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Preface 

The main purpose of this book is to give a systematic treatment of singular 
homology and cohomology theory. It is in some sense a sequel to the author's 
previous book in this Springer-Verlag series entitled Algebraic Topology: 
An Introduction. This earlier book is definitely not a logical prerequisite for 
the present volume. However, it would certainly be advantageous for a 
prospective reader to have an acquaintance with some of the topics treated 
in that earlier volume, such as 2-dimensional manifolds and the funda
mental group. 

Singular homology and cohomology theory has been the subject of a 
number of textbooks in the last couple of decades, so the basic outline of 
the theory is fairly well established. Therefore, from the point of view of the 
mathematics involved, there can be little that is new or original in a book such 
as this. On the other hand, there is still room for a great deal of variety and 
originality in the details of the exposition. 

In this volume the author has tried to give a straightforward treatment 
of the subject matter, stripped of all unnecessary definitions, terminology, 
and technical machinery. He has also tried, wherever feasible, to emphasize 
the geometric motivation behind the various concepts. 

In line with these principles, the author has systematically used singular 
cubes rather than singular simplexes throughout this book. This has several 
advantages. To begin with, it is easier to describe an n-dimensional cube 
than it is an n-dimensional simplex. Then since the product of a cube with 
the unit interval is again a cube, the proof of the invariance of the induced 
homomorphism under homotopies is very easy. Next, the subdivision of 
an n-dimensional cube is very easy to describe explicitly, hence the proof of 
the excision property is easier to motivate and explain than would be the case 
using singular simplices. Of course, it is absolutely necessary to factor out 
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vi Preface 

the degenerate singular cubes. However, even this is an advantage: it means 
that certain singular cubes can be ignored or neglected in our calculations. 

Chapter I is not logically necessary in order to understand the rest of 
the book. It contains a summary of some of the basic properties of homology 
theory, and a survey of some problems which originally motivated the 
development of homology theory in the nineteenth century. Reading it 
should help the student understand the background and motivation for 
algebraic topology. 

Chapters II, III, and IV are concerned solely with singular homology with 
integral coefficients, perhaps the most basic aspect of the whole subject. 
Chapter II is concerned with the development of the fundamental properties, 
Chapter III gives various examples and applications, and Chapter IV ex
plains a systematic method of determining the integral homology groups of 
certain spaces, namely, regular CW-complexes. Chapters II and III could 
very well serve as the basis for a brief one term or one semester course in 
algebraic topology. 

In Chapter V, the homology theory of these early chapters is generalized 
to homology with an arbitrary coefficient group. This generalization is 
carried out by a systematic use of tensor products. Tensor products also play 
a significant role in Chapter VI, which is about the homology of product 
spaces, i.e., the Kiinneth theorem and the Eilenberg-Zilber theorem. 

Cohomology theory makes its first appearance in Chapter VII. Much of 
this chapter of necessity depends on a systematic use of the Hom functor. 
However, there is also a discussion of the geometric interpretation of 
cochains and cocyc1es. Then Chapter VIII gives a systematic treatment of 
the various products which occur in this subject: cup, cap, cross, and slant 
products. The cap product is used in Chapter IX for the statement and proof 
of the Poincare duality theorem for manifolds. Because of the relations 
between cup and cap products, the Poincare duality theorem imposes certain 
conditions on the cup products in a manifold. These conditions are used in 
Chapter X to actually determine cup products in real, complex, and quater
nionic projective spaces. The knowledge of these cup products in projective 
spaces is then applied to prove some classical theorems. 

The book ends with an appendix devoted to a proof of De Rham's 
theorem. It seemed appropriate to include it, because the methods used are 
similar to those of Chapter IX. 

Prerequisites. For most of the first four chapters, the only necessary 
prerequisites are a basic knowledge of point set topology and the theory of 
abelian groups. However, as mentioned earlier, it would be advantageous 
to also know something about 2-dimensional manifolds and the theory of 
the fundamental group as contained, for example, in the author's earlier 
book in this Springer-Verlag series. Then, starting in Chapter V, it is assumed 
that the reader has a knowledge of tensor products. At this stage we also 
begin using some of the language of category theory, mainly for the sake of 
convenience. We do not use any of the results or theorems of category theory, 
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however. In order to state and prove the so-called universal coefficient 
theorem for homology we give a brief introduction to the Tor functor, and 
references for further reading about it. Similarly, starting in Chapter VII 
it is assumed that the reader is familiar with the Hom functor. For the pur
poses of the universal coefficient theorem for cohomology we give a brief 
introduction to the Ext functor, and references for additional information 
about it. In order to be able to understand the appendix, the reader must 
be familiar with differential forms and differentiable manifolds. 

Notation and Terminology. We will follow the conventions regarding 
terminology and notation that were outlined in the author's earlier volume 
in this Springer-Verlag series. Since most of these conventions are rather 
standard nowadays, it is probably not necessary to repeat all of them again. 

The symbols Z, Q, R, and e will be reserved for the set of all integers, 
rational numbers, real numbers, and complex numbers respectively. Rn and 
en will denote the space of all n-tuples of real and complex numbers respec
tively, with their usual topology. The symbols Rr, cpn, and Qr are 
introduced in Chapter IV to denote n-dimensional real, complex, and 
quaternionic projective space respectively. 

A homomorphism from one group to another is called an epimorphism 
if it is onto, a monomorphism if it is one-to-one, and an isomorphism if it is 
both one-to-one and onto. A sequence of groups and homomorphisms such 
as 

is called exact if the kernel of each homomorphism is precisely the same as 
the image of the preceding homomorphism. Such exact sequences playa 
big role in this book. 

A reference to Theorem or Lemma III. 8.4 indicates Theorem or Lemma 4 
in Section 8 of Chapter III; if the reference is simply to Theorem 8.4, then 
the theorem is in Section 8 of the same chapter in which the reference occurs. 
At the end of each chapter is a brief bibliography ; numbers in square brackets 
in the text refer to items in the bibliography. The author's previous text, 
Algebraic Topology: An Introduction is often referred to by title above. 

Acknowledgments. Most of this text has gone through several versions. 
The earlier versions were in the form of mimeographed or dittoed notes. The 
author is grateful to the secretarial staff of the Yale mathematics department 
for the careful typing of these various versions, and to the students who read 
and studied them-their reactions and suggestions have been very helpful. He 
is also grateful to his colleagues on the Yale faculty for many helpful dis
cussions about various points in the book. Finally, thanks are due to the 
editor and staff of Springer-Verlag New York for their care and assistance 
in the production of this and the author's previous volume in this series. 

New Haven, Connecticut 
February, 1980 

WILLIAM S. MASSEY 
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CHAPTER I 

Background and Motivation 
for Homology Theory 

§1. Introduction 

Homology theory is a subject whose development requires a long chain of 
definitions, lemmas, and theorems before it arrives at any interesting results 
or applications. A newcomer to the subject who plunges into a formal, logical 
presentation of its ideas is likely to be somewhat puzzled because he will 
probably have difficulty seeing any motivation for the various definitions and 
theorems. It is the purpose of this chapter to present some explanation, which 
will help the reader to overcome this difficulty. We offer two different kinds 
of material for background and motivation. First, there is a summary of some 
of the most easily understood properties of homology theory, and a hint at 
how it can be applied to specific problems. Secondly, there is a brief outline of 
some of the problems and ideas which lead certain mathematicians of the 
nineteenth century to develop homology theory. 

It should be emphasized that the reading of this chapter is not a logical 
prerequisite to the understanding of anything in later chapters of this book. 

§2. Summary of Some of the Basic Properties 
of Homology Theory 

Homology theory assigns to any topological space X a sequence of abelian 
groups H o(X), H 1 (X), H 2(X), ... , and to any continuous map f: X -+ Y a 
sequence of homomorphisms 

n = 0,1,2, .... 

1 
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Hn(X) is called the n-dimensional homology group of X, and f* is called the 
homomorphism induced by f. We will list in more or less random order some 
of the principal properties of these groups and homomorphisms. 

(a) If f:X -+ Y is a homeomorphism of X onto Y, then the induced 
homomorphism f*:Hn(X) -+ Hn(Y) is an isomorphism for all n. Thus the 
algebraic structure of the groups Hn(X), n = 0, 1,2, ... , depends only on 
the topological type of X. In fact, an even stronger statement holds: iff is a 
homotopy equivalence 1 , then f* is an isomorphism. Thus the structure of 
Hn(X) only depends on the homotopy type of X. Two spaces of the same 
homotopy type have isomorphic homology groups (for the definition of these 
terms, the reader is referred to Algebraic Topology: An Introduction, Chapter 
2, §4 and §8). 

(b) If two maps fo, fl:X -+ Yare homotopic2, then the induced homo
morphisms fo* and fl*:Hn(X) -+ HiY) are the same for all n. Thus the 
induced homomorphism f* only depends on the homotopy class of f. By its 
use, we can sometimes prove that certain maps are not homotopic. 

(c) For any space X, the group Ho(X) is free abelian, and its rank is equal 
to the number of arcwise connected components of X. In other words, 
H o(X) has a basis in 1-1 correspondence with the set of arc-components 
of X. Thus the structure of H o(X) has to do with the arcwise connectedness 
of X. By analogy, the groups H I(X), H 2(X), ... have something to do with 
some kind of higher connectivity of X. In fact, one can look on this as one 
of the principal purposes for the introduction of the homology groups: to 
express what may be called the higher connectivity properties of X. 

(d) If X is an arcwise connected space, the 1-dimensional homology 
group, H I(X), is the abelianized fundamental group. In other words, H I(X) 
is isomorphic to n(X) modulo its commutator subgroup. 

(e) If X is a compact, connected, orientable n-dimensional manifold, 
then Hn(X) is infinite cyclic, and HiX) = {O} for all q> n. In some vague 
sense, such a manifold is a prototype or model for nonzero n-dimensional 
homology groups. 

(f) If X is an open subset of Euclidean n-space, then Hq(X) = {O} for all 
q ~ n. 

We have already alluded to the fact that sometimes it is possible to use 
homology theory to prove that two continuous maps are not homotopic. 
Analogously, homology groups can sometimes be used to prove that two 
spaces are not homeomorphic, or not even of the same homotopy type. These 
are rather obvious applications. In other cases, homology theory is used in 
less obvious ways to prove theorems. A nice example of this is the proof of the 
Brouwer fixed point theorem in Chapter III, §2. More subtle examples are the 
Borsuk-Ulam theorem in Chapter X, §2 and the lordan-Brouwer separation 
theorem in Chapter III, §6. 

1 This term is defined in Chapter II, §4. 

2 For the definition, see Chapter II, §4. 
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§3. Some Examples of Problems which Motivated 
the Development of Homology Theory in the 
Nineteenth Century 

3 

The problems we are going to consider all have to do with line integrals, 
surface integrals, etc., and theorems relating these integrals, such as the 
well-known theorems of Green, Stokes, and Gauss. We assume the reader is 
familiar with these topics. 

As a first example, consider the following problem which is discussed in 
most advanced calculus books. Let U be an open, connected set in the plane, 
and let V be a vector field in U (it is assumed that the components of V have 
continuous partial derivatives in U). Under what conditions does there exist 
a "potential function" for V, i.e., a differentiable function F(x,y) such that 
V is the gradient of F? Denote the x and y components of V by P(x,y) and 
Q(x,y) respectively; then an obvious necessary condition is that 

ap aQ 
= 

ay ax 

at every point of U. If the set U is convex, then this necessary condition is 
also sufficient. The standard proof of sufficiency is based on the use of 
Green's theorem, which asserts that 

Here D is a domain with piece-wise smooth boundary C (which may have 
several components) such that D and C are both contained in U. By using 
Green's theorem, one can prove that the line integral on the left-hand side 
vanishes if C is any closed curve in U. This implies that if (xo,yo) and (x,y) 
are any two points of U, and L is any piece-wise smooth path in U joining 
(xo,Yo) and (x,y), then the line integral 

fL Pdx + Qdy 

is independent of the choice of L; it only depends on the end points (xo,Yo) 
and (x,y). If we hold (xo,yo) fixed, and define F(x,y) to be the value of this 
line integral for any point (x,y) in U, then F(x,y) is the desired potential 
function. 

On the other hand, if the open set U is more complicated, the necessary 
condition ap/ay = aQ/ax may not be sufficient. Perhaps the simplest example 
to illustrate this point is the following: Let U denote the plane with the 
origin deleted, 

P= 
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Then the condition oQjox = oPjoy is satisfied at each point of U. However, 
if we compute the line integral 

ScPdx+Qdy, (1) 

where C is a circle with center at the origin, we obtain the value 2n. Since 
2n "1= 0, there cannot be any potential function for the vector field V = (P,Q) 
in the open set U. It is clear where the preceding proof breaks down in this 
case: the circle C (with center at the origin) does not bound any domain D 
such that D c U. 

Since the line integral (1) may be nonzero in this case, we may ask, What 
are all possible values of this line integral as C ranges over all piece-wise 
smooth closed curves in U? The answer is 2nn, where n ranges over all 
integers, positive or negative. Indeed, any of these values may be obtained 
by integrating around the unit circle with center at the origin an appropriate 
number of times in the clockwise or counter-clockwise direction; and an 
informal argument using Green's theorem should convince the reader that 
these are the only possible values. 

We can ask the same question for any open, connected set U in the plane, 
and any continuously differentiable vector field V = (P,Q) in U satisfying 
the condition oPjoy = oQjox: What are all possible values of the line integral 
(1) as C ranges over all piece-wise smooth closed curves in U? Anybody who 
studies this problem will quickly come to the conclusion that the answer 
depends on the number of "holes" in the set U. Let us associate with each 
hole the value of the integral (1) in the case where C is a closed path which 
goes around the given hole exactly once, and does not encircle any other 
hole (assuming such a path exists). By analogy with complex function theory, 
we will call this number the residue associated with the given hole. The 
answer to our problem then is that the value of the integral (1) is some finite, 
integral linear combination of these residues, and any such finite integral 
linear combination actually occurs as a value. 

Next, let us consider the analogous problem in 3-space: we now assume 
that U is an open, connected set in 3-space, and V is a vector field in U with 
components P(x,y,z), Q(x,y,z), and R(x,y,z) (which are assumed to be con
tinuously differentiable in U). Furthermore, we assume that curl V = 0. In 
terms of the components, this means that the equations 

oR 

oy 

oQ 
oz' 

oP 

oz 
oR and oQ = op 
ax' ax oy 

hold at each point of U. Once again it can be shown that if U is convex, 
then there exists a function F(x,y,z) such that V is the gradient of F. The 
proof is much the same as the previous case, except that now one must use 
Stokes's theorem rather than Green's theorem to show that the line integral 

fPdx + Qdy + Rdz 

is independent of the path. 
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In case the domain U is not convex, this proof may break down, and it 
can actually happen that the line integral 

~P~+Q~+R~ m 
is nonzero for some closed path C in U. Once again we can ask: What are 
all possible values of the line integral (2) for all possible closed paths in U? 
The "holes" in U are again what makes the problem interesting; however, 
in this case there seem to be different kinds of holes. Let us consider some 
examples: 

(a) Let U = {(x,y,z) I x2 + y2 > O}, i.e., U is the complement of the z-axis. 
This example is similar to the 2-dimensional case treated earlier. If C denotes 
a circle in the xy-plane with center at the origin, we could call the value of the 
integral (2) with this choice of C the residue corresponding to the hole in U. 
Then the value of the integral (2) for any other choice of C in U would be 
some integral multiple of this residue; the reader should be able to convince 
himself of this in any particular case by using Stokes's theorem. 

(b) Let U be the complement of the origin in R3. If 1: is any piece-wise 
smooth orientable surface in U with boundary C consisting of one or more 
piece-wise smooth curves, then according to Stokes's theorem, 

~c Pdx + Qdy + Rdz = ~f(~; - ~;)dYdZ 

+ (oP _ OR)dZdX + (OQ _ OP)dXdY. 
oz ax ax oy 

We leave it to the reader to convince himself that any piece-wise smooth 
closed curve c in U is the boundary of such a surface 1:, hence by Stokes's 
theorem, the integral around such a curve is zero (the integral on the right
hand side is identically zero). Thus the same argument applies as in the case 
where U is convex to show that any vector field V in U such that curl V = 0 
in U is of the form V = grad F for some function F. The existence of the 
hole in U does not matter in this case. 

(c) It is easy to give other examples of domains in 3-space with holes in 
them such that the hole does not matter. The following are such examples: 
let U 1 = {(x,y,z) I x2 + y2 + Z2 > 1}; let U 2 be the complement of the upper 
half (z ~ 0) of the z-axis; and let U 3 be the complement of a finite set of 
points in 3-space. In each case, if V is a vector field in Ui such that curl V = 0, 
then V = grad F for some function F. The basic reason is that any closed 
curve C in Ui is the boundary of some oriented surface 1: in Ui in each of 
the cases i = 1, 2, or 3. 

There is another problem for 3-dimensional space which involves closed 
surfaces rather than closed curves. It may be phrased as follows: Let U be a 
connected open set in R 3 and let V be a continuously differentiable vector 
field in U such that div V = O. Is the integral of (the normal component of) 
V over any closed, orientable piece-wise smooth surface 1: in U equal to O? 
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If not, what are the possible values of the integral of V over any such closed 
surface? If U is a convex open set, then any such integral of O. One proves 
this by the use of Gauss's theorem (also called the divergence theorem): 

II V = III(div V)dxdydz. 
E D 

Here D is a domain in U with piece-wise smooth boundary 1: (the boundary 
may have several components). The main point is that a closed orientable 
surface 1: contained in a convex open set U is always the boundary of a 
domain D contained in U. However, if the open set U has holes in it, this 
may not be true, and the situation is more complicated. For example, 
suppose that U is the complement of the origin in 3-space, and V is the 
vector field in U with components P = xjr3, Q = yjr3, and R = zjr3, where 
r = (x2 + y2 + Z2)1 /2 is the distance from the origin. It is readily verified that 
div V = 0; on the other hand, the integral of V over any sphere with center 
at the origin is readily calculated to be ±4n; the sign depends on the orienta
tion conventions. The set of all possible values of the surface integral Jh V 
for all closed, orientable surfaces 1: in U is precisely the set of all integral 
multiples of 4n. 

On the other hand, if U is the complement of the z-axis in 3-space, then 
the situation is exactly the same as in the case where U is convex. The reason 
is that any closed, orientable surface in U bounds a domain D in U; the 
existence of the hole in U does not matter. 

There is a whole series of analogous problems in Euclidean spaces of 
dimension four or more. Also, one could consider similar problems on 
curved submanifolds of Euclidean space. Although there would doubtless 
be interesting new complications, we have already presented enough exam
ples to give the flavor of the subject. 

At some point in the nineteenth century certain mathematicians tried to 
set up general procedures to handle problems such as these. This led them 
to introduce the following terminology and definitions. The closed curves, 
surfaces, and higher dimensional manifolds over which one integrates vector 
fields, etc. were called cycles. In particular, a closed curve is a I-dimensional 
cycle, a closed surface is a 2-dimensional cycle, and so on. To complete the 
picture, a O-dimensional cycle is a point. It is understood, of course, that 
cycles of dimension > 0 always have a definite orientation, i.e., a 2-cycle is 
an oriented closed surface. Moreover, it is convenient to attach to each cycle 
a certain integer which may be thought of as its "multiplicity." To integrate a 
vector field over a I-dimensional cycle or closed curve with multiplicity + 3 
means to integrate it over a path going around the curve 3 times; the result 
will be 3 times the value of the integral going around it once. If the mul
tiplicity is - 3, then one integrates 3 times around the curve in the op
posite direction. If the symbol c denotes a I-dimensional cycle, then the 
symbol 3c denotes this cycle with the multiplicity + 3, and - 3c denotes 
the same cycle with multiplicity - 3. It is also convenient to allow formal 
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sums and linear combinations of cycles (all of the same dimension), that is, 
expressions like 3Cl + 5C2 - lOc3, where Cl' C2, and C3 are cycles. With this 
definition of addition, the set of all n dimensional cycles in an open set U 
of Euclidean space becomes an abelian group; in fact it is a free abelian 
group. It is customary to denote this group by Zn(U). There is one further 
convention that is understood here: If C is the i-dimensional cycle deter
mined by a certain oriented closed curve, and c' denotes the cycle determined 
by the same curve with the opposite orientation, then c = - c'. This is 
consistent with the fact that the integral of a vector field over c' is the negative 
of the integral over c. Of course, the same convention also holds for higher 
dimensional cycles. 

It is important to point out that i-dimensional cycles are only assumed 
to be closed curves, they are not assumed to be simple closed curves. Thus 
they may have various self-intersections or singularities. Similarly, a 2-
dimensional cycle in U is an oriented surface in U which is allowed to have 
various self-intersections or singularities. It is really a continuous (or differ
entiable) mapping of a compact, connected, oriented 2-manifold into U. On 
account of the possible existence of self-intersections or singularities, these 
cycles are often called singular cycles. 

Once one knows how to define the integral of a vector field (or differential 
form) over a cycle, it is obvious how to define the integral over a formal 
linear combination of cycles. If c l , ... , Ck are cycles in U and 

z = nlc l + ... + nkck 

where nl> n2' ... , nk are integers, then 
k 

r V = L ni r V Jz i=l JCi 

for any vector field V in U. 
The next step is to define an !!quivalence relation between cycles. This 

equivalence relation is motivated by the following considerations. Assume 
that U is an open set in 3-space. 

(a) Let u and w be i-dimensional cycles in U, i.e., u and ware elements 
of the group Zl(U). Then we wish to define u '" w so that this implies 

for any vector field V in U such that curl V = o. 
(b) Let u and w be elements of the group Z i U). Then we wish to define 

u '" w so that this implies 

for any vector field V in U such that div V = O. 
Note that the condition 
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can be rewritten as follows, in view of our conventions: 

r V=O. Ju-w 
Thus u '" w if and only if u - w '" O. 

In Case (a), Stokes's theorem suggests the proper definition, while in 
Case (b) the divergence theorem points the way. 

We will discuss Case (a) first. Suppose we have an oriented surface in U 
whose boundary consists of the oriented closed curves C1, Cz, ... , Ck • The 
orientations of the boundary curves are determined according to the con
ventions used in the statement of Stokes's theorem. Then the I-dimensional 
cycle 

z = C1 + Cz + ... + Ck 

is defined to be homologous to zero, written 

z '" O. 

More generally, any linear combination of cycles homologous to zero is also 
defined to be homologous to zero. The set of all cycles homologous to zero 
is a subgroup of Z1(U) which is denoted by B1(U), We define z and z' to be 
homologous (written z '" z') if and only if z - z' '" O. Thus the set of equiva
lence classes of cycles, called homology classes, is nothing other than the 
quotient group 

which is called the I-dimensional homology group of U. 
Analogous definitions apply to Case (b). Let D be a domain in U whose 

boundary consists of the connected oriented surfaces S1> Sz, ... ,Sk' The 
orientation of the boundary surfaces is determined by the conventions used 
for the divergence theorem. Then the 2-dimensional cycle 

z = S1 + Sz + ... + Sk 

is by definition homologous to zero, written z '" O. As before, any linear 
combination of cycles homologous to zero is also defined to be homologous 
to 0, and the set of cycles homologous to 0 constitutes a subgroup, Bz(U), 
of Zz(U). The quotient group 

is called the 2-dimensional homology group of U. 
Let us consider some examples. If U is an open subset of the plane, then 

H 1 (U) is a free abelian group, and it has a basis (or minimal set of generators) 
in 1-1 correspondence with the holes in U. If U is an open subset of 3-space 
then both H 1(U) and Hz(U) are free abelian groups, and each hole in U 
contributes generators to H 1(U) or H z(U), or perhaps to both. This helps 
explain the different kinds of holes in this case. 
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In principle, there is nothing to stop us from generalizing this procedure, 
and defining for any topological space X and nonnegative integer n the 
group Zn(X) of n-dimensional cycles in X, the subgroup BiX) consisting of 
cycles which are homologous to zero, and the quotient group 

called the n-dimensional homology group of X. However, there are difficulties 
in formulating the definitions rigorously in this generality; the reader may 
have noticed that some of the definitions in the preceding pages were lacking 
in precision. Actually, it took mathematicians some years to surmount these 
difficulties. The key idea was to think of an n-dimensional cycle as made up 
of small n-dimensional pieces which fit together in the right way, in much 
the same way that bricks fit together to make a wall. In this book, we will 
use n-dimensional cycles that consist of n-dimensional cubes which fit 
together in a nice way. To be more precise, the "singular" cycles will be 
built from "singular" cubes; a singular n-cube in a topological space X is 
simply a continuous map T:r ~ X, where r denotes the unit n-cube in 
Euclidean n-space. 

There is another complication which should be pointed out. We men
tioned in connection with the examples above that if U is an open subset of 
the plane or 3-space, then the homology groups of U are free abelian groups. 
However, there exist open subsets U of Euclidean n-space for all n > 3 such 
that the group H 1 (U) contains elements of finite order (compare the discus
sion of the homology groups of nonorientable surfaces in §III.4). Suppose 
that U E H 1 (U) is a homology class of order k ¥ O. Let z be a 1-dimensional 
cycle in the homology class u. Then z is not homologous to 0, but k . z is 
homologous to O. This implies that if V is any vector field in U such that 
curl V = 0, then 

IV=O. 

To see this, let Sz V = r. Then Skz V = k· r; but SkZ V = 0 since kz '" O. There
fore r = o. It is not clear that this phenomenon was understood in the 
nineteenth century; at least there seems to have been some confusion in 
Poincare's early papers on topology about this point. Of course one source 
of difficulty is the fact that this phenomenon eludes our ordinary geometric 
intuition, since it does not occur in 3-dimensional space. Nevertheless it is 
a phenomenon of importance in algebraic topology. 

Before ending this account, we should make clear that we do not claim 
that the nineteenth century development of homology theory actually pro
ceeded along the lines we have just described. For one thing, the nineteenth 
century mathematicians involved in this development were more interested 
in complex analysis than real analysis. Moreover, many of their false starts 
and tentative attempts to establish the subject can only be surmised from 
reading the published papers which have survived to the present. The reader 
who wants to go back to the original sources is referred to the papers by 
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Riemann [7], E. Betti [1], and Poincare [6]. Betti was a professor at the 
University of Pis a who became acquainted with Riemann in the last years 
of the latter's life. Presumably he was strongly influenced by Riemann's 
ideas on this subject. 

§4. References to Further Articles on the Background 
and Motivation for Homology Theory 

The student will probably find it helpful to read further articles on this 
subject. The following are recommended (most of them are easy reading): 
Seifert and Threlfall [8], Massey [5], Wallace [9], and Hocking and Young 
[4]. The bibliographies in Blackett [2] and Frechet and Fan [3] list many 
additional articles which are helpful and interesting. 
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CHAPTER II 

Definitions and Basic Properties 
of Homology Theory 

§1. Introduction 

This chapter gives formal definitions of the basic concepts of homology 
theory, and rigorous proofs of their basic properties. For the most part, 
examples and applications are postponed to Chapter III and subsequent 
chapters. 

§2. Definition of Cubical Singular 
Homology Groups 

First, we list some terminology and notation which will be used from here on: 

R = real line. 
1 = closed unit interval, [0,1]' 
Rn = R x R x ... x R (n factors, n > 0) Euclidean n-space. 
r = 1 x 1 x ... x 1 (n factors, n > 0) unit n-cube. 

By definition, 1° is a space consisting of a single point. 
Any topological space homeomorphic to 1" may be called an n-dimen

sional cube. 

Definition 2.1. A singular n-cube in a topological space X is a continuous 
map T:1" --+ X (n ~ 0). 

Note the special cases n = 0 and n = 1. 

11 
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Qn(X) denotes the free abelian group generated by the set of all singular 
n-cubes in X. Any element of QiX) has a unique expression as a finite linear 
combination with integral coefficients of n-cubes in X. 

Definition 2.2. A singular n-cube T:I" -+ X is degenerate if there exists an 
integer i, 1 ~ i ~ n, such that T(X1,X2 , ••• ,xn) does not depend on Xi' 

Note that a singular O-cube is never degenerate; a singular I-cube T:I -+ 

X is degenerate if and only if T is a constant map. 
Let DiX) denote the subgroup of Qn(X) generated by the degenerate 

singular n-cubes, and let Cn(X) denote the quotient group Qn(X)jDiX). The 
latter is called the group of cubical Singular n-chains in X, or just n-chains 
in X for simplicity. 

Remarks. If X = 0, the empty set, then QiX) = DiX) = Cn(X) = {a} 
for all n 2 0. 

If X is a space consisting of a single point, then there is a unique singular 
n-cube in X for all n 2 0; this unique n-cube is degenerate if n 2 1. Hence 
Co(X) is an infinite cyclic group and Cn(X) = {a} for n > ° in this case. 

For any space X, Do(X) = {O}, hence Co(X) = Qo(X). 
For any space X, it is readily verified that for n 2 1, Cn(X) is a free abelian 

group on the set of all nondegenerate n-cubes in X (or, more precisely, their 
cosets mod DiX)). 

The Faces of a Singular n-cube (n > 0) 

Let T:I" -+ X be a singular n-cube in X. For i = 1,2, ... , n, we will define 
singular (n - I)-cubes 

by the formulas 

AiT(Xl"" ,Xn-l) = T(x1,··· 'Xi-1'0'Xi'··· ,xn- 1), 

BiT(x1,· .. ,xn- 1) = T(x1,· .. ,Xi-l,I,Xi,·· . ,Xn-l)' 

Ai T is called the front i-face and Bi T is called the back i-face of T. 
These face operators satisfy the following identities, where T:I" -+ X is 

an n-cube, n > 1, and 1 ~ i < j ~ n: 

AiAiT ) = Aj-1Ai(T), 

BiBiT) = Bj-1Bi(T), 

AiBiT ) = Bj-1AlT), 

. BiAiT ) = Aj-1Bi(T). 

(2.1) 

We now define the boundary operator; it is a homomorphism on:QiX)-+ 
Qn-l(X), n 21. To define such a homomorphism, it is only necessary to 
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define it on the basis elements, the singular cubes, by the basic property of 
free abelian groups. Usually we will write a rather than an for brevity. 

Definition 2.3. For any n-cube T, n > 0, 

n 

aiT) = L (-l)i[AiT - BiT]. 
i= I 

The reader should write out this formula explicitly for the cases n = 1, 2, 
and 3, and by drawing pictures convince himself that it does in some sense 
represent the oriented boundary of an n-cube T. The following are the two 
most important properties of the boundary operator: 

an-l(an(T)) =0 (n>l) 

aiDiX)) c Dn-I(X) (n > 0). 

The proof of (2.2) depends on Identities (2.1); the proof of (2.3) is easy. 

(2.2) 

(2.3) 

As a consequence of (2.3), an induces a homomorphism Cn(X) --+ Cn-I(X), 
which we denote by the same symbol, an. Note that this new sequence of 
homomorphisms aI' az,"" an,"', satisfies Equation (2.2): an-Ian = 0. 

We now define 

Zn(X) = kernel an = {u E Cn(X) I a(u) = O} (n > 0) 

Bn(X) = image an + l = an+I(Cn+I(X)) (n ~ 0). 

Note that as a consequence of the equation an-Ian = 0, it follows that 

Hence we can define 

It remains to define Ho(X) and HiX) for n < 0, which we will do in a minute. 
HiX) is called the n-dimensional singular homology group of X, or the n
dimensional homology group of X for short. These groups Hn(X) will be our 
main object of study. The groups CiX), ZiX), and B.(X) are only of second
ary importance. More terminology: Zn(X) is called the group of n-dimensional 
singular cycles of X, or group of n-cycles. B.(X) is called the group of n
dimensional boundaries or group of n-dimensional bounding cycles. 

To define Ho(X), we will first define Zo(X), then set Ho(X) = Zo(X)jBo(X) 
as before. It turns out that there are actually two slightly different candidates 
for Zo(X), which give rise to slightly different groups H o(X). In some situa
tions one definition is more advantageous, while in other situations the 
other is better. Hence we will use both. The difference between the two is 
of such a simple nature that no trouble will result. 
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First Definition of fI o(X) 

This definition is very simple. We define Zo(X) = Co(X) and 

Ho(Z) = Zo(X)/Bo(X) = Co(X)/Bo(X). 

There is another way we could achieve the same result: we could define 
Cn(X) = {O} for n < 0, define an: Cn(X) --+ Cn- 1(X) in the only possible way 
for n s 0 (i.e., an = 0 for n sO), and then define Zo(X) = kernel 00' More 
generally, we could then define ZiX) = kernel an for all integers n, positive 
or negative, Bn(X) = 0n+l(Cn+1(X» C ZiX), and Hn(X) = ZiX)/Bn(X) for 
all n. Of course we then obtain HiX) = {O} for n < O. 

Note that H o(X) is defined even in case X is empty. 

Second Definition-The Reduced O-dimensional 
Homology Group, fI o(X) 

For this purpose, we define a homomorphism c: Co(X) --+ Z, where Z denotes 
the ring of integers. This homomorphism is often called the augmentation. 
Since Co(X) = Qo(X) is a free group on the set of O-cubes, it suffices to 
define c(T) for any O-cube T in X. The definition is made in the simplest 
possible nontrivial way: c(T) = 1. It then follows that if u = Li ni T; is any 
O-chain, c(u) = Li ni is just the sum of the coefficients. One now proves the 
following important formula: 

(2.4) 

To prove this formula, it suffices to verify that for any singular i-cube T 
in X, c(ol(T» = 0, and this is a triviality. 

We now define Zo(X) = kernel c. Formula (2.4) assures us that Bo(X) c 

Zo(X), hence we can define 

lio(X) = Zo(X)/Bo(X). 

Ii o(X) is called the reduced O-dimensional homology group of X. To avoid 
some unpleasantness later, we agree to only consider the reduced group 
lio(X) in case the space X is nonempty. It is often convenient to set lin(X) = 

Hn(X) for n > O. 
We will now discuss the relation between the groups Ho(X) and lio(X). 

First of all, note that Zo(X) is a subgroup of Zo(X) = Co(X), hence Ii o(X) 
is a subgroup of H o(X). Let ~: Ii o(X) --+ H o(X) denote the inclusion homo
morphism. Secondly, from Formula (2.4), it follows that c(Bo(X» = 0, hence 
the augmentation c induces a homomorphism. 

c*: H o(X) --+ Z. 

Proposition 2.1. The following sequence of groups and homomorphisms 
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is exact. Thus we may identify Ho(X) with the kernel of s*. (The space X is 
assumed nonempty.) 

The proof is easy. It follows that H o(X) is the direct sum of H o(X) and an 
infinite cyclic subgroup; however, this direct sum decomposition is not 
natural or canonical; the infinite cyclic summand can often be chosen in 
many different ways. 

Some Examples 

EXAMPLE 2.1. X = space consisting of a single point. Then we find that 

Ho(X) ';:;; Z 

Hn(X) = {O} for n "# 0 

Ho(X) = {O} 

s*: H o(X) -+ Z is an isomorphism. 

EXAMPLE 2.2. O-dimensional homology group of an arcwise connected space, 
X. We then see that s: Co(X) -+ Z is an epimorphism, and Bo(X) = kernel s 
(proof left to reader). It follows that s*: H o(X) -+ Z is an isomorphism, and 
Ho(X) = {O}. (Note: X is assumed nonempty.) 

EXAMPLE 2.3. Let X be a space with many arc-components; denote the arc
components by X y , Y E r. Note that each singular n-cube lies entirely in one 
of the arc-components. Hence Q.(X) breaks up naturally into a direct sum, 

Qn(X) = L Qn(X y). 
YET 

Similarly, with Dn(X): 

D.(X) = L Dn(X y), 
YET 

hence on passing to quotient groups we see that 

C.(X) = L Cn(Xy) (direct sum). 
YET 

Next, note that if a singular n-cube is entirely contained in the arc-component 
X Y' then its faces are also entirely contained in X 1" It follows that the bound
ary dn:Cn(X) -+ Cn- 1(X) maps Cn(Xy) into Cn- 1(X y)' Therefore we have the 
following direct sum decompositions 

Zn(X) = L Zn(X y), 
YET 

B.(X) = L B.(X y), 
YET 
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and hence 
Hn(X) = L: Hn(Xy). 

YET 

In words, the nth homology group of X is the direct sum of the nth homology 
groups of its arc-components. 

We can apply this last result and Example 2.2 to determine the structure 
of H o(X) for any space X. The result is that H o(X) is a direct sum of infinite 
cyclic groups, with one summand for each arc-component of X. 

Note that such a simple direct sum theorem does not hold for ii o(X). 
For example, if X has exactly two arcwise connected components, what is 
the structure of ii o(X)? 

EXERCISE 

2.1. Determine the structure of the homology group H.(X), n;;:: 0, if X is (a) the set 
of rational numbers with their usual topology. (b) a countable, discrete space. 

These examples show the relation between the structure of H o(X) and 
certain topological properties of X (the number of arcwise connected 
components). In an analogous way, the algebraic structure of the groups 
HiX) for n > ° express certain topological properties of the space X. 
Naturally, these will be properties of a more subtle nature. One of our 
principal aims will be to develop methods of determining the structure of 
the groups H n(X) for various spaces X. 

§3. The Homomorphism Induced by 
a Continuous Map 

Homology theory associates with every topological space X the sequence 
of groups Hn(X), n = 0, 1,2, .... Equally important, it associates with every 
continuous map f: X -+ Y between spaces a sequence of homomorphisms 
f*:HiX) -+ Hn(Y), n = 0, 1, 2, .... Certain topological properties of the 
continuous map f are reflected in algebraic properties of the homomor
phisms f*. We will now give the definition of f*, which is very simple. 

First of all, we define homomorphisms f# : Qn(X) -+ Qn(Y) by the simple 
rule 

for any singular n-cube T:I" -+ X, n = 0, 1, 2, .... We now list the main 
properties of this homomorphism f# : 

(3.1) If T is a degenerate singular n-cube, so is f#(T). Hence f# maps 
DiX) into DiY), and induces a homomorphism of Cn(X) into CiY). We 
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will denote this induced homomorphism by the same symbol, 

n = 0,1,2, ... 

to avoid an undue proliferation of notation. 
(3.2) The following diagram is commutative for n = 1, 2, 3, ... : 

f. 
Qn(X) ---+) Qn(Y) 

la, 

This fact can also be expressed by the equation an 0 f# = f# 0 an, or by the 
statement that f# commutes with the boundary operator. [To prove this, 
one observes that f#(A;T) = A;(f# T) and f#(B;T) = B;(f#(T)).] It follows 
that the following diagram is commutative for n = 1, 2, 3, ... : 

f. 
Cn - 1(X) ----+ Cn - 1(y)' 

Hence f# maps Zn(X) into ZiY) and Bn(X) into Bn(Y) for all n ~ ° and 
induces a homomorphism of quotient groups, denoted by 

n = 0,1,2, .... 

This is our desired definition. 
(3.3) The following diagram is also readily seen to be commutative: 

Co(X)~ 

1f. Z. 

/. 
Co(Y) 

Hence f# also maps Zo(X) into Zo(Y) and induces a homomorphism of 
Ho(X) into Ho(Y) which is denoted by the same symbol: 

f*:Ho(X) --+ Ho(Y). 

The student should verify that the following two diagrams are also com
mutative: 

Ho(X) 
~ 

----+ Ho(X) Ho(X) 

If> If> If> 
~ 

Z. 

~ ~ 
Bo(Y) ----+ Ho(Y) Ho(Y) 

Here the notation is that of Proposition 2.1. 
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(3.4) Let f:X --+ X denote the identity map. It is easy to verify succes
sively that the following homomorphisms are identity maps: 

and 

f# : Qn(X) --+ QiX), 

f# :CiX) --+ Cn(X), 

f*:Hn(X) --+ HiX), 

f*: ii o(X) --+ ii o(X). 

Of course, the real interest lies in the fact that f* is the identity. 
(3.5) Let X, Y, and Z be topological spaces, and g:X --+ Y, f: Y --+ Z 

continuous maps. We will denote by fg:X --+ Z the composition of the two 
maps. Under these conditions, we have the homomorphisms f*g* and (fg)* 
from Hn(X) to Hn(Z) for all n z 0, and from iio(X) to iio(Z). We assert that 
these two homomorphisms are the same in all cases: 

(fg)* = f*g*· 

To prove this assertion, one verifies first that (fg)# and f#g # are the same 
homomorphisms from Qn(X) to Qn(Z), then that (fg)# andf#g# are the same 
homomorphisms from Cn(X) to CiZ). From this the assertion follows. 

Since Properties (3.4) and (3.5) are so obvious, the reader may wonder 
why we even bothered to mention them explicitly. These properties will be 
used innumerable times in the future, and it is in keeping with the customs 
of modern mathematics to make explicit any axiom or theorem that one uses. 

CAUTION: If f:X --+ Y is a 1-1 map, it does not necessarily follow that 
f*: H iX) --+ H n( Y) is 1-1; similarly, the fact that f is onto does not imply 
that f* is onto. There will be plenty of examples to illustrate this point 
later on. 

EXERCISES 

3.1. Let X and Y be spaces having a finite number of arcwise connected com
ponents, and f: X -+ Y a continuous map. Describe the induced homomorphism 
f*:H o(X) ..... H o(Y). Generalize to the case where X or Y have an infinite number 
of arc-components. 

3.2. Let Xy be an arc-component of X, and f:Xy -+ X the inclusion map. Prove that 
f*: H .(X) ..... H .(X) is a monomorphism, and the image is the direct summand of 
H .(X) corresponding to X y' as described in Example 2.3. Consequence: the direct 
sum decomposition of Example 2.3 can be described completely in terms of such 
homomorphisms which are induced by inclusion maps. 

3.3. (Application to Retracts) A subset A of a topological space X is called a retract 
of X if there exists a continuous map r:X ..... A such that r(a) = a for any a E A. 
This is a rather strong condition on the subspace A. (a) Construct examples of 
pairs (X,A) such that Ajs a retract of X, and such that A is not a retract of X. 

(b) Let A be a retract of X with retracting map r:X ..... A, and let i:A ..... X 
denote th~nclusion map. Prove that r *: H.(X) ..... H.(A) is an epimorphism, 
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i*:Hn(A)--> Hn(X) is a monomorphism, and that Hn(X) is the direct sum of the 
image of i* and the kernel of r *. 

§4. The Homotopy Property of 
the Induced Homomorphisms 

In this section we will prove a basic property of the homomorphism induced 
by a continuous map. This property is to a large extent responsible for the 
distinctive character of a homology theory, and is one of the factors making 
possible the computation of the homology groups Hn(X) for many spaces X. 

Definition 4.1. Two continuous maps f, g: X ~ Yare homotopic (notation: 
f ~ g) if there exists a continuous map F:I x X ~ Y such that F(O,x) = f(x) 
and F(1,x) = g(x) for any x E X. 

Intuitively speaking, f ~ g if and only if it is possible to "continuously 
deform" the map f into the map g. The reader should prove that ~ is an 
equivalence relation on the set of all continuous maps from X into Y. The 
equivalence classes are called homotopy classes. The classification of contin
uous maps into homotopy classes is often very convenient; for example, 
usually there will be un count ably many continuous maps from X into Y, 
but if X and Yare reasonable spaces, there will often only be finitely many 
or countably many homotopy classes. 

Theorem 4.1. Let f and g be continuous maps of X into Y. If f and g are homo
topic, then the induced homomorphisms, f* and g*, of Hn(X) into Hn(Y) are 
the same. Also,!* = g*:Ho(X) ~ Ho(Y). 

PROOF: Let F:I x X ~ Y be a continuous map such that F(O,x) = f(x) 
and F(1,x) = g(x). We will use the continuous map F to construct a sequence 
of homomorphisms 

CfJn:C.(X) ~ Cn+1(Y), 

such that the following relation holds: 

n = 0,1,2, ... 

-f# + g# = 0n+1 0 CfJn + CfJn-1 0 On' n = 0,1,2, .... (4.1) 

[For n = 0, we will interpret this equation as follows: C -1 (X) = C -1 (Y) = 
{O}, 00 is the ° homomorphism, and CfJ-1:C-1(X) ~ Co(Y) is (of necessity) 
the ° homomorphism.] We assert that the theorem follows immediately 
from Equation (4.1). To see this, let u E H.(X); choose a representative cycle 
u' E Z.(X) for the homology class u. Since oiu') = 0, it follows from Equation 
(4.1) that 

-f#(u') + g#(u') = 0n+1(CfJ.(U')). 

Hence -f#(u') + g#(u') E Bn(¥), and therefore f*(u) = g*(u). The proof in 
case u E Ii o(X) is left to the student. 
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This is a typical procedure in algebraic topology; from the continuous 
map F we construct homomorphisms (algebraic maps) ({In which reflect 
properties of F. 

To construct the homomorphisms ({Jm we define a sequence of homo
morphisms 

n = 0,1,2, ... 

as follows. For any singular n-cube T:1" ~ X, define a singular (n + I)-cube 
cP n( T): 1" + 1 ~ Y by the formula 

(cPnT)(x 1,··· ,xn+1) = F(Xb T(X2"" ,xn+1))· 

We wish to compute 0n+ 1 cPn(T). For this purpose, observe that 

A 1cPn(T) = J#(T), 

B1 cPn(T) = 9 #(T), 
AicPiT) = cPn- 1A i- 1(T) 

BicPiT) = cPn- 1Bi- 1(T) 

We now compute: 

n+1 

(2::;; i::;; n + 1), 

(2::;; i ::;; n + 1). 

0n+1 cPiT) = L (-I)i[AicPn(T) - BicPn(T)] 
i= 1 

n+1 

(4.2) 

= -[J#(T) - g#(T)] + L (-I)icPn_1(Ai_1(T) - Bi- 1(T)) 
i=2 

n 

= -J#(T) + g#(T) + L (-I)j+1 cPn _1(A j(T) - BiT)) 
j= 1 

= -J#(T) + g#(T) - cPn- 1on(T). 

Therefore we conclude that for any U E Qn(X), 

-J#(u) + g#(u) = On+1cPn(U) + cPn- 1oiu). (4.3) 

Next, observe that if T is a degenerate singular n-cube, n> 0, then cPn(T) is 
a degenerate (n + I)-cube. Hence 

cPn(DiX)) c Dn+ 1(Y) 

and therefore cPn induces a homomorphism 

((In:Cn(X) ~ Cn+1(Y). 

From (4.3) it follows that ({In satisfies Equation (4.1), as desired. Q.E.D. 

Some terminology. The function F above is called a homotopy between the 
continuous maps J and g. The homomorphisms ({In' n = 0,1,2, ... , consti
tute a chain homotopy or algebraic homotopy between the chain maps J# 
and g#. 
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We will now discuss some applications of this theorem. Later on when 
we are able to actually determine the structure of some homology groups 
and compute some induced homomorphisms, we will be able to use it to 
prove that certain maps are not homotopic. For example, it can be shown 
that there are infinitely many homotopy classes of maps of an n-sphere onto 
itself if n > 0. 

Homotopy Type of Spaces 

Definition 4.2. Two spaces X and Yare of the same homotopy type if there 
exist continuous maps f:X -+ Y and g: Y -+ X such that gf is homotopic 
to the identity map X -+ X, and fg is homotopic to the identity map Y -+ Y. 
The maps f and g occurring in this definition are called homotopy equiva
lences. 

For example, if X and Yare homomorphic, then they are of the same 
homotopy type (but not conversely). 

Theorem 4.2. If f: X -+ Y is a homotopy equivalence, then f* : H iX) -+ H n( y), 
n = 0, 1,2, ... , and f*: Ii o(X) -+ Ii o(Y) are isomorphisms. 

The proof, which is simple, is left to the reader. 

Definition 4.3. A space X is contractible to a point if there exists a continuous 
map F:I x X -+ X such that F(O,x) = x and F(1,x) = Xo for any x E X (here 
Xo is a fixed point of X). 

For example, any convex subset of Euclidean n-space is contractible to 
a point (proof to be supplied by the reader). If a space X is contractible to a 
point, then it has the same homotopy type as a space consisting of a single 
point, and its homology groups are as follows: 

H o(X) ~ Z, Ii o(X) = 0, 

Hn(X) = ° for n "# 0. 

Definition 4.4. A subset A of a space X is a deformation retract of X if there 
exists a retraction r:X -+ A (i.e., A is a retract of X) and a continuous map 
F:I x X -+ X such that F(O,x) = x, F(1,x) = r(x) for any x E X. 

For example, in Definition 4.3, the set {xo} is a deformation retract of X. 
If A is a deformation retract of X, then the inclusion map i:A -+ X is a 

homotopy equivalence; the proof is left to the reader. Hence the induced 
homomorphism i*:HiA) -+ HiX) is an isomorphism. This is a useful princi
ple to remember when trying to determine the homology groups of a space. 
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§5. The Exact Homology Sequence of a Pair 

In order to be able to use homology groups effectively, it is necessary to 
be able to determine their structure for various spaces; so far we can only 
do this for a few spaces, such as those which are contractible. In most cases, 
the definition of HiX) is useless as a means of computing its structure. 
In order to make further progress, it seems to be necessary to have some 
general theorems which give relations between the homology groups of a 
space X and those of any subspace A contained in X. If i:A --+ X denotes 
the inclusion map, then there is defined the induced homomorphism 
i*:Hn(A) --+ Hn(X) for n = 0,1,2, .... As was mentioned earlier, i* need 
not be either an epimorphism or monomorphism. 

In this section we will generalize our earlier definition of homology 
groups, by defining relative homology groups for any pair (X,A) consisting 
of a topological space X and a subspace A; these groups are denoted by 
H n(X,A), where n = 0, 1, 2, .... There is a nice relation between these relative 
homology groups and the homomorphisms i*:HiA) --+ Hn(X), which is ex
pressed by something called the homology sequence of the pair (X,A). Thus 
it will turn out that knowledge of the structure of the groups HiX,A) will 
give rise to information about the homomorphisms i*:Hn(A) --+ Hn(X) and 
vice-versa. In the next section we will take up various properties ofthe relative 
homology groups, such as the excision property; this will enable us to 
actually determine these relative homology groups in certain cases. 

The relative homology groups are true generalizations of the homology 
groups defined earlier in the sense that if A is the empty set, then Hn(X,A) = 
Hn(X). Nevertheless, the primary interest in algebraic topology centers on 
the nonrelative homology groups Hn(X) for any space X. Our point of 
view is that the relative groups HiX,A) are introduced mainly for the pur
pose of making possible the computation of the "absolute" homology groups 
H n(X), even though in certain circumstances the relative groups are of 
independent interest. 

The Definition of Relative Homology Groups 

Let A be a subspace of the topological space X, and let i:A --+ X denote 
the inclusion map. It is readily verified that the induced homomorphism 
i # : Cn(A) --+ Cn(X) is a monomorphism, hence we can consider Cn(A) to be 
a subgroup of Cn(X); it is the subgroup generated by all nondegenerate 
singular cubes in A. We will use the notation Cn(X,A) to denote the quotient 
group CiX)/Cn(A); it is called the group of n-dimensional chains of the pair 
(X,A). The boundary operator 0n:CiX) --+ Cn- 1(X) has the property that 
on(Cn(A)) c Cn- 1(A), hence it induces a homomorphism of quotient groups 

o~:CiX,A) --+ Cn- 1(X,A) 
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which we will usually denote by On' or 0, for simplicity. In analogy with the 
definitions in §2, we define the group of n-dimensional cycles of (X,A) for 
n >Oby 

and for n ~ 0 the group of n-dimensional bounding cycles by 

Since 0nOn+ 1 = 0, it follows that 

and hence we can define 

Hn(X,A) = ZiX,A)/B,,(X,A). 

In case n = 0, we define Zo(X,A) = Co(X,A) and H o(X,A) = Co(X,A)/Bo(X,A). 
Intuitively speaking, the relative homology group H,,(X,A) is defined in 

the same way as Hn(X), except that one neglects anything in the subspace 
A. For example, let u E CiX); then the coset of u in the quotient group, 
Cn(X,A), is a cycle mod A if and only if o(u) E Cn(A), i.e., 8(u) is a chain in 
the subspace of A. 

EXERCISE 

5.1. Prove that C.(X,A) is a free abelian group generated by the (cosets of) the non
degenerate singular n-cubes of X which are not contained in A. 

It is convenient to display the chain groups C .. (A), C,,(X), and C .. (X,A) 
together with their boundary operators in one large diagram as follows: 

1 1 1 
i. i. 

C.+1(A) ~ C.+ 1(X) ----+ C.+ 1(X,A) 

1 1 1 
i. i. (5.1) C.(A) , c.(X) , C.(X,A) 

1 1 1 
C._ 1(A) 

i. 
----+ C.- 1(X) 

i. 
----+ C._ 1(X,A) 

1 1 1 
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Here the vertical arrows denote the appropriate boundary operator, 0, and 
j # denotes the natural epimorphism of CiX) onto its quotient group Cn(X,A). 
It is clear that each square in this diagram is commutative. In order to avoid 
having to consider the case n = ° as exceptional, we will define for any 
integer n < 0, 

CiA) = CiX) = Cn(X,A) = {o}. 

Thus this diagram extends infinitely far upwards and downwards. 
As was pointed out in §3, the homomorphisms i # induce homomorphisms 

i* of Hn(A) into HiX) for all n. Similarly, the homomorphisms j# induce 
homomorphisms 

n = 0,1,2, .... 

We will now define a third sequence of homomorphisms 

for all integral values of n by a somewhat more elaborate procedure, as 
follows. Let u E HiX,A); we wish to define o*(u) E Hn-l(A). Choose a repre
sentative n-dimensional cycle u' E CiX,A) for the homology class u. Because 
j# is an epimorphism, we can choose a chain u" E CiX) such thatj#(u") = u'. 
Consider the chain o(u") E Cn - 1(X); using the commutativity of Diagram 
(5.1) and the fact that u' is a cycle, we see thatj #o(u") = 0; hence o(u") actually 
belongs to the subgroup Cn - 1(A) of Cn - 1(X). Also o(u") is easily seen to be 
a cycle; we define o*(u) to be the homology class of the cycle o(u"). 

To justify this definition of 0*, one must verify that it does not depend 
on the choice of the representative cycle u' or of the chain u" such that 
j#(u") = u'. In addition, it must be proved that 0* is a homomorphism, 
i.e., o*(u + v) = o*(u) + o*(v). These verifications should be carried out by 
the reader. 

The homomorphism 0* is called the boundary operator of the pair (X,A). 
It is natural to consider the following infinite sequence of groups and 

homomorphisms for any pair (X,A): 

i. H (X) a. () i. i. a • • • • -. n+ 1 ,A -. Hn A -. Hn(X) -. HiX,A) -. .... 

This sequence will be called the homology sequence of the pair (X,A). Once 
again, in order to avoid having to consider the case n = ° as exceptional, 
we will make the convention that for n < 0, HiA) = Hn(X) = Hn(X,A) = {o}. 
Thus the homology sequence of a pair extends to infinity in both the right 
and left directions. 

The following is the main theorem of this section: 

Theorem 5.1. The homology sequence of any pair (X,A) is exact. 
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In order to prove this theorem, it obviously suffices to prove the following 
six inclusion relations: 

image i* c kernelj *, 

image j * c kernel 0 *, 

image 0 * c kernel i*, 

image i* ::> kernel j *, 

image j * ::> kernel 0 *, 

image 0* ::> kernel i*. 

We strongly urge the reader to carry out these six proofs, none of which is 
difficult. It is only by working through such details that one can acquire 
familiarity with the techniques of this subject. 

EXERCISES 

5.1. For any pair (X,A), prove the following assertions: 
(a) i*:Hn(A) -> H.(X) is an isomorphism for all n if and only if Hn(X,A) = 0 for 

all n. 
(b) j*:H.(X) -> Hn(X,A) is an isomorphism for all n if and only if Hn(A) = 0 for 

all n. 
(c) H.(X,A) = 0 for n ~ q if and only if i*:Hn(A)-> Hn(X) is an isomorphism for 

n < q and an epimorphism for n = q. 

5.2. Let X y, YET, denote the arcwise connected components of X. Prove that H.(X,A) 
is isomorphic to the direct sum of the groups H n(X y, X y n A) for all YET. Also, 
determine the structure of Ho(X y' X y n A). (Hint: There are two cases to consider.) 

5.3. For any pair (X,A), prove there are natural isomorphisms, as follows: Let 
Z.(X mod A) = {x E Cn(X)18(x) E C.(A)}. Then 

Zn(X,A) ~ ZiX mod A)/C.(A), 

Bn(X,A) ~ [Bn(X) + C.(A)]/C.(A) 

~ Bn(X)/[Bn(X) n Cn(A)J, 

HiX,A) ~ Zn(X mod A)/[BiX) + Cn(A)J. 

[Note: The notation Bn(X) + Cn(A) denotes the least subgroup of CiX) which 
contains both Bn(X) and CiA); it need not be isomorphic to their direct sum.] 

5.4. Give a discussion of the exact sequence of a pair (X,A) in case the subspace A 
is empty. 

5.5. Let (X,A) be a pair with A nonempty, and let us agree to consider the reduced 
homology groups ii o(A) and ii o(X) as subgroups of H o(A) and H o(X) respectively 
(cf. Proposition 2.1). Show that the boundary operator 8*:H l(X,A) -> Ho(A) sends 
HI (X,A) into the subgroup ii o(A), and that the following sequence is exact: 

... ~ H 1(X,A) ~ Ho(A) ~ Ho(X) ~ Ho(X,A) ~ O. 

(This result may be paraphrased as follows: If A f=. 0, we may replace Ho(A) 
and H o(X) by ii o(A) and ii o(X) in the homology sequence of (X, A), and the resulting 
sequence will still be exact.) 
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5.6. Let X be a totally disconnected topological space, and let A be an arbitrary subset 
of X. Determine the various groups and homomorphisms in the homology sequence 
of (X,A). 

§6. The Main Properties of Relative 
Homology Groups 

In order to determine the structure of the relative homology groups of a 
pair, we need to know the general properties of these newly defined homology 
groups. First we will consider some properties that are strictly analogous 
to those discussed in §§3 and 4 for "absolute" homology groups. 

Let (X,A) and (Y,B) be pairs consisting of a topological space and a 
subspace. We will say that a continuous function f mapping X into Y is 
a map of the pair (X,A) into the pair (Y,B) iff(A) c B; we will use the notation 
f:(X,A) --+ (Y,B) to indicate that f is such a map. 

Our first observation is that any map of pairs f:(X,A) --+ (Y,B) induces a 
homomorphismf*:Hn(X,A) --+ Hn(Y,B) of the corresponding relative homology 
groups. This induced homomorphism is defined as follows. 

The continuous map f induces a homomorphism f# :Cn(X) --+ Cn(Y) for 
all n, as described in §3. Since f(A) c B, it follows that f# sends the subgroup 
Cn(A) into the subgroup Cn(B), and hence there is induced a homomorphism 
of quotient groups CiX,A) --+ CiY,B) which we will also denote by f#. 
These induced homomorphisms commute with the boundary operators, in 
the sense that the following diagram is commutative for each n: 

f. 
Cn(X,A) --~, Cn(Y,B) 

10 10 

f. 
Cn _ 1(X,A) -------+ Cn _ 1(Y,B). 

It now follows exactly as in §3 that f# induces a homomorphism f*: 
HiX,A) --+ HiY,B) of the corresponding homology groups for all n. 

The reader should formulate and verify the analogs for maps of pairs 
of the properties described in (3.4) and (3.5) for maps of spaces. 

Note that the homomorphism j*:H(X) --+ Hn(X,A) which is part of the 
homology sequence of the pair (X,A) (as explained in the preceding section) 
is actually a homomorphism of the kind we have just described. For, we 
can consider that the identity map of X into itself defines a map j: (X,0) --+ 

(X,A) of pairs, and then it is easily checked that the homomorphism 
j*:HiX) --+ Hn(X,A) defined in the preceding section is the homomorphism 
induced by j. 

Next, we will consider the homotopy relation for maps of pairs. The 
appropriate generalization of Definition 4.1 is the following: Two maps 
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f, g:(X,A) --+ (Y,B) are homotopic (as maps of pairs) if there exists a con
tinuous map F:(I x X,I x A) --+ (Y,B) such that F(O,x) = f(x) and F(1,x) = 
g(x) for any x E X. The point is that we are requiring that F(I x A) c B 
in addition to the conditions of Definition 4.1. This additional condition 
enables one to prove the following result: 

Theorem 6.1. Letf, g:(X,A) --+ (Y,B)be maps of pairs. Iff andg are homotopic 
(as maps of pairs), then the induced homomorphisms f* and g* of Hn(X,A) 
into H n( Y,B) are the same. 

The proof proceeds along the same lines as that of Theorem 4.1. Because 
of the stronger hypothesis on the homotopy F, it follows that the homo
morphisms ({In constructed in the proof of 4.1 satisfy the following condition: 

Hence ({In induces a homomorphism of quotient groups 

((In:Cn(X,A) --+ Cn+ 1(Y,B). 

The details are left to the reader. 

EXERCISE 

6.1. Formulate the appropriate definition of two pairs, (X,A) and (Y,B), being of the 
same homotopy type, and prove an analog of Theorem 4.2 for such pairs. Similarly, 
generalize the concepts of retract and deformation retract from spaces to pairs 
of spaces, and prove the analogs of the properties stated in §§3 and 4 for these 
concepts. 

Next, we will consider the effect of a map f:(X,A) --+ (Y,B) on the exact 
homology sequences of the pairs (X,A) and (Y,B). We can conveniently 
arrange the two exact sequences and the homomorphisms induced by f in 
a ladderlike diagram, as follows: 

... -----> H.(A) ~ H.(X) ~ 
iJ 

H.(X,A) ----"--+ H._I(A) -----> ... 

1 1 1 1 (6.1) 

... -----> H.(B) ~ H.(¥) 
j~ 

-----> H.(Y,B) ~ H._I(B) -----> ... 

We assert that each square of this diagram is commutative. For the left-hand 
square and the middle square, this assertion is a consequence of Property 
(3.5) and its analog for pairs. For the right-hand square, which involves 8 * 
and 8' *, the asertion of commutativity is the statement of a new property of 
the homology of pairs. To prove it, one must go back to the basic definitions 
of the concepts involved. Since the proof is absolutely straightforward, the 
details are best left to the reader. 
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The commutativity of Diagram (6.1) helps to give us new insight into the 
significance of the relative homology groups. From a strictly algebraic point 
of view, there are usually many different ways that we could define groups 
HiX,A) for each integer n in such a way that we would obtain an exact 
sequence involving the homomorphism i*:HiA) --+ Hn(X) at every third 
step. The fact that Diagram (6.1) is commutative for any map f of pairs means 
that we have chosen a natural way to define the groups Hn(X,A) and the 
exact homology sequence of a pair. 

EXERCISE 

6.2. Let A be an infinite cyclic group and let B be a cyclic group of order n, n > l. 
How many solutions are there to the following algebraic problem (up to 
isomorphism): Determine an abelian group G and homomorphisms cp:A ..... G and 
1jJ: G ..... B such that the following sequence is exact: 

o ..... A -!. G !. B ..... O. 

We now come to what is perhaps the most important and at the same time 
the most subtle property of the relative homology groups, called the excision 
property. There is no analogue of this property for absolute homology 
groups. It will give us some indication as to what the relative homology 
groups depend on. Ideally, we would like to be able to say that HiX,A) 
depends only on X - A, the complement of A in X. While this statement is 
true under certain rather restrictive hypotheses, in general it is false. Another 
rough way of describing the situation is to say that under certain hypotheses, 
Hn(X,A) is isomorphic to Hn(X/A) for n > 0, and Ho(X,A) :::::; Ho(X/A), where 
X/A denotes the quotient space obtained from X by shrinking the subset 
A to a point. In any case, the true statement is somewhat weaker. 

Theorem 6.2. Let (X,A) be a pair, and let W be a subset of A such that W is 
contained in the interior of A. Then the inclusion map (X - W, A - W) --+ 

(X,A) induces an isomorphism of relative homology groups: 

HiX - W, A - W) :::::; HiX,A), n = 0,1,2, .... 

The statement of this theorem can be paraphrased as follows: Under the 
given hypotheses, we can excise the set W without affecting the relative 
homology groups. 

The proof of this theorem depends on the fact that in the definition of 
homology groups we can restrict our consideration to singular cubes which 
are arbitrarily small, and this will not change anything. For example, if 
X is a metric space, and e is a small positive number, we can insist that only 
singular cubes of diameter less than e be used in the definition of HiX,A) 
if we wish. If X is not a metric space, we can prescribe an "order of smallness" 
by choosing an open covering of X, and then using only singular cubes 
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which are small enough to be contained in a single set of the given open 
covering. For technical reasons, it is convenient to allow a slightly more 
general type of covering of X in our definition. 

Definition 6.1. Let OU = {U A I A. E A} be a family of subsets of the topological 
space X such that the interiors of the set U A cover X (we may think of such 
a family as a generalization of the notion of an open covering of X). A 
singular n-cube T:I" -+ X is said to be small of order OU if there exists an 
index A E A such that T(r) c Uk 

For example, if X is a metric space and e is small positive number, we 
could choose OU to be the covering of X by all spheres of radius e. 

We can now go through our preceding definitions and systematically 
modify them by allowing only singular cubes which are small of order OU. 
This procedure works, because if T:I" -+ X is a singular n-cube which is 
small of order OU, then an(T) is a linear combination of singular (n - 1 )-cubes, 
all of which are also small of order ou. 

Notation. Qn(X, OU) denotes the subgroup of Qn(X) generated by the singular 
n-cubes which are small of order OU, Dn(X,OU) = QiX,OU) (l Dn(X), and 
Cn(X,OU) = Qn(X,OU)/Dn(X,OU). Similarly, for any subspace A of X, Qn(A,OU) = 

QiA) (l QiX,OU), Dn(A,OU) = Dn(A) (l QiA,OU), and Cn(A,OU) = Qn(A,OU)/ 
Dn(A,OU). Finally, for the relative chain groups we let C.(X,A,OU) = CiX,OU)/ 
Cn(A,OU). 

Note that an maps QiX,OU) into Qn-l(X,OU), and hence induces homo
morphisms 

and 

Cn(X,OU) -+ Cn- 1(X,OU), 

C.(A,OU) -+ Cn- 1(A,OU), 

Cn(X,A,OU) -+ Cn_1(X,A,OU), 

all of which we will continue to denote by the same symbol, an. Thus we can 
define exactly as before 

ZiX,A,OU) = {u E CiX,A,OU) I aiu) = O}, 
BiX,A,OU) = an+ 1(Cn+ 1(X,A,OU)). 

Then since Bn(X,A,OU) c ZiX,A,OU), we can define the homology group 

HiX,A,OU) = Zn(X,A,OU)/BiX,A,OU). 

Notice what happens for n = 0: Qo(X,OU) = Qo(X), and hence it follows that 

Co(X,A,OU) = Co(X,A), 

Zo(X,A,olt) = Co(X,A), 

Ho(X,A,OU) = Co(X,A)/Bo(X,A,Olt). 
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Next, note that the inclusion Qn(X,Olt) c QiX) induces homomorphisms 

(actually, an is a monomorphism, although this fact seems to be of no great 
importance). Obviously, the homomorphism a commutes with the boundary 
operator a, i.e., the following diagram is commutative: 

(} 
C.(X,A,olt) ------+ c._ 1(X,A,'ft) 

C.(X,A) --.... 1 c._ 1(X,A). 

Hence a maps ZiX,A,Olt) into Zn(X,A) and Bn(X,A,Olt) into Bn(X,A), and thus 
induces a homomorphism 

for all n. 

Theorem 6.3. Assume that 011 satisfies the above hypotheses. Then the induced 
homomorphisms a*:Hn(X,A,Olt) --+ Hn(X,A) are isomorphisms for all n. 

This theorem is the precise formulation of the assertion made earlier that 
we can restrict our consideration to singular cubes which are small of order 
011 in defining HiX,A). The proof, which is rather long, is given in the next 
section. 

We will now give the proof of Theorem 6.2, the excision property, using 
Theorem 6.3. 

Let (X,A) and W satisfy the conditions of Theorem 6.2. The hypotheses 
imply that 

Interior (A) u Interior (X - W) = X, 

hence 011 = {A, X - W) is a generalized open covering of the kind that 
occurs in Theorem 6.3. Note that for each n, 

by the definition of Cn(X,Olt) (N.B., this is not a direct sum). 
To prove the excision property, consider the following commutative 

diagram for each integer n: 

C.(X - W, A - W) 
1 

------+ 

(6.2) 

C.(X,A,'ft). 
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Each of the homomorphisms indicated in this diagram is induced by an 
inclusion relation. On passing to homology groups, we obtain the following 
commutative diagram: 

3 
H.(X - W, A - W) -- H.(X,A) 

(6.3) 

We wish to prove that the homomorphism indicated by arrow 3 is an 
isomorphism. Since 0'* is an isomorphism (by Theorem 6.3), it suffices to 
prove that arrow 4 is an isomorphism. Now the homomorphism designated 
by arrow 4 is induced by homomorphism designated by arrow 2; therefore 
let us consider this homomorphism in more detail. By definition, 

Cn(X - W, A - W) = Cn(X - W)/Cn(A - W) 

= CiX - W)/[ Cn(X - W) n Cn(A)] 

since CiA - W) = CiX - W) n Cn(A). Similarly, 

Cn(X,A,olt) = Cn(X,Olt)/CiA,Olt) 

= [CiX - W) + Cn(A)]/Cn(A). 

Thus the homomorphism denoted by arrow 2 consists of homomorphisms 

(6.4) 

for n = 0, 1, 2, ... , which are induced by the obvious inclusion relations. 
But according to the first isomorphism theorem a homomorphism such as 
that in (6.4) is an isomorphism. Hence arrow 2 in (6.2) designates an iso
morphism, and it follows that the induced homomorphism, arrow 4 in (6.3), 
is also an isomorphism. This completes the proof of Theorem 6.2. 

We will give examples of the use of the excision property and other 
properties of relative homology groups in the next chapter. 

§7. The Subdivision of Singular Cubes and 
the Proof of Theorem 6.3 

In this section, we introduce the technique of subdivision of singular cubes 
and use it to prove Theorem 6.3. Although this technique is based on a rather 
simple and natural geometric idea, the actual proof is rather long and in
volved. For that reason it may be advisable to skip this section on a first 
reading and return to it later. 
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Actually, we will first prove Theorem 6.3 for the easier case of absolute 
homology groups (the case where A = 0 in the statement of the theorem). 
The general case will then follow by an easy argument using a purely algebraic 
proposition called the five-lemma. 

The first step in the proof of Theorem 6.3 is to introduce the so-called 
subdivision operator, and prove its properties. This will involve some lengthy 
formulas, tedious verifications, etc. The reader must not let those obscure 
the essentially simple geometric ideas behind the proof. 

First, we will consider the process of subdividing a (singular) cube. Prob
ably the simplest way to subdivide the cube r is to divide it into 2n cubes 
each of side!, by means of the hyperplanes Xi = !, i = 1, 2, ... , n. This leads 
to the following definitions. Let ~ n denote the set of all vertices of the cube 
r; an n-tuple of real numbers e = (ebe2, ... ,en) belong to ~ n if and only if 
ei = 0 or 1 for all i. For any singular n-cube T: r -+ X and any e E ~ no define 

by 
(FeT)(X) = T(!(x + e)) 

for all X = (Xl> ... ,xn) E r. Then define Sdn:Qn(X) -+ Qn(X) by 

SdiT) = L Fe(T)· 
eeEn 

All this is for n ~ 1; if T is a singular O-cube, we define 

We will now list some properties of the homomorphism Sdn. 

(7.1) 

(7.2) 

(a) If T is a degenerate cube, then so is Fe(T). Hence Sdn maps DiX) 
into Dn(X) and induces a homomorphism 

(b) The homomorphisms Sdn commute with the boundary operator, i.e., 

an 0 Sdn = Sdn- 1 0 an. 
In order to prove this, one verifies the following three identities regarding 
the operators Fe. 

(b.l) Assume e and e' E ~n are such that ei = e; for i =1= j, ej = 1, ej = O. 
Then 

AjFe = BjFe,· 

(b.2) Assume e E ~no ej = 0, and e' E ~n-l is defined by 

Then 
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(b.3) Assume e E Iffn' ej = 1, and e' E Iffn- 1 is defined by 

Then 

These three identities are exactly what one needs to verify that 

On Sdn(T) = Sdn- 1on(T). 

Naturally, it follows that the induced homomorphism sdn:CiX) -+ CiX) 
also commutes with the boundary operator. 

(c) If U E Co(X) = Qo(X), then e(Sdo(u)) = e(u), This is a triviality, since 
Sdo = sdo is the identity map. We can summarize this property by stating 
that the operator Sdo is augmentation preserving. 

(d) For any n-chain u E CiX), there exists an integer q ~ 0 such that 

where sd~ denotes the homomorphism obtained by q-fold iteration of sdn. 
In order to prove this assertion, it suffices to prove that for each singular 
n-cube T:1" -+ X, there exists an integer q(T) such that Sd~(T)(T) is a sum 
of cubes which are small of order 11/1, i.e., such that Sdq(T)(T) E Qn(X,I1/I). 
Then if u is a linear combination of the singular n-cubes T b T 2, ... , T k' it 
suffices to choose q to be the largest of the integers q(T 1), q(T 2), ... , q(Tk). 

To prove that such an integer q(T) exists, consider the open covering of 
the compact metric space 1" by the inverse images under T of the interiors 
of the sets of the covering 11/1; let e denote the Lebesgue number1 of this 
covering. Then if we choose q(T), so that 

rq(T) < e/J1i, 

the required condition will be satisfied (the JI1 occurs in the denominator 
because that is the ratio ofthe length of the diagonal to the length of the side 
for an n-dimensional cube). 

Next, we are going to define homomorphisms 

fPn:Cn(X) -+ Cn+1(X), 

such that for any u E CiX), 

n = 0,1, ... 

sdn(u) - u = 0n+ 1 fPn(U) + fPn-1 On(U). (7.3) 

In the terminology of §4, the fPn'S are a chain homotopy between the sub
division operator, sd, and the identity map. In order to define fPn' we first 

1 We say e is a Lebesgue number of a covering of a metric space S if the following condition 
holds: any subset of S of diameter < e is contained in some set of the covering. It is a theorem 
that any open covering of a compact metric space has a Lebesgue number. The reader may 
either prove this as an exercise or look up a proof in a general topology book. 
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define two auxiliary functions 1'/0, 1'/1 :]2 --+ ] 1 by the formulas 

if Xl + X2 ~ 1, 

if Xl + X2 ~ 1. 

To gain a better understanding of 1'/0 and 1'/10 note that 1'/0 maps the square 
]2 onto the interval EO,!] and that the curves 

are straight lines through the point (0,2). Also, 1'/1 maps the square ]2 onto the 
interval [!,1], and the curves 

1'/1(X1,X2) = constant 

are straight lines through the point (-1,2), provided Xl + X2 ~ 1. 
Now for any e E en and any singular n-cube T:r --+ X, n > 0, define a 

singular (n + I)-cube GiT):I"+ 1 --+ X by the formula (GeT)(Xl,' .. ,Xn+ 1) = 
T(1'/e,(x 1,Xn+ 1), 1'/e2(X2,Xn+ 1), ... , 1'/eJXmXn+ d)· Define 

4>n:Qn(X) --+ Qn+1(X), n>O 
by 

4>n(T) = (-It+ 1 I Ge(T). 

We will complete the definition by defining 4>o:Qo(X) --+ Ql(X) to be the 
zero map. The motivation for the definition of 4>n is indicated in Figure 1 for 
the case n = 1. We will now prove some properties of the homomorphisms 
4>n· 

X2 

~~--~----~--~~----~-+XI 

FoT FIT 

Figure I 
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(e) If T is a degenerate cube, then so is GiT). Hence I/Jn maps Dn(X) into 
Dn+ l(X) and induces the desired homomorphism 

n = 0,1, .... 

(f) For any singular n-cube T:I" ~ X, we have 

8n+1I/JiT) = SdiT) - T -l/Jn- 18n(T) + degenerate cubes. (7.4) 

Equation (7.3) follows from this. Of course Formula (7.4) is a triviality 
if n = 0. Therefore we will concentrate on the case n > 0. To compute 
8n + 1I/Jn(T), one needs the following identities: 

(f.1) An+1Ge(T) = FiT) 
(f.2) Bn+ 1 Ge(T) = T if e = (0,0, ... ,0) and Bn+ 1 Ge(T) is a degenerate cube 

otherwise. 
(f.3) Assume e, e' E iff n' j ~ n, ej = 1, ej = 0, and ei = e; for all i =F j. Then 

for any n-cube T. 
(f.4) Assume e E iff n' n ~ 2, and e' E iff n _ 1 is defined by 

j ~ n, 

If ej = 0, then 

while if ej = 1, then 

In case n = 1, Al Go T and Bl G1 T are degenerate. 
By using Identities (f.1)-(f.4), it is a straightforward matter to verify 

Formula (7.4) and hence (7.3). 
(g) Ifu E Cn(X,OU), then <Pn(u) E Cn+ l(X,OU) also. To prove this, observe that 

if a cube T is small of order Olt, then so is Ge(T). Hence I/Jn(T) E Qn+ l(X,Olt), 
and <Pn has the required property. 

We have now defined the operators sdn and <Pn' and proved their principal 
properties. For the sake of simplicity, we will write sd rather than sdn and <P 
rather than <Pn from now on. 

We also need the following formulas. For any integer q > 0, define 

n = 0,1,2, ... 

by q-l 
t/I i u) = L sdi(<p(u)). 

i=O 

The following equation now readily follows from Equation (7.3): 

sdq(u) - u = 8t/1iu) + t/lq8(u). 

Note that Statement (g) above leads to the following: 
(g') If u E Cn(X,Olt), then t/lq(u) E Cn+ l(X,Olt) for any integer q > 0. 

(7.5) 
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With these preliminaries out of the way, we can now prove directly that 

(J*:Hn(X,oIt) --+ Hn(X) 
is an isomorphism. 

First, we prove that (J* is an epimorphism. Let x E Hn(X); we will prove 
there exists an element Y E Hn(X/Ylt) such that (J*(Y) = x. Let u E CiX) be a 
representative cycle for x. By Statement (d) above, there exists an integer q 
such that 

sdq(u) E CiX,olt). 

Since u is a cycle and sd commutes with the boundary operator, it follows 
that sdq(u) is also a cycle. If we apply Equation (7.5), we see that u and sdq(u) 
belong to the same homology class. Let Y be the homology class of sdq(u) 
in Hn(X,oIt). Then (J*(Y) = x, as desired. 

Next, we will prove that (J* is a monomorphism. Assume x E Hn(X,oIt) 
and (J *(x) = O. We will show that x = O. Let v E Cn(X,olt) be a representative 
cycle for x. Since (J*(x) = 0, there exists an element u E Cn+ 1(X) such that 

J(u) = v. 

Apply Statement (d) above to obtain an integer q such that 

sdq(u) E Cn + l(X,c~). 

Now apply Equation (7.5), 

sdq(u) - u = JtjJq(u) + tjJiv). 

Apply the boundary operator to both sides to obtain 

or 
v = J(sdq u - tjJq(v)). 

Since v E Cn(X,olt), tjJ q(v) E Cn+ 1 (X,Olf) by (g') above. Thus 

sdq u - tjJq(v) E Cn + 1(X,0lf) 

and hence v is the boundary of a chain which is small of order Olf. Therefore 
x = O. 

This completes the proof of Theorem 6.3 in the case A = 0. 
Next, we will prove Theorem 6.3 in the general case, where A is an arbitrary 

subset of X. Observe that for each integer n we have the following commuta
tive diagram: 

0--+ C.(A,~) --+ C.(X,~) --+ C.(X,A,~) --+0 

lu" lu, lu 
0 ~ C.(A) 

i. 
, c.(X) 

J. 
, C.(X,A) ----+ O. 

Both of the rows in this diagram are exact sequences of chain groups. On 
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passing to the corresponding homology groups, we obtain the following 
ladder-like diagram involving two long exact sequences: 

----> Hn+ I(X,A,Olt) ----> Hn(A,Olt) ----> H.(X,Olt) ----> Hn(X,A,Olt) ----> ... 

1 G. lG~ lG~ lG. 
-----+ Hn+ ,(X,A) 

a. 
) Hn(A) 

i. 
I H.(X) 

j. 
) Hn(X,A) -----+ .... 

Each square in this diagram is commutative; the proof of this fact is exactly 
the same as the proof of the commutativity of Diagram (6.1). By what we have 
already proved, the homomorphisms (T~ and (T~ are isomorphisms. It now 
follows from the so-called five-lemma that the homomorphism (T * is also an 
isomorphism, as was to be proved. 

It remains to state and prove the five-lemma: 

Lemma 7.1. Consider the following diagram of abelian groups and homo
morphisms. 

BI ----;;-+ B2 ~ B3 ----;;-+ B4 ~ B5 

Assume that each row is exact, that each square is commutative, that fl is an 
epimorphism, f2 and f4 are isomorphisms, and fs is a monomorphism. Then f3 is 
also an isomorphism. 

PROOF: It suffices to prove the following two assertions: 
(a) For any x E A 3 , if f3(X) = 0 then x = O. 
(b) Given any x E B 3 , there exists an element y E A3 such that f3(Y) = x. 
The proof of each of these two assertions is carried out by a technique 

called "diagram chasing." For the reader who has seen this technique used 
before, the proof of this lemma will be very easy. For those who are unfamiliar 
with the technique, the proof of this lemma is an ideal exercise, and such 
readers are urged to work out the details of the proof. The proof of a proposi
tion such as the five-lemma by diagram chasing requires practically no 
cleverness or ingenuity. At each stage of the proof there is only one possible 
"move"; one does not have to make any choices. 



CHAPTER III 

Determination of the Homology Groups 
of Certain Spaces: Applications and 
Further Properties of Homology Theory 

§l. Introduction 

In this chapter, we will actually determine the homology groups of various 
spaces: the n-dimensional sphere, finite graphs, and compact 2-dimensional 
manifolds. We also use homology theory to prove some classical theorems 
of topology, most of which are due to L. E. J. Brouwer. In addition, we prove 
some more basic properties of homology groups. 

§2. Homology Groups of Cells and 
Spheres-Applications 

We will now use the exact homology sequence and the excision property to 
determine the homology groups of a noncontractible space, namely, the 
n-sphere 

sn = {x E Rn+ll1xl = 1}. 

This example is not only interesting in its own right; it is also basic to 
much that follows. 

Theorem 2.1. For any integer n ~ 0, 

- {Z ifi=n, 
H;(sn) = {O} if i #- n. 

Hence 

38 
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It is clear that the second statement is equivalent to the first statement 
for i = 0, in view of the relation between reduced and nonreduced homology 
groups. 

PROOF OF THEOREM 2.1. The proof is by induction on n. The theorem is true 
for n = 0, because SO is a space consisting of exactly two points. In order to 
make the inductive step, we will identify sn with the "equator" of sn+ 1, i.e., 

sn = {x = (Xl> ... ,Xn +2) E sn+llxn+2 = o}. 

We also need to consider the following two subsets of sn+ 1: 

E~+ 1 = {(Xl' ... ,Xn+2) E sn+ 11 Xn+2 ~ O}, 
E"...+l = {(Xl> ... ,Xn+2)E sn+lIXn+2 ~ O}. 

These may be referred to as the upper and lower hemispheres of sn+ 1. These 
hemispheres are obviously homeomorphic to the set 

En+ 1 = {(Xl> ... ,Xn+2) E Rn+211XI ~ 1 and Xn+2 = O}, 

hence they are contractible. The reader should draw a picture illustrating 
these sets for the case n = 1. Now consider the following diagram of homol
ogy groups: 

Hi(sn) t. H i+1(E"...+1,sn) ~ Hi+l(sn+1,E~+l) t H i+ l(sn+ 1). 

In this diagram, j:sn+1 ..... (sn+1,E~+1) and k:(En+l,Sn) ..... (sn+1,E~+1) de
note inclusion maps. Consideration of the homology sequence of the pair 
(E"...+ 1,sn) shows that 0* is an isomorphism, because E"...+ 1 is contractible; 
similarly, it follows from the exactness of the homology sequence of the pair 
(sn+ l,E"+.+ 1) and the contractibility of E"+.+1 that j* is an isomorphism. To 
complete the proof, it suffices to prove that k* is an isomorphism. Now the 
pair (E"...+ 1,sn) is obtained from the pair (sn+ 1,E~+ 1) by excising the set 
E~+ 1 - sn. However, we can not invoke the excision property (Theorem 
11.6.2) because the closure of E~+ 1 - sn is not contained in the interior of 
E~+ 1. There is a way around this difficulty, however. Let 

W = {(Xl> ... ,Xn +2) E sn+1Ixn+2 ~ !}. 

Now consider the following diagram: 

/ 
Here the symbols e and h denote inclusion maps. This diagram is obviously 
commutative. Now we can invoke the excision property to conclude that e* 
is an isomorphism. Moreover, h* is also an isomorphism, because the map h 
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is a homotopy equivalence of pairs; there is an obvious deformation retrac
tion of the pair (sn + 1 - W, E~+ 1 - W) onto the pair (E~.+ 1,sn). It follows 
from the commutativity of the diagram that k* is also an isomorphism, as 
desired. Q.E.D. 

This proof illustrates the strategy that frequently has to be employed in 
applying the excision property. The situation is reminiscent of that often 
encountered in trying to apply the Seifert-Van Kampen theorem to deter
mine the structure of the fundamental group of a space. 

In §5 we will indicate an alternative proof of this theorem using the 
Mayer-Vietoris sequence. 

We will now st~te some applications and corollaries of this result. 

p, ',osik ... l 2.2. The sphere sn is not contractible to a point. 

For the statement of the next two propositions, we will use the notation 
En to denote the set {x E Rn Ilxl .::; I}, called the unit disc or ball in Rn (the 
proofs are left to the reader). 

Proposition 2.3. sn is not a retract of En+ 1. 

Proposition 2.4. The relative homology groups of the pair (En,sn -1) are as 
follows (for n ~ 1) 

H.(En sn-1) = {O i # n, 
" Z i= n. 

Proposition 2.5 (Brouwer fixed point theorem). Any continuous map f: En --+ En 
has at least one fixed point, i.e., a point x such that f(x) = x. 

PROOF: Assume to the contrary that f(x) # x for all x E En. Then the two 
distinct points x and f(x) determine a unique straight line which intersects 
sn-1 in two points. Let v(x) denote that point of the intersection which is 
such that x is between v(x) and f(x), or x is equal to v(x). Then v is a map 
of En onto sn - 1. It is a nice technical exercise for the student to prove that v 
is continuous. It is obvious from the definition that v is a retraction. But this 
contradicts Proposition 8.3. Q.E.D. 

For a discussion of the significance of the Brouwer fixed point theorem, 
see Algebraic Topology: An Introduction, Chapter 2, §6. 

We will use the knowledge we have gained about the homology groups 
of sn to study continuous maps of sn into itself. Let f:sn --+ sn be such a 
continuous map; consider the induced homomorphism 

f*:HiSn) --+ Hn(sn). 
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Since H n(sn) is an infinite cyclic group, there exists a unique integer d such 
that f*(u) = du for any u E Hn(sn). This integer d is called the degree of f
It has the following basic properties: 

(a) It is a homotopy invariant, i.e., if fo and f1 are homotopic maps of 
sn into itself, then fo and f1 have the same degree. This fact is a direct con
sequence of the homotopy property of the induced homomorphism. It is 
proved in books on homotopy theory that the converse statement is also 
true, i.e., if fo and f1 have the same degree, then they are homotopic. 

(b) The degree of the composition of two maps is the product of the 
degrees. To be precise, if f and g are continuous maps sn --+ sn, then 
degree (gf) = (degree g)(degree f)· 

Given any map f:sn --+ sn, we will define a new map L:f:Sn+1 --+ sn+l, 
called the suspension of f by the following formula: 

{
(O, ... ,O,Xn +2) iflxn+21 = 1, 

(L:f)(X1,X2,···,Xn+2) = (,.(X1 Xn+1) ) 'fl 1 1 o , ... , ,Xn + 2 1 X n+ 2 < . 
t t 

where t = (1 - X;+2)1/2. The geometric idea behind this formula may be 
described as follows: L:f maps the north pole of sn + 1 to the north pole, 
the south pole of sn+ 1 to the south pole, and the equator into the equator 
according to the given map f. The meridian of sn + 1 through the point x on 
the equator is mapped homeomorphically onto the meridian through the 
point f(x). 

(c) The degree of the suspension, L:f, is the same as that of the original 
map f. The proof of this property is left to the reader; it depends on the 
diagram used to prove Theorem 2.1 and the following two inclusions: 

In order to make use of this notion of degree, it is necessary to know the 
degree of certain explicit maps. The following are some propositions along 
this line. The proofs are left to the reader as exercises for the most part. 

(d) The degree of the identity map is + 1. 
(e) The degree of a constant map is 0. 
(f) Any map f: SO --+ SO has degree ± 1 or 0. 
(g) Let v: sn --+ sn denote the map which is reflection in a hyperplane 

through the origin of Rn + 1; then v has degree -1. To prove this, note first 
of all that we may choose our coordinate system so that the hyperplane in 
question has the equation x n + 1 = 0. Then it is an easy task to prove this 
formula by induction on n, starting with the case n = 0. 

(h) Let f:sn --+ sn denote the antipodal map, defined by f(x) = -x. 
Then the degree of f is (_l)n + 1. (Hint.- Represent f as a composition of 
reflections. ) 
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(i) Letf:Sn -+ sn be a map which is fixed point free, i.e.,f(x) #- x for all x. 
Then f is homotopic to the antipodal map, and hence has degree ( - 1 t + 1. 

We will now use these facts to discuss the existence of continuous tangent 
vector fields on sn. By a tangent vector field on sn we mean a function v 
which assigns to each point x E sn a vector v(x) which is tangent to sn at the 
point x. The tangency condition means that the vector v(x) must be per
pendicular to the unit vector x for all x E sn. The vector field v is said to be 
continuous (or differentiable) if the components of v are continuous (or 
differentiable) real-valued functions. When we speak of a nonzero vector 
field v, we mean that v(x) #- 0 for all x E sn. The main theorem about such 
vector fields is the following: 

Theorem 2.6. There exists a continuous nonzero tangent vector field on sn 
if and only if n is odd. 

It is easy to give an example of a continuous nonzero tangent vector field 
on sn for n odd: One defines 

To prove that such a vector field does not exist on sn for n even, one proves 
the following statement: If there exists a continuous nonzero tangent vector 
field v on sn, then the identity map of sn onto itself is homotopic to a fixed
point-free map f: sn -+ sn. In fact, one may define f by the formula 

and the homotopy by 

f(x) = x + vex) 
Ix + v(x)1 

x + tv(x) 
!t(x) = Ix + tv(x)I' 

Theorem 2.6 now follows from this statement and Property (i) above. 
Later on we will prove that there exist maps sn -+ sn of every possible 

degree provided n ~ l. 
The discussion of the degree of a map that we have just given applies 

only to maps of sn into itself. These considerations may be extended to a 
slightly more general situation as follows. Let X and Y be topological spaces 
which are homeomorphic to sn (n ~ 1) or more generally, have the same 
homotopy type as sn. Then Hn(X) and HiY) are infinite cyclic groups, hence 
there are two different choices possible for a generator of each of these 
groups. If definite choices of a generator have been made in each case, we 
will say that the spaces X and Y have been oriented. Assume that the chosen 
generators are denoted by x E H iX) and y E Hi Y) respectively. Let f: X -+ Y 
be a continuous map; then there exists a unique integer d such that f*(x) = 
dy. This integer d is called the degree of f. Note that changing the orientation 
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of either X or Y changes the sign of the degree. It is a homotopy invariant 
of j, and has properties analogous to those discussed above. 

EXAMPLE 2.1. Let X = Sl and Y = R2 - {a}. We leave it to the reader to 
prove that Sl is a deformation retract of R2 - {a}. A continuous map 
Sl -> R2 - {a} may be interpreted as a closed, continuous curve in the 
plane R2 which does not pass through the origin. The degree of such a map 
is essentially the same thing as the winding number of the closed path around 
the origin, as described in books on analysis. 

EXERCISES 

2.1. Prove that S"-l is a deformation retract of R" - {OJ. 

2.2. Prove that the complement of a point in S" is homeomorphic to R" (stereographic 
projection). 

2.3. Prove by two different methods that Rm and R" are not homeomorphic if m i= n: 
(a) Prove that their Alexandroff I-point compactifications are not homeomorphic, 
and (b) Prove that the complement of a point in Rm is not homeomorphic to the 
complement of a point in Rn. 

2.4. Prove that any homeomorphism h of En onto itself maps sn-l onto sn-l. (Hint: 
Consider the complement of a point.) 

2.5. Let f:S" --> S" be a continuous map whose degree is nonzero. Prove that f maps 
sn onto sn. 

2.6. If X is a Hausdorff space and x E X, then H.(X, X - {x}) is called the n-dimensional 
local homology group of X at x. Justify this name by showing that it only depends 
on arbitrarily small neighborhoods of x in X. 

2.7. Determine the local homology groups at various points of the closed n-dimensional 
ball, En. Use this computation to give another solution of Exercise 2.4. 

2.8. Use local homology groups to prove that an n-dimensional and an m-dimensional 
manifold are not homeomorphic if m i= n. 

2.9. Prove that a Mobius strip is not homeomorphic to the annulus {x E R211 ::::;; Ixl ::::;; 2}, 
although they have the same homotopy type and both are compact. (Suggestion: 
As a first step, determine local homology groups at various points of both spaces.) 

§3. Homology of Finite Graphs 

In this section we will use the properties of relative homology groups to 
develop a systematic procedure for computing the homology groups of a 
rather simple type of topological space called a graph. The results obtained 
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are not very profound; however, they are illustrative of the techniques we 
will use later to determine the homology groups of more general spaces. 

Definition 3.1. A finite, regular graph (or just a graph for short) is a pair 
consisting of a Hausdorff space X and a finite subspace XO (points of XO 
are called vertices) such that the following conditions hold: 

(a) X - XO is the disjoint union of a finite number of open subsets eb 
e2, ... , eb called edges. Each ei is homeomorphic to an open interval of 
the real line. 

(b) The point set boundary, ei - ei, of the edge ei consists of two distinct 
vertices, and the pair (ei,ei) is homeomorphic to the pair ([0,1J,(0,1)). 

One could also consider infinite graphs, and nonregular graphs, i.e., those 
for which ei - ei may consist of one or two vertices; (cf. Algebraic Topology: 
An Introduction, Chapter VI). However, we will not do this for the present. 

Note that a graph is compact, since it is the union of a finite number of 
compact subsets (the closed edges ei and the vertices). It may be either 
connected or disconnected, and it may have isolated vertices. If a vertex v 
belongs to the closure of an edge e;, it is customary to say that ei and v are 
incident. 

It is easy to give many examples of graphs. It can be shown that every 
graph, as defined here, can be embedded homeomorphically in Euclidean 
3-space, and many can be embedded in the plane. A famous theorem of 
Kuratowski (1920) gives necessary and sufficient conditions for a graph to be 
embedded in the plane. 

If a space X can be given a structure of a graph by specifying a set of 
vertices XO then we can specify additional graph structures on X by sub
dividing, i.e., inserting additional vertices (provided the set of edges is 
nonempty). 

We will now show how to determine the structure of the homology 
groups of a graph X. First, we will determine the relative homology groups 
of the pair (X,XO) and then use the exact homology sequence of (X,XO) to 
achieve our goal. Let el, e2, ... , ek denote the edges of the given graph 
(X,XO). We will consistently use the notation ei = ei - ei to denote the 
boundary of the edge ei' It follows from Proposition 2.4 and the definition 
of a graph that 

H (- .) _ {Z for q = 1, 
e· e· -

q "I 0 for q =1= 1. 
(3.1) 

Theorem 3.1. Let (X,XO) be afinite, regular graph with edges e1, e2," ., ek' 
Then the inclusion map (ei,ei) -. (X,XO) induces a monomorphism Hq(ei,e;) -. 
Hq(X,XO) for i = 1, 2, ... , k and Hq(X,XO) is the direct sum of the image 
subgroups. It follows that H l(X,XO) is a free abelian group of rank k, and 
H q(X,XO) = 0 for q =1= 1. 
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(Note: The rank of a free abelian group is the number of elements in a basis; 
it is proved in books on linear algebra that it is an invariant of the group). 

PROOF: The third sentence of the theorem is a consequence of the two 
preceding sentences, in view of Equation (3.1) above. Therefore we will 
concentrate our attention on the first two sentences of the theorem. 

According to the definition of a graph, the set ei is homeomorphic to the 
unit interval I = [0,1]; choose a definite homeomorphism of ei with I for 
i = 1, 2, ... , k and let ai denote the point which corresponds to ! E I; it is 
the midpoint of the edge ei' Similarly, let di denote the subset of ei which 
corresponds to the closed subinterval [i.-l] , and D = d l U dz U ... U dk, 
A = {a 1 ,az, ... ,ak}' Our proof of the theorem is based on the consideration 
of the following diagram: 

1 2 
Hq{D, D - A) ~ H.(X, X - A) +-----

I5 I 

All homomorphisms in this diagram are induced by inclusion maps of the 
corresponding pairs. It follows that each square of this diagram is commuta
tive. We assert that all four horizontal arrows in this diagram denote iso
morphisms. For arrow 4, this follows from the fact that ei is a deformation 
retract ofei - raJ, together with the five-lemma (Lemma II.7.1). Exactly the 
same kind of argument shows that Arrow 2 is an isomorphism. It follows 
from the excision property that Arrows 1 and 3 are isomorphisms. 

The theorem now follows from the fact that the space D is disconnected 
and its components are d l , dz, ... , db and di - {ai} = di n (D - A) (cf. 
Exercise II.5.2). Q.E.D. 

We will now consider the exact homology sequence of the pair (X,XO). 
The structure of the relative homology groups HiX,XO) is described by 
the theorem just proved. Since XO is a finite space with the discrete topology, 
H iXO) = ° for q #- 0, and H o(XO) is a free abelian group whose rank is equal 
to the number of vertices. From this it follows easily that Hq(X) = ° for q > 1, 
and the only nontrivial portion of the homology sequence of the pair (X,XO) 
is the following: 

° -+ H 1 (X) ~ H 1 (X,XO) ~ H o(XO) ~ H o(X) -+ 0. (3.2) 

We already know that Ho(X) is a free abelian group whose rank is equal to 
the number of arc-components of the topological space X. For a finite, 
regular graph, it is readily proved that the components and arc-components 
are the same. 

Thus we know the structure of all the groups in the homology sequence 
of the pair (X,XO), with the exception of H l(X), To determine the structure 
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of this one remaining group, we need the following two results from linear 
algebra: 

(A) Any subgroup of a free abelian group is also free abelian. 
(B) Let f: A -+ F be an epimorphism of an abelian group A onto the free 

abelian group F. Then the kernel of f is a direct summand of A; the other 
summand is isomorphic to F. 

The proofs of these propositions may be found in textbooks on linear 
algebra. The proof of (B) is especially simple. 

Definition 3.2. The Euler characteristic of a graph is the number of vertices 
minus the number of edges. 

We can now state the main theorem about the homology groups of a 
graph: 

Theorem 3.2. Let (X,XO) be ajinite, regular graph. Then Hq(X) = 0 for q > 1, 
H1(X) is afree abelian group, and 

rank(H o(X)) - rank(H 1 (X)) = Euler characteristic. 

We leave it to the reader to prove this theorem, using the homology 
sequence of the pair (X,XO) and the two results from linear algebra stated 
above. 

This theorem gives a simple method for determining the structure for 
Hl(X). For we can determine the rank of Ho(X) by counting the number 
of components, and we can determine the Euler characteristic by counting 
the number of vertices and edges. For certain purposes it is necessary to go 
more deeply into the structure of H 1 (X), and actually give some sort of 
concrete representation of the elements of this group. This we will now 
proceed to do. 

The exact sequence (3.2) shows that H 1 (X) and H o(X) are the kernel and 
cokernel respectively of the homomorphism o*:H1(X,XO) -+ Ho(XO). Our 
procedure will be to choose convenient bases for the free abelian groups 
H 1 (X,XO) and H o(XO), and then express a * in terms of these bases. The edges 
of the graph X will be denoted by e1, •.• , ek and the vertices by V 1, ••• , V m . 

It is easy to choose a natural basis for the group H o(XO). Since XO is a 
discrete space, H o(XO) is naturally isomorphic to the direct sum of the groups 
HO(Vi) for i = 1,2, ... ,m. The augmentation homomorphism e:Ho(v;) -+ Z 
is an isomorphism; therefore it is natural to choose as a generator of H O(Vi) 
the element ai such that B( ai) = 1. Then {a 1, ... ,am} is a basis for H o(XO). 
To avoid proliferation of notation, it is convenient to use the same symbol 
Vi for the basis element ai E Ho(vJ This abuse of notation will hardly ever 
lead to confusion, and it is sanctioned by many decades of use. Thus we will 
denote our basis of Ho(XO) by {v 1,··· ,vm}. 

Choosing a basis for H 1 (X,XO) is only slightly more complicated. 
According to Theorem 3.1, H 1 (X,XO) decomposes into the direct sum of 

infinite cyclic subgroups, which correspond to the edges el' ... , ek • Thus to 
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choose a basis for H 1 (X,XO) it suffices to choose a generator for the infinite 
cyclic group H 1 (ei,e;) for i = 1, 2, ... , m. It turns out that such a choice is 
purely arbitrary; there is no natural or preferred choice of a generator. In 
order to understand the meaning of such a choice, consider the following 
commutative diagram (cf. Exercise 11.5.5): 

o 

1 

z 

1 
o 

The homomorphism a1 is an isomorphism; thus choosing a generator for 
H 1(ei,ei) is equivalent to choosing a generator for ii o(e;). The set ei consists 
of two vertices; let us denote them by Vo: and vp. Using the convention 
introduced in the preceding paragraph, we may use the same symbols, Vo: 
and vp, to denote a basis for Ho(e;). With this convention, the two possible 
choices of a generator for the infinite cyclic subgroup ii o(ei) are Vo: - vp and 
Dp - Do:' Thus we see that a choice of basis for H 1 (ei,e;) corresponds to an 
ordering of the vertices of the edge ei' For this reason, we will say that we 
orient the edge ei when we make such a choice. To make things precise, we 
lay down the following rule: Orient the edge ei by choosing an ordering of 
its two vertices. If Vp > vo:' then this ordering of vertices corresponds to the 
generator ail(vp - vo:) of the group H 1 (e;,e;). 

We can now give the following recipe for the homomorphism a*: 
H 1(X,XO) -+ Ho(XO): 

(a) A basis for H o(XO) consists of the set of vertices. 
(b) Orient the edges by choosing an order for the vertices of each edge. On 

a diagram or drawing of the given graph, it is convenient to indicate the 
orientation by an arrow on each edge pointing from the first vertex to 
the second. 

(c) A basis for H 1 (X,XO) consists of the set of oriented edges. 
(d) If ei is any edge, with vertices Vo: and vp and orientation determined by 

the relation vp > vo:' then 
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EXAMPLE 3.1. Figure 2 shows a graph with six vertices and nine edges which 
can not be imbedded in the plane. (This graph comes up in the well-known 
problem of the three houses and the three utilities). We have oriented all the 
edges by placing arrows on them which point upwards. According to the 
preceding rules, the homomorphism a* is given by the following formulas: 

a*(e1) = V1 -V4 

a*(e2) = V2 -Vs 

a*(e3) = V3 -V6 

a*(e4) = V2 -V4 
-Vs 

a*(e6) = V1 - Vs 

a*(e7) = V2 -V6 

a*(es) = V3 -V4 

In other words, a * is represented by the following matrix: 

1 0 o -1 0 0 
0 1 0 o -1 0 
0 0 1 0 o -1 

0 1 o -1 0 0 
0 0 1 0 -1 0 
1 0 0 0 -1 0 
0 1 0 o -0 -1 
0 0 1 -1 0 0 
1 0 0 0 0 -1 

There remains the problem of determining the kernel and co kernel of a*. In 
books on linear algebra there is an algorithm described for introducing new 

Figure 2 
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bases in the domain and range of such a homomorphism so that the cor
responding matrix is a diagonal matrix. Then generators of the kernel and 
cokernel can be read off with ease. Unfortunately, this algorithm is rather 
lengthy and tedious. As a practical alternative, one can proceed as follows. 

The Euler characteristic of this graph is 6 - 9 = - 3. Since it is connected, 
H o(X) has rank 1. Hence H 1 (X) has rank 4, by Theorem 3.2. Therefore we 
should be able to find four linearly independent elements in the kernel of 
0*, and then hope to prove that they form a basis for the kernel of 0*. Con
sider the following four elements of H 1 (X,XO): 

and 

Z1 = e1 - e6 + e2 - e4, 

Z2 = e2 - e4 + es - es, 
Z3 = e3 - es + e6 - eg, 

These four elements (which we may as well call cycles) were determined by 
inspection of the above diagram. They correspond in an obvious way to 
certain oriented closed paths in the diagram. It is readily verified that all 
four of these cycles actually belong to the kernel of 0*, and that they are 
linearly independent. Finally, it is a nice exercise in linear algebra to check 
that the set {e1,e2,e3,e4,eS,z1,zZ,Z3,Z4} is also a basis for H1(X,XO). These 
facts suffice to prove that {Z1,zz,Z3,Z4} is actually a basis for the kernel of 
0*, or what is equivalent, for the homology group H 1(X), We leave it to the 
reader to carry through the details of the proof. The reader is strongly urged 
to make diagrams of several graphs and determine a set of linearly indepen
dent cycles which constitute a basis for the 1-dimensional homology group 
of each graph. It is only by such exercises that one can gain an adequate 
understanding and intuitive feeling for homology theory. The idea that a 
1-dimensional homology class is represented by a linear combination of 
cycles is very important. 

Next we will discuss the problem of determining the homomorphism 
induced on the 1-dimensional homology groups by a continuous map from 
one graph to another. This problem is probably just as important as the 
problem of determining the structure of the 1-dimensional homology groups. 
Let (X,XO) and (Y, yO) be finite regular graphs and f: X ~ Y a continuous 
map. In order to have an effective procedure for determining the induced 
homomorphism f*:H 1(X) ~ H1(Y)' it is necessary to impose some condi
tions of f. The following will be convenient for our purposes: 

(A) f(XO) c yo, i.e., f maps vertices into vertices. 
(B) Given any edge ei of X, either f maps ei homeomorphically onto 

some closed edge ej of Y, or f maps ei onto a vertex of Y. 
Of course most continuous maps f do not satisfy these conditions. How

ever, it can be shown that one can deform any map f homotopically into 
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one which does satisfy them, provided one subdivides (X,XO) first. In view of 
the invariance of 1* under homotopies, this is allowable for our purposes. 

Since I(XO) c yO, we may consider I as a map of pairs: (X,XO) ~ (Y, yO). 
Hence we obtain the following commutative diagram involving the exact 
homology sequences of the pairs (X,XO) and (y,yO): 

j. 
H,(X,XO) 

0. 
Ho(XO) 

i. 
0- H,(X) - - ~ Ho(X)-O 

If. Ifl yo If. 
j. 0. 

Ho(YO) 
i. 

0- H,(y) ~ H,(Y,YO) ~ - Ho(Y) -0. 

From this diagram, it is clear that the homomorphism 1*: HI (X) ~ HI (Y) 
is completely determined by the homomorphism labelled 11' To determine 
the homomorphism II> it suffices to describe its effect on the basis we have 
chosen for H l(X,XO), i.e., on the oriented edges. Suppose first that I maps 
ei homeomorphically onto the closed edge ej of Y, as stated in condition B 
above. We assume that the edges ei and ej have both been oriented by 
choosing an order of their vertices. Then two cases arise, according as the 
map I is orientation preserving, or orientation reversing (the meaning of 
these terms is obvious). We leave it to the reader to prove that 

f ( .) = {+ ej if I preserves orientation, 
1 e, _ ej if I reverses orientation. 

Here 11 denotes the homomorphism HI (X,XO) ~ HI (Y, yO) induced by I, 
while ei E HI (X,XO) and ej E HI (Y, yO) denote the basis elements represented 
by the corresponding oriented edges. Suppose next that I maps the edge ei 
of X onto the vertex vj of Y. Then 

Il(ei) = 0. 

To prove this equation, consider the following commutative diagram: 

The vertical arrows denote homomorphisms induced by inclusion maps. 
Since H l(Vj,Vj) = 0, the assertion follows. 

EXAMPLE 3.2. By subdividing into short arcs, the circle Sl may be considered 
as a graph in various different ways. Let us consider Sl as the unit circle in 
the complex plane, C: 

Sl = {z E Cjlzl = I}. 
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Let J:SI --+ Sl be the continuous map defined by J(z) = Z3. We wish to 
determine the induced homomorphism J*:H1(Sl) --+ Hl(Sl). In order to 
solve this problem, we need to subdivide Sl into a regular graph in two 
different ways. The first subdivision is into 6 equal arcs by means of the 
vertices 

Vj = exp~nf1). j = 0,1, ... ,5. 

The corresponding (oriented) edges eo, e1, ... , es are shown in Figure 3. 
The second subdivision is into two semicircles by the vertices Uo = + 1 and 
U1 = -1; the corresponding (oriented) edges, denoted by eo and e'l are also 
shown in the diagram. Let XO = {VO,Vb'" ,vs} and yO = {uo,ud. Then we 
can consider J as a map of pairs, (Sl,XO) --+ (Sl, yO), and the conditions 
A and B above are fulfilled, with X = Y = Sl. The induced homomorphism 
Jl:H1(Sl,XO) --+ HI(Sl,YO) is described by the following equation, 

f ( .) = {- eo if j = 0, 2, or 4, 
1 eJ "f . 1 3 5 -ell] = , ,or , 

(3.3) 

in view of our choice of orientations. The kernels of the homomorphisms 

o*:HI(Sl,XO) --+ Ho(XO), 

o*:HI(Sl,YO) --+ Ho(YO) 

are both of rank 1, and they are generated by the cycles 

s 
x = L e j and y = eo + e~ 

j=O 
(3.4) 

respectively. We can consider each of these cycles as a representative of a 
generator of the infinite cyclic group HI (Sl); in view of the way the orienta
tions of the edges were chosen, it seems likely that the generators so repre
sented are the negatives of each other. It follows readily from Equations 

f -

Figure 3 
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(3.3) and (3.4) that 
f1(X) = -3y; 

thus the map f has degree ± 3. Actually, its degree is + 3. 

EXAMPLE 3.3. The preceding example raises the following question: suppose 
we subdivide a given space X into a finite regular graph in two different ways. 
U sing each of these subdivision, we can determine cycles which represent 
elements ofthe homology group H l(X), How can we compare representative 
cycles from the two different subdivisions? The following example shows how 
this problem can be solved. Consider two different subdivisions of the unit 
circle Sl in the complex plane; for example, consider the two subdivisions 
considered in the previous example with vertex sets 

XO = {vo, ... ,vs} and yO = {uo,ud 

respectively. We will define a continuous map g:Sl --+ Sl such that g is 
homotopic to the identity map, and so that g is a map of pairs (Sl,XO) --+ 

(Sl, yO) such that conditions A and B above hold. The easiest way to define 
g is to define it separately on each closed cell ej, taking care that the various 
mappings so defined agree on the end points of the cells. We list the definitions 
as follows: 

(a) g shall map eo homeomorphically onto e~ with g(vo) = Uo and g(V1) = u1. 
(b) g(e1) = g(e2) = u1. 
(c) g maps e3 homeomorphically onto e'l with g(v3) = Ul and g(V4) = uo. 
(d) g(e4) = g(es) = Uo' 

We leave it to the reader to verify that g is actually homotopic to the identity 
map of Sl onto itself. The induced homomorphism g 1: H 1 (St,XO) --+ 

H 1 (Sl, yO) is described by the following equations, using the same orientations 
of edges as in the preceding example: 

gl(eO) = -e~ 
gl(e3) = -e'l 

gl(e) = 0 for j = 1,2,4, or 5. 

From this it follows that 

where x and yare the cycles defined in the previous example. Since g is 
homotopic to the identity map, we know that the induced homomorphism 
g*:H l(Sl) --+ H l(Sl) is the identity homomorphism. From this it follows that 
the cycles x and - y represent the same homology class. 

The point of this example is not so much to prove rigorously what is 
intuitively obvious, as it is to illustrate a general procedure for handling 
questions of this kind. 
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EXERCISES 

3.1. Determine the degree of the mapping f:S 1 --+ Sl defined by fez) = Zk for any 
integer k. 

3.2. Prove that for any integer k and any positive integer n there exists a continuous 
map f: S" --+ S" of degree k. 

3.3. Identify S2 with the Alexandroff I-point compactification of the complex plane C, 
obtained by adjoining a point to C, called the point at infinity. Let fez) be a poly
nomial of positive degree with complex coefficients; we may consider f to be a 
continuous nonconstant map f: C --+ C. Prove that we may extend f to a continuous 
map 1: S2 --+ S2 by mapping the point at infinity onto itself. 

3.4 Let fez) = z\ k > O. Determine the degree of the extension J: S2 --+ S2 off defined 
according to the procedure of the preceding exercise. 

3.5. Let f(x) be a polynomial of degree k > 0 with complex coefficients. Determine the 
degree of the extension J: S2 --+ S2 of f defined as above. 

3.6. Let fez) be a polynomial of degree k > 0 with complex coefficients. Prove that the 
equation fez) = 0 has at least one root in the field of complex numbers, C (this is 
the so-called fundamental theorem of algebra). 

3.7. Let X = {(x,y,z) E R31xyz = O} i.e., X is the union of the three coordinate planes. 
Prove that any homeomorphism of X onto itself must have the origin, (0,0,0), as a 
fixed point. (Suggestion: Determine the local homology groups at various points.) 

§4. Homology of Compact Surfaces 

A compact surface is homeomorphic to one of the following: the 2-sphere, 
S2; the torus, Sl x Sl; the real projective plane; a connected sum of tori; 
or, a connected sum of projective planes. For a description of these various 
surfaces, see Algebraic Topology.' An Introduction, Chapter I. The main fact 
that we will use is that every connected surface can be obtained from some 
polygonal disc by identifying the edges in pairs according to a certain scheme. 

EXAMPLE 4.1 (The torus). We can think of a torus as obtained from a rectangle 
by identification of the opposite edges, as shown in Figure 4. Under the 

B 

0' A A f 
eX -
B 

Figure 4 
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identification, each pair of edges becomes a circle, and the two circles, 
labelled A and B in the diagram, intersect in a single point. We will use the 
following notation: 

E2 = the rectangle 
X = the torus 
f: E2 ~ X, the identification map, 
£2 = boundary of the rectangle 
Xl =f(£2) = Au B. 

The homology groups of Xl can be determined by the methods of the 
preceding section. If we knew the relative homology groups Hq(X,Xl), then 
we could hope to determine the homology groups of X by studying the exact 
homology sequence of the pair (X,Xl). 

Proposition 4.1. The identification map f:(E2,£2) ~ (X,Xl) induces an iso
morphism f*:Hq(E2,£2) ~ Hq(X,Xl) of relative homology groups for all q. 
Hence Hq(X,Xl) = Of or q ¥- 2, and Hz(X,Xl) is infinite cyclic. 

PROOF: The last sentence is a consequence of the first sentence and Proposi
tion 2.4. The pattern of proof of the first sentence of the proposition, using the 
excision property, deformation retracts, etc., is one that we have used before 
a couple of times. 

Let x denote the center point ofthe rectangle E2, and let D2 denote a closed 
disc with center at the point x whose radius is small enough so that it is 
contained entirely in the interior of the rectangle E2. Consider the following 
diagram of relative homology groups: 

1 3 
~ H q{E2, E2 - {x}) __ 

1 
In this diagram the horizontal arrows all denote homomorphisms induced by 
inclusion maps, and the vertical arrows denote homomorphisms induced by 
f. Each square in the diagram is commutative. 

We assert that the four homomorphisms denoted by horizontal arrows 
are all isomorphisms. For arrows 3 and 4 this assertion follows from the 
excision property. For arrow 1, it follows from the fact that £2 is a deforma
tion retract of E2 - {x}; one must also use the five-lemma. By a similar 
argument, the assertion can be proved for arrow 2. 

To complete the proof, observe that arrow 5 is an isomorphism, because 
f maps D2 homeomorphically onto f(D 2). It now follows from the com
mutativity of the diagram that f* is also an isomorphism. Q.E.D. 
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The subset Xl of X can be subdivided so as to be a finite, regular graph; 
it is obviously connected, and its Euler characteristic is - 1. Therefore 
HO(Xl) = Z, Hl(Xl) = ZrJ)Z, and Hq(Xl) = 0 for q> 1. If we put this 
information about the homology groups of (X,Xl) and Xl into the exact 
homology sequence of the pair (X,X l ), we see that HiX) = 0 for q > 2, and 
the only nontrivial part of this homology sequence is the following: 

o ~ H 2(X) ~ HiX,Xl) ~ Hl(Xl) ~ Hl(X) ~ O. (4.1) 

From this sequence, we see that H 2(X) and H 1 (X) are the kernel and cokernel 
respectively of the homomorphism a *. Thus it is necessary to determine 0*. 
For this purpose consider the following commutative diagram: 

By the proposition just proved, 1* is an isomorphism. It follows from con
sideration of the homology sequence of the pair (E2i?) that o~ is an iso
morphism. The homomorphism 11* is induced by the identification maps 
11 :£2 ~ Xl; this is a map of finite, regular graphs of the type discussed in 
Section 3. Using the techniques of that section, it is a routine matter to 
calculate that f,* is the zero homomorphism; we leave the details to the 
reader. From this it follows that 0* is also the zero homomorphism. 

Going back to the exact sequence (4.1) we see that both j* and i* are 
isomorphisms. Thus we have completely determined the structure of the 
. homology groups of the torus, as follows: 

H o(X) = Z (X is connected), 

Hl(X) = ZrJ)Z, 

H 2(X) = z, 
and 

Hq(X) = 0 for q > 2. 

The fact that the inclusion map i:Xl ~ X induces an isomorphism 
i*: H 1 (Xl) ~ H 1 (X) is also significant. This means that elements of H 1 (X) 
can be represented by cycles on the graph Xl. Note also that this statement 
is still true if the inclusion map i:Xl ~ X is deformed homotopically into 
some other map. 

EXAMPLE 4.2 (The connected sum of n tori, n> 1 (an orientable surface of 
genus n)). This example is completely analogous to the torus. Such a surface 
can be obtained from a polygonal disc having 4n edges by identifying the 
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edges of pairs according to the scheme shown in Figure 5. Under the identifi
cation, each pair of edges becomes a circle on the surface X, and these 2n 
circles, which may be denoted A l , A 2 , ••• , An> B l , B2 , ••• , Bn all intersect 
in a single point. The union of these circles may be denoted by the symbol 
xl, by analogy with the case of the torus. Let (E2,E2) denote the pair 
consisting of the polygonal disc and its boundary circle. One can prove 
that the identification map f:(E2,E2) ~ (X,Xl) induces isomorphisms 
f*:HiE2,E2) ~ Hq(X,Xl) for all q; the proof of Proposition 4.1 applies 
without any essential change. Then one completes the determination of the 
homology groups of X by studying the homology sequence of the pair 
(X,Xl). The final results are the following: 

and 

H o(X) and H iX) are infinite cyclic, 
H 1 (X) is free abelian of rank 2n, 

HiX) = 0 for q > 2. 

Exactly as in the case of the torus, the inclusion map i:Xl ~ X induces 
an isomorphism i*:Hl(Xl ) ~ Hl(X). 

02 

ex 

Al B. 

Figure 5 

EXAMPLE 4.3 (The projective plane). The projective plane may be obtained 
from a circular disc by identifying diametrically opposite points on the 
boundary. It is harder to visualize than the surfaces we have considered 
so far because it can not be imbedded homeomorphically in Euclidean 3-
space. It is a nonorientable surface, and this results in a somewhat different 
structure for its homology groups, as we shall see. 

As in the previous cases, denote the disc by E2, the projective plane by X, 
and let f:(E2,E2) ~ (X,Xl) be the identification map. Here E2 denotes the 
boundary circle of E2, and Xl = f(E2) is also a circle. The induced map 
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11 :£2 --+ Xl is a 2-to-1 map, i.e., it has degree ±2. Exactly as before, we can 
prove that/*:Hq(E2,£2) --+ Hq(X,Xl) is an isomorphism for all q. The only 
nontrivial part ofthe homology sequence ofthe pair (X,Xl) is the following: 

• D' • 
H2(E2,E2) ~ H 1(E2) 

Since 1* and a~ are isomorphisms, and 11 * has degree ± 2, we conclude 
that a * also has degree ± 2. It now follows from exactness of the homology 
sequence of (X,Xl) that 

H 2(X) = 0, 
and 

HI (X) is cyclic of order 2. 

Of course Ho(X) = Z and Hq(X) = ° for q > 2 exactly as before. 
This is our first example of a space whose homology groups have an 

element of finite order; in fact it is probably the simplest example of such a 
space. It can be proved that if X is any reasonable subset of Euclidean 3-
space, its homology groups have no elements of finite order. 

EXAMPLE 4.4 (The Klein bottle, K). We have two different ways of obtaining 
a Klein bottle by identifying edges of a square: That indicated on the left 
in Figure 6, in which opposite edges are to be identified, or that indicated 
on the right in Figure 6, in which adjacent edges are to be identified. It is 
interesting to use both representations to compute the homology groups 
of K, and then compare the results. The details are left to the reader. In 
either case, it is readily seen that H 2(K) = 0. What is the structure of H 1 (K)? 
How can one prove algebraically that both methods lead to the same result? 

a (' 

b~ ~ 
x 

1; d /!h-• b (' 

/j 
a d 

Figure 6 

EXAMPLE 4.5 (An arbitrary nonorientable compact surface). An arbitrary 
nonorientable surface X is the connected sum of n projective planes, n ~ 1. 
If n is odd, it can be considered as the connected sum of a projective plane 
and an orient able surface, while if n is even, it can be considered as the 
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connected sum of a Klein bottle and an orientable surface. The integer n is 
sometimes called the genus of the nonorientable surface. Whether n is odd 
or even, we obtain two distinct ways of representing X as the quotient 
space of disc; for details, see Algebraic Topology: An Introduction, Chapter 
IV, Example 5.4. The reader should use at least one of these ways (and 
preferably both) to determine the homology groups of X. The final result 
is that H 2(X) = 0, and H 1 (X) is the direct sum of a free abelian group of 
rank n - 1 and a cyclic group of order 2. 

Note that for the orientable surfaces, H 2(X) is infinite cyclic and H 1 (X) 
is a free abelian group, while for nonorientable surfaces H 2(X) = ° and 
H l(X) has a subgroup which is cyclic of order 2. Later on we will see that 
analogous results hold for compact, connected n-dimensional manifolds for 
any positive integer n. 

EXERCISES 

4.1. Compute the homology groups of a space obtained by identifying the three edges 
of a triangle to a single edge as shown in Figure 7. (Note: This space is not a mani
fold.) 

a 
Figure 7 

4.2. Given any integer n> 1, show how to construct a space X such that H 1(X) is 
cyclic of order n. 

§5. The Mayer-Vietoris Exact Sequence 

In this section we will be concerned with the following question: Suppose 
the space X is the union of two subs paces, 

X=AuB. 

What relations hold between the homology groups of the three subspaces 
A, B, A n B and the homology groups of the whole space? If we make 
certain rather mild assumptions on the subspaces involved, we can give a 
rather nice answer to this question in the form of an exact sequence, called 
the Mayer-Vietoris sequence. This exact sequence plays the same role in 
homology theory that the Seifert-Van Kampen theorem plays in the study 
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of the fundamental group (see Algebraic Topology: An Introduction, 
Chapter IV). 

In order to describe this exact sequence, let 

and 

i*:Hn(A (\ B) --+ Hn(A), 

j*:Hn(A (\ B) --+ Hn(B), 

k*:Hn(A) --+ HiX), 

denote homomorphisms induced by inclusion maps. Using these homomor
phisms, we define homomorphisms 

by the formulas 

cp:Hn(A (\ B) --+ HiA) EEl HiB), 

I/!:H.(A) EEl Hn(B) --+ Hn(X) 

cp(x) = (i*(x),j*(x)), 

I/!(u,v) = k*(u) - l*(v), 

X E Hn(A (\ B), 

u E Hn(A), v E H.(B). 

Theorem 5.1. Let A and B be subsets of the topological space X such that 
X = (interior A) u (interior B). Then it is possible to define natural homo
morphisms 

L1 : Hn(X) --+ Hn- 1(A (\ B) 

for all values of n such that the following sequence is exact: 

If A (\ B =p 0, the sequence remains exact if we substitute reduced homology 
groups for ordinary homology groups in dimension o. 

This sequence is called the Mayer-Vietoris sequence. The statement that 
the homomorphism L1 is natural has the following precise technical meaning: 
Assume that the subspaces A' and B' of X' are such that 

X' = (interior A') u (interior B') 

and that f:X --+ X' is a continuous map such that f(A) c A' and f(B) c B'. 
Then the following diagram is commutative for all n: 

J 
Hn(X) --- Hn-,(A n B) 

14 14 
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PROOF OF THEOREM 5.1. Let iJIi = {A,B}; in view of the hypotheses assumed 
on A and B we can apply Theorem 11.6.3 to conclude that the inclusion homo
morphisms <1: Cn(X,iJIi) -+ Cn(X) induces isomorphisms <1* : Hn(X,iJIi) -+ Hn(X) 
for all n. Note that 

CiX,iJIi) = CiA) + CiB), 

where the group on the right is the least subgroup of Cn(X) containing Cn{A) 
and CiB) (it is not a direct sum). Therefore the homomorphisms k#: CiA) -+ 

CiX) and 1# :CiB) -+ Cn(X) have the property that their images are con
tained in the subgroup CiX,iJIi) in each case. Hence we have commutative 
diagrams as follows: 

Cn(X,cfI) Cn(X,cfI) 

7 
Cn(A) 1" 
~ 

y 
Cn(B) # 1" 
~ 

c"(X) Cn(X). 

Our strategy will be to replace the group HiX) by Hn{X,iJIi) in proving 
Theorem 5.1; when we do this, we must systematically replace k by k' and 
I by t. We will assume this has been done, and from now on will drop the 
primes from the notation for these homomorphisms. 

By analogy with the definition of the homomorphisms cp and 1/1 above, 
we define homomorphisms 

Ii>: Cn(A n B) -+ CiA) EB CiB), 

'P: Cn(A) EB Cn(B) -+ Cn(X,iJIi) 

by the following formulas: 

Ii>(x) = (i#x,j#x) 

'P(u,v) = k#(u) - l#(v). 

Now consider the following diagram of chain groups and homomorphisms: 

1 1 1 

1 1 1 
<t> o -----+ Cn(A n B) -----+) Cn(A) EEl Cn(B) -----+) Cn(X,cfI) -----+ 0 

1 1 1 
'P 

Cn-M)EElCn- 1(B) ~ Cn-l~X,OU)~ 0 

1 1 1 · . · . · . 
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The vertical arrows denote the appropriate boundary operator in each case. 
In the case of the vertical arrows in the middle column, this means the direct 
sum of the boundary operators for A and B. The two most important facts 
about this diagram are the following: 

(1) Each square of this diagram is commutative. This is practically 
obvious, in view of the way the homomorphisms <P and '1' were defined. 

(2) Each horizontal line in this diagram is exact. The verification of this 
fact is left to the reader; it should not present any real difficulty. 

The reader should now compare this diagram with Diagram (II.5.l) which 
was used to set up the exact homology sequence of a pair. The essential 
properties of the two diagrams are the same. By the same process that was 
used in II.5 to define the boundary operator of a pair, one can now define 
the homomorphisms 

11:HiX,oIl) --+ Hn- 1(A n B) 

for all values of n. Moreover, the methods used to prove the exactness of 
the homology sequence of a pair apply without change to give the exact
ness of the following sequence of groups and homomorphisms: 

All that remains is to substitute Hn(X) for Hn(X,rlII), and we have proved 
the exactness of the Mayer-Vietoris sequence. 

We leave it to the reader to verify that the homomorphism 11 is natural 
and to investigate what happens when one uses reduced homology groups 
in dimension zero (provided A n B =f. 0). Q.E.D. 

EXAMPLE 5.1. We will show how the Mayer-Vietoris sequence can be used 
to make the inductive step in the proof of Theorem 2.1. As the inductive 
hypothesis, assume that Hn(sn) = Z, and Hi(sn) = ° for i =f. n. We wish to 
determine Hi(sn+ 1). Let A be the complement of the point (0, ... ,0, -1) in 
sn+ 1 and let B be the complement of the point (0, ... ,0, + 1) in sn+ 1. Then 
A and B are open subsets of sn + 1, and A u B = sn + 1. Therefore we can 
apply the Mayer-Vietoris sequence; in this case A n B =f. 0, and it is con
venient to used reduced homology groups in dimension 0. Consider the 
following portion of the sequence: 

- - - 1.1- -Hi+1(A)EfJHi+1(B) --+ H i+1(sn+ ) --+ H;(A n B) --+ Hi(A)EfJHi(B). 

One proves by stereo graphic projection that A and B are both homeomor
phic to Rn + 1, hence they are contractible. Therefore RiA) = Hi(B) = 0 for 
all i. It follows by exactness that 11 is an isomorphism. Now A n B is homeo
morphic to Rn+ 1 minus a point, and therefore it contains sn as a deforma
tion retract. Hence by the inductive hypothesis Hn(A n B) = Z, and 
Hi(A n B) = 0 for i =f. n. Since 11 is an isomorphism, it follows that 
Hn+1(sn+1) = Z, and Hi(sn+1) = 0 for i =f. n + 1, as was to be proved. 
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One final comment about the Mayer-Vietoris sequence: we could weaken 
the hypotheses of Theorem 5.1 to read X = A u B, provided we knew that 
the inclusion homomorphism Cn(A) + Cn(B) -+ Cn(X) induced isomorphisms 
on homology groups; this was the purpose of the assumption that the 
interiors of A and B cover X. We will come back to this point later. 

EXERCISES 

5.1. Assume that X = U u V, where U and V are open subsets of X, and U II V is 
nonempty and contractible. Express the homology groups of X in terms of those 
of U and V. 

5.2. Assume that X = A u B, where A and B are closed subsets of X, and A II B = {xo}. 
Assume further that Xo has an open neighborhood N in X such that N II A and 
N II B are both contractible, and that during the contraction the point Xo remains 
fixed. Express the homology groups of X in terms of those of A and B. 

5.3. Assume that the space X and the subspaces A and B satisfy the hypotheses of The
orem 5.1. (a) Prove that the inclusion maps (A, A II B) --+ (X,B) and (B, A II B) --+ 

(X,A) induce isomorphisms on homology. (b) Show that the homomorphism 
L1 :H.(X) --+ H._I(A II B) is the composition of the following homorphisms: 

i* 0* 
H.(X) --+ Hn(X,B) ~ H.(A,A II B) --+ Hn-I(A II B). 

5.4. Use the result of Part (b) of the preceding exercise to define the homomorphism 
L1 : H n(X) --+ H n -1 (A II B). Then prove directly (by diagram chasing, without going 
back to chain groups) that the Mayer-Vietoris sequence is exact (cf. Eilenberg and 
Steenrod, [2], Chapter I). 

§6. The Jordan-Brouwer Separation Theorem 
and Invariance of Domain 

The classical Jordan curve theorem may be stated as follows: Let C be a 
simple closed curve in the plane R2, i.e., C is a subset ofR2 which is homeo
morphic to Sl. Then R2 - C has exactly two components, and C is the 
boundary of each component (in the sense of point set topology). It is our 
object in this section to prove a generalization of this theorem to Rn, and 
derive various consequences. Most of the results of this section were first 
proved by the Dutch mathematician L. E. J. Brouwer. 

The Mayer-Vietoris sequence will play an essential role in the proof. 
We will also need another general property of singular homology theory, 
which may be stated as follows: 

Proposition 6.1. Let (X,A) be a pair consisting of a topological space X and 
subspace A. (a) Given any homology class u E H.(X,A), there exists a compact 
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pair (C,D) c (X,A) and a homology class u' E Hn(C,D) such that i*(u') = u, 
where i:(C,D) --+ (X,A) is the inclusion map. (b) Let (C,D) be any compact 
pair such that (C,D) c (X,A), and v E Hm(C,D) a homology class such that 
i*(v) = 0. Then there exists a compact pair (C',D') such that (C,D) c (C',D') c 

(X,A) and j*(v) = 0, where j:(C,D) --+ (C',D') is the inclusion map. 

In the statement of this proposition, "a compact pair (C,D)" means a 
pair such that C is compact and D is a compact subset of C. An inclusion 
relation between pairs, such as (C,D) c (X,A), means that C c X and DcA. 
For the reader who is familiar with the concept of direct limit, this proposi
tion may be restated as follows: Hn(X,A) is the direct limit of the groups 
H n( C,D), where (C,D) ranges over all compact pairs contained in (X,A). 

The proof of this proposition depends on the following fact: If a E Qn(X), 
then there exists a compact set C c X such that a E Qn( C). In fact, if a is a 
linear combination of the singular n-cubes T 1, T 2, ... , T k' then we may 
choose C = T 1 W) u T 2W) u ... u T kW), The proposition follows readily 
from this fact by choosing representative cycles for the homology classes 
involved, etc. The details can be easily worked out by the reader. We also 
leave it to the reader to verify that this proposition remains true if we replace 
ordinary homology groups by reduced homology groups everywhere in the 
statement. 

In order to prove the Jordan-Brouwer separation theorem, we need the 
following lemma, which is of some interest in its own right: 

Lemma 6.2. Let Y be a subset of sn which is homeomorphic to [\ where 
0::;; k::;; n. Then H;(sn - Y) = ° for all i. 

PROOF: The proof is by induction on k. For k = 0, [k is a single point (by 
definition), and sn - [k is homeomorphic to Rn, which is contractible. 

In order to make the inductive step it is convenient to assume we have 
chosen a definite homeomorphism of Y with [k; then we may as well identify 
Y with [k by means of this homeomorphism. Let 

Then 

Yo = {(Xl' ... ,xk) E Ylx 1 ::;; !}, 
Y1 = {(Xl>' .. ,xk ) E Ylx1 ~ !}. 

Yo U Y1 = Y, 

sn - (Yo n Y1) = (sn - Yo) u (sn - Y1), 

and we may apply the Mayer-Vietoris sequence to this representation of 
sn - (Yo n Y1) as the union of two open subsets. Note that Yo n Y1 is 
homeomorphic to [k - 1, hence by the inductive hypothesis 

H;(sn - (Yo n Y1)) = ° 
for all i. Therefore we conclude from the exactness of the Mayer-Vietoris 
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sequence that 

is an isomorphism for all i. 
Now recall the definition of the homomorphism ((J from the preceding 

section: 
((J(X) = (io*(x),ih(x)), 

where io: sn - Y ~ sn - Yo and i I: sn - Y ~ sn - Yl are inclusion maps. In 
order to complete the proof of the inductive step, we will assume that for 
some integer i, H;(sn - Y) =1= 0, and show that this assumption leads to a 
contradiction. As a first consequence of the assumption that H;(sn - Y) =1= 0, 
we see that we can find an element ao E H;(sn - Y) such that io*(ao) =1= 0, or 
il*(aO) =1= 0. 

Let us first take up the case where a l = io*(ao) =1= 0. Let 

Then 

Let 

Yoo = {(Xl" .. ,Xk) E YolO::;; Xl::;; -i}, 
YOI = {(Xl"" ,xd E Yol-i::;; Xl::;; t}· 

ioo:sn - Yo ~ sn - Yoo , 

iOI:Sn - Yo ~ sn - YOlo 

Then by a repetltIOn of the above argument using the Mayer-Vietoris 
sequence and the inductive hypothesis, we may prove that iOO*(a l ) =1= ° or 
iOI*(al ) =1= 0. In the other case where il*(aO) =1= 0, we may represent YI as the 
union of two subsets, 

Yl = YlO U Yll 

such that ilO*(al) =1= 0, or ilh(al ) =1= ° where now al = ih(aO) =1= 0. 
The reader will immediately see that we may continue this process ad 

infinitum. The net result is that we can construct an infinite decreasing 
sequence of subsets of Y each homeomorphic to [k and denoted by 

Y => Y' => Y" => ... => y(m) => •.. 

such that the following two properties hold: 
(a) Let yoo denote the intersection of all the sets of this sequence; then 

y oo is homeomorphic to [k -1. Hence Hj(sn - yeo) = ° for all j by our in
ductive hypothesis. 

(b) Let us denote the complementary sets and their inclusion maps as 
follows: 

sn _ Y ~ sn _ Y' ~ sn - Y" .s .... 
Using the element ao E H;(sn - Y), we may construct an infinite sequence 

(aO,al,aZ' ••• ) 
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of elements such that am E H i(sn - y(m») and am #- 0 as follows: 

a1 = i*(ao) 
a2 = i~(a1)' 
a3 = i~(a2)' etc. 

65 

We will complete the proof by showing that the existence of such an 
infinite sequence of nonzero elements contradicts Proposition 6.1. Apply 
Proposition 6.1(a) to obtain a compact set C c sn - Y and a homology 
class a~ E Hi(C) such that a~ --+ ao under the inclusion map C --+ (sn - Y). 
Since Hi(sn - YOO ) = 0, we may apply Proposition 6.1(b) to the inclusion 
C c sn - yoo to conclude that there exists a compact set C such that 

C c C C sn _ yoo 

and a~ --+ 0 under the homomorphism induced by the inclusion map C --+ C. 
Since C is compact, there exists an integer m such that C c sn - y(m). Now 
consider the following diagram of reduced homology groups: 

Hi(C) -----+) Hi(C) 

1 1 
Hi(S" - Y) -+ H(S" _ y(m)). 

All homomorphisms in this diagram are induced by inclusion maps, hence 
the diagram is commutative. If we consider the element a~ E H i( C) and chase 
it both ways around this diagram, we see that it must go to zero one way, 
while the other way it goes to am #- O. This is the desired contradiction, and 
hence the proof of the inductive step is complete. Q.E.D. 

Perhaps the reader wonders who concocted such a complicated proof as 
this. The answer is that it is the work of many mathematicians; it has evolved 
over a relatively long portion of the history of algebraic topology. In order 
to appreciate why the proof of this lemma might have to be so complicated, 
the reader should consider some examples of subsets Y ('If S3 which are 
homeomorphic to [1 and such that S3 - [1 has a nontrivial fundamental 
group (cf. Artin and Fox, [1]). 

Theorem 6.3. Let A be a subset of sn which is homeomorphic to Sk, 0 ::;; k ::;; 
n - 1. Then Hn_k _ 1(sn - A) = Z, and Hi(sn - A) = 0 for i #- n - k - 1. 

PROOF: Once again the proof is by induction on k, using the Mayer-Vietoris 
sequence. If k = 0, then A consists oftwo points and sn - A is homeomorphic 
to Rn with one point removed: Hence sn - A has the homotopy type of 
sn - 1, and the theorem is true for this case. 

Now we will make the inductive step. Since A is homeomorphic to S\ 
it follows that A = A1 U A2, where A1 and A2 are subsets of A which are 
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homeomorphic to 1\ and A I n A 2 is homeomorphic Sk - I (cf. the proof of 
Theorem 2.1). Therefore, 

sn - (AI n A 2) = (sn - AI) U (sn - A 2), 

and we may apply the Mayer-Vietoris sequence to this representation of 
sn - (AI n A 2) as the union of two open subsets. By the lemma just proved, 

Hi(sn - AI) = H;(sn - A 2) = 0 

for all i. It follows from the exactness of the Mayer-Vietoris sequence that 

LJ:Hi+l(sn - (AI n A 2) ~ Hi(sn - A)) 

is an isomorphism for all i. Since A I n A 2 is homeomorphic to Sk - 1, this 
isomorphism suffices to prove the inductive step. Q.E.D. 

EXAMPLE 6.1. Suppose that A is a subset of S3 which is homeomorphic to 
Sl, i.e., A is a simple closed curve in S3. It follows from the theorem just 
proved that H I(S3 - A) is infinite cyclic, and Hi (S3 - A) = 0 for i =F 1. It 
is well known that a simple closed curve in R 3 or S3 can be "knotted" in 
various different ways, or left unknotted. Thus the homology groups of 
S3 - A in this case are independent of how A is knotted. On the other hand, 
it may be shown that the fundamental group of S3 - A does depend on how 
A is knotted; cf. Algebraic Topology: An Introduction, Chapter IV, §6, and 
the references given there. The fact that the homology groups of S3 - A 
are independent of how A is knotted can be an advantage or a disadvantage, 
depending on what one is trying to do. 

Corollary 6.4 (Jordan-Brouwer theorem). Let A be a subset of sn which is 
homeomorphic to sn-l. Then sn - A has exactly two components. 

PROOF: Apply the case,k = n - 1 of the preceding theorem to conclude that 
Ho(sn - A) has rank 2; hence sn - A has exactly two arc components. But 
it is readily seen that sn - A is locally arcwise connected, hence the com
ponents and arc-components are the same. 

Proposition 6.5. Let A be a subset of sn which is homeomorphic to sn - I. Then 
A is the boundary of each component of sn - A. 

In order to better appreciate this proposition, consider the case where A 
is a subset of S2 which is homeomorphic to Sl x I (instead of Sl). Then 
S2 - A has two components, but the boundary of either component is a 
proper subset of A. 

PROOF OF PROPOSITION 6.5. Since sn - A is locally connected, each com
ponent of sn - A is an open subset of sn - A, and hence an open subset 
of sn. Therefore the boundary of each component must be a subset of A. 
To complete the proof of the proposition, we must show that any point 
a E A is a boundary point of each component of sn - A. Denote the compo-
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nents of sn - A by Co and C 1• Let N be any open neighborhood of a in sn; 
we must show that N (\ C i #- 0 for i = 0 and 1. 

Note that N (\ A is an open neighborhood of a in A. Since A is homeo
morphic to sn- 1, we can find a decomposition 

A = At U A 2, 

as in the proof of Theorem 6.3, such that A 1 and A2 are homeomorphic to 
1"-1, Al (\ A2 is homeomorphic to sn-2, and A2 c N (\ A. It follows from 
Lemma 6.2 that sn - Al is arcwise connected. Let Po E Co, and Pl E C 1 ; 

choose an arc in sn - Al joining Po to Pl' i.e., a continuous map f:1 ~ 
sn - Al such that f(O) = Po, and f(l) = Pl' It follows from what we have 
already proved that f(J) (\ A #- 0, and hence f(1) (\ A2 #- 0. Consider the 
subsetf-l(A2) c I; this is a compact subset of I, and hence it must have a 
least point to and a greatest point t 1• Obviously to and tl are boundary 
points of f - l(A 2), and f - l(N) is an open subset of I which contains both t 1 
and t 2. From this it follows by an easy argument that f-l(N) (\ f- 1(C 1) and 
f-l(N) (\ f- 1(C2) are both nonempty. Hence N (\ Ct #- 0 and N (\ C2 #-
0, as desired. Q.E.D. 

Note that essential role that LemqJ.a 6.2 plays in this proof. 
In order to better appreciate the significance of Corollary 6.4 and Prop

osition 6.5, the reader should study the Alexander horned sphere or other 
wild imbed dings of S2 in S3, cf. Hocking and Young, [3J p. 176. For the 
case of imbeddings of Sl in S2, there is the so-called SchOnflies theorem, 
which is stronger than the Jordan curve theorem (see E. Moise, [4]). 

Next, we will prove another of L. E. J. Brouwer's theorems, usually 
referred to as "the theorem on invariance of domain." 

Theorem 6.6. Let V and V be homeomorphic subsets of sn. If V is open, then 
so is V (and conversely). 

PROOF: Let h: U ~ V be a homeomorphism. For any point x E U we can 
find a closed neighborhood N of x in U such that N is homeomorphic to 1" 
and its boundary, IV, is homeomorphic to sn-l. Let y = h(x); then N' = h(N) 
is a closed neighborhood of y in V with boundary IV' = h(IV). It follows from 
Lemma 6.2 that sn - N' is connected, and from Theorem 6.4 that sn - IV' has 
exactly two components. Note that sn - IV' is the disjoint union of N' - IV' 
and sn - N'; since both of these sets are connected, they are the components 
of sn - IV'. Therefore both of them are open subsets of sn - IV' and hence 
of sn. In particular, N' - IV' is an open neighborhood of y which is entirely 
contained in V. Therefore y is an interior point of V. Since this argument 
obviously applies to any point y E V, the proof is complete. Q.E.D. 

Brouwer's theorem on invariance of domain is a powerful theorem, and 
it deserves to be better known. It should be looked on as a very special 
topological property of sn; or more generally, of n-dimensional manifolds. 
(See the exercises below.) 
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Corollary 6.7. Let A and B be arbitrary subsets of S", and let h:A --+ B be a 
homeomorphism. Then h maps interior points onto interior points, and boundary 
points onto boundary points. 

This corollary shows that the property of being an interior or boundary 
point of a subset A c S" is an intrinsic property, independent of the im
bedding. 

EXERCISES 

6.1. Let Y be a subset of R" which is homeomorphic to It, 0 :s; k:s; n. Determine the 
homology groups of R" - Y. (Hint: Consider R" as the complement of a point 
in S".) 

6.2. Let A be a subset of R" which is homeomorphic to st, 0 :s; k :s; n - 1. Determine 
the homology groups ofR" - A. How many components does R" - A have? 

6.3. Does the analogue of Proposition 6.5 hold true for subsets of R" which are 
homeomorphic to S" - 1 ? 

6.4. Let A be a closed subset of R" which is homeomorphic to R" -1. Prove that R" - A 
has exactly two components. 

6.5. Prove that Theorem 6.6 and Corollary 6.7 hold for subsets ofR". Then prove the 
following more general form of Brouwer's theorem. Assume M and N are n

dimensional manifolds; let U and V be subsets of M and N respectively such that 
U and V are homeomorphic. If U is an open subset of M, then V is an open subset 
of N. (Note: An n-dimensional manifold is a Hausdorff space such that each point 
has an open neighborhood which is homeomorphic to R".) 

6.6. Use Brouwer's theorem on invariance of domain to prove that Rm and R" are not 
homeomorphic if m #- n (it is not necessary to use homology theory in this proof). 

6.7. Prove that if m > n, then there is no subset of S" which is homeomorphic to r. 

6.8. Let U be an open subset of R", and let f: U -+ R" be a map which is continuous 
and one-to-one. Prove that f is a homeomorphism of U onto f( U). 

6.9. Prove that no proper subset of S" can be homeomorphic to So. 

6.10. Prove that a continuous map f:S" -+ R" cannot be one-to-one. 

6.11. Let U be an open subset ofRm. Prove that ifm > n, there is no continuous, one-to
one map of U into R". Generalize this statement by replacing Rm and R" by 
manifolds of dimension m and n respectively. 

6.12. Let A and B be subsets of S" which are homeomorphic to SP and S'I respectively, 
where 0 < p :s; q :s; n. Determine the homology groups of S" - (A u B) in the 
following two cases: 

(a) A and B are disjoint subsets of So. 
(b) A n B consists of exactly one point. 

In case p = q = n - 1, determine the number of components of S" - (A u B). 



§7. The Relation between the Fundamental Group and the First Homology Group 69 

6.13. Let A and B be homeomorphic subsets of Rn. If A is closed, does it follow that B 
is closed? 

6.14. Let X be a connected regular, finite graph and let A and B be subsets of S3 which 
are homeomorphic to X. Prove that the (reduced) homology groups of S3 - A 
and S3 - B are isomorphic (Hint: Use induction on the number of edges of X. 
Any finite, connected graph has some edge whose removal does not disconnect it.) 

§7. The Relation between the Fundamental Group 
and the First Homology Group* 

The main theorem ofthis section asserts that for an arcwise connected space, 
the fundamental group completely determines the first homology group. The 
precise statement will be given after some preliminary definitions. It is as
sumed that the reader is familiar with the basic properties of the fundamental 
group; cf. Algebraic Topology: An Introduction, Chapter II. 

First of all, for any topological space X and any base point Xo E X we 
define a homomorphism 

as follows. Let tX E n(X,xo); choose a closed path f:I --+ X belonging to the 
equivalence class tx. We can think of f as a singular I-cube, and hence as 
determining an element of the chain group C1(X). Since f(O) = f(l) = x o, 
01(f) = 0; in other words, f is a cycle. We define hitX) to be the homology 
class of the cycle f. To see that hx(tX) is well defined, one must verify that 
if g: I --+ X is another closed path in the equivalence class tx, then the cycles 
f and 9 belong to the same homology class. We leave this verification to the 
reader. Next, one should check that hx is a homomorphism, i.e., hx(tX . [3) = 
hx(tX) + hx([3). This may be done as follows. Choose representatives f: I --+ X 
and g:I --+ X for tx and [3 respectively. Then f· g:I --+ X is a representative 
for tx • [3, where 

{ f(2t) 
(f . g)t = g(2t _ 1) 

o ~ t ~ t, 
t~t~l. 

Now define a singular 2-cube T:I2 --+ X by the formula 

* This section may be omitted by readers who are not familiar with the properties of the funda
mental group. 
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The function T was chosen so that it is constant along the straight lines 
shown in Figure 8. It is readily checked that 

82(T) = f + g - f· g - c, 

where c is a degenerate singular I-cube. But this equation clearly implies 
that hx(ex . 13) = hx(ex) + hx(f3), as required. In order to better understand the 
definition of the function T, it is suggested that the reader try to work out the 
formula for T(x 1,x2 ) himself so that it will have the required properties. 

c 

-----------
---_ Xj + 2X2 ~ 1 -------------------

g 

g 

J 
Figure 8 

The homomorphism we have just defined satisfies the following obvious 
naturality condition. Let cp: X ~ Y be a continuous map such that cp(xo) = 

Yo' Then the following diagram is commutative: 

n(X,xo) 
",. 

n(Y,yo) ~ 

lhx 1 h, 
",. 

Hj(X) ----+ Hj(Y). 

In addition, the following two rather obvious remarks apply to the homo
morphism h. 

(a) If the space X is not arcwise connected, H l(X) is the direct sum of the 
groups H 1 (X ;.), where {X;. I A. E A} denotes the set of arc components of X. It 
is obvious that the image of the homomorphism hx is entirely contained in 
the I-dimensional homology group of the arccomponent of X which con
tains the basepoint Xo. Therefore the homomorphism hx is mainly of interest 
in the case of arcwise connected spaces. 

(b) Since H 1 (X) is abelian, the commutator subgroup of n(X,xo) is 
contained in the kernel of hx. Let us use the notation n'(X,xo) to denote the 
"abelianized" fundamental group, i.e., the quotient group of n(X,xo) modulo 
its commutator subgroup. Then hx induces a homomorphism n'(X,xo) ~ 
H 1 (X), which we will denote by the same symbol, hx, or h for short. 
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With these properties out of the way, we can state the main result of this 
section: 

Theorem 7.1. Let X be an arcwise connected space. Then h is an isomorphism 
of the abelianized fundamental group n'(X,xo) onto H 1 (X). 

PROOF: In order to carry out the proof, it is convenient to show that one 
can compute the singular homology groups of an arcwise connected space 
X using only those singular cubes which have all their vertices mapped into 
the basepoint Xo. There is a certain analogy here with Theorem 11.6.3. 

Let Qn(X/XO) denote the subgroup of Qn(X) generated by all singular n
cubes T: 1" -+ X such that T(v) = Xo for any vertex v of the cube 1". Define 
DiX/xo) = Dn(X) II Qn(X/XO) and Cn(X/XO) = Qn(X/xo)/Dn(X/xo). Note that 
the boundary operator on:QiX) -+ Qn-1(X) obviously maps the subgroup 
Qn(X /xo) into Qn -1 (X /xo), and hence it induces a boundary operator 
0n:Cn(X/xo) -+ Cn- 1(X/XO). As usual, we define the group of n-cycles, 
ZiX/xo), to be the kernel of On' 

ZiX/xo) = {u E Cn(X/xo)I On(u) = O} 

and the group of bounding cycles BiX/xo) to be On+1(Cn+1(X/xO)). Then 
BiX/xo) c ZiX/xo) and we define 

Hn(X/xo) = Zn(X/xo)/BiX/xo)· 

The inclusion Qn(X/XO) c Qn(X) induces homomorphisms 

'n:Cn(X/XO) -+ Cn(X) 
and 

Lemma 7.2. If the space X is arcwise connected, then the homomorphism '* 
is an isomorphism for all n. 

PROOF OF LEMMA. The strategy of the proof is to show that the system of 
subgroups Cn(X/XO), n = 0, 1, 2, ... is a "deformation retract" of the full 
chain groups CiX), n = 0, 1,2, ... in some algebraic sense. To be precise, 
we will define a sequence of homomorphisms Pn:CiX) -+ Cn(X/XO) such 
that the Pn's commute with the boundary operators and hence induce 
homomorphisms p*:HiX) -+ Hn(X/xo). It will turn out that Pn'n is the 
identity map of CiX/xo) for each n, hence P*'* is the identity map of 
HnCX/xo). Finally we will define a sequence of homomorphisms cJ>n:CnCX) -+ 

Cn+1(X) which will be a chain homotopy between the chain map 'nPn and 
the identity map of CnCX). Hence '*P* is the identity map of HnCX), and the 
proof will be complete. Actually, we will only carry out this program for 
small values of n, because we only need to know that, *: H 1 (X /xo) -+ H 1 (X) 
is an isomorphism. The rest of the proof will be left as an exercise. Also, it 
turns out to be easiest to define the homomorphisms cJ> n first, and then 
define the homomorphisms Pn afterwards. 
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In order to define cPm we will define homomorphisms <Pn: QiX) ~ Qn + I (X) 
such that <Pn(Dn(X)) c Dn+I(X). We will do this in succession for n = 0,1,2. 
In each case, if T is a singular n-cube, <PnT will be a singular n + 1 cube. 
We proceed as follows: 

Case n = O. We can identify the singular O-cubes with the points of X. 
For each x E X such that x "# x o, choose a path T:l ~ X such that T(O) = 
Xo and T(I) = x, and then define <p(x) = T. Complete the definition by de
fining <p(xo) to be the degenerate singular I-cube at Xo' Note that 

OI<PO(X) = x - Xo 

for any singular O-cube x. 

Case n = 1. Let T:l ~ X be a singular I-cube; we have to define a 
singular 2-cube <PI T:12 ~ X. We have already defined the chain homotopy 
<Po on the two faces Al T and BI T, and we want the new definition to be 
consistent with what we have already defined. Therefore we impose the 
following three conditions on <PI T: 

BI<PI T = T, 

A2<P2 T = IPOAI T, 

B2<PI T = <POBI T. 

Note that these conditions imply that AI<PI T E QI(XjXO)' Given a singular 
I-cube T, there always exist singular 2-cubes <PI T satisfying these three 
conditions, because the subset of 12 consisting of the union of any three edges 
is a retract of 12. Therefore we may define <PI by choosing for each singular 
I-cube T a singular 2-cube <PI T satisfying these three conditions. We wish 
also to impose the following two additional conditions, which are consistent 
with the three we have already imposed, and with each other: 

(a) If T E QI(XjxO), i.e., if T maps both the vertices of 1 into Xo, define 
<PI T by 

Then <PI T is degenerate. 
(b) If T is a degenerate I-cube, i.e., T(x) = constant, define 

(<PI T)(X I ,X2) = (<POAI T)(XI) = (<POBI T)(XI)' 

Then IP I T is also degenerate. 

Case n = 2. Given a singular 2-cube T:12 ~ X we wish to define 
<P2 T:1 3 ~ X so that the definition is consistent with the definition of <PIon 
the four faces of T. Therefore we impose the following conditions on <P2 T: 

BI<P2T = T, 

Ai<P2 T = <PIAi-l T 

Bi<P2 T = <PIBi-I T 

i = 2, 3, 

i = 2, 3. 
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Given T, there will always exist singular 3-cubes CPl T satisfying these five 
conditions, because the union of any five faces of 13 is a retract of 13. Define 
CPl by choosing for each 2-cube T a 3-cube CPl T satisfying these five condi
tions: Note that AICP1TE Qz(Xjxo). We also impose the following two 
additional conditions, which are consistent with the previous five conditions 
and with each other: 

(a) If T E Qz(X jxo), define CPl T by 

(cpz T)(x I,XZ,X3) = T(Xl,X3)' 

Then cpz T is degenerate in this case. 
(b) If T is a degenerate 2-cube define cpz Tas follows. Since T is degenerate, 

T(xl,xZ) = Al T(x z) = BI T(Xl) 

or 

In the first case, define 

CPl T(x I,xZ,X3) = (CPIA I T)(XI,X 3) 

= (CPIB I T)(XbX3) 

while in the second case let 

CP ZT(x l ,xZ'X 3 ) = (CP IA1T)(Xl'XZ) 

= (CPIB1T)(X1,X 1)· 

In either case, CPl T is also degenerate. 
The reader who so desires can define CPn inductively, following the same 

pattern for the cases n = 1 and n = 2. 
For n = 1 or 2 it is a routine matter to verify the following formula for 

any singular n-cube T: 

0n+1CPn(T) = T - A1CPnCT) - CPn-Ion(T); 

while for n = ° we have the simpler formula 

0ICPO(X) = x - Xo' 

Therefore we define Pn:QnCX) ---> QnCXjxo) as follows: For n = 0, 

Po(x) = Xo 

for any singular O-cube x. For n = 1 or 2, 

With this notation, the preceding formulas can be written as follows: 

0ICPO(U) = U - Po(u), U E Qo(X) (7.1) 

0n+ I cpnCU) + CPn-IOn(U) = U - pnCU), U E Qn(X), n = 1 or 2. (7.2) 
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Note that Pn restricted to the subgroup Qn(X/XO) is the identity map, and 
both CPn and Pn map degenerate chains into degenerate chains. Therefore they 
define homomorphisms 

Pn: Cn(X) --+ CiX /xo), 

<Pn:CiX) --+ Cn+1(X), 

and analogues of Equations (7.1) and (7.2) hold. It remains to prove that P 
commutes with the boundary operator, i.e., 

onPn(u) = Pn-loiu). 

This equation is an easy consequence of Equations (7.1) and (7.2): Apply On 
to both sides of Equation (7.2), and also substitute 0n+ 1 (u) for u in this 
equation, and compare the results. 

This completes the proof of Lemma 7.2. This proof is conceptually quite 
simple, but the many details which need to be checked make it rather 
long. Q.E.D. 

We can now proceed with the proof of Theorem 7.1. First of all, note that 
Zl(X/XO) = C1(X/XO); hence there is a natural epimorphism k:C1(X/xo)--+ 
H1(X/xO) and the kernel of k is B1(X/xO). 

Next, we will define a homomorphism I: Ql(X/XO) --+ n'(X/xo) in a rather 
obvious way. Since Ql(X/XO) is a free abelian group and n'(X,xo) is abelian, 
it suffices to define Ion a basis for Ql(X/XO), namely, on the singular 1-cubes. 
But each such basis element T:I --+ X with vertices at Xo is a closed path 
and hence determines a unique element of n(X,xo). Note that I maps D 1 (X /xo) 
trivially, and therefore induces a homomorphism 1':C1(X/xo) --+ n'(X,xo), 
which is obviously an epimorphism. Also, the following diagram is clearly 
commutative: 

T. 
H 1(X/xo) ---+ Hl(X). 

Since T * is an isomorphism it follows from this diagram that 

kernel I' c kernel k = B1(X/xo). 

We will next show that 

from this it will follow that 

kernel I' = kernel k, 

(7.3) 

(7.4) 

and since both k and I' are epimorphisms, and Diagram (7.3) is commutative, 
h must be an isomorphism as desired. 
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To prove Inclusion (7.4), consider the following sequence of homomor
phisms. 

By using a basic property of the fundamental group (cf. Lemma 8.1 in 
Chapter II of Algebraic Topology: An Introduction) it is easy to prove that 
the composition la2 = O. From this fact Inclusion (7.4) follows. Q.E.D. 

This theorem should help to develop one's intuition about the first 
homology group H l(X). 

EXERCISES 

7.1. Assume that G is an arcwise connected topological space, e E G, and there exists 
a continuous map J1: G x G --> G such that J1(e,x) = J1(x,e) = x for any x E G. 
[Example: G is a topological group and e is the identity.J Prove that n(X,e) is 
isomorphic to Hj(X) (cf. Exercise 7.5 of Chapter II of Algebraic Topology: An 
Introduction). 

7.2. (a) Prove that the fundamental group ofa graph is determined by the first homology 
group. (See Theorem 5.1 of Chapter VI of Algebraic Topology: An Introduction.) 

(b) Prove that the fundamental group of a noncompact surface is determined by 
the first homology group. (See Exercise 5.6 of Chapter VI of Algebraic Topology: 
An Introduction.) 
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CHAPTER IV 

Homology of CW -complexes 

§l. Introduction 

The purpose of this chapter is to develop a systematic procedure for deter
mining the homology groups of a certain class of topological spaces. The 
class of topological spaces chosen consists of the CW-complexes of J. H. C. 
Whitehead. The procedure developed is a natural generalization and exten
sion of the method used in the preceding chapter to determine the homology 
groups of graphs and compact 2-manifolds. 

§2. Adjoining Cells to a Space 

The reader may have noticed that there was an analogy in the way the exact 
homology sequence and Excision property were applied in §III.3 to determine 
the homology groups of a graph, and the way they were applied in §III.4 to 
determine the homology groups of a compact surface. The reason behind this 
analogy may be stated as follows: A graph may be obtained by adjoining the 
edges to the vertices, and each edge is homeomorphic to R 1. A compact 
surface may be obtained by adjoining an open disc (which is homeomorphic 
to R2) to a certain graph (which is a union of one or more circles with a single 
point in common). 

It is natural to expect there would be a higher-dimensional analogy of 
these two cases, in which one considers spaces which are obtained by adjoin
ing higher-dimensional open "discs" or "open solid balls" to a given space, 
and then uses the Excision property, etc. in an analogous way to compute the 
homology groups of the resulting space. In this section we will study such a 

76 
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higher-dimensional analogue. We will even consider the case where an 
infinite number of n-dimensional "discs" or "balls" are all attached at once. 

In the next section, we will consider spaces that are built up one dimension 
at a time by first attaching open 2-dimensional discs to a graph (as in the case 
of a surface), then open 3-dimensional balls to the resulting space, etc. 

In this and the following sections, we will use the following terminology 
and notation for any integer n ~ 1: 

En = {x E Rnllxl ~ 1} (closed n-dimensional disc or ball), 

un = {x E Rn Ilxl < 1} (open n-dimensional disc or ball), 

sn-l = {x E Rnllxl = 1} ((n - 1)-dimensional sphere). 

The sphere sn-l is called the "boundary" of En. Note that un is homeo
morphic to Rn, and that it is contractible. 

In this section we assume that X* is a Hausdorff space, and that X is a 
closed subset of X* such that X* - X is the disjoint union of open subsets 
el, A E A; each el is assumed to be homeomorphic to un, and is called an 
n-cell or open n-cell. Finally, it is assumed that each n-cell el is "attached" to 
X by means of a so-called characteristic map. This means that for each index 
A E A there exists a continuous map 

f).:En ~ el 

such that f). maps un homeomorphically onto el and fiSn- 1) c X. 
If there are only a finite number of n-cells, then we need impose no other 

conditions. However, if the number of n-cells is infinite, then we must impose 
the following further condition in order to avoid various pathological situa
tions: It is assumed that a subset A of X* is closed if and only if A n X and 
f). -l(A) are closed for all A E A. This last condition is often expressed by saying 
that "X* has the weak topology determined by the maps f). and the inclusion 
map X ~ X*." Note that this condition is automatically satisfied in case 
the number of cells is finite (since the finite union of closed sets is closed in any 
topological space and a compact subset of a Hausdorff space is closed). 

Intuitively speaking, we can think of the space X* as obtained from X by 
the "pasting on" of the n-cells el' The characteristic map f). describes precisely 
how the cell el is pasted onto X. In Chapter III there were examples of the 
cases where n = 1 or 2 and the number of cells attached is finite. The student 
should construct other examples to illustrate some ofthe various possibilities 
inherent in this definition. 

In this section, we wish to consider the following problem. Suppose X is a 
space whose homology groups are known. Let X* be a space obtained from 
X by adjoining n-cells so that the above conditions hold. How are the 
homology groups of X* related to those of X? The obvious way to attack 
this problem is to consider the exact sequence of the pair (X*,X). This 
requires that we determine the homology groups of the pair (X* ,X). This we 



78 IV Homology of CW-complexes 

can do by application ofthe techniques of the last section. The result may be 
stated as follows: 

Theorem 2.1. Let X* be a space obtained by attaching a collection of n-cells 
(n > 0) {eW. E A} to X so that the hypotheses listed above hold. Then 
HiX*,X) = 0 for all q #- n. For each index A E A, the characteristic map f;. 
induces a monomorphism of relative homology groups f;.*: H iEn,sn - 1) ~ 
Hn(X*,X) and Hn(X*,X) is the direct sum of the image subgroups. Thus 
Hn(X*,X) is a free abelian group with basis in 1-1 correspondence with the set 
of cells {e11A E A}. 

Corollary 2.2. The homomorphism i*:Hq(X) ~ Hq(X*) is an isomorphism 
except possibly for q = nand q = n - 1; the only nontrivial part of the homol
ogy sequence of the pair (X*,X) is the following: 

o ~ Hn(X) ~ Hn(X*) ~ Hn(X*,X) ~ Hn- 1(X) ~ Hn- 1(X*) ~ O. 

PROOF OF THEOREM 2.1. The closed ball En and the sphere sn - 1 both have 
center at the origin, 0, and radius 1. We also need to consider the closed ball 
of radius t with center at the origin: 

Let 
Dn = {x E Rnllxl ::; t}. 

D;. = f;.(Dn), 

a;. = f;'(O), 

!!fi = U D;., 
;'eA 

A = {a;.IA E A}, 

X' = X* - A. 

Note that f;. maps the pair (Dn, Dn - {O}) homeomorphically onto (D;., 
D;. - {a;.}), and that the subsets D;., A E A, are pairwise disjoint. Consider 
the following diagram, 

Hiflfl,flfl - A) ~ HiX*,X/) l- HiX*,X), 

where both arrows denote homomorphisms induced by inclusion maps. We 
assert that both homomorphisms in this diagram are isomorphisms for all q. 
For the homomorphism represented by arrow 2, this follows from the fact 
that X is a deformation retract of X', and by using the five-lemma. For the 
homomorphism represented by arrow 1, it is a consequence of the excision 
property. 

Next, note that the arcwise connected components of flfl are obviously the 
sets D;.. Hence Hiflfl, flfl - A) is the direct sum of the groups Hq(D;., D;. -
{a;.}) for all A E A. Moreover, 

{o for q #- n, 
HiD;., D;. - {a;.}) = z c 

lor q = n. 
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From this it follows that Hq(X*,X) = 0 for q #- n, and that Hn(X*,X) is a free 
abelian group with basis in 1-1 correspondence with the set of n-cells {en. 
To complete the proof, consider the following commutative diagram: 

Hn(D, D - A) ---~) Hn(X*,X') <-( --- Hn(X*,X) 

3 4 
Hn(Dn, Dn - {O}) -- HiEn, En - {O}) ~ Hn(En,sn-l). 

The vertical arrows denote homomorphisms induced by fA.' Since fA. maps 
(Dn, Dn - {O}) homeomorphically onto (DA., DA. - {aA.})' it follows that f;* 
maps Hn(Dn, Dn - {O}) isomorphically onto the direct summand HiDA., 
DA. - {aA.}) of Hiflfl, flfl- A). We have already proved that arrows 1 and 2 
are isomorphisms; by exactly the same method, one can prove that arrows 3 
and 4 are isomorphisms. Putting all these facts together suffices to prove that 
fA.*:Hn(En, sn-l) -+ Hn(X*,X) has the desired properties. Q.E.D 

To close this section, we call the reader's attention to the naturality of the 
exact sequence of the pair (X*,X). Thus if X* is obtained from X by the 
adjunction of n-cells, and y* is similarly obtained from Y by the adjunction 
ofn-cells, and cp:(X*,X) -+ (Y*,Y) is a continuous map of pairs, then we get 
a ladderlike commutative diagram of maps of the homology sequence of 
(X* ,X) into that of (Y*, Y). Of course this is a special case of naturality of the 
exact sequence of a pair, but it is important and we will make use of it. 

§3. CW -complexes 

One of the problems encountered in a systematic exposition of algebraic 
topology is deciding on a suitable category of spaces to be studied. If the 
category chosen is too narrow and restricted, the theorems are not likely to 
be applicable in other parts of mathematics. On the other hand, if the category 
chosen is too broad and inclusive, many of the theorems one desires to prove 
will become very difficult or false (algebraic topology is mainly concerned 
with topological spaces which are sufficiently nice locally so as to be non
pathological). The category of CW-complexes (introduced by J. H. C. 
Whitehead in 1949) has proven to be a reasonable compromise between the 
various extremes. Roughly speaking, a CW-complex is built up by the suc
cessive adjunction of cells of dimensions 1, 2, 3, ... , etc., as described in the 
preceding section. Our treatment of this topic is rather brief; hence it may be 
advisable for the student to read further on this topic. The original paper on 
the subject is by J. H. C. Whitehead [10]. The book by Lundell and Weingram 
[5J is rather complete. Other references are Cooke and Finney [2, Chapter IJ, 
Hilton [3J, Hu [4J, and Massey [6]. 
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The original reason for the term "CW-complex" may be explained as 
follows: The letter C stands for closure-finite and W stands for weak topology. 

Definition 3.1. A structure of CW-complex is prescribed on a space X 
(which is always assumed to be Hausdorff) by the prescription of an ascending 
sequence of closed subs paces 

XO c Xl C X 2 c··· 

which satisfy the following conditions: 

(i) XO has the discrete topology. 
(ii) For n > 0, xn is obtained from X n- l by adjoining a collection of n-cells 

so that the conditions explained in §2 hold. 
(iii) X is the union of the subs paces Xi for i ~ o. 
(iv) The space X and the subspaces xq all have the weak topology: A subset 

A is closed if and only if A n en is closed for all n-cells, en, n = 0, 1, 2, .... 

The subset xn is called the n-skeleton. The points of XO are called vertices 
or O-cells. A CW-complex is finite or infinite according as the number of cells 
is finite or infinite. If X = xn for some integer n, the CW -complex is called 
finite-dimensional, and the least such integer n is called the dimension. 

Note that for finite CW-complexes, Condition (iv) is superfluous. This fact 
greatly simplifies the theory in the finite case, which will be our main interest. 

EXAMPLE 3. 1. The n-sphere, sn, can be given a CW-complex structure such 
that there are only two cells, a O-cell and an n-cell. In other words, the k
skeleton is a single point for 0 ::;; k < n, and the n-skeleton is sn. The charac
teristic map, by which the n-cell is attached, maps the boundary of En to a 
single point. 

EXAMPLE 3.2. A finite graph, as defined in III.3, is a finite, 1-dimensional 
CW-complex with an additional condition imposed on the characteristic 
maps by which the 1-cells are attached. 

EXAMPLE 3.3. In §III.3 we determined the homology groups of a compact, 
orientable surface of genus g > 0 (i.e., the connected sum of g tori). This 
amounted to prescribing a finite, 2-dimensional CW-complex structure on 
each of these surfaces, such that there is a single O-cell, 2g 1-cells, and a 
single 2-cell. In the case of a nonorientable surface of genus g (i.e., the con
nected sum of g projective planes) we used a CW-complex having a single 
O-cell, g 1-cells, and a single 2-ce11. 

EXAMPLE 3.4. To triangulate a compact 2-manifold, as explained in Chapter 
I of Algebraic Topology: An Introduction, gives it the structure of a finite, 
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2-dimensional CW-complex. The vertices are the O-cells, the edges are the 
I-cells, and the triangles are the 2-cells. Similarly, the more general sub
division of a compact 2-manifold discussed in Section 8 of Chapter I, loco cit., 
also gives rise to a CW-complex. 

EXAMPLE 3.5. Suppose that X and Yare finite CW-complexes with skeletons 
{Xk} and {yk} respectively. Then one can specify a CW-complex on the 
product space X x Y such that the n-skeleton is the union of the subspaces 
XO x yn, Xl X yn-t, x 2 X yn-2, ... ,Xn X yo. The product of a p-cell of 
X and a q-cell of Y is a p + q-cell of X x y; the attaching map of such a 
product cell is the product of the attaching maps. The details of this con
struction will be described in §VI.2. 

EXAMPLE 3.6. A more subtle and interesting example is a real, complex, or 
quaternionic projective space. Given any field F, an n-dimensional projective 
space over F is defined to be the set of all I-dimensional subspaces in an 
(n + I)-dimensional vector space over F. This definition is valid even if the 
field F is noncom mutative (although then one should distinguish between 
right and left vector spaces over F). Since any (n + I)-dimensional vector 
space over F is isomorphic to the space Fn + 1 of all (n + I)-tuples of elements 
of F, we may as well restrict ourselves to consideration of Fn + 1. Any point 
(Xl, ... ,Xn +1) of F n + I different from (0, ... ,0) determines a unique 1-
dimensional subspace, and hence a unique point of the corresponding pro
jective space. Two such (n + I)-tuples, (Xl,··· ,Xn+ 1) and (YI"" ,Yn+ 1) 
determine the same point of projective space if and only if there exists a 
nonzero element A of F such that Yi = Axi for 1 ::; i ::; n + 1. In books on 
projective geometry, such an (n + I)-tuple is referred to as a set of homo
geneous coordinates for the corresponding point in projective space. 

We will only be interested in the cases where F is the field of real numbers, 
complex numbers, or quaternions. In each of these cases the field F has a 
standard topology, and the vector space Fn + 1 is given the product topology. 
The corresponding projective space can be looked on as a quotient space of 
Fn+ 1 - {a}, and it is customary to give it the quotient space topology. 
Alternatively, the projective space can be topologized as a quotient space 
of the unit sphere with center at the origin in F n + 1. 

There is an obvious imbedding of Fn in Fn+ t, defined by (Xl' ... ,xn) -+ 

(Xl> ... ,x",O). This leads to a corresponding imbedding of the (n - 1)
dimensional projective space into the n-dimensional projective space over 
F. This kind of imbedding will define the skeletons of a CW-complex on 
these projective spaces. We will now discuss in more detail each of the cases: 

Case 1: F = real numbers. The n-dimensional real projective space, de
noted by Rpn, is the set of all I-dimensional subspaces ofRn+I. It may be 
topologized as a quotient space of Rn+ 1 - {a}, or of the unit sphere, sn. 
Each I-dimensional subspace of Rn + 1 intersects sn in a pair of antipodal 
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points. Hence sn is a 2-sheeted covering space of Rpn (see Algebraic Topology: 
An Introduction, Example 8.2 on p. 166). The inclusions Rl c R2 C ... c 

Rn + 1 give rise to corresponding inclusions of real projective spaces: 

It is clear that Rpo is a single point, and easy to verify that Rpl is a circle. 
We will take these subspaces as the skeletons of a CW-complex. We assert 
that Rpk is obtained from Rpk-l by the adjunction of a single cell of dimen
sion k. Using homogeneous coordinates in RP\ the characteristic map 

fk:Ek -+ Rpk 

is defined by the formula 

fk(Xl, ... ,xd = (Xl,· .. ,Xk>,)l -lxI2), 
where X = (Xl> ... ,Xk). We leave it to the reader to verify that fk maps 
Ek _ Sk-l homeomorphically onto Rpk - Rpk-l, and Sk-l onto Rpk-l 
(but not homeomorphically). 

Case 2: F = complex numbers. The n-dimensional complex projective 
space, denoted by cpn, is the set of all I-dimensional subspaces of the 
complex vector space en + 1. The inclusions 

give rise to corresponding inclusions of complex projective spaces, 

Cpo c Cpl C ... C cpn. 

Once again, Cpo is a single point, and it may be shown without too much 
difficulty that Cpl is homeomorphic to S2. In this case, Cpk is obtained from 
Cpk - 1 by the adjunction of a single cell of dimension 2k. The adjunction map 

fk:E2k -+ Cpk 

is defined by the formula 

fk(Zl, ... ,zd = (Zl' ... h,,)l -lzI2). 
Here we are using the following notational conventions: Z = (Zl' ... ,Zk) is a 
point of ek = R2k. On the right-hand side of this formula we are using 
homogeneous coordinates in Cpk. The norm of Z is defined by 

E2k is the unit ball in ek = R2k. Once again, it can be verified that fk maps 
S2k-l onto cpk-l, and E2k - S2k-l homeomorphically onto Cpk _ Cpk-l. 
Hence we can take Cpk as the 2k-skeleton of cpn for k = 0, 1, ... , n. The 
2k + I-dimensional skeleton is the same as the 2k-dimensional skeleton. 
There are cells of dimensions 0, 2, 4, ... , 2n. 
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Case 3: F = quaternions. This case is very similar to the preceding. The 
n-dimensional quaternionic projective space is denoted by Qpn. We have 
inclusions, 

QPO C QPl c ... C Qpn. 

QPo is a single point and Qpl is homeomorphic to S4. QPk is obtained from 
QPk-l by adjunction of a single cell of dimension 4k. The formula for the 
characteristic map is the same as in the two preceding cases, using quater
nions in place of real or complex numbers. Qpn is a CW-complex having a 
single cell in each of the dimensions 0, 4, 8, ... , 4n. 

For further details about these projective spaces, the reader is referred to 
Bourbaki [1] or Porteous [8]. 

Not every Hausdorff space admits a CW-complex structure. If it does 
admit such a structure, then usually it admits infinitely many different such 
structures (e.g., consider a finite regular graph as a CW-complex, and consider 
all its subdivisions). 

Among the nice properties of a CW-complex, we list the following without 
proof: 

(i) A CW-complex is paracompact, and hence normal. 
(ii) A CW-complex is locally contractible, i.e., every point has a basic family 

of contractible neighborhoods. 
(iii) A compact subset of a CW-complex meets only a finite number of cells. 

A CW-complex is compact if and only if it is finite. 
(iv) A function f defined on a CW-complex is continuous if and only if the 

restriction of f to the closure en of every n-cell is continuous (n = 

0,1,2, ... ). 

A subset A of a CW -complex is called a sub complex if A is a union of cells 
of X, and if for any cell en, 

e"cA=e" c A. 

If this is the case, it may be shown that the sets 

An = A n X", n = 0,1,2, ... , 

define a CW-complex structure on A. 
For example, the skeletons X" are sub complexes. 

Definition 3.2. A continuous map of f:X -+ Y of one CW-complex into 
another is called cellular if f(Xn) c yn for n = 0, 1, 2, ... (here xn and yn 
denote the n-skeletons of X and Y). 

In [10] J. H. C. Whitehead proves that any continuous map X -+ Y is 
homotopic to a cellular map. 
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§4. The Homology Groups of a CW -complex 

The purpose of this section is to apply the results of §2 to CW-complexes 
in a systematic way. 

Let K = {Knln = 0,1,2, ... } denote a structure of CW-complex on the 
topological space X (each K n is a closed subset of X). We will define K n = 0 
for n < 0. Since K n is obtained from K n -1 by the adjunction of n-cells (by 
definition), we can apply the results of Theorem 2.1 to conclude that 

H q(Kn,Kn - 1) = ° 
for q ¥- n and that Hn(Kn,Kn- 1) is a free abelian group with basis in 1-1 
correspondence with the n-cells of K. 

Lemma 4.1. HiKn) = ° for all q > n. 

The proof is by induction on n. For n = 0, the lemma is trivial, since KO 
is a discrete space (by definition). The inductive step is proved by using the 
homology sequence of the pair (Kn,Kn - 1). 

We will now associate with the CW-complex K certain "chain groups" 
Cn(K), n = 0, 1, 2, ... and then we will prove that the nth homology group 
obtained from these chain groups is naturally isomorphic to Hn(X). The 
definitions are as follows: 

and 

dn:Cn(K) ~ Cn- 1(K) 

is defined to be the composition of homomorphisms, 

H(KnKn-l)~H (Kn-l) in-l H (Kn- 1 Kn- 2 ) 
n' n-1 -------....:,. n-1 , , 

where 0* is the boundary operator of the pair (Kn,Kn - 1) and jn _ 1 is the 
homomorphism induced by the inclusion map. Of course one must verify 
that dn - 1dn = 0, but this is easy. We will find it convenient to denote the 
n-dimensional groups of cycles, bounding cycles, and homology classes 
derived from these chain groups by the notations 

ZiK), Bn(K), and Hn(K) 

respectively; here ZiK) = kernel dn, Bn(K) = image dn+ 1, and HiK) = 
Zn(K)/Bn(K). 

For the statement of the main theorem, consider the following diagram: 

HiX) ~ HiKn) ~ HiKn,Kn- 1) = CiK). 

Here jn and kn are homomorphisms induced by inclusion maps. 
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Theorem 4.2. In the above diagram: 

kn is an epimorphism. 
jn is a monomorphism. 
image jn = ZiK). 
kernel kn = j; 1(BiK». 

Thus jn a k; 1 defines an isomorphism 
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This theorem asserts that Hn(X) ~ Hn(K); however, it says even more, in 
that a certain composition of maps is asserted to be an isomorphism. This 
additional information is important in certain cases. 

PROOF OF THEOREM 4.2. First of all, note that for n 2': 1 the only nontrivial 
part of the homology sequence of the pair (Kn,Kn -1) is the following: 

0-+ HiKn) ~ HiKn,Kn-1) ~ Hn_1(Kn- 1) ~ Hn_1(Kn) -+ O. (4.1) 

This is a consequence of Theorem 2.1 and Lemma 4.1. It follows that the 
homomorphism 

in:HiKn-1) -+ HiKn) 

is an isomorphism except for q = nand q = n - 1; in particular it is an 
isomorphism for q < n - 1, i.e., for n > q + 1. Thus we have the following 
commutative diagram for each integer q 2': 0: 

i,,+2 ;,,+3 i", i.+ 1 
Hq(Kq+ 1) ------+ Hq(Kq+2) ------+ ... ------+ Hq(Km) ------+ ... 

~ / (4.2) 

Hq(X) 

The horizontal arrows are all isomorphisms from what we have just said. 
In case X is finite dimensional, K m = X for some sufficiently large integer 

m, and it follows from this diagram that 

k,,:HiK") -+ HiX) 

is an isomorphism for any integer Q( > q. We wish to derive this same con
clusion in case X is infinite dimensional. For this purpose, recall Property 
(iii) of CW -complexes mentioned in the preceding section: Any compact 
subset of a CW-complex meets only a finite number of cells. It follows that 
any compact subset C of X is contained in some skeleton Km. If one now 
applies Proposition 111.6.1, the desired conclusion follows quite easily. The 
details are left to the reader. Note the particular case Q( = q + 1: the homo
morphism 

is an isomorphism. 
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Next, we consider the exact sequence (4.1). It follows from exactness that 

jn:Hn(Kn) -+ Hn(Kn,Kn- 1) 

is a monomorphism for all integers n, and 

in:Hn_1(Kn-1) -+ Hn_1(Kn) 

is an epimorphism for all n. In view of the commutativity of the diagram 

Hn(X) 

and the fact that kn+ 1 is an isomorphism, it follows that kn is onto, and kernel 
kn = kernel in+ 1 . Thus we may replace exact sequence (4.1) by the following: 

0-+ HiKn) ~ Hn(Kn,Kn- 1) ~ Hn_1(Kn- 1) ~ Hn- 1(X) -+ O. (4.3) 

Since dn = jn -1 0 *' and jn _ 1 is a monomorphism, we see that 

Next, we see that 

as required. 

Zn(K) = kernel dn = kernel 0* 

= imagejn· 

kernel kn _ 1 = image 0 * 
= j;;!l (imagejn_1o*) 
= j;;! 1 (image dn) 

=j;;-\ (Bn - 1{K)) 

This completes the proof of Theorem 4.2. 

We will now consider some applications of this theorem: 
(1) Suppose X is a CW-complex which is n-dimensional. Then 

HiX) = 0 for q > n. 

Q.E.D. 

(2) Suppose X is a CW-complex with only a finite number of n-dimen
sional cells. Then HiX) is a finitely generated abelian group (hence it is a 
direct sum of cyclic groups). 

(3) Suppose X is a CW-complex with no n-dimensional cells. Then 
Hn{X) = O. 

(4) The Euler characteristic. Let K = {Kn} be a structure of finite CW
complex on the space X (hence X is compact). Denote the number of n-cells 
of K by IXn. The Euler characteristic of K is defined to be the integer 

X(K) = L {-1)"lXn· 
n",O 
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We will now outline a proof that X(K) is actually a homotopy type invariant 
of the space X; it does not depend on K. 

Define a subset of an abelian group to be linearly independent if it satisfies 
the usual condition with integer coefficients. Then define the rank of an 
abelian group to be the cardinal number of a maximal linearly independent 
subset. Earlier, we defined the rank of a free abelian group to be the cardinal 
number of a basis; it is an exercise in matrix theory to prove that the two 
definitions are equivalent in the case of free abelian groups. 

For any abelian group A, let r(A) denote the rank of A. One can now 
prove the following facts about the rank of abelian groups: 

(a) If B is a subgroup or quotient group of A, then r(B) ~ r(A). Hence 
any finitely generated abelian group has finite rank. 

(b) Let 0 -. A -. B -. C -. 0 be a short exact sequence abelian groups 
with B of finite rank. Then 

r(B) = r(A) + r(C). 

The proofs are left to the reader. 
The proof of invariance of the Euler characteristic of a finite CW -complex 
depends on the following lemma: 

Lemma 4.3. Let K be a finite CW-complex on the space X. Then 

~) -lrr(Cn(K)) = I( -lrr(Hn(K)). 
n n 

We leave the proof, which depends on Statements (a) and (b) above, to 
the reader. 

Corollary 4.4. Let K = {Kn} be a finite CW-complex on the space X. Then 
the Euler characteristic satisfies the following equation: 

X(K) = I( -l)"r(Hix))· 
n 

Hence X(K) is independent of the choice of the CW-complex K on the space X. 

(5) The homology groups of n-dimensional projective space. Using the 
CW-complexes on cpn and QP" described in the previous section, the 
following results are immediate: 

Hicpn) = {~ 

HiQP") = {~ 

for q even and 0 ~ q ~ 2n, 
otherwise, 

for q == 0 mod 4 and 0 ~ q ~ 4n, 
otherwise. 

On the other hand, the methods we have developed do not suffice to deter
mine the homology groups of RP". All one can prove using these methods is 
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that Hq(Rpn) is a cyclic group for 0 ~ q ~ n and is 0 otherwise (of course 
H o(Rpn) is infinite cyclic). 

Next, we will discuss the homomorphism induced by a cellular map of 
one CW-complex into another. Let K = {Kn} be a CW-complex on the 
space X, and let L = {Ln} be a CW-complex on the space Y, and let f:X -+ 

Y be a cellular map, i.e., f(Kn) c L n for all n. Then for each integer n, f 
induces a homomorphism of the homology sequence of the pair (K n,Kn - 1 ) 

into the homology sequence of the pair (Ln,£"-1). Thus we have the fol
lowing commutative diagram: 

jn a. i, 
o~ H.(Kn) ~ Hn(Kn,Kn-l) ~ H n_1(Kn- 1) ~ H.-1(K·) ~o 

If, 1¢' 1/,-, 11, 
j, a. i, 

o~ H.(L") --+ H.(L",L"-l) ~ H._1(L"-I) -----+ H.-1(L") ~o. 

Herefn:Kn -+ £" is the map induced by f, as is CfJn:(K n,Kn- 1) -+ (Ln,Ln- 1). 

In view of the definition of the boundary operator dn: CiK) -+ Cn -1 (K) 
above, it follows that the following diagram is commutative for all n: 

C.(K) _...:.."'...:..' ~I Cn(L) 

1 d, 1 d, 

CfJn-1 

C._1(K) ~ Cn-1(L). 

Hence by exactly the same reasoning used in §II.3, we conclude that the 
collection of homomorphisms {CfJn} induce homomorphisms 

n = 0, 1,2, .... 

Theorem 4.5. The induced homomorphismsf* : Hn(X)-+Hn(Y) and CfJ* : HiK)-+ 
Hn(L) correspond under the isomorphisms On of Theorem 4.2; i.e., the following 
diagram is commutative for all n: 

8, 
H.(X) ~ Hn(K) 

y. 1"'· 
8, 

H.(Y) ~ Hn(L). 

PROOF. This follows immediately from the fact that the following diagram 
is commutative for all n, together with the definition of On contained in 
Theorem 4.2: 

k, j, 
H.(X) +--- H.(K·) ~ H.(K·,K·- 1) 

11 If, 
1"" k, j, 

Hn(Y) +--- H.(L.) ~ H.(L·,L·- 1). 
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We will conclude this section with a discussion of the effective com
putability of the various concepts introduced in this section. First of all, 
the groups Cn(K), n = 0, 1, 2, ... are free groups with basis in 1-1 corre
spondence with the set of n-cells of K, hence they may be considered to be 
well determined. To compute the homology groups Hn(K) ~ Hn(X), we 
must determine the homomorphisms 

n = 0,1,2, .... 

In general, these homomorphisms will depend on the choice of the char
acteristic maps by which the various cells are attached, and there seems 
to be no universal, simple, method for their determination. The following 
simple example illustrates this point. Let X be a torus and Y a Klein bottle. 
We may choose CW -complexes K and L on X and Y respectively each of 
which has one vertex, two I-cells, and one 2-cell. Thus Cn(K) ~ Cn(L) for 
all n. However, since HiK) '* HiL) for n = 1 or 2, it follows that the bound
ary homomorphisms dn for K and L must be essentially different (compare 
§III.4). The reason, of course, lies in the fact that the 2-cell is attached by 
different maps in the two cases. 

The situation is even worse as regards the computation of the homo
morphisms C{Jn:Cn(K) ~ CiL) mentioned above. Here an example is fur
nished by the case X = Y = sn, the n-sphere. We proved earlier (cf. Exercise 
111.3.2) that there exist continuous maps sn ~ sn of every possible degree. 
If we take K = L to be a CW-complex with one vertex and one n-cell, then 
a map sn ~ sn will be cellular if and only if the vertex is mapped onto the 
vertex; and this can always be arranged by an appropriate homotopic 
deformation of any given map. Thus it is clear that in such cases Theorem 4.6 
is of no help in determining the homomorphism induced by a continuous 
map. 

One of our objectives will be to introduce a more restricted class of 
CW-complexes and cellular maps such that the boundary operator and the 
induced homomorphism are actually computable. 

§5. Incidence Numbers and Orientations 
of Cells 

This section is devoted to some material of a more or less technical nature 
which will be used in the computation of homology groups ofCW-complexes. 

As in the preceding section, let K = {Kn} be a CW-complex on the 
space X. For each n-cell, el, there is a characteristic map, 

f;.:(En,sn-l) ~ (Kn,Kn- 1) 

and according to Theorem 2.1 the induced homomorphism on the n-dimen
sional relative homology groups is a monomorphism, and Hn(Kn,Kn- 1) is 
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the direct sum of the image subgroups. The characteristic map f;. corre
sponding to the cell e1 is by no means unique, and it is conceivable that this 
direct sum decomposition of the group H n(Kn,Kn -1) depends on the choices 
of the characteristic maps. Before proceeding further, it is important to 
point out that this is not the case; the direct sum decomposition of 
Hn(Kn,Kn-1) is canonical, and independent of the choices of the charac
teristic maps. This may be proved as follows. For any n-cell e;', n > 0, let 

We will call e;. the boundary of e;', even though it need not coincide with 
the boundary in the sense of point set topology. We can factor the charac
teristic map f;. through the pair (e;.,e;.), as follows: 

g, 
(En,8n- 1) ----+ (en,en) 

Here I;. is an inclusion map. Passing to homology, we obtain the following 
commutative diagram: 

We can apply Theorem 2.1 with (X*,X) = (e;.,e;.) to conclude that g;.* is 
an isomorphism. Hence 

image f;.* = image 1;.* 

and therefore image f;.* is independent of the choice of the characteristic 
map f;., as was to be proved. Note that this also proves that 1;.* is a mono
morphism, and H n(Kn,Kn - 1) is the direct sum of the images for all A E A. 

Since the group Hn(e;.,e1) is infinite cyclic for n > 0, there are two ways to 
choose a generator and the choices are negatives of each other. We will 
call a generator of the group Hn(e1,e;.) an orientation of the cell e1. 

Assume we have chosen an orientation a1 E Hie1,e;.) for each n-cell 
e1; let 

b1 = 1;.*(a1) E CiK). 

Then the set {b1} is a basis for the chain group CiK). 
The foregoing remarks are only valid if n > 0; the case n = 0 must be 

modified, as follows. By definition, Co(K) = Ho(KO), and 

Ho(KO) = L Ho(e~), 
;'EA 
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where {e~ I A E A} denotes the set of O-cells (or vertices) of K. For each A, 
the augmentation homomorphism 

8*:Ho(e~) ~ Z 

is a natural isomorphism. We will always choose a~ E Ho(e~) to be the unique 
element such that 8*(a~) = 1, and let b~ E H o(KO) = Co(K) be the element 
corresponding to a~. Thus {b~ I A E Ao} is a basis for Co(K). 

The distinction between the cases n = 0 and n > 0 may be summarized 
as follows: For n > 0, an n-cell has two orientations, and there is no reason 
to prefer one orientation over the other. On the other hand, a O-cell consists 
of a single point, and the question of choice of orientation does not arise in 
this case. 

Assume, then, that the bases {b'll A E An} have been chosen for the chain 
groups Cn(K) for n = 0, 1, 2, ... , as described above. The boundary homo
morphisms 

n = 1,2,3, ... 

are completely determined by the value of dn on the basis elements; and 
we may uniquely express dn(b'l) as a linear combination of the b:-1's. It is 
customary to use the following notation for this purpose: 

dn(b'l) = 2Jb'l:b:- 1]b:- 1. 
Il 

The integral coefficient [b'l: b:- 1] is called the incidence number of the cells 
e'l and e:- 1 (with respect to the chosen orientations). Obviously, the homo
morphism dn is completely determined by the incidence numbers, and 
vice-versa. The most important properties of the incidence numbers are 
summarized in the following two lemmas. 

Lemma 5.1. The incidence numbers of a CW-complex have the following 
properties: 

(a) For any n-cell e'l, [b'l:b:- 1] = 0 for all but a finite number of (n - 1)
cells e:- 1. 

(b) For any n-cell e'l and (n - 2)-cell e~-2, 

2]b'l:b:-l][b:-l:b~-2] = o. 

(c) For any I-cell e1, Lil [bi :b2] = O. 
(d) [ -b'l:b:- 1] = [b'l: _b:- 1] = -[b'l:b:- 1]. 

PROOF: The proof of (a) is a direct consequence of the definition of incidence 
numbers, and the proof of (b) follows from the relation dn-1dn = O. To prove 
(c), recall that C1(K) = HtC~l,KO), Co(K) = Ho(KO,K- 1) = Ho(KO), and 
d1:C1(K) ~ Co(K) is the homomorphism 

o*:H1(K1,KO) ~ Ho(KO) 



92 IV Homology oreW-complexes 

in the homology sequence of the pair (Kl,KO). Now consider the following 
diagram, which is commutative: 

z. 

The vertical line is exact by Proposition 11.2.1, hence 8*e = O. Therefore 

8*0* = 8*ea* = O. 
Hence we obtain 

0= 8*0*{bi) = 8*d1{bi) 

= 8* L [bi: b~Jb~ = L [bi : b~J8*{b~) 

= L[bi:b~J 

since b~ was chosen so that 8*{b~) = 1. 
The proof of (d) is trivial. Q.E.D. 

Lemma 5.2. If the cell e;:-l is not contained in the closure of the cell e1, 
then [b1:b~-lJ = O. 

PROOF: Earlier in this section, it was pointed out that the canonical direct 
sum decomposition of the group CiK) = Hn{Kn,Kn- 1) is determined by the 
monomorphisms 

lA*:HnC~,e1) -+ Hn{Kn,Kn- 1) 

for all n-cells e1 of K. Corresponding to this direct sum decomposition, 
there are projections of Cn{K) onto each of the summands. We assert that 
these projections may be described in terms of the following commutative 
diagram: 

H.(K·, K· - e;J 

Here l~ and rnA are inclusion maps. We assert that l~* is an isomorphism 
and rnA* composed with the inverse of l~* gives the projection of Cn{K) 
onto the direct summand corresponding to the cell £1. The proof that l~* 
is an isomorphism is based on Theorem 2.1, and is exactly the same as the 
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proof that 1 .. * is a monomorphism whose image is a direct summand. To 
prove the assertion about m .. *, one must prove that if el =1= e:, then mlL*I .. * = 
0; this is an easy consequence of Lemma 5.3 below. 

In view of these facts, and the definition of incidence numbers, it is clear 
that in order to prove [bl,b:- 1 ] = 0, we must prove that the following 
composition of homomorphisms is zero: 

We can imbed this sequence of homomorphisms in the following commuta
tive diagram: 

By commutativity of the squares in this diagram, we see that we must prove 

ji3' = 0. 

Since e:- 1 is not contained in e1, the inclusion mapj:el--+ (Kn-l,Kn- 1 -e:- 1) is homotopic to a map of e1 into K n - 1 - e:- 1 (to see this, choose a 
point Xo E e:- 1 such that Xo ¢ e1; the required homotopy of the map j is 
defined by means of a "radical projection" outward from the point Xo to 
the boundary of the cell e: -1). It follows from Lemma 5.3 below that j * = 0, 
and the proof is complete. Q.E.D. 

Lemma 5.3. Let f:(X,A) --+ (Y,B) be a map of pairs which is homotopic to a 
map g:(X,A) --+ (Y,B) such that g(X) c B. Then the induced homomorphism 

f*:HiX,A) --+ HiY,B) 
is zero for all n. 

PROOF. By the homotopy property,f* = g*,hencewemustprovethatg* = 0. 
The hypotheses imply that g can be factored, as follows: 

g' i 
(X,A) --+ (B,B) --+ (Y,B). 

Passing to homology, we have 

Hn(X,A) ~ Hn(B,B) ~ HiY,B). 

Since Hn(B,B) = ° for all n, the result follows. 
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§6. Regular CW -complexes 

We will now introduce a special category ofCW-complexes which have the 
property that their homology groups are effectively computable (at least in 
case the complex is finite). 

Definition 6.1. A CW-complex is regular if for each cell en, n > 0, there exists 
a characteristic map f:En ~ en which is a homeomorphism. 

We recall that previously we have only required that the characteristic 
map be a homeomorphism of un onto en, and map sn-l into the (n - 1)
skeleton. We are now requiring in addition that the characteristic map be 
a homeomorphism of sn - 1 into K n - 1. 

To clarify the definition, we present in Figure 9 an example of a CW
complex on the closed 2-dimensional disc which is not regular. There are 
three vertices, three edges, and one 2-cell: 

Figure 9 

We now list three basic geometric properties of regular CW-complexes: 
(1) If m < n and em and en are cells such that ~ n en =f. 0, then ~ c en. 
(2) For any n-cell ~, n ~ 0, en and en are the underlying spaces of sub-

complexes. Also, en is the union of closures of (n - I)-cells. 
Before stating the third property, we need a definition. We say em is a 

face of en if ~ c en, and denote this by ~ ~ en. Clearly, every cell is a face 
of itself; we say ~ is a proper face of ~ if it is a face of en, and ~ =f. en (notation: 
~ < en). This definition makes sense in a regular cell complex mainly because 
of property (1). 

(3) Let ~ and ~ + 2 be cells of a regular cell complex such that en is a 
face of en + 2. Then there are exactly two (n + 1 )-cells en + 1 such that en < 
~+1 < en+2. 

It should be emphasized that (1), (2), and (3) need not be true for non
regular CW-complexes. The proofs depend on Brouwer's theorem on in
variance of domain, Corollary III.6.7. 

The proofs of (1), (2), and (3) are given by Cooke and Finney [2] or 
Massey [7]. We will not reproduce these proofs here. Actually, in any 
specific case it will be clear that these properties hold. 
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Let K be a regular cell complex on the space X. We will denote the n-cells 
of K by the symbol el, where the index A ranges over a certain set An, n = 

0, 1,2, .... We assume orientations b1 have been chosen for each cell el as 
described in §5. 

Lemma 7.1. The incidence numbers [bl:b~-l] in a regular cell complex K 
satisfy the following four conditions: 

(1) If e~-l is not a face of el, then [bl:b~-l] = 0. 
(2) If e~-l is a face of el, then [bl:b~-l] = ± 1. 
(3) If e~ and e? are the two vertices which are faces of the 1-cell el, then 

[bl:b~] + [bl:b?] =0. 

(4) Let el and e~-2 be cells such that e~-2 < el; let e~-l and e~-l denote the 
unique (n - 1)-cells en - 1 such that e~-2 < en- 1 < el' Then 

[b1: b~-l] [b~- 1: b~- 2] + [b1: b~-l] [b~-l: b~- 2] = 0. 

PROOF: Condition (1) is a consequence of Lemma 5.2 and the definition of 
the term face. 

In order to prove Statement (2), we will make use of Statement (2) of §6. 
According to this statement, e1 is a subcomplex of K which contains the cell 
~-l, and it is easy to see that it doesn't matter whether we compute the 
incidence number [bl:b~-l] relative to the subcomplex ~ or to the whole 
complex K. Let L = {U} denote this subcomplex on the space el' Then 
U = e1 is a closed n-dimensional ball, and L n - 1 = e1 is an (n - I)-sphere. 
We will use the method of proof of Lemma 5.2 to prove the present lemma. 
Thus we see that in the following commutative diagram 

we must prove that k*o* is an isomorphism. We will prove this by proving 
that both 0* and k* are isomorphisms. 

To prove that 0* is an isomorphism, one considers the homology sequence 
of the pair (U,U- 1). Since U = ~ is contractible, fiiU) = 0, and the 
desired result follows. 

To prove that k* is an isomorphism, one considers the homology sequence 
of the pair (U-1,U- 1 - e~-l); k* is one of the homomorphisms in this 
exact sequence. We will prove that U- 1 - e~-l is contractible, from which 
it will follow that 
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for all q, and hence that k* is an isomorphism. To prove that L n-1 - e~-l 
is contractible, recall that £"-1 is an (n - i)-sphere. Let x be a point of e~-l; 
then £"-1 - e~-l is obviously a deformation retract of L n - 1 - {x}; and 
L n- 1 - {x} is homeomorphic to Rn- 1, hence contractible. Therefore Ln- 1 -
~-1 is also contractible. 

Statement (3) is a consequence of Part (c) of Lemma 5.1 and Statement (1), 
together with the obvious fact that any i-cell in a regular CW-complex has 
exactly two vertices which are faces. 

Statement (4) follows from Part (b) of Lemma 5.1, Statement (1), and 
Statement (3) of §6. Q.E.D. 

Our main theorem now asserts that the four conditions of the lemma 
just proved completely characterize the incidence numbers of a regular 
CW-complex. 

Theorem 7.2. Let K be a regular CW-complex on the topological space X. 
For each pair (e1,e~-1) consisting of an n-cell and an (n - i)-cell of K, let 
there be given an integer et11l = 0 or ± 1 such that the following four conditions 
hold: 

(1) If e~-l is not a face of e1, then et11l = O. 
(2) If e~ - 1 is a face of e1, then et11l = ± l. 
(3) If eZ and e~ are the two vertices of the i-cell eL then 

1 1 0 et;'1l + et;.v = . 

(4) Let e1 and e~ - 2 be cells of K such that e~ - 2 < e1; let e~ - 1 and e~ - 1 denote 
the unique (n - 1)-cells en - 1 such that e; - 2 < en - 1 < e1. 

Then 

Under these assumptions, it is possible to choose an orientation b1 for each 
cell e1 in one and only one way such that 

[bn. bn- 1] = etn 
;.. Il ;'Il 

for all pairs (e1,e~ - 1). 

PROOF: We will prove the existence of the required orientation b1 on the cell 
e1 by induction on n. For n = 0 there is no choice: a O-cell has a unique 
orientation, which we denote by b~. 

Next, let e1 be a i-cell, and let eZ and e~ be the two vertices which are 
faces of it, It is clear that one of the two possible orientations of ei, which 
we will denote by bi, satisfies the equation 

Then since 
[bl: bZ] = etl,. 

etlll + etlv = 0 

[bl:bZ] + [bl:b~] = 0 
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it follows that 
[bl:b~] = ocL, 

as required. 
Now we make the inductive step. Assume that an orientation b1 for each 

cell e1 has been chosen for all q < n such that the required conditions hold. 
Let e). be an n-cell of K, and let e:~ 1 be an (n - I)-cell which is a face of e~. 
Once again, it is clear that we can choose one of the two possible orientations 
of e~, which we will denote by b~, so that 

[bn'bn-1] n 
;'·!to = oc;'!to· (7.1) 

We must prove that if e~-l is any other face of e~, then 

[bn.bn-1] n 
;.. v = OC;'v· (7.2) 

For this purpose, consider the subcomplex L of K consisting of all the cells 
of e~. Then 

" n bn-1 z = L.. OC).v v , 
v 

where the summation is over all (n - I)-cells of L, is a nonzero (n - I)-chain 
of L. A routine calculation using the properties of regular cell complexes 
and the inductive hypothesis shows that 

dn-1(z) = 0, 

i.e., z is a cycle. A similar argument shows that 

z' = L[b~:b~-l]b~-l 

is also a nonzero cycle. Since e~ = L"-l is an (n - I)-sphere, it follows that 

is an infinite cyclic group. Therefore z and z' are both multiples of a generator 
of this group. Since {b~-l} is a basis for Cn-1(L), and we are assuming that 
Equation (7.1) holds, it follows that z and z' must be the same multiple of a 
generator of Zn-l(L), i.e., z = z'. By comparing coefficients of z and z', we 
see that (7.2) holds for all v. This completes the proof of the existence of the 
desired orientations. 

The proof of uniqueness of orientations is also done by induction on n. 
For n = 0, orientations are unique by definition. Assume inductively that 
orientations have been proven unique for all cells of dimension <n; let e). 
be an n-cell. Choose an (n - I)-dimensional face e:- 1 of e~. By Statement (d) 
of Lemma 5.1, changing the orientation of e~ would change the incidence 
number [b~: b: - 1], which is not allowed. Q.E.D. 

Notational Convention. From now on, we will usually only need to con
sider one choice of orientation for the cells of a regular CW -complex. 
Therefore we will use the same symbol for a cell and its orientation. Thus 
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[e1: e~ - 1] = 0 or ± 1 denotes the incidence number of the oriented cells e1 
and e~- 1. This calculated sloppiness in notation is customary and convenient. 

The uniqueness statement of Theorem 7.2 is important, because it shows 
that we can specify orientations for the cells of a regular CW-complex by 
specifying a set of incidence numbers for the complex. This is one of the most 
convenient ways of specifying orientations of cells. Regular CW-complexes 
are often more convenient than other CW-complexes, because of this simple 
method for specifying the orientation of cells. 

The method of using this theorem is quite simple. We assume we have 
given a list of cells of K together with the information as to whether e1- 1 < e~ 
for any two cells e~-1 and e~. For each I-cell el, choose incidence numbers 
between it and its two vertices so that Conditions (2) and (3) of Lemma 7.1 
(or Theorem 7.2) hold. Define all other incidence numbers between vertices 
and I-cells to be 0 (Condition (1)). 

Now assume, inductively, that incidence numbers have been chosen 
between all cells of dimension < n. Let e' be an I-cell. Choose a face eo -1 

of en, and choose [en: en- 1] to be + 1 or -1. Using Condition (4), determine 
[en:e~-l] for all (n - I)-cells e~-1 which are faces of en and· have an (n - 2)
face in common with en - 1. Spread out over the boundary en by repeating 
this process. Theorem 7.2 assures us that we will never reach a contradiction 
by this process. Repeat this process for each n-cell of K, and then use Condi
tion (1) to define all other incidence numbers between (n - 1)- and n-cells. 

Here is a convenient way to indicate incidence relations between low
dimensional cells on a diagram: 

(a) Between O-cells and I-cells. Let e1 be a I-cell with vertices eg and e? 
Consider the two incidence numbers [e1: eO] and [e1: e?]; one of these is 1, 
the other is -1. Draw an arrow on e1 indicating the direction from the vertex 
corresponding to - 1 to the vertex corresponding to + 1 as in Figure 10 . 

• • -1 +1 

Figure 10 

(b) Between I-cells and 2-cells. Let e2 be a 2-cell and let e1 be a face of e2, 

as shown in Figure 11. We assume the orientation chosen for e1 is indicated 
by means of an arrow, as shown. Indicate the orientation of e2 by indicating 
a direction of rotation of e2 about its center. This direction of rotation will 

Figure 11 
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be the same as that indicated by the arrow on e1 if [e2 : e1] = + 1, otherwise 
it will be the opposite. Note that the resultant direction of rotation of e2 

is independent of the choice of the face e1• 

(c) Between 2-cells and 3-cells. We can indicate orientations of 3-cells by 
assigning to them a right- or left-handed corkscrew. We assume that all the 
faces of a given 3-cell e3 have their orientations indicated as described in the 
preceding paragraph. Let e2 be a face of e3• If [e3 :e2] = + 1, assign to e3 

the kind of corkscrew needed to bore into e3 from the outside, through the 
face e2, rotating in the direction indicated by the orientation of e2 • If 
[e 3 :e2] = -1, assign to e3 the kind of corkscrew needed to bore out of e3 

through the face e2 , rotating in the direction indicated by the orientation of 
e2• Note once again that the type of corkscrew assigned to e3 is independent 
of the choice of the face e2 • 

EXERCISES 

7.1. Divide an orientable surface of genus n into 4n quadrilaterals. There will be 2n + 2 
vertices and 8n I-cells. Figure 12 indicates the case n = 2: 

d 

b~----~~----~d 

Compute incidence numbers. 

b 

Figure 12 

7.2. Consider real projective 3-space as obtained by identifying diametrically opposite 
points on the boundary of the regular octahedron 

{(x,y,z) E R311xl + lyl + Izl ~ I}. 

Divide the octahedron into eight tetrahedra by means of the coordinate planes 
(i.e., there is one tetrahedron in each octant). Compute incidence numbers. Note: 
This process can be generalized to define a regular CW -complex on real projective 
n-space. 

7.3. Let K be a regular CW-complex on X. Define K to be an almost simplicial complex 
if the following conditions hold for all n ~ 0: 

(a) Each n-cell has exactly n + 1 vertices. 
(b) Any set of n + 1 vertices is the set of vertices of at most one n-cell (it need not 

be the set of vertices of any n-cell). 
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Prove the following two facts about almost simplicial complexes: 

1. An n-cell has exactly n + I faces of dimension n - 1. 
2. Incidence numbers for an almost simplicial complex can be described explicitly 

as follows: Each cell is uniquely described by listing its vertices. Linearly order 
all the vertices (in any order whatsoever) and agree to always list vertices in the 
given order. If e" has vertices vo, VI' ... , v. in the given order, and the face e·- l 

has only the vertex Vi omitted, then set [e":e"-l] = (-If 

(Note: A simplicial complex, as defined in most books, is an almost simplicial 
complex with certain additional geometric structure. This additional structure is 
irrelevant as far as computing homology groups is concerned.) 

§8. Homology Groups of a Pseudo manifold 

In this section we apply the results of §7 to determine the structure of certain 
homology groups of a special class of regular CW -complexes. This special 
class is of fairly wide occurrence. 

Definition 8.1. An n-dimensional pseudomanifold is an n-dimensional finite, 
regular CW -complex which satisfies the following three conditions: 

(1) Every cell is a face of some n-cell. 
(2) Every (n - I)-dimensional cell is a face of exactly two n-cells. 
(3) Given any two n-cells, e" and em, there exists a sequence of n-cells 

eQ,ei, ... , ei: 

such that eo = en, ei: = em, and ei-l and ei have a common (n - 1)
dimensional face (i = 1,2, ... ,k). 

Some authors call an n-dimensional pseudomanifold a simple n-circuit. 
A regular CW-complex on a compact connected 2-manifold is an example 

of a 2-dimensional pseudomanifold. More generally it may be shown that a 
regular CW -complex on a compact connected n-manifold is an n-dimensional 
pseudomanifold. An example of a pseudomanifold which is not a manifold 
may be constructed as follows: Let K be a regular CW-complex on a com
pact, connected 2-manifold. Form the quotient by identifying two vertices 
which are not both vertices of the same 2-cell. The quotient space has an 
obvious structure of regular CW-complex, which may be shown to be a 
2-dimensional pseudo manifold. 

It may be proved that the above definition is "topologically invariant" 
in the sense that it expresses a condition on the underlying space rather than 
a condition on the particular regular CW-complex chosen on the space (a 
proof of this fact is contained in the book by Seifert and Threlfall, [9], 
Chapter 5). 
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Let K be an n-dimensional pseudomanifold, and let e1 and ei be n-cells 
of K which have a common (n - 1)-dimensional face (/'-1. We define orienta
tions for e1 and ei to be coherent (with respect to the common face (/'-1) if 
the incidence numbers satisfy the following relation: 

Note that this condition is independent of the choice of the orientation for 
the cell en - 1• A set of orientations for all the n-cells of K is said to be coherent, 
if it is coherent in the above sense for any pair of n-cells which have a common 
face of dimension n - 1. 

In connection with the above definition, it should be pointed out that a 
pair of n-cells in an n-dimensional pseudomanifold may have more than one 
common (n - I)-dimensional face; in such a case it is essential to specify 
the common face with respect to which given orientations are asserted to be 
coherent. An example is the following subdivision of the projective plane 
with four vertices, V1> ••• , V4, seven edges, e 1, ••• , e7, and four 2-cells, A, B, 
e, and D (see Figure 13). The 2-cells A and B have the edges e1 and e3 in 
common; if A and B are oriented coherently with respect to the edges e1' the 
orientations are not coherent with respect to the edge e3, and vice-versa. 

A B 
e1 

VZ------------..... v1 

ez 
Figure 13 

Given an n-dimensional pseudomanifold K, either all the n-cells of K can 
be simultaneously oriented so any pair having a common (n - I)-dimensional 
face are oriented coherently, or they can not be so oriented. In the former 
case, K is said to be orientable, in the latter case nonorientable. 

Theorem 8.1. 1f .f( is an orientable n-dimensional pseudomanifold, then Hn(K) 
is infinite cyclic; if K is nonorientable then Hn(K) = O. 
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The details of the proof are left to the reader. Note that since K is an 
n-dimensional CW-complex, Hn(K) = Zn(K). If K is orientable, and the n
cells are oriented so that any pair having a common face of dimension n - 1 
are coherently oriented, then the sum of all the n-cells (thus oriented) is an 
n-cycle; moreover, any n-cycle is an integral multiple of this sum. If K is 
nonorientable, then one proves that there are no nonzero n-cycles. 

In view of the invariance of the homology groups of a regular CW
complex K, this theorem shows that the concepts of orientability and 
non-orientabiIity really only depend on the underlying topological space in
volved, and not on the choice of the regular cell complex K. 

The next theorem describes the structure of the torsion subgroup of 
H n - 1(K). 

Theorem 8.2. Let K be an n-dimensional pseudomanifold. If K is orientable, 
then H n - 1(K) is torsion-free. If K is nonorientable, then the torsion subgroup 
of K is cyclic of order two. 

PROOF. Let k denote the number of n-cells of K. We assert that it is possible 
to enumerate the n-cells of K in order e1,~, . .. , ek and to choose (n - 1)
cells e'i - 1, i ~ i ~ k, of K such that the following condition holds: e'i - 1 is a 
common face of e'i and some n-cell ej with j < i. The proof of this assertion 
is left to the reader. 

Assume that the n-cells have been enumerated and the (n - I)-cells 
~-1, ... , ej;-1 have been chosen so the above conditions hold. Choose an 
arbitrary orientation for the cell e1; then orient ~ so that its orientation is 
coherent to that of e1 with respect to the face ~-1. Next orient eJ so it is 
coherent with respect to the face ej-1 to either e1 or e~ as is relevant. Con
tinue in this manner, orienting all the n-cells in succession, so each e'i is 
coherently oriented with some ej, j < i, with respect to e'i - 1. Once the 
orientation of e1 is chosen, this condition uniquely determines the orienta
tions of the rest of the n-cells. It is easy to see that if K is orientable, then the 
result is a coherent orientation of all the n-cells of K. 

We next assert that any (n - I)-cycle z of K is homologous to a cycle z' 
such that the coefficient of each of the cells ~ - 1, ••• , ej; - 1 in z' is O. The 
proof, which is easy, is left to the reader. 

With these preparations out of the way, we can now prove the theorem. 
Let u be a homology class of finite order of H n - 1(K), i.e., q. u = 0 for some 
integer q. Let z E Zn-1(K) be a representative cycle for u. By the above 
argument, we may assume that the coefficients ofthe cells ~ - 1, ... , ek - 1 in 
the cycle z are all O. Since qu = 0, there exists an n-chain 

k 

C = L aie'i 
i= 1 

such that 

d(c) = q. z. 
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In view of the way we have oriented the n-cells e'/, and the fact that the 
coefficients of e'2- 1, .•. , ei:- 1 are ° in z, we conclude that 

If K is orientable, we see that 

d(c) = 0, 

hence q . z = 0, Z = 0, and u = 0, as required. In the nonorientable case, 
consider the n-chain 

k 

c' = Lei. 
i= 1 

Then d(c') is a nonzero (n - 1)-cycle which assigns the coefficient ° or ±2 
to every (n - 1)-cell of K. Hence 

y = !d(c') 

is an (n - 1)-dimensional cycle of K, and its homology class is an element 
of order 2 in H n - 1(K). Note that the coefficient of any (n - 1)-cell is ° or 
± 1 in the expression for the cycle y. Since c = IXC' for some integer IX, we 
see that 

d(c) = IXd(c'), 

q. z = 21XY, 

21X 
z=-y, 

q 

hence the homology class of z is a multiple of that of y. Thus the torsion 
subgroup of H n _ 1 (K) is the cyclic group generated by the homology class 
of y. Q.E.D. 

Since it may be shown that any regular CW -complex on a compact 
connected n-manifold is an n-dimensional pseudomanifold, the above results 
apply in particular to all compact n-manifolds which can be "subdivided" 
so as to define a regular CW -complex structure. It is known that every 
compact n-manifold admits such a subdivision if n ~ 3; the question is still 
open for manifolds of dimension > 3. 
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CHAPTER V 

Homology with 
Arbitrary Coefficient Groups 

§l. Introduction 

This chapter is more algebraic in nature than the preceding chapters. In §2 
we discuss chain complexes. This discussion mainly puts on a formal basis 
many facts that the reader must know by now. Nevertheless, there is some 
point to a systematic organization of the ideas involved, and certain new 
ideas and techniques are introduced. The remainder of the chapter is con
cerned with homology groups with arbitrary coefficients. These new homol
ogy groups are a generalization of those we have considered up to now. In 
the application of homology theory to certain problems they are often 
convenient and sometimes necessary. 

Starting in §2, we make systematic use of tensor products. It is assumed 
that the reader knows the definition and basic properties of tensor products 
of abelian groups. 

§2. Chain Complexes 

Much of this section consists of terminology and definitions which it will 
be very convenient to use from now on. 

Definition 2.1. A chain complex K = {Kmon} is a sequence of abelian groups 
Kn, n = 0, ± 1, ±2, ... , and a sequence of homomorphisms on:Kn -+ Kn- 1 

which are required to satisfy the condition 

On-10n = 0 
for all n. 

105 
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For any such chain complex K = {Kn,an} we define 

ZiK) = kernel an, 
BiK) = image an + l' 

Then Bn(K) c Zn(K) c K n , and we can define 

Hn(K) = Zn(K)/BiK), 

called the nth homology group of K. 

EXAMPLE 2.1. For any space X, we have previously defined the chain com
plexes 

and for any pair (X,A), 

Q(X) = {Qn(X),an } 

D(X) = {DiX),an} 

C(X) = {Cn(X),an} 

Definition 2.2. Let K = {Kman} and K' = {K~,a~} be chain complexes. A 
chain map f: K -+ K' consists of a sequence of homomorphisms In: Kn -+ K~ 
such that the commutativity condition 

In-1an = a~In 
holds for all n. 

EXAMPLE 2.2. A continuous map <fJ: X -+ Y induces chain maps 

etc. 

<fJ# :Q(X) -+ Q(Y) 

<fJ# :D(X) -+ D(Y) 

<fJ#:C(X) -+ C(Y) 

If f:K -+ K' is a chain map, then fn[ZiK)] c Zn(K') and fn[Bn(K)] c 

BiK'), hence there is induced a homomorphism 

f*:HiK) -+ Hn(K') 
for all n. 

Note that the set of all chain complexes and chain maps constitutes a 
category, and that Hn is a functor from this category to the category of 
abelian groups and homomorphisms. Note also that if f and g:K -+ K' are 
chain maps, their sum, 

is also a chain map, and 

(f + g)* = f* + g*:HiK) -+ HiK'). 

In other words, Hn is an additive functor. 



§2. Chain Complexes 107 

Definition 2.3. Let f, g: K -+ K' be chain maps. A chain homotopy D: K -+ K' 
between f and g is a sequence of homomorphisms 

such that 
fn - gn = o~+lDn + Dn-lon 

for all n. Two chain maps are said to be chain homotopic if there exists a 
chain homotopy between them (notation: f ~ g). 

EXAMPLE 2.3. If ({Jo, ({Jl: X -+ Yare continuous maps, any homotopy between 
({Jo and ({Jl gives rise to a chain homotopy between the induced chain maps 
({Jo # and ({Jl # on cubical singular chains (see §II.4). 

The reader should prove the following two facts for himself: 

Proposition 2.1. Let f, g:K -+ K' be chain maps. Iff and g are chain homo
topic, then 

for all n. 

Proposition 2.2. Chain homotopy is an equivalence relation on the set of all 
chain mapsfrom K to K'. 

EXERCISES 

2.1. By analogy with the category oftopological spaces and continuous maps, complete 
the following definitions: 

(a) A chain map f:K -+ K' is a chain homotopy equivalence if _____ _ 
(b) A chain complex K' is a subcomplex of the chain complex K if _____ _ 
(c) A subcomplex K' of the chain complex K is a retract of K if _____ _ 
(d) A subcomplex K' of the chain complex K is a deformation retract of K if 

(e) If K' is a subcomplex of K, the quotient complex K/K' is _____ _ 

In each case, what assertions can be made about the homology groups of the 
various chain complexes involved, and about the homomorphisms induced by the 
various chain maps? 

2.2. Let f, g, 1', and g' be chain maps K -+ K'. If f is chain homotopic to 1', and 9 is 
chain homotopic to g', then prove that f + 9 is chain homotopic to I' + g'. 

2.3. Let f, g: K -+ K' and 1', g': K' -+ K" be chain maps, D a chain homotopy between 
f and g, and D' a chain homotopy between I' and g'. Using D and D', construct an 
explicit chain homotopy between f'f and g'g:K -+ K". 

2.4. Let D be a chain homotopy between the maps f and g:K -+ K (of K into itself). 
Use D to construct an explicit chain homotopy between f" = fff ... f and g" = 
gg ... 9 (n-fold iterates). 
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Definition 2.4. A sequence of chain complexes and chain maps 

... - K ~ K' !. K' - ... 

is exact if for each integer n the sequence of abelian groups 

... - K ~ K' ~ K" - ... n n n • 

is exact in the usual sense. 

We will be especially interested in short exact sequences of chain com
plexes, i.e., those of the form 

E: 0 - K' ~ K !. K" - O. 

This means that for each n, J,. is an monomorphism, gn is an epimorphism, 
and image J,. = kernel gn' Given any such short exact sequence of chain 
complexes, we can follow the procedure of §I1.5 to define a connecting 
homomorphism or boundary operator 

oE:Hn(K") - Hn- 1(K') 

for all n, and then prove that the following sequence of abelian groups 

... ~ Hn(K') ~ Hn(K) .!+ Hn(K") ~ Hn- 1(K') - ... 

is exact. One can also prove the following important naturality property of 
this connecting homomorphism or boundary operator: Let 

E: 
f g 

0 --+K'--- K----+K"---O 

l~ l~ lw 
h j 

0--- L'--- L---L"----+O F: 

be a commutative diagram of chain complexes and chain maps. It is assumed 
that the two rows, denoted by E and F, are short exact sequences. Then the 
following diagram is commutative for each n: 

EXERCISES 

2.5. Define the direct sum and direct product of an arbitrary family of chain complexes 
in the obvious way. How is the homology of such a direct sum or product related 
to the homology of the individual chain complexes of the family? 
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2.6. Let E: 0 --> K' !.. K ~ K" --> 0 be a short exact sequence of chain complexes. By a 
splitting homomorphism for such a sequence we mean a sequence s = {s.} such that 
for each n, s.:K~ --> Kn, and 9.Sn = identity map of K~ onto itself. Note that we 
do not demand that s should be a chain map. Assume that such a splitting homo
morphism exists. 
(a) Prove that there exist unique homomorphisms qJn:K~ --> K~-l for all n such 

that 

(b) Prove that a~-lqJn + qJn-la~ = 0 for all n. 
(c) Let s' = {s~} be another sequence of splitting homomorphisms, and qJ~:K~ --> 

K~-l the unique homomorphisms such that f.-lqJ~ = ans~ - S~_la~. Prove 
that there exists a sequence of homomorphisms Dn:K~ --> K~ such that 

for all n. 
(d) Prove that the connecting homomorphism aE:H.(K") --> Hn- 1(K') is induced 

by the sequence of homomorphisms {qJ.} in the same sense that a chain map 
induces homomorphisms of homology groups. (Note: The sequence of homo
morphisms {qJn} can be thought of as a "chain map of degree -1." The sequence 
of homomorphisms {Dn} in Part (c) is a chain homotopy between {qJ.} and 
{ qJ~}.) 

We will conclude this section on chain complexes with a discussion of a 
construction called the algebraic mapping cone of a chain map. 

Definition 2.5. Let K = {Kn,lln} and K' = {K~,ll~} be chain complexes and 
!:K -. K' a chain map. The algebraic mapping coile of !, denoted by 
M(f) = {M(f)n,dn} is a chain complex defined as follows: 

M(f)n = K n - 1 Etl K~ (direct sum). 

The boundary operator dn:M(f)n -. M(f)n-1 is defined by 

d.(x,x') = (- On-lX' O~X' + fn-1X) 

for any X E Kn -1 and x' E K~. It is trivial to verify that dn -1 dn = o. 

Next, define in:K~ -. M(f)n by in(x') = (O,x'). The sequence of homo
morphisms i = {in} is easily seen to be a chain map K' -. M(f). Similarly, 
the sequence of projections jn: M(f)n -. Kn- 1 (defined by j.(x,x') = x) is 
almost a chain map. However, it reduces degrees by one, and instead of 
commuting with the boundary operators, we have the relation 

It is a "chain map of degree -1." It induces a homomorphism of homology 
groups which reduces degrees by one. 
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The chain maps i and j define a short exact sequence of chain complexes: 

o --+ K' ~ M(f) ~ K --+ O. 

As usual, this short exact sequence of chain complexes gives rise to a long 
exact homology sequence: 

Here d* denotes the connecting homomorphism. It is now an easy matter 
to check that 

for all n. Thus we have imbedded the homomorphisms f* induced by the 
given chain map in a long exact sequence; and this has been done in a 
natural way. That is the whole point of introducing the algebraic mapping 
cone. This long exact sequence will be called the exact homology sequence 
off· 

Remark. The topological analog of this construction is described in §X.3. 

Our first application of the algebraic mapping cone is to prove the 
following basic theorem. We will see other applications later on. 

Theorem 2.3. Let K = {Kn,(\} and K' = {K~,()~} be chain complexes such 
that Kn and K~ are free abelian groups for all n. Then a chain map f: K --+ K' 
is a chain homotopy equivalence if and only if the induced homomorphism 
f* :HiK) --+ Hn{K') is an isomorphism for all n. 

The only if part of this theorem is a triviality, hence we will be concerned 
only with the if part. First, we need a couple of lemmas. 

Recall that if the identity map and the zero map of a chain complex K 
into itself are chain homotopic, then Hn{K) = 0 for all n. The first lemma is 
a partial converse of this statement. 

Lemma 2.4. Let K be a chain complex such that Zn{K) is a direct summand of 
Kn for all n, and Hn{K) = 0 for all n. Then the identity map and the zero map 
of K into itself are chain homotopic. 

PROOF: For each n, choose a direct sum decomposition 

Kn = Zn{K) Ef> An· 

Since HiK) = 0, BiK) = Zn{K) for all n. It follows that On maps An iso
morphically onto Zn _ 1 (K). We now define the chain homotopy Dn: Kn --+ 

Kn+ 1 as follows: Dn restricted to An is the zero map, and Dn restricted to 
ZiK) shall map Z.(K) isomorphically onto An+ 1 by the inverse of the 
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isomorphism On+ l' It is now easily verified that 

Dn- 10ix) + 0n+1Dn(X) = X 

for any x E Kn. 

111 

Q.E.D. 

Lemma 2.5. Let K be a chain complex such that Kn is a free abelian group. 
Then Zn+ 1(K) is a direct summand of Kn+ 1. 

PROOF. Since Kn is free abelian, it follows by a standard theorem of algebra 
that the subgroup Bn(K) is also free abelian. Because On+ 1 is a homomorphism 
of Kn+ 1 onto the free group Bn(K), we can conclude that Zn+ 1(K) = kernel 
0n+ 1 is a direct summand. Q.E.D. 

PROOF OF THEOREM 2.3. We assume that the induced homomorphism 
f*:Hn(K) ~ Hn(K') is an isomorphism for all n, and will prove that f is 
a chain homotopy equivalence. Let M(f) denote the algebraic mapping 
cone of f; our assumption implies that Hn(M(f)) = ° for all n. Since K 
and K' are both chain complexes of free abelian groups, it follows that 
M(f) is also a chain complex of free abelian groups. Hence Zn(M(f)) is a 
direct summand of M(f)n for all n by Lemma 2.5. Therefore we can apply 
Lemma 2.4 to M(f) to conclude that there exists a chain homotopy 
Dn:M(f)n ~ M(f)n+1 such that 

dn+1Dia) + Dn- 1dn(a) = a (2.1) 

for any a E M(f)n. Making use of the fact that M(f)n is a direct sum for any 
n, we see that there exist unique homomorphisms 

such that 

D!1:Kn_1 ~ Kn, 
D;2: K~ --> K n , 

D;1:Kn_1 ~ K~+l> 

D;2:K~ ~ K~+l> 

for any x E K n - 1 and x' E K~. With this notation, Equation (2.1) is equivalent 
to the following four equations: 

-OnD!1 - D!10n _1 + D!:t!n-1 = 1, 

-onD!2 + D!:10~ = 0, 

f,D ll 0' D21 D21 0 D22 f, - ° n n + n+1 n - n-1 n-1 + n-1 n-1 -

(2.2) 

(2.3) 

(2.4) 

(2.5) 

In these equations, the symbols 1 and I' denote the identity maps of the 
chain complexes K and K' respectively. Equation (2.3) implies that the 
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sequence of homomorphisms D12 = {D!2} is a chain map K' --+ K. Similarly, 
Equation (2.2) implies that 

while Equation (2.5) implies that 
fD12:::= 1'. 

This completes the proof. Q.E.D. 

EXERCISES 

2.7. Assume we have given a commutative diagram 

j 
K ---+ K' 

9 
L ---+ L' 

of chain complexes and chain maps. Show that the pair of chain maps (<p,,,,) induces 
a chain map M(f) --+ M(g), and gives rise to a commutative diagram involving the 
exact homology sequences of J and 9 (this is a naturality statement for the algebraic 
mapping cone). 

2.8. Let J, g:K --+ K' be chain maps. Show that any chain homotopy D between J 
and 9 gives rise to a chain map M(f) -> M(g) which induces isomorphisms 
Hn(M(f)):=::: Hn(M(g)) for all n. What is the relation between the exact homology 
sequences of J and 9 in this case? 

2.9. Assume that 
E:O -> K !.. K' !. K" -> 0 

is a short exact sequence of chain complexes and chain maps. Prove that the exact 
homology sequence of J and the exact homology sequence of 9 are both isomorphic 
to the exact homology sequence of E. 

§3. Definition and Basic Properties of 
Homology with Arbitrary Coefficients 

In 11.2 we defined an element of the group Qn(X) to be a finite linear com
bination alTl+a2T2+"'+akTk of singular n-cubes with integral co
efficients. As the reader may have already suspected, one could equally well 
use linear combinations of n-cubes with coefficients in an arbitrary ring, 
rather than the ring of integers. In fact, one can even go further, and allow 
the coefficients ab a2, ... above to be elements of an arbitrary abelian group 
(written additively). It turns out that the entire theory we have developed so 
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far can be re-done with very little change with this added degree of generality. 
For certain problems the resulting homology groups with other coefficients 
are more convenient, or perhaps even essential. Examples to illustrate this 
point will be given later. 

For our purposes, it will be quicker and more convenient to develop the 
properties of homology groups with arbitrary coefficients by using the theory 
of tensor products. This we will now proceed to do. The motivation for this 
approach is as follows: Recall that QiX) is a free abelian group with basis 
consisting of the set of singular n-cubes in X. Let G be an abelian group. 
It follows that any element of the group G ® QiX) has a unique expression 
of the form 

a1 ® T1 + a2 ® T2 + ... + ak® Tko 

where Tb T 2, ... are singular n-cubes in X, and ab a2, ... are elements of 
the given group G. We can look on this expression as a linear combination 
of the singular n-cubes Tb T 2, .. . with coefficients in G, as desired. This 
motivates the following definition. 

Definition 3.1. Let K = {Kn ,(\} be a chain complex and G an abelian group. 
Then K ® G denotes the chain complex {Kn ® G, (\ ® 1G }, where 1G de
notes the identity map of G. If f = {In} is a chain map K -+ L, then 
f ® 1G:K ® G -+ L ® G denotes the chain map {f" ® 1G}' Finally, if D: K -+ 

Lis a chain homotopybetweenf andg:K -+ L, thenD® 1G:K ® G -+ L® G 
denotes the chain homotopy {D n ® 1} between f ® 1 and g ® 1. 

Of course, in the above definition it is necessary to verify that K ® G is 
actually a chain complex, that f ® 1G is a chain map, and that D ® 1G is a 
chain homotopy between f ® 1G and g ® 1G • However, these are trivialities. 
A more serious problem is the following: Suppose that 

o -+ K' !. K ~ K" -+ 0 

is a short exact sequence of chain complexes and chain maps. We would 
like to be able to conclude that for any abelian group G, the sequence 

o -+ K'®G~ K®G~K"®G -+ 0 

is also exact. Then we could define the corresponding long exact homology 
sequence. Unfortunately, it is generally not true that Sequence (3.2) will be 
exact; all we can expect is that the sequence 

K'® G ~ K®G~K"®G -+ 0 

will be exact (right exactness of the tensor product). Thus we will not be able 
to define a long exact homology sequence without some further assumptions. 
Experience has shown that the following assumption suffices for most of the 
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applications we have in mind. Define a short exact sequence of chain com
plexes 

o -+ K' ~ K ~ K" -+ 0 

to be split, or split exact if for each integer n, image fn is a direct summand of 
Kn. Alternatively, we can require that for each integer n there exists a homo
morphism sn:K~ -+ Kn such that gnsn = identity map of K~ (such a homo
morphism is called a splitting homomorphism). Note that we do not require 
that the sequence of homomorphisms Sn should be a chain map; such an 
assumption would be far too strong for our purposes. 

Lemma 3.1. If the sequence 0 -+ K' ~ K ~ K" -+ 0 is split exact, then so is 
J®1 g®1 

the sequence 0 -+ K' ® G ------+ K ® G ----+ K" ® G -+ O. 

In fact, if {sn} is a sequence of splitting homomorphisms for the original 
short exact sequence, then {sn ® 1} is a sequence of splitting homomorphisms 
for the second sequence. 

Lemma 3.2. If K" is a chain complex of free abelian groups, then any short 
exact sequence 0 -+ K' -+ K -+ K" -+ 0 is split exact. 

The proof is easy. 
Since most of the chain complexes we will encounter are composed of 

free abelian groups, this lemma will find frequent application. 
We will now apply these ideas to the homology groups of topological 

spaces. 
Given any topological space X, we have the following short exact sequence 

of chain complexes: 

0-+ D(X) -+ Q(X) -+ C(X) -+ O. 

All three of these chain complexes consist of free abelian groups, and the 
seq uence is split exact. Therefore if we define new chain complexes as follows: 

D(X;G) = D(X) ® G, 

Q(X;X) = Q(X) ® G, 

C(X;G) = C(X) ® G, 

then the resulting sequence 

0-+ D(X;G) -+ Q(X;G) -+ C(X;G) -+ 0 

is also split exact. Thus we can consider DiX; G) = Dn(X) ® G as a subgroup 
of Qn(X;G) = Qn(X) ® G, and Cn(X;G) is the quotient group, Qn(X;G)j 
Dn(X;G). As was remarked above, an element of Qn(X;G) has a unique 
expression as a linear combination of singular n-cubes in X with coefficients 
in G; obviously, DiX; G) is the subgroup consisting of linear combinations 
of degenerate singular cubes. 
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If A is any subspace of X, we have the short exact sequence of chain 
complexes: 

i j o --+ C(A) --+ C(X) --+ C(X,A) --+ O. 

Once again each of the chain complexes consists of free abelian groups and 
the sequence is split exact. Therefore if we define 

C(X,A;G) = C(X,A) ® G, 

then the resulting sequence 
i@l j@l 

0--+ C(A;G) ---+ C(X;G) ------> C(X,A;G) --+ 0 

is also split exact. Thus we can regard Cn(A;G) as a subgroup of CiX;G), 
and Cn(X,A; G) is the quotient group Cn(X; G)/Cn(A; G). It is customary to 
denote the group Hn(C(X,A;G)) by the notation Hn(X,A;G) and call it the 
relative homology group of (X,A) with coefficient group G. 

If ({J: (X,A) --+ (Y,B) is a continuous map of one pair of spaces into another, 
then we have the induced chain map 

({J# :C(X,A) --+ C(Y,B). 

Hence we get an induced chain map 

({J# ® IG:C(X,A;G) --+ C(Y,B;G) 

and an induced homomorphism of homology groups, which we will denote by 

((J*:Hn(X,A;G) --+ Hn(Y,B;G). 

If two maps ({Jo, ({Jl:(X,A) --+ (Y,B) are homotopic (as maps of pairs), then 
any homotopy between them defines a chain homotopy D: C(X,A) --+ C(Y,B) 
between the chain maps 

({Jo #, ({J 1 # : C(X,A) --+ C( Y,B) 

(see §II.4). Hence D ® IG is a chain homotopy between ({Jo# ® IG and 
({Jl # ® IG' It follows that the induced homomorphisms 

({Jo*, ((Jl*:Hn(X,A;G) --+ Hn(Y,B;G) 
are the same. 

It is now an easy matter to check that all the properties of homology 
theory which were proved in §§II.2-II.5 remain true for homology theory 
with coefficients in an abelian group G. In particular, given any pair (X,A), 
we have a natural exact homology sequence, 

o. ) i. j. ( G) o • 
. . . --+ Hn(A;G --+ Hn(X;G) --+ Hn X,A; --+ .... 

Also, one can check by direct computation that if P is a space consisting of a 
single point, 

{G for q = 0, 
Hq(P;G) = {O} for q # O. 
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In order to define reduced homology groups in dimension 0, it is convenient 
for any space X =I- 0 to define the augmented chain complex C(X) as follows: 

Cq(X) = CiX) if q =I- -1, 

C- 1(X) = Z, 
aq = i3q if q =I- 0 or -1, 

00 = e (see §1I.2), 

0_1 = O. 

Then Hq(X) = HiC(X)). We next define 

C(X;G) = C(X) ® G 

HiX;G) = Hq(C(X;G)). 

One readily verifies that 

HiX;G) = Hq(X;G) if q =I- 0, 

while for q = 0 there is a split exact sequence 

0--+ Ho(X;G) --+ Ho(X,G) ~ G --+ 0 

relating the reduced and unreduced O-dimensional homology groups. 
In order to prove the excision property for homology with arbitrary 

coefficients, it is convenient to have the following lemma. 

Lemma 3.3. Let K and K' be chain complexes of free abelian groups, and let 
f: K --+ K' be a chain map such that the induced homomorphism f* : H n( K) --+ 

Hn(K') is an isomorphism for all n. Thenfor any coefficient group G, the chain 
map f ® 1G: K ® G --+ K' ® G also induces isomorphisms 

for all n. 

PROOF: By Theorem 2.3, f is a chain homotopy equivalence. It follows readily 
that f ® 1G: K ® G --+ K' ® G is also a chain homotopy equivalence. Hence 
(f ® 1G)* is an isomorphism, as required, Q.E.D 

Now suppose that the hypotheses of the excision property hold as stated 
in Theorem 11.6.2, i.e., (X,A) is a pair and W is a subset of A such that W is 
contained in the interior of A. Then it should be clear how to apply the lemma 
we have just proved in order to conclude that the inclusion map 
(X - W, A - W) --+ (X,A) induces an isomorphism H iX - W, A - W; G) ~ 
H n(X,A; G) for any n. Thus the excision property also holds true for homology 
with coefficients in any group G. 

In a similar way, one can use Lemma 3.3 above to prove that Theorem 
1I.6.3 holds true for homology with coefficients in an arbitrary group G: 
If dIt is a generalized open covering of C, then the chain map 

(J ® 1 G: C(X,A, Olt) ® G --+ C(X,A) ® G 
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induces isomorphisms on homology groups. This result can then be used 
to prove the exactness of the Mayer-Vietoris sequence (Theorem 111.5.1) 
for homology with coefficient group G. The details are left to the reader. 

Later on in this chapter, we will indicate an alternative method of proving 
the excision property and exactness of the Mayer-Vietoris sequence without 
using Theorem 2.3. 

§4. Intuitive Geometric Picture of a Cycle 
with Coefficients in G 

In Chapter I we emphasized the intuitive picture of a I-cycle as a collection 
of oriented closed curves with integral "multiplicities" attached to each, a 
2-cycle as a collection of oriented closed surfaces, etc. The intuitive picture of 
a cycle with coefficients in a group G is basically similar, except now the 
multiplicity assigned to each closed curve or closed surface must be an 
element of G rather than an integer. 

If the group G has elements of finite order, then certain new possibilities 
arise. For example, suppose G is a cyclic group of order n generated by an 
element of 9 E G. Let x and y be distinct points in the space X, and suppose 
we have n distinct oriented curves in X, starting at .x..and ending at y. If the 
element 9 is assigned as the multiplicity of each curve, then the "sum" of all 
these oriented curves is a I-cycle, because n . 9 = o. 

If the group G is infinitely divisible, certain other new phenomena occur. 
Consider, for example, the case where G is the additive group of rational 
numbers. Suppose that z is an n-dimensional cycle in X with coefficient 
group G, and that qz is homologous to 0 for some integer q =1= o. Since we can 
divide by q in this case, we can conclude that z is homologous to o. 

The above are just examples of two of the many things that can occur. 
The reader will undoubtedly encounter other examples as he proceeds in the 
study of this subject. 

§5. Coefficient Homomorphisms and 
Coefficient Exact Sequences 

Let h:G 1 -+ G2 be a homomorphism of abelian groups. Then we get an 
obvious homomorphism 

1 ® h:Cn(X,A;G 1) -+ Cn(X,A;G 2) 

for any pair (X,A) and all integers n. These homomorphisms fit together to 
define a chain map C(X,A; G1) -+ C(X,A; G2) which we may as well continue 
to denote by the same symbol, 1 ® h, and hence there is an induced homo
morphism 
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The reader should verify the following two naturality properties of this 
induced homomorphism: 

(a) For any continuous map f:(X,A) - (Y,B), the following diagram is 
commutative: 

f. 
Hn(X,A;G,) ---+ Hn(Y,B;G,) 

f. 
H n(X,A;G 2) ---+ Hn(Y,B;G 2 )· 

(b) For any pair (X,A), the following diagram is commutative: 

The induced homomorphism h# is important in the further development 
of homology theory. As an example, we give the following application. Let 
R be an arbitrary ring, and assume that the abelian group G is also a left 
R-module, i.e., R operates on the left on G as a set of endomorphisms, 
satisfying the usual conditions. Any element r E R defines an endomorphism 
G - G by the rule x - rx for x E G. There is an induced endomorphism of 
Hn(X,A;G) according to the procedure developed in the preceding para
graphs. Thus for each element r E R we have defined an endomorphism of 
Hn(X,A;G). We leave it to the reader to verify that these induced endo
morphisms define on HiX,A;G) a structure ofleft R-module. The naturality 
properties (a) and (b) above show that f* and 0* respectively are homo
morphisms of left R-modules. 

An especially important case occurs when R is a commutative field and 
G is a vector space over R. Then Hn(X,A;G) is also a vector space over R, 
and the induced homomorphisms f* and 0* are R-linear. In this case all the 
machinery of vector space theory and linear algebra can be applied to 
problems arising in homology theory, which is often a substantial advantage. 

Next, suppose that 

o - G' ~ G ! Gil - 0 

is a short exact sequence of abelian groups. This gives rise to the following 
sequence of chain maps and chain complexes for any pair, (X,A): 

o - C(X,A;G')~ C(X,A;G) ~ C(X,A;G") - O. 

We assert that this sequence of chain complexes is exact. This assertion 
is an easy consequence of the fact that C(X,A) is a chain complex of free 
abelian groups. As a consequence, we get a corresponding long exact homol
ogy sequence: 
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... ~ Hn(X,A;G')~ Hn(X,A;G)~ Hn(X,A;G") .! H n_1(X,A;G') 
h# 
~ ... 

The connecting homomorphism f3 of this exact sequence is called the 
Bockstein operator corresponding to the given short exact sequence of 
coefficient groups. As is so often the case, this label is a misnomer, because 
this homomorphism was introduced by other mathematicians before 
Bockstein. 

The reader should formulate and prove the naturality properties of the 
Bockstein operator vis-a-vis homomorphisms induced by continuous maps 
and the boundary homomorphism of the exact sequence of a pair (X,A): 

p 
Hn{X,A;G") ------+ Hn-l{X,A;G') 

CAUTION. The question as to whether or not this diagram is commutative 
is a bit subtle.) 

EXERCISE 

5.1. Using the methods of §III.4, determine the homology groups of the real projective 
plane for the case where the coefficient group G is cyclic of order 2. Then determine 
the long exact homology sequence corresponding to the following short exact 
sequence of coefficient groups: 

o ..... z ! z .! Z2 ..... O. 

Here h(n) = 2n for any n E Z. 

The coefficient homomorphism and Bockstein operator are additional 
elements of structure on the homology groups of a space. The fact that 
homomorphisms induced by continuous maps must commute with them 
places a definite limitation on such induced homomorphisms. 

§6. The Universal Coefficient Theorem 

We will next take up the relation between integral homology groups and 
homology groups with various coefficients. 

Let K = {Kn,c!n} be an arbitrary chain complex. There is a natural 
homomorphism 
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defined as follows. Let u E H,,(K) and x E G. Choose a representative cycle 
u' E Z,,(K) for u. Then it is immediate that u' ® x E K" ® G is a cycle; define 
IX(U ® x) to be the homology class of u' ® x. Of course it must be verified that 
this definition is independent of the choice of u', and that IX is a homo
morphism. 

As usual, IX is natural in several different senses: 
(a) If f:K -+ K' is a chain map, then the following diagram is commuta

tive: 
• H.(K) ® G ----+ H.(K ® G) 

If.®I< 1(f®1<). 
a: 

H.(K') ® G ----+ H.(K' ® G). 

(b) If E:O -+ K' -+ K -+ K" -+ 0 is a split exact sequence of chain com
plexes, then the following diagram is commutative: 

H.(K") ® G ---+1 H.(K" ® G) 

lOE® 1< 

(Note: The fact that E is split exact assures exactness on tensoring with G.) 
(c) If h:G1 -+ G2 is a homomorphism of coefficient groups, then the 

following diagram is commutative: 

If 0 -+ G' -+ G -+ G" -+ 0 is a short exact sequence of abelian groups, 
and K is a chain complex of free abelian groups, then we might expect a 
commutative diagram involving the Bockstein operator, but such does not 
exist. 

For our purposes, the most important case of the homomorphism is 
where K = C(X,A); then we obtain a homomorphism 

with all the above naturality properties. 

Lemma 6.1. If G is a free abelian group, then the homomorphism IX: H ,,(K) ® 
G -+ H,,(K ® G) is an isomorphism. 
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PROOF: First, one considers the case where G = Z, which is trivial. In the 
general case, G is a direct sum of infinite cyclic groups, and IX obviously 
"respects" such direct sum decompositions (because of Property (c) above). 

Q.E.D. 

In order to make further progress, we must make use of the Tor functor 
(the first derived functor of the tensor product). For any two abelian groups A 
and B, we will use the notation Tor(A,B) to denote Torf(A,B). The definition 
and properties of this functor are given in most books on homological 
algebra, e.g., Cartan and Eilenberg [1J, Hilton and Stammbach [2J or 
Mac Lane [3]. Here is a list of some ofthe principal properties of this functor: 

(1) (Symmetry) Tor(A,B) and Tor(B,A) are naturally isomorphic. 
(2) If either A or B is torsion-free, then Tor(A,B) = O. 

(3) Let 0 --+ F 1 ~ F 0 ~ A --+ 0 be a short exact sequence with F 0 a free 
abelian group; it follows that F 1 is also free. Then there is an exact sequence, 
as follows: 

h®l k®l 
0--+ Tor(A,B) --+ Fl ®B~ Fo®B -----+ A®B --+ O. 

Since any abelian group A is the homomorphic image of some free abelian 
group F 0, we can use this property to define Tor(A,B), or to determine it 
in specific cases. 

(4) For any abelian group G, Tor(ZmG) is isomorphic to the subgroup 
of G consisting of all x E G such that nx = 0 (this may be proved by use of 
(3». In particular, Tor(Zn,Zm) is a cyclic group whose order is the g.c.d. 
ofm and n. 

(5) Tor is an additive functor in each variable, i.e., for direct sums 

Tor( t Ai,B ) ~ t Tor(Ai,B). 

(6) Let 0 --+ A' Ii A It A" --+ 0 be a short exact sequence of abelian 

groups; then we have the following long exact sequence: 

o --+ Tor(A',B) Tor(h,l) I Tor(A,B) Tor(k,l) I Tor(A",B) 

--+ A' ® B ~ A ® B ~ A" ® B --+ 0 
h® 1 k® 1 

(this is a generalization of (3». 
With these preliminaries out of the way, we can state and prove the 

universal coefficient theorem: 

Theorem 6.2. Let K be a chain complex of free abelian groups, and let G be 
an arbitrary abelian group. Then there exists a split short exact sequence 

~ p o --+ HiK) ® G --+ HiK ® G) --+ Tor(Hn_1(K),G) --+ o. 
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The homomorphism /3 is natural vis-a-vis chain maps and coefficient homo
morphisms. The splitting is natural vis-a-vis coefficient homomorphisms, but 
it is not natural with respect to chain mappings. 

PROOF. As mentioned in (3) above, we may choose a free abelian group 
F 0 such that there is an epimorphism k: F 0 ~ G; let F I denote the kernel 
of k. Then F I is free, and we have the following short exact sequence: 

h k o ~ F I ~ F 0 ~ G ~ O. 

Now consider the following commutative diagram: 

h k. 
Hn{K@G) ~ H.(K@Fd ~ Hn(K@Fo) ~ H._,{K@F,) 

1.' 1"0 I· 
l<81h l<81k 

Hn{K)@F, ~ Hn(K)@Fo ~ H.(K)@G ) O. 

The top line is part of the long exact sequence corresponding to the given 
short exact sequence of coefficients, with Bockstein operator /30' The bottom 
line is exact, and both (xo and (Xl are isomorphisms by Lemma 6.1. From 
this diagram it readily follows that (X is a monomorphism, and image (X = 
image k# = kernel /30' 

Next, consider the following somewhat analogous diagram: 

Hn(K@G) ~ H._,(K@F,) ~ H n- 1(K@Fo) ~k. Hn_,(K@G). 
fio h. 

The top line of this diagram is the exact sequence mentioned in Property 
(3) above. Once again, (Xl and (xo are isomorphisms, and the diagram is 
commutative. It follows easily from this diagram that there exists a unique 
homomorphism 

/3: Hn(K ® G) ~ Tor(Hn_I(K),G) 

which makes the left-hand square (labelled 1 ) of this diagram commutative. 
Furthermore, /3 is an epimorphism, and kernel /3 = kernel /30' 

Thus we have defined the homomorphism /3, and proved the exactness 
of the sequence mentioned in the theorem. We leave it to the reader to 
prove that /3 is natural vis-a-vis chain maps and coefficient homomorphisms. 
It remains to prove that the sequence splits. For this purpose, we will use 
the following trick. We may consider the sequence of abelian groups {Hn(K)} 
as a chain complex with On = 0 for all n; we will denote this chain complex 
by H(K). With this notation, it is clear that Hn(H(K)) = HiK). We assert 
that there exists a chain map f: K ~ H(K) such that the induced homomorphism 
f*:Hn(K) ~ Hn(H(K)) is the identity map of Hn(K) onto itself. To prove this 
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assertion, note that our hypothesis that Kn is a free abelian group for each 
n implies that Zn(K) is a direct summand of Kn. Hence we may choose a 
direct sum decomposition 

Kn = Zn(K) EB Ln 

for each n. Define f,,:Kn ---+ Hn(K) by fnIZn(K) = natural homomorphisms 
of ZiK) onto Hn(K), and fnlLn = o. It is readily verified that the sequence 
of homomorphisms f = {f,,} is a chain map with the required properties. 
The definition of f obviously depends on the choice of the direct sum 
decomposition. 

Next, by the naturality of IX, we have the following commutative diagram: 

H.(K)@G------+)H.(K@G) 

if. ® lG 1 (f® lG)' 

a' 
H.(H(K))@ G ~ H.(H(K)@ G). 

However, it is readily checked that Hn(H(K)) ® G=HiK) ® G=Hn(H(K) ® 
G) and that f* ® IG and IX' are both the identity maps. Hence it follows 
from the commutativity of the diagram that image IX is a direct summand 
of Hn(K ® G), as required. Incidentally, this furnishes an alternative proof 
that IX is a monomorphism. 

Using this procedure, it is easy to prove that the direct sum decomposition 
is natural vis-a-vis coefficient homomorphisms. Q.E.D 

We will give an example later to prove that it is impossible to choose the 
direct sum decomposition so it is natural with respect to chain maps. 

Corollary 6.3. For any pair (X,A) and any abelian group G there exists a split 
short exact sequence: 

a p 
0---+ Hn(X,A) ® G ---+ Hn(X,A;G) ---+ Tor(Hn_1(X,A),G) ---+ O. 

The homomorphisms IX and f3 are natural with respect to homomorphisms 
induced by continuous maps of pairs and coefficient homomorphisms. The 
splitting can be chosen to be natural with respect to coefficient homomorphisms, 
but not with respect to homomorphisms induced by continuous maps. 

These results show that the structure of the homology group Hn(X,A;G) 
is completely determined by the structure of the integral homology groups 
Hn(X,A) and Hn-1(X,A). However, this does not imply that the homomor
phism f*:Hn(X,A;G) ---+ Hn(Y,B;G) is determined by the homomorphisms 
f*:HiX,A) ---+ HiY,B) and f*:Hn- 1(X,A) ---+ Hn- 1(Y,B) (here f:(X,A)---+ 
(Y,B) denotes a continuous maps of pairs). A convincing example will be 
given later. 
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EXERCISES 

6.1. Decide whether or not the following diagram is commutative for any pair (X,A) 
and any abelian group G: 

Hn(X,A;G) ~ Tor(Hn_l(X,A),G) 

H n_ 1(A;G)--.L. Tor(Hn_2(A),G). 

6.2. Prove that IX:H;(X,A) ® G -+ H;(X,A;G) is an isomorphism for any pair (X,A) and 
any group G for i = 0 or 1. 

6.3. Let X be a finite regl,llar graph. Express the structure of the homology groups 
HiX;G) in terms of the Euler characteristic and number of components of X. 

6.4. Describe the structure of the homology groups Hq(X;G) for any group G in the 
following cases: 
(a) X = sn. 
(b) X is a compact orientable 2-manifold. 
(c) X is a compact nonorientable 2-manifold. 

6.5. Let X be an n-dimensional pseudomanifold in the sense of §IV.8. Determine the 
structure of Hn(X,G) in case X is (a) orientable and (b) nonorientable. 

We will conclude this section by giving another proof of the excision 
property for homology with arbitrary coefficient groups. Let (X;A) be a 
pair, and W a subset of A such that W is contained in the interior of A. 
Then the inclusion map i:(X - W,A - W) -+ (X,A) induces a chain map 

i#: C(X - W, A - W) -+ C(X,A). 

It is easy to verify that i# is a monomorphism; thus we can consider 
C(X - W, A - W) as a subcomplex of C(X,A). Hence we have the following 
short exact sequence of chain complexes: 

;.. C(X,A) 
0-+ C(X - W,A - W) -+ C(X,A) -+ C(X _ W,A _ W) -+ o. 

This short exact sequence of chain complexes gives rise to a long exact 
homology sequence, as usual. Because the excision property is true for in
tegral homology, we can conclude that 

( C(X,A) ) 
Hn C(X _ W,A _ W) = 0 

for all n. Next, one must verify that the quotient complex 

C(X,A) 
C(X - W,A - W) 

is a chain complex of free abelian groups, and that the short exact sequence 
above is split exact. This is not difficult, and is left to the reader. One now 
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completes the proof by tensoring the short exact sequence with G, and 
considering the resulting long exact homology sequence. By using Theorem 
6.2, one proves that 

( C(X,A) ) 
Hn C(X-W,A-W)@G =0 

for all n. It follows from exactness that 

i*:Hn(X - W,A - W;G) --+ Hn(X,A;G) 

is an isomorphism for all n, as desired. 
This technique can also be used to prove that the chain map 

a @ IG: C(X,A;OU) @ G --+ C(X,A)@ G 

induces isomorphisms in homology in all dimensions (here OU is a generalized 
open covering of X). 

§7. Further Properties of Homology with 
Arbitrary Coefficients 

Practically all the properties we have proved for integral homology have 
analogs for homology with arbitrary coefficients. For example, the reader 
should have no difficulty verifying that Proposition III.6.1 is true for ho
mology with coefficients in any group G. 

The material in Chapter IV on the homology of CW -complexes readily 
generalizes to the case of an arbitrary coefficient group. We will quickly 
indicate how this goes. 

Let K = {Kn} be a CW-complex on the space X. Using the universal 
coefficient theorem (Corollary 6.3) it is readily shown that Hq(Kn,Kn-l; G) = 0 
for q "# n, and that 

rx:HiKn,Kn- 1) @ G --+ Hn(Kn,Kn- 1 ;G) 

is an isomorphism. Thus if we define 

CiK;G) = Hn(Kn,Kn-l;G), 
then 

Cn(K;G) = Cn(K)@ G. 

Next, we define a boundary operator Cn(K;G) --+ Cn- 1(K;G) as the com
position of the homomorphisms 

Hn(Kn,Kn-l;G) ~ Hn_1(Kn-1;G) ~ Hn_1(Kn-l,Kn-2;G) 

by analogy with that defined in §IV.4. It is then true that this boundary 
operator is dn @ IG' where dn: Cn(K) --+ Cn- 1(K) is defined in §IV.4. In other 
words, 

C(K;G) = C(K)@ G. 
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One can now prove an analog of Theorem IV.4.2 for the case of an arbitrary 
coefficient group G. Essentially this analog says that H n(X; G) is naturally 
isomorphic to Hn(C(K;G)). Similarly, there is an analog of Theorem IV.4.6 
for homomorphisms induced by cellular maps: Assume K = {Kn} is a CW
complex on X, L = {Ln} is a CW-complex on Y, and f:X ~ Y is a cellular 
map, i.e., f(Kn ) c Ln. Then f induces a chain map q>:C(K) ~ C(L), and 
we have a commutative diagram: 

H.(X;G) ~ H.(C(K)@ G) 

1f• 1 ('I' ® 1G). 

H.(Y; G) ~ H.(C(L) @ G). 

These results can be summarized as follows: To extend the results of 
§IV.4 from integral homology to homology with arbitrary coefficient group 
G, simply tensor all chain complexes and chain maps with G. In particular, 
this applies to the computation of the homology of regular CW-complexes 
as described in §IV.7. 

There is one case where the computation of the homology of regular 
cell complexes becomes greatly simplified, namely, the case where G = Zz. 
In this case every incidence number must be ° or 1, and we see that 
[en:en- 1 ] = 1 or ° according as en- 1 is or is not a face of en. Thus the four 
rules given in Theorem IV.7.2 for determining incidence numbers reduce 
to two rules, and it is not necessary to use an inductive procedure. Of course 
mod 2 homology ignores much of the structure of integral homology, but 
for some problems it is more appropriate than integral homology. 

EXAMPLE 7.1. Let pZ denote the real projective plane. In IIl.4 we found that 
the only nonzero homology groups of pZ were 

Ho(PZ) = Z, 

H 1(p2) = Zz· 

Thus if f:pz ~ SZ is any continuous map, then 

f*:Ho(P2) ~ HO(S2) 

is an isomorphism (both are connected spaces), while for q =P 0, 

must be the zero map. Hence there is no possibility of distinguishing between 
different homotopy classes of such maps using integral homology. We will 
now show that one can distinguish two different homotopy classes using 
mod 2 homology. To prove this, recall that there is a CW-complex, K, on 
pZ having a single cell in dimensions 0, 1, and 2; this was used to compute 
the homology of pZ in Example IIl.4.3, although it was not called a CW-
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complex at that time. Thus Co(K), C1(K), and Cz(K) are infinite cyclic groups, 

dz:Cz(K) -+ C1(K) 
has degree ± 2, and 

d1:C1(K) -+ Co(K) 

has degree O. Analogously, there is a CW-complex L on SZ having a single 
vertex, a single 2-cell, and no I-cells. There is an obvious cellular map 

f:pz -+ SZ 

defined by shrinking the I-skeleton, Kt, to a point, namely, LO. The open 
2-cell of K is mapped homomorphically onto the open 2-cell of L. We 
wish to compute the induced homomorphism on mod 2 homology. To this 
end, we determine the chain transformation 

f':C(K) -+ C(L) 

induced by the cellular map f. The only nontrivial problem is to determine 
the homomorphism Cz(K) -+ Cz(L). But this is easily settled by Theorem 
IV.2.l. Let g:(EZ,Sl) -+ (KZ,Kl) be the characteristic map for the unique 
2-cell of K. In view of the way the map f:pz -+ SZ was defined, it is clear that 

h = fg:(EZ,Sl) -+ (LZ,Ll) 

is a characteristic map for the only 2-cell of L. Thus we have the following 
commutative diagram: 

(L2,Ll). 

Hence we have the following commutative diagram: 

H 2(£2,S') ~ H 2(K2,K') 

By Theorem IV.2.l, g* and h* are isomorphisms; it follows that f* is also 
an isomorphism. Therefore the chain map f':C(K) -+ C(L) is completely 
determined. All that remains is to tensor with Zz and then pass to homology. 
The end result is that 

f*:Hz(PZ;ZZ) -+ Hz(SZ;Zz) 

is an isomorphism. On the other hand, if q>: pZ -+ SZ is the constant map, 
then 

q>*:Hz(PZ,Zz) -+ Hz(Sz,Zz) 

is the 0 homomorphism. Thus f and q> are not homotopic. 
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Note that f and cp must (of necessity) induce the same homomorphism 
on integral homology groups. This proves our earlier assertion that the 
induced homomorphisms on integral homology groups do not suffice to 
determine the induced homomorphisms on homology groups with other 
coefficients. 

Finally, this example also show that the splitting of the short exact 
sequence of the universal coefficient theorem (Corollary 6.3) can not be 
chosen to be natural. Consider the following commutative diagram involving 
the universal coefficient theorems for H Z(P2,Z2) and H 2(S2,Z2) and the 
homomorphism induced by the map f:p2 --+ S2 described above: 

o ~ H2(p2)(j9Z2 

1/.<81 1 

o ~ H 2(S2)(j9Z2 

H2(p2,Z2) ~ Tor(Hl(P2),Z2) ~ 0 

II. 1 TorU.,I) 

H 2W,Z2) ~ Tor(HtlS2),Z2) ~ O. 

In the top line, H 2(p2) @ Z2 = 0 and PI is an isomorphism. In the bottom 
line, Tor(H I(S2),Z2) = 0 and (J(2 is an isomorphism. As we have just proved, 
the vertical arrow labelled f* is an isomorphism; however, this fact con
tradicts the possibility of any splitting of these two short exact sequences 
which is natural with respect to homomorphisms induced by continuous 
maps. 

We will conclude this section with a brief consideration of the mod 2 
homology of a pseudomanifold. 

Let K be an n-dimensional nonorientable pseudomanifold; by Theorem 
IV.8.1, Hn(K) = O. For some purposes, this is a defect in the theory; we 
need a nonzero homology class in the top dimension. This matter is partially 
remedied by using mod 2 homology. Indeed we find that H 2(K,Z2) = Z2 
(use the universal coefficient theorem and Theorems IV.8.1 and IV.8.2). A 
representative cycle for the nonzero element of Hn(K,Z2) is obtained by 
taking the sum of all the n-cells of K. Since we are using Z2 as coefficient 
group, we do not need to worry about orientations. 
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CHAPTER VI 

The Homology of Product Spaces 

§1. Introduction 

If two or more spaces are related to each other in some way, we would 
naturally expect that their homology groups should also be related in some 
way. Some of the most important theorems in the preceding chapters bear 
out this expectation: If A is a subspace of X, the exact homology sequence 
of the pair (X,A) describes the relations between the homology groups of A 
and the homology groups of X. If the space X is the union of two subspaces 
U and V, then the Mayer-Vietoris sequence gives relations between the 
homology groups of U,v, Un V, and X. 

The main theorems of this chapter are of this same general nature. The 
Eilenberg-Zilber theorem asserts that the singular chain complex of the 
product of two spaces, C(X x Y), is chain homotopy equivalent to the tensor 
product of the chain complexes of the two factors denoted by C(X) ® C(Y). 
The Kiinneth theorem expresses the homology groups of the product space 
X x Y in terms of the homology groups of X and the homology groups of 
Y. The derivation of the Kiinneth theorem from the Eilenberg-Zilber 
theorem is purely algebraic. 

These theorems are somewhat more complicated than most of our 
previous theorems, such as the exactness of the Mayer-Vietoris sequence. 
Nevertheless, they are of basic importance in homology theory. 

The material on CW -complexes in §2 is not essential for most of the rest 
of the chapter. It is introduced mainly to motivate the definition of the tensor 
product of chain complexes. 

129 
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§2. The Product of CW -complexes and 
the Tensor Product of Chain Complexes 

Let K = {K"} be a CW-complex on the space X, and L = {L"} a CW
complex on the space Y. We wish to prove that X x Y is a CW-complex in 
a natural way. In order to understand this situation better, we need the 
following basic facts about open and closed cells; our notation is that of 
§IV.2. 

(a) Em X E" is homeomorphic to Em+"; under any such homeomorphism, 
(em x S"-1) u (sm-1 x E") corresponds to the boundary sm+n-1. 

(b) um x U" is homeomorphic to Um +". 
In view of Statement (b), it is natural to demand that an open cell of a 

CW -complex on X x Y should be the product of an open cell of K with an 
open cell of L. Therefore we define the n-skeleton of a CW-structure on 
Xx Yby 

M"= U KP x U 
p+q=" 

for n = 0,1,2, .... Then the subsets M" c X x Yare closed, Mn c M"+1 
for all n ~ 0, MO is discrete (because it is the product of discrete spaces) and 

<Xl 

X X Y= U MR. 
n=O 

If ~ is an m-cell of K with characteristic map !:em -+ 7!", and if e" is an 
n-cell of L with characteristic map g:E" -+ e', then! x g:em x En -+ 

7!" x e' has all the required properties for a characteristic map of the product 
cell ~ x e". Thus it only remains to check that the product topology on 
X x Y is the same as the weak topology determined by the closed cells. If 
both K and L are finite CW -complexes, then M will also have only a finite 
number of cells, and there is nothing to prove. J. H. C. Whitehead proved that 
if one of the factors is locally compact then the product topology agrees with 
the weak topology. However, Dowker gave an example to show that in the 
general case, the two topologies on X x Y do not agree. See Lundell and 
Weingram [5] for details. Fortunately, there is an easy way out of this 
difficulty; one can agree to give X x Y the weak topology, so that it is a 
CW -complex. The weak topology will be larger than the product topology 
in general (i.e., it will have more open (or closed) sets), but the compact sets 
will be the same in both topologies. Therefore the identity map, 

X x l(weak top.) -+ X X Y(prod. top.) 

is a continuous map, and induces an isomorphism on singular homology 
groups. See N. E. Steenrod [8] for details. 

However, we do not want to get involved with these fine points now. The 
reader can restrict his attention to finite CW -complexes, knowing full well 
that the generalization to infinite CW -complexes is not difficult. 
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Next, let us assume that K and L are regular CW-complexes. Then it is 
readily seen that M = {Mn} (as defined above) is a regular CW-complex on 
X x Y (provided X x Y is given the weak topology). As usual, there are 
many choices for orientations of the cells of X x Y, and hence of incidence 
numbers. Let us assume that orientations (and hence incidence numbers) 
have been chosen for the cells of K and L. It seems plausible to expect that 
there should be a way to use these chosen orientations of the cells of K and 
L to define canonical orientations of the cells of M. The following theorem 
shows that this expectation is justified. The actual result is stated in terms of 
incidence numbers rather than orientations. However, this does not matter 
from a logical point of view, since there is a 1-1 correspondence between 
incidence numbers and orientations of cells in any regular CW -complex. 

Theorem 2.1. Let K be a regular CW-complex on X with cells ei, and let L be a 
regular CW -complex on Y with cells uj. Assume that the incidence numbers 
have been chosen for both K and L. Then incidence numbers are defined for 
the product cells on X x Y by the following rules: 

[e'" x un: e"'-1 X unJ = [e"':e"'-1 J 
[em x un: e'" x O""-lJ = ( _l)m[0"":un- 1 J 

[ej x uj:e£ x o1J = 0 if ej #: eK and CTj #: 01. 

To prove this theorem, we must verify that Statements (1)-(4) of Theorem 
IV.7.2 are true with the stated choices of incidence numbers. This we leave to 
the reader as a nontrivial exercise. 

Obviously one could establish other conventions for the incidence num
bers of a product complex, but the one given by this theorem is universally 
accepted. 

Now let us consider the group of n-chains, Cn(M) of the regular CW
complex M on X x Y. It has as basis the oriented product cells ef x u1, p + 
q = n. This suggests that we should identify Cn(M) with the direct sum of 
tensor products, 

L Cp(K) ® Cq(L). 
p+q=n 

U sing the formulas for incidence numbers in the theorem, we see that 

o(ef x u1) = (oef) x u1 + (-1)Pef x (ou1), 

where the right-hand side of this equation is to be interpreted in an obvious 
way. Since this formula holds true for the basis elements, we can extend it 
to linear combinations of the basis elements, obtaining the formula 

o(u ® v) = (ou) ® v + (~1)Pu ® (ov) 

for any u E Cp(K) and v E Cq(L). 
This suggests the following definition. 



132 VI The Homology of Product Spaces 

Definition 2.1. Let C' = {C~,O~} and C" = {C~,O~} be chain complexes. Their 
tensor product C = C' ® C" is the chain complex defined as follows: The 
groups are 

Cn = I C~® C~/, 
p+q=n 

and the homomorphisms on: Cn -+ Cn - 1 are defined by 

oiu ® v) = (o~u) ® v + (-l)Pu ® (o~v) 

for any u E C~, V E C~/, P + q = n. 

Of course, one must verify that On -ian = o. 
In view of this definition, we can assert that the chain complex C(M) is 

isomorphic to C(K) ® C(L), where K, L, and M are regular CW-complexes 
on X, Y, and X x Y, as described above. Of course it remains to determine 
the relation between the homology groups of the tensor product of two 
chain complexes and the homology of each of the factors. We will describe 
the solution to this problem in §4. This result shows that the algebraic 
operation of taking the tensor product of chain complexes corresponds to 
the topological operation of taking the cartesian product of two spaces. 
Soon we will see another example of this process. 

EXERCISES 

2.1. Let K and L befinite CW-complexes on X and Y respectively. What is the relation 
between the Euler characteristics of X, Y, and X x Y? 

2.2. Let K and L be regular CW -complexes on X and Y respectively. Assume that 
orientations and incidence numbers have been chosen for the cells of K and L. 
Consider the canonical homeomorphism f:X x Y -> Y x X defined by f(x,y) = 
(y,x). Then f maps the oriented cell e" x eI' homeomorphically onto un x em 
and induces an isomorphism 

f*:Hm+n[e" x eI',(e" x unn -> Hm+n[un x e",(eI' x e")"]. 

Show that f*(e" x un) = (-lmel' x e". (Hint: Use induction on the dimension 
of the cell.) 

§3. The Singular Chain Complex of a 
Product Space 

Our immediate objective is to define a natural chain map 

':C(X) ® C(Y) -+ C(X x Y) 

for any topological spaces X and Y. Then later on we will show that , 
induces an isomorphism of homology groups. The definition of , is very 
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simple; however, the proof that the induced homomorphism on homology 
groups is an isomorphism will be somewhat more involved. 

It will be convenient to use the following notation, which is now standard: 
Hf:A --+ Bandg:C --+ Darecontinuousmaps, thenf x g:A x C --+ B x D 
denotes the map defined by (f x g)(a,c) = (fa,gc). We will also find it con
venient to identify 1m X 1" with r+n in the obvious way. With these conven
tions, if S:lm --+ X and T:1" --+ Yare singular cubes in X and Y respectively, 
then S x T:1m + n --+ X x Y is a singular cube in the product space. Thus 
we can define a homomorphism 

by the formula 
(m)S ® T) = S x T. 

We assert that the homomorphisms (m.n for all values of m and n define a 
chain map 

(:Q(X)®Q(Y) --+ Q(X x Y). 

To verify that ( is a chain map, one must compute o(S x T). This is not 
difficult, if one uses the following formulas: 

(AiS) X T = Ai(S x T) 1 ::; i ::; m, 

(BiS) x T = Bi(S x T) 1 ::; i ::; m, 

S x (AjT) = Am+iS x T) l::;j::; n 
S x (BjT) = Bm+j(S x T) l::;j::; n. 

It is clear that if S or T is a degenerate singular cube, then so is S x T. 
Hence 

(m.n(Qm(X) ® Dn(Y)) c Dm+n(X x Y) 

(m.n(Dm(X) ® Qn(Y)) c Dm+iX x Y) 

and therefore (m.n induces a homomorphism of quotient groups, 

and the homomorphisms (m.n for all m and n obviously define a chain map 

(:C(X) ® C(Y) --+ C(X x Y). 

Next, we point out that the chain map ( has the following very important 
naturality property: Let f:X --+ X' and g: Y --+ Y' be continuous maps. 
Then the following diagram is obviously commutative: 

Qm(X) ® Q.(Y) 

1fo 0g. 

Qm(X') ® Q.(Y') 



134 VI The Homology of Product Spaces 

Hence on passing to quotient groups, etc., we obtain the following commuta
tive diagram: 

\ 
C(X)@ C(Y) ~ C(x x Y) 

If # ®g. 

C(X')@ C(Y') 

1 (Jx g). 

\ 
----+ C(X' x Y'). 

Theorem 3.1 (Eilenberg-Zilber theorem). The chain map': C(X) ® C(X) ~ 
C(X x Y) is a chain homotopy equivalence, and hence induces isomorphisms 

We will postpone the proof of this theorem until later. For the time being, 
we point out that 

'0 o:Co(X) ® Co(Y) ~ Co(X x Y) 

is an isomorphism for any spaces X and Y. However, in higher degrees, , 
is only a monomorphism, not an isomorphism. 

§4. The Homology of the Tensor Product 
of Chain Complexes (The Kiinneth Theorem) 

The preceding paragraphs should convince the reader of the importance of 
the following problem: Let K and L be chain complexes. Is the homology 
of the tensor product, K ® L, determined by the homology of K and L? If 
so, how? The answer to the first question is affirmative. We will now proceed 
to describe the details. First of all, there is a natural homomorphism 

rx:Hm(K) ® Hn(L) ~ Hm+n(K ® L) 

which is defined as follows. Let u E Hm(K) and v E Hn(L); choose representa
tive cycles u' E Zm(K) for u and v' E Zn(L) for v. It is immediate that u' ® 
v' E Km ® Ln is a cycle; its homology class is, by definition, rx(u ® v). Of 
course it is necessary to check that this definition is independent of the 
choices of the cycles u' and v', and that rx is actually a homomorphism. The 
reader will note that this definition is a slight generalization of that given 
in §V.6. 

The homomorphism rx has various naturality properties. For example: 
(a) If f:K ~ K' and g:L ~ L' are chain maps, then the following 

diagram is commutative: 

Hm(K) @ Hn(L) ~ Hm+n(K @L) 

1 (J®g). 
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(b) Assume that 
E:O -+ K' ..!.. K l K" -+ 0 

is a short exact sequence of chain complexes, and that L is a chain complex 
such that the following sequence is exact: 

E®L:O -+ K'®L~ K®L~ K"®L-+ 0 

(sufficient conditions for E ® L to be exact are that E be split exact, or that 
L be a chain complex of torsion-free abelian groups). Then the following 
diagram is commutative: 

Hm(K")®Hn(L) ~ Hm+n(K"®L) 

" Hm- 1(K') ® Hn(L) ---+ Hm+n- 1(K' ® L). 

(c) There is an obvious symmetric situation: Assume that 

E: 0 -+ L' ..!.. L ~ L" -+ 0 

is a short exact sequence of chain complexes, and that K is a chain complex 
such that the sequence 

K®E:O -+ K®L' ~K®L~K®L" -+ 0 

is exact. The reader should investigate the question of the commutativity 
of the following diagram: 

" Hm(K)®H.(J.:') ---+1 Hm+.(K®L") 

11®oE 

With these preliminaries taken care of, we can now state our main theorem, 
the so-called Kiinneth theorem: 

Theorem 4.1. Let K and L be chain complexes, at least one of which consists 
of free abelian groups. Then there exists a split exact sequence: 

0-+ L H;(K) ® Hj(L) ~ HiK ® L)! L Tor(Hi(K),Hj(L» -+ O. 
i+j=n i+j=n-l 

The homomorphisms IX and f3 are natural with respect to chain maps but the 
splitting is not natural. 

The proof of this important theorem is not difficult; it may be found in 
various books on homological algebra and algebraic topology, e.g., Vick 
[9], Hilton and Stammbach [4], Mac Lane [6], Cartan and Eilenberg [1], 
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or Dold [2]. Actually, the theorem can be proved under slightly more general 
hypotheses than we have stated it, but we will have no use for such greater 
generality. 

This theorem can be combined with our previous results on the product 
of regular CW-complexes and the singular chain complex of a product 
space to obtain significant results on the homology of product spaces. We 
will state the precise results later. In the meantime, we note the following 
corollary for future reference: 

Corollary 4.2. Suppose that K and L are chain complexes of free abelian 
groups which have the homology of a point, i.e., 

HiK)=HiL)=O forq=lO 

Ho(K) = Ho(L) = z. 

Then K @ L also has the homology of a point, and 

rx.:Ho(K)@Ho(L) -4 Ho(K @L) 

is an isomorphism. 

§5. Proof of the Eilenberg-Zilber Theorem 

We must define a chain map 1]: C(X x Y) -4 C(X)@ C(Y) such that 1]( is 
chain homotopic to the identity map of C(X) @ C(Y), and (1] is chain homo
topic to the identity map of C(X x Y). One way to proceed is by brute 
force, relying on our geometric intuition to lead us to the correct formulas. 
We will indicate the first few steps in such a procedure, by defining homo
morphisms 

1]q:Qq(X x Y) -4 L Qi(X) @ Qj(Y) 
i+j=q 

such that on passing to the quotient groups modulo degenerate singular 
chains we obtain the desired chain map 1]. 

Note that a singular n-cube r -4 X x Y in the product space corresponds 
in an obvious way to a pair of singular n-cubes s:r -4 X and T:r -4 Yin 
each of the factors. It will be convenient to let the notation (S, T) denote 
the corresponding singular n-cube in the product space X x Y. 

It is obvious that we should define 1]o:Qo(X x Y) -4 Qo(X) @ Qo(Y) by 
the formula 

1]o(S,T) = S @ T 

for any singular O-cubes S:Io -4 X and T:lo -4 Y. This makes 1]0 the 
inverse of (0 (which is an isomorphism). 
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Next, one defines 1'/1: Q1(X x Y) --+ Qo(X) (8) Q1(Y) + Q1(X) (8) Qo(Y) by 
the formula 

1'/1(S, T) = (A1S) (8) T + S (8) (B1 T) 

for any singular I-cubes S:I1 --+ X and T:I1 --+ Y. 
To define I'/q in general, we need a generalization of the face operators 

Ai and Bi. Let H be any subset of {1,2, ... ,n}, and let K denote the com
plementary subset. If H has p elements and K has q elements, p + q = n, 
we wi11let 

({JK: K --+ {1,2, ... ,q} 

denote the unique bijective, order-preserving map. If T:I" --+ X is any 
singular n-cube, let 

denote the following maps: 

where 

and 

where 

(AHT)(Xb ... ,Xq) = T(Yb' .. ,yn), 

. {o if i E H, 
Yi = Xlp (i) if i E K, 

K 

{
I if i E H, 

Yi = Xlp (i) if i E K. 
K 

EXAMPLE 5.1. If H = 0, then AHT = BHT = T. 

EXAMPLE 5.2. If H = {i}, then AHT = AiT and BHT = BiT. 

EXAMPLE 5.3. If H = {l,2, ... ,n}, then AHT and BHT are singular O-cubes 
represented by T(O, ... ,0) and T(I, ... ,1) respectively. 

We can now define I'/q:Qq(X x Y) --+ Li+ j=q Qi(X) (8) QiY) by the magic 
formula 

I'/q(S,T) = LPH.KAH(S) (8) BK(T), 

where S:Iq --+ X and T:Iq --+ Yare singular q-cubes, H ranges over all 
subsets of {1,2, ... ,q} and K denotes the complementary set, and PH,K = ± 1 
denotes the signature of the permutation HK of {I, ... ,q}. (If H or K is 
empty, then PH,K = + 1.) 

The student who has sufficient stamina and enthusiasm for calculating 
can now verify the following assertions: 

(a) If (S,T) is a degenerate singular cube, then I'/q(S,T) belongs to 
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Li+j=q[Di(X)@Qj(Y)+Qi(X)@Dj(Y)]. Hence '1q induces a homomor
phism 

i+j=q 

(b) The sequence of homomorphisms '1 = {'1q} is a chain map C(X x Y)-+ 
C(X)@C(Y). 

(c) '1( = identity map of C(X) ® C(Y). 
(d) It is possible to define a chain homotopy between ('1 and the identity 

map of C(X x Y), but the formulas are somewhat complicated. 
Rather than go through the details of these lengthy calculations, it seems 

preferable to use a more conceptual method due to Eilenberg and Mac Lane, 
called the method of acyclic models. This method makes strong use of the 
naturality of the chain maps ( and '1 which we have defined. By making full 
use of this naturality, it is possible to avoid the necessity of having explicit 
formulas. First, however, we have to make two brief digressions in prepara
tion for this proof. 

DIGRESSION 1: Some more generalities on chain complexes 

Definition 5.1. A chain complex K = {Kq} is positive if Kq = {O} for q < O. 

Most of the chain complexes we have considered so far have been positive. 
Note that the tensor product of two positive chain complexes is again a 
positive chain complex. 

Definition 5.2. An augmentation of a positive chain complex {Kq,oq} = K is a 
homomorphism B:Ko -+ Z such that BOl = O. 

Observe that an augmentation B induces a homomorphism e*:H o(K) -+ Z. 

Definition 5.3. A positive chain complex K with augmentation is acyclic if 
Hq(K) = 0 for q i= 0 and e*:Ho(K) -+ Z is an isomorphism. 

For example, if X is a contractible space, then the chain complex C(X) 
is acyclic. 

Let K and L be positive chain complexes with augmentations. It should 
be clear what we mean when we say a chain map f: K -+ L "preserves the 
augmentation." For example, if <p:X -+ Y is a continuous map, the induced 
chain map CfJ#: C(X) -+ C(Y) obviously preserves the augmentation. In the 
rest of this chapter, we will be mainly concerned with chain complexes which 
have an augmentation, and chain maps which preserve the augmentation. 

Let K' = {K~,o~} and K" = {K~,o~} be positive chain complexes with 
augmentation e': K'o -+ Z and B": Ko -+ Z respectively. It is customary to 
define an augmentation e on the tensor product K = K' ® K" by the simple 
formula 

B(U ® v) = B'(U) . B"(V) 
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for any u E K'o and v E Ko. With this definition, the following diagram is 
obviously commutative: 

Ho(K') ® Ho(K") 

~®'~ 
z®z~ Z 

Proposition 5.1. The tensor product of two free acyclic chain complexes (with 
augmentations) is again acyclic. 

This follows from the Corollary 4.2 to the Kiinneth theorem and the 
commutative diagram above. 

DIGRESSION 2. Let us denote by f.ln:QiX) --+ CiX) the natural homomor
phism of Qn(X) onto its quotient group. It is obvious that Dn(X) is a direct 
summand of QiX), hence we can choose (for each space X) a homomorphism 
Vn: CiX) --+ QiX) such that f.lnVn = identity map of Cn(X). What is surprising 
is that we can do this in a natural way. To be precise: 

Lemma 5.2. There exist homomorphisms v;: CiX) --+ Qn(X), defined for each 
space X and each integer n ~ 0 such that f.lnV; = identity, and for any con
tinuous map f: X --+ Y, the following diagram is commutative: 

C.(X) ---;--+ Q.(X) 

if. v, if. 
C.(Y) --;:-> Q.(y)' 

v, 

PROOF: In order to save words, in the rest of this section we will call a homo
morphism, such as v; or f.l;, which is defined for each space X and commutes 
with the homomorphism f# induced by any continuous map f, a natural 
homomorphism. As examples, we have the face operators 

l~i~n, 

which were (almost) defined in §II.2; they satisfy the identities listed in 11.2. 
Another important example is the family of degeneracy operators 

l~i~n+l 

defined by 
(EiT)(Xl"" ,xn+d = T(x 1,··· ,X;, ... ,xn+d 

for any singular n-cube T: 1" --+ X; the circumflex over Xi means that it is 
to be omitted. Note that image Ei C Dn+ l(X), and every degenerate singular 
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(n + I)-cube is ofthe form EjT for some i and some n-cube T. It is a routine 
matter to verify the following list of identities: 

EjEj = Ej+1Ej i 5.j, 

AjEj = Ej-1Aj, BjEj = Ej-1Bj, i <j, 
AjEj = BjEj = 1 
AjEj = EjA j_h BjEj = EjB j_1, i > j. 

Now consider the natural homomorphism 

(1 - E1Al)(1 - E 2A 2)' •• (1 - E"A,,):Q,,(X) -+ Qn(X). 

We assert that this homomorphism annihilates D,,(X), and hence defines a 
natural homomorphism 

To prove this assertion, it helps to first prove the following identities: 

(1 - EjAj)Ej = 0 

(1 - EjAj)Ej = E j(1 - Ej-1Aj - 1) ifi <j. 

It remains to verify that J.l"V" = identity. This follows from the fact that for 
any u E Q,,(X), 

(1 - E1Al)(1 - E 1A 2 ) ••• (1 - E"A,,)(u) 

belongs to the same coset modulo Dn(X} as u. Q.E.D. 

With these digressions out ofthe way, we can proceed with our proof that 
':C(X) ® C(Y) -+ C(X x Y) is a chain homotopy equivalence. The proof 
depends on the following three lemmas: 

Lemma 5.3. For every ordered pair of spaces (X, Y) we can choose a chain map 

eX,Y: C(X x Y) -+ C(X) ® C(Y) 

(which commutes with augmentations) such that the following naturality con
dition holds: For any continuous maps f: X -+ X' and g: Y -+ Y', the following 
diagram is commutative: 

C(X x Y) ~ C(X) ® C(Y) 

1 (f x g). 1fo ®g. 

C(X' x Y') ~ C(X') ® C(Y'). 

Lemma 5.4. Let qJx,Y, t/lx,Y: C(X) ® C(Y) -+ C(X) ® C(Y) be a natural collec
tion of chain maps. Then there exists a natural collection of chain homotopies 

DX,Y: C(X) ® C(Y) -+ C(X) ® C(Y) 
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such that 
cpX,Y _ t/lX,Y = 8DX,Y + DX'Y8 

for every ordered pair (X, Y) of spaces. 
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Lemma 5.5 Let cpx,Y, t/lx,Y: C(X x Y) ~ C(X x Y) be a natural collection 
of chain maps. Then there eXists a natural collection of chain homotopies 
DX,Y: C(X x Y) ~ C(X x Y) such that 

cpx,Y _ t/lx,Y = 8DX,Y + DX'Y8. 

In regard to the statements of these lemmas, the following points should 
be emphasized: 

(a) All chain maps are assumed to preserve the augmentation. 
(b) In each case, the adjective "natural" has the following technical 

meaning: Any pair of continuous maps f:X ~ X' and g: Y ~ Y' gives rise 
to a certain square diagram, which is required to be commutative. 

It should be clear that these three lemmas imply the truth of the assertion 
that (:C(X) @ C(Y) ~ C(X x Y) is a chain homotopy equivalence. For, let 
~: C(X x Y) ~ C(X) @ C( Y) be the chain map whose existence is guaran
teed by Lemma 5.3. Then ~( and the identity are natural chain maps 
C(X)@ C(Y) ~ C(X)@ C(Y), and hence they are chain homotopic by 
Lemma 5.4. Similarly, (~ and the identity C(X x Y) ~ C(X x Y) are chain 
homotopic by Lemma 5.5. This result is known as the Eilenberg-Zilber 
theorem. 

PROOF OF LEMMA 5.3. We will use induction on n to define homomorphisms 

~;,Y :CiX x Y) ~ [C(X)@ C(Y)Jn 

for all spaces X and Y, which will be natural, and will define the required 
chain map (i.e., will commute with the boundary operator). 

Case n = O. Define 

~;,Y: Co(X x Y) ~ Co(X) @ Co(Y) 
by 

~o(S,T) = S@ T 

for any singularO-cubes S:]o ~ X and T:]o ~ Y(recall that Qo(W) = Co(W) 
for any space W). Then it is trivial to check that ~o is natural, and that it 
preserves the augmentation. 

Case n = 1. Let 1:]1 ~]1 denote the identity map. Then (1,1):]1 ~ W x ]1) 

is a singular I-cube, i.e., (1,1) E Q1W x ]1), and 

8 1(1,1) E QoW x ]1) = Co(I1 X ]1) 

~bl,II81(1,1) E CoW)@ CoW) 
and 
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since eo preserves augmentation. By Proposition 5.1, the chain complex 
C(]1) ® C(]1) is acyclic. Hence we can choose an element 

e1 E [CW) ® CW)]1 
such that 

Define a homomorphism 

n'Y:Q1(X x Y) --+ [C(X)®C(Y)J1 

for any spaces X and Y by the formula 

~1(S,T) = (S# ® T #)(e1), 

where S:]1 --+ X and T:]1 --+ Yare arbitrary singular I-cubes. We now have 
to check two things: 

(a) Naturality. If f:X --+ X' and g: Y --+ Y' are continuous maps, the 
following diagram is commutative: 

~f'f 
Q,(X x Y) ~ [C(X) ® C(Y)], 

1 (f x g). If • ®g. 

Q,(X' x Y') ~ [C(X') ® C(Y')],. 

This is an easy calculation: 

(f# ®g#)~l(S,T) = (f# ®g#)(S# ® T#)(e 1) 
= ((fS)# ® (gT)#)(e 1) 

~1(f x g)#(S,T) = ~1(fS,gT) 

= ((fS)# ® (gT)#)(ed· 

(b) Commutativity with at> i.e., the following diagram is commutative: 

~I 
Q,(X x y) ----+ [C(X) ® C(Y)] , 

1°1 101 

<. 
Qo(X x Y) ----+ [C(X) ® C(Y)]o. 

Here the computation proceeds as follows: 

a~1(S,T) = a(S# ® T #)(e1) 

= (S# ® T#)a(el) 

= (S# ® T #)~oa(l,l) 

= ~o(S x T)#a(l,l) 

= ~oa(S x T)#(l,l) 

= ~oa(S,T). 
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Then ~ 1 is natural, because it is the composition of natural homomorphisms. 
It remains to check that ~ 1 commutes with a l' Consider the following 
diagram: 

We wish to prove that 

We have 

as desired. 

ag1 = af~1V1 = ~Oa'1Vl> 
~Oa1 = ~oa1f11V1 = ~Oa'1Vl> 

Inductive step. Assume that n > 1 and homomorphisms 

have been defined for all spaces X and Y and all q < n so that naturality 
holds and the homomorphisms commute with the boundary operator. 
Define homomorphisms 

for all X, Yand q < n by the formula 

J;X,Y = ;::X,Y IIX,Y 
<"q 'oq t"'q • 

Note that ~q is a natural homomorphism and that the various ~q'S commute 
with the boundary operators aq , since they are the composition of homo
morphisms having these two properties. Let I: r ~ r denote the identity 
map. Then (/,/):r ~ r x r is a singular n-cube, and (/,/) E Qn(I" x r), 

~::-ran(/,/) E [C(r) ® C(r)]n-1 

an-1~n-1ail,/) = ~n-2an-1ail,/) = O. 

Therefore ~n-1 an(/,/) is a cycle, and since C(I") ® C(r) is acyclic, we can 
choose en E [C(r) ® C(I")]n such that 

a(en) = ~n-1an(/,/). 



144 VI The Homology of Product Spaces 

For any s:r --+ X and T:r --+ Y, define 

~iS,T) = (S# ® T #)(en). 

Then ~n defines a homomorphism QiX x Y) --+ [C(X) ® C(Y)]n' Exactly 
as for the case n = 1, we can prove that ~n is natural; Also, the following 
diagram is commutative: 

In fact, we have 

Next, define 

by 

~, 
Q.(X x Y) ) [C(X) ® C(Y)]. 

l~ l~ 
~'-l 

Q.-t(X x Y) ~ [C(X)®C(Y)].-t· 

On~n(S,T) = on(S# ® T #)(en) 

= (S # ® T #)on(en) 

= (S# ® T #)~n-lOn(I,I) 

~n-loiS,T) = ~n-lOn(S X T)#(l,l) 

= ~n-l(S X T)#On(I,I) 

= (S # ® T #)~n-lOn(I,I). 

~;'Y:Cn(X x Y) --+ [C(X)®C(Y)]n 

Then ~n is natural, since it is the composition of natural homomorphisms. 
Also, 

for, we have, 

as desired. 

On~n = on~nvn = ~n-lOnVn 
= ~n-ll1n-lOnVn 
= ~n-lOnl1nVn = ~n-lOn 

Q.E.D. 

PROOF OF LEMMA 5.4. Once again we will use induction on n to difine homo
morphisms 

D;,Y: [C(X) ® C(Y)]n --+ [C(X) ® C(Y)]n+ 1 

for all integers n and all spaces X, Y, such that 

<p;,Y - ljJ;'Y = an+ ID;'Y + D;~.Tl an 
and such that naturality holds. 

Case n = O. We assert that the condition on <p and ljJ imply that <P3'Y = 

ljJ~,Y for any spaces X and Y. The assertion is true for X = Y = [0 (a single 
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point) because B:Co(l°) ® Co(l°) - Z is an isomorphism, and cp and l/I are 
assumed to be augmentation preserving. For arbitrary spaces X and Y, let 
S:]o _ X and T:]o - Y be singular O-cubes. Then 

where 1:]° _ ]0 is the identity map. Hence it follows by naturality that 
rnX,Y _ ,/,X,Y 
'f"0 - '1'0 • 

Since CP~,y = l/I~'Y, we may define D~'Y = 0 and all conditions will be 
satisfied. 

For the remainder of the proof, it will be convenient to define homo
morphisms 

ip;'Y, ig'Y: [Q(X) ® Q(Y)]n - [C(X) ® C(Y)]n 

by the formulas 
ip;'Y = cp;'Y(/lx ® /lY) 

,g'Y = l/I;'Y(/lx ® /lY). 

Then ip and ljj are natural chain mappings, since they are the composition 
of natural chain mappings. Also, for any integer q ~ 0 we let 

denote the identity map. 

Case n = 1. Consider 

and 

We now compute 

0l(ipl -ljjl)(/o ® /1) = (ipo -ljjO)Ol(/O ® Id 
=0 

since ipo = CPo = l/Io = ljjo· Similarly, 0l(ipl -ljjl)(/l ® 1o) = O. Since the 
chain complexes C(l°) ® C(]1) and C(Ji) ® C(l°) are acyclic, we can choose 
elements 

such that 

e0 1 E [C(]O) ® CW)]2 
el0 E [CW) ® C(]0)]2 

02(eOl) = (ipl -ljjl)(/O ® /1), 

02(e10) = (ipl -ljjl)(/l ® 1o). 

Define V1 : [Q(X) ® Q(Y)]l - [C(X) ® C(Y)]2 by 
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Then 15 1 is natural in the sense that the following diagram is commutative: 

[Q(X) ® Q(Y)]l ~ [C(X) ® C(Y)]2 

If#®g. If.®g. 
[j 

[Q(X') ® Q(Y')]l ----'----. [C(X') ® C(Y')]2. 

The verification of naturality should present no difficulty to the reader who 
has already gone through the details of such verifications earlier. 

Next, if S:1° -. X and T:11 -. Yare singular cubes, we compute 

02151(S ® T) = 02(S# ® T #)(eOl) 

= (S # ® T #)02(e0 1) 

= (S# ® T #)(iiil - ilil)(lo ® 11) 

= (iiil - ilil)(S# ® T #)(10 ® 11) 

= (iiil - ilil)(S ® T). 

Similarly, we can prove that 02151(S ® T) = (iiil - ilil)(S ® T) in case 
S:1 1 -. X and T:1° -. Y. Thus we see that 

015 1 = iiil - ilil' 
in all cases. 

Now define 

by 
Df'Y = 15f'Y(vX ® vY). 

Then Dl is natural because it is the composition of natural homomorphisms, 
and 

as required. 

02Df'Y = 0215f'Y(vX ® vY) 

= (iiif'Y - ilif'Y)(vX ® vY) 

= (<pf'Y - t/lf'Y)(IlX ® IlY)(VX ® vY) 

= (<pf'Y - t/lf'Y) [(llxVX) ® (IlYvY)] 
_ mX,Y _ ./,X,Y 
- '1'1 '1'1 

Inductive step. Assume that n > 1 and 

Dr:[C(X)®C(Y)Jr -. [C(X)®C(Y)Jr+l 

is defined for all r < n, that Dr is natural, and 

<Pr - t/lr = Or+1Dr + Dr-lOr' 

Define Dr: [Q(X) ® Q(Y)]r -. [C(X) ® C(Y)Jr+ 1 for all r < n by 

15~'Y = D~'Y(llx ® IlY). 
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Then Dr is natural, and 

0r+ IDr = Or+ IDr{f.1X ® p.Y) 

= (CPr - t/I r - Dr - IOr)(P.X ® p.Y) 
= (CPr - t/lr)(p.X ® p.Y) - Dr_I(p.X ® p.Y)Or 

= CPr -llir - Dror· 

Next, we define Dn. Let (p,q) range over all pairs of nonnegative integers 
such that p + q = n, and for each such pair consider lp ® lq E [Q(JP) ® Q(lq)]n 
and 

[CPn - llin - Dn- I On](lp ® lq} E [C(JP) ® C(Iq)]n' 

We now compute as follows: 

On[CPn -llin - Dn-IOn](lp® lq} 

= [CPn-IOn -lIin-IOn - OnDn-IOn](lp ® lq} 
= [OnDn-IOn - OnDn-IOn](lp® lq} = O. 

Since C(JP) ® C(Iq) is acyclic, there exists ep,q E [C(IP) ® C(Iq)]n+ I such that 

o(ep,q) = [CPn -llin - Dn-Ion](lp ® lq). 

If S:IP --+ X and T:lq --+ Yare singular cubes, define 

Dn(S ® T} = (S # ® T #}(ep,q)' 

Then D;'Y is a homomorphism of [Q(X) ® Q(Y)]n into [C(X) ® C(Y)]n+I' 
As before, we can easily prove that Dn is a natural homomorphism, and 

0n+ IDn(S ® T) = 0n+ I(S # ® T #)(ep,q) 

= (S# ® T#)On+l(ep,q) 
= (S # ® T #)(CPn - llin - Dn - l On)(lp ® lq) 

= (CPn - llin - Dn- I On)(S # ® T #)(lp ® lq) 

= (CPn -llin - Dn-Ion)(S® T). 
We now define 

D;'Y: [C(X) ® C(Y)]n --+ [C(X) ® C(Y)]n+ I 

by 

Then Dn is natural, and 

as required. 

0n+ ID;'Y = on+ ID;'Y(vX ® vY) 

= (CPn -llin - Dn - l on)(vX ® vY) 

= (CPn - t/ln - Dn_Ion)(p.x ® p.Y)(VX ® vY) 
= (cp;,Y - t/I;,Y - D;!IOn) 
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The reader should have no trouble by now proving Lemma 5.5 for him
self, hence we will not go through the details. 

The reader should reflect on the essentials of these proofs. They were 
concerned with certain chain complexes defined on ordered pairs (X, Y) of 
topological spaces, namely, Q(X x y), C(X x y), Q(X) ® Q(Y) and 
C(X) ® C(Y). There were certain models at hand: for Q(X x Y) they were 
the pairs (I",In) and the singular cube (/,/):1" -+ 1" x 1", (/,/) E Qi1" x 1"), 
while for Q(X) ® Q(Y) they were the pairs (JP,Iq) and the elements Ip ® Iq E 

Qp(JP) ® Qq(Iq). The important thing about the models is that QiX x Y) 
has a basis composed of the elements (S,T) = (S x T)#(/,/), while Qp(X) ® 
Qq(Y) has a basis composed of the elements S ® T = (S # ® T #)(Ip ® Iq). 
Finally these models are acyclic, in the sense that the chain complexes 
C(1" x 1") and C(JP) ® C(Iq) are acyclic. The whole procedure is explained 
is complete generality in the original paper of Eilenberg and Mac Lane 
[3]. However, such a general treatment is so abstract that it is difficult to 
follow; moreover, the reader who has used the method in a few specific 
cases should have no difficulty in applying it to new cases. 

This method of acyclic models is applicable to many problems involving 
singular homology groups. For example, singular homology groups can be 
defined using singular simplexes rather than singular cubes. Then one can 
use the method of acyclic models to define a natural chain homotopy 
equivalence between cubical singular chains and simplicial singular chains. 
This is explained in detail in the paper of Eilenberg and Mac Lane [3J 
mentioned above. 

EXERCISES 

5.1. Prove that any two natural chain maps 

cpX,f, tjlX,f :C(X) ® C(Y) -+ C(X x Y) 

are chain homotopic (by a natural chain homotopy). [Note: This applies, in 
particular, to the natural chain map' defined in §3.] 

5.2. Prove that there exist natural chain maps 

AX: C(X) -+ C(X) ® C(X) 

and that any two such natural chain maps are chain homotopic (by a natural 
chain homotopy). Such a natural chain map is sometimes called a diagonal map. 

5.3. Prove that there is a 1-1 correspondence between diagonal maps 

AX: C(X) -+ C(X) ® C(X) 

as defined in the preceding exercise and natural chain maps 

~X,f: C(X x Y) -+ C(X) ® C(Y) 

as described in Lemma 5.3. This 1-1 correspondence is defined as follows: 
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(a) Given any such diagonal map Ll, define a natural chain map 

JX.Y:C(X x y) -> C(X) ® C(y) 

by the formula 
JX.Y = (1t1# ® 1t2#) Llx x Y, 
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where 1t1 :X x Y -> X and 1t2:X x Y -> Y denote projections on the first and 
second factors respectively. 

(b) Given a natural chain map ~: C(X x Y) -> C(X) ® C(Y), define a diagonal map 

~x: C(X) -> C(X) ® C(X) 

by the formula 
~X = ~x,xd#, 

where d:X -> X x X denotes the "diagonal" map defined by d(x) = (x,x) for 
any x E X. [Note: When we study cohomology theory, we will see the real 
importance of such diagonal maps.J 

5.4. Let Ll x : C(X) -> C(X) ® C(X) be a diagonal map, as defined in Exercise 5.2, and 
let TX : C(X) ® C(X) -> C(X) ® C(X) be the natural chain map defined by 

T(U ® v) = (-l)Nv ® U, 

where U E Cp(X), and v E CiX). By Exercise 5.2, there exists a natural chain 
homotopy DX : C(X) -> C(X) ® C(X) between Ll and TLl, i.e., 

Ll - TLl = aD + Do. 

Prove by the method of acyclic models that there exist natural homomorphisms 

D~:Cn(X) -> [C(X) ® c(X)Jn+2 

such that 

D + TD = aD' - D'o. 

(Note that T2 = identity. One can think of D' as a "second-order chain homotopy" 
between the "first-order" chain homotopies D and -TD'. One could then consider 
third-order chain homotopies between D' and TD', etc. This procedure leads to 
one method of constructing the Steenrod squaring operations in cohomology 
theory; see E. Spanier [7J, pp. 271-276.) 

§6. Formulas for the Homology Groups 
of Product Spaces 

Our objective is to combine the Kiinneth theorem for chain complexes 
(Theorem 4.1) with the existence of the natural chain homotopy equivalences 
(Eilenberg-Zilber theorem) , 

C(X) (8) C(Y) +2 C(X x Y) 
~ 

to express the homology groups of X x Y in terms of those of X and Y. 
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By this method, we obviously obtain a split exact sequence: 

0-+ L Hp(X)®Hq(Y) ~ H .. (X x Y) ~ L Tor(Hp(X),Hq(Y» -+ O. 
p+q=.. p+q=n-l 

The homomorphisms IX and fJ are natural, but the splitting is not natural. 
One way to generalize this theorem is the following: Let G be an abelian 

group. Then we have the following natural chain homotopy equivalences: 
C®l 

C(X) ® C(Y) ® G +===t C(X x Y) ® G. 
~®1 

In the Kiinneth theorem we only needed to assume that one of the chain 
complexes K and L was free. Hence we obtain the following split exact 
sequence: 

p+q= .. 

~ L Tor(HiX),Hq(Y;G» -+ O. 
p+q=n-l 

Once again, the homomorphisms IX and fJ are natural, but the splitting is 
not natural. 

We wil~ now generalize these theorems to include relative homology 
groups. If (X,A) is a pair, then 

C(X,A) = C(X)/C(A) 

by definition; also, the sequence 

o -+ C(A) -+ C(X) -+ C(X,A) -+ 0 

is split exact. Using these facts, plus basic properties of tensor products, it 
is easy to see that there is a natural isomorphism of chain complexes 

C(X) C(Y) C(X) ® C(Y) 
C(A) ® C(B) ~ C(X) ® C(B) + C(A) ® C(Y) 

for any pairs (X,A) and (Y,B). In the denominator on the right-hand side of 
this equation, the plus sign does not mean direct sum; it refers to the least 
subgroup containing the two terms. 

Due to the naturality of the chain maps' and ~ with respect to the chain 
maps i#: C(A) -+ C(X) and j # : C(B) -+ C(Y) induced by inclusion maps i 
andj, we conclude that we have chain homotopy equivalences 

C(X) ® C(Y) C C(X x Y) 
C(X) ® C(B) + C(A) ® C(Y) ~ C(X x B) + C(A x Y)· 

The inclusion maps X x B -+ X x B u A x Y and A x Y -+ X x B u 
A x Y induce an obvious chain map 

C(X x B) + C(A x Y) -+ C(X x B u A x Y). 
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Under certain circumstances, this chain map will be a chain homotopy 
equivalence; for example, this will be the case if either A or B is empty 
(trivially). More generally, it will be the case if the interiors of X x Band 
A x Y cover X x B u A x Y (cf. Theorem 11.6.3) in the relative topology 
of (X x B) u (A x Y). 

Definition 6.1. Let X 1 and X 2 be subspaces of some topological space X. 
We say {Xl' X 2} is an excisive couple if the obvious chain map C(X d + 
C(X 2) --+ C(X 1 U X 2) (induced by inclusion) induces isomorphisms on 
homology groups. 

The term "excisive" is used here because of its obvious connection with 
the excision property. 

We note the following two sufficient conditions for {X 1,X 2} to be an 
excisive couple: 

(a) If Xl U X 2 = (Interior XI) u (Interior X 2) in the relative topology 
of Xl u X 2, then {X 1,X 2} is an excisive couple. This is a consequence of 
Theorem 11.6.3. 

(b) If X is a CW-complex and Xl and X 2 are subcomplexes, then {X 1,X2 } 

is an excisive couple. This is a consequence of the theorems of §IVA. 

EXERCISES 

6.1. Prove that the following conditions are equivalent to {X l,X 2} being an excisive 
couple in X: 

(a) Hq(C(Xl v X 2)/(C(Xl) + C(X 2))) = 0 for all q. 
(b) The obvious chain map C(X)/(C(Xl) + C(X2)) -+ C(X)/C(Xl v X 2) induces 

isomorphisms on homology groups. 
(c) The inclusion map (X 1> Xl n X 2) -+ (X 1 V X 2, X 2) induces isomorphisms on 

homology groups. 

6.2. If {X l,X 2} is an excisive couple, prove that the chain map C(X l; G) + C(X 2; G) -+ 

C(X 1 V X 2; G) induces an isomorphism on homology groups for any coefficient 
group G. Then deduce that the analogues of Conditions (a), (b), and (c) of Exercise 
6.1 hold for homology with coefficient group G. 

In view of the above discussion, we see that if {A x Y, X x B} is an ex
cisive couple in X x Y, then the composition of the Eilenberg-Zilber chain 
homotopy equivalence 

{ C(X x Y) 
C(X,A) ® C(Y,B) --+ C(X x B) + C(A x Y) 

and the chain map 

C(X x Y) C(X x Y) 
~----~--~----~--+~--~~~~~ 
C(X x B) + C(A x Y) C(X x B u A x Y) 
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induces an isomorphism 

Hq(C(X,A) ® C(Y,B» ~ Hix x Y, X x B u A x Y) 

for all q. Hence we have the following: 

Theorem 6.1. Let (X,A) and (Y,B) be pairs such that {A x Y, X x B} is an 
excisive couple in X x Y. Then there exists a split exact sequence 

0- L Hp(X,A) ® H/Y,B,;G) ~ Hn(X x Y, A x Y u X x B;G) 
p+q=n 

~ L Tor(Hp(X,A),Hq(Y,B;G» 
p+q=n-l 

-0 

The homomorphisms IX and {3 are natural, but the splitting is not. 

EXAMPLE 6.1. Let K = {Kn} and L = {Ln} be finite CW-complexes on the 
spaces X and Y respectively. Then 

IX·H (KP KP-l) "X' H (U U-1)_H (KP xU KP X U- 1 U KP-l xU) . P' '01 q' p+q , 

is an isomorphism by the above theorem. Let 

Mn = U KP x U, n = 0,1,2, ... 
p+q=n 

denote the CW -complex on X x Y. Then composing the isomorphism IX with 
the homomorphism induced by the inclusion map 

(KP x U, KP-l xU u KP XU-I) _ (Mn,Mn- 1) 

gives rise to a natural homomorphism 

Cp(K) ® Cq(L) - Cn(M). 

It may be shown that this agrees with the identification 

CiM) = L Cp(K) ® CiL) 
p+q=n 

we made in §2 for the case where K and L are regular CW -complexes. 

EXERCISES 

6.3. Let K and L be pseudomanifolds of dimensions m and n respectively. (a) Prove 
that K x L is a pseudomanifold of dimension m + n. (b) Prove that K x L is 
orientable if and only if both K and L are orientable. 

6.4. Let p2 denote the real projective plane. Compute the integral and mod 2 homology 
groups of p2 x p2. 

6.5. Let R be a ring, and let K = {K.,a.} and L = {L.,d.} be chain complexes such that 
each K. is a right R-module, each a. is a homomorphism of right R-modules, each 
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Ln is a left R-module, and each dn is a homomorphism of left R-modules (we can 
express these conditions more briefly by saying that K is a chain complex of right 
R-modules and L is a chain complex of left R-modules.) The definition of K ®RL 
should be obvious; it is a chain complex of abelian groups. Define a natural 
homomorphism IX:Hp(K) ®RHiL) -+ Hp+iK ®RL) by analogy with our earlier 
definition. 

6.6. Let F be a commutative field, and let K and L be chain complexes of vector spaces 
over F. Prove that 

IX: I HiK ) ®FHq(L) -+ Hn(K ®FL) 
p+q=n 

is an isomorphism. 

6.7. Let (X,A) and (Y,B) be pairs such that {A x Y,X x B} is an excisive couple in 
X x Y, and let F be a commutative field. Prove that there exists a natural iso
morphism 

IX: I Hp(X,A;F) ®FHq(Y,B;F) -+ H.(X x Y,A x Y v X x B;F). 
p+q=n 

6.8. Let F be a commutative field and (X,A) a pair such that for all q, Hq(X,A;F) has 
finite rank rq over F. Define the Poincare series of (X,A) (over F) to be the formal 
power series 

P(X,A;t) = I rq~. 
q;::O 

Give a formula for P(X x Y; X x B v A x Y; t) in terms of P(X,A;t) and P(Y,B;t), 
assuming that {A x Y, X x B} is an excisive couple. 
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CHAPTER VII 

Cohomology Theory 

§1. Introduction 

Recall that one obtains homology groups with coefficient group G by the 
following process: 

(a) Start with the chain complex C(X,A) = {Cq(X,A),8q}. 
(b) Apply the functor ®G to obtain the new chain complex 

C(X,A) ® G = C(X,A;G). 

(c) Take the homology groups ofthe resulting chain complex: 

Hq(X,A;G) = HiC(X,A;G)). 

We could go through the same procedure, only at Step (b), apply the functor 
Hom( ,G) instead of ®G, and obtain what are called the cohomology groups 
of(X,A) with coefficient group G. Much of the resulting theory parallels that of 
Chapter V. However, the geometric interpretation of cycles (or cocycles), etc. 
is somewhat different, and perhaps a bit more obscure. More importantly, 
it is possible to introduce additional operations into cohomology theory, 
most notably, what are called cup products and Steenrod squares. These new 
operations are additional invariants of homotopy type, and enable us to 
distinguish between spaces that we could not tell apart otherwise. Cup 
products are explained in the next chapter. 
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§2. Definition of Cohomology Groups-Proofs 
of the Basic Properties 

For any pair (X,A) and any abelian group G, define 

O(X,A;G) = Hom(Cq(X,A),G), 

and 

b 'O(X kG) --+ Cq+1(X kG) qo " , , 

by bq = Hom(8q + h l G). Then 

C*(X,A;G) = {Cq(X,A;G),bq} 

is a cochain complex, in accordance with the following definition: 
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Definition 2.1. A co chain complex K consists of a sequence of abelian groups 
{Kq} and homomorphisms bq:Kq --+ Kq+1 defined for all q and subject to 
the condition that bq+ 1 bq = 0 for all q. The homomorphism bq is called a 
coboundary operator. 

An important example of a cochain complex is the following: Let C = 

{Cq,8q} be a chain complex; define Kq = Hom(Cq,G) and bq:Kq --+ Kq+1 by 
bq = Hom(8q+ 1,1), where 1 denotes the identity homomorphism G --+ G. 
Then K = {Kq,bq} is a cochain complex; we will denote this cochain com
plex by 

K = Hom(C,G). 

On the other hand, if K is a cochain complex, then an analogous definition 
leads to a chain complex Hom(K,G). 

Obviously, the theory of chain complexes and the theory of co chain 
complexes are isomorphic; to get from one to the other, change the sign 
of all the indices. The distinction between the two is made partly for tradition, 
and partly for convenience in the applications we have in mind. Correspond
ing to the notions of chain map and chain homotopy we have co chain maps and 
cochain homotopies: . Let K and L be co chain complexes. A cochain map 
f:K --+ L is a sequence of isomorphisms 

fq:Kq --+ u 

which commute with the coboundary operators. If J,g: K --+ L are cochain 
maps, then a cochain homotopy D between f and g is a sequence of homo
morphisms Dq: Kq --+ U - 1 such that 

f q - gq = bq- 1Dq + Dq+lbq. 
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We leave it to the reader to define the following two concepts: 
(a) Suppose C and C' are chain complexes and f: C -+ C' is a chain map. 

Then a cochain map 

Hom(J,l):Hom(C',G) -+ Hom(C,G) 
is defined. 

(b) Assume C and C' are chain complexes, f,g:C -+ C' are chain maps, 
and D: C -+ C' is a chain homotopy between f and g. Then a co chain homo
topy Hom(D,l) is defined between the cochain maps Hom(f,l) and Hom(g,l). 

If K = {Kq} is a co chain complex with co boundary operator (jq: Kq -+ 

Kq + 1, then the following notation and terminology is standard: 

Zq(K) = kernel (jq, the q-dimensional cocycles, 
Bq(K) = image (jq-1, the q-dimensional coboundaries, 
Hq(K) = Zq(K)/Bq(K), the q-dimensional cohomology group. 

Thus for any pair (X,A) and abelian group G, we have the cochain complex 

C*(X,A;G) = Hom(C(X,A),G) 

and the associated cohomology groups 

Hq(X,A;G) = Hq(C*(X,A;G)). 

Letf:(X,A) -+ (Y,B) be a continuous map of pairs; then we have the induced 
chain map, 

f#:C(X,A) -+ C(Y,B), 

which gives rise to a cochain map 

f# = Hom(f#,l):C*(Y,B;G) -+ C*(X,A;G) 

and hence to an induced homomorphism on cohomology groups 

f*:Hq(Y,B;G) -+ Hq(X,A;G) 

for all q. Note that the induced homomorphism in cohomology goes the 
opposite way from that in homology; we are dealing with a contravariant 
functor. 

If two maps fO'!l : (X,A) -+ (Y,B) are homotopic, then any homotopy 
f:(X x I, A x 1) -+ (Y,B) gives rise to a chain homotopy D:C(X,A)-+ 
C(Y,B) between the chain maps fo# and f1#. Hence Hom(D,l) is a cochain 
homotopy between fo# = Hom(fo#,l) and f1# = Hom(f1#,l); it follows 
that the induced homomorphisms 

10*, f1* :Hq(Y,B; G) -+ Hq(X,A; G) 

are the same. 
Next, we will discuss exact sequences. Let 

E: 0 -+ C' ~ C ~ C" -+ 0 
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be a short exact sequence of chain complexes and chain maps. If we apply the 
functor Hom( ,G), we do not obtain a short exact sequence of cochain 
complexes, in general. All we can be certain of is that the following sequence 
is exact: 

Hom(C',G) (Hom(i.l) Hom(C,G) (HomU.l) Hom(C",G) +- O. 

In general, Hom(i,l) will not be an epimorphism. However, if the sequence 
E is split exact, then the sequence 

o +- Hom(C',G) +- Hom(C,G) +- Hom(C",G) +- 0 

will also be split exact, and we will get a corresponding long exact sequence 
of cohomology groups. 

We can apply these considerations to the short exact sequence of chain 
complexes 

o --+ C(A) ~ C(X)~ C(X,A) --+ 0 

for any pair (X,A). This is a split exact sequence of chain complexes, hence 
we obtain a corresponding split exact sequence of cochain complexes 

o +- C*(A;G)~ C*(X;G) ~ C*(X,A;G) +- 0 

for any abelian group G. It follows that there is a long exact sequence of 
cohomology groups: 

<5* i* j* 0*_ 
... +- Hq(A;G) +- Hq(X;G) +- Hq(X,A;G) +- Hq l(A;G) 

with all the usual properties. 
For some purposes it is convenient to define reduced cohomology groups 

jjO(X;G) in dimension O. For this purpose, one uses the augmented chain 
complex C(X) that is defined in §V.3. We define the augmented cochain 
complex 

C*(X;G) = Hom(C(X),G) 

and the reduced cohomology groups 

jjq(X; G) = Hq( C*(X; G)). 

One readily proves that for any nonempty space X and abelian group G, 

jjq(X; G) = Hq(X; G) for q i= 0 

while for q = 0 we have a split short exact sequence, 

o --+ G ~ HO(X; G) --+ jjO(X; G) --+ O. 

We leave it for the reader to check that if P is a space consisting of a single 
point, then 

iiq(p;G) = 0 for all q. 
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From this it follows that 

is an isomorphism. 
We will discuss the excision property and the Mayer-Vietoris sequence 

in cohomology later in this chapter. 

§3. Coefficient Homomorphisms and 
the Bockstein Operator in Cohomology 

Let h: G 1 ~ G 2 be a homomorphism of abelian groups. Then for any chain 
complex C, we get an obvious cochain map 

Hom(1,h):Hom(C,G1) ~ Hom(C,G2) 

and an induced map on cohomology groups. In particular, for any pair 
(X ,A), we have the cochain map 

Hom(1,h):C*(X,A;G 1) ~ C*(X,A;G2) 

and the induced homomorphism 

h# :Hq(X,A;G1) ~ Hq(X,A;G2 ) 

on cohomology groups. The reader should state and prove naturality 
properties of the coefficient homomorphism h # analogous to Properties 
(a) and (b) of §V.5. In addition, he should prove that if G is a left module 
over some ring R, then Hq(X,A; G) inherits a natural left R-module structure; 
in that case, the homomorphisms f* and 15* are homomorphisms of left 
R-modules. 

Next, let 
o ~ G' ! G ~ Gil ~ 0 

be a short exact sequence of abelian groups. From this, we get the following 
sequence of cochain complexes: 

o ~ C*(X,A;G') Hom(l,h)) C*(X,A;G) ~ C*(X,A;G") ~ O. 

Since C(X,A) is a chain complex of free abelian groups, it follows easily that 
this sequence of co chain complexes is exact. By the usual procedure, we get 
the following long exact sequence of cohomology groups: 

... ! Hq(X kG') .!:.!.... Hq(X kG) ~ Hq(X kG") ~ Hq+l(X kG') , , , , , , " . 

Here f3 is the Bockstein operator in cohomology. It has naturality properties 
similar to that of the Bockstein operator in homology. 
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The object of this theorem is to express Hq(X,A; G) in terms of integral 
homology groups of (X,A); it is analogous to Corollary V.6.3. 

Let K = {Kn,on} be an arbitrary chain complex, G an abelian group, 
x E HiK), and u E Hn(Hom(K,G)). The inner product (u,x) of u and x is the 
element of G obtained according to the following simple prescription: 
Choose a representative co cycle u' E Hom(Kn,G) for u, and a representative 
cycle x' E Kn for x. Then 

(u,x) = u'(x') E G. 

It is easy to verify that this definition is independent of the choice of the 
representatives u' and x', and that the inner product is additive in each 
variable separately, i.e., 

(Ul + U2, x) = (Ul,X) + (U2,X), 

(u, Xl + X2) = (U,Xl) + (U,X2)' 

This inner product is one of the basic ideas of cohomology theory. 
Using this inner product, we define a homomorphism 

a:Hn(Hom(K,G)) --+ Hom(Hn(K),G) 

by the following rule: for any U E Hn(Hom(K,G)) and x E HiK), 

(au)(x) = (u,x). 

The homomorphism a has the following three naturality properties (cf. §V.6): 
(a) If !:K --+ K' is a chain map, then the following diagram is commuta

tive: 

Hq(Hom(K,G)) ~ Hom(Hq(K),G) 

r Hom(j,!)* 

0' 

Hq(Hom(K',G)) -----+ Hom(Hq(K'),G). 

(b) Let E:O --+ K' --+ K --+ K" --+ 0 be a split exact sequence of chain 
complexes. Then the following sequence of cochain complexes is also exact, 

o +- Hom(K',G) +- Hom(K,G) +- Hom(K",G) +- 0, 

and the following diagram is commutative: 
0' 

Hq(Hom(K',G)) --~) Hom(Hq(K'),G) 

1 Hom(aE,!) 

0" 

Hq+'(Hom(K",G)) -----+ Hom(Hq+ ,(K"),G). 
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(c) If h:G1 ~ G2 is a homomorphism of coefficient groups, then the 
following diagram is commutative: 

1 Hom(l,h) 

HQ(Hom(K,G 2 )) ~ Hom(Hq(K'),G 2 ). 

Of course, we will mainly be interested in the homomorphism in case 
K = C(X,A): 

a:Hq(X,A;G) ~ Hom(Hq(X,A);G), 

We leave it to the reader to reformulate the naturality Properties (a), (b), 
and (c) above in an appropriate way for the cohomology of spaces, 

In order to further investigate the properties of the homomorphism a, 
it is best to use homological algebra; in particular, it is necessary to make use 
of the functor Ext(A,B). To be concise, Ext(A,B) bears the same relation to 
Hom(A,B) that Tor(A,B) does to A ® B (these are both examples of first 
derived functors). Although Tor(A,B) is symmetric in the two variables, there 
can be no question of Ext(A,B) being symmetrical, since it is contravariant in 
the first variable and covariant in the second variable. 

In order to make use of the functor Ext, it is convenient to have available 
certain basic properties of divisible abelian groups. 

Definition 4.1. An abelian group A is divisible if given any a E A and any 
nonzero integer n, there exists an element x E A such that nx = a. 

EXAMPLE 4.1. The additive group of rational numbers is divisible. It is easily 
proved that any quotient group of a divisible group is divisible, and any 
direct sqm of divisible groups is divisible. Thus we could construct many 
more examples. 

In a certain sense, divisible groups have properties which are dual to those 
of free abelian groups. For example, any subgroup of a free abelian group is 
also free abelian, while any quotient group of a divisible group is divisible. 
Any free group F is projective (in the category of abelian groups), in the sense 
that given any epimorphism h:A ~ B and any homomorphism g:F ~ B, 
there exists a homomorphism J:F ~ A such that the following diagram is 
commutative: 

F 

(the proof is easy). 
Dually, an abelian group G is called injective if given any monomorphism 

h: B ~ A and any homomorphism g: B ~ G, there exists a homomorphism 
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f:A --+ G such that the following diagram is commutative: 

G 

A +---;;-- B +-- o. 

Note that this diagram is obtained from the previous one by reversing all the 
arrows. 

Theorem 4.1. An abelian group is injective if and only if it is divisible. 

The proof that an injective group is divisible is easy, and is left to the 
reader. 

Assume that G is divisible; we will prove that it is injective. Let A,B,h, 
and g be as in the diagram above. We may as well assume that B is a subgroup 
of A, and h is the inclusion map. Consider all pairs (Gi,hi) where Gi is a sub
group of A which contains B, and hi:Gi --+ G is a homomorphism such that 
h;jB = g. This family of pairs is nonvacuous, because (B,g) obviously 
satisfies the required conditions. Define (G;,hi) < (Gj,h) if Gi C Gj and 
hjl Gi = hi. Apply Zorn's lemma to this family with this ordering to conclude 
there exists a maximal pair (Gm,hm). We assert Gm = A; for if Gm "# A, let 
a E A - Gm ; using the fact that G is divisible, it is easily shown that hm can 
be extended to the subgroup generated by Gm and a. But this contradicts 
maximality of Gm • 

It is well known that every abelian group is isomorphic to a quotient of a 
free abelian group. The following is the dual property: 

Proposition 4.2. Any group is isomorphic to a subgroup of a divisible group. 

PROOF. There are various ways to prove this. One way is to express the given 
group G as the quotient group of a free group F: 

G ~ FjR. 

Obviously F can be considered as a subgroup of a divisible group D; for 
if {bi } is a basis for F, then we may take D as a rational vector space on the 
same basis. Then G is isomorphic to a subgroup of the divisible group DjR. 

Q.E.D. 

We will now list the basic properties of Ext(A,B). For any abelian groups 
A and B, Ext(A,B) is also an abelian group. If f:A' --+ A and g:B --+ B' 
are homomorphisms, then 

Ext(f,g): Ext(A,B) --+ Ext(A',B') 

is a homomorphism with the usual functorial properties. 
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There are two ways to define or construct Ext(A,B): 
(a) By means of a free or projective resolution of A. Choose a short exact 

sequence 0 -+ F 1 ~ F 0 ~ A -+ 0 with F 0 (and hence F 1) free abelian. Then 
the following sequence is exact: 

Hom(d.l) Hom( •• I) o - Ext(A,B) - Hom(F bB) ( Hom(F o,B) ( Hom(A,B) - O. 

In other words, Ext(A,B) is the cokemel of the homomorphism Hom(d,1). 
(b) By means of an injective resolution of B. Choose a short exact sequence 

0-+ B ~ Do ~ Dl -+ 0 with Do (and hence Dd divisible. (By the proposition 
above, such a sequence always exists.) Then the following sequence is exact: 
• 

Hom(I,.) Hom(1,d) 
0-+ Hom(A,B) j Hom(A,Do) j Hom(A,D1) -+ Ext(A,B) -+ O. 

Thus Ext(A,B) is the cokemel of the homomorphism Hom(1,d). 
Naturally, one must prove that the group Ext(A,B) is independent of 

the projective resolution in (a), and of the injective resolution in (b). Also, 
it must be proved that the two definitions give rise to the same group. For 
information on these matters, the reader is referred to books on homological 
algebra (see the bibliography for Chapter V). 

The definition of the induced homomorphism Ext(f,g) is left to the reader. 
From these definitions, the following two statements are obvious 

consequences: 
(1) If A is a free abelian group, then Ext(A,B) = 0 for any group B. 
(2) If B is a divisible group, then Ext(A,B) = 0 for any group A. 
Using the definition (a) above, one readily shows that: 
(3) Ext(Zn,B) ~ B/nB, 

Hom(Zn,B) ~ {x E Bjnx = O}. 

By means of (1) and (3), the structure of Ext(A,B) can be determined in 
case A is a finitely generated abelian group. 

We conclude this summary of the principal properties of the functor Ext 
by mentioning the following two exact sequences. Let 

O-+A!B!C-+O 

be a short exact sequence of abelian groups, and let G be an arbitrary abelian 
group. Then the following two sequences are exact: 

0-+ Hom(C,G) Hom(k,l) j Hom(B,G) Hom(h,l) j Hom(A,G) 

-+ Ext(C,G) Ext(k,l) j Ext(B,G) Ext(h,l) j Ext(A,G) -+ 0, 

0-+ Hom(G,A) Hom(I,h) j Hom(G,B) Hom(l,k) j Hom(G,C) 

-+ Ext(G,A) Ext(l,h) I Ext(G,B) Ext(I,k) j Ext(G,C) -+ O. 

(4.1) 

(4.2) 

In these exact sequences, the connecting homomorphisms, Hom(A,G)-+ 
Ext(C,G) and Hom(G,C) -+ Ext(G,A) have all the naturality properties that 
one might expect. 
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With these preliminaries out of the way, we can now state the main result 
in this area: 

Theorem 4.3 (Universal coefficient theorem for cohomology). Let K be a chain 
complex offree abelian groups, and let G be an arbitrary abelian group. Then 
there exists a split exact sequence 

P IX 
0--+ Ext(Hn_1(K),G) --+ Hn(Hom(K,G)) --+ Hom(HiK),G) --+ O. 

The homomorphism f3 is natural, with respect to coefficient homomorphisms 
and chain maps. The splitting is natural with respect to coefficient homomor
phisms but not with respect to chain maps. 

PROOF. The proof we present is dual to that given in §V.6. For the reader 
who has some feeling for this duality, it is a purely mechanical exercise to 
transpose the previous proof to the present one. 

First we need a lemma, which is the dual of Lemma V.6.1. 

Lemma 4.4. If G is a divisible group, then the homomorphism 

GcHn(Hom(K,G)) --+ Hom(Hn(K),G) 

is an isomorphism for any chain complex K. 

The proof of this lemma is a nice exercise, involving the various definitions 
and the fact that divisible groups are injective. 

N ow we will prove the theorem. Let 
e d o --+ G --+ Do --+ D1 --+ 0 

be a short exact sequence with Do and D1 divisible (see Property (b) above). 
Consider the corresponding long exact sequence in cohomology, and the 
following commutative diagram: 

... ~ H"(Hom(K,G)) ~ H"(Hom(K,Do)) ~ H·(Hom(K,D1)) ~ 

o ---+ Hom(H.(K),G) ~ Hom(H.(K),Do) ~ Hom(H.(K),Dtl. 

The bottom lime is exact by the standard properties of the functor Hom, 
and the diagram is commutative by the naturality properties of IX. Also, 1X0 

and 1X1 are isomorphisms, since Do and D1 are divisible groups. From this 
diagram one deduces that IX is an epimorphism, and kernel IX = kernel 8 # . 

Next, one considers the following similar diagram: 

'. ... ---+ H·-1(Hom(K,Do)) ~ H"-l(Hom(K,Dtl) ~ H"(Hom(K,G) ) '. ---+ ... 

l'· l" CD 
... ---+ Hom(H._1(K),Do) ~ Hom(H._1(K),Dtl ---+ Ext(H._l(K),G) ---+ O . 
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Once again the bottom line is exact, and the diagram is commutative; as 
before, 0(0 and 0(1 are isomorphisms. One now proves that there is a unique 
homomorphism 

P:Ext(Hn_1(K),G) -+ Hn(Hom(K,G» 

which makes the square labelled 1 commutative. Then one proves that P 
is a monomorphism, and image P = image Po. Since image Po = kernel e#, 
it follows that image P = kernel 0(. 

It remains to prove that the short exact sequence of the theorem splits. 
This can be done by the method used in the proof of Theorem V.6.2, modified 
to cover the case at hand. The details are left to the reader. 

Corollary 4.5. For any pair (X,A) and any abelian group G there exists a 
split short exact sequence: 

0-+ Ext(Hn_1(X,A), G) ~ Hn(X,A;G) ~ Hom(Hn(X,A),G) -+ O. 

The homomorphisms 0( and P are natural with respect to homomorphisms 
induced by continuous maps of pairs and coefficient homomorphisms. The 
splitting can be chosen to be natural with respect to coefficient homomorphisms, 
but not with respect to homomorphisms induced by continuous maps. 

EXERCISES 

4.1. Let (X,A) be a pair such that Hn(X,A) is a finitely generated abelian group for 
all n. Prove that H"(X,A;Z) is also finitely generated for all n, and that 

rank(H"(X,A;Z)) = rank(Hn(X,A)), 

Torsion(H"(X,A;Z)) ~ Torsion(Hn_t(X,A)). 

4.2. Prove that ccHn(X,A;G) -+ Hom(Hn(X,A),G) is an isomorphism for n = 0, 
(for any pair (X,A) and any group G). 

4.3. For any pair (X,A), prove that Hl(X,A;Z) is a torsion-free abelian group. 

4.4. Let X be a finite regular graph. Express the structure of the cohomology groups 
Hn(X,G) in terms of the Euler characteristic and number of components of X. 

4.5. Describe the structure of the cohomology groups Hq(sn;G) and Hq(E",S"-t;G) 
for all q, n, and G. 

4.6. Let X be an n-dimensional pseudomanifold as defined in §IV.8. Determine the 
structure of Hn(x; G). 

4.7. Let X be a compact connected 2-dimensional manifold. Determine the structure 
of Hn(x; G) for all n and G (use the classification theorem for such manifolds to 
express your final result). 

4.8. Let K = {Kn} be a finite dimensional CW-complex on the space X. Prove that 
there is an isomorphism H"(X;G) ~ Hn(Hom(C(K),G») for all nand G (here 



§S. Geometric Interpretation of Cochains, Cocycles, etc. 165 

C(K) = {HiKq,Kq-l)} is a chain complex described in §V.7. Prove also that this 
isomorphism has the following naturality property: Let L be a CW -complex on 
Y and f:X -+ Ya continuous map which is cellular, i.e., f(Kn ) c Ln for all n. 
Then there is an induced chain map f# : C(K) -+ C(L), and the following diagram 
is commutative: 

H"(X;G) ~ H"(Hom(C(K),G» 

r Hom<f.,l)* 

H"(Y:G) ~ H"(Hom(C(L),G». 

4.9. Consider continuous maps f:p2 -+ S2, where p2 denotes the real projective 
plane. By considering the induced homomorphism f*:H2(S2;Z) -+ H2(p2;Z), 
show that there are at least two homotopy classes of such maps (cf. the example 
in §V.7. Use the results of Exercise 4.8). 

4.10. Show that the homomorphism f*:H"(Y,B;G) -+ H"(X,A;G) induced by a con, 
tinuous map f:(X,A) -+ (Y,B) is not determined by knowledge of the homomor
phisms on homology 

for all q. 

4.11. Prove that the splitting of the short exact sequence of Corollary 4.5 can not 
be chosen to be natural with respect to homomorphisms induced by continuous 
maps. 

§5. Geometric Interpretation of 
Cochains, Co cycles, etc. 

In homology theory it is not difficult to have some geometric intuition 
about chains, cycles, bounding cycles, etc. This geometric intuition is often 
of assistance in leading one to the correct solution of problems. Unfor
tunately, these things are more complicated for cohomology theory. 

In order to understand the situation better, let us first reconsider ho
mology theory. Let K = {Kn} be a CW-complex on the space X, and let 
u E Cn(K,G); then u has a unique expression of the form 

u = L gie't, 
i 

where gi E G and the ei are oriented n-cells of K. It is natural to associate 
with the chain u the subset 

lui = Ue'i, 
i 

where the union is over all cells e'i such that the corresponding coefficient 
gi "# O. If u = 0, we define lui = 0. The set lui is called the support of u. It 
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has the following properties: 

(a) lui is a compact subset of X. 
(b) lui = 0 if and only if u = o. 
(c) lu ± vi c lui u Ivl· 
(d) Idnul c lui. 

VII Cohomology Theory 

Of course the chain u is not determined by the set lui c X (except in the case 
where G = Z 2), but the structure of the set lui is a vital piece of information 
about u. One thinks of u as determined by lui and the coefficients gi which 
are assigned to various oriented subsets of lui. 

There is also a natural way to define the support of a singular chain u 
in an arbitrary topological space X. Let u E CiX,G); if u = 0, we define 
lui = 0· If u #- 0, then u has a unique expression as a finite linear combina
tion of nondegenerate singular n-cubes with nonzero coefficients, 

and it is natural to define 

lui = U Ti(r). 
i 

It is clear that Properties (a)-(d) above continue to hold. However, it is 
also clear that in this situation lui does not give as much information about 
u as it did in the previous situation. The reason is that two quite different 
nondegenerate n-cubes may have the same image set, i.e., we may have n-cubes 

Tb T 2 :r --+ X 

such that T 1(r) = T ir), yet T 1 #- T 2. 

We will now try to define the support of a cochain so that Properties 
(a)-(d) will hold. First of all, it is convenient to formulate the definition of 
a cochain in a slightly different, but equivalent, way. This alternate definition 
is based on the following principle: Let F be a free abelian group with basis 
Be F, and let G be an arbitrary abelian group. Then there is a natural 1-1 
correspondence between homomorphisms u: F --+ G and arbitrary functions 
f:B --+ G. This correspondence is established by assigning to each such 
homomorphism u the function f = u I B, the restriction of u to B, and to 
each such function f its unique linear extension u. 

Let us apply this principle to the n-cochains of a CW -complex K on the 
space X. Let u E Cn(K,G) = Hom(CiK),G). The chain group CiK) has as 
natural basis the set of n-cells {en, where a definite orientation has been 
chosen for each such cell. Thus we can think of u as a function which assigns 
to each such oriented n-cell ei an element u(ei) E G. In view of the previous 
definition for support of a chain, it seems natural to define lui to be the union 
of all closed n-cells ei, such that u(e?) #- O. However, experience has shown 
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that this definition definitely does not work! The main trouble is that the 
analogue of Condition (d) above does not hold. 

We will indicate a way to correct this deficiency for the case of co chains 
in a regular CW -complex. Recall that given a regular CW -complex, for each 
cell e? there exists a characteristic map 

which is a homeomorphism. Of course, if n > 0, there will exist for each cell 
ei infinitely many such maps which are homeomorphisms, and there is no 
reason to prefer one over another. We will assume that for each e? one such 
characteristic map has been chosen, and call it the preferred characteristic 
map. By means of this preferred characteristic map, geometric concepts 
which are valid for En can be carried over to e:. In particular, we wish to 
carryover the following two concepts from En to e?: 

(1) The center of the cell En is the origin, (0,0, ... ,0). By definition, the 
center of e? is the image of the center of En under the preferred characteristic 
map. 

(2) If A is any subset of sn-l, the cone over A, denoted by r(A), is the 
following subset of En: 

r(A) = {t . a I a E A and ° ::;;; t::;;; I}, 

i.e., r(A) is the union of all straight line segments joining the origin to points 
a E A. Analogously, if A is any subset of e?, then r(A) is a subset ofe:, defined 
using the preferred characteristic map for the cell e? Note that if A is a closed 
set, then so is r(A). More generally, if A is a subset of the (n - I)-skeleton 
Kn-l then we define r(A) to be the union of A and the sets r(A n en for all 
n-cells ei. r(A) is a subset of K n, and if A is closed, so is r(A) because of the 
weak topology. We can iterate this procedure, defining 

r2(A) = r(r(A», 

m(A) = r(rn- 1(A)), 

00 

roo(A) = U rn(A). 
n= 1 

We will mainly be interested in this operation for the case of a finite
dimensional CW-complex. Then roo(A) is attained after a finite number of 
iterations. 

Now let u E cn(K,G); consider u as a function defined on oriented n-cells 
e? with values in G. Define A to the set of all center points of all cells e? such 
that u(ei) i= 0. Then A is a closed, discrete subset of X; however, it is not 
compact, in general. We define 

lui = roo(A). 
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If K is finite dimensional, it is clear that lui is a closed subset of X. One can 
also verify the analogue of Conditions (b), (c), and (d) above: 

lui = 0 if and only if u = 0, 

lu ± vi c lui u lvi, 
IJ(u)1 c lui. 

Although rather complicated, this seems to be the proper definition. The 
fact that lui is noncompact in general is not a defect in our definition, it is an 
inherent property of the cohomology theory we are using. It is possible to 
define a cohomology theory based on cochains with "compact supports," 
but we will not do this for the present. 

Note that if K is a CW-complex of dimension N, and u E Ck(K,G), then 
lui is a set of dimension ~ N - k. Thus as k increases, the dimension of lui 
decreases. This is just the opposite of what happens with chains. 

There is also a definition of support of singular cochains in a general 
space which we will now consider, although it is less satisfactory than that 
we have just given. 

If u E Cn(X,G) = Hom(CiX),G), then u is a homomorphism of Cn(X) = 

QiX)/Dn(X) into G. Hence we can regard u as a function which is defined 
on singular n-cubes with values in G, and vanishes on all degenerate singular 
n-cubes. Rather than defining lui, it will be more convenient to define the 
complementary set: A point x does not belong to lui if and only if there is an 
open neighborhood U of x such that u(T) = 0 for all singular n-cubes 
T: In -+ U. From this definition it is clear that the complementary set is open, 
hence lui is closed. We also have the following properties: 

u = 0 implies lui = 0, 
lu ± vi c lui u lvi, 

IJul c lui. 
Unfortunately, we can have nonzero cochains u such that lui = 0. This 
defect can be remedied by factoring out all such cochains (i.e., passing to a 
quotient group). By using Theorem I1.6.3 it can be proved that this process 
does not change the resulting cohomology theory. However, we will have no 
need to pursue this matter further, (cf. Massey, [1], Lemma 8.16, p. 260). 

§6. Proof of the Excision Property; 
The Mayer-Vietoris Sequence 

Let (X,A) be a pair and let W be a subset of A. We then have the following 
split exact sequence of chain complexes (cf. §V.6): 

i# C(X,A) o -+ C(X - W, A - W) --+ C(X,A) -+ C(X _ W, A _ W) -+ O. 
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Note that these are all chain complexes of free abelian groups. By passing to 
the long exact homology sequence, we see that i* : Hq(X - W, A - W) ~ 
HiX,A) is an isomorphism for all q if and only if Hq(C(X,A)/C(X - W, 
A - W)) = 0 for all q. 

We may also apply the functor Hom( ,G) to the above split exact sequence 
of chain complexes, obtaining the following exact sequence: 

o ~ C*(X - W,A - W; G).!!- C*(X,A;G) 

( C(X,A) ) 
~ Hom C(X _ W,A- W),G ~ O. 

Passing to cohomology, we see that i*: Hq(X,A; G) ~ Hq(X - w, A - W; G) is 
an isomorphism for all q if and only if Hq(Hom(C(X,A)jC(X - W,A- W),G)) 
= 0 for all q. Making use of Theorem 4.3, one concludes that the excision 
property for integral homology implies a corresponding property for coho
mology: IfW is a subset of A such that We interior A, then i*:Hq(X,A;G) ~ 
Hq(X - w, A - W; G) is an isomorphismfor all q. 

Let o/J be an open covering of X, or more generally, a family of sets whose 
interiors cover X. It is known that the inclusion 

a: C(X,A,o/J) ~ C(X,A) 

induces an isomorphism on homology (Theorem 11.6.3). By the same type 
of argument as that just given, it can be shown that the induced homomor
phism on cochain complexes 

Hom(O',l):C*(X,A;G) ~ C*(X,A,o/J;G) 

also induces an isomorphism on passage to cohomology. This fact can be 
used to prove the existence of the Mayer-Vietoris sequence for cohomology 
as follows. Let A and B be subsets of X such that 

X = (interior A) u (interior B). 

Then we may take o/J = {A,B}, and O':C(X,o/J) ~ C(X) will have the proper
ties described above. In §II1.5 we introduced the commutative diagram of 
chain complexes 

C(A) 

Y ~ 
C(A n B) 

~ 
C(B) 

and the following short exact sequence 

A 
C(X,'?lt) 

<!l o ~ C(A n B) ~ C(A) EB C(B) ~ C(X,o/J) ~ 0 



170 VII Cohomology Theory 

in order to prove the Mayer-Vietoris sequence for homology theory. Recall 
that tP and lJI are defined by 

tP(x) = (i#x,j#x), lJI(u,v) = k#(u) - l#(v). 

Also, C(X,olt) is a chain complex offree abelian groups, hence the short exact 
sequence splits. Therefore we may apply the functor Hom( ,G) to obtain the 
following short exact sequence of cochain complexes: 

o ~ C*(A n B;G) ~ C*(A;G) EB C*(B;G) ~ C*(X,olt;G) +- O. 

It is readily verified that homomorphisms Hom(tP,l) and Hom(lJI,l) have 
the following expression in terms of i#, r, k#, and 1#: 

Hom(lJI,l)(x) = (k#(x), -1#(x)), 

Hom(tP,I)(u,v) = i#u + j#v. 

Therefore we may pass to the corresponding long exact sequence of co
homology groups, and make use of the isomorphism Hq(X,Illt; G) ~ Hq(X; G) 
to obtain the Mayer-Vietoris sequence in cohomology: 

... t Hq+l(X;G) L Hq(A n B;G):"" Hq(A;G)EBHq(B;G) t- Hq(X;G) L··· . 
Here 

t/I(x) = (k*(x), -l*(x)), 

cp(u,v) = i*(u) + j*(v). 

It should be remarked that there are other ways of deriving the Mayer
Vietoris sequence for cohomology. 

EXERCISES 

6.1. Let K = {Kq,oq} be a chain complex such that each Kq is a vector space over a 
commutative field F, and each Oq is linear over F. Define the cochain complex 
HomF(K, V), where V is a vector space over F, and the natural homomorphism 

Prove that ex is an isomorphism. 

6.2. Let {X l'X 2} be an excisive couple in the space X, as defined in §IV.6. Prove that 
the inclusion map i:(X 1, Xl 1\ X 2) --+ (XlV X 2, X 2) induces an isomorphism 

i*:Hq(X 1 v X 2 ,X2;G) --+ Hq(X 1,X1 n X2;G) 

for all q and all groups G. 

We will conclude this chapter by pointing out one basic property of 
homology theory which does not have an obvious analog for cohomology. 
The property we have in mind was stated earlier as Proposition 111.6.1. This 
proposition says, in essence, that for any pair (X,A), the homology group 
HiX,A) is the direct limit ofthe groups HiC,D), where (C,D) ranges over all 
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compact pairs contained in (X,A). It is tempting to conjecture that the 
cohomology group Hn(X,A;G) is the inverse limit of the groups Hn(C,D;G). 
However, counterexamples can be given to show that this is false. A special 
case of this question comes up in §3 of the Appendix. 
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CHAPTER VIII 

Products in Homology 
and Cohomology 

§1. Introduction 

The most important product is undoubtedly the so-called cup product: 
It assigns to any elements u E HP(X;G 1} and v E Hq(X;G2 } an element 
u U v E Hp+q(X; G1 (8) G2 }. This product is bilinear (or distributive), and is 
natural with respect to homomorphisms induced by continuous maps. It is 
an additional element of structure on the cohomology groups that often 
allows one to distinguish between spaces of different homotopy types, even 
though they have isomorphic homology and cohomology groups. This 
additional structure also imposes restrictions on the possible homomor
phisms which can be induced by continuous maps. 

Another product we shall consider is called the cap product. It assigns 
to elements u E HP(X;G 1} and v E Hq(X;G 2} an element un v E Hq_p(X; 
G1 (8) G2}· It is also bilinear and natural. While the cap product is not as 
important as the cup product, it is needed for the statement and proof 
of the Poincare duality theorem in the next chapter. 

We will also consider two other products: A cross product which is 
closely related to the cup product, and a slant product, which has strong 
connections with the cap product. The main reasons for considering these 
two additional products is for the light they throw on the cup and cap 
product. 

In order to make effective use of cup products, it is necessary to have 
ways of computing them for various spaces. Unfortunately, this is a rather 
difficult topic; any systematic discussion of it would be rather lengthy. In 
Chapter X we will use the Poincare duality theorem to determine cup 
products in projective spaces; then we can use these products to prove 

172 
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some interesting theorems (Borsuk-Ulam theorem, nontriviality ofthe Hopf 
maps, etc.). In the present chapter we will mainly be concerned with a 
systematic discussion of the basic properties of these various products. 

Because this chapter is rather long and does not have many examples, 
it may be best to skim throught it on a first reading. Then the reader can 
return to it later to study more carefully the various details as they are needed. 

§2. The Inner Product 

In §VII.4 we defined the so-called inner product, and used it to define a 
natural homomorphism ex:Hn(Hom(K,G)) ~ Hom(Hn(K),G). The various 
naturality properties of the homomorphism ex could also be interpreted as 
naturality properties of the inner product. 

It will be convenient to generalize the definition of the inner product 
slightly for later use in this chapter. Let G1 and G2 be arbitrary abelian groups, 
and let K be a chain complex. Then for any elements U E Hq(Hom(K,G 1)) 

and v E Hq(K ® G2), the inner product <u,x) E G1 ® G2 is defined as follows. 
Choose a representative co cycle u' E Hom(Kq,G1) for u, and a representative 
cycle 

for x. Then 

k 

x' = L Xi®gi' 
i= 1 

k 

<u,x) = L U'(Xi) ® gi E G1 ® G2· 
i= 1 

This more general version of the inner product has essentially the same 
properties as the original version. 

§3. An Overall View of the Various Products 

To define products, one needs to make use of the natural chain homotopy 
equivalences of Chapter VI, 

(:C(X) ® C(Y) ~ C(X x Y) 

~:C(X x Y) ~ C(X) ® C(Y), 

especially the later. We will continue to use the above notation for these 
chain maps, as in Chapter VI. 

First, we introduce the cross product. Recall that iff: G ~ G' and g: H ~ H' 
are homomorphisms of abelian groups, then f ® g: G ® H ~ G' ® H' denotes 
the tensor product of the two homomorphisms. Using this notation, if 
U E CP(X,G1) = Hom(Cp(X),G1) and v E cQ(Y,G2) = Hom(Cq(Y),G2), then 
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u ® VE Hom(Cp(X) ® Cq(Y), GI ® G2). We may consider u ® vasanelement 
of Hom«C(X) ® C(Y)p+q, GI ® G2) if we understand that u ® v is the zero 
homomorphism on Ci(X) ® Cj(Y), except when i = P andj = q. Let 

~# = Hom(~,1):Hom(C(X) ® C(Y), GI ® G2) --+ Hom(C(X x Y), GI ® G2) 

= C*(X x Y; GI ® G2). 

Then we define u x v E Cp+q(X x Y; G1 ® G2) by 

u x v = ~#(u ® v). 

It is readily verified that 

c5(u x v) = (c5u) x v + (-1)pu x c5v. 

From this coboundary formula, the following facts follow: 
(1) If u and v are cocycles, then so is u x v. 
(2) If U 1 and U2 are cocycles which are cohomologous, then Ul x v and 

U2 x v are cohomologous for any co cycle v. 
(3) Similarly, if VI and V2 are cohomologous cocycles, then u x VI and 

u x V2 are cohomologous for any co cycle u. 
From these three statements it is clear that we can pass to coho

mology classes, and thus define a cross product which assigns to any 
cohomology class x E HP(X;G 1) and y E Hq(Y;G2) a cohomology class 
x x y E Hp+q(X x Y; G1 ® G2). The two most important properties of this 
cross product are the following: 

(1) Bilinearity. (Xl + x 2) x y = Xl X Y + x 2 X y and X x (YI + Y2) = X x 
Yl + X X Y2· 

(2) N aturality.1f f: X' --+ X and g: Y' --+ Yare continuous maps, x E HP(X; G 1) 

and y E Hq(Y;G 2), then 

(f*x) x (g*y) = (f x g)*(x x y). 

Later on we will generalize the definition of the cross product to relative 
cohomology groups, and prove various additional properties. 

Next, we will define the cup product in terms of the cross product. For 
any space X, let dx or d for short, denote the diagonal map X --+ X x X 
defined by d(x) = (x,x). If u E HP(X,G 1) and v E Hq(X,G 2), define u U v E 

Hp+q(X, G1 ® G2) by 
u U v = d*(u x v). 

We see immediately that the cup product has the following two basic 
properties: 

(1) Bilinearity. (Ul + U2) U v = Ul U V + U2 U v and u U (VI + v2) = u U 

VI + u U V2. 

(2) Naturality. If f:X' --+ X is a continuous map, u E HP(X,G 1) and v E 

Hq(X,G2 ), then 
f*(u U v) = (f*u) U (f*v). 
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We have just defined the cup product in terms of the cross product, 
using the diagonal map d. Conversely, it is possible to derive the cross 
product from the cup product. To clarify this point, let us assume that the 
cup product is given, which is bilinear and natural as just described. Define 
a new cross product, u # v by the formula 

u # v = (piu) u (piv) 

for any uEHP(X,G I) and vEHq(Y,Gz). Herepl:X x Y --+X andpz:X x Y --+ Y 
are the projections. Then it follows easily that this new cross product is 
also bilinear and natural, in the same sense as the original cross product. 
If we use this new cross product to define a new cup product by the formula 

u u' v = d*(u # v) 

for any u E HP(X,Gd and v E Hq(X,G z), then we find that u u' v = u u v, 
i.e., the new cup product is the same as the old. This may be proved by the 
following computation: 

u u' v = d*(u # v) = d*((piu) u (piv)) 

= (d*piu) u (d*piv) 

= (pId)*u u (pzd)*v = U u v. 

Similarly, we find that 

u # v = (piu) u (pi v) 

= dLy((piu) x (piv)) 
= dl x y(Pl x pz)*(u x v) 

= [(PI x pz)dxxy]*(u x v) = u x v 

for any u E HP(X,G I) and v E Hq(Y,G 2 ). 

We can reformulate what we have just proved as follows: the formulas 

u u v = d*(u x v), 
u x v = (piu) u (piv) 

establish a 1-1 correspondence between cross products and cup products 
(which are required to be bilinear and natural). 

From this point of view, the theory of cup products and the theory of 
cross products are logically equivalent. However, cup products are more 
useful, while cross products have a more direct and simpler definition. Later 
on we will consider other properties of cross and cup products, such as 
associativity, commutativity, and existence of a unit. We will also extend 
the definitions to relative cohomology groups, and consider their behavior 
under the coboundary operator of the exact cohomology sequence of a 
pair (X,A). Naturally, the exposition of the properties of cup products will 
parallel that of cross products. 
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Remark on Terminology. Cross products are sometimes called exterior 
cohomology products and cup products are then called interior cohomology 
products. 

Next, we will discuss slant products, and cap products, which are derived 
from slant products by means of the diagonal map. 

First we define a homomorphism 

Hom(CP(Y),G 1) ® [C(X) ® C(Y)]q ® G2 ~ Cq_p(X) ® G1 ® G2 , 

denoted by cp ® u ~ cp\ \u, as follows: 

cp\\a ® b ® g = (_l)I'Pllala ® cp(b) ® g 

for any cp E Hom(CP(Y),G 1), a E C(X), bE C(Y) and g E G2 . Here the 
notation I cpl means the degree of cp, lal means the degree of a, etc., and we 
make the convention that cp(b) = 0 unless bE CP(Y). We can verify the 
formula 

8(cp\\a ® b ® g) = (Jcp)\\a ® b ® g + (-1)1'Plcp\\8(a ® b ® g) 

provided we follow the convention that 

(Jcp)(b) = (_l)I'Plcp(8b). 

We next define a homomorphism 

Hom(CP(Y),G 1) ® Cq(X x Y, G2 ) ~ Cq_p(X, G1 ® G2), 

denoted by u ® v ~ u\v, by using the Eilenberg-Zilber chain map ~: 

u\v = u\\~(v). 

Once again we have the formula 

8(u\v) = (Ju)\v + (-1)lu 1u\8(v). 

Hence we can pass to homology classes and get a homomorphism 

HP(Y,G 1) ® Hq(X x Y, G2) ~ Hq_p(X, G1 ® G2), 

denoted by u ® v ~ u\v, which is called the slant product. In addition to 
the obvious bilinearity of the slant product, it satisfies the following naturality 
condition: Let f:X ~ X' and g: Y ~ Y' be continuous maps. Then for any 
u E HP(Y',G 1) and v E Hq(X x Y, G2) we have 

f*((g*u)\v) = u\(f x g)*v. 

This naturality relation can be indicated by the following diagram: 

W(Y)@Hq(X x Y) -------> Hq_p(X) 

I g' 1 (f x g). 1 f. 

W(Y')@Hq(X' x Y') -------+ Hq_p(X') 

although this is not a commutative diagram in the conventional sense. 
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Remark: One can reformulate the slant product so as to obtain com
mutative diagrams in the usual sense. Recall that there is a natural adjoint 
associativity isomorphism 

Hom(B ® A, C) ~ Hom(A, Hom(B,C)) 

for any abelian groups A, B, and C. Thus we can consider the slant product 
as a homomorphism 

Hq(X x Y) ~ Hom(HP(Y),Hq_p(X)). 

Then the naturality condition gives rise to the following diagram, which is 
commutative in the usual sense: 

Hix x Y) ~ Hom(W(Y),Hq_p(X)) 

1 (f x gJ. 1 Hom(f',g.J 

Hq(X' x Y') ----+ Hom(W(Y'),Hq_p(X')). 

However, most people find this formulation of the slant product rather 
awkward to work with. 

We can now define the cap product. It is a homomorphism 

HP(X,G 1) ® Hq(X,G z) ~ Hq_p(X, GI ® Gz), 

denoted by u ® v ~ u n v, and defined by 

u n v = u\d*(v) 

where d:X ~ X x X is the diagonal map. It is bilinear, and natural in 
the following sense. Let f:X ~ X' be a continuous map. Then for any 
u E HP(X'), v E Hq(X) we have 

f*((f*u) n v) = u n f*v. 

The corresponding diagram is the following: 

W(X) ® Hq(X) ~ Hq_p(X) 

rl* 11* if' 
W(X') ® Hq(X') ~ Hq_p(X'). 

Once again, this could be made into a conventional commutative diagram 
by using the Hom functor rather than ®. 

We have just shown how to derive the cap product from the slant product. 
Conversely, the slant product can be derived from the cap product, as 
follows. For any u E HP(Y,G I ) and v E Hq(X x Y, Gz), define 

u\v = PI*((piu) n v), 

where PI and pz are the projections of X x Yon the first and second factors 
respectively. By the same methods used in the discussion of cross and cup 
products, one can prove that our formulas establish a 1-1 correspondence 
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between slant and cap products (which are required to be natural and to 
be bilinear). Thus the theories ofthese two different kinds of products should 
be logically equivalent. Actually, cap products will be needed in our dis
cussion of the Poincare duality theorem for manifolds; however, the 
definition of slant products is a bit simpler. 

Remark. We have based our discussion of the cup and cap product on 
the use of the Eilenberg-Zilber natural chain homotopy equivalence 

~:C(X x Y)~C(X)®C(Y) 

together with the diagonal map d:X ~ X ® X. An alternative procedure 
would be to use natural diagonal maps L1 x : C(X) ~ C(X) ® C(X) as described 
in Exercise VI.5.2. For the connection between ~ and L1, see Exercise VI.5.3. 
The choice of which method to use is largely a matter of taste. However, 
there is some advantage to having both cross and cup products, and the 
relationship between them. 

§4. Extension of the Definition of the Various 
Products to Relative Homology 
and Cohomology Groups 

The main difficulty in extending cross and slant products to relative coho
mology and homology groups is the problem of extending the Eilenberg
Zilber chain homotopy equivalence ~ to relative groups; this problem was 
already encountered in the discussion in §V1.6 of the homology groups 
of product spaces. The main result of that discussion may be summarized 
as follows: Let (X,A) and (Y,B) be pairs. Then the chain map ~ induces a 
chain homotopy equivalence 

C(X) C(Y) ~ C(X x Y) 

C(A) ® C(B) +- C(X x B) + C(A x Y)· 

If we assume that {X x B,A x Y} is an excisive couple in X x Y, then 
the homomorphism 

k: C(X x Y) ~ C(X x Y) 
C(X x B) + C(A x Y) C(X x B u A x Y) 

induces isomorphisms on homology and cohomology with any coefficients. 
In view of this, when we want to define cross or slant products in the 

homology and/or cohomology of pairs (X,A) and (Y,B), we will always 
assume that {X x B,A x Y} is an excisive couple in X x Y. With this 
added assumption, our previous definitions generalize very easily. The 
details are as follows. 
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and 

~#(u ® v) E Hom( (C(X xC~~ +x~~ x yD p+q' G1 ® G2). 

Passing to cohomology groups, and applying the isomorphism (k*) -1, we 
obtain the cross product in cohomology, which is a homomorphism 

HP(X,A;G 1 ) ® Hq(Y,B;G 2 )': Hp+q(X x Y;A x Yu X x B; G1 ® Gy ). 

The naturality condition now reads as follows: Let J:(X,A) -+ (X',A') and 
g:(Y,B) -+ (Y',B') be continuous maps of pairs. Then the following diagram 
is commutative: 

W(X',A') ® Hq(Y',B') ~ w+q(X' x Y', A' x Y' u X' x B') 

11*@g* 1 (f x g)* 

W(X,A) ® Hq(Y,B) --~) Hp+q(X x Y, A x Yu X x B). 

In symbols, 

(f*u) x (g*v) = (f x g)*(u x v) 

for any u E HP(X',A'; G1) and v E Hq(Y',B';G 2 ). It is assumed, of course, that 
{A x Y, X x B} and {A' x Y', X' X B'} are excisive couples. 

Slant product. First, one defines the homomorphism 

H (CP(Y) G) [C(X) C(Y)] G Cq_p(X) G G 
om CP(B) , 1 ® C(A) ® C(B) q ® 2 -+ Cq_p(A) ® 1 ® 2, 

denoted by cp ® u -+ cp\\u, by the formula 

cp\\a ® b ® g = (_l)I'fJlla la ® cp(b) ® g 

exactly as in §3. Then one defines a homomorphism 

H (CP(Y) G ) Cq(X x Y) G C (X G G ) 
om CP(B) , 1 ® CiA x Y) + Cq(X x B) ® 2 -+ q-p ,A; 1 ® 2, 

denoted by cp ® u -+ cp\u, by the formula 

cp\u = cp\ \~(u). 



180 VIII Products in Homology and Cohomology 

Passing to homology and cohomology, and using the isomorphism (k*) -1, 

we obtain the slant product, a homomorphism 

HP(Y,B;G 1 ) ® Hq(X x Y; A x Y u X x B; G2) -+ Hq_p(X,A; G1 ® G2) 

which is denoted by u ® v -+ u\v. The naturality condition is expressed by the 
following diagram: 

W(Y',B') ® Hq(X' x Y', A' x Y' u X' x B') ----+ 

19' rCf x g), 

W(Y,B) ® Hq(X x Y, A x Y u X x B) ) Hq_p(X,A). 

Here j:(X,A) -+ (X',A') and g:(Y,B) -+ (Y',B') are continuous maps of pairs, 
and it is assumed that {A x Y, X x B} and {A' x Y', X' x B'} are excisive 
couples. 

We will now take up the problem of defining the cup and cap product 
for relative cohomology and homology groups. Here the situation is slightly 
different. For the cup product, the object is to define a homomorphism 

HP(X,A;G 1)®Hq(X,B;G2) ~ Hp+q(X, Au B; G1 ® G2) 

under a reasonable set of assumptions; and for the cap product, one wishes 
to define a homomorphism 

HP(X,A;G 1) ® Hq(X, Au B; G2) -+ Hq_p(X, B; G1 ® G2) 

under minimal hypotheses. The cup product will be defined from the cross 
product, and the cap product will be defined from the slant product by use 
of the diagonal map d:X -+ X x X. 

Cup Products. Let us consider a triad (X; A,B) consisting of a topological 
space X and arbitrary subspaces A and B. We have the following two chain 
maps, induced by obvious inclusions: 

k: C(X x X) -+ C(X x X) , 
C(A x X) + C(X x B) C(A x X u X x B) 

C(X) C(X) 
I: C(A) + C(B) -+ C(A u B)· 

If we attempt to define the cup product using the cross product and the 
diagonal map, we are led to the following commutative diagram: 

W(X,A) ® Hq(X,B) 

1x 
HP+q(H ( C(x x X) G G )) 

om C(A x X) + C(X x Bj' 1 ® 2 

d' ----'---+ HP+q(H ( C(X) G ® G )) 
om C(A) + C(B)' 1 2 
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Here dT and di are induced by the diagonal map d:X ..... X x X. From this 
diagram it is clear that to define cup products, we may either assume that 
{A x X, X x B} is an excisive couple, in which case k* will be an isomor
phism, or we may assume that {A,B} is an excisive couple in X, in which case 
1* will be an isomorphism. It is preferable and customary to make the latter 
assumption for a couple of reasons. First of all in the important special case 
A = B, {A,B} is always an excisive couple, while {A x X, X x B} need not be 
excisive (as far as is known). Secondly, for some of our later results about 
cup products, we will need to assume that {A,B} is an excisive couple in X 
for other reasons. Thus we may as well assume it is excisive at the beginning. 
Therefore in order to define cup products 

we wui always assume that {A,B} is an excisive couple in X. This has the 
following slight disadvantage: In order to have the relation 

u u v = d*(u x v) 

hold true, it is necessary to assume that both {A,B} and {X x B, A x X} are 
excisive couples. 

Cap Product. The discussion is analogous to that just given for the cup 
product. Let A and B be arbitrary subsets of X; then we have the following 
commutative diagram: 

HPXA'G H( qxxX) G) E 10d2 • ( qX) ) 
(" d® q qXxBuAxX)® 2 W(X,A;G ,)®Hq qAuB)®G z 

r10k• 

HPXA-G H( qxxX) G) 
( , , ,) ® q qx X B) + qA X X) ® 2 

slant 
product 

r101• 

/0 dl • HPXA-G H( qX) G) 
( , , 1) ® q qA) + qB) ® 2 

/-. 
This diagram is entirely analogous to the preceding one, and the symbols 
for the various maps have the same meaning. In order to define the cap 
product, we will assume that {A,B} is an excisive couple in X. Then the cap 
product is a homomorphism 

HP(X,A;G 1) ® Hq(X, Au B;G2) ~ Hq_p(X, B; G1 ® G2) 

which is the composition of (1 ® 1*) -1, 1 ® d1*, and the slant product in the 
above diagram. If in addition we assume that {X x B, A x X} is an excisive 
couple in X x X, then the following relation holds between the slant and 
cap products: 
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§5. Associativity, Commutativity, and Existence 
of a Unit for the Various Products 

In order to discuss these questions, it is necessary to discuss the associativity, 
commutativity, and existence of a unit for the Eilenberg-Zilber chain 
homotopy equivalence ~ :C(X x Y) -+ C(X) ® C(Y). In order to discuss the 
associativity of ~, consider the following diagram: 

C(X x Y x Z) 

1 ex.r-z 

I C(X X Y) ® C(Z) 

1,x.r®1 

C(X)®C(Y x Z) - C(X)®C(Y)®C(Z). 
1 ®er.z 

Recall that the proof ofthe existence of the chain map ~ required the choice of 
a certain chain enE [C(J") ® C(J")Jn for each positive integer n. It is too much to 
expect that the above diagram would be commutative for an arbitrarily con
structed chain map~. However, using the method of acyclic models, it is easy 
to prove that the two different chain maps in this diagram from C(X x Y x Z) 
to C(X) ® C(Y) ® C(Z) are chain homotopic, (in fact, by a natural chain 
homotopy). Hence on passage to homology we do obtain a commutative 
diagram. 

EXERCISES 

5.1. Prove that the natural chain map '1: C(x x Y) -+ C(X) ® C(Y) (explicitly defined 
in §VI.5) is associative, i.e., if it is substituted for ~ in the diagram above, one obtains 
a commutative diagram. 

5.2. Prove that the natural chain map ':C(X) ® C(Y) -+ C(X x Y) defined in §VI.3 
is associative (in the sense discussed above). 

In order to discuss the commutativity of ~, consider the following diagram: 
e·r 

C(X x Y) - C(X)®C(Y) 

ito iT 
,r.x 

C(Y X X) - C(Y) ® C(X). 

In this diagram, t:X x Y -+ Y x X is defined by t(x,Y) = (y,x), and T is 
defined by 

T(a ® b) = ( -1)pQb ® a 

for any a E Cp(X) and b E CiY). It is readily checked that T is a chain map. 
Therefore T~X,y and ~y,Xt# are both natural chain maps C(X x Y) -+ 

C(Y) ® C(X), and by the method ofacyclic models they can be proven chain 
homotopic (by a natural chain homotopy). It is interesting to note that 
there is one rather important difference between the question of the as-
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sociativity and the question of the commutativity of ~: As we saw in Exer
cise 5.1, it is possible to choose ~ so that it will be associative. However, it is 
known that it is not possible to choose a natural chain map ~ which is 
commutative. This follows from the fact that the Steenrod squaring opera
tions exist and are nonzero (see Exercise V1.5.4 and the reference to Spanier's 
book given there). This is one of the mysterious "facts of life" in algebraic 
topology. 

Next we will discuss the property of the Eilenberg-Zilber map ~ that 
guarantees the existence of units for cross and cup products. For this purpose, 
let us regard the additive group of integers Z as a chain complex which is 
"concentrated in degree 0," i.e., as a chain complex C such ~hat Co = Z, and 
Cq = ° for q i= 0. Then the augmentation e:Co(X) -+ Z can be looked on as 
a chain map e: C(X) -+ Z. With these conventions, consider the following 
two diagrams: 

C(X x Y) C(X) 

Ie.' 
C(X)@C(Y) ~ C(X)@Z C(X) @ C(Y) ~ Z @ C(Y). 

Once again, by the use of acyclic models it can be proved that these two 
diagrams are homotopy commutative, (In these diagrams, PI: X x Y -+ X 
and P2: X x Y -+ Y denote projections on the first and second factors 
respectively.) 

EXERCISE 

5.3 Verify that if we substitute the explicit map 1'/ defined in §VI.5 for ~ in the above 
diagrams, they become commutative. 

With these preliminaries out of the way, we can state our various associa
tive laws, commutative laws, etc. The verifications of these properties will be 
left to the reader for the most part. First we will list the various associative 
laws. 

Associative law for cross products. Let u E HP(X,A;G I ), v E Hq(Y,B;G 2 ), 

and WE W(Z,C;G 3). Then 

u x (v x w) = (u x v) x W 

provided enough couples are assumed excisive to insure that all x-products 
are defined. 

Associative law for cup products. Let u E HP(X,A;G I ), v E Hq(X,B;G 2) and 
WE W(X,C;G 3 ). Then 

u u (v u w) = (u u v) u W 

provided enough couples in X are assumed excisive for everything to be 
well defined. 
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Associative law for slant products. Let u E HP(Y,B;G1), v E Hq(Z,C;G z) 
and WE Hr«X,A) x (Y,B) x (Z,C);G3), where we set 

(X,A) x (Y,B) = (X x Y, X x B u A x Y) 

etc., for the sake of brevity. Then 
(u x v)\w = u\(v\w), 

provided enough couples in the various product spaces are assumed excisive 
so that everything is well defined. 

Associative law for cap products. Assume that u E HP(X,A;G1), v E 

Hq(X,B;G 2), and WE Hr(X,A u B U C;G3). Then 

(u u v) n W = u n (v n w) 

in Hr-p-iX,C;G1 ® G2 ® G3), provided {A,B}, {B,A u C}, {A u B, C}, 
and {A,C} are excisive couples in X. 

The fact that one has to make so many awkward assumptions about 
excisive couples in order to state an associative law must be considered a 
defect of singular homology and cohomology theory. Fortunately, in practice 
one does not usually have trouble about this, because it will be clear from 
the context in many cases, that all the couples involved are automatically 
excisive. This will be true if all the subspaces are open sets, or if all are 
subcomplexes of CW -complexes, for example. 

Next, we will take up the commutative laws. 

Commutative law for cross products. Let u E HP(X,A;G 1) and v E 

Hq( Y,B; G z). Then 
t*(u x v) = (-l)pqv x u, 

where t:(Y,B) x (X,A) --+ (X,A) x (Y,B) is defined by t(y,x) = (x,y). Of 
course one must assume that {X x B, A x Y} is an excisive couple. 

Commutative law for cup products. Let u E HP(X,A; G1) and v E Hq(X,B;Gz). 
Then 

u u v = (-I)Pqv u u 

provided {A,B} is an excisive couple. 

there is no commutative law for slant or cap products; they do not lend 
themselves to any such law. This is not to say that the homotopy commuta
tivity of the Eilenberg-Zilber chain homotopy equivalence ~ does not affect 
these products, however. 

Existence of Units. For any space X, the augmentation e:Co(X) --+ Z may 
be considered to be a O-cochain, which is a cocycle. We will denote its 
cohomology class by IE HO(X;Z), or Ix to be more explicit. For cross 
products, we have the following equations: 

u x If = pt(u), 
Ix x v = p~(v), 

U E HP(X,A;G), 
v E Hq(Y,B;G). 
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In these equations, Pl and P2 denote the projections on the first and second 
factors of the product space, as usual. 

For cup products, the equations are even simpler: for any U E HP(X,A;G), 

I x U U = U u I x = u. 

For slant products, we have 

Iy\v = Pl*(V) 

for any v E H q(X x Y; A x Y; G), while for cap products, 

Ix n v = v 

for any v E HiX,B;G). 
Note that Ix acts as both a left and right unit for cross and cup products, 

while for slant and cap products, we have only a left unit. Also note that 
there is no unit in HO(X,A) if A is nonempty. 

§6. Digression: The Exact Sequence of 
a Triple or a Triad 

In order to describe in a most concise way the behavior of the various 
products with respect to the boundary operator o*:Hq(X,A) --+ H q- 1(A) or 
the co boundary operator b*: HP(A) --+ HP + l(X,A), it is convenient to make 
use of the exact homology (or cohomology) sequence of a triad. 

First of all, let (X,A,B) be a triple, i.e., X is a topological space, and X :::> 

A :::> B. Then we have the following split exact sequence of chain complexes: 

o --+ C(A,B) ~ C(X,B) ~ C(X,A) --+ O. 

Since this sequence is split exact, if we apply the functor ®G or Hom( ,G), 
we again obtain a short exact sequence of chain or cochain complexes. We 
may then pass to the corresponding long exact homology and cohomology 
sequences: 

... ~ Hq(A,B;G) ~ Hq(X,B;G) ~ Hq(X,A;G) ~ H q_ 1(A,B;G) --+"', 

p ~ ~ p 
... +- Hq(A,B;G):'- Hq(X,B;G) i- Hq(X,A;G) +- Hq-l(A,B;G) +- .... 

Note: The exact homology or cohomology sequence of a triple can also 
be derived directly from the basic concepts of singular homology theory, 
without going back to chain complexes; cf. Eilenberg and Steenrod, [2], 
Chapter I, §1O. 

Next, let (X; A,B) be a triad, i.e., A and B are arbitrary subsets of X (no 
inclusion relations are assumed between A and B). Assume that {A,B} is an 
excisive couple in X; it follows that the inclusion maps 

kdA,A n B) --+ (A u B,B) 

k2:(B,A n B) --+ (A u B,A) 
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induce isomorphisms on homology and cohomology groups with any co
efficients. If we substitute the (co-) homology groups of (A, A (\ B) for those 
of (A u B, B) in the exact (co-) homology sequence of the triple (X, A u B, B), 
(using the isomorphism induced by k1), we obtain one of the (co-) homology 
sequences of the triad (X ;A,B). To obtain the other (co-) homology sequence 
of this triad, use the isomorphism induced by k2 to substitute the (co-) 
homology groups of (B, A (\ B) for those of (A u B, A) in the exact (co-) 
homology sequence of the triple (X, A u B, A). The resulting homology 
sequences are as follows: 

... ~ Hn(A,A (\ B) ~ Hn(X,B) ~ Hn(X,A u B) ~ Hn-1(A,A (\ B) ... , 

... ~ HiB,A (\ B) ~ Hn(X,A) ~ Hn(X, A u B) ~ Hn-1(B,A (\ B) ... 

The coefficient group has been omitted from the notation. The homomor
phisms Ll * will be referred to as the boundary operators of the triad (X; A,B); 
they are defined so as to make the following two diagrams commutative: 

a H n _ 1(AuB,B) 

/ 
H.(X, A u B) Ik,. 

~ 
H n - 1(A, A n B) 

H n - 1(A u B, A) 

Y 
Hn(X, A u B) I k,. 

~ 
H n - 1(B, A n B). 

Analogously, we will denote the coboundary operators of the exact co
homology sequences of this triad as follows: 

Ll*:H"-l(A,A (\ B) ~ H"(X,A u B), 

Ll*:Hn-l(B,A (\ B) ~ Hn(X,A u B). 

We have introduced the exact homology and cohomology sequences of a 
triad for a very specific purpose in connection with the various products. 
However these exact sequences, and the exact sequence of a triple, are of 
interest in their own right. 

There is one other exact sequence which it is convenient to introduce now, 
known as the relative Mayer-Vietoris sequence. It will be needed in Chapter 
IX. Let (X ;A,B) be a triad, and assume that {A,B} is an excisive couple in X. 
We will use the following notation for inclusion maps: 

i:(X,A (\ B) ~ (X,A), 

j:(X,A (\ B) ~ (X,B), 

k:(X,A) ~ (X,A u B), 

l:(X,B) ~ (X, A u B). 
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Consider the following sequence of chain complexes and chain maps: 

<1> 'f' C(X) 
0--+ C(X,A n B) --+ C(X,A) EB C(X,B) --+ C(A) + C(B) --+ O. 

Here the chain maps (jJ and l/J are defined as follows: 

(jJ(x) = (i#x,j #x), 

P(u,v) = k#(u) - l#(v). 
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It is not difficult to prove that this sequence is exact; in fact, it is even split 
exact, because all the chain complexes consist of free abelian groups. If we 
pass to the corresponding long exact homology sequence, and substitute 
C(X, A u B) for C(X)/[ C(A) + C(B)], we obtain the relative Mayer-Vietoris 
sequence of the triad (X ;A,B): 

Of course there is a dual exact sequence of cohomology groups. 

§7. Behavior of Products with Respect to 
the Boundary and Coboundary Operator 
of a Pair 

We will content ourselves with stating the main properties involved, leaving 
the proofs to the reader. 

(a) Cross Products. Assume that (X,A) and (Y,B) are pairs such that 
{A x Y, X x B} is an excisive couple. Then the following two diagrams are 
commutative: 

W(A)@Hq(Y,B)------+>HP+q(AxY,AxB) 

10* ® I 1 d. 

HP+ I(X,A) @ Hq(Y,B) ~ Hp+q+ I(X X Y, X x B u A x Y) 

1 (-l)'®o* 1 J* 

HP(X,A)@ Hq+l(Y,B) ~ W+q+l(X X Y, X x B u A x Y). 
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These two relations may also be expressed by equations, as follows: For 
any u E HP(A) and v E Hq(Y,B), 

(6*u) x v = J*(u x v). 

For any u E HP(X,A) and v E Hq(B), 

( -l)P(u x 6*v) = J *(u x v). 

Obviously, the second relation can be derived from the first by use of the 
commutative law. 

(b) Cup Products. Assume that {A,B} is an excisive couple in X. Then we 
have the following two diagrams to describe the relations involved (they are 
not commutative diagrams in the usual sense; cf. the discussion ofnaturality 
of the slant and cap products). 

W(A) ® Hq(A, A n B) ~ W+q(A, A n B) 

J. I Ik. IJ· 
W+ l(X,A) ® Hq(X,B) ~ w+q+ l(X, A u B) 

These relations may also be stated in equations, as follows. If u E HP(A) and 
v E Hq(X,B), then 

(6*u) U v = J*(u u k*v). 

For the second relation, if u E HP(X,A) and v E Hq(B), then 

(-l)pu u 6*v = J*((l*u) u v). 

EXERCISE 

7.1. Under the above assumptions, prove that we have the following commutative 
diagram: 

j. i· J. 
HP+l(X,A) W(X,A) I W(X) I W(A) I 

Iuv Iuv 1 uk·v 1 uv 

Hp+q(X, A u B) Hp+q(X,B) Hp+q(A, A n B) 
J. 

Hp+q+ l(X, A u B). ~ ~ ~ 

Here v E Hq(X,B). 

(c) Slant products. Assume, as in (a), that (X,A) and (Y,B) are pairs such 
that {X x B, A x Y} is an excisive couple. Then the relations are expressed 
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by the following two diagrams of which the first is a commutative diagram 
in the usual sense: 

W(Y,B) <8J Hq(X x Y, A x Y u X x B) 
slant 

---+ Hq_p(X,A) 

l(-I)P<8l L1o lao 
slant 

W(Y,B) <8JHq-l(A x Y,A x B) --~) H q- P - 1(Aj 

The second diagram expresses the fact that the homomorphisms c:5* and A * 
are adjoint in a certain sense. These relations may be expressed in equations 
as follows: Let u E HP(Y,B) and v E HiX x Y,A x Y u X x B). Then 

o*(u\v) = (-l)pu\A*v. 

For the second relation, let u E HP-l(B) and v E Hq(X x Y, A x Y u X x B). 
Then 

(c:5*u)\v + (_1)P-1U\ A*v = 0 

(cD Cap Products. Assume that {A,B} is an excisive couple in X. Then the 
following diagram is commutative, up to the sign (-l)P: 

This relation may be expressed by the following equation: 

(-l)P(k*u) n (A*v) = o*(u n v) 

for any u E HP(X,A) and v E Hq(X,A u B). A second relation is indicated by 
the following diagram: 

W(X,A) <8J Hq(X, A u B) ---.... ) Hq_p(X,B) 

(-I)' lko 

Equivalently, 
(c:5*u) n v + (-l)P-lk*(u n A*v) = 0 

for any u E HP-l(A) and any v E Hq(X,A u B). 
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EXERCISES 

7.2. Prove that the following diagram is commutative: 

Hq(B,A n B) -----+ Hq(X,A) 

1 (k'u)n 1 un 

0. 
Hq_p(B) ----> Hq_p(X) ~ Hq_.(X,B) --'-~) H q- r1 (B). 

Here U E HP(X,A). 

7.3. Prove that corresponding homomorphisms in the following two exact sequences 
are "adjoints" of each other, with respect to the indicated cap product: 

,j* 
W- 1(A) HP(A) ( W(X) ( W(X,A) ( 

® ® ® ® 

Hq(A,AnB) ~ Hq(X,B) -----+ Hq(X, A u B) -----+ H q_1(A, A n B) 

In In In In 
Hq_p(A, A n B) -----+ Hq_p(X,B) Hq_p(X,B) +--- Hq_p(A, A n B). 

§8. Relations Involving the Inner Product 

These relations involve the inner product, which was defined in §2, and the 
cross, slant, cup, and cap products. 

(a) Assume that (X,A) and (Y,B) are pairs such that {A x Y,X x B} is an 
excisive couple in X x Y. In Chapter VI we defined the homomorphism 

rx:Hp(X,A) ® Hq(Y,B) --+ Hp+q((X,A) x (Y,B)). 

Let a E Hp(X,A), bE Hq(Y,B), U E HP(X,A;G 1), and v E Hq(Y,B;G 2 ). Then 

(-l)pq<u x v, rx(a ® b) = <u,a) ® <v,b). 

The proof of this relation is easy. 
(b) Assume, as in (a) that {A x Y, X x B} is an excisive couple in X x Y. Let 

U E HP(X,A;Gd, v E Hq(Y,B;G2), and WE Hp+q(X x Y, A x Yu X X B;G3). 

Then 
<U x v, w) = <u, v\w). 

(c) Assume that {A,B} is an excisive couple in X. Let U E HP(X,A;G1), 

v E Hq(X,B;G2), and WE Hp+iX,A u B; G3). Then 

<u u v, w) = <u, v n w). 
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A noteworthy special case of this relation occurs when A = 0, p = 0, 
G1 = Z, and u = 1 E HO(X;Z). Then 1 u v = v, and it is easily verified that 
<1, v n w) = 8*(V n w). Thus under these hypotheses, we obtain the relation 

<v,w) = 8*(V n w) 

which expresses the inner product in terms of the cap product and the 
augmentation. 

The proof of Relations (b) and (c) are easy. In the case where G1 = G2 = 
G 3 = F, where F is a field, and all the homology and cohomology groups 
involved are finite-dimensional vector spaces over F, Relation (b) shows that 
cross products are determined by slant products, and vice-versa. Similarly, 
Relation (c) shows that under these hypotheses, cup products are determined 
by cap products, and vice-versa (cf. Exercise VII.6.1). 

§9. CUp and Cap Products in a Product Space 

Let U E HP(X,A), v E Hq(X,B), WE H'(Y,C), and x E HS(Y,D) (the coefficient 
groups are omitted from the notation). Then 

(U x w) u (v x x) = ( -1r(u u v) x (w u x) (9.1) 

provided we assume enough couples are excisive so that everything is well 
defined. In particular, this would be the case if A, B, C, and D were all empty. 

Probably the easiest way to prove Equation (9.1) is to make use of the 
relation between cup and cross products explained in §3. If everything is 
expressed in terms of cup products, this relation becomes almost obvious. 
Therefore the details are left to the reader. 

To state an analogous relation for cap products, we must use the 
homomorphism 

rx:Hp(X,A) ® HiY,B) -+ Hp+q(X x Y,A x Y u X x B) 

defined in §§VI.4 and IV.6. This can be extended in an obvious way to a 
homomorphism 

rx:Hp(X,A;G 1) ® Hq(Y,B;G2) -+ Hp+iX x Y,A x Y u X x B, G1 ® G2) 

with arbitrary coefficients G1 and G2. Assume that U E HP(X,Al)' V E Hq(Y,Bl)' 
a E Hr(X,Al U A 2) and b E Hs(Y,Bl U B2)' Then 

(u x v) n rx(a ® b) = (-1)qrrx«u n a) ® (v n b)) (9.2) 

provided enough couples are assumed excisive. A detailed proof of this 
relation is written out in Dold [1], pp. 240-241. 

This completes our survey of the main properties of the four products. 
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§10. Remarks on the Coefficients for the Various 
Products-The Cohomology Ring 

In all four products, we started out with homology or cohomology classes u 
and v with coefficient groups G1 and G2 respectively, and the product always 
had coefficient group G1 ® G2 . Sometimes it is convenient to assume given 
a homomorphism h: G1 ® G2 ~ G and to systematically apply the coeffi
cient homomorphism h# to the resulting product. For example, if R is a 
ring; and h: R ® R ~ R is the homomorphism induced by the multiplication, 
then we get a cup product which assigns to elements u E HP(X ;R) and 
v E Hq(X;R) an element u U v E Hp+q(X;R). With this multiplication, the 
direct sum 

H*(X;R) = L Hn(X;R) 
n 

becomes a kind of ring which is called a graded ring, because the underlying 
additive group is the direct sum of a sequence of subgroups, indexed by the 
integers. In fact, H*(X; R) is the prototype of a graded ring. If R has a unit 
1 E R, then H*(X; R) has a unit 1 x E HO(X; R); it is represented by the cocycle 

Co(X) ~ Z ~ R, 

where e is the augmentation and e is the unique ring homomorphism defined 
by e(l) = 1. If the ring R is commutative, then H*(X ;R) is commutative in 
the graded sense (sometimes called skew-commutative or anticommutative): 

u U v = ( -l)pqv U u 

for any u E HP(X;R) and v E Hq(X;R). In this case, H*(X;R) is a graded 
algebra over the commutative ring R. 

We mention two more examples like this, leaving the reader to fill in 
the details of the definitions, etc. For both examples, let R be a ring with 
unit, M a left R-module, and h:R ® M ~ M the homomorphism defining 
the module structure. 

EXAMPLE 10.1. The cap product assigns to any elements U E HP(X;R) and 
v E Hq(X;M) an element un v E Hq_p(X;M). Using this cap product, the 
direct sum 

n 

becomes a graded left module over the graded ring H*(X;R). 

EXAMPLE 10.2. Let (X,A) be an arbitrary pair. The cup product assigns to 
elements u E HP(X;R) and v E Hq(X,A;M) an element u U v E Hp+q(X,A;M). 
This makes 

H*(X,A;M) = L Hn(X,A;M) 
n 
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into a graded left module over H*(X;R). Moreover, each of the homomor
phisms of the exact sequence of the pair (X,A), 

and 

j*:H*(X,A;M) --+ H*(X;M), 
i*:H*(X;M) --+ H*(A;M), 

15* :H*(A;M) --+ H*(X,A;M) 

are homomorphisms of graded left H*(X;R)-modules (the definition of the 
module structure on H*(X;M) and H*(A;M) is left to the reader). In this 
example, the homomorphisms j* and i* have degree 0, while 15* has degree 
+1. 

§ 11. The Cohomology of Product Spaces 
(The Kiinneth Theorem for Cohomology) 

By combining the Kiinneth Theorem of §V1.6 with the universal coefficient 
theorem for cohomology of §VII.4, one can express the cohomology groups 
of a product space, Hn(x x y; G) in terms of the homology groups of the 
factors, H p(X) and HiY), (in principle, at least). What we are now interested 
in is the expression of Hn(x x Y; G) in terms of the cohomology groups of 
the factors, HP(X) and Hq(y). The point is that we can use such an expression 
together with the relations given in §9 to obtain information about cup and 
cap products in X x Y terms of these products in the factors, X and Y. 

The cross product defines a homomorphism 

This definition can be extended in an obvious way to a homomorphism 

L HP(X;Z)®Hq(y;Z) --+ Hn(x x Y;Z). 
p+q=n 

One would then hope to prove that this homomorphism is a monomorphism, 
and that the cokernel is isomorphic to something of the form 

L Tor(HP(X;Z),Hq(y;Z)) 
P.q 

just as in the case of homology. Unfortunately, simple examples show that 
this is too much to hope for: If X and Yare discrete spaces having infinitely 
many points, no such theorem holds. However, if X or Y is a finite discrete 
space, then there is no problem. 

This is the key to the situation: one must impose some sort of finiteness 
condition on at least one of the factors. 
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Before we can state and prove such a theorem, we need some algebraic 
preliminaries. First of all, recall that if F is a free abelian group of finite 
rank then Hom(F,Z) is also a free abelian group (of the same rank). It may 
be proved that if F is a free abelian of infinite rank, then Hom(F,Z) is not 
free. However, we will have no need for this result. It follows that if K = 
{Kq,(\} is a chain complex such that Kq is free abelian of finite rank for each 
q, then Hom(K,Z) is a cochain complex of free abelian groups. 

Secondly, recall that we introduced earlier the natural homomorphism 
Hom(A,A') ® Hom(B,B') ~ Hom(A ® B, A' ® B') which assigns to homo
morphisms f: A ~ A' and g: B ~ B' the tensor product of the two homomor
phisms,f® g:A ® B ~ A' ® B'. In general, the abelian groups Hom(A,A') ® 
Hom(B,B') and Hom(A ® B, A' ® B') are not isomorphic. However, in the 
special case where A is free abelian of finite rank and A' = Z, it is readily 
verified that the natural homomorphism is an isomorphism of Hom(A,Z) ® 
Hom(B,B') onto Hom(A ® B,B'). We can now extend this result to chain 
complexes. Suppose that K = {Kq,oq} is a positive chain complex such that 
each Kq is free abelian of finite rank, that C = {Cq,Oq} is another positive 
chain complex, and G is an abelian group. Then the natural chain map 

Hom(K,Z) ® Hom(C,G) ~ Hom(K ® C, G) 

is an isomorphism of chain complexes. 
Finally, we need the following lemma of a rather technical nature: 

Lemma 11.1. Let (X,A) be a pair such that Hq(X,A) is finitely generated 
for all q. Then there exists a chain complex K = {Kq,oq} such that each Kq 
is a free abelian group of finite rank, and a chain homotopy equivalence 
f:K ~ C(X,A). 

PROOF. For each q, choose an epimorphism eq of a finitely generated free 
abelian group Fq onto Hq(X,A); denote the kernel by Rq+ 1, and let 
dq + 1 : Rq + 1 .~ F q denote the inclusion homomorphism. Then 

° +- Hq(X,A) ~ Fq~ Rq+1 +- ° 
is a short exact sequence, and both F q and Rq + 1 are free abelian of finite 
rank. Define Kq = F q EEl Rq for all q, and 0 q: Kq ~ Kq _ 1 by 

oqlFq = 0, 

oqlRq = dq. 

Then K = {Kq,oq} is a chain complex such that each Kq is free abelian of 
finite rank. It is an easy exercise to prove that there exist homomorphisms 

C{Jq:Fq ~ ZiX,A) 

I/Iq+1:Rq+1 ~ BiX,A) 
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for all q such that the following diagram is commutative: 

o~ Hq(X,A) ( 
e. F ( dlj+l 

Rq+l +---- 0 q 

II l~' lp·+ , 
0 ~ Hq(X,A) ~ Zq(X,A) ~ Bq(X,A) ~ O. 

Next, we may choose a homomorphism 8q+1 :Rq+1 --+ Cq+1(X,A) such that 
the following diagram is commutative: 

o 

Now define /q:Kq --+ CiX,A) by 

fqlFq = CfJq, 

hlRq = 8q. 

It is readily checked that f = {fq} is a chain map, and that the induced 
homomorphism 

f*:HiK) --+ Hq(X,A) 

is an isomorphism for all q. Therefore f is a chain homotopy equivalence, 
by Theorem V.2.3. Q.E.D. 

Now that we have these technical details behind us, we can state the 
desired theorem: 

Theorem 11.2. Let (X,A) and (Y,B) be pairs such that the following two con
ditions hold: Hq(X,A) is finitely generatedfor all q, and {X x B,A x Y} is an 
excisive couple in X x Y. Then the cross product defines a homomorphism 
a:Lp+q=nHP(X,A;Z)®Hq(Y,B;G) --+ Hn(x x Y;A x Yu X x B;G) which 
is a monomorphism onto a direct summand and the cokernel is naturally 
isomorphic to Lp+q=n+l Tor(HP(X,A;Z),Hq(Y,B;G)). 

We will indicate the main steps in the proof, leaving the verification of 
details to the reader. 

By Lemma 11.1, there exists a chain complex K of finitely generated free 
abelian groups and a chain homotopy equivalence f:K --+ C(X,A). It 
follows that Hom(K,Z) is a cochain complex of free abelian groups, and 



196 VIII Products in Homology and Cohomology 

Hom(f,l):Hom(C(X,A),Z) -+ Hom(K,Z) is also a chain homotopy equiva
lence. Now consider the following commutative diagram of cochain com
plexes and cochain maps: 

Hom(K ® C(Y,B),G) +-( -----
Hom(f® 1.1) 

Hom(C(X,A) ® C(Y,B),G) 

1 
Hom(K,Z) ® Hom( C( Y,B),G) ( Hom(f,I) ® I Hom( C(X,A),Z) ® Hom( C( Y,B),G). 

In this diagram, the symbol 1 refers to an appropriate identity map. By the 
discussion preceding Lemma 11.1, the arrow labelled a denotes an isomor
phism. Since f is a chain homotopy equivalence, it follows that the horizontal 
arrows denote cochain homotopy equivalences. Hence on passage to co
homology, all four arrows in this diagram would induce isomorphisms. To 
complete the proof, one applies the Kiinneth theorem to the tensor product 
Hom(K,Z) ® Hom(C(Y,B),G). This is legitimate, since Hom(K,Z) is a co
chain complex of free abelian groups. The remaining details may be left to 
the reader. Q.E.D. 

Corollary 11.3. Let X and Y be topological spaces such that HiX) is finitely 
generated for all q and such that at least one of the two spaces has all co
homology groups torsion-free. Then 

Q:: L HP(X;Z) ® Hq(y;Z) -+ Hn(x x Y;Z) 
p+q=n 

is an isomorphism for all n. In this case the cohomology ring H*(X x Y; Z) 
is completely determined by H*(X;Z) and H*(Y;Z). 

The last sentence of this corollary follows from the relations for cup 
products in a product space given in §9. It also inspires the following 
definition. 

Definition 11.1. Let A* = Li Ai and B* = Lj Bj be graded rings. The tensor 
product A * ® B* is the graded ring defined as follows: 

(A* ® B*)n = L Ai ® Bj (direct sum). 
i+j=n 

The multiplication is defined as follows: 

(u 1 ® VI) . (Ul ® v1) = (-1)P2ql(UIU1) ® (VIV2)' 

where Ui E APi and Vj E Wi for i,j = 1,2. With this structure A* ® B* is also a 
graded ring. 

Using this definition, the corollary above can be restate'd as follows: 
Let X and Y be topological spaces such that Hq(X) isfinitely generatedfor all q, 
and at least one of the two spaces has all cohomology groups torsion-free. Then 
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the cohomology ring H*(X x Y; Z) is naturally isomorphic to the tensor product 
of the cohomology rings of the factors: 

rx:H*(X;Z)®H*(Y;Z);::;H*(X x Y;Z). 

EXAMPLE 11.1. The cohomology ring of an n-sphere, H*(S"; Z) is easily deter
mined. We know that HO(S";Z) is an infinite cyclic group generated by the 
unit, 1 E HO(S";Z), and H"(S";Z) is also infinite cyclic with generator u; all 
other cohomology groups are O. The cup products are completely determined 
by the equations 

u u 1 = 1 u u = u. 

We can now use the above rules to determine the cohomology ring 
H*(sm x S";Z). Let u E Hm(sm;z) and v E H"(S";Z) denote generators of 
these infinite cyclic groups. Then H*(sm x S";Z) is the direct sum of four 
infinite cyclic groups, with generators 1 x 1 (the unit), u x 1,1 x v, and u x v. 
There is one nontrivial product: 

(u x 1) u (1 x v) = u x v. 

EXERCISES 

11.1. Let A be a retract of X with retraction r:X -> A and inclusion map i:A -> X. 
Consider the induced homomorphisms 

r* :H*(A;Z) -> H*(X ;Z) 

i*: H*(X; Z) -> H*(A; Z). 

Prove that kernel i* is an ideal in the graded ring H*(X ;Z), and image r* is a 
subring. 

11.2. Let X and Y be spaces with chosen basepoints, Xo E X and Yo E Y. Define 

Xv Y = (X x {Yo}) u ({xo} x Y). 

It is sometimes called the 1-point union of X and Y. Assuming that X and Yare 
arcwise connected, express the structure of the cohomology ring H*(X v Y;Z) 
in terms of H*(X;Z) and H*(Y;Z). (Assume that also Xo and Yo have "nice" 
neighborhoods in X and Y respectively, as described in Problem III.5.2.) 

11.3. Let m and n be positive integers, X = S"' X So, and Y = sm V S" V sm+". Prove 
that Hq(X;G) ~ HiY;G) and Hq(X;G) ~ Hq(Y;G) for any abelian group G and 
integer q; then prove that X and Yare not of the same homotopy type. 

We conclude this lengthy chapter with an analogue of Corollary 11.3 for 
the case where we use cohomology with coefficients in a commutative field F. 
The result is easy to state, and of rather wide generality. 

Theorem 11.4. Let (X,A) and (Y,B) be pairs such that {X x B, A x Y} is an 
excisive couple, and HiX,A;F) is afinite-dimensional vector space over F for 
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all q. Then the x-product dejines a natural isomorphism 

ex: L HP(X,A;F)@Hq(Y,B;F) --+ Hn(x x Y, A x Yu X x B; F). 
p+q=n F 

Corollary 11.5. Let X be a space such that HiX;F) hasjinite rank over F for 
all q. Thenfor any space Y, the cohomology algebra H*(X x Y; F) is naturally 
isomorphic to the tensor product: 

ex:H*(X;F) @ H*(Y;F) ~ H*(X x Y; F). 
F 

The proof of this theorem and corollary is actually somewhat simpler than 
the proof of Theorem 11.2 and Corollary 11.3 because one has to deal with 
vector spaces over F rather than abelian groups. It is also necessary to use 
relations such as the following: 

C(X)@ C(Y)@ F ~ C(X,F) @ C(Y,F) 
F 

Hom(C(X),F) ~ HomF(C(X,F),F). 

Once again, the details are left to the reader. 
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CHAPTER IX 

Duality Theorems for 
the Homology of Manifolds 

§1. Introduction 

An n-dimensional manifold is a Hausdorff space such that every point has 
an open neighborhood which is homeomorphic to Euclidean n-space, Rn 

(see Massey, [6J, Chapter I). One of the main goals of this chapter will be to 
prove one of the oldest results of algebraic topology, the famous Poincare 
duality theorem for compact, orientable manifolds. It is easy to state the 
Poincare duality theorem but the proof is lengthy. 

If a compact connected n-dirpensional manifold M can be subdivided 
into cells so as to be a regular cell complex, then it is a pseudomanifold, and 
the results of §IV.8 are applicable. Thus if it is orientable, Hn(M,Z) will be 
an infinite cyclic group. One of our first goals will be to prove that this 
result is still true even if the manifold is not a regular cell complex. To 
"orient" such a manifold means to choose a generator fl of the group 
Hn(M,Z). The Poincare duality theorem then asserts that the homomorphism 
of Hq(Mn,G) into Hn_q(M",G), defined by x --+ x n flfor any x E Hq(M",G), is 
an isomorphism for all integers q and all coefficient groups G! This is a rather 
severe restriction on the homology and cohomology groups of a compact, 
orientable manifold. By using the relation (x u y) n u = x n (y n fl), we 
will be able to show that the Poincare duality theorem has strong implications 
for cup products in a manifold. 

We will also prove a duality theorem relating the homology and coho
mology groups of a manifold with boundary. Finally, we will discuss the 
famous Alexander duality theorem. This relates the cohomology groups of 
a closed subset X of Euclidean n-space, R", and the homology groups of the 
complementary set Rn - x. It is a far-reaching generalization of the results 
proved in 111.6 (i.e., the Jordan-Brouwer separation theorem, etc). 

199 
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The method of proof we use for the Poincare duality theorem was first 
described by J. Milnor in some mimeographed lecture notes in 1964; see 
also the appendix to [8]. The basic idea of Milnor's proof is very natural 
and may be explained as follows. It follows from the definition that any n
manifold is a union of certain open subsets, each of which is homeomorphic 
to Rn. Thus it seems natural to try to prove the theorem first for Rn, and then 
to use Mayer-Vietoris sequences to extend to the case of a finite union of 
open subsets, each of which is homeomorphic to Rn. Finally we can extend 
to the case of an infinite union of such open sets by a direct limit argument. 
The only trouble with this idea is that the Poincare duality theorem as 
formulated above applies only to compact manifolds. Thus it will be neces
sary to state and prove a more general version of the Poincare duality 
theorem which is also applicable to noncompact manifolds. The reader must 
not let the technical complications involved in stating and proving this more 
general version obscure the basic ideas involved. 

§2. Orientability and the Existence of 
Orientations for Manifolds 

Let M be an arbitrary n-dimensional manifold; we emphasize that M need 
not be compact or connected; in fact we do not even need to assume that M 
is paracompact! For any point x E M, consider the local homology groups 
Hi(M,M - {x}) (cf. the exercises in §III.2). Using the fact that x has a 
neighborhood homeomorphic to Rn and the excision property, we see that 

Hi(M,M - {x}) ~ Hi(Rn,Rn - {x}). 

Hence if we use integer coefficients, Hi(M, M - {x}) is infinite cyclic for 
i = n, and zero for i =f. n. A choice of a generator for the infinite cyclic group 
H n(M, M - {x}; Z) will be referred to as a local orientation of M at x. 

Definition 2.1. An orientation of an n-dimensional manifold M is a function {L 
which assigns to each point x E M a local orientation {Lx E H n(M, M - {x}; Z) 
subject to the following continuity condition: Given any point x E M, there 
exists a neighborhood N of x and an element {LN E Hn(M,M - N) such that 
i*(ILN) = {Ly for any YEN, where i*:Hn(M,M - N) -+ Hn(M,M - {y}) de
notes the homomorphism induced by inclusion. 

In order to better understand this continuity condition, recall that any 
point x E M has an open neighborhood U which is homeomorphic to Rn. 
By the excision property, for any y E U, 

Hn(U, U - {y}) ~ HiM,M - {y}). 
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However, if x and yare any two points ofRn, there is a canonical isomorphism 
Hn(Rn,Rn - {x})::::o HiRn,Rn - {y}) defined by choosing a closed ball 
En c Rn large enough so that x and yare both in the interior of En, and 
noting that in the following diagram, 

Hn(Rn, Rn - {x}) Hn(Rn, Rn - En) 

lj* 

Hn(Rn, Rn - {y}) 

both i* and j* are isomorphisms. Moreover, the isomorphism between 
Hn(Rn,Rn - {x}) and Hn(Rn,Rn - {y}) that we thus obtain is independent 
of the choice of the ball En. 

Terminology. The manifold M is said to be orientable if it admits at least 
one orientation; otherwise, it is called nonorientable. A pair consisting of a 
manifold M and an orientation is called an oriented manifold. 

EXAMPLE 2.1. (a) Euclidean n-space, Rn, is orientable (use the fact men
tioned above that there exists a canonical isomorphism H n(Rn, Rn - {x}) ::::0 

Hn(Rn,Rn - {y}) for any two point x, y ERn). (b) Similarly, the n-sphere, sn, 
is orientable according to our definition. (c) If M is an n-manifold, /l is an 
orientation for M, and N is an open subset of M, then /l restricted to N is 
an orientation of the n-manifold N. (d) Let M be an n-dimensional manifold 
with orientation /l and N and n-dimensional manifold with orientation v. 
Let /l x v denote the function which assigns to each point (x,y) EM x N 
the homology class 

Ilx x Vy E Hm+n(M x N,M x N - {(x,y)}). 

Using the Kiinneth theorem, it is seen that Ilx x Vy is a generator of the 
homology group in question. It is also easy to verify that the required 
continuity condition holds, and thus /l x v is an orientation for M x N. 
Thus the product of two orientable manifolds is orientable. 

In dealing with questions such as these, we will need to frequently con
sider for any subset A ofthe manifold M, the homology groups Hi(M, M - A). 
If B c A, it will be convenient to denote the corresponding homomorphism 
Hi(M, M - A) ~ Hi(M, M - B) by the symbol PB; for any homology class 
U E Hi(M, M - A), PB(U) can be thought of as the "restriction" of U to a 
homology group associated with B. 

Let M be an n-dimensional manifold with orientation /l; it would be 
advantageous if there were a global homology class /lM E H n(M,Z) such that 
for any x E M, 
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Unfortunately, this can not be true if M is noncompact, as the reader can 
easily verify by using Proposition 111.6.1. The closest possible approximation 
to such a result is the following theorem. It will playa crucial role in the 
statement and proof of the Poincare duality theorem: 

Theorem 2.1. Let M be an n-manifold with orientation 11. Then for each com
pact set K c M there exists a unique homology class 11K E H n(M, M - K) 
such that 

for each x E K. 

Note that if M is a compact manifold, this theorem assures us of the 
existence of a unique global homology class 11M E H n(M,Z) such that for any 
point x EM, 

I1x = pAI1M)' 

PROOF. The uniqueness of 11K is a direct consequence of a more general 
lemma below (Lemma 2.2). Therefore we will concentrate on the existence 
proof. Obviously, if the compact set K is contained in a sufficiently small 
neighborhood of some point, the continuity condition in the definition of 11 
assures us of the existence of 11K' Next, suppose that K = Kl U K 2, where 
K 1 and K2 are compact subsets of M, and both 11K, and I1K2 are assumed to 
exist. Then {M - KbM - K 2} is an excisive couple, and hence we have a 
relative Mayer-Vietoris sequence (cf. §VIII.6): 

,j 

Hn+1(M,M - Kl n K 2) -+ HiM,M - K) 

~ Hn(M,M - KdtBHiM,M - K z) 

'" -+ Hn(M,M - Kl n K2)' 

Recall that the homomorphisms ({J and !/J are defined by 

((J(u) = (pdu),pdu)) 

!/J(VbV2) = PK,nK2(Vl) - PK,nK2(vZ) 

for any u E HiM,M - K), Vl E Hn(M,M - K 1), and Vz E Hn(M,M - K 2). 
By the uniqueness of I1K, nK2' we see that 

PK,nK,(I1K) = PK,("\K2(I1K,) 

and hence 
!/J(I1K"I1K,} = O. 

It follows from Lemma 2.2 below that Hn+ l(M,M - (Kl n K z)) = 0; hence 
by exactness there is a unique homology class 11K E Hn(M,M - K) such that 

((J(I1K) = (I1K"I1K,). 

It is readily verified that this homology class 11K satisfies the desired condition 
pAI1K) = I1x for any x E K. 
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Next, assume that K = Kl U K2 U ... u K" where each Ki is a compact 
subset of M, and JiKi exists. By an obvious induction on r, using what we 
have just proved, we can conclude that JiK exists. But any compact subset 
K of M can obviously be expressed as a finite union of subsets K i , each of 
which is sufficiently small so that the corresponding homology class JiKi 
exists. Hence JiK exists, as was to be proved. Q.E.D. 

It remains to state and prove Lemma 2.2. 

Lemma 2.2. Let M be an n-dimensional manifold and G an abelian group. 
(a) For any compact set K c M and all i > n, 

HJM,M - K;G) = O. 

(b) If u E Hn(M,M - K; G) and pAu) = 0 for all x E K, then u = O. 

PROOF. The method of proof is to start with the case M = Wand then to 
progress to successively more complicated cases, ending with the general case. 

Case 1: M = Rn and K is a compact, convex subset of Rn. To prove this 
case, choose a large ball En c Rn such that K is contained in the interior of 
En. For any x E K, consider the following commutative diagram: 

Px 
H,(M, M - K) -----4 Hi(M, M - {x}) 

~ /z 
Then it is readily proved that Arrows 1 and 2 are isomorphisms. Hence Px is 
an isomorphism for all i which suffices to prove the lemma in this case. 

Case 2: K = Kl U K 2, where K, Kb and K2 are compact subsets of M 
and it is assumed that the lemma is true for K 1, K 2, and Kl n K 2. In order 
to prove this case, we will again use the relative Mayer-Vietoris sequence 
of the triad (M; M - K 1, M - K2)' The proof of this case is based on the 
following portion of this Mayer-Vietoris sequence: 

Ll 
H i + 1(M, M - Kl n K 2) --4 Hi(M, M - K) 

~ Hi(M, M - K 1) EB Hi(M, M - K2)' 

The proof of Parts (a) and (b) of the lemma for this case is quite easy, and may 
be left to the reader. 

Case 3: M = Rn and K = Kl U K2 U ... u K" where each Ki is com
pact and convex. This case is proved by induction on r, using cases 1 and 2 
(the fact that the intersection of convex sets is convex is used). 

Case 4: M = Rn, and K is an arbitrary compact subset. We assert that for 
any u E Hi(Rn, Rn - K), there exists an open set N containing K and an 
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element u' E Hi(Rn, Rn - N) such that k*(u') = u, where 

k:(Rn, Rn - N) --+ (Rn, Rn - K) 

is the inclusion map. To prove this assertion, recall that there exists a compact 
pair (X,A) c (Rn, Rn - K), and a homology class v E Hi(X,A) such that the 
inclusion homomorphism Hi(X,A) --+ Hi(Rn, Rn - K) maps v onto u (see 
Proposition III.6.1). Now we may choose N to be any open neighborhood of 
K which is disjoint from A, and the assertion will certainly be true. 

Given the open neighborhood N of K, we may find a finite collection 
{B 1 ,B 2, ... ,Br } of closed balls such that B j c N for 1 5;, j 5;, r, and the union 
of the B/s covers K. We may also assume that K n Bj =F 0 for 1 5;,j 5;, r. 
Now consider the following commutative diagram: 

Hj(R", R" - N) ~ H{ R", R" - Y Bi) 

~ j-. 
HJR", R" - K). 

We will use this diagram to prove the lemma for this case. The proof of Part 
(a) for this case is very easy: Ifi > n, then Hi(Rn, Rn - Uj B) = ° by Case 3, 
and hence the given element k*(u') = u E Hi(R", R" - K) must be zero also. 
The proof of Part (b) is only slightly more difficult. Assume u E HiR", Rn - K), 
Px(u) = ° for all x E K, and that Nand u' E H"(R", R" - N) have been chosen 
so that u = k*(u'). Let u" = l*(u') E HnCRn, R" - Ui B) in the above diagram. 
We assert that Py(u") = ° for each Y E Bl U B2 U ... u Br • To see this, 
assume that Y E Bi; choose a point x E Bi n K. Consider the following com
mutative diagram: 

H"( R", R" - UBi) -----. H"(R", R" - Bj) 

\ '~R.'R.-~ 1~.-{'}) 
-\ /. 

H"(R", R" - K) 

All homomorphisms in this diagram are induced by inclusion maps, and the 
homomorphisms denoted by Arrows 1 and 2 are isomorphisms, (by Case 1). 
Since m*(u") = u, and pAu) = 0, it readily follows that py(u") = ° as desired. 
Therefore we can conclude by Case 3 that u" = 0, and hence u = m*(u") is 
also zero. 

Case 5: M is arbitrary, but the compact set K is assumed to be "small" 
enough so that there exists an open set U which is homeomorphic to R" 
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and U => K. In this case H;(M, M - K) ~ H;(U, U - K) by the excision 
property; hence we can apply Case 4 to reach the desired conclusion. 

Case 6: The general case. In this case, K is a finite union of compact 
subsets, 

K = Kl U K z U ... U K" 

where each K; is small enough so that Case 5 applies. Hence we can make an 
induction on r, using Case 2, to compute the proof of the lemma. Q.E.D. 

In order to study the homology of arbitrary manifolds (i.e., orientable or 
nonorientable) it is desirable to go through similar considerations with Zz 
coefficients. Let M be an arbitrary n-dimensional manifold, and x E M. The 
local homology group Hn(M, M - {x}; Zz) is cyclic of order 2, hence it has a 
unique generator J.Lx E H n(M, M - {x}; Zz) (no choice is involved). It is 
readily seen that the function J.L which assigns to each x E M the element J.Lx 
satisfies the continuity condition occurring in the definition of an orientation: 
Each point x E M has a neighborhood N for which there exists an element 
J.LN E Hn(M, M - N; Z2) such that PY(J.LN) = J.Ly for all YEN. It is convenient 
to refer to J.L as the "mod 2 orientation of M." 

Theorem 2.3. Let M be an arbitrary n-dimensional manifold (i.e., M need not 
be orientable). Thenfor each compact set K c M there exists a unique homology 
class J.LK E Hn(M, M - K; Zz) such that 

pAJ.LK) = J.Lx 

for any x E K, where J.Lx denotes the unique nonzero element of the local homol
ogy group H n(M, M - {x}; Zz). 

The proof may be patterned on that of Theorem 2.1; the details are left 
to the reader. 

EXERCISES 

In these exercises, it is assumed that the reader is familiar with the theory of covering 
spaces; see Massey [6J, Chapter V. 

2.1. Let CX,p) be a covering space of X, where X and X are both locally arcwise con
nected Hausdorff spaces. Prove that X is an n-dimensional manifold if and only 
if X is an n-dimensional manifold. 

2.2. Let CM,p) be a covering space of M, where M and M are both connected n-manifolds. 
Assume that M is orientable. Prove that M is orientable, and that every covering 
transformation (i.e., automorphism) of(M,p) is orientation preserving (the definition 
of orientation preserving is the obvious one). 

2.3. Let (M,p) be a regular covering space of M. Assume M is a connected, orientable 
n-manifold, and that every covering transformation of (M,p) is orientation pre
serving. Prove that M is orientable. 
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2.4. Let M" be a compact connected orientable n-manifold and let T: M" --+ M n be 
a homeomorphism. How can one determine whether or not T is orientation 
preserving, in terms of knowledge about the induced homomorphism T *: H .(Mn) --+ 

Hn(M")? 

2.5. For which integers n is real projective n-space, RP", orientable, and for which n 
is it nonorientable? (For the definition of Rpn, see §IV.3 or Massey [6J, p. 216; 
see also Statement (h) in §III.2.) 

§3. Cohomology with Compact Supports 

In order to state and prove the Poincare duality theorem for noncompact 
manifolds, it is necessary to use a new kind of cohomology theory, called 
cohomology with compact supports. On compact spaces, this new cohomology 
theory reduces to the usual kind of cohomology. 

Recall that C*(X,A;G) is a subcomplex of C*(X;G); it is (by definition) 
the kernel of the cochain map 

i# :C*(X;G) --+ C*(A;G). 

Definition 3.1. A cochain u E cq(X,G) has compact support if and only if there 
exists a compact set K c X such that u E cq(X, X - K; G). 

Note that the set of cochains u E O(X; G) which have compact support is 
a subgroup of O(X; G), which we will denote by q(X; G). Also, if u has 
compact support, so does its coboundary, <5(u), hence we obtain the cochain 
complex 

ct(X; G) = {q(X,G),<5}. 

We denote the q-dimensional cohomology group ofthis complex by H~(X; G); 
it is called the q-dimensional cohomology group of X with compact supports. 

Obviously, if X is compact, q(X) = C*(X), and H~(X) = Hq(X). If X is 
noncom pact, H~(X,G) is obviously a topological invariant of the space X; 
however, it is definitely not a homotopy type invariant of X. We will have 
examples to illustrate this point later. It is only an invariant of what is called 
the proper homotopy type of X; see Massey [7], p. 38. 

One could now systematically develop the various properties of co
homology with compact supports. The reader who is interested in seeing this 
done is referred to the 1948/49 Cartan seminar notes [2], Expose v, §6, 
Expose VIII, §4 and 5, and Expose IX, §4; see also various books on sheaf 
theory. We will not do this, because the singular cohomology theory with 
compact supports does not have such nice properties; the Cech~Alexander~ 
Spanier cohomology with compact supports is a much more elegant theory; 
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cf. Massey [7]. We will confine ourselves to elaborating those properties of 
cohomology with compact supports that are actually needed in this chapter. 

There is an alternative definition of cohomology with compact supports, 
based on the notion of direct limit; the reader who is not already familiar 
with direct limits can quickly learn all that is needed from the Appendix to 
[7]. We will now proceed to explain this alternative definition. 

First of all, note that the compact subsets of any topological space X are 
partially ordered by inclusion; even more, they are directed by the inclusion 
relation, because the union of any two compact subsets is compact. 

Next, observe that the cochain group c~(X) may be looked on as the union 
of the subgroups Cq(X, X - K), where K ranges over all compact subsets of 
X. In other words, 

q(X; G) = dir lim Cq(X, X - K; G), 

where the direct limit is taken over the above mentioned directed set, con
sisting of all compact subsets K eX. Now the operation of taking homology 
groups of a cochain complex commutes with the passage to the direct limit; 
therefore 

H~(X;G) = dir lim Hq(X, X - K; G), 

where again the direct limit is taken over all compact subsets K c X. This is 
the definition that we will actually use for H~(X,G). 

EXERCISES 

3.1. Determine the structure of the groups H,,(R" ;G) for all i. (Caution: Even though 
R" is contractible, these cohomology groups are not all trivial. Note also the 
structure of H~(Rn).) 

3.2. Let X be an arcwise connected Hausdorff space which is noncompact. What is 
the structure of H~(X;G) for any coefficient group G? 

3.3. A continuous map f:X ..... Y is said to be proper if the inverse image under f 
of any compact subset of Y is compact. Let f: X ..... Y be a proper continuous 
map, and let f#:CP(Y,G) ..... CP(X,G) denote the induced homomorphism on 
cochains. Prove that f#(q(Y)) c q(X), and hence f induces a homomorphism 
of H~(Y) into H~(X). 

§4. Statement and Proof of the 
Poincare Duality Theorem 

Let M be an n-dimensional manifold with orientation J1; we stress that we 
do not need to assume that M is compact, connected, or even paracompact. 
Moreover, we do not need to make any hypotheses of triangulability or 
differentiability. 
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Because of the choice of orientation fl, there is singled out a unique 
homology class flK E Hn(M, M - K; Z) for each compact subset K (see 
Theorem 2.1). Hence the cap product with flK defines a homomorphism 

by the formula 

x --+ x (\ flK 

for any x E Hq(M, M - K; G). Here the coefficient group G is arbitrary, and 
the cap product is defined using the natural isomorphism G ® Z ~ G. 
Because of the naturality of the cap product, the homomorphisms thus 
defined for different compact sets are compatible in the following sense: if 
K and L are compact, and K c L, then the following diagram is commuta
tive: 

Hq(M, M - K) 

1 
Hq(M, M - L) 

(here the homomorphism denoted by the vertical arrow is induced by 
inclusion). Now it is a basic property of direct limits that any such compatible 
family of homomorphisms induces a homomorphism of the direct limit; 
thus we have a well defined homomorphism 

P:H~(M;G) --+ Hn_q(M;G) 

(the letter P stands for Poincare). 

Theorem 4.1 (Poincare duality). Let M be an oriented n-dimensional manifold 
and G an arbitrary abelian group. Then the homomorphism 

P:H~(M;G) --+ Hn_q(M;G) 

is an isomorphism for all q. 

We will give the proof of this theorem now, postponing the discussion of 
examples, special cases, and applications to later. As in the proof of Lemma 
2.2, there are several cases, starting with M = Rn, and ending with the general 
case. 

Case 1: M = Rn. Let Bk denote the closed ball in Rn with center at the 
origin and radius k. Clearly, the sequence of closed balls 

is cofinal in the directed set of all compact subsets of Rn. It follows that 

H~(Rn;G) = dir lim Hq(Rn,Rn - Bk ; G). 
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Note also that the homomorphism 

Hq(R", R" - Bk) ---+ Hq(R", R" - Bk + d 

is an isomorphism for all k and q; hence it follows that 

H;(R";G) = {G for q = n, 
o for q =f. n. 

209 

In view of the known structure of H"-iR";G), we see that it is indeed true 
that the groups H"_q(R";G) and H;(R";G) are isomorphic for all G and q. 
It only remains to prove that 

P:H~(R";G) ---+ Ho(R";G) 

is an isomorphism; in view of the definition of P, it suffices to prove that for 
any closed n-dimensional ball B c R", the homomorphism 

H"(Rn, Rn - B; G) ---+ Ho(Rn;G) 

defined by x ---+ x (l J1.B is an isomorphism. Now J1.B is a generator of the 
infinite cyclic group Hn(Rn, Rn - B; Z). We will complete the proof by using 
the following relation: 

G*(X (l J1.B) = (X,J1.B) 

(see §VIII.8). Since Rn is arcwise connected, the homomorphism 

G*:Ho(Rn;G) ---+ G 

is an isomorphism. Moreover, by the universal coefficient theorem for 
cohomology (see §VIIA), the homomorphism 

ccHn(Rn, Rn - B; G) ---+ Hom(Hn(Rn, Rn - B); G) 

is also an isomorphism. Using the definition of IX. in terms of the scalar 
product, the desired conclusion follows. 

Case 2: Assume M = U u V, where U and V are open subsets, of M, and 
that Poincare duality holds for U, V, and U (l V (it is assumed, of course, 
that the orientation for U is the restriction of J1 to U, and similarly for V and 
U (l V). In this situation, we can construct a Mayer-Vietoris exact sequence 
for cohomology with compact supports: 

••• ---+ H;-l(M) ---+ H;(U (l V) ---+ H;(U) (f) H;(V) ---+ H;(M) ---+ •••• 

To construct this sequence, let K c U and LeV be compact sets; we then 
have the following relative Mayer-Vietoris sequence, which is exact: 

~ Hq(M, M - K (l L) ~ Hq(M, M - K)(f)Hq(M, M - L) ! Hq(M, M - K u L) 

(we have used this Mayer-Vietoris sequence a couple of times previously 
in this chapter). Now by the excision property, we have the following 
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isomorphisms: 

and 

Hq(M,M - K n L) ~ Hq(U n V, Un V - K n L), 
Hq(M, M - K) ~ Hq(U, U - K), 

Next, note that as K ranges over all compact subsets of U and L ranges over 
all compact subsets of V, K n L ranges over all compact subsets of U n V 
and K u L ranges over all compact subsets of M. Hence as we pass to the 
direct limit over all such ordered pairs (K,L), the direct limit of the relative 
Mayer-Vietoris sequences gives the desired result. 

We now have the following diagram: 

... ~ H~(UII V) ) H~( U) E£> H~(V) ) H~(M) ~ ... 

1 1 1 
... -- Hn_.(U II V) -- Hn_.(U) E£> Hn-.(V) -- Hn-.(M) -- ... 

The top line of this diagram is the Mayer-Vietoris sequence we have just 
constructed, and the bottom line is the usual Mayer-Vietoris sequence in 
homology. The vertical arrows are the Poincare duality homomorphisms 
for Un V, U, V, and M respectively. We assert that every square of this 
diagram is commutative. As a general rule, it is fairly easy to check whether 
or not a diagram such as this is commutative. But this seems to be an excep
tion to the general rule! The proof of commutativity is lengthy, to say the 
least. The complete details are given in the appendix to this chapter (see 
Lemma 8.2). 

In any event, once we have proved commutativity for this diagram, the 
proof that M satisfies Poincare duality in this case is an obvious consequence 
of the five-lemma. 

Case 3: M is the union of a nested family of open subsets {U;.} and it is 
assumed that the Poincare duality theorem holds for each of the U A. In 
order to prove this case, it is necessary to make use of a natural 
homomorphism 

-r·Hq(U·G) -+ Hq(X·G) 
• C' C' 

which is defined as follows for any open subset U of the Hausdorff space 
X. If K is any compact subset of U, then the excision property guarantees 
us an isomorphism 

Passing to the direct limit over all compact sets K c U, we obtain the desired 
homomorphism (it is not an isomorphism in general, because not every 
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compact subset of X is contained in U). Two of the most important properties 
of, are the following: 

(a) If U = X, then, is the identity homomorphism. 
(b) If U eVe X, and U and V are open subsets of X, then the following 

diagram is commutative: 

H~( U) ---+ H~(V) 

~l 
H~(X) 

In addition, if U is an open subset of the oriented n-manifold M, then the 
following diagram is commutative: 

H~(U) ) H~(M) 

i. 
Hn-.(U) ~ Hn-.(M) 

Here i: U -+ M denotes the inclusion homomorphism, and as usual, the 
orientation of U is assumed to be the restriction of the orientation of M. 
The proof of the commutativity of this diagram is an easy consequence of 
the definition of P and the naturality of the cap product. 

With these preliminaries taken care of, we can now easily prove Case 3. 
Because the open subsets U;. are nested, we can form the direct limits, 

dir lim H~( U ;.), 
and 

dir lim Hn-q(U;). 

In the first case, it is understood that the homomorphisms in the direct 
system of groups {H~(U;.)} are the ,'s corresponding to any inclusion, while 
in the second case, they are the i*'s corresponding to any inclusion. Next, 
observe that the homomorphisms 

r;.:H~(U;) -+ H~(M) 

i;.*:Hn_q(U;.) -+ Hn_q(M) 

(which are defined for all A) constitute a compatible collection of homomor
phisms, and hence define homomorphisms of the direct limit groups: 

dir lim H~(U;.) -+ H~(M) 

dir lim Hn-q(UJ -+ Hn-iM). 

We assert that these homomorphisms are both isomorphisms; this is a 
consequence of the fact that any compact subset of M is contained in some 
U;.. Finally, the Poincare duality homomorphism P:H~(U;.) -+ Hn-q(U;.) is 
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assumed to be an isomorphism for each A; it follows by passage to the direct 
limit that P:H'l(M) --+ Hn-q(M) is also an isomorphism. 

Case 4: M is an open subset ofRn. If M is convex, then it is homeomorphic 
to Rn, and Case 1 applies. If M is not convex, then we make use of the fact 
that the topology of Rn has a countable basis consisting of open n
dimensional balls. Hence M is a countable union of open balls: 

00 

M= UBi' 
i= 1 

Let 
k 

M k = UBi' 
i=l 

The theorem must be true for each Mb by an obvious induction on k (use 
Case 2). Then we can apply Case 3 to conclude that the theorem is true for 

00 

M= U M k • 
k= 1 

Case 5: The general case. Let M be an arbitrary oriented n-manifold. 
Consider the family of all open subsets U of M such that Poincare duality 
holds for U. This family is obviously nonempty. In view of Case 3, we can 
apply Zorn's lemma to this family to conclude that there exists a maximal 
open set V belonging to it. If V =f. M, then there is an open subset B c M 
such that B is homeomorphic to Rn, and B is not contained to V. We could 
then apply Cases 2 and 4 to conclude that Poincare duality also holds 
for V u B, contradicting the maximality of V. Thus V = M, and we are 
through. Q.E.D. 

Next we will take up the mod 2 version of the Poincare duality theorem. 
While this version is weaker in that it only applies to homology and co
homology groups with Z2 coefficients, it has the advantage that it applies 
to all manifolds, whether orientable or not. 

We will use the hypotheses and notation of Theorem 2.3: M is an arbitrary 
n-dimensional manifold; for each point x E M, J.lx denotes the unique non
zero element of the local homology group HiM, M - {x}; Z2), and for each 
compact subset K, J.lK denotes the unique element of HiM, M - K; Z2) such 
that pAJ.lK) = J.lx for all x E K. Let G be a vector space over Z2' Define a 
homomorphism . 

Hq(M,M - K; G) --+ Hn-iM,G) 
by the formula 

x --+ x n J.lK 

for any x E Hq(M, M - K; G) (use the natural isomorphism G ® Z2 = G to 
define this cap product). The homomorphisms thus defined for all compact 
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sets K c M are compatible, and hence define a homomorphism of the direct 
limit group, 

P2:H~(M;G) --+ Hn_q(M;G) 

which we will refer to as the mod 2 Poincare duality homomorphism. 

Theorem 4.2. For any n-dimensional manifold M and any Z2-vector space G, 
the mod 2 Poincare duality homomorphism P 2 is an isomorphism of H~(M; G) 
onto Hn-q(M;G). 

The proof is almost word for word the same as that of Theorem 4.1; the 
necessary modifications are rather obvious. 

EXERCISES 

4.1. Let K be a compact, connected subset of M, and u E Hn(M,M - K;Z). Prove that 
ifpAu)=Ofor some x E K, thenpx(u)=O for all x E K. Deduce that Hn(M, M - K;Z) 
is either infinite cyclic or O. 

4.2. Let K be a compact, connected subset of M, u E H n(M, M - K; Z) and let x E K 
be such that pAu) is k times a generator of H.(M,M - {x}). Prove that for any 
y E K, Py(u) is also k times a generator of Hn(M,M - {y}). 

4.3. Assume that M is connected, and that for each compactK c M,Hn(M,M - K;Z) =f. 
{O}. Prove that M is orientable. 

4.4. Let M be a compact, connected, nonorientable manifold. Prove that H n(M; Z) = O. 

4.5. Use the Poincare duality theorem to prove that if M is a connected, noncompact 
orientable n-dimensional manifold, then Hq(M,G) = 0 for all q 2 n and all coeffi
cient groups G. 

4.6. For any abelian group G, let zG = {g E G 12g = O}. Recall that there is a natural 
isomorphism a:Hn(M,M - {x};Z)® G ..... H.(M,M - {x};G) for any point x of 
the n-manifold M (see §V.6). Show that if 9 E zG, the element gx = a(J1x ® g) E 

Hn(M,M - {x};G) is independent of the choice of the local orientation J1xE 
Hn(M,M - {x};Z). Then prove that for each compact set K c M and 9 E zG, 
there exists a unique homology class gK E H.(M, M - K; G) such that pA9K) = gx 
for any x E K. 

4.7. Let M be an n-dimensional manifold. Assume that for each compact set K c M 
there is chosen an element hK E H.(M, M - K; G) such that Px(hK) = hx for any 
x E K, and that 2hx =f. 0 for all x E M. Prove that the manifold M is orientable. 
(Hint: Show that there exists a fixed element hE G and unique local orientations 
J1x for all x E M such that hx = a(J1x ® h). Note that h can not be an element of zG.) 

4.8. Let M be a compact, connected n-manifold and G an abelian group. Prove that 
Hn(M;G) is isomorphic to G if Mis orientab1e, and is isomorphic to zG if Mis 
nonorientable. (Use the results of the preceding exercises.) 
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4.9. Let M be a compact, connected n-manifold. Prove that Hn_1(M;Z) is torsion-free 
if Mis orientable, and that the torsion subgroup of Hn-1(M;Z) is cyclic of order 
2 if M is nonorientable. (Use Exercise 4.8 and the universal coefficient theorem. 
You may make use of the fact that all the integral homology groups of Mare 
finitely generated; see Lemma 5.2 of the next section.) 

§5. Applications of the Poincare Duality Theorem 
to Compact Manifolds 

Let M be a compact manifold with orientation Jl; in this case, by Theorem 
2.3, there exists a unique homology class JlM E HiM;Z) such that pAJlM) = 
Jlx for all x EM; JlM is often referred to as the fundamental homology class 
of the oriented manifold M. The Poincare duality isomorphism 

P:Hq(M;G) - Hn_q(M;G) 
is defined by 

P(x) = x n JlM 

for any x E Hq(M; G). 
We can draw some immediate conclusions from this. For example, if M 

is assumed to be connected, then HiM;G) is isomorphic to G. Similarly, 
Hn- 1(M;Z) ~ Hl(M;Z) ~ Hom(Hl(M;Z),Z) is a torsion-free group. 

In case M is compact but not necessarily orientable, we can obtain similar 
results with Z 2 coefficients. There is a unique mod 2 fundamental class, 
JlM E Hn(M;Z2) and the mod 2 Poincare duality isomorphism 

P2:Hq(M;Z2) - Hn- q(M;Z2) 
is defined by 

From this isomorphism, we deduce that the rank of the vector space 
HiM;Z2) (over Z2) is equal to the number of components of M. 

We will now use the Poincare duality theorem to deduce some restrictions 
on cup products in the cohomology of a manifold. 

Theorem 5.1. Let M be a compact oriented n-manifold and F a field. Then the 
bilinear form 

defined by 
UQ9V - (u U V,JlM) 

for any u E Hq(M;F) and v E Hn-q(M;F) is nonsingular. 

PROOF. The relation 
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can be interpreted as a commutativity relation, as indicated by the following 
diagram: 

Hq(M;F) <8> W-q(M,F) 

1 ~ 
I®P ~ F. 

Hq(M;F) <8> Hq(M,F) 

In this diagram, arrow 1 denotes the bilinear form of the theorem, arrow 2 
denotes the bilinear form defined by x @ y -+ (x,y) for any x E Hq(M;F) 
and y E Hq(M,F), I denotes the identity map, and P the Poincare duality 
isomorphism. The bilinear form denoted by arrow 2 is nonsingular, because 
of the isomorphism 

Hq(M;F) ~ HomF(Hq(M,F),F). 

Since P is an isomorphism, it follows that the bilinear form denoted by 
arrow 1 is also nonsingular. Q.E.D. 

If the manifold M is nonorientable, this theorem will still be true provided 
we assume that F is a field of characteristic two, e.g., F = Z2' 

It would be nice to have an analogue of Theorem 5.1 for the case of 
cohomology with integer coefficients, rather than coefficients in a field. 
Since the groups Hq(M;Z) and Hom(HiM,Z),Z) are not isomorphic in 
general, some modifications are necessary in order to obtain a valid theorem. 
One way to proceed is the following: For any space X, define Bq(X), the 
q-dimensional Betti group of X, to be the quotient group of HiX; Z) modulo 
its torsion subgroup. Similarly, define Bq(X) to be the quotient group of 
Hq(X; Z) modulo its torsion subgroup. If H q _ 1 (X; Z) is a finitely generated 
abelian group, then 

Bq(X) ~ Hom(BiX),Z); 

this is a direct consequence of the short exact sequence 

Lemma 5.2. Let M be a compact manifold; then the integral homology group 
Hq{M) isjinitely generatedfor all q. 

If M could be given the structure of a CW-complex, then compactness 
would imply that this CW-complex was finite, and the theorem would 
follow. However it is not known at present whether or not all compact 
manifolds are CW-complexes. Fortunately, there is a way to avoid this 
difficulty. By results in Chapter IV, §8 of Dold, [4J, a compact manifold is 
what is called an ENR (short for Euclidean neighborhood retract). Then 
proposition V.4.ll on p. 103 of Dold [4J asserts that the homology groups 
of an ENR are finitely generated. Q.E.D. 
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Note: This follows from Poincare duality in case M is orientable; cf. 
Spanier, [9J Corollary 11 at bottom of p. 298. 

As a consequence of this lemma, we see that for any compact manifold 
M, we have a natural isomorphism 

This isomorphism is defined as follows. Let Hq(M;Z) ® Hq(M,Z) ~ Z be a 
bilinear form defined by x ® y ~ (x,y) for x E Hq(M;Z) and y E HiM;Z). 
It is obvious that if either x or y has finite order, then (x,y) = O. Hence there 
is an induced bilinear form on quotient groups: 

Bq(M) ® Bq(M) ~ Z. 

This bilinear form defines the desired isomorphism. 
Now let us consider the bilinear form 

defined by 

(this is similar to the bilinear form defined in Theorem 5.1). Once again, if 
u or v has finite order, then (u U V,Jl.M) = o. Hence there is an induced 
bilinear form 

Theorem 5.3. Let M be a compact, connected, oriented n-manifold. Then the 
bilinear form 

Bq(M)®Bn-q(M) ~ Z 

defined above is nonsingular, and induces an isomorphism of Bq(M) onto 
Hom(Bn-q(M),Z) for all q. 

The proof is very similar to that of Theorem 5.1, and may be left to the 
reader. 

For the present, we will given one application of these theorems. Further 
applications will be found in the next chapter. 

Proposition 5.4. Let M be a compact, orientable manifold of dimension n = 
4k + 2, and let F be a field of characteristic i= 2. Then H2k + l(M; F) is a vector 
space over F whose dimension is even. 

PROOF. By Theorem 5.1, the bilinear form 

H2k+l(M;F)®H2k+l(M;F) ~ F 
defined by 
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is nonsingular. Moreover, by the commutative law for cup products, 

u u v = -v u u 

for any u, v E H 2k + l(M; F). It follows that the bilinear form is skew-symme
tric; but it is a standard theorem of algebra that nonsingular skew-symmetric 
bilinear forms can only exist on vector spaces of even dimension (over a 
field of characteristic #2). For a proof of this theorem, see Jacobson, [5J, 
Section 6.2. 

As an example of this proposition, consider compact orientable 2-
manifolds. 

EXERCISES 

5.1. Let M be a compact, orientable n-manifold. Prove that the homology groups 
HiM;Z) and Hn-iM;Z) have the same ranks. Also, show that the torsion sub
group of Hq(M;Z) is isomorphic to the torsion subgroup of Hn-q-1(M;Z). 

5.2. Prove that the Euler characteristic of a compact n-manifold is 0 for n odd. 

5.3. Prove that the Euler characteristic of a compact orientable manifold of dimension 
4k + 2 is even. 

5.4. Let M 1 and M 2 be compact, orientable n-manifolds, and let f: M 1 --+ M z be a 
continuous map such that the induced homomorphism 

is an isomorphism. Prove that for any coefficient group G the induced homomor
phism 

is an epimorphism and the kernel of f* is a direct summand of HiM 1; G). Similarly, 
prove that 

is a monomorphism, and the image is a direct summand of Hq(M 1; G). 

5.5. Let M be a compact, connected, orientable n-manifold and f: M --+ M a con
tinuous map such that f*:H.(M,Z) --+ Hn(M;Z) is an isomorphism. Prove that 
the induced homomorphisms f*:Hq(M,G)--+ HiM, G) and f*:Hq(M,G)--+ Hq(M,G) 
are isomorphisms for all q and any group G. (Hint: Do the case G = Z first.) 

5.6. Given any even integer n, show how to construct a compact connected, orientable 
manifold M of dimension 4k + 2 such that the rank ofthe vector space H Zk + l(M ;F) 
is n. (Hint: Consider first the case of 2-manifolds, i.e., k = O. For larger values of 
k, proceed by analogy with the case k = 0, recalling the classification theorem for 
2-manifolds.) 

5.7. Let X be a Hausdorff space, and let K be a compact subset of X. Consider the 
cup product: 

W(X;G 1) Q9 Hq(X,X - K;Gz) -'=. W+q(X,X - K;G 1 Q9 Gz). 
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Prove that passing to the direct limit over all compact subsets K of X, defines 
a homomorphism 

W(X;G1) ® H~(X;G2) --+ H~+q(X; G1 ® G2). 

(This is called the cup product homomorphism.) 

5.8. (a) Let M be an oriented n-manifold. For any compact set K c: M, let J1K E 

H.(M,M - K) denote the unique homology class such that Px(J1K) = J1x for 
any x E K. Given u E H~(M; G), choose a compact set K c: M such that there 
exists a representative u' E H·(M, M - K; G) for u. Show that the element 

(U',J1K) E G 

is independent of the choice of the representative u' for U, and that this process 
defines a homomorphism H~(M ;G) --+ G, sometimes called integration over M. 

(b) Show that the following diagram is commutative 

H~(M;G) 

Ip~ 
• Ho(M;G) -- G. 

Here arrow 1 denotes integration over M. 
(c) Prove that for any elements u E HP(M;G1) and v E H~(M;G2)' the following 

equation holds: 

u n P(v) = P(u v v). 

Here the cup product is that defined in Exercise 5.7, and P denotes the Poincare 
duality isomorphism. 

(d) Let F be a field. Define a bilinear form 

cp:H·-P(M;F)®H~(M;F) --+ F 

by setting cp(u ® v) = the integral of u v v over M. Prove that this bilinear 
form is nonsingular and that it defines an isomorphism 

§6. The Alexander Duality Theorem 

Let A be a subset of a topological space X; by a neighborhood N of A in X, 
we mean a subset N of X which contains A in its interior. The neighborhoods 
of A (ordered by inclusion) constitute a directed set, since the intersection of 
any two neighborhoods of A is again a neighborhood of A. Consider the 
direct system of groups {Hq(N)}, where N ranges over all neighborhoods 
of A in X (the homomorphisms are those induced by the inclusion relations, 
of course). For each such N, the inclusion A c N induces a homomorphism 
Hq(N) ~ Hq(A), and the collection of all such homomorphisms is obviously 
compatible. Hence there is induced a homomorphism 

dir lim Hq(N) ~ Hq(A). 
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The subspace A is said to be tautly imbedded in X (or simply taut in X) with 
respect to singular cohomology if this homomorphism is an isomorphism 
for all q and all coefficient groups. This concept was introduced by Spanier 
[9], p. 189. We need it for our discussion of the Alexander duality theorem. 

EXAMPLE 6.1. Let A denote the subset of the plane R 2 consisting of the union 
of the graph of the function y = sin(l/x) (for x '# 0) and the y-axis. We 
assert that A is not taut in R2. In order to prove this, note that the open 
neighborhoods of A are cofinal in the family of all neighborhoods of A. 
Furthermore, the open, arcwise connected neighborhoods are cofinal in 
the family of all open neighborhoods. It follows that the direct limit, 
dir lim HO(N; Z), is infinite cyclic. On the other hand, HO(A; Z) is free abelian 
of rank 3 (there are three arc-components). 

As another example, let P denote the subset of A consisting of one point, 
the origin. Then it is readily verified that P is not taut in A. 

In some sense, these two examples are rather pathological. We will see 
shortly that any "nice" subset of a nice space is tautly imbedded. We will 
be mainly interested in the case where X is a manifold. Then it will turn 
out that the question of whether or not a subset A of X is taut or not depends 
only on A! Obviously, the question only depends on arbitrarily small 
neighborhoods of A in X, but we are asserting something stronger than this. 

The situation may be explained in more detail as follows. This book 
has been concerned exclusively with singular homology and cohomology 
theory. However, there is also another type of cohomology theory, called 
Cech-Alexander-Spanier cohomology theory. For any pair (X,A), any 
integer q and any abelian group G, there is defined the q-dimensional Cech
Alexander-Spanier cohomology group, which we denote by Hq(X,A;G). 
Just as for the singular cohomology theory, a continuous map f:(X,A)--+ 
(Y,B) induces homomorphisms f*:Hq(Y,B;G)--+Hq(X,A;G) for all q. The 
basic properties of the Cech-Alexander-Spanier cohomology theory are 
exactly the same as those of the singular cohomology theory; the reader 
may find more details in Spanier, [9], Chapter 6, Sections 4 and 5, or Massey 
[7], Chapter 8. 

One of the major differences between singular and Alexander-Spanier 
cohomology is this matter of tautness. In general, tautness is more likely 
to hold with respect to the Alexander-Spanier cohomology theory than 
with respect to the singular theory. In fact, the following theorem holds: 

Theorem 6.1. In each of the following four cases A is taut in X with respect 
to the Alexander-Spanier cohomology theory: 

(1) A is compact and X is Hausdorff. 
(2) A is closed and X is paracompact Hausdorff. 
(3) A is arbitrary and every open subset of X is paracompact Hausdorff. 
(4) A is a retract of some open subset of X. 
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This theorem is due to Spanier [1OJ; for a proof, see Massey, [7J, pp. 
238-241. One case of this theorem is proved in Spanier [9J, pp. 316-317. 

A more precise comparison of singular and Alexander-Spanier coho
mology is possible, because there is defined for any pair (X,A), any coefficient 
group G, and any integer q a homomorphism 

A: Hq(X,A; G) --+ Hq(X,A; G). 

This homomorphism is natural, in the sense that it commutes with homo
morphisms induced by continuous maps. There are various theorems which 
assert that for certain classes of nice topological spaces, A is an isomorphism 
for all G and q. For a discussion of this question, see Spanier, [9J, Chapter 6, 
Section 9, or Massey, [7J, §8.8. For our purposes, the following are the two 
most important cases in which A: Hq(X; G) --+ Hq(X; G) is known to be an 
isomorphism for all G and q: 

(a) X a paracompact n-manifold. 
(b) X is a CW-complex, or a space which has the homotopy type of a 

CW -complex. 

Using these properties of the homomorphism A, we can easily prove the 
following propositions: 

Proposition 6.2. Let M be a paracompact n-manifold, and let A be a closed 
subset of M. Then A is taut in M (with respect to singular cohomology) if and 
only if A: Hq(A; G) --+ Hq(A; G) is an isomorphism for all q and G. 

Thus in this case, the question of tautness depends only on A. 

Proposition 6.3. Let M be a paracompact n-manifold, and let A be a closed 
subset of M. Then 

dir lim Hq(N;G) ~ Hq(A;G), 

where the direct limit is taken over all neighborhoods N of A in M. 

The proof of both of these propositions depends on the naturality of the 
homomorphism A. The open neighborhoods of A are cofinal in the family 
of all neighborhoods of A; and every open rieighborhood N of A is also 
a paracompact manifold. Therefore A:Hq(N) --+ Hq(N) is an isomorphism. 
The rest of the details of the proofs may be left to, the reader. 

Remark: In Dold [4], the conclusion of Proposition 6.3 is taken as the 
definition of the Cech-Alexander-Spanier cohomology groups Hq(A). 

We will now use these results to derive important relations between 
the homology groups of an open subset of a compact manifold and the 
cohomology groups of its complement. Let M be a compact, oriented 
n-manifold, U an open subset of M, and A = M - U the closed complement. 
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For any compact set K c U, consider the following diagram: 

Hq(M, M - K) ----+ Hq(M) ~ Hq(M - K) ~ Hq+l(M, M - K) 

Hq(U, U - K) p H._q(M - K, U - K) Hq+l(U, U - K) 

ii, 11 
i. j .. 

H._.(U) - H._q(M) ----+ H._q(M,U) I H._ q_ 1(U). 

In this diagram, the top line is the cohomology sequence of the pair 
(M,M - K), the bottom line is the homology sequence of the pair (M,U), 
and k:(U, U - K) -+ (M,M - K) and 1:(M - K, U - K) -+ (M,U) are in
clusion maps which induce isomorphisms by the excision property. The 
homomorphisms denoted by Arrows 1 and 2 are defined by 

x -+ x n (k; IJ1K) 

Y -+ Y n (l;lJ1A) 

for any x E Hq(U, U - K) and y E Hq(M - K); here J1K E Hn(M,M - K) and 
J1A E Hn(M,M - A) have the same meaning as in the definition of the 
Poincare duality isomorphism. In addition, each square of this diagram is 
commutative; this is a consequence of Lemma 8.1 in the appendix to this 
chapter. 

Now pass to the direct limit as K ranges over all compact subsets of 
U. Note that 

dir lim Hq(M - K) = Rq(A) 

since as K ranges over all compact subsets of U, M - K ranges over all 
open neighborhoods of A (see Proposition 6.3). Hence we obtain the following 
commutative diagram: 

h' 
H~(U) I Hq(M) I Rq(A) I H~+l(U) 

lp lp lp, lp (6.1) 
i, j, iJ 

H._q(U) ----+ H._q(M) ----+ H._q(M,U) ----+ H._ q_1(U). 

Each square of this diagram is commutative, and the top line is exact, 
since direct limits preserve exactness. The vertical arrows labelled Pare 
the Poincare duality isomorphisms for M and U. It follows from the five
lemma that the homomorphism labelled pi is also an isomorphism. For future 
reference, we state this as follows: 

Proposition 6.4. Let M be a compact orientable n-manifold, A a closed subset 
of M, and U = M - A the complementary set. Then the relative homology 
group Hn_q(M,U;G) is isomorphic to the Cech-Alexander-Spanier coho
mology group Rq(A; G). 
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Of course the most interesting cases of Diagram (6.1) and Proposition 6.4 
are those cases where the Alexander-Spanier cohomology group, Hq(A), 
and the singular cohomology group, Hq(A), are isomorphic. In that case, 
it is easily verified that h* is the homomorphism induced by the inclusion 
of A in M. However, the reader must not lose sight of the fact that it is 
absolutely necessary to use Alexander-Spanier cohomology for the correct 
statement of this proposition. The following example illustrates this point: 
Consider the 2-sphere, S2, as the compactification of the plane R 2, obtained 
by adjoining to it a point labelled 00. Let A be the closed subset of S2 which 
is the union of the graph of the equation y = sin(l/x) (x i= 0), the segment 
-1 ::; y::; + 1 of the y-axis, and the point 00. As above, let U = S2 - A = 
R2 - A. Then U has two components, and it may be shown that each 
component is homeomorphic to an open disc. Consider the following 
portion of the reduced homology sequence of (S2, U): 

H 1(S2) ~ H 1(S2,U).! Ho(U) ~ HO(S2). 

Since H 0(U) is infinite cyclic, we deduce that H 1 (S2, U) is also infinite cyclic. 
Hence by Proposition 6.4, H1(A) is infinite cyclic. On the other hand, the 
singular cohomology group H1(A) is zero. The set A has the same Alexander
Spanier cohomology groups as a circle, while its singular cohomology 
groups are the same as a space consisting of two points. However, the 
complement of A in S2 is homeomorphic to the complement of a circle 
imbedded in S2. 

Proposition 6.5. Let A be a closed, proper subset of a compact, connected, 
orientable n-manifold. Then Hq(A; G) = 0 for all q;;:: n and all coefficient 
groups G. 

This is a direct consequence of Proposition 6.4. It is of interest to note 
that this proposition is false in general for the singular cohomology groups 
Hq(A; G); for a spectacular counterexample, see Barrett and Milnor, [1]. 

Theorem 6.6 (Alexander duality theorem). Let M be a compact, connected, 
orientable n-manifold and q an integer such that Hq(M,G) = Hq+ 1(M,G) = O. 
Then for any closed subset A c M, 

Hn- q-1(A) ~ Hq(M - A). 

The most important example of a manifold satisfying the hypotheses 
of this theorem is the n-sphere, sn. Obviously, we must have 0 < q < n - 1, 
because, H o(M,G) and H n(M,G) are always nonzero for a compact, connected, 
orientable n-manifold. However, there is no difficulty in stating versions 
of this theorem corresponding to the cases q = 0 and q = n - 1; this we 
will now do. 
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Theorem 6.6, continued. Let M be a compact connected orientable n-manifold, 
and let A be a closed, proper subset of M. 

(a) If Hl(M;G) = 0, then H"-l(A;G) ~ Ho(M - A; G). 
(b) HO(A;G) always contains a direct summand isomorphic to G; if 

H"_l(M;G) = 0, then the quotient group of HO(A) modulo this summand 
is isomorphic to H" _ 1 (M - A; G). 

This direct summand of HO(A; G) can be more precisely described as 
follows: let P denote a space consisting of one point, and let f:A --+ P be 
the unique map. Then the subgroup in question is f*(HO(P;G)). The cor
responding quotient group is the "reduced" O-dimensional Alexander
Spanier cohomology group. 

The proof of the Alexander duality theorem follows immediately from 
Diagram (6.1); the details are left to the reader. The theorem can be considered 
a far-reaching generalization of the Jordan-Brouwer separation theorem 
and the other theorems which were proved in §III.6. Various applications 
of it are given in the exercises below. One of the main consequences is that 
if A is a closed subset of S", the homology groups of S" - A are independent 
of how A is imbedded in S". We have already seen special examples of this 
phenomenon in §III.6. 

EXERCISES 

6.1. Let A be a compact connected orientable (n - I)-manifold imbedded in Sft. Prove 
that S" - A has exactly two components. 

6.2. Prove that a nonorientable compact (n - I)-manifold can not be imbedded in 
Sft. [Hint: If M is such a manifold, prove first that H ft - 1(M;Z) is a finite group 
of order 2. Then apply the Alexander duality theorem.] 

6.3. Let A be a compact subset ofRft. Derive a relation between the Alexander-Spanier 
cohomology groups of A and the singular homology groups of Rft - A. 

6.4. Let M be a compact, connected, orientable 2-manifold. We say a homology class 
U E HI (M; Z) can be represented by an inbedded circle if there exists a subset A c M 
such that A is homeomorphic to a circle, and the obvious homomorphism HI (A) -+ 

H 1(M) sends a generator of H 1(A;Z) onto u. Prove that if u =1= 0 and u can be 
represented by an imbedded circle, then u is not divisible (i.e., there does not exist 
an integer d > 1 and a homology class v such that u = dv; an equivalent condition 
is that the subgroup of H 1(M) generated by u should be a direct summand). Prove 
also that if M is a torus, every non divisible homology class can be represented by an 
imbedded circle. 

6.5. State and prove the analogues of the theorems of this section for nonorientable 
manifolds, using Z2 coefficients for all homology and cohomology groups. 

6.6. Let A be a compact subset of Euclidean 3-space R3 which is tautly imbedded and 
has finitely generated integral homology groups. Prove that the integral homology 
and cohomology groups of A are torsion-free. 
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§7. Duality Theorems for Manifolds 
with Boundary 

We recall the definition: An n-dimensional manifold with boundary M is a 
Hausdorff space such that each point has an open neighborhood homo
morphic to Rn, or to R~ = {(Xl>'" ,xn) E Rnlxn ~ O}. For simple examples 
of manifolds with boundary, and for the classification of compact, connected 
2-dimensional manifolds with boundary, the reader is referred to Massey 
[6], Chapter I, Sections 9-12. The set of all points of M having an open 
neighborhood homomorphic to Rn is called the interior of M, and the 
complementary set is called the boundary of M. Whether a point X belongs 
to the interior or boundary of M can be determined by means of the local 
homology groups of M at x (cf. the exercises to §III.2). The interior is an 
open, everywhere dense subset of M, which is an n-dimensional manifold; 
the boundary is a closed subset which is an (n - 1)-dimensional manifold. 

Our main objective is to state and prove an analog of the Poincare 
duality theorem for manifolds with boundary. For this purpose, it will be 
convenient to use the following fundamental theorem of Morton Brown: 

Theorem 7.1. Let M be a compact n-dimensional manifold with boundary B. 
Then there exists an open neighborhood V of B and a homeomorphism g of 
B x [0,1) onto V such that g(b,O) = b for any bE B. 

For a short proof of this theorem, see R. Connelly [3]. Connelly's proof 
is reproduced in the appendix to Vick [11]. 

This theorem has many consequences; among them are the following: 

Corollary 7.2. The inclusion map of M - B into M is a homotopy equivalence. 

Corollary 7.3. Let Yr = g(B x [O,t» for 0< t < 1, and K t = M - Yr. Then 
Yr is an open neighborhood of B in M, B is a deformation retract of Yr, and the 
collection {Kt I ° < t < 1} is co final in the family of all compact subsets of 
M-B. 

Next, for 0< t < 1 let it : (M,B) -+ (M, M - K t) = (M, V';) denote the in
clusion map. It follows that the induced homomorphisms 

it.:Hq(M,B) -+ HiM,M - K t), 

it:Hq(M,M - K t) -+ Hq(M,B) 

are isomorphisms. 

Corollary 7.4. H~(M - B; G) is naturally isomorphic to Hq(M,B;G). 

This corollary follows from the definition of H~(M - B) as a direct limit, 
the fact that Hq(M - B, (M - B) - K) ~ Hq(M, M - K) for any compact 
set K c M - B, and the cofinality of the family {Kt }. 
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We will define a manifold M with boundary B to be oriented if the manifold 
M - B is oriented in the sense defined in §2. This implies that for each 
compact set K c M - B, there is a unique homology class)J.K E HiM - B, 
M - B - K; Z) such that pA)J.K) is the local orientation of M - B at x. 
But as was observed above, 

Hn(M - B,M - B - K) ~ Hn(M,M - K), 

by the excision property. In addition, if M is compact and K = K to 

HiM,M - K) ~ Hn(M,B). Thus the fact that M is oriented and compact 
implies the existence of a unique homology class )J.M E Hn(M,B;Z) such that 
for any x E M - B, the homomorphism Hn(M,B) .... Hn(M,M - {x}) maps 
)J.M onto the local orientation )J.x' )J.M is called the fundamental homology 
class ofM. 

Theorem 7.5. Let M be a compact orientable n-dimensional manifold with 
boundary B. Then the homomorphism 

Hq(M,B;G) .... Hn_q(M;G), 

(defined by x .... x " )J.M for any x E Hq(M,B;G» is an isomorphism. 

PROOF. We already know that Hq(M,B;G) is isomorphic to Hn-q(M;G). For, 
by Corollary 7.4, Hq(M,B) ~ H~(M - B); then we have the Poincare duality 
isomorphism P:H'f(M - B) ~ Hn-iM - B). Finally, by Corollary 7.2, there 
is an isomorphism Hn-q(M - B) ~ Hn-q(M) induced by inclusion. Thus it 
suffices to prove that the composition of these three isomorphisms is the 
same as the homomorphism Hq(M,B) .... Hn-iM) occurring in the statement 
of the theorem. In order to prove this, consider the following commutative 
diagram: 

HO(JM, JM - K) +--- Hq(M, M - K) ~ Hq(M,B) 

® ® ® 

Hn(JM, JM - K) ~ Hn(M,M - K) +--- Hn(M,B) 

1 1 I 
1 

Hn_q(JM) , H._q(M) E H.-o(M). 

In this diagram, f M = M - B denotes the interior of M, K = K t , all three 
vertical arrows denote cap products, and all horizontal arrows denote 
isomorphisms which are induced by inclusion maps. The left-hand vertical 
arrow defines the Poincare duality isomorphism P:H'f(fM) .... Hn-ifM), 
and the right-hand vertical arrow denotes the cap product occurring in the 
statement of the theorem. Putting all these facts together, the reader should 
have no difficulty deducing the theorem. Q.E.D. 

The isomorphism of the theorem just proved is one-half of the Lefschetz
Poincare duality theorem for manifolds with boundary. As a preliminary 
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to the other half of this duality theorem, we need the following important 
result: 

Theorem 7.6. Let M be a compact, oriented, n-dimensional manifold with 
boundary B, and let o*:Hn(M,B;Z) --+ Hn- 1(B,Z) denote the boundary opera
tor of the pair (M,B). Then O*(IlM) is a fundamental homology class for some 
orientation of B; in particular, B is orientable. 

PROOF. In order to prove this theorem, it is necessary to show that for any 
bE B,iO*(IlM) is a generator of the infinite cyclic group H n- 1(B,B - {b};Z). 
Here j denotes the homomorphism Hn- 1(B) --+ Hn- 1(B,B - {b}) induced 
by inclusion. Note that jo* = 0' is the boundary operator of the exact 
homology sequence of the triple (M, B, B - {b}). 

By the definition of a manifold with boundary, there exists an open 
neighborhood U of b and a homeomorphism h of U onto Rn+. Since b is 
a boundary point of M, h(b) must lie in the subspace of R~ defined by the 
equation Xn = 0. Obviously, we can assume that h is chosen so that h(b) = 
(0,0, ... ,0). We may as well identify each point x E U with its image h(x) E 

R~; thus the coordinates Xb ... , Xn in R~ are actually coordinate functions 
in U. Then B n U is the subset of U defined by the equation Xn = 0. Let 
a E U be the point with coordinates (0, ... ,0,1), and let Nand W be the 
following subsets of U: 

N = {(Xb ... ,xn) E UII: xf :-:; 4}, 
W = {(Xl> ... ,xn) E NIL xf < 4 and Xn > OJ, 
E=NnB. 

Now consider the following commutative diagram: 

H.(M, M - {a} +---
1 

H.(M, M - W) H._ 1(M - W, (M - W) - {b}) 

/2 1 14 
3 ~ 

H.(N, N - {a}) +--- H.(N, N - W) --4 H._ 1(N - W, (N - W) - {b}). 

In this diagram, the arrows labelled 0', Ob and 02 denote the boundary 
operators of certain triples; all other arrows denote homomorphisms in
duced by inclusion maps. It is a routine matter to prove that 02 and the 
homomorphisms numbered 1 through 6 are isomorphisms. Thus all the 
groups in the diagram, except possibly Hn(M,B), are infinite cyclic, and are 
related by a unique isomorphism. We know that P(IlM) is a generator of 
the infinite cyclic group H n(M, M - {a}). It therefore follows that O'(IlM) is 
a generator of the infinite cyclic group H n _ 1 (B, B - {b}), as was to be proved. 

Q.E.D. 
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We can now derive the remaining half of the Lefschetz-Poincare duality 
theorem for manifolds with boundary. Let M be a compact, oriented n
dimensional manifold with boundary B, and let 11M E HiM,B;Z) denote 
the fundamental homology class of M. Consider the following diagram 
involving the exact homology and cohomology sequences ofthe pair (M,B): 

j* i* 
Hq(M,B;G) ) Hq(M;G) ) Hq(B;G) ) Hq+l(M,B;G) 

(D) 

In this diagram, homomorphisms denoted by arrows 1 and 2 are cap product 
with the fundamental class, i.e., x -+ x n 11M' Arrow number 3 denotes the 
Poincare duality isomorphism for B, defined by y -+ y n (811M)' On account 
of the basic properties of cap products, each square in this diagram is com
mutative up to a ± sign. We have already proved that arrows 1 and 3 are 
isomorphisms. It follows from the five-lemma that arrow 2 is also an isomor
phism. Thus we have proved the following result: 

Theorem 7.7. Let M be a compact, oriented n-dimensional manifold with 
boundary B and fundamental class 11M E Hn(M, M - B; Z). Then there are 
Lefschetz-Poincare duality isomorphisms 

Hq(M,B;G) -+ Hn-iM;G) 
and 

Hq(M;G) -+ Hn_q(M,B;G) 

defined by cap product with 11M' In addition the homology sequence of(M,B) 
and the cohomology sequence of(M,B) are isomorphic as indicated in Diagram 
(D) above. 

EXERCISES 

7.1. Let M be a compact, connected, orientable n-manifold with nonempty boundary 
B (B need not be connected). Prove the following relations for any abelian group G: 

Hn(M;G) = O. 
Hn(M,B;G) ~ G. 
Hn-1(M;Z) and Hn -l(M,B;Z) are torsion-free abelian groups. 

7.2. State and prove analogues of the theorems of this section for nonorientable mani
folds with boundary, using Zz coefficients. 

7.3. Let M be a compact n-dimensional manifold with boundary B. If n is odd, prove that 

X(B) = 2X(M) = - 2X(M,B), 

where X denotes the Euler characteristic. (Note: It may be proved that the integral 
homology groups of a compact manifold with boundary are all finitely generated. 
Hence the Euler characteristic X(M) and X(M,B) are well defined.) 



228 IX Duality Theorems for the Homology of Manifolds 

7.4. Let M be a compact, oriented n-dimensional manifold with boundary B. (a) For 
any field F, prove that the bilinear form 

H4(M,B;F) ® W-q(M;F) -+ F, 

defined by u ® v -+ <u v v, I'M), is nonsingular (cf. Theorem 5.1). (b) By analogy 
with Theorem 5.2, prove that the bilinear form 

defined by u ® v -+ <u v v, I'M), is nonsingular. 

7.5. Prove that the integral homology groups H4(M,B) and H._q(M) have the same 
rank, and that the torsion subgroups of H 4(M,B) and H.-q- 1(M) are isomorphic, 
where (M,B) is as in the preceding exercise. 

7.6. Let M be a compact, orientable 2q-dimensional manifold with boundary B, where q 
is odd, and let F be a field of characteristic oF 2. Prove that the homomorphism 
j*:H4(M,B;F) -+ Hq(M;F) has even rank. (Hint: See the proof of Proposition 5.3.) 

7.7. Let Mi be a manifold with boundary Bi for i = 1, 2. Prove that MIx M 2 is a 
manifold with boundary. What is the boundary of MIx M 2 ? 

§8. Appendix: Proof of Two Lemmas 
about Cap Products 

For the statement of the first lemma, assume that {A,B} is an excisive 
couple in the space X, and X = A u B. We then have the following diagram 
of homology groups and homomorphisms: 

( ) '" ( ) I. i. '2. Hn A,A n B --+ Hn X,B +- HP0 -+ Hn(X,A) +-- Hn(B, A n B). 

All homomorphisms are induced by inclusion maps; e1* and e2* are iso
morphisms because {A,B} is excisive. Assume that v E Hn(X) is given; let 

V1 = (eh )-11*(v) E Hn(A,A n B), 

V2 = (e2*)-1j*(v) E Hn(B,A n B). 

Now consider the following diagram: 

Hq(X,A) j* I Hq(X) 
j* ~. 

I Hq+l(X,A) I Hq(A) 

lnvl le! 
Hq(B, A n B) nv H._q(A,A n B) Hq+l(B, A n B) 

1· .. lnv, 
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The top line is the exact cohomology sequence of the pair (X,A), the bottom 
line is the exact homology sequence of the pair (X,B), and the vertical arrows 
are induced either by the inclusion maps e1 or e2 , or else by cap product 
with the indicated homology class. 

Lemma 8.1. Each square in the above diagram is commutative. 
PROOF. In §VIII.3, we defined a slant product 

CP(Y,G1) ® CiX x Y; G2) --+ Cq_/X; G1 ® G2) 

by the formula 
u\v = u\\~(v) 

for any u E CP(Y) and v E CiX x Y). This slant product satisfies the following 
formula: 

8(u\v) = (Ju)\v + (-l)Pu\(8v). 

On passing to homology and cohomology classes, it determines a 
homomorphism 

HP(y) ® HiX x Y) --+ Hq_p(X), 

which is also called the slant product. 
For the purposes of this appendix, it is convenient to define in a similar 

way, a cap product on the chain-cochain level. This will be a homomorphism 

CP(X;G 1)® Cq(X;G 2 ) ~ Cq_/X; G1 ® G2) 

defined by 
un v = u\d#(v), 

where d#:Cq(X) --+ Cq(X x X) is the chain map induced by the diagonal 
map d. It satisfies the following boundary-co boundary formula, 

8(u n v) = (Ju) n v + ( -1)Pu n (8v), (8.1) 

for any u E CP(X) and v E CiX). On passage to cohomology and homology 
classes, it gives rise to the cap product defined in §VIII.3. The naturality 
condition 

J#«(f#u) n v) = u n (f#v) 

obviously holds for any continuous map J:X --+ X', u E CP(X') and v E CiX). 
Moreover, this definition can be generalized easily to cover the case of relative 
chain and cochain groups which we need below. 

Since {A,B} is excisive and X = A u B, the inclusion map 

qA) + qB) --+ qX) 

induces isomorphisms on homology groups. Therefore we can choose a 
representative cycle z for the homology class v E HiX) such that z E Cn(A) + 
Cn(B). In other words, 
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where ZI E CiA) and Z2 E Cn(B). Although Z is a cycle, i.e., 8(z) = 0, it does 
not follow that ZI and Z2 are cycles. All we can conclude is that 

8(ZI) = -8(Z2) E Cn-I(A n B). 

Let Z'I E Cn(A,A n B) and z~ E Cn(B,A n B) denote the images of ZI and Z2 

respectively in these quotient groups. Then 

8(Z'I) = 8(z~) = 0 
and 

Therefore Z/I and z~ are representative cycles for VI and V 2 respectively. 
Now consider the following diagram of chain and cochain complexes, and 
chain-cochain maps: 

j# j# 

o ----+ C*(X,A) ----+ C*(X) ~ C*(A) ~ 0 

C*(B, A II B) nz C(A, A II B) (8.2) 

o --- C(B) k# l C(X) ~ C(X,B) ----+ o. 

Although the homomorphisms denoted by the vertical arrows do not have 
degree 0, they commute with the boundary and coboundary operators 
because z, ZII' and z~ are cycles, and because of Formula (8.1) above. The 
top and bottom lines ofthis diagram are exact. We assert that each square of 
this diagram is commutative. This is a consequence of the "commutativity" 
of the following diagram: 

e# j# j# 

C*(B,AIIB) ~ C*(X,A) ----+ C*(X) C*(X) l C*(A) 

® ® ® ® ® 

C.(B, A II B) ----+ C.(X,A) ~ C.(X) ~ C.(X,B) ~ C.(A, A II B) 
e2# 

In In In In In 
C(B) 

k. 
l C(X) C(X) ~ C(X,B) ~ C(A,AIIB). 

The "commutativity" of each of the four squares of this diagram expresses 
a naturality relation for cap products. 

The proof of the lemma may now be completed by passing from Diagram 
(8.2) to the corresponding diagram of homology and cohomology groups, 
induced homomorphisms, etc. Q.E.D. 

The statement and proof of the second lemma are somewhat longer. 
Assume that M is an oriented n-manifold and that M = U u V, where U 
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and V are open subsets of M. Let K and L be compact subsets of U and V 
respectively. Since M is oriented, by Theorem 2.1, there exist unique ho
mology classes 

and 

I1KuL E HiM,M - K u L), 

11K E Hn(M,M - K), 

ilL E HiM,M - L), 

I1KnL E Hn(M,M - K n L) 

which restrict to the chosen local orientations at each point. Consider the 
following diagram: 
,j* ,j 

... --+ Hq(M, M - K n L) --+ Hq(M, M - K)®Hq(M, M - L) --+ Hq(M - K u L) ~ ... 

Hq(U n v, Un V - K n L) 

1 kt $k! 

Hq(U, U - K) ® Hq(V, V - L) 

1 (nv.) $ (nvLl 

,j* ,j 
... ~ Hn_q(U n V) -----+1 Hn_q(U)®Hn_.(V) -----+1· Hn_q(M) ~ .... 

In the top line of this diagram, we have the relative Mayer-Vietoris co
homology sequence of the triad (M; M - K, M - L), while the bottom line 
is the usual Mayer-Vietoris homology sequence. The maps 

p:(U n V, Un V - K n L) --+ (M,M - K n L), 

k1:(U, U - K) --+ (M,M - K), 

k2:(V, V - L) --+ (M,M - L), 

are inclusion maps which induce isomorphisms on homology and co
homology by the excision property; also, 

VKnL = p;; l(I1KnL), 

VK = k1*1(I1K), 

VL = k2*1(I1L). 

Lemma 8.2. Each square of the above diagram is commutative. 

It is understood that the diagram is extended to the right and left in
definitely, and that the lemma applies to each square ofthe extended diagram. 

If we pass to the direct limit over all such compact sets K c U and LeV, 
we obtain a commutative diagram involving two exact sequences which 
played a crucial role in the proof of the Poincare duality theorem in §4. 

Lemma 8.2 is a special case of a more general lemma which we will now 
state. Let Xl, X 2, Y1, and Y2 be subspaces of a topological space X such that 
X = (Interior Xl) u (Interior X 2) and {Yt> Y2 } is an excisive couple. Assume 
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we have given homology classes 

J1,EHiX, Yl II Y2) 

V~ E Hn(X~, X~ II Ya), Q( = 1,2, 
and 

such that 

and 

for 0( = 1, 2, where 

and 

i~:(X, Yl II Y2) --+ (X, Ya), 

k~:(X~, X~ II Ya) --+ (X,Ya), 
q~:(X~, X~ II Ya) --+ (X~, X~ II (Yl U Y2)), 

m~:(Xl II X 2 , Xl II X 2 II (Yl U Y2 )) --+ (X~, X~ II (Yl U Y2)) 

are all inclusion maps. Consider the following diagram: 

4>' 'l" L1 
Hn_.(X 1 n X 2) ----+ Hn_q(X I) ® Hn_q(X 2) --4 Hn_q(X) ~ Hn-q-I(X 1 n X 2)' 

The top line is the relative Mayer-Vietoris cohomology sequence of the 
triad (X; Yb Y2 ), while the bottom line is the usual Mayer-Vietoris homology 
sequence. The homomorphisms 0(, /3, and yare defined as follows: 

O((x) = (P*x) II V, X E H*(X, Yl U Y2), 

/3(u,v) = ((k!u) II Vb (k~v) II V2), u E H*(X, Yl ), v E H*(X, Y2 ) 

y(w) = W II J1" WE H*(X, Yl II Y2). 

Here p:(X l II X 2 , Xl II X 2 II (Yl U Y2)) --+ (X, Yl U Y2 ) is an inclusion. 
From the basic properties of cap products, it is easy to check that the squares 
1 and 2 in the above diagram are commutative. However, square 3 need 
not be commutative. In fact, we have the following precise statement: 

Lemma 8.3. There exists a homology class y E Hn+ l(X, Yl U Y2 ) such that 
for any integer q and any W E Hq(X, Yl II Y2), 

A*y(w) - O(A*(w) = A*((A*w) II y) 

(the homology class y is not unique, in general). 
Before proving this lemma, we will indicate how it implies Lemma 8.2. 

Let 
X = M, Xl = U, X 2 = V, 

Yl = M - K, and Y2 = M - L. 
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Then Hn+l(X, Y1 U Y2 ) = Hn+1(M, M - K n L) = 0 since M is an n
dimensional manifold. Hence y = 0 in this case, and Lemma 8.2 follows. 

PROOF OF LEMMA 8.3. The standard situation which leads to a commutative 
diagram of exact sequences is the following: 

i j 
0 ----+ K' ----+ K ----+ K" ----+ 0 

l~' l~ l~" (8.3) 

k I 
0 ----+ L' ----+ L ----+ L" ----+ o. 

In this diagram, the following two hypotheses are assumed: 

(i) The top and bottom lines are short exact sequences of chain complexes 
and chain maps. 

(ii) The chain maps q/, <p, and <p" satisfy the following commutativity 
relations: 

<pi = kq/, and <p"j = l<p. 

Unfortunately, this situation does not apply to the case at hand, because 
neither of these two hypotheses holds when we go back to chains and 
cochains. In order to prove Lemma 8.3, it is necessary to investigate what 
happens when we relax these hypotheses. The first (and more interesting) step 
is to relax the commutativity condition (ii), and require only commutativity 
up to a chain homotopy. To be precise, assume that the following chain 
homotopy relations hold in the above diagram: 

<pi - k<p' = aD + Do', 

<p"j - l<p = A" E + Eo, 

where D: K' ~ Land E: K ~ L" are homomorphisms of degree + 1. An 
easy calculation then shows that 

o"(Ei + lD) = -(Ei + lD)o', 

i.e., the homomorphism Ei + ID: K' ~ L" commutes with the boundary 
operator (up to a minus sign). Therefore it induces homomorphisms 

(Ei + lD)*:Hq_1(K') ~ Hq(L") 

for all q. We assert that this homomorphism gives us a measure of the lack 
of commutativity of the following diagram: 

j. 
... ----+ Hq(K") 

OK 
----+ Hq_,(K') 

i. ---,---+ ..• 

l~~ 1 ~~ 
I ~ ~ ... ... ~ Hq(L") Hq-,(L') 

In fact, the following equation holds: 

OL<P~ - <P~OK = odEi + lD)*OK' (8.4) 
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To prove this equation, one must prove that for any U E Hq(K"), 

CP~OK(U) = odcp;(u) - (Ei + lD)*OK(U)). 

Choose a representative cycle for the homology class u, and then compute 
representative cycles for the left- and right-hand side of this equation. We 
leave it to the reader to verify that the two representative cycles are homolo
gous. 

Next, we will consider relaxing Hypothesis (i), the exactness hypothesis. 
We will assume given a diagram 

of chain complexes and chain maps such that i is a monomorphism, j is an 
epimorphism, and image i is contained in kernel j. However, we do not 
assume that image i = kernel j; this is the assumption we have to avoid. 
We also have to consider the following two additional chain complexes: 

%(j) = kernel j, 

Y6'(i) = cokernel i. 

We then have the following commutative diagram of chain complexes and 
chain maps: 

i 
0 ~K'~ K ~~(i) ~o 

1" /I Ip 

~ffU)~ 
j 

0 K ~ K" ~o. 

Each row of this diagram is exact. Using the five-lemma, it is readily seen 
that !Y.*:Hq(K') -+ Hq(%(j)) is an isomorphism for all q if and only if 
13*:Hq(Y6'(i)) -+ Hq(K") is an isomorphism for all q. If that is the case, we can 
define a long exact homology sequence 

... -+ Hq(K') ~ Hq(K) ~ Hq(K") ~ Hq_1(K') -+ ... 

in a natural way. 
Let us agree to say that the sequence of chain complexes and chain maps 

K'~K~K" 

is almost exact if all the assumptions listed in the preceding paragraph 
(including that !Y.* and 13* are isomorphisms) hold. The point is that almost 
exact sequences are just as good as short exact sequences when it comes to 
defining long exact homology sequences. 

EXAMPLE 8.1. Assume that {A,B} is an excisive couple in the space X. We 
then have the following almost exact sequence of chain complexes, 

C(X, A n B) -+ C(X,A) EB C(X,B) -+ C(X, A u B) 
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which gives rise to the relative Mayer-Vietoris homology sequence (cf. 
§VIII.6). The dual sequence of cochain complexes, 

C*(X, Au B; G) --+ C*(X,A;G) Ef> C*(X,B;G) --+ C*(X, A (") B) 

is also almost exact, and gives rise to the relative Mayer-Vietoris sequence 
in cohomology. 

We will now apply these ideas to generalize Diagram (8.3) and Equation 
(8.4) above. Assume we have given the following diagram of chain complexes 
and chain maps: 

i j 
K' ---+ K ---+ K" 

(8.5) 

L' ~ L ~ L". 

It is assumed that both rows of this diagram are almost exact (instead of 
exact), and that each square is chain-homotopy commutative; in other 
words, there exist chain homotopies D: K' --+ Land E: K --+ L" such that 

epi - kep' = oD + Do', 
ep"j - lep = o"E + Eo. 

Then exactly as before, we can verify that the homomorphism 
Ei + lD:K' --+ L" 

commutes with the boundary operators (up to a minus sign) and induces 
homomorphisms 

(Ei + lD)*:Hq_ 1(K') --+ Hq(L"). 
Then this homomorphism suffices to describe the lack of commutativity in 
the following diagram: 

Hq(K") ~ Hq_ 1(K') 

1 ~~ 1 ~~ 

by means of the following equation: 

OLep~ - ep~OK = 0L(Ei + lD)*OL 

PROOF OF EQUATION (8.6): Consider the following diagram: 
i 

K' ------. K ---+ ~(i) 

.)((/) ---+ L 

~j, 
K" 

l~" 
I 

----+ L'f. 

(8.6) 
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It follows that we can write down the analog of Equation (8.4) for the follow
ing diagram: 

i 
K'- K -- 'G(i) 

«~J 1 l~"p 
.x'"(I) -- L~ L". 

Since oc* and p* are isomorphisms, Equation (8.6) is then an easy consequence. 

Q.E.D. 

We are now ready to apply these ideas to prove Lemma 8.3. Choose 
representative cycles 

J.l' E C,,(X, Y1 U Y2) 

v~ E C,,(XIZ' X IZ n YJ, oc = 1,2, 
v' E C,,(X1 n X 2 , Xl n X 2 n (Y1 U Y2)) 

for the homology classes J.l, VIZ' and v respectively. Now consider the following 
diagram of chain and cochain complexes, and chain maps: 

~ 'I' 
c*(X, Y1 U Y2 ) -- C*(X, Y1) EB C*(X, Yl ) -- C*(X, Y1 n Y2) 

1«' 1, li 
C(XI n X 2) 

~' 
I C(X I) EB C(X 2) 

'1" 
I C(X I) + C(X 2)' 

The homomorphisms in this diagram are defined as follows (see the diagram 
at the end ofthe proof): 

cp(x) = (jf x,if x) x E C*(X, Y1 U Y2) 

oc'(x) = (pll'x) n v' x E C*(X, Y1 U Y2) 

I/I(u,v) = ifu - itv u E C*(X,Y1), v E C*(X,Y2) 

P(u,v) = «kfu) n vl,(kfv) n V2) u E C*(X,Y1), v E C*(X,Yz) 
y'(w) = w n J.l', WE C*(X, Y1 n Y2) 

cp(x) = (ml x,m2x), x E C(X 1 n X 2) 

I/I'(u,v) = k'lU - k2v, u E C(X 1), v E C(X 2)' 

The top line is almost exact; on passage to cohomology, one obtains the 
relative Mayer-Vietoris sequence. The bottom line is exact; on passage to 
homology, it gives the usual Mayer-Vietoris sequence. At the right end of 
the bottom line, C(X 1) + C(X 2) denotes the chain subcomplex of C(X) 
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generated by C(X 1) and C(X 2)' In order that the image of y' should lie in this 
subcomplex, we assume that the representative cycle fl' is a linear combina
tion of singular cubes which are "small of order 0/1," where 0/1 = {XI' X 2}' 

It is readily verified that rx', /3', and y' are chain maps. Moreover, both 
squares of this diagram are chain homotopy commutative. Explicit chain 
homotopies may be defined as follows. The hypothesis that i~*(fl) = k~*(v~) 
implies the existence of chains 

rx = 1,2 

such that 

aa~ = i~#(f1') - k~#(v'). 

Similarly, the hypothesis that q~*(v~) = ma*(v) implies the existence of chains 

b~E Cn + 1(Xa, Xa n (Yl u Y2)) 

such that 
aba = qa#(v~) - ma#(v'). 

Then one defines chain homotopies 

by the formulas 

D: C*(X, Y1 u Y2) -+ C(X 1) Ef> C(X 2) 

E: C*(X, Y1) Ef> C*(X, Y2) -+ C(X 1) + C(X 2) 

D{x) = ( _1)lxl( (nf x) n b1, (nt x) n b2)) 

E(u,v) = ( _1)lu l(u n al - v n a2)' 

It is then easy to verify that 

/3'({J - q/rx' = aD + DJ, 

y't/J - t/J' /3' = aE + EJ 

as required. Thus we are in the situation described in Diagram (8.5) above, 
and Formula (8.6) is applicable. Using the definition of D and E above, 
and the naturality properties of the cap product, an easy computation gives 
the following formula: 

(E({J + t/J'D)(x) = (-l)lxlx ny' 

for any x E C*(X, Y1 u Y2), where 

y' = jU al + nU bl - iz#a2 - n2#b2· 

In view of the way the chains ah a2' b1, and b2 were chosen, it is easy to check 
that ay' = 0, i.e., y' is a cycle. Let y E Hn+ I(X, Y1 u Y2) denote the homology 
class of y'; then it follows from Formula (8.6) that ± y has the properties 
stated in Lemma 8.3; this completes the proof. To assist the reader in follow
ing the above proof, we offer the following commutative diagram of the chain 
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complexes and chain maps which occur in the above proof: 

C(X, YI n Y2) 

;I ~ 
C(X,Yd 

~ 
C(X, XI n Yd 

All chain maps in this diagram are induced by inclusion maps. 

Remark: The homology class y is not unique; for, the chains at> a2, b1, and 
b2 can each be changed by adding a cycle from the chain group to which it 
belongs. We leave it to the interested reader to investigate in more detail the 
indeterminancy of the homology class y. 
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CHAPTER X 

CUp Products in Projective Spaces 
and Applications of Cup Products 

§1. Introduction 

In this chapter we will determine cup products in the cohomology of the 
real, complex, and quaternionic projective spaces. The cup products (mod 2) 
in real projective spaces will be used to prove the famous Borsuk-Ulam 
theorem. Then we will introduce the mapping cone of a continuous map, 
and use it to define the Hopf invariant of a map /:s2n-1 -+ sn. The proof 
of existence of maps of Hopf invariant 1 will depend on our determination 
of cup products in the complex and quaternionic projective plane. 

§2. The Projective Spaces 

We defined the n-dimensio.nal real, complex, and quaternionic projective 
spaces (denoted by Rpn, cpn, and Qpn respectively) in §IV.3. We also defined 
CW -complex structures on them, and then determined the homology groups 
of cpn and Qpn. Now we are going to prove that they are compact, connected 
manifolds, and then use the Poincare duality theorem to determine the cup 
products in their cohomology. 

Since the universal covering space of Rpn is sn, it is clear that Rpn is a 
compact, connected manifold (see Exercise 2.1 in the preceding chapter). 

Next, we will prove that cpn is a 2n-dimensional manifold. Let (zo, 
Z1' .•• ,zn) denote homogeneous coordinates in cpn (see IV.3), and let 

Ui = {(zo, ... ,zn) E cpnlZi ¥= O} 

239 
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for i = 0,1, ... ,n. Then Ui is an open subset of cpn. We may "normalize" 
the homogeneous coordinates of a point in Ui by requiring that Zi = 1. With 
this normalization, each point of Ui has unique homogeneous coordinates. 
These unique coordinates define an obvious homomorphism of U i with 
en = R2n. Since the collection of sets {Ud i = 0,1, ... ,n} is clearly a covering 
of cpn, this suffices to prove that cpn is a 2n-manifold. 

Remark: In the preceding paragraph, we have neglected various details of 
point set topology which arise because of the fact that cpn is defined as a 
quotient space. The reader can either work these details out for himself, or 
consult some reference such as Bourbaki [3J. 

That cpn is compact and connected follows from the CW -complex defined 
on it in §IV.3. 

An analogous proof, using quaternions instead of complex numbers, 
shows that Qpn is a compact, connected manifold of dimension 4n. 

A method of proving that Rpn is orientable for n odd and nonorientable 
for n even is outlined in Exercises 2.2 to 2.5, of Chapter IX. We will not make 
use of this result in this chapter, except in the exercises. In §IV.4, we proved 
that the integral homology groups H 2n( cpn) and H 4n(Qpn) are infinite cyclic. 
This implies that cpn and Qpn are orientable for all n. 

We will now discuss cup products in these projective spaces. For the sake 
of brevity, it will be convenient to write uv instead of u u v. For any integer 
n ~ 1, un will denote the product uu ... u (n factors), while UO = 1. 

In order to describe cup products in the cohomology of cpn and Qr, 
note that 

HI pn;z ~ . .(c ) {Z for i even and 0 ::;; i ::;; 2n, 
o otherWIse. 

This follows from determination of the homology of cpn in §IV.4 and the 
universal coefficient theorem. Similarly, 

Hi(Qpn;z) ~ {Z for i == ~ mod 4 and 0::;; i::;; 4n, 
o otherWIse. 

Theorem 2.1. Let u be a generator of the infinite cyclic group H2(cpn;z). 
Then Uk is a generator of H2k(cpn;z) for 0::;; k ::;; n. 

Theorem 2.2. Let v be a generator of H4(Qpn;z). Then vk is a generator of 
the infinite cyclic group H4k(Qpn;z) for 0::;; k::;; n. 

PROOF OF THEOREM 2.1. The proof is by induction on n, using Theorem 5.2 
of the preceding chapter. For n = 1, the theorem is a triviality, while for 
n = 2, it follows directly from Theorem IX.5.2. Assume that the theorem is 
true for cpn, n ~ 2; we will show this implies the theorem for cpn+ 1. 

In §IV.3, we defined a structure ofCW-complex on cpn+l, such that the 
skeleton of dimension 2k is Cpk for 0 ::;; k ::;; n + 1. From this it follows that 
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we may consider cpn as a closed subspace of cpn+ 1, and the relative co
homology groups of the pair (cpn + l,cpn) are given by 

Hk(cpn+l,cpn;z) = .' {z for k = 2n + 2 
o otherwIse. 

Let i: cpn --+ cpn + 1 denote the inclusion map; from the exact cohomology 
sequence we deduce that 

i* : Hk(cpn+ 1 ;Z) --+ Hk(cpn;z) 

is an isomorphism for all k =1= 2n + 2. Let u denote a generator of H2( cpn+ 1 ; Z); 
by the inductive hypothesis, (i*u)k is a generator of H2\cpn;z) for 0 S k S n; 
it follows that Uk is a generator of H2k( cpn + 1 ; Z) for the same values of k. 
By applying Theorem IX.5.2 to the cup product 

H2n(cpn+l;Z)@H2(cpn+l;Z) --+ H2n+2(cpn+l;Z) 

we conclude that un+1 is a generator of H2n+2(cpn+l), completing the 
inductive step. Q.E.D. 

The proof of Theorem 2.2 is similar, and is left to the reader. To obtain 
an analogous result for real projective space, Rpn, it is necessary to use 
mod 2 cohomology. 

Theorem 2.3. The mod 2 cohomology group Hk(Rpn;Z2) is cyclic of order 2 
for 0 S k S n. Ifw is a generator of H 1(Rpn;Z2), then wk is a generator of 
Hk(Rpn;Z2) for 0 s k s n. 

PROOF. Once again the proof is by induction on n, using the CW-complex 
structure on Rpn which is given in §IV.3. The theorem is true for n = 1, 
because Rpl is homomorphic to Sl. We determined the integral homology 
groups of Rp2 in 111.4; from this one can show that Hk(RP2;Z2) = Z2 for 
k = 0,1,2. Determination of the cup products in H*(Rp2;Z2) then follows 
from the analog for nonorientable manifolds of Theorem 5.1 of the preceding 
chapter. 

The inductive step is slightly more complicated than that in the proof of 
Theorem 2.1. Recall that Rpn is a CW-complex with one cell in each dimen
sion s n, and the k-skeleton is Rpk for 0 s k s n. It follows that 

Hk(Rpn Rpn-l. Z ) = {Z2 for k = n, 
, ,2 0 for k =1= n. 

From this it follows that 

i*:Hk(Rpn;Z2) --+ Hk(Rpn-l;Z2) 

is an isomorphism for k < n - 1. We will prove that it is also an isomorphism 
for k = n - 1. Consider the following portion of the mod 2 exact cohomology 
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sequence ofthe pair (Rpn,Rpn-l): 

o ~ Hn-l(Rpn) ~ Hn- 1(Rpn-1) ~ Hn(Rpn,Rpn-1) ~ Hn(Rpn) ~ Hn(Rpn-1). 

First of all, Hn(Rpn-l;Z2) = 0 because Rpn-1 is only (n -I)-dimensional. 
Therefore j*:Hn(Rpn;Rpn-l) ~ Hn(Rpn) is an epimorphism. Next, 
Hn(Rpn;Z2) is cyclic of order 2, because Rpn is a compact, connected n

manifold. Since j* is an epimorphism of a group of order 2 onto a group 
of order 2, it must be an isomorphism. It follows by exactness that 
c5*:Hn-1(Rpn-1) ~ Hn(Rpn,Rpn-1) is the zero homomorphism. Hence 
i*:Hn-1(Rpn) ~ Hn-1(Rpn-1) is an isomorphism, as was asserted. 

The remainder of the inductive step is similar to that in the proof of 
Theorem 2.1, and may be left to the reader. The only difference is that one 
uses the analog for nonorientable manifolds of Theorem 5.1 rather than 
Theorem 5.2 of Chapter IX. 

One can express Theorem 2.1 by means of the following ring isomorphism: 

H*(cpn;z) ~ Z[u]/(un+ 1); 

in other words, the integral cohomology ring H*(cpn;z) is isomorphic to 
the integral polynomial ring Z[ u] modulo the ideal generated by un + 1. 

Similarly, 
H*(Qpn;z) ~ Z[v]/(vn+ 1), 

H*(Rpn;Z2) ~ Z2[W]/(Wn+ 1). 

Rings with this type of structure are often called truncated polynomial rings. 
We will now use this result on the structure of H*(Rpn;Z2) to prove the 

famous Borsuk-Ulam theorem (for a discussion of some of the interesting 
consequences of this theorem, the reader is referred to Algebraic Topology: 
An Introduction, Chapter 5, Section 9). Recall that a map f: sm ~ sn is called 
antipode preserving in case f( - x) = - f(x) for any x E sm. 
Theorem 2.4. There does not exist any continuous antipode preserving map 
f:sn ~ sn-1. 

PROOF. We will only give the proof for n > 2; the prooffor n :::;; 2 is contained 
in Algebraic Topology: An Introduction (loc. cit.) The proof is by contradic
tion. Assume that f: sn ~ sn - 1 is an antipode preserving map. Hence f 
induces a map g: Rpn ~ Rpn - 1, since Rpn is the quotient space obtained by 
identifying antipodal points of sn. Thus we get a commutative diagram 

f 
S" -----+ S"-l 

where p and q are the projections of sn and sn - 1 onto their quotient spaces. 
Because n > 2, both sn and sn-1 are simply connected. Thus they are the 
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universal covering spaces of Rpn and Rpn -1 respectively and the funda
mental groups, n(Rpn) and n(Rpn - 1), are both cyclic of order 2. The induced 
homomorphism 

must be an isomorphism; this may be proved by an easy argument which 
is given on p. 172 of Algebraic Topology: An Introduction. Now consider the 
following commutative diagram: 

Y. 
H 1(Rpn) ~ H 1(Rpn-l). 

The homomorphisms denoted by h are the natural homomorphisms of the 
fundamental group onto the first homology group which were defined in 
III.? Since the fundamental groups involved are abelian, these homo
morphisms are both isomorphisms (cf. Theorem IIL?.1). It follows that 
g *: HI (Rpn) -t HI (Rpn - 1) is an isomorphism. 

Next, consider the following commutative diagram: 
a 

---+) Hom(H 1(Rpn);Z2) 

r Horn(g.,I) 

H 1(Rpn-l;Z2) ~ Hom(H1(Rpn-l),Z2)' 

The homomorphisms labelled Q( are those which occur in the universal co
efficient theorem (§VII.4); in this case they are both isomorphisms. It follows 
from this that 

g*:Hl(Rpn-l;Z2) -t H 1(Rpn;Z2) 

is also an isomorphism. Let w be a generator of Hl(Rpn-l ;Z2); then g*(w) 
is a generator of Hl(Rpn;Z2)' By Theorem 2.3, (g*wt #- O. However, this is 
a contradiction, since 

and wn = O. Q.E.D. 

EXERCISES 

2.1. For k < n, consider Cpk as the 2k-ske1eton of cpn. Prove that Cpk is not a retract 
of cpn. Similarly, prove that for k < n, Qpk is not a retract of Qpn, and Rpk is not a 
retract of Rpn. 

2.2. Determine the integral homology groups of Rpn by induction on n. Use the fact 
that Rpn is a CW-complex, as described in §IV.3, and that it is orientable for n odd, 
and nonorientable for n even. 

2.3. Use the results of the preceding exercise and the universal coefficient theorem to 
determine the structure of the integral cohomology groups Hk(Rpn;Z). Then 
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determine the cup products in the integral cohomology of RP". (Hint: Use the 
homomorphism H\RP";Z) -+ Hk(RP";Zz) induced by reduction mod 2 of the 
integer.) 

§3. The Mapping Cylinder and Mapping Cone 
The techniques developed in this section will be used in the next section to 
define certain homotopy invariants of continuous maps. 

Let f:X --+ Y be a continuous map. The mapping cylinder off, denoted 
by M(f), is the topological space defined as follows: Assume that X x I and 
Yare disjoint; if they are not, take disjoint copies. Then form the quotient 
space of the disjoint union of X x I and Y by identifying the points (x,O) 
l:lnd f(x) for each x E X. 

The mapping cylinder M(f) can be visualized as a space which contains 
a copy of X (namely, X x {l}), a copy of Y, and corresponding to each x E X 
a copy of the unit interval connecting the points x and f(x). This space is 
topologized so that if Xl and X2 are points in X, that are close to each other, 
then the corresponding segments from Xl to f(Xl) and from X2 to f(X2) are 
also close to each other. 

The obvious deformation retraction of X x I onto X x {O} gives rise to 
a deformation retraction of M(f) onto Y. If we denote by i:X --+ M(f) the 
inclusion map (defined by i(x) = (x,O)) and by r:M(f) --+ Y the retraction, 
then the following diagram is commutative: 

X-Y 
f 

Thus an arbitrary continuous map f is the composition of an inclusion 
map i and a homotopy equivalence r. 

The mapping cone of f: X --+ Y, denoted by C(f), is the quotient space of 
the mapping cylinder M(f) obtained by identifying the subset X x {l} to a 
single point. Alternatively, the mapping cone can be constructed as follows: 
let C(X), called the cone over X, denote the quotient space of X x I obtained 
by identifying all of X x {l} to a single point. Then C(f) is the quotient 
space of the (disjoint) union of Y and C(X) obtained by identifying the point 
(x,O) E C(X) with the point f(x) E Y for all x E X. 

EXAMPLE 3.1. If X = sn, the n-sphere, then it is easily seen that C(X) is 
homomorphic to the (n + l)-dimensional ball En+l. In this case, C(f) is 
the same as the space X* = X u en + 1 obtained by adjoining an (n + l)-cell 
to the space X by means of the map f, as described in §IV.2. In particular, 
if Km denotes the m-dimensional skeleton of a CW -complex, then we can 
regard Kn + 1 as the mapping cone of a certain map f: X --+ Kn, where X is a 
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disjoint union of n-spheres (assuming that the number of (n + I)-cells is 
finite). 

One of the basic facts about the spaces M(f) and C(f) is that they satisfy 
certain naturality conditions. Let 

f 
X -----+ Y 

1 ~I 1 ~2 
f' x' -----+ Y' 

be a commutative diagram of topological spaces and continuous maps. Then 
it is readily seen that CPl and CP2 induce continuous maps of quotient spaces, 
M(f) -+ M(f') and C(f) -+ C(f'); let us agree to denote both of these in
duced maps by the symbol cpo Then it follows that the following two diagrams 
are commutative: 

i r 
X -----+ M(f) -----+ y 

1~1 1~ 1 ~2 
i' r' x' -----+ M(f') -----+ Y' , 

j 
Y -----+ C(f) 

1 ~2 1~ 
Y' ...-..L.. C(f'). 

In the second diagram, the symbols j and j' denote obvious inclusion maps. 

Lemma 3.1. Let p:M(f) -+ C(f) denote the natural map which identifies the 
subset X = X x {1} of M(f) to a single point P of C(f). Then the induced 
homomorphism of relative cohomology groups 

is an isomorphism for all q. 

PROOF. Let X denote the subset X x [1,IJ of M(f), and let P denote the 
image of X under p. Consider the following commutative diagram: 

2 _ 4 _ 
Hq(C(f),P) ~ Hq(c(f),P) ----. Hq(C(f) - P, P - Pl. 

In this diagram, the horizontal arrows denote homomorphisms induced 
by inclusion maps, and the vertical arrows denote homomorphisms induced 
by p. Arrows 1 and 2 are isomorphisms because X is a deformation retract 
of X and P is a deformation retract of P. Arrows 3 and 4 are isomorphisms by 
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the excision property; and p! is an isomorphism, because p maps M(f) - X 
and X - X homomorphically onto C(f) - P and P - P respectively. It 
follows that p* is an isomorphism, as desired. Q.E.D. 

Now let k: Y - M(f) denote the inclusion map; k is a homotopy equi
valence because Y is a deformation retract of M(f). Consider the following 
diagram: 

Hq-l(X) ---;;--+ Hq(M(f),X) ---+ Hq(M(f)) ~ Hq(X). 

The bottom line is the cohomology sequence of the pair (M(f),X). All the 
vertical arrows are isomorphisms, and k* and r* are inverses of each other. 
Finally, the diagram is readily seen to be commutative. As a consequence 
of these facts, we see that the following sequence of cohomology groups 
and homomorphisms is exact: 

- HQ-l(X) ~ HQ(C(f),P) ~ HQ(y):C HQ(X)-. 

Here LI = (p*)-I(j. This exact sequence will be called the cohomology sequence 
of the map f. Observe that a commutative diagram 

f 
X ---+ y 

l~' 1 ~2 
X'~Y' 

gives rise to an induced map of the cohomology sequence of f into the 
cohomology sequence of 1'; that is, we get a ladder-like diagram involving 
the two exact sequences, and every square in the diagram is commutative. 

Now let us apply these ideas to study the cohomology sequences of 
two maps which are homotopic. Let fo, fl : X - Y be continuous maps, and 
let f:X x 1- Y be a homotopy between fo and f1> i.e., fo(x) = f(x,O) and 
fl(X) = f(x,l). This gives rise to the following commutative diagram: 

fa 
X -----+ Y 

1 ha 

f 
1/ 

XxI---+ Y 

r h, 1/ 
f, 

X -----+ Y 

Here hi(x) = (x,i) for i = ° or 1. Corresponding to this diagram, we get a 
bigger diagram involving the cohomology sequences of fo, f, and fl together 
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with homomorphisms between them. By making use of the five-lemma 
together with the fact that ho and h1 are homotopy equivalences, we easily 
deduce that the cohomology sequences of the maps fo and f1 are isomorphic. 
To be precise, any homotopy between fo and f1 gives rise to an isomorphism 
between the corresponding cohomology sequences. Presumably different 
homotopies could give rise to different isomorphisms. 

We could also word this conclusion as follows: the cohomology sequence 
of a map f is a homotopy invariant of f. 

EXAMPLE 3.2. Suppose f:X --> Y is a constant map. Then it is clear that 
Y is a retract of C(f). Hence there exists a homomorphism r*: Hq( Y) --> 

Hq(C(f)) such thatj*r* is the identity map of Hq(y). Moreover, r* preserves 
cup products, i.e., r*(x u y) = (r*x) u (r*y). Because of the invariance of the 
cohomology sequence of f under homotopies, we can conclude that this 
same result is true in case f:X --> Y is only assumed to be homotopic to a 
constant map. As a matter of fact, it is easy to prove directly that f is 
homotopic to a constant map if and only if Y is a retract of C(f). 

EXERCISE 

3.1. As in the above discussion, let f: X x I ---> Y be a continuous map, and let fO'/l: 
X ---> Y be defined by !;(x) = f(x,i), i = 0, 1. Prove that M(!;) is a deformation 
retract of M(f), and C(!;) is a deformation retract of C(f) for i = 0, 1. Then deduce 
that the pairs (C(fo), Y) and (C(fl), Y) are of the same homotopy type. 

§4. The Hopf Invariant 

The Hopf invariant associates with each map f: s2n-1 --> sn an integer that 
is a homotopy invariant of f. Using it, we will be able to prove that for 
n even and :2: 2, there are infinitely many different homotopy classes of 
such maps. 

In order to define the Hopf invariant, we will assume that the spheres 
s2n-1 and sn are "oriented," in the sense that definite generators a E 

H 2n- 1(S2n- \Z) and bE Hn(sn;z) have been chosen for these infinite cyclic 
groups. We will also assume that n:2: 2. As in the preceding section, let 
C(f) denote the mapping cone of f. It follows from the exactness of the 
cohomology sequence of the map f that the following two homomorphisms 

LI :H2n - 1(s2n-1) --> H2n(C(f)) 

j* : Hn( C(f)) --> Hn(sn) 

are both isomorphisms. Let a' = LI(a) E H 2n(C(f);Z), and let b' E Hn(C(f),Z) 
be the unique element such that j*(b') = b. Since H 2n(C(f);Z) is infinite 
cyclic, there exists a unique integer H(f) such that 

b' u b' = H(f) . a'. 
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In view of the homotopy invariance of the cohomology sequence of f, the 
integer H(f) depends only on the homotopy class of f. 

We will now list some of the principal properties of the Hopf invariant: 
(1) If n is odd and> 1 then H(f) = 0 for any map f:S 2n - 1 --+ sn. This 

follows from the anti-commutative law for cup products. As a consequence, 
the Hopf invariant is useless in this case. 

(2) If n = 2, 4, or 8, there exist maps f:S 2n - 1 --+ sn such that H(f) = ± 1. 
For n = 2 we may choose f such that C(f) = CP2, the complex projective 
plane; while for n = 4, we may choose f such that C(f) = QP2. The case 
n = 8 is more complicated; in essence, we must choose f so that C(f) is 
the so-called Cayley projective plane. An explicit description of such a map 
f is given by Steenrod [5], pp. 109-110. A complete discussion of the Cayley 
projective plane is given by H. Freudenthal, [4]. 

(3) For any even integer n ~ 2, there exist maps f such that H(f) = ±2. 
To prove this, recall that sn may be considered as a CW-complex with a 
single vertex, eO, a single n-cell ~, and no cells of any other dimension. 
Hence sn x sn may be represented as a CW-complex with one vertex, 
eO x eO, two n-cells, eO x ~ and en x eO, and one 2n-cell, ~ x en. The n
skeleton of this CW -complex is the subspace 

S" V sn = (sn X eO) u(eO x S") 

of sn x sn. Let g:S2n-1--+sn v sn denote the attaching map for the single 
2n-cell of this CW-complex, and let h:Sn v sn --+ sn be defined by h(x,eO) = 
h(eO,x) = x for XES" (h is sometimes called the folding map). We assert 
that if we define 

then (for n even), H(f) = ± 2. To prove this assertion, consider the following 
commutative diagram: 

S2"-1 ~ S" V S" 
j, 

---+ C(g) 

II lh lh' 
S2"-1 f 

I S" 
j, 

I C(f) 

Here hi is induced by h. By definition, C(g) = S" X sn. Let b denote the 
chosen generator of H"(S";Z). Then {b x 1,1 x b} is a basis for H"(S" x sn) 
and (b x 1) u (1 x b) = b x b is a generator of H2"(sn X S"), (cf. §VIII.11). 
Now, consider the following commutative diagram: 

iT 
H"(S" v SO) +--- H"(S" x SO) 

j~ 
H"(S") +-( -- W(C(f)). 
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Both jf and j~ are isomorphisms, and j~(b') = b. We leave it to the reader 
to convince himself that 

h'*(b') = (b x 1) + (1 x b). 

We also have the following commutative diagram: 

H2n(sn X sn) 

~ r h" H 2n -1(S2n - 1). 

~ 
H2n(C(f)) 

Both A 1 and A 2 are isomorphisms, hence h'* is an isomorphism. Let us 
assume that the generator a E H 2n - 1(s2n-1) is chosen so that A1(a) = b x b; 
hence h'*(a') = b x b. To prove our assertion, apply the homomorphism 
h'* to the equation 

b' u b' = H(f) . d. 
The result is 

(b x 1 + 1 x b) u (b x 1 + 1 x b) = H(f)(b x b), 

hence H(f) = 2. If we had used the orientation of s2n-1 determined by the 
generator - a, we would have obtained H(f) = - 2. 

(4) Let f:S 2n - 1 -+sn, be a continuous map, and h:sn-+sn a map of 
degree k (i.e., h*(b) = kb). Then 

H(hf) = k2 H(f). 

(5) Let h:S2n - 1 -+ s2n-1 be a map of degree k (i.e., h*(a) = ka) and 
f:S 2n - 1 -+ sn a continuous map. Then 

H(fh) = k· H(f). 

The proof of Assertions (4) and (5) are left to the reader as exercises. 

Remarks. Assume that n is even and ~ 2. It follows from the preceding 
paragraphs that given any integer 2m, there exists a map f: s2n - 1 -+ sn such 
that H(f) = 2m. It is known that H(f) is of necessity an even integer, except 
when n = 2, 4, or 8. This was proved by Jose Adem [2] for n #- 2k, and by 
J. F. Adams [1] for n = 2\ k > 3. 

It is also known that two maps fo, f1 : S3 -+ S2 are homotopic if and only 
if H(fo) = H(f1)' In general, such a statement is not true for maps of s2n-1 
into sn, n > 2. However, it is known that there are only a finite number of 
homotopy classes of such maps having a given integer as Hopf invariant. 

EXERCISES 

4.1. Given any space X, define the suspension of X, denoted S(X), to be the quotient 
space of X x I obtained by identifying each of the subsets X x 0 and X x 1 to a 
point; it is a sort of "double cone" over X. Similarly, if f:X -> Yis a continuous 
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map, define S(f):S(X) -> S(Y) to be the map induced on quotient spaces by the 
map of X x I into Y x I which sends (x,t) to (fx,t). 
(a) If X = sn, prove that S(X) is homeomorphic to sn+ 1. 
(b) What is the relation between the homology groups of X and those of S(X)? 
(c) If U E HP(S(X)) and v E Hq(S(X)), where p > 0 and q > 0, prove that u u v = o. 
(d) If/o'!I:X -> Y, and 10 is homotopic to II, prove that S(fo) is homotopic to S(/d. 
(e) Let I: X -> Y; we would like to prove that c(S/) = S(Cf). Unfortunately, this 

is not quite true. Prove that there is a natural map S(Cf) -> C(Sf) which induces 
isomorphisms of homology and cohomology groups. 

(f) Let l:s2n- 2 -> sn-I be a continuous map; in view of (a), the Hopf invariant 
H(Sf) is defined. Prove that H(Sf) = O. Remark: The converse of this last 
statement is true "up to homotopy." To be more explicit, let g:s2n-1 -> sn be 
a map such that H(g) = o. Then there exists a map I: s2n - 2 -> sn - I such that 
9 is homotopic to S(f); see G. W. Whitehead, [6]. 

Bibliography for Chapter X 

[1] J. F. Adams, On the nonexistence of elements of Hopf invariant one, Ann. Math., 
72 (1960),20-104. 

[2] J. Adem, The iteration of Steenrod squares in algebraic topology, Proc. Nat. Acad. 
Sci., 38 (1952), 720-726. 

[3] N. Bourbaki, Topologie Generale, Hermann et Cie., Paris, 1947, Chapters VI and 
VIII. 

[4] H. Freudenthal, Ofrtaven, Ausnahme-gruppen, und Oktavengeometrie (mimeo
graphed), Utrecht, 1951, revised ed., 1960. 

[5] N. E. Steenrod, The Topology of Fibre Bundles, Princeton University Press, 
Princeton, 1951. 

[6] G. W. Whitehead, On the Freudenthal theorems, Ann. of Math., 57(1953), 209-228. 



Appendix: 
A Proof of De Rham's Theorem 

§1. Introduction 

In Chapter I we mentioned that some of the motivating ideas for the develop
ment of homology theory in the Nineteenth century arose in connection 
with such topics as Stokes's theorem, Green's theorem, Gauss's divergence 
theorem, and the Cauchy integral theorem. De Rham's theorem may be 
looked on as the modern culmination of this particular line of thought. 
It relates the homology and cohomology of a differentiable manifold to 
the exterior differential forms on the manifold. Exterior differential forms 
are objects which can serve as integrands of line integrals, surface integrals, 
etc., such as occur in the statement of the classical Green's theorem and 
Stokes's theorem. De Rham's theorem is of obvious importance, because 
it is a connecting link between analysis on manifolds and the topological 
properties of manifolds. 

In this appendix we will assume that the reader is familiar with the 
basic properties of differentiable manifolds, differential forms on manifolds, 
and the integration of differential forms over (differentiable) singular cubes. 
These topics are explained in many current textbooks, and there would be 
little point in our repeating such an exposition here. As examples of such 
texts, we list the following: M. Spivak [6], Flanders [3], Warner [9], and 
Whitney [10]. 

The first part of this chapter is devoted to using differentiable singular 
cubes to define the homology and cohomology groups of a differentiable 
manifold. We prove that in studying the homology and cohomology groups 
of such a manifold, it suffices to consider only differentiable singular cubes; 
the nondifferentiable ones can be ignored. 

251 
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Next, we introduce what may be called the De Rham cacha in complex 
of a differentiable manifold. This cochain complex consists of the exterior 
differential forms, with the exterior derivative serving as the coboundary 
operator. There is a natural homomorphism from this De Rham complex 
to the cochain complex (with coefficient group R, the real numbers) based 
on differentiable singular cubes. This homomorphism is defined on any 
exterior differential form of degree p by integrating that form over differ
entiable singular p-cubes. The general form of Stokes's theorem is precisely 
the assertion that this natural homomorphism is a cochain map. De Rham's 
theorem asserts that this natural cochain map induces an isomorphism 
on cohomology. 

The proof we give of De Rham's theorem is modelled on Milnor's proof 
of the Poincare duality theorem in Chapter IX. The reader who has worked 
through that proof should have no trouble grasping the structure of our 
proof of De Rham's theorem. Curtis and Dugundji [11] have also given 
a 'proof of De Rham's theorem along somewhat similar lines. 

§2. Differentiable Singular Chains 

Let M be an n-dimensional differentiable manifold of class COO (we assume 
the reader is familiar with this concept). In order to define a differentiable 
singular cube, we must make use of the fact that the standard unit p-cube, 

IP = {(Xl" .. ,Xp) E RPI0:s; Xi:s; 1, i = 1,2, ... ,p} 

is a subset of Euclidean space RP. For p > 0, a singular p-cube T:JP -+ M 
will be called differentiable if there exists an open neighborhood U of IP 
in RP and an extension T': U -+ M of T such that T' is differentiable (of class 
COO). We complete this definition by defining any singular O-cube to be 
differentiable. 

Remark: If a singular p-cube T:IP -+ M is differentiable, there will, in 
general, be many different choices for the open neighborhood U and the 
extension T': U -+ M. 

We now introduce the following notation: 

Q~(M) = subgroup of Qp(M) generated by the 
differentiable singular p-cubes, 

D~(M) = Dp(M) n Q~(M), 

C~(M) = Q~(M)/D~(M). 

The superscript S in the above notation is intended to suggest the word 
"smooth." We will refer to C~(M) as the group of differentiable or smooth 
p-chains of M. Note that C~(M) = Q~(M) = Qo(M) = Co(M). 
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Next, observe that if T:1P ~ M is a differentiable singular p-cube, then 
the faces AiT and BiT, 1 ::; i::; p, are all obviously differentiable singular 
(p - i)-cubes. It follows that op(T) E Q~_1(M). Thus QS(M) = {Q~(M),op} 
is a subcomplex of Q(M), and CS(M) = {C~(M)} is a subcomplex of C(M). 
We will also introduce the following notation: for any abelian group G, 

CS(M;G) = CS(M) ® G, 

Ct(M;G) = Hom(CS(M),G), 

H~(M;G) = Hp(CS(M;G», 
H~(M;G) = HP(Ct(M;G». 

We can now state the main theorem of this section: 

Theorem 2.1. Let M be a differentiable manifold. The inclusion map of chain 
complexes, 

induces an isomorphism of homology groups, 

H~(M) ~ HiM). 

Corollary 2.2. For any abelian group G, we have the following isomorphisms 
of homology and cohomology groups: 

H~(M;G) ~ Hp(M;G), 
H~(M;G) ~ HP(M;G). 

The corollary follows from the theorem by use of standard techniques 
(cf. Theorem V.2.3). Before we can prove the theorem, it is necessary to 
discuss to what extent the methods and results of Chapters II and IlIon 
homology theory carryover to the homology groups H~(M; G) for any 
differentiable manifold M. We will now do this in a brief but systematic 
fashion. 

(a) Let M1 and M2 be differentiable manifolds, and let f:M 1 ~M2 be 
a differentiable maps of class Coo. If T: 1P ~ M 1 is a differentiable singular 
p cube, in M b then fT: 1P ~ M 2 is also differentiable. Hence we get an 
induced chain map 

f# :CS(M 1) ~ CS(M2 ) 

with all the usual properties. 
(b) Two differentiable maps fO'/1:M 1 ~ M 2 will be called differentiably 

homotopic if there exists a map f:1 x M1 ~ M2 such that fo(x) = f(O,x) 
and f1(X) = f(i,x) for any x E M 1, and in addition, there exists an open 
neighborhood U of 1 x M 1 in R x M 1 and a map f': U ~ M 2 which is an 
extension of f, and is differentiable of class Coo. The technique of §I1.4 
can now be applied verbatim to prove that the induced chain maps fo#, 
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11 # : CS(M 1) -+ CS(M 2) are chain homotopic. This has all the usual conse
quences; in particular, the induced homomorphisms on homology and 
cohomology groups are the same. 

(c) An open, convex subset if Rn is differentiably contractible to a point; 
in fact, the standard formulas for proving that such a subset is contractible 
are differentiable homotopies in the sense of the preceding definition. From 
this it follows that if U is an open, convex subset of Rn, then 

HS(U;G) = {G for p = 0, 
P ° for p =1= 0, 

with similar formulas for H~( U; G). 
(d) Let M be a differentiable manifold, and let A be a subspace of M 

which is a differentiable submanifold. For example, A could be an arbitrary 
open subset of M, or A could be a closed submanifold of M. Then we can 
consider CS(A) as a subcomplex of CS(M); hence we can consider the quotient 
complex CS(M)/CS(A) = CS(M,A) and we obtain exact homology and coho
mology sequences for the pair (M,A) using differentiable singular cubes. 

(e) If T:JR -+ M is a differentiable singular cube, the subdivision of T, 
Sdn(T) as defined in §II.7, is readily seen to be a linear combination of 
differentiable singular cubes. Hence the subdivision operator defines a 
chain map 

just as in §II.7. Unfortunately, the chain homotopy CPn:Cn(M) -+ Cn+ 1(M) 
defined in§II.7 does not map C~(M) into C~+ l(M). This is because thefunction 
111:[2 -+ [t,1] is not differentiable (the function 110:[2 -+ [is differentiable). 
However, it is not difficult to get around this obstacle. Consider the real
valued function 11'1 defined by 

, ( ) _ 1 + Xl - XIX2 
111 Xl,X2 - 2 . 

- X2 

It is readily verified that 11'1 maps [2 into the interval [t,1], and that 111 
and 11'1 are equal along the boundary of the square [2. bbviously, 11'1 is 
differentiable in a neighborhood of [2. Thus if we substitute 11~ for 111 in 
the formula for Ge(T) in §II.7, then GiT) will be a linear combination of 
differentiable singular cubes whenever T is a differentiable singular cube. 
Moreover, the operator Ge will continue to satisfy identities (f.1) to (fA) 
of §II.7. Thus we can define a chain homotopy IPn: C~(M) -+ C~+ l(M) using 
the modified definition of Ge . From this point on, everything proceeds 
exactly as in §II.7. The net result is that we can prove an analog of 
Theorem II.6.3 for singular homology based on differentiable singular cubes, 
and the excision property (Theorem II.6.2) holds for this kind of homology 
theory. 
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(f) Suppose that the differentiable manifold M is the union of two open 
subsets, 

M= Uu V. 

Then we can obtain an exact Mayer-Vietoris sequence for this situation 
by the method described in §III.5. 

(g) Finally, we note that an analog of Proposition III.6.1 must hold for 
homology groups based on differentiable singular cubes; this is practically 
obvious. 

With these preparations out of the way, we can now prove Theorem 2.1. 
The pattern of proof is similar to Milnor's proof of the Poincare duality 
theorem in §4 of Chapter IX, only this proof is much easier. We prove the 
theorem for the easiest cases first, and then proceed to successively more 
general cases. 

Case 1: M is a single point. This case is completely trivial. 

Case 2: M is an open convex subset of Euclidean n-space, Rn. This follows 
easily from Case 1, since M is differentiably contractible to a point in this case. 

Case 3: M = U u V, where U and V are open subsets of M, and the 
theorem is assumed to be true for U, V, and U n V. This case is proved 
by use of the Mayer-Vietoris sequence and the five-lemma. 

Case 4: M is the union of a nested family of open sets, and the theorem 
is assumed to be true for each set of the family. Then the theorem is true 
for M. The proof is by an easy argument using direct limits, and Proposition 
III.6.1. 

Case 5: M is an open subset ofRn. Every open subset ofRn is a countable 
union of convex open subsets, 

00 

M= U Ui· 
i= 1 

For each Ui the theorem is true by Case 2. For any finite union, Ui= 1 U i 

the theorem is true by induction on n, using Case 3 and the basic properties 
of convex sets. Then one uses Case 4 to prove the theorem for M. 

Case 6: The general case. Any differentiable manifold can be covered 
by coordinate neighborhoods, each of which is diffeomorphic to an open 
subset of Euclidean space. Using Case 4, Case 5, and Zorn's lemma, we see 
that there must exist a nonempty open subset U c M such that the theorem 
is true for U, and U is maximal among all open sets for which the theorem is 
true. If U i= M, then we can find a coordinate neighborhood V such that 
V is not contained in U. By Case 3, the theorem is true for U u V, con
tradicting the maximality of U. Hence U = M, and the proof is complete. 
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§3. Statement and Proof of 
De Rham's Theorem 

For any differentiable manifold M, we will denote by Dq(M) the set of Coo 
differential forms on M of degree q. Dq(M) is a vector space over the field 
of real numbers. As usual, d:Dq(M) -+ Dq+ 1(M) will denote the exterior 
differentia1. Since d2 = 0, 

D*(M) = {Dq(M),d} 

is a cochain complex, which will be referred to as the De Rham complex 
of M. If f: M 1 -+ M 2 is a differentiable map (or class COO), then there is 
defined in a well-known way a homomorphism f*: Dq(M 2) -+ Dq(M 1)' The 
homomorphism f* commutes with the exterior differential d, and hence 
it is a cochain map of D*(M 2) into D*(M 1)' 

Given any differentiable singular n-cube T:r -+ M, and any differential 
form W E Dn(M), there is defined the integral of w over T, denoted by 

(cf. Spivak, [6J, p. 1000.). The basic idea of the definition is quite simple: 
T*(w) is a differential form of degree n on the cube r, hence it can be written 

T*(w) = f dX 1 dX2 ••• dXn 

in terms of the usual coordinate system (XhX2, ... ,xn) in r. Then S T w is 
defined to be the n-fold integral of the COO real-valued function f over the 
cube r. Actually, the preceding definition only makes sense if n > 0; in 
case n = 0, w is a real-valued function, and r = ]0 is a point. In this case 
S T W is defined to be the value of the function w at the point T(l°) E M. 

More generally, if 
U = LPiTi 

is a linear combination of differentiable singular n-cubes, then we define 

With this notation, we can write the generalized Stokes's theorem as follows: 
For any U E Q~(M) and any w E Dn- 1(M), 

r dw = r w. Ju Jilu 
For the proof, see Spivak [6J, p. 102-104. 

At this stage, we should mention three formal properties of the integral 
of a differential form over a singular chain. The proofs are more or less 
obvious. 

(a) The integral Su w is a bilinear function 

Q~(M) x Dn(M) -+ R. 
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In other words, for each u it is a linear function of w, and for each w it is 
a linear function of u. 

(b) Let f: M 1 ~ M 2 be a differentiable map, u E Q~(M 1), and w E D"(M 2). 
Then 

L f*(w) = ff#(U) w. 

(c) If u is a degenerate singular n-chain, i.e., u E D~(M), then 

for any differential form w of degree n. 
In view of Property (a), we can define a homomorphism 

q>:D"(M) ~ Hom(Q~(M),R) 
by the formula 

<q>w,U) = L w 

for any w E D"(M) and any U E Q~(M). The generalized Stokes's theorem now 
translates into the assertion that q> is a cochain map 

D*(M) ~ Hom(QS(M),R) 

and Property (c) translates into the assertion that the image of q> is contained 
in the subcomplex Hom(CS(M),R) = Ct(M;R); thus we can (and will) look 
on q> as a cochain map 

q>:D*(M) ~ C~(M;R). 

Finally, Property (b) is equivalent to the assertion that the cochain map q> 
is natural vis-a-vis differentiable maps of manifolds. 

Theorem 3.1 (De Rham's theorem). For any paracompact differentiable mani
fold M, the cochain map q> induces a natural isomorphism q>*: H"(D*(M» ~ 
H~(M;R) of cohomology groups. 

If we combine this result with Corollary 2.2, we see that H"(D*(M» is 
naturally isomorphic to H"(M;R) for any paracompact differentiable 
manifold M. 

PROOF OF DE RHAM'S THEOREM. The proof proceeds according to the same 
basic pattern as Milnor's proof of the Poincare duality theorem in Chapter IX. 

Case 1: M is an open, convex subset of Euclidean n-space, R". In this 
case, we know from the results of §2 that 

Similarly, 

s {R H"(M;R) = 0 
ifn = 0, 

ifn "" O. 

{R ifn=O, 
H"(D*(M» = 0 

ifn "" O. 



258 Appendix: A Proof of De Rham's Theorem 

This is essentially the content of the so-called Poincare lemma (see Spivak, 
[6J, p. 94). Thus to prove the theorem in this case, we only have to worry 
about what happens in degree O. This is made easier by the fact that in 
degree 0, every cohomology class contains exactly one cocycle. The details 
of the proof are simple, and may be left to the reader. 

Case 2: M is the union of two open subsets, U and V, and De Rham's 
theorem is assumed to hold for U, V, and U n V. Then De Rham's theorem 
holds for M. 

To prove the theorem in this case we use Mayer-Vietoris sequences. We 
already have a Mayer-Vietoris sequence for cohomology based on differen
tiable singular cubes; we will now derive such a sequence for the De Rham 
cohomology. Let i:U n V ~ U, j:U n V ~ V, k:U ~ M, and Z:V ~ M 
denote inclusion maps. Define cochain maps 

by 

a:D*(M) ~ D*(U) EB D*(V), 

f3:D*(U) EB D*(V) ~ D*(U u V) 

a(w) = (k*w,Z*w), 

f3(W 1,W2) = i*(W1) - j*(W2)' 

We assert that the following sequence 

o ~ D*(M) ~ D*(U) EB D*(V) .! D*(U n V) ~ 0 (3.1) 

is exact. The only part of this assertion which is not easy to prove is the fact 
that 13 is an epimorphism. This may be proved as follows. Let {g,h} be a COO 
partition of unity subordinate to the open covering {U,v} of M. This means 
that g and h are COO real-valued functions defined on M such that the 
following conditions hold: g + h = 1,0 :=; g(x) :=; 1 and 0 :=; hex) :=; 1 for any 
xEM, the closure of the set {xEMlg(x)#O} is contained in U, and the 
closure of the set {x E M I hex) # O} is contained in V. The hypothesis that 
M is paracompact implies the existence of such a partition of unity. The 
proof is given in many textbooks, e.g., De Rham [2J, p. 4, Sternberg, [8J, 
Chapter II, §4, Auslander and MacKenzie, [1J, §5-6. Now let w be a differ
ential form on U n V. Then gw can be extended to Coo differential form Wy 
on V by defining Wy(x) = 0 at any point x E V - U. Similarly, hw can be 
extended to a Coo differential form Wu on U by defining wu(y) = 0 at any 
point y E U - V. Then it is easily verified that 

f3(wu - Wy) = W 
as desired. 

On passage to cohomology, the short exact sequence (1) gives rise to a 
Mayer-Vietoris sequence for De Rham cohomology. 

Similarly, the Mayer-Vietoris sequence for cohomology based on differ
entiable singular cubes is a consequence of the following short exact sequence 
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of cochain complexes (cf. §III.5): 

0--+ CHM,Olt) ~ q(U) EB ct(V) ~ Ct(U r. V) --+ O. (3.2) 

Here Olt = {U, V} is an open covering of M, and the definition of the cochain 
maps rx' and {3' is similar to that of rx and {3 above. 

Finally, we may put these two short exact sequences together in a com
mutative diagram as follows: 

o ~ D*(M) ~ D*(U)EDD*(V) ~ D*(U n V) --+ 0 

q(M) rp 

la 
o --+ q(M,oIJ) ~ q(U) ED q(V) ~ q(U n V) --+ o. 

The cochain map labelled a is induced by the inclusion of the subcomplex 
CS(M,Olt) in CS(M); it induces an isomorphism on cohomology. Clearly, each 
square of this diagram is commutative. On passage to cohomology we obtain 
the diagram we need to prove this case of De Rham's theorem. 

Case 3: M=U~lUi' where UlCU2c"'cUicUi+lc'" is a 
nested sequence of open sets, and for each i, Ui is compact. It is assumed that 
De Rham's theorem holds for each Ui; we will show that it holds for M. 
To carry out the proof in this case, we need to make use of inverse limits. 
The reader can find all the required material on inverse limits in the appendix, 
pp. 381-410 of Massey [5J. 

First of all, for each index i there is a cochain map D*(M) --+ D*(U i ) 

induced by inclusion of U i in M. This is a compatible family of maps, and 
D*(M) is the inverse limit of the inverse system of cochain complexes {D*(U;)} 
(this is practically obvious from the definitions of inverse limit and differential 
form). Moreover, for each q, the inverse sequence or tower {Dq(Ui)} satisfies 
the Mittag-Leffler condition; this is an easy consequence of the assumption 
that each Ui is compact. It follows that the first derived functor 

liml Dq(U;) = 0 

for all q. Hence we can apply Theorem A.19 on pp. 407-408 of Massey [5J to 
conclude that there exists a natural short exact sequence 

0--+ liml Hq-l(D*(U i» --+ Hq(D*(M» --+ lim inv Hq(D*(U i» --+ O. (3.3) 

Next, we will prove similar facts about the cochain complexes Ct(Ui;R) 
and C*(M;R). We know that the chain complex CS(M) is the direct limit of 
the chain complexes CS(Ui), . 

CS(M) = dir lim CS(Ui). 
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Applying the functor Hom( ,R), we see that 

Ct(M;R) = Hom(CS(M);R) 

= inv lim Hom(CS(Ui);R) 

= inv lim q(Ui;R); 

(compare Exercise 2 on p. 397 of Massey [5]). Moreover, for each index i, 
the homomorphism 

q(Ui+l;R) --+ CHUi;R) 

is obviously an epimorphism. Therefore the Mittag-Lefiler condition holds 
for the inverse sequence of cochain complexes {q(Ui;R)}. Applying 
Theorem A.19 of Massey [5] to this situation, we obtain the following 
natural short exact sequence: 

0--+ liml H~-l(Ui;R) --+ H~(M;R) --+ lim inv HHUi;R) --+ O. (3.4) 

We may now apply the cochain map cp to obtain a homomorphism from 
Sequence (3.3) into the Sequence (3.4). This homomorphism enables one to 
easily complete the proof in this case. 

Case 4: M is an open subset of Euclidean space. Every such M is obviously 
the union of a countable family of convex open subsets {U i } having the 
property that each Vi is compact and Vi c M. Then one proves that De 
Rham's theorem holds true for finite unions 

n 

U U i 
i= 1 

by an induction on n, using Case 2 and the basic properties of convex sets. 
Next one passes to the limit as n --+ 00, using Case 3. 

Case 5: M is a connected paracompact manifold. It is known that any 
connected paracompact manifold has a countable basis of open sets (for a 
thorough discussion of the topology of paracompact manifolds, see the 
appendix to Volume I of Spivak [7]). It follows that M is the union of a 
countable family of open sets {Ui} such that each Ui is a coordinate neigh
borhood (and hence diffeomorphic to an open subset of Euclidean space) 
and Vi is compact. Let v" = U 1 U U 2 U ... U Un. Using Cases 2 and 4, 
we can prove by induction on n that De Rham's theorem is true for each 
v". Note that v" is compact, and M = U:,= 1 v". Hence it follows from Case 3 
that De Rham's theorem holds for M. 

Case 6: The general case. By Case 5, De Rham's theorem is true for each 
component of M. It follows easily that it is true for M. 

This completes the proof of De Rham's theorem. We conclude by pointing 
out two directions in which De Rham's theorem can be extended: 

(a) One of the basic operations on differential forms is the product: if 
OJ and () are differential forms of degree p and q respectively, then their 
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product, OJ 1\ e, is a differential form of degree p + q. Moreover, the differen
tial of such a product is given by the standard formula: 

d(OJ 1\ e) = (dOJ) 1\ e + (-l)POJ 1\ (de). 

It follows that this producf in the De Rham complex D*(M) gives rise to a 
product in H*(D*(M)), just as the cup product in the cochain complex 
q(M;R) gives rise to cup products in HHM,R). It can then be proved that 
the De Rham isomorphism, 

q>*:H*(D*(M)) -+ H!(M;R) 

preserves products. However, the proof is of necessity rather roundabout, 
since the cochain map q>:D*(M) -+ q(M;R) definitely is not a ring homo
morphism. For a discussion and proof of these matters in a context somewhat 
similar to that of this appendix, see V. Gugenheim [4]. Gugenheim's paper 
makes heavy use of the technique of acyclic models. 

(b) Given any differential form OJ on M, we define the support of OJ to 
be the closure of the set {x E M I OJ(x) =I- O}. With this definition, it is readily 
seen that the set of all differential forms of degree p which have compact 
support is a vector subspace of DP(M), which we will denote by DnM). 
Moreover, if the support of OJ is compact, then so is the support of d(OJ). 
Hence D:(M) = {D~(M),d} is a cochain subcomplex of D*(M). 

Now consider the cochain map q>:D*(M) -+ CHM;R). It is clear that if 
OJ is a differential form with compact support, then q>(OJ) is a cochain with 
compact support in accordance with the definition in §IX.3 (to be precise, 
that definition has to be modified slightly because we are using cochains 
which are defined only on differentiable singular cubes). It can now be proved 
that q> induces an isomorphism of Hq(D:(D:'(M)) onto the q-dimensional 
cohomology group of M with compact supports and real coefficients. The 
details are too lengthy to include in this appendix. Such a theorem is usually 
proven in books on sheaf theory. 
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