7} | i € I} C PI obtained from
I by adding a base point. Partial functions J — [ between sets correspond
to total functions J — L 1. This will be generalised to arbitrary toposes. But
first we need an elementary result.

5.4.4. Lemma. (i) The singleton map { }: I — PI is monic.

(i1) The singleton map {} factors through LI — PI, i.e. it restricts to a
map { }: I — LI, which is a mono again by (7).

As a result of this lemma, z is the only element of {z} = {} o =z, see
Exercise 5.4.3 below.

Proof. (i) Assume parallel maps u,v:J = [ with {} o u = {} o v. Then
one gets char(d(l)) o u x id = char(6(X)) o v x id = w, say. Consider the
corresponding subobject w*(true) in,
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72— s,

e [P |
w* (true) a(1) true
u x id char(6(I))
Jx ] —/—/——= I x 1 Q

I\ v xid A

w

Both (u,id): I — J x I and (v,id): I — J x I are obtained by pullback of
true along w—since

(w,id) = (u x id)*(5(1))  and  (v,id) = (v x id)*(8(]))-

Hence (u,id) = (v,id), as subobjects of J x I, and so u = v.
(ii) We have to show that s o { } = {}, where s: PI — PI is as introduced
in Notation 5.4.3. We compute:

s0{} = Achar({{},id) o {} x id) & A(char(6(1)) = {}

where the equality () comes from the fact that the left square (**) below is
a pullback by (i).

by

I

—_

1
(1) (+*) ({},id) true

: PIxI :
{}xid char({ },id)

Categorically, a partial map I — J is (an equivalence class of) a span

m U
I X J

It tells that u is defined on a subset X of I. Two such spans [ Zx5y

and I <Y 5 J are equivalent if there is a necessarily unique isomorphism
©: X 3Y with no ¢ =m and v o ¢ = u. As for subobjects, one usually does
not distinguish notationally between such a span and its equivalence class.

5.4.5. Proposition. The singleton map {}:J — LJ is a partial map

classifier: for each partial map I Zx Y J, there 1s a unique morphism
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v: [ = LJ forming a pullback square,

X J
T h
1 1J

v

Proof. Given I L« X % J, consider the ‘graph’ mono (m,u): X — I x J,
its characteristic map I x J — €2, and the resulting exponential transpose
I - Q' = PJ. The latter factors through 1J — PJ. ]

5.4.6. Corollary. The assignment I v L1 is functorial, and the singleton
maps { }: I — LI are components of a natural transformationid = L.

. . {1
Proof. For a map u: I — J, there is a partial map LT - 1'% J and thus a

unique morphism lu: L7 — L J, in a pullback square

1 J
{}Il—' |00
17 T 1J 0

Such classification of partial maps is an important first step in the axioma-
tisation of domain theory, see e.g. [144, 81, 259], and also [296].

Next we are going to show that every topos is locally Cartesian closed
(i.e. that all of its slice categories are Cartesian closed). In Sets, the expo-
nent in the slice Sets/I of two I-indexed families (X;);er and (Yi)ies is the
pointwise exponent (function space) (X; = Y;)ier. It can alternatively be de-
scribed 1n terms of suitable partial maps f: X — Y, namely those f with for
all z € X, f(z) is defined and f(z) € Y;. This will be used below.

5.4.7. Proposition. A topos is a locally Cartesian closed category (LCCC).
A logical morphism preserves the LCCC-structure.

Proof. A topos B has finite limits by definition, so that each slice category
B/ has finite limits. We only have to show that B/I is Cartesian closed.

X Y
Assume therefore families ( %50) and ( ‘IW’) We then have a partial
map [ x X — I, namely

(p,1d) ©
I xX X I
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Let it be classified by @: I x X — LI. We define the exponent family ¢ = ¢
to be

W—w> (_LY)X

|
0 => 1/11 l(_Ld))X = A(Ly oev)

Z
For an arbitrary family ( ‘}X , we have to establish a bijective correspon-

dence between maps f:x x ¢ = ¥ and g: x — (¢ = ¥) in B/I. It arises as
follows.

o Given f:Z x; X =Y, consider the partial map Z x X =Y,

Z><X<—<Z><1X—f—>Y

It induces amap f: Z x X — LY and hence A(f): Z — (LY)X. The latter,
together with x: Z — [ yields a mediating map Z --+ W with respect to
the above pullback. It is the map we want.
e Conversely, given g: Z — W, one obtains the appropriate map Zx; X —» Y
in,
g xid
X X>—>7Zx X —>WxX

\(iv ow X id
{}v

1Y

|

17

{}

These exponents in the slices are preserved by logical morphisms, because
they are defined in terms of the topos structure as in Definition 5.4.1. O

This result has important consequences for the codomain and subobject
fibrations of a topos.

5.4.8. Corollary. If B is a topos, then its codomain fibration 1s fibre-

are logical

e

wise a topos: each fibre B/I is a topos and reindezing functors u
morphisms (they preserve the topos structure).
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Proof. Each slice has finite limits and exponents; the latter by the previ-
ous result. And if true:1 ~—  is subobject classifier in B, then the map
I*(true) = id x true: I x 1 — [ x © is a morphism between families,

IX; I*(true) ]Xgrz
()T ()

which is a subobject classifier in B/I. The proof uses that a map between
families in B/ is a mono in B/ if and only if it is a mono in B.
Obviously, pullback functors preserve all this structure. o
Sub(B)
5.4.9. Corollary. If B s a topos, then its subobject fibration ﬁ s a
higher order fibration.

A category B is thus a topos as in Definition 5.4.1 in this section if and only
if B 1s a topos as defined in the previous section.

Proof. Because a topos B is locally Cartesian closed, each pullback func-
tor u*:B/J — B/I has a right adjoint [[,,, by Proposition 1.9.8 (iit). These
functors [], restrict to functors [], : Sub(I) — Sub(J), because right adjoints
preserves monos. With these products we can define implication D as in the
proof of Theorem 4.5.5. Thus, in the subobject fibration of a topos, we already
have Q,V, D, A, T and =. The latter three always exist in subobject fibrations.
The missing logical operations L, V,d are then definable, using Q,V and D,
as in Example 5.1.4. Thus we have a higher order subobject fibration. O

Exercises

5.4.1. Use characteristic maps to show that each mono in a topos is a regular
mono. Conclude that a map in a topos which is both a mono and an epi is an
isomorphism. Categories with this property are sometimes called balanced.

5.4.2. Check that the constructions described in Example 5.4.2 indeed yield a
topos of presheaves Sets®™ . Describe the subobject classifier true: 1 — 2
for Cis (a) a monoid, (b) 2 =(-—= ), (c}N=(->+-—> - —> --), and
(d) an arbitrary poset,

5.4.3.  Show that for ‘generalised elements’ z,y: J =3 I in a topos, one has

rer{y & 2=y

where {y} ={}oy:J = PI.
5.4.4. Show that

(1) {}1— L1listrue:l— Q;

(i1y LI»— PI is a split mono.
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5.4.5.  (From [169, 1.45]) For an object I in a topos, consider [ as family over
1, and form the product [, .. .(I) over € along true:1 — Q. Notice that

1 1
( i ) can be obtained as pullback true* (6), where [ — Q is true o .

There is thus a unit map I — ], ,o(I). Prove that it gives an alternative
description of the partial map classifier { }:1 — LI.

5.4.6. In the subobject fibration of a topos there are implication O operations in
the fibres. It induces a map D: Q2 x Q@ — Q, like in Remark 5.2.12. Prove
that this map D is the classifying map of the order <— Q x Q, obtained
as equaliser of A, m: Q2 x Q@ =3 Q.

5.4.7.  Verify that a logical morphism preserves images. More generally, that a log-
ical morphism between toposes yields a morphism preserving the structure
of the corresponding higher order subobject fibrations.

5.5 Colimits, powerobjects and well-poweredness in a topos

In this section we mention some further results on toposes, which are of less
importance for the main line of this book. They involve two more alternative
formulations of the notion of topos: one involving powerobjects PI = Qf,
and one involving well-poweredness of the associated codomain fibration (in
a fibred sense). Also we show that every topos has finite colimits. The proof
involves some special properties of subobject fibrations.

We start with powerobjects.

5.5.1. Theorem. A category B is a topos if and only if it has both

o finite limits;

e power objects: for each object I there is a power object PI together with
a “membership” relation €y — PI x I which is universal in the following
sense: for each relation R — J x I there 1s a unique “relation classifier”
r:J = PI forming a pullback square,

R €7
- |
Jx 1T - PIxlI
r x id

One thinks of r:J — Pl as j— {i € I | R(j,1)}.

Proof. If B is a topos, then one takes PI = Qf and €; as classifier of
evaluation, as in Notation 5.4.3. Every relation R »» J X I, as a mono,
has a classifying map char(R):J xI — € and thus we obtain a map
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r = A(char(R)): J — Q! = PI by abstraction. The outer rectangle below
1s a pullback:

€r

R N 1
S [
Q

IxI —2 " o pPrx] i

- N
char(R)

so that we can conclude from the Pullback Lemma that the rectangle on the
left i1s a pullback.

In the reverse direction, if one has powerobjects, then the relation €;:1 —
P1x12= Plisasubobject classifier. Further, exponents J/ can be constructed
as suitable subobjects J! — P(I x J) of relations which are both single-valued
and total. For the details, see e.g. [188, IV, 2]. a

This result gives the most economical formulation of ‘topos’; it is due to
Kock. It is remarkable that the above two requirements suffice to give us all
of the structure of higher order logic.

We also like to mention that taking powerobjects is functorial (and yields
a monad, see Exercise 5.5.2 below).

5.5.2. Proposition. For a topos B, the assignment I — PI ertends to a
functor B — B. The singleton maps { };: [ — PI are components of a natural
transformation idg = P.

Proof. For a morphism u: I — J, consider the image [[;y.,(€r) — PI x J
of the composite

1a X u
€r>—> Pl x ] — PIxJ

By the previous result, there is a unique classifying map P{u): P/ - PJ in a
pullback square

Hiaxu(€r) ———— €5
- |
PIxJ —>PJxJ

P(u) xid

We get P(u) o {}; = {}s o w:] = PJ, because both maps classify the
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same relation, namely the graph (id, u): I — I x J of u, in:

I ke J €
(i, u>I - (1) I - I
IxJ - JxJ PJxJ
u X id {}s xid
and
I Higxu(€r) ————— €5

w7 P

I'xJ PIxJ ———> PJxJ

{}r xid Pu) x id
where in the latter case the square on the left is a pullback by Beck-Chevalley:
({h xid)* [ligxu(€1) = iaxa(({ }1 x id)*(€1))
= Hiqu(a(]))
= (id, u). o

We turn to finite colimits in a topos. Remarkably, they come for free. To
see this we need the following auxiliary result.

5.5.3. Lemma. Since a topos is a coherent category, it has a strict initial ob-
ject 0, see Theorem 4.5.3. Write false: 1 — 2 for the classifying map obtained
mn

|

—_—e—< O

1
I true
Q

false

For an arbitrary object I, put §; = A(false o w): 1 PI. Then O; and the
singleton map { }1: I — PI are disjoint: there is a pullback square

0 1
I—l I(?)I
I 5y PI

Proof. Exercise. o
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5.5.4. Proposition. Each topos has finite colimits; they are preserved by
pullback functors (i.e. they are universal ).
Moreover, these colimits are preserved by logical morphisms between toposes.

Proof. We already know that a topos has an initial object 0. For objects I, J
consider the subobjects

({}1,05):1— PIxPJ and @r,{}s): 1 — PIxPJ.

By the previous lemma, these are disjoint. Hence their join IV J — PI x PJ
is [ +J — PI x PJ by Exercise 4.5.1.
(More informally, one constructs the coproduct [ + J as the set

{(a,b) € PI x PJ | {a is a singleton and b is empty)

or (a is empty and b is a singleton)}.

See also [186, 11,5, Exercise 2].)

In order to show that a topos has coequalisers, we use Proposition 4.8.6 (ii),
and construct for a relation {rg,r1): R »» I x I a quotient object I/R. Let
(Fo,71): R — I x I be the least equivalence relation containing R; it may be
obtained as in Lemma 5.1.8. Write » = A(char(R)): I — PI for the relation
classifier of R, and factor this map as

c

I —$+s1/R>-"> pr

We must show that maps I/R — J are in bijective correspondence with maps
of relations R — Eq(J), t.e. with maps u: ] — J satisfying u o rg = u o ry.
For ,7,j € I with R(4,4) one has a logical equivalence

R(i, )X R(, J)

because R is symmetric and transitive. More categorically, one has an equality
of subobjects,

(Fo x id)*(R) = (71 x id)*(R) over R x I.

As a result, char(R) o 7o x id = char(R) o 7} X id, and so r 0 Ty = 7 o T;.
This gives us ¢ o 7g = ¢ o 71, because r = m o ¢ and m i1s a mono. We also
get corg = cory,since R < R. Hence a morphism v: I/R — J gives rise to
amorphismu=voc:I -5 J withuorg=uory.

And if we have a morphism u:/ — J with u o r¢ = u o ry, then
R < (u x u)*(6(J)) = Ker(u). Since this kernel Ker(u) is an equivalence
relation containing R, we get R < Ker(u). The required mediating map
I/R — J is now obtained from the fact that covers are orthogonal to monos,
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see Lemma 4.4.6 (vii), in a diagram:

[ —— »I/R
B
/ m
Ve
s/

L lP(u)
J———> PJ

{}s

The outer rectangle commutes, as may be concluded from the following com-
putation.

(Pw)or)@) = Pw)({¢ €| R(:7)})
{u() | R, 1)}
{u(?)} by reflexivity of R

= ({}sou)@).

Colimits in a topos are preserved by pullback functors u*, because each u*
has a right adjoint [],. And since these colimits are described in terms of the
logical structure of a topos, they are preserved by logical morphisms between
toposes. O

I

i

In this proof we rely on logical tools. There is a more categorical argument
due to Paré: by using Beck’s Theorem one can show that for a topos B, the
opposite category B°P is monadic over B. Thus B°P inherits limits from B,
i.e. B inherits colimits. Details may be found in [188, 169, 18]. This proof has
the advantage that it directly applies to non-finite colimits as well; they exist
in a topos as soon as the corresponding limits exist.

Notice that since colimits are stable under pullback, epimorphisms are pre-
served by pullback functors (since the fact that a map is an epi can be ex-
pressed in a pushout diagram). One can further show that coproducts are
disjoint, but the argument is non-trivial, see e.g. [188, IV,6, Corollary 5].

5.5.5. Corollary. The epis in a topos are precisely the covers (1.e. the regqular
epimorphisms).

Proof. Images can be constructed as in Exercise 4.4.8 and in Exam-
ple 5.1.9 {i). Explicitly, given a map u:I — J one forms the coequaliser
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I — J' of u’s kernel pair I xy I =2 I, as in,
P u
I ————J
J/
Then J' — J is internally injective, as proved in Example 5.1.9 (i). In a
subobject fibration this means that it is monic. In case u is an epi itself, then

so is J' — J. Hence the latter is an isomorphism (see Exercise 5.4.1). Thus
every epl is a regular epi and hence a cover, see Lemma 4.4.6 (viit). a

]XJI

We turn to another characterisation of toposes, in terms of well-powered-
ness. An (ordinary) category C is called well-powered if for each object
X € C the collection of subobjects of X is a small set (as opposed to a
proper class). In a fibred definition of this concept the reference to small sets
is eliminated and replaced by a reference to objects of a base category of a

fibration.
E

For a fibration P we say that a map in E is vertically monic if 1t is
vertical, say in the fibre over I, and i1s a mono in this fibre category ;. We say
that substitution functors preserve monos if for each morphism u: I — J in
B and vertical mono m: X/ — X over J, one has that u*(m): u*(X') = v*(X)
is vertically monic over I. In case substitution functors preserve fibred pull-
backs or have left adjoints, then they preserve monos. A vertical subobject
is a subobject in a fibre category which comes from a vertical mono. Below
we shall write VSub;(X) for the collection of vertical subobjects of an object
X over [.

E
5.5.6. Definition. A fibration %p 1s said to be well-powered if both

e substitution functors preserve monos;
o for each X € [, say over I € B, the functor

(B/I)°P —> Sets  given by (J - 1) = VSub, (u" (X))
1s representable.

The latter means that for each X € [E there is a map SX:Sub(X) — I in
B together with a vertical mono s: X’/ »—+ SX*(X) which is universal: for each
u:J — I with a vertical mono m:Y — u*(X) over J, there is a unique map
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v:J — Sub(X) in B with X o v = u such that there is a commuting diagram

]
wr(X) - - = - - > SX*(X)

where ©*(X) -+ SX*(X) is the unique Cartesian arrow over v with u*(X) —
SX*(X) > X is u*(X) = X, so that Y ——» X’ is uniquely determined. All
this says is that there are isomorphisms

IB/I(U, SX) = VSub,(¢* (X)), naturalin u:J — I.
5.5.7. Theorem (See also [246, 4.2.1]). A category B with finite limits is a
Y
topos if and only if its codomain fibration ]]Jé 1s well-powered.

Proof. If the codomain fibration on B is well-powered, then for each object
I € B we have can view [ has a constant family over the terminal object
1 € B. We take as powerobject

b =aoms( ).

The isomorphism characterising well-poweredness gives us

J I
B(J, P(I)) = B/1( ( : ) s( ; )) > VSub; (J*(I)) = Sub(J x I).

This shows that P(I) indeed behaves like a powerobject.
Conversely, assume B is a topos. Since every slice category B/ is a topos,

it carries a power object functor P/I:B/I — B/I. For a family )iI(SO and
a map u:J — I we then get isomorphisms

B/I{u, P/I(g)) = Sub(u x1 p) 2 VSuby (u" (). o
Exercises

5.5.1.  Describe an ‘undefined’ element L;:1 — LI. And prove that L0 = 1.
5.5.2. (i) Check that the assignment u + P(u) in Proposition 5.5.2 preserves
identities and composites.
{(ii} Extend P to a monad on [ with singleton maps {} as unit.
[It can then be shown that algebras of this monad are the (internally)
complete lattices in B, see [169, after Proposition 5.36].]
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(i) Extend also L to a monad and show that the maps LI — PI form a
morphism of monads 1 - P.
[Algebras for this L monad are investigated in [179}.]

(iv) Define the non-empty power object PTI ~— PI by the following
pullback diagram,

P*I PI
_
7
1 1=0

{} = true

and show that P* also forms a submonad of P.
5.5.3. Let BB be a topos. For every object I € B we have a slice topos B/, and
thus a power object functor P/I:B/I — B/I.
(i) Show that these fibrewise functors combine into one single fibred power
object functor B~ — B™.
(i1) Check that in the case where B = Sets, this fibred functor is given by

(Xier = (PXi)ier.

5.5.4. Prove in purely categorical terms that the rectangle in the proof of Propo-
sition 5.5.4 commutes.

5.5.5. Consider an ordinary category C, recall Exercise 1.2.2, and prove that
Fam(C)
(i) substitution functors of the family fibration Slt always preserve
ers

vertical monos;
Fam(C)
(i1) the category C is well-powered if and only if its family fibration Sl

. ets
is well-powered.

5.6 Nuclei in a topos

In this section we describe nuclei (also called Lawvere-Tierney topologies) in
a topos and study the associated closed and dense subobjects in some detail.
We show in particular that the fibration of closed subobjects is a higher order
fibration, just like the fibration of ordinary subobjects in the underlying topos.
Thus we can do higher order logic with closed subobjects. For the special case
of the double negation nucleus ——, the logic of this fibration of ——-closed
subobjects is classical: the entailment -—¢ + ¢ is (forced to be) valid.

We start with the standard definition of a nucleus in a topos as a morphism
J: — Q satisfying some special properties. An alternative, more logical,
approach is possible in which a nucleus is introduced as an operation ¢ — @
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on propositions, see Exercise 5.6.6 (and also [339]). This operation may also
be studied as an operation of modal logic, see [103].

The conjunction operation A: €2 x £ — € in the next definition arises as in
Remark 5.2.12.

5.6.1. Definition. In a topos, a nucleus (or Lawvere-Tierney topology)
is a map J: 2 —  making the following three diagrams commute.
Ix]
Q Q AQxQ——OQxQ
AT
Q—/Q Q—Q Q——m—>Q
J J

J

5.6.2. Example (Double negation). The example of a nucleus that we will
be most interested in is the double negation nucleus =—:Q — Q in a topos.
The negation map —: 2 — € is the unique map giving rise to a pullback
square,

] ———1

falseI - I true

Q ———Q

see Exercise 5.6.1—where false: 1 —  is the characteristic map of 0 — 1.
Since €2 is an (internal) Heyting algebra (see Exercise 5.1.5), we have,

W = T, ——=true = true, —|—|((P A Q/j) = A —|—|’(/;

which yields that —— is a nucleus. The difficult case is to deduce == (¢ A )
from —~-p and ——1. We shall give a derivation in propositional logic.

p ke vEY
PP Ay ~(eAY) F=(pAy)
e, ¥, 2(pAY) L
Y, =(p AY) F—p = b
¥, oo, (e AY) F L
-, (e AY) F -y - k=

o, oy, (e AY) B L
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5.6.3. Example (Grothendieck topologies). A nucleus j on a presheaf topos
C = SetsC” corresponds to a Grothendieck topology on C. The latter
consists of a mapping J that assigns to every object X € C a collection
J(X) of sieves on X, such that the following three conditions are satisfied.

Identity. The maximal sieve | X = {f | cod(f) = X} is in J(X).

Stability. If a sieve S is in J(.X) and f:Y — X is an arbitrary map, then
the sieve f*(S)={9:Z =Y | foge S}isin J(Y).

Transitivity. If S € J(X), then also R € J(X), for a sieve R with f*(R) €
J(Y) foreach f:Y - X in S.

Such a pair (C,J) is also called a site, in case C is a small category. The
elements of J(X) are covers or covering families. Details of the correspon-
dence between j and J may be found in [188].

Often one describes such a Grothendieck topology via a basis, i.e. via col-
lections K(X) of families of maps with codomain X, such that the induced
collections of sieves

JX) = (LR=1{f 00| f €RY) perix)

form a Grothendieck topology. One says that 7 is generated by K. The families
R € K(X) are also called covers of X.

As particular examples of sites we mention the following.

(i) Each frame A, considered as a poset category, carries the sup topol-
ogy, with as covers of z € A the down sets S C |z with \/ S = 2. The frame
distributivity ensures that we get a topology.

This applies in particular to the case where A is the frame O(X) of opens of
a topological space X. In terms of bases, we get that a collection S = (U;)ier
of opens U; covers U € O(X) if ;¢ Ui = U.

(ii) For a regular category C there is what is called the regular epi topol-
ogy, given by the following basis. The covers of an object X € C are singleton
sets {Y —> X} of covers (i.e. regular epis, see Lemma 4.4.6) with codomain
X . The associated sieves are sets with elements of the form ——.

5.6.4. Notation. For a subobject m: X — [ one writes 7i: X — I for the
closure obtained as pullback

1
Itrue

Q—Q
char(m) J

Y_J
!

A subobject X — I is called closed if X = X and dense if X = I. We write
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ClSub;(I) <= Sub(I) and CISub;(B) — Sub(B) for the full subcategories of
closed subobjects (on / € B and in B).

5.6.5. Lemma. (i) Closure commutes with pullbacks: if the diagram on the
left below 1s a pullback, then so is the one on the right.

X —yyY X === == >V
d | g k
] ——J [ ——J

u

Briefly, u* (W) = u*(n). Especially, if n is closed or dense, then so is u*(n).
(1i) For a subobjects X — I and Y — I one has,

X<X, X=X, XAV=XAY, X<V = X<V
Proof. (i) Because
char(u*(ﬁ)) = char(@) o u
= jochar(n) ou
=jo char(u*(n))
= char(w*(n)).
(i1) Easy, using the diagrams in Definition 5.6.1. m]

The following equaliser will be important.

id

As a tesult, X ~ I is closed if and only if char(m): I — Q factors through
Q; — Q. In particular, we can write true: 1 — €.

For an object I, write 6(I):1 — I x I for the closure of the diagonal
d(I) = (id,id): I — I'x1. It yields a map I x I — €j, and hence by exponential
transpose the j-singleton map

{};

1_—>Q.i1

5.6.6. Proposition. Let j:2 — Q be a nucleus in a topos B. Since closed
ClSub; (B)
subobjects are closed under pullback, we get a split fibration ]Jﬁl of closed
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subobjects. It is a higher order fibration with extensional entailment, in which:

o T, A, D and ] are as for ordinary subobjects.

o Lj=1,XVv;Y =X VY, [[(X) = [[(X) and Eqj(X) = Eq(X), and thus
X =XD>L.

e true:1 — Qj is a (split) generic object.

Hence closure (=) defines a fibred functor Sub(B) — ClSub;(IB) over B which
preserves all this structure, except the generic object.

Notice by the way that these fibrations of closed subobjects have full subset
types.

Proof. By (ii) in the previous lemma, closed subobjects are closed under
finite meets. And if X — I, Y — I are closed, thensois X DY

(XDY)<(XDY) & (XOYJAX<Y
< (X DY)AX <Y since X is closed
& (X DYIAX LY since Y is closed.

The latter obviously holds since it 1s evaluation (or the counit). Similarly for
a closed subobject X — I x J,

) <10 & ~IIX) < X
< 7 [[{(X) <X by Lemma 5.6.5 (i)
& 7 [[(X) £ X since X is closed.
And the latter holds (it is the counit again).

As for coproducts, one obviously has L < X, for closed X. And for closed
subobjects XY, Z in the same fibre,

X<Yand X <7 & XVY<<Z
& XVY=XV;Y <Z
Similarly for simple coproducts [] and equality Eq. Finally, true:1 —
1s split generic object because the characteristic maps of closed subobjects

factor through €2;. And extensionality of entailment follows like in toposes,
using this generic object as in Lemma 5.3.7. a

This result allows us to do higher order logic with closed subobjects. For
ClSub;(B)
example, a map u: I — J in the base category of a fibration El; of closed
subobjects is internally injective (with respect to this fibration) in case one
has in the internal language,

e L T u(l) =g u(@) Fi=pd
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see Definition 4.3.9. Spelled out in categorical language, this means that

(u x wy* (3(7) <3(1)

or equivalently,

Ker(u) = (u x w)*(8(J)) < 5(I)

But this means that m = I is the kernel pair of u: I — J. Equivalently,
that the inclusion map 6(7) — Ker(u) is dense. A map u with this property
is sometimes called almost monic. And an arbitrary map u is called almost
epic if it is internally surjective in the fibration of closed subobjects. This
means that in u’s epi-mono factorisation the mono-part is dense. Finally, a
map is called bidense if it 1s both internally injective and surjective in this
logic, see [169, Definition 3.41].

We finish with the following two results about such fibrations of closed
subobjects.

5.6.7. Lemma. If X 2. I is a dense mono in a topos B with nucleus j,
ClISub; (B)
then the associated reindexing functor m* for the fibration 11{ of closed

subobjects is an isomorphism:
m*

ClSub;(I) — =~ ClSub;(X)

~

Proof. The inverse of m* maps a closed subobject Y 2 X to o Indeed,

m*(mon) = m*(mon)

since m is a mono

And, the other way round, for a closed Z £, I,

mAk
mAk

m o m* (k)

I

It

0

k since m is dense
k.

5.6.8. Lemma. For j = —— the double negation nucleus, the logic of the
ClISub;(B)
fibration ]J]; of closed subobjects is classical: one has =X = X.



Section 5.6: Nuclei in a topos 359

Proof. Since

==X = (X D L) D L see the description of —j in Proposition 5.6.6

= (X D L1)D L since L =--1 = 1 for this nucleus

f— —1—\X

= X because X 1s ~—-closed. O
Exercises
5.6.1. Recall that negation —¢ is defined in predicate logic as ¢ O L. Show that

5.6.2.

5.6.3.

5.6.4.

5.6.5.

5.6.6.

-: ! — Q as defined in Example 5.6.2 coincides with (=) O L:2 = Q,
where (=) D L = D o (id, L o 1):Q — € is obtained from the induced
structure D: 2 x 2 5 Q and L:1 — Q as in Remark 5.2.12.

Consider the following commuting square of monos,

k
X>——Y
’ﬂx /’l’

1
and prove
(1) kis dense = n =m;
(i1) nis closed and @ = 7 (=n) = k is dense;
(i) k,n are dense = m =n ok is dense.
{Hint. Write the triangle as a pullback.]
Let J: €2 — Q be a nucleus in a topos B.

(i) Show that for each object I € B, the map I*(j): [*(Q) — [*(Q) is a
nucleus in the slice topos B/ 1.

X'\ m (X
(ii) Check that a mono } — } is closed / dense in B/ if and

m
only if X' — X is closed / dense in B.
Consider in a topos with a nucleus an arbitrary map u: [ — J with an
arbitrary subobject X ~— [ on its domain. Prove that

L) = 1,(m)

as (closed) subobjects of J.

Say a map u:] — J has dense image if its image Im(u) — J is dense.
Show that M = (closed monos) and £ = (maps with dense image) form a
factorisation system on a topos (see e.g. [18] for the definition).

E
Let %p be a preorder fibration with fibred finite products (T, A). Define
a nucleus on p to be a fibred “closure” monad T:IE — [E which preserves
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fibred finite products.

(i) Show that for a topos B, a nucleus j: — Q as in Definition 5.6.1,
corresponds to a nucleus T = (—) on the associated subobject fibration.

(i) For a frame A, a nucleus on A is a map j: A — A satisfying v <
3(@), 3i(2)) < j(x), and j(z A y) = j(z) A 3(y), see [170, 11,2]. Show
that there is a correspondence between nuclei on A and nuclei on the

Fam(A)

corresponding (regular) family fibration s its

(3i1) Let T be a nucleus on a regular fibration %P_ Show that the fi-
bred category p? of algebras (see Exercise 1.7.9; the fibred category

of “closed” predicates) is again a regular fibration. Also that the map
p — pT preserves this structure.

5.7 Separated objects and sheaves in a topos

In this section we present some basic results about separated objects and
sheaves in a topos with a nucleus, and describe (fibred) sheafification and
separated reflection. We will later use these constructions in the special case
of the effective topos Eff, to be introduced in the next chapter: the categories
of sets and of w-sets can be characterised as the categories of sheaves and of
separated objects in Eff, for the double negation nucleus —-.
5.7.1. Definition. Consider a topos B with nucleus j. An extension of a
partial map [/ ZXx Y Jisa morphism v: I — J with v o m = u. We call
(m,u) a dense partial map in case the mono m is dense.

An object J € B is called a separated object if each dense partial map
I — J has at most one extension I — J. And J is a sheaf if there exists
precisely one extension (again, for each such dense I — J).

We write Sep;(B) and Sh;(B) for the full categories of separated objects and
of sheaves. There are then obvious inclusion functors Shj(B) < Sep;(B) — B.

In a diagram, J is a separated object / sheaf if there is at most / precisely
one dashed arrow:

u
—=J
k4
-
-
-

-~
-~
-~

X
dense mI
I

Put differently, for dense X N I, the function “pre-compose with m”

—om

15;(1, J) IB%(X, J)
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is injective / bijective if and only if J is a separated object / sheaf.

The above notion of sheaf is an abstraction of the notion of sheaf on a
site. As we mentioned in Example 5.6.3, a nucleus on a topos C = SetsC”
of presheaves corresponds to a Grothendieck topology J on C. Expressed in
terms of J, a presheaf P:(°P — Sets is a sheaf if and only if the following
holds. Assume that S covers X € C and that elements ay € P(Y), for (f:Y —
X) € S, form a “matching” family: for f:Y — X in S and arbitrary g: Z - Y
one has a(so4) = P(g)(crs). Then there is a unique element a € P(X) such
that ay = P(f)(a), for all f € S.

It is useful to notice the following.

5.7.2. Lemma. (i) If J is a separated object and Y »— J is a mono, then Y
1s separated.

(i1) If J is a sheaf then a mono Y — J 1s closed if and only if Y s a sheaf.
Proof. The first point is obvious, so we only do the second. Assume J is a

sheaf and n: Y — J is closed, and consider a dense partial map / Zxy.
Then we get a unique extension v in

u
X Y
dense mI In
{----- > J
v

using that J is a sheaf. But then m < v*(n) and so

id =m < v (n) = v (W) = v"(n),

which shows that v factors through n. This yields the required extension
I —Y. It is unique by (i). Hence Y is a sheaf.
Conversely, if Y 1s a sheaf, consider the closure @ of n: Y — J on the left,

k -
Y>——>Y Y
A‘ A dense kI
J Y

We get £ as indicated on the right, with £ o & = id, because Y is a sheaf. But
then, since J is also a sheaf, we get n o £ = 7. Hence 7 < n, s0 n is closed. O

J

5.7.3. Lemma. Consider a nucleus j in a topos B.
(1) An object J € B is separated if and only if the diagonal §(J) =
(id,id): J — J x J on J is closed. The latter means that internal and ez-
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ternal equality on J coincide in the fibration of closed subobjects, 1.e. that
equality on J s very strong in this fibration.

(i) The categories Sep;(B) and Shj(B) are closed under finite limits in B.

(ii1) If J € B is a separated object / sheaf then so is each erponent JI =
(I=J)eB.

(iv) Q5 s a sheaf. Hence each object Pi(I) = QJI is also a sheaf.

(v) The j-singleton map {};: 1 — Py(I) = QJI 15 internally injective in the
fibration of j-closed subobjects (or, almost monic): its kernel pair is the closure
of the diagonal 6(1).

Proof. (i) If J is separated, then 7 o §(J) = 7’ o §(J). Hence §(J) factors
through the equaliser §(J) of m,7":J x J = J. Thus §(J) is closed.

Conversely, given a dense partial map [ Z X % J with two extensions

v,w: I =3 J, then m < (v, w)*(6(J)), so that
idy =1 < (v, 0)*(8(J)) = (v, )" (8(J)) = (v, w)"((J)).
Hence (v, w) factors through 4(J), and thus v = w.

(1) + (ili) Left as exercises (or see e.g. [188, V,2 Lemma 1]).

(iv) We must show that for dense m: X ~— [, the “pre-compose with m”
function — o m:B(/, ;) — B(X, Q;) is an isomorphism. But since true: 1 —
{25 1s split generic object for the fibration of closed subobjects we can describe
this operation — o m also as composite,

*

B( 1, ©;) = ClSub;(I) —=——> ClSub;(X) = B(X, ;)

in which m* is an isomorphism by Lemma 5.6.7.

(v) The map {};:7 — Pj(I) is the singleton map as defined in
Lemma 5.1.6 (ii), for the higher order fibration of closed subobjects. In the
same lemma it is shown that this map is internally injective. The argument
may be carried out in (the internal language of) the fibration of j-closed sub-
objects. |

Ordinary singleton maps { }: I — P(I) = Q! are internally injective for the
fibration of ordinary subobjects, and j-singleton maps { };: I — Pj(I) = QJI are
internally injective for the fibration of j-closed subobjects. We need to know
that j-singleton maps form a natural transformation, like ordinary singleton
maps, see Proposition 5.5.2. The proof goes analogously.

5.7.4. Lemma. Given a nucleus j in a topos B, the assignment I — Pj(I) =
QJI extends to a functor B — B, and the j-singleton maps { }; form a natural
transformation idg => Fj. m]
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The j-singleton maps can be used to characterise separated objects and
sheaves.

5.7.5. Lemma. Consider a topos B with nucleus j and an arbitrary object
I €B. Then

(1) I is a separated object if and only if the j-singleton map { };: 1 — P;(1)
on I i1s a mono in B;

(i) I is a sheaf if and only if { };:1 — Pj(I) is a closed mono.

Proof. (i) The (if)-part follows from the first and last point of the previous
lemma: if I is a separated object then the diagonal §(/) on I is closed, so that
the kernel of { }; is contained in §(/) = 4(J). This makes { }; a mono. The
(only if)-part follows directly from Lemma 5.7.2 (i).

(i) By Lemma 5.7.2 (ii), using (i) and the fact that Pj(J) is a sheaf. O

This result suggests how to obtain a separated object or sheaf from an
arbitrary object, simply by taking the monic or closed monic parts of the
corresponding j-singleton map { };. This will lead to left adjoints to the cor-
responding inclusion functors.

5.7.6. Definition. In a topos B with nucleus j, write for an object [ € B,

{};

(1 === B(n) = (1 = s() ==

Fi(1))
for the epi-mono factorisation of the j-singleton map { };. And write
a(l) = s(T)
for the closure of s(I) — Pj(1).
We notice that s(7) is the image {a: Pj(/) |3i: I.a =p;1y {2};} of the sin-

gleton map { }; in the fibration Su%(lB) of ordinary subobjects in B, and that
a([l) is the image {a: Pj(I)|3¢: I.a =p;1y {i};} of the j-singleton map { }; in
the fibration ClSu}{:J(lB) of j-closed subobjects in B—where we use that Pj(J)
is separated. It is almost immediate—using Lemma 5.7.4—that the assign-
ments [ — s(I) and I — a(I) are functorial, using the universal properties of
epi-mono factorisations.

5.7.7. Theorem. The assignment I — s(I) is left adjoint to the inclusion
Sep;(B) — B. And I — a(l) s left adjoint to Shj{B) — B.

The functor a{—) is called sheafification. And s(—) is separated reflec-
tion. A proof of this result using internal languages is described in [337].

Proof. We first consider separated reflection. For a map u: I — J in B with a
separated object J as codomain we have to produce a unique map v:s(/) = J
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with v o e; = u. But this follows from functoriality of s and the fact that
{};:J — P;(J) is a mono by Lemma 5.7.5 (i)—so that its epi-part e; is an
isomorphism.

The argument for sheafification is similar. a

Later in this section we shall make use of the following two standards facts
about sheafification. A proof of the first result occurs in almost any text on
topos theory. Exercise 5.7.5 below elaborates on a proof of the second result.

5.7.8. Lemma. The sheafification functor a preserves finite limits. O

5.7.9. Lemma. A morphism f is bidense (i.e. both internally injective and
surjective in the logic of closed subobjects) if and only if a(f) is an isomor-
phism. a

5.7.10. Remarks. (i) The above adjunction Sh;(B) & B forms an example
of a geometric morphism. This is a second notion of morphism between
toposes, the first one being ‘logical morphism’, see Definition 5.4.1. In general,
a geometric morphism F: A — B between toposes A,B consists of a pair of
adjoint functors

F=1]A \i/ B with F* finite limit preserving.

F.

One calls F* the ‘inverse image’ and Fy is ‘direct image’ part of F. These
geometric morphisms play a more important role in topos theory than logical
morphisms. They satisfy a factorisation property and are used, for example,
in functorial semantics for geometric logic, see e.g. [188, Chapters VII and X].

(i1) If B is a topos with nucleus j, then (by Exercise 5.6.3) each slice

I
of I*(j)-separated objects and families of I*(j)-sheaves are. This is to be un-

derstood fibrewise: each X; is a j-separated object or a j-sheaf. In this way
FSep; (B) FSh;(B)
one gets fibrations It and Dis of such families.

X
topos B/I has a nucleus I*(j). Hence one can define what families < ‘ )

Also, one can define separated reflection and sheafification in B/J. This gives
rise to fibred functors Fs: B — FSep;(B) and Fa: B~ — FSh;(B), which are
fibred left adjoints to the respective inclusions. Everything is fibred because
separated reflection s and sheafification a are defined by constructions that
are preserved by pullback functors. We shall return to this point towards the
end of this section.

We are now in a position to give a more refined version of Lemma 5.7.2.
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5.7.11. Lemma. Consider a mono X — I in a topos B with nucleus j.
(1) If I is a sheaf, then

X — I is closed & X — [ is a mono in Shy(B).
(i1) And if I is a separated object, then
X — I s closed & X — [ is a reqular mono in Sep;(IB).

Thus (1) and (ii) say that there are change-of-base situations,

Sub(Sh;(B)) ————> RegSub(Sep;(B)) ——> ClSub;(B)

| | |

Shj (]B) = Sepj (]B) C B

Proof. (i) The implication (=) follows from Lemma 5.7.2 (ii). Conversely,
by the reflection Sh;(B) &5 B, a mono in Sh;(B) is also a mono in B. It is then
closed because I is a sheaf, see Lemma 5.7.2 (ii) again.

(ii) If m: X — [ is closed, then X is separated by Lemma 5.7.2 (i}. It is
an equaliser in Sep;(IB), namely of char(m), true o ': 7 = Q;. In the reverse
direction, assume m: X — [ is an equaliser in Sep;(B), say of u,v:/ =3 K.
Since X ~— X is dense and K is separated, the twomapsuom,vom: X =3 K
must be equal. But then 7 < m, since m is an equaliser, and so m 1s closed.

O
Sub(Sh;{B)) RegSub(Sep;(B))
5.7.12. Corollary. Both the fibrations 1 and 1 of
Sh;(B) Sep;(B)

subobjects in a category of j-sheaves, and of regular subobjects in a category of
J-separated objects are higher order fibrations. In particular, Shy(B) is a topos.

And in case j 1s the double negation nucleus ~—, both these fibrations are
models of classical logic.

Proof. By Proposition 5.6.6 and Lemma 5.6.8. 0O

Thus, by forming the category Sh;(B) of j-sheaves in a topos B, we get
a new topos. It can be characterised in a universal way: for example, every
geometric morphism F: A — B whose inverse image part F* sends bidense
maps to isomorphisms, factors through Sh;(B) — B (see [169, Theorem 3.47);
similar such universal properties are described there). The passage from B
to Shj(B) can thus be understood as forcing “j-isomorphisms” (i.e. bidense
maps) to be actual isomorphisms. An important special case of this Shj(—)
construction is the ¢ ‘Grothendieck” topos Sh(C,.J) — SetsC’" of sheaves on
a site (C, J). It plays a central role in [188].
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We conclude this section with an explicit description of fibred sheafification,
as mentioned in Remark 5.7.10 (ii). This requires the following auxiliary result.

5.7.13. Lemma. Consider in a topos with a nucleus two morphisms m: X —
X' and u: X — J with common domain, where m is bidense and J is a sheaf.
Then there is a unique morphism v: X' = J withvom = u.

Proof. Simply take v = (n;)~! o a(u) o a(m)~! o nx/, using Lemma 5.7.9
(where 7 is the unit of the sheafification adjunction). O

This lemma applies in particular when m is itself a unit component 7;. The
next result occurs (without proof) in [150] (before Lemma 6.5). It gives an
exphicit description of fibred sheafification.

5.7.14. Proposition. Consider a topos B with a nucleus j, and for an ar-

bitrary object I € B the slice topos B/I with the induced nucleus I*(j), see

Ezxercise 5.6.3. Sheafification Fs in this slice category can be described as the
X X'

mapping which sends a family ( %50> to the family ( *}901) obtained in

the following pullback diagram.

X I_j a(X)
so’l la(sO)
I a(l)

n
Proof. 1t is not hard to see that the family ¢’ is a sheaf in B/I: consider a

VA " Y VA X’I
dense mono ( }X) — ( ‘}d}) and a morphism ( }X) EN ( %‘P )

Because m is a dense mono Z — Y in B, we get a unique ¢g:Y — a(X) with
gom=20o f. Then a(yp) o g = 5y o Y because a([) is a sheaf. The required
map Y — X’ is then obtained as mediating map for the pullback.

What remains to show is that the family ¢’ is universal. Assume therefore a

X Y
morphism ( ‘}30> EN ( }w ) to a sheaf ¥ in B/I. Let us write n,: X — X'

for the unique map—obtained from the above pullback—with ¢’ o 5, = ¢
and 6 o n, = nx. We claim that a(n,) is an isomorphism. This follows from
the fact that sheafification a preserves pullbacks (as stated in Lemma 5.7.8):
applying a to the pullback ¢’ — a(yp) in the proposition ytelds a new pullback.
As a result, a(#) is an isomorphism, since a(ny) is an isomorphism. But then
a(n,) = a(d)~! o a(nx) must be an isomorphism as well. Hence n,, is bidense
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in B, by Lemma 5.7.9, and also in B/I—since epi-mono factorisations and
closures in B/I are the same as in B. Therefore Lemma 5.7.13 applies (in

B/I); it yields the required map ¢’ — ¥. a

Exercises

5.7.1. Show that an object I in a topos with a nucleus is separated if and only if
the unit n7: 1 — a(/) of the adjunction Sh;(B) & B is a mono.

5.7.2.  Show that the inclusion Shj(IB) < Sep;(IB) also has a left adjoint.

5.7.3. Prove that if X is a sheaf and [ is a separated object, then any mono

X I is automatically closed.

5.7.4. Show that J is a sheaf if and only if LJ is a sheaf and {}:J — LJ is
closed.
5.7.5. Consider a topos with a nucleus j. The aim of this exercise is to get a proof

of Lemma 5.7.9 (following [169, 3.42 and 3.43]).

(i) Prove that if a mono m: X — X' is dense, then a(m):a(X) — a(X')
is an isomorphism.

(ii) Prove also the converse of (i): if a(m) is an isomorphism for a mono

m, then m is dense.
[Hint. Notice first that if a(m) is an isomorphism, then for any map
u: X — J to a sheaf J there is a unique v: X' = J with v o m = u,
like in Lemma 5.7.13. Apply this to the case J = Q;j. It yields a unique
map v: X' = §2; with g o m = true o !x. This v then classifies both
the identity X’ — X’ and m’s closure 7: X — X".]

(i) Conclude from (i) and (i) that if u:/ — J is internally injec-
tive/surjective (i.e. almost monic/epic) if and only if a(u): a(l) — a(J)
is monic/epic. And also that u is bidense if and only if a{u) is an
isomorphism—as stated in Lemma 5.7.9.

5.7.6. Let 1B be a topos with nucleus j.
X
(1) Assume that < f, > is an I*(j)-separated object. Show that for each
X
map u:J — I the pullback u* } in B/J is J*(j)-separated. Prove
the same for sheaves.
Y
(i) Prove also that if ( j ) is a J*(j)-separated object/sheaf, then the
Y
product Hu } is an I*(j)-separated object/sheaf, for u: J — I.
5.7.7. Assume a topos B with a nucleus. Use the characterisation of sheafification

on slices B/ from Proposition 5.7.14 to show that sheafification on families
leads to a fibred functor Fs on B~ (with respect to the codomain fibration).
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5.8 A logical description of separated objects and sheaves

We conclude this chapter with a logical description of separated objects and
sheaves in terms very strong equality and unique choice. Recall from Exer-
E

cise 4.9.1 that for a fibration ]{B with equality and subset types we say that
equality on J € B is very strong if internal and external equality on J
coincide, or—in terms of subset types—if the canonical map J — {Eq(J)} is
an isomorphism. And unique choice on J € B holds if for each single-valued
relation R € [y the canonical map {R} = {[[(R)} is an isomorphism. The
ClISub; (1B

main result below is that with respect to the fibration ]{( ) of j-closed
subobjects, (a) an object J € B is separated if and only if equality on J is
very strong, and (b) J € B is a sheaf if and only if unique choice holds on J.
It gives us a purely logical characterisation of separated objects and sheaves.
It may be used in more general situations like in Exercise 5.6.6 where one has
a notion of nucleus suitably generalised to fibrations.

Recall from Section 4.9 that what characterises subobject fibrations is: full
subset types, very strong equality, and unique choice. The first of these points
is present in fibrations of j-closed subobjects; the second point is by (a) above
obtained by restricting to separated objects, and the third one comes by (b) by
a further restriction to sheaves. Thus, by restriction to sheaves, the fibration
of closed subobjects becomes a subobject fibration (on these sheaves). And
since we already know (from Proposition 5.6.6) that such a fibration of closed
subobjects i1s a higher order fibration, we obtain an alternative road to the
result that a category of sheaves in topos is itself a topos, see Lemma 5.7.11.

To obtain the main result, we prepare the grounds in the lemma below.
As already stated, we consider the logic of closed subobjects with respect to

some nucleus j on a topos [B. That is, we work in the internal language of the
ClSub;(B)
higher order fibration ]+B . A functional relation R:] —— J herein is a

predicate 7: [, j: J & R(i, j): Prop satisfying:

(R is single valued)  @:1,5:J,5":J | R(,7),R(5, ) Fi=y ]
(R is total) I T F35:J R(1, 7).

ClSub; (B)
See Example 4.3.8. In i this means that the relation (rq, r1): R — IxJ

is a closed subobject satisfying

e The tuple (r; o g,y 0 m1): R’ — J x J factors through &(J), where R’ is
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obtained as kernel (equaliser):

To
(71'0, 771> T
R >R I
\_/'7
To

e the image of ro: R — [ 1s dense.

See the description of equality and existence in Proposition 5.6.6. It turns out
ClISub;(B)
that there is a close connection between these functional relations in 1

and dense partial maps in B. This correspondence is the basis for the alter-
native logical description of separated objects and sheaves below.

5.8.1. Lemma. Consider the logic of closed subobjects, as above.

(i) If I 2 X Y J is a dense partial map, then the closure of its ordinary
graph (m,u): X — I x J s a functional relation I —— J.

(i1) Consider a map v:I — J and a dense partial map (m,u): I — J. If v

is an extension of (m, u), then the closures (id,v) and (m, u) of the (ordinary)
graphs are equal. And if J is separated, the converse also holds.

(i) If R: 1 —>J 15 a single-valued relation (ro,r): R— [ X J, then
(a) ro: R — I is a mono if J is separated;
(b) ro is closed, if J is a sheaf.

Proof. (i) Notice that the graph (m, u) is described in the internal language
Sub(B)
of the fibration I%B of ordinary subobjects as the proposition

wl,j:J F3z: X.om(e) =; 1 A u(z) =5 j:Prop.
Thus the closure (m,u) is described by the same expression, call it G(%, j),
ClISub;(B)
but this time in the internal language of the fibration I of closed

subobjects. We reason informally in this language to show that this graph G
1s functional.

e If G(7,j) and G(4, '), say with z,z’ such that m(z) =; i A u(z) =5 j and
m(z’) =1 i Au(z’) =5 j', then m(z) =; i =1 m(2’). Hence £ =x &’ since
m is internally injective, by Exercise 4.3.6. So j = u(z) = u(e’) =5 §'.

o For i: I we have 3z: X. m(z) =; 7 since m is dense. Take such an ¢ and put
J = u(z). Then G(¢, 7).

(i) If v extends (m,u), then we get (m,u) = (id,v) by applying Exer-
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cise 5.6.2 (i) to the triangle of monos

X—"

<m,k »/odn»

IxJ

For the converse, assume J is separated and (id, v} = (m, u). Write (m, u) =
{ro,r1): R — I x J. There are then dense monos n: X — R and k: I — R, so
we can form their pullback, as in,

Z

VAN
X

I
\: V
ma\ - /i)
m, <7"O:1"1> l,v
!

IxJ

Since dense maps are closed under pullback, this k¥’ is dense. Thus we can
conclude that v o m = u—and thus that v extends (m, u)—from the fact that
J is separated, and the calculation,

vomok' = vorgonok’
= vorgokon'
=von
=riokon/
= rionok
= uok'.
(iii) For a single-valued relation (rg,71): R — I x J, where J is separated,
we first establish that rg is a mono. Assume therefore u,v: K =3 R with
7o © u = rg o v. Then there is a (unique) w: K — R’ with mp o w = u

and m, o w = v, where wg, m1: R = R is the kernel pair of ro: R — I, as
described before the lemma. We get that (r; o u,r; o v) factors through

(r1 o mg, 71 © m1), and hence through §(J) = §(J). Then r; o u = r; o v and
so (ro,r1) o u = (rg, ;) o v. Hence u = v so that we may conclude: rg is a

mono.
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Next we assume that J is a sheaf, and show that the closure 7g: R — [
of ro: R — [ is ro. By pulling the closed mono true: 1~ ; back along the
evaluation map ev: Qj-’ x J = Q;, we get a closed mono €; — Qj’ x J. Hence
the object € is a sheaf. This yields a map v in

(char(R) o ro, r1)

/—\

R € QijJ

dense k -

~
~

R

where we use that the closed relation R — [ x J has a relation clas_siﬁer
char(R): I — QjJ as in the square below. We write w for the composite R —»

€5 — QJJ x J in the diagram. Then 7 o w = char(R) o 75: R — Qj’, because
Qj’ is separated. We then get a map

€J
Qj] x J
char(R) x id
which shows that 75 < ry, and so that rq is closed. O

5.8.2. Theorem. Let j be a nucleus in a topos B.

(i) An object J € B is separated if and only if equality on J is very strong
ClSub; (B)
in the fibration I}; of J-closed subobjects in B.
(1) And J € B is a sheaf if and only if unique choice holds on J, in this
same fibration of closed subobjects.

Proof. (i) By Proposition 5.6.6, internal equality on J is the closed subobject
Eq(J) = 6(J) on J x J. It coincides with the diagonal §(J) on J if and only
if J is separated, by Lemma 5.7.3 (1).

(11) Assume J is a sheaf, and (rg,r;): R — I x J is a single-valued relation
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in the fibration of closed subobjects. Then

HJ.(R) = 1I(R) by Proposition 5.6.6
= Im(m o (rp, 1)} see Theorem 4.4.4

=70 because ry Is a mono,
see Lemma 5.8.1 (iii} (a)
= 1y since ry is closed, by (b).
Hence the canonical map {R} — {[[;(R)} is the identity, which is certainly
an isomorphism.

Conversely, assume unique choice holds on J. From Exercise 4.9.1 we know
that equality on J is then very strong, so that J is a separated object. Let

I 2 X % J be a dense partial map. Then R = (m, u) is a functional relation
I — J, by Lemma 5.8.1 (i). The coproduct Hj(R) = 3j:J.R(i,j) is T
because R is total. Hence we get two isomorphisms in the diagram

o~

R {LI;(R)}
IxJ - 1

so that there is a v: I — J with

1—E—>R
<id,k /(m—,u>
IxJ

But then v extends (m,u) by Lemma 5.8.1 (ii). a
Exercises

5.8.1.  Prove that in a topos B with nucleus j,
(i) an object J € B is separated if and only if each functional relation
ClSub; (B)
R:I -+ Jin It is the graph (in this fibration) of at most one
map [ = J.
(ii) And that J is a sheaf if and only if there is a unique such map, for
each functional relation R.



Chapter 6

The effective topos

This chapter concentrates on one particular topos, namely the effective topos
Eff. It can be seen as a topos in which the ordinary set theoretic world is
combined with the recursion theoretic world. For example, there is a full and
faithful functor Sets — Eff. But also the endomorphisms N — N on the
natural numbers object N in Eff can be identified with the total recursive
functions N — N,

We shall be mostly interested in this topos as a universe for modelling var-
ious type theories. Therefore our view and description of Eff is rather limited
in scope. For example, we only sketch in the last section of this chapter how
one can do mathematics inside Eff, and suggest that this is “recursive math-
ematics”. For a more elaborate account we refer to the last part of Hyland’s
original paper [142] on the effective topos. Another interesting aspect of Eff,
namely the combination of higher types and effectivity, see [296] is ignored.
For the role of Eff in the analysis of (higher order) Kleene realisability, we
refer to [239, 240]. And Turing degrees within Eff may be found in [258]. Here
we simply use Eff as a “forum” or “universe” in which we can discuss sets,
w-sets and PERs. Especially, the (internal) category of PERs inside w-Sets
and Eff—complete in the first case, and nearly so in the second—will interest
us. In this chapter we shall describe families of PERs and of w-sets over Eff
in a concrete fashion. These will be used later to model type theories.

Our presentation of the effective topos is the *“logical one”, based on the
UFam(PN)
higher order predicate logic of the realisability fibration Slt , as used by

ets
Hyland. There are alternative ways to introduce Eff, namely as completion
with colimits of certain categories. For example, in [41] Eff is obtained by

373
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adding quotients to the category w-Sets of w-sets (or ‘assemblies’, as they are
called there). And in [292] Eff results from a two-step completion of Sets,
by first adding recursively indexed coproducts and then quotients of (pseudo)
equivalence relations.

The material in this chapter is entirely standard, except the indexing of
UFam(Ww-Sets)
w-sets by objects of Eff via the split fibration Elﬂ instead of via the

FSep(Eff)
non-split fibration Elﬂ, of (=—-)separated families in Section 6.3. Later,

in Section 11.7, the relation between these fibrations will be described: the
last one is the so-called “stack completion” of the former.

6.1 Constructing a topos from a higher order fibration

In Example 4.3.8 we have associated with a regular fibration p the categories
Rel(p) of types (objects of the base category) with ordinary relations and
FRel(p) of types with functional relations. In this section we shall describe a
similar construction, which yields for a higher order fibration p an associated
topos Set(p). Objects of Set(p) are types I with an (abstract) equality relation
/2; morphisms are suitable functional relations (in the logic of p) between the
types. This construction includes the topos of sets with a Heyting-valued
equality of Fourman & Scott [80] and the effective topos Eff of Hyland [142].
The latter is of most concern to us and will be further investigated in the next
three sections of this chapter.

The construction of the topos Set(p) will be described in purely logical
terms; that is, in the internal language of the fibration p. As such, it may
be found in [145], except that there, one starts from a ‘tripos’ instead from
the slightly more general notion of ‘higher order fibration’ that we use, see
Example 5.3.4. A more detailed investigation may be found in [267].

Although we are essentially only interested in the special case where the
UFam{PN)

fibration p is the realisability fibration Slt from Section 4.2, we do

ets
present the construction of the topos at a more general level. We do so, because
all the time we reason in the internal language, and nothing particular of this
realisability fibration is used.

E
6.1.1. Definition. Let ﬁlip be a regular fibration. Write Set(p) for the cat-
egory with

objects pairs (I, ~r) where I € B is an object of the base category
and = € Erxy is an ‘equality’ predicate on I. The latter
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is required to be symmetric and transitive in the logic of
p. This means that validity in p is required of:

il,izlllil Xyig Fis Ry
il,ig,i3:[ | il r iz,ig ~r i3 [ i1 ~r i3.

objects (I,=~y) = (J,=J) are equivalence classes of relations F' &
Erxy from I to J, which are

o extensional:
i1,82: 1, J1, jor J | 4y mr g2, g1 R 2, F61,51) b F(ig, j2)
e strict:
Gl J | F(,7) F (i) A ~g 7))
e single-valued:
il g1, 522 | F(i,51), F(i,j2) B 1 =0 j2

e total:
il |imyp i F35:J F(2, 7).

The equivalence relation on these relations F' is logical equivalence (in the
internal language) as described by isomorphisms in the fibre. For convenience,
we usually write representatives F' instead of equivalence classes [F].

Sometimes we also omit the subscript and write &~ for ~;. And we write
l41 &y iz for i; = 1, Notice that the abstract equality =y is not required
to be reflexive. We write E(1), or E(i), for |¢ = ¢|. Thus E;(—) is a unary
“existence” predicate on I, defined categorically by Er(—) = (id,id)*(~) €
Er.

The identity morphism on an object (I =r) of Set(p) is the (equivalence
class of the) relation =y itself:

11,12: 1 F i3 =5 i3: Prop.

And composition of (I, ) N (J,=1) N (K,~Kg) in Set(p) is the compos-

ite relation G o F, given as:
il k:K F35:J F(i,5) AG(j, k): Prop.

Some elementary verifications in the internal language demonstrate that these
identities and composites are again extensional, strict, single-valued and total.

Notice that all the logical machinery from p that we need in order to define
Set(p) is 3,=, A, T, as in a regular logic.



376 Chapter 6: The effective topos

The following are the main examples.

6.1.2. Examples. (i) If Q is a complete Heyting algebra (i.e. a frame), then
Fam(£2)
the above Set(—) construction applied to the regular family fibration l
of set-indexed families of elements of € described in Example 4.2.5, y1elds
the category -set of Heyting valued sets as introduced in [80]. Objects of
Q-set are sets I together with a Q-valued equality predicate ~;: I x I — Q
satisfying (in Q)
2| < i
i1 &1 t2| A |22 ~rpiz| <
for all elements ¢,42,i3 € I. Morphisms (I,%;) — (J,~s) in Q-set are
Q2-valued functions F: I x J — € which are extensional, strict, single-valued
and total. The latter means for example, that for each i € I,

E(i) = lirg il < \/ F(i,5).
jeJ
(This category Q-set should not be confused with the category w-Sets of

w-sets (I, E) with E: I — PN from Section 1.2.)

UFam(PN)
(i1) The same construction applied to the realisability fibration sl

from Example 4.2.6 produces the effective topos Eff from [142]. Objects of
Eff are sets I together with a PN-valued equality predicate =;: I x I —- PN
satisfying

N (ivmrial D lizmrial) # 0
t1,12€]
(| (i 5 i) A lia e isl Dl i) # 8
i1,i2,i3€]
where A and D are the operations PN x PN =3 PN described in Example 4.2.6.
A morphism (I,~;} — (J,~y) in Eff is then an equivalence class of a
relation F: I x J — PN which 1s extensional, strict, single-valued and total.
Explicitly, this means that there are realisers

nie () (li =il Al ~s d2l AF(ir, 1) D Flia, j2))
i1,i2€1,51,j2€J

no € () (FG.4) 2 Ei6) AEs(5))

i€l jeJ
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ng € () (FlG3)AFG j2) D ljs ~a jal)

i€l,j1,j2€J
ne € (V(EG > | Fi,9).
i€l jed

Thus, for example, for i € I and m € E(i) one has that n4 - m is an element
of F(i,j), for some j € J.

Similar realisability examples arise by applying the Set(—) construction to
triposes, as constructed in Example 5.3.4, starting from a partial combinatory

algebra. This yields many more such examples, see for instance [239, 261, 264].
Sub(B)
(iil) If we start from a topos B, we have a higher order fibration ]%B of

subobjects. Also here we can apply the Set(—) construction, which will yield
a new topos.

Our aim in this section is to show that these categories of the form Set(p)
are toposes, in case p is a higher order fibration. The following is the first step.

E
6.1.3. Proposition. For ﬁp a higher order fibration, the category Set(p)
has finite limits and s Cartesian closed.

Proof. As terminal object in Set(p) one takes the terminal object 1 € B with
the truth predicate

z:1,z":1 F |z = 2] &f T:Prop

as equality. We shall write 1 = (1,~;) € Set(p) for this object. A morphism
F:(I,~) — 1in Set(p) is (an equivalence class of) a predicate F € Fr,; = [E;
satisfying
il,izl I | F(il),il ~ ig (= F(Zg)
il | F(i) F E(%)
I} E®@) F3e:1. F(5)

so that F (i) is logically equivalent to (7). There is thus a unique such map
(I,~) — L.

The Cartesian product of (I, ~;) and (J, =) is the object I xJ € B together
with equality predicate

zyw: I x J b rz~p rw| A |n'z &~y n’wl: Prop.

The projection maps (I,~) « (I x J,~) — (J,~) are then given by the
predicates

z2I x Jyit I b |7z =y i| A Eg(7'z): Prop

I x J,jid b |7z =5 jI|A Er(nz): Prop.
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And tupleing of two maps F: (K, =) — (I,~) and G: (K, ~) — (J, &) involves
the predicate
k:K,z:Ix J t F(k,xz) A G(k,7'z): Prop.

For parallel maps F, G, an equaliser,

Im) — > (I,%) (/%)
G

is obtained by taking as new equality predicate = on I,
iy, ig: I F |6y & do) % |iy & io| A 31 J. F(i1, §) A G(ia, §): Prop.

This predicate ® is also the equaliser map =: (I, %) — (I,~) of F,G.
Finally, in order to form the exponent of objects (I, =), (J,~) € Set(p), we
take P(I x J) = QU*J) as underlying object with existence predicate

frP{IxJ)FE(f) 4 «f is extensional and strict

and single-valued and total” : Prop.
That is,
E(f) €V, i0: 1.Vj1, jo: J iy r 2| A i =g G2l A (i, 1) D Sli2, 52)

A Vi I.Vj:J f(i,5) D Er(3) A Es(j)

A Vi 1.Vjy, jaz J. f(i, 1) A f(E,J2) D |1 = jal

A Vil Ef(¢) D 35:J. f(1,)).
The equality relation on the object P(I x J) underlying the exponent (I, ~) =
(J, =) is then

fgP(IxJ)F|f=g| def E(f)ANE(g) AVi: I.¥j: J. f(3,7)3Cg(4,7): Prop.
(

The evaluation map Ev: ((I,~) = (J,=%)) x (I,=) = (J,=) is given by
FiP(Ix J),i:1,5:J FEv(£,i,§) € £(i, §) A E(f): Prop.
And for a morphism H: (K,=) x (I,~) = (J, %), we get an abstraction map
A(H): (K,~) = (I,~) = (J,~) by
kK, f:1x J v AH)E, F) S E(k)AEf)A
Vi€ I.Yj € J. H(f,i,5) (3, j): Prop. =

As a first step towards understanding (the logic of) subobjects in Set(p),
there is the following quite useful result.
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6.1.4. Lemma. A morphism F:(I,~) — (J,%) in Set(p) is a monomor-
phism if and only if the following entailment holds in p:

i1, 804, J | F(i1, ), Fi2,§) F i1 =1 ia.
Proof. Assume validity of the above statement, and assume that two mor-
phisms G, H: (K,~) =3 (I,~) in Set(p) are given with FF o G = F o H,
1.e. with
k:K,j:J |0 F [3i: 1. FG,5) AG(k, )| 3c[36: 1. F(3,5) A H(,5)].
We need to show that G(k,7) implies H(k,i). Assume therefore G(k,7);
then Ey(i), so F(i,j) for some j:J. We then have 3i: I. F (i, j) A G(k,1), so
F(i,5) A H(k,?) for some ¢': I. But then F(,5) A F(¢,7), and so i =y ¢’ by
the assumption. Hence H(k,1).
Conversely, the pullback of F' against itself is the object (I x I, %) where

zyw: I x I F |z 2w déflz ~rxr wl A3y J. F(rz, j) A F(n'z, §): Prop.

In case F' is a mono in Set(p), this predicate must be equivalent to |7z =y
mw| A |7’z &y m'w| Az & 7'z|, see Exercise 6.1.2. We then get the statement
as in the lemma. o

In order to get a better handle on subobjects in Set(p), one uses so-called
strict predicates.

E
6.1.5. Definition. Let ]%p be a higher order fibration.

(1) For an object (I,=) € Set(p), a strict predicate on (I, =) is a predi-

cate A € Fy which satisfies in p
i],igil'A(il),il -4 i2 |‘A(12) and ZIlA(l) }_E](Z)

(i1) We form a category SPred(p) of JC-equivalence classes of strict pred-
icates, by stipulating that a morphism from a strict predicate A on (I,&) to
a strict predicate B on (J,=s) consists of a map F:(I,=) — (J,=) in Set(p)
for which we have in p

i: 1] A(@) F 34:J. F(i,7) A B(j).

This category SPred(p) comes with an obvious forgetful functor SPred(p) —
Set(p). As usual, we do not distinguish notationally between a strict predicate
and its equivalence class.

E
6.1.6. Proposition. Assume ﬁ%p is a higher order fibration.

SPred(p)
(1) The above functor S tl( ) 15 a poset fibration. The order in the fibre
et(p

over (I,=) is the order inherited from p’s fibre over I: for strict predicates
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A, B on (I,=) one has
A < B in SPred(p) over (I,~) < i:1|A() F B(7) in p.

(This may look confusing, since < on the left is a partial order, whereas |- on
the right is a preorder; but we should have written the equivalence classes of
A, B on the left.)

(11) Strict predicates on (I, =) correspond to subobjects of (I,=) in Set(p)
in the sense that there is an isomorphism of fibred categories,

=

Sub(Set({p)) ~————— SPred(p)
Set(p

SPred(p)

(ii1) The fibration S tl( ) of strict predicates is a higher order fibration.
et(p

If, for the time being, we mark its connectives with a tilde ™, then expressed
in terms of the connectives of p (which are written in ordinary fashion), we
have

o propositional connectives in the fibre over (I, =) are 1= 1, V=v, T= Ey,
A=Aand ADB=E;A(ADB).
e For a strict predicate A over (I,~) x (J, =),
35: L. AG,§) = 3j:J.EG) AAG, ) = 3j:J. A, )
ViiJ AG,3) = EG) AV J.E() O Ali,j)
Eq(A)(i,4,5") = A(L5) Ali=g J'l-
o The object Q2 € B in the basis of p with logical equivalence IC as equality
~q, carries a (split) generic object, namely the strict predicate
a: Prop F true(a) & la ~q T|: Prop.
Thus, in the logic of strict predicates in p—or subobjects of Set(p}—the
operations T, D,V and Eq are only slightly different from those of p.

Proof. (i) For a morphism F: (I, &) — (J, =) in Set(p) and a strict predicate
B on (J, =), one gets a strict predicate on (I, %) by

ir] & F*(B)(i) ¥ 3j: J. F(i, j) A B(j): Prop.

For strict predicates A, B on (I,~) one has A < B over (I, =) if and only if
I | A F 3L ji~p ¢| A B().
But the predicate on the right of the turnstile | is clearly equivalent to B(i).
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(11) For a strict predicate A on (I,=) one forms a new object (I,24) by
.. . . def . . .
i1,%0: I b |ip &4 f2| = A(41) A |i1 =y 42|: Prop
It gives rise to an obvious mono in Set(p),
ma: (I, ma) — (I,%).
And conversely, given a mono M: (X, ~x) — (I,=) one forms a strict predi-
cate Apr on (I, =) by
I F Apm(9) e 32 X. M(z,1): Prop.
Then, starting from a strict predicate A, we get
A (1) = 1|V =4 i
= AL A@) A | = i)
A(7).

And in order to show that M and =,4,, give rise to the same subobject of
(I,=) we define maps G, H in

IR

(1, )

by G(z,i) = M(z,i) = H(i,z). It is easy to see that G and H form an
isomorphism between M and ~4,,.

For a morphism F:(I,~) — (J,~) from A to B in SPred(p) one gets a
commuting square

by putting
i1, j:J v F'(i,5) € P(i, j) A A(i) A B(j): Prop.

Remaining details are left to the reader.
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