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Preface

In group theory it is natural to distinguish classes of groups according to the extent
to which the group operation is commutative. At one extreme we have the class of
commutative (abelian) groups and at the other — free groups or groups close to them,
as well as nonabelian simple groups, that is, groups without any nontrivial normal
subgroups. Commutativity of elements a and b is equivalent to the triviality of
their commutator |a, b] = a~'b'ab. So abelian groups are defined by the identity
[x, y] = 1 and more complicated commutator identities define classes of groups
which are close to abelian, but less commutative. The identity

[...leh.rzl,x-s,l, .....-'1."..“] = ]

defines the variety of nilpotent groups of class ¢, and the identity 8, = 1 of 2f
variables, where 8, is defined recursively by

4y = [II-XZL Bk Rl = [8p(xy, ..., Iz*:l-ﬁ;,l:.tgl.H ..... X)),

defines the variety of soluble groups of derived length k. Another way to define
these classes of groups is in terms of the existence of a series of normal subgroups
with central or commutative factors, respectively.

Study of nilpotent groups often aims to prove that they possess some degree
or other of commutativity. For example, the positive solution of the Restricted
Bumnside Probiem for groups of exponent p* (Kostrikin, 1959, for k = 1, and
Zel'manoy, 1990, for all k) means that there is a function f(p, k,m) such that
the nilpotency class of any m-generated finite p-group of exponent p* does not
exceed f(p, k,m).

The fact that nilpotent groups are close 1o being commutative means that it is
possible 1o apply linear methods o their study. Using the group operations one
can define the structure of a Lie ring on the direct sum of the factors of the lower
central series. The action of a group on an invariant commutative section looks like
the action of a matrix group on a vector space. However, although for such more
linear objects as Lie rings or matrix rings powerful results and highly developed
techniques are available, there may be difficulties in using them when it comes to
going from groups to rings and back again.

In this book linear methods in the theory of nilpotent groups are applied to
the study of automorphisms of nilpotent groups. We prove the analogue of the
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positive solution of the Restricted Burnside Problem for groups with a splitting au-
tomorphism of prime order. This gives rise to a structural theory of finite p-groups
admitting a partition which includes the positive solution of the Hughes problem for
almost all (in some precise sense) finite p-groups. The Higman-Kreknin-Kostrikin
Theorem on the boundedness of the nilpotency class of Lie rings (or nilpotent
groups) admitting a regular automorphism of prime order, is generalized to the
case where the number of fixed points is finite: almost regularity of the auto-
morphism of prime order implies almost nilpotency — that is, the existence of a
nilpotent subring (or subgroup) of bounded index and of bounded nilpotency class.
Kreknin's Theorem on the solubility of Lie nings with regular automorphisms of
finite order is used 10 prove the “almost solubility”, in an analogous sense, of a
nilpotent p-group with an almost regular automorphism of order p*. Linear and
combinatorial methods are used to prove a theorem of a rather general nature
which gives a positive solution to the Restricted Burnside Problem for a variety of
operator groups under the hypothesis that this problem has a positive solution for
the ordinary variety obtained from this variety by replacing all operators by | in
1ts identities.

The first part “Linear methods™ is, in fact, a textbook. The existence of many
books or chapters of books devoted to nilpotent groups — for instance, those of
Baumslag [6], Gorenstein [25], M. Hall [27], P. Hall [28], Huppert and Blackburn
|49], Kargapolov and Merzlyakov [51], Kurosh [85] and Warfield [153] - makes it
a difficult task to writc something new. We have tried to select only that material
which is necessary for the exposition of the aforementioned results from the second
part of the book. “Automorphisms”. Practically every result proved in the first part
is in some way used in the second: either there is a reference to it or to its proof,
or its statement and proof prepares the reader for more complicated arguments of a
similar nature in the second part. But, of course, we have not followed this rule too
strictly in the hope that the reader may get to know at least some of the classical
methods in the theory of nilpotent groups. However, many important results are
only briefly mentioned: for example, Kostrikin’s Theorem on Engel Lie algebras
15 stated here without proof. On the other hand, in the interests of completeness,
we reproduce proofs of the theorems of Higman, Kreknin and Kostrikin on regular
automorphisms.

The author hopes that the second part is something more than a collection of
several research papers under one cover. The material is presented here with more
detail and perhaps more intelligibly than originally. Morcover, some proofs are
longer in an attempt to make the book more self-contained. Repetition of typical
arguments should help with their mastery.

This book is based on a special course given at Novosibirsk University in 1988-
00. The author thanks Andrei Vasil’ev and Natasha Makarenko for several valuable
remarks.

The book consists of seven chapters.
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Chapter 1, as well as containing definitions, notation and some basic facts from
group theory and ring theory, also contains the proofs of some useful results.
Among them are Higman’s Lemma and several theorems about fixed points of
automorphisms.

Chapter 2 is devoted to nilpotent groups. It deals with several types — from
torsion-free groups to finite p-groups. Many of the results here are, of course.
based on commutator calculations.

Chapter 3 introduces associated Lie rings. Here we prove the Magnus-Sanov
Theorem on the (p — 1)-Engel condition for the associated Lie ring of a group
of prime exponent p. We also prove the mlpotency of soluble groups of prime
exponent. The first section of the chapter contains statements of some Lie ring
analogues of group theoretic results.

Chapter 4 opens the second part of the book. First, we prove theorems of Higman,
Kreknin and Kostrikin about regular automorphisms of Lie rings. Then the author’s
theorem about Lie rings admitting an almost regular automorphism of prime order
 is proved: if the number of fixed points (dimension of the subspace) is finite then
the Lie ring contains a subring of finite index (codimension) which is nilpotent of
p-bounded class.

In Chapter 5 theorems on nilpotent groups with regular or almost regular au-
tomorphisms of prime order are proved using the results of Chapter 4. Among
these results is also a “modular™ theorem, dealing with a finite p-group with an
automorphism of order p. (The latest resuits of Shalev and the author on p-groups
admitting automorphisms of order p* with few fixed points are contained in Chap-
ter 8.) We have included also theorems of Makarenko, who has refined estimates
for the nilpotency class of subgroups, and of Medvedev, who has generalized our
theorem on periodic nilpotent groups with an almost regular automorphism of
prime order to the case of an arbitrary nilpotent group. The author is grateful to
Makarenko, Medvedev and Shalev for providing proofs of their theorems.

Chapter 6 contains two theorems of a rather general nature concerned with
bounding nilpotency classes of nilpotent groups from some varieties of groups
with operators. Let £2 be a group and let {v, ) be a family of £2-identities, defining
the variety of operator groups 9. We denote by {v, ] the family of (ordinary) group
identities obtained from {v,] by replacing all operators from €2 by 1 and by M the
variety of groups defined by identities {uv,}. First, suppose that there is a constant
¢ bounding the nilpotency class of any nilpotent group in M. The first theorem
states that, under this condition, if for an Q-group G € MM the semidirect product
G > £2 15 nilpotent then the nilpotency class of & 15 bounded by the same number
¢. The author’s theorem from [56] on the nilpotency of a soluble group G with a
splitting automorphism @ of prime order p, that is, such that
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for all x € G, is a prototype of this result. In Chapter 6 this theorem from [56]
is deduced from the more general theorem mentioned above; it is related to the
structural theory of finite p-groups with a partition (in other terms, finite p-groups
which “split™) and is applied in Chapter 7. A further consequence is a bound in
terms of p only for the nilpotency class of the commutator subgroup of a finite
p-group of maximal class.

The second theorem of Chapter 6 gives a positive solution to the Restricted
Burnside Problem for a variety of operator groups 9 provided that this problem
has a positive solution for the corresponding ordinary variety 1. More exactly,
suppose that the Restricted Burnside Problem has a pusuwe solution lor the variety
M in the sense that locally nilpotent groups from m constitute a subvariety and,
moreover, that the associated Lie ring of a free group of 9N salisfies a system of
multilinear identities which defines a locally nilpotent variety of Lie rings with a
function f(d) bounding the nilpotency class of a d-generated ring. It is proved that
if for an Q-group G € M the semidirect product G > £ is locally nilpotent then
the group G belongs to a locally nilpotent variety in which the nilpotency class of

a d-generated group is bounded by the function f (a’ JTQSI;I“'_]') {An example shows

that the word “multilinear” in the hypothesis of the theorem is essential.)

One of the main tools in the proofs is Higman’s Lemma, proved in Chapter 1.

Note that in both theorems the strong condition that the semidirect product G~ §2
is (locally) nilpotent is automatically satisfied if both G and S are (locally) finite
-groups.

The main theorem from |61}, which bounds the nilpotency class of a d-generated
nilpotent group with a splitting automorphism of prime order p, is a prototype of
the second theorem. This theorem from [61] is the basis for the structural theory of
finite p-groups admitting a partition. This theory, expounded in Chapter 7, includes
a positive solution of the Hughes problem for almost all finite p-groups — in spite of
the fact that there exist counterexamples to the Hughes conjecture. In Chapter 7 we
give also the original proof of the theorem from [61], which yields some additional
information and illustrates some aspects of Lie ring technique. This proof 15 reduced
by known results to the case of finite p-groups. It uses Kostrikin's Theorem on
(p — 1)-Engel Lie algebras and generalizations of Higman’s Theorem on regular
automorphisms of prime order to the case of a p-group with an antomorphism of
order p from Chapter 5. The main technical lemma is an analogue of the Magnus-
Sanov Theorem.

The results of Chapters 5 and 7 give, in a certain sense, a complete picture of the
structure of nilpotent groups with automorphisms of prime order close to regular
(splitting or almost regular). Much less is known about nilpotent groups with such
automorphisms of composite order (in contrast to the progress made in the study of
finite groups with almost regular automorphisms modulo the structure of nilpotent
sections).
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Chapter 8 contains the first major breakthrough in this direction. In the “modular”
case where a nilpotent p-group £ admits an automorphism of order p* with p™
fixed points, it is proved that I is almost soluble with a strong bound, in terms of
p and k only, on the derived length of a subgroup of bounded index. The proof
is based on Kreknin's Theorem on Lie rings from Chapter 4. It uses a group-
theoretic corollary to Kreknin's Theorem, obtained with the help of the Mal'cev
correspondence given by the Baker-Hausdorff formula, and some techniques from
the theory of powerful p-groups, especially, from Shalev’s work [129], where a
weak bound, in terms of p, k and m, for the derived length of P was obitained.

The necessary preliminary material on the Mal’cev correspondence and on pow-
erful p-groups i1s included in Chapter 8 without proofs.

Chapters 48 contain comments on the present state of the theory, including
unsolved problems and connections with other areas.

All propositions, formulae and particular statements referred to subsequently,
are numbered by triples a.b.c, where a is the number of the chapter and b is the
number of the section.

The interdependence of the chapters is described by the following scheme:

| = 2 = 3 == 4
XL XL X
6 —- 7 « 5 8

This book was written when the author was in Freiburg (FRG) as a research
fellow of the Alexander von Humboldt Foundation. The author thanks the Foun-
dation for its generous support in providing the opportunity to do research work
in Germany which facilitated the writing of this book.

The author is also grateful o the Mathematics Institute of the Albert-Ludwigs-
University of Freiburg and, in particular, to Professor O.H. Kegel, for their help
and hospitality.

The author thanks Professor J.C. Lennox (Cardiff) for his help in language
polishing and for many valuable suggestions improving the style of the book.

The author is grateful to the Publishers, Verlag de Gruyter, and especially to
Dr. M. Karbe, for their friendly, patient and fast work at all stages from the
manuscript to the final galley proofs.

E I Khukhro
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Chapter 1

Preliminaries

We assume that the reader is acquainted with the basic notions of linear algebra,
group theory and ring theory at the level of the first 2-3 years of a university
course in higher algebra. In particular, we assume as known the notions of group,
subgroup, permutation group, automorphism, free group, verbal subgroup, Sylow
subgroup, ring, subring and ideal. We also assume the homomorphism theorems
and the theorems on the structure of cyclic groups and of finitely generated abelian
groups. We take as known also the definition of soluble groups (though the def-
inition and main properties of nilpotent groups are given for completeness sake
in Chapter 2). If necessary, this material may be found in university textbooks on
higher algebra, for example [77, 86, 105], and in textbooks on group theory, for
example [51, 85, 27].

In this chapter we fix some notation and recall some definitions and known facts.
A few useful propositions will be proved. Among them are Higman's Lemma and
some theorems on fixed points of automorphisms.

The sets of all complex, real, rational, integer and natural numbers are denoted
by C, R, Q, Z, N, respectively.

We shall say that a quantity depending on n is n-bounded (or bounded in terms
of n), if it is bounded by some function depending only on n; the analogous
expression — (iy, n1, ...)-boundedness (or boundedness in terms of ny,ny, . .) —
will also be used where several parameters are involved.

§ 1.1 Groups

The group, generated by a set M, is denoted by (M), if M is given by some
condition P, that 1s M = {x| FPix)}. then we write (M) = (x| P(x)).
By a* = g~ 'ag we denote the conjugate of the element a under the element g.
For subsets M and N of a group we write

MV =(m"lmeM, neN); M-N={m-nlmeN, neN).
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In particular (M%) and {(a"“) denote the normal closures of the subset M and of
the element @ in a group G, that is, the smallest normal subgroups of G containing
M and a, respectively.

The fact that A is a normal subgroup of a group G is denoted by A 2 G; if
a subgroup does not coincide with the whole group, we say that it is a proper
subgroup and use the strict inclusion signs for subgroups and normal subgroups,
< and <, respectively.

By G = B~ A we denote the semidirect product G of groups B and A: that is

G=B-A, B4G and BNA=1.

A subgroup of a group is said to be characteristic if it i1s invariant under all
automorphisms of the group. For example, if the Sylow p-subgroup is normal,
then it is unique and therefore characteristic. Since a characteristic subgroup is
also invariant under all inner automorphisms, that is, automorphisms induced by
conjugation by the elements of the group, it is also normal. A characteristic sub-
group of a normal subgroup is normal in the whole group, and a characteristic
subgroup of a characteristic subgroup is characteristic in the whole group.

If N € G, we use congruences in a group G modulo N to indicate equality of
images of elements or subsets in the factor-group G/N:

a=b(mod Ny aN=bN; H=K (mod N) & HN = KN.

The subsets
Ng(M) = {g € G| M* = M)
and
Co(M)={g e G|l gm=mg forall m e M}

are subgroups called, respectively, the normalizer and the centralizer of the subset
M in the group G; if the subset M = {m} consists of only one¢ element, then we
write Cg(m) instead of Cg;({m}).

A section of a group G is a factor-group M/N where M and N are arbitrary
subgroups of G and, of course, N <1 M. A section is said to be normal if both
subgroups are normal: M 1 G, N 94 G.

By [a, b] = a~'b~'ab we denote the commutator of the elements ¢ and b in a
group. The mutual commutator subgroup [M, N of arbitrary subsets M and N of
a group 1s defined by

[M,N]={lm.n]lmeM, ne N}

It is useful o know that |[M, N] 9 (M, N). We denote the commutator or derived
subgroup of the group G by G’ = G'" = |G, ). The members of the derived
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serics of G are defined by induction:
G" =G = (G, G']. G = (G, GW).
We denote by y,(G) the members of the lower central series of G:
vilG) =G, ¥%41(G) = |r(G). G].
We denote the centre of G by Z(G):
Z(G)={ze G| zg =gz ftorall g € G},

which is, of course, a normal subgroup of G. By £;(G) we denote the members of
the upper central series of G: ,(G) = Z(G), and inductively £,4,(G) is the full
inverse image in (¢ of the centre Z(G/Z,(()) of the factor-group G /L (G).

We define (composite) commultators in the elements of a set X (as formal ex-
pressions) inductively by their weight: the elements of X are the commutators of
weight 1; if ¢; and ¢ are commutators of weights ry and r» in elements of X,
then [y, ¢2] is a commutator in elements of X of weight rj + r.. We also define
the set of elements occurring in the commutator, with appropriate multiplicities,
and the set of subcommutators: for commutator of weight 1 both sets consist of
the commutator itself as the only element; in the commutator ¢y, 2] exactly those
elements of X occur, which occur either in ¢ or in ¢, their multiplicities being
summed, and the set of subcommutators of [¢), ¢2] 1s the union of the sets of
subcommutators of ¢, and ¢; together with ¢; and ¢» themselves. We also say that
a commutator ¢ of the elements of X has weight w in the variable x € X, if x
occurs in ¢ with multiplicity w.

The commutator

... lley, azl, asl. ... .axl

is called simple and is denoted by |a;. as. ... a .

A group G is said to have finite exponent (or period) n, if g" = 1 forall g € G.
By G" = (g"| g € G) we denote the subgroup of G, generated by the n-th powers
of all of its elements. It is clear, that this is a characteristic subgroup of G and is
the smallest normal subgroup of G for which the factor-group has exponent n.

A group G is said 1o be a periodic group (or torsion group) if each of its elements
has finite order. If, in addition, each element has order a power of some fixed prime
number p, then G is said to be a p-group, and if the orders of all elements are not
divisible by p, then G is said to be a p'-group. If P is a p-group, @;(P) denotes
the subgroup (g € P| g" = 1).

The minimal number of generators of a finite abelian group is called its rank.

An abelian group of prime exponent p is said to be elementary; it may be
regarded as a vector space over the finite field G F(p) = Z/ pZ of order p: vector
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addition is the group operation, and multiplying by the residue { modulo p is
equivalent to taking the i-th power. The automorphisms of the group are the linear
transformations of this vector space.

A chain of nested subgroups

<K <K;y=...=K,=0C

is called a series of G of length n. A series is said 1o be subnormal, if K; < K,
for all i; it is said to be normal, if K; <9 & for all i. The factor-groups K4, /K;
of a subnormal series are also called its factors.

Although, as a rule, the group operation is denoted by the multiplication sign
{which is often omitted) and the identity element by |, in the case of commutative
groups sometimes additive notation is used: + for the group operation and 0 for
the identity element.

The symmetric group of all permutations of n symbols is denoted by S,,.

Schreier's Theorem states that a subgroup of finite index m in a finitely generated
group generated by n elements is itself finitely generated by an (m, n)-bounded
number of elements.

Let = be a set of prime numbers. Its complement in the set of all primes is
denoted by x’. A subgroup of a finite group G, whose order is divisible only by
primes from 7 and its index only by primes from ', is called a Hall 7 -subgroup
of G.

A local covering of a group G is a system of its subgroups {H,| ¢ € A} such
that G = |_J H,, and for any two subgroups H,, Hg, a, B € A, there is a subgroup

H,, y € A, containing them both: H,, Hgs € H,. Mal'cev's Local Theorem
asserts that if all of the subgroups of a local covering of a group satisfy some
group-theoretic property, which may be expressed by a quasiuniversal formula in
predicate calculus, then the group itself also satisfies this property.

A group G is said to be residually finite if it has a system of normal subgroups
{N,} such that all of the factor-groups G /N, are finite and (| N, = 1 (or, equiv-

alently: for each element g € G there is a normal subgroup HN (g) of finite index
in G such that g & N{g)).

§ 1.2 Rings and modules

The finite field of order ¢ = p*, where p is a prime, is denoted by GF(g) =
GF(p).

A module over a commutative ring K with identity (a K-module) is an additive
group M which admits multiplication by the elements of K, satisfying the following
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AX10Mms:

la=a, 1K, aeM;
(a+Bla=aa+pa. o BecK, aecM;
ala+b)=wa+ab, weK, ab eM;
(wPla=w(fa), a.BEK, aeM

Thus modules over a field k are precisely the vector spaces over k. Every abelian
group may be regarded as a Z-module in a natural way: for k = 0

ka=a+a+...+a, (—k)a=k(—a) and 0a=0.
k

The elements m,, ma, ....m, are said to generate the K-module M if each
element m € M may be expressed in the form m = 3 k;m;, where k; € K. Every

s-generated K-module is a homomorphic image of the free s-generated K-module
fIK $f2K$--1$EJ.K1

where for each i the abelian group ¢; K = {e;k| k € K} is isomorphic to K, and
k'(e;k) = e;(k'k) for all k', k € K. In particular, the ring K may be regarded as a
free 1-generated K-module with generator ¢, = |.

Let K be a commutative ring with identity and G a group. The group ring

KG:!EngIgEG, ke € K
X

has as its additive group the free K'-module whose free generators are the ele-
ments of (¢, and multiplication is defined naturally via the group operation and the
distributivity law,

If G is a group of automorphisms of an abelian group V (or if G acts as a group
of automorphisms on an abelian group V' - see the definition in §1.5), then V' may
be regarded as a ZG-module:

v (Z A:Eg) = Ekgi:u‘"}.
K B

In an analogous way, if (¢ is a group of linear transformations of a vector space
V over a field &, then V may be regarded as a kG-module.

We recall here the way in which Maschke’s Theorem generalizes to the case
of an arbitrary ZG-module. If G is a finite group and V is a ZG-module such
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that extraction of unique p-th roots is possible in the additive group of V for all
of the prime divisors p of the order of G, then every ZG-submodule {/ (which
is G-invariant by definition) has a direct complement W which is also a ZG-
submodule - that is, V = U & W, where W is G-invariant. The condition on the
additive group of V' is automatically satisfied if V is finite and its order is coprime
to the order of the group G.

Let A and B be K-modules. Their tensor product A &g B is defined as the
factor-module of the free K-module with free generators a @ b, a € A, b € B, by
the submodule generated by all elements of the form

kla@b)—ka®@b, ka®@b-—a@kb,
a@bi+h)—(@@bh +a®@bs),
(y+a)@b—(a, @b+a@b).

where k € K3 a, a), az € A; b, by, by € B. This is equivalent to taking the set of
all formal sums

[> kisa@blaca, be )

and identifying the elements:

kla@bl=ka®@b=a®kb,
a@ b +b)=a@b +a@b;,
(@ +a)@b=a@b+a @b

A mapping ¢#: A x B — C induces a homomorphism of the K-module A &g B
into the K-module C by the rule a @ b — #(a, b) if and only if the following
equalities hold:

*lka, b) = #a, kb) = ki (a, b),
Ha, by + b)) = a, b)) + *a, B2),
Hay + ax, b) = #a,, b) + *az. b).

If the elements ay, gz, ..., a, generate a K-module A and the elements by, bs,
..., by generate a K-module B, then the sr elements a; @b, generate the K-module
A @B,

If the K-modules M = @& M, and N = & N, are decomposable into direct sums

i i
of K-submodules M; and N;, then the tensor product M @k N is decomposable
into the direct sum

M @e N = @{M‘ ®KNI}
i
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of K-submodules M; @ N;.

Corollary. Let w be a primitive n-th root of unity. If A is a subgroup of an abelian
group B, then

ARzZw)NBR®1 =A® I,
where A ®zZ[w] is regarded as naturally embedded into B &z Z|wl.

Proof. This follows from the previous assertion and from the fact, that
Zwl=Z@ZodZo®® ... ® Lol

where f(n) is Euler’s function, so that

(=1 )
3 (A Zo),

BerZiol='§ (BOZw) and A®zZlwl=’

Note that if an abelian group A has exponent n, then, for any abelian group B,
the tensor products A @ B and B ® A also have exponent n. For example, the
abelian group A @ B is generated by the elements a @ b, a € A, b € B, and we
have

na@b)y=na@b=00>6=0.

Thus, in particular, if abelian groups A and B have coprime exponents m and n,
respectively, then A @ B = 0, since its exponent divides both m and n.

Tensor products are used to extend the ground ring of a module (or a vector
space, or any K-algebra). Let A be a K-module and suppose that K is a subring
of aring L. Then L is also a K-module under natural multiplication by elements
of K. and one can form the K-module A ®g L. This module may also be regarded
as an L-module by putting ly(a ® [3) = a & )15, where [}, 1> € L, a € A. Note
that if k is a subring of K, then the tensor product A @ L is isomorphic as an
L-module to the L-module A ¢ L.

§ 1.3 Lie rings

A Lie ring is a nonassociative ring without identity, whose multiplication, which
is usually denoted by brackets [a, b], satisfies the following axioms:

[a.a] =0
(anticommutativity)
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[[a.b],c]+[[b.c).a]l +(lc.al.b)=0
(the Jacobi identity).

From anticommutativity and the usual distributivity laws we obtain the identity
[a,b] = —[b,a] (indeed, [a +b, a+b]=0= [a,a]+[a, b]l+[b,a]l+ (b, b] =
0= [a,b]l + [b,a] = 0). It is not difficult to deduce from this that for Lie rings
the notions of left, right and two-sided ideals coincide.

From the Jacobi identity it is not difficult to deduce that, if f and J are the ideals
of a Lie ring, then the additive subgroup, generated by the set of commutators

{la.bllacl, be J}

is also an ideal of the Lie ring. We denote it by [/, J].
If A and B are subsets of a Lie ring, then A + B will denote the subsct

A+B={a+blac A, be B}.

If A and B are subrings then A + B is also a subring, and if A and B are ideals,
then A + B is also an ideal.

Ideals of Lie rings play the same role as normal subgroups in groups — they are
kernels of homomorphisms. To indicate that / is an ideal of a Lie ring L we use
normal subgroup notation: / <1 L. The following theorems on homomorphisms of
Lie rings are analogous to the homomorphism theorems for groups.

Let L be a Lie ring and N an ideal of L. Then

a) there is a one-to-one correspondence between the set of all subrings of L
containing N and the set of all subrings of the factor-ring L /N; this correspondence
is given by passing to the images of subrings in the factor-ring L/N. Also, a subring
of L containing N is an ideal of L if and only if its image in the factor-ring L/N
is an ideal of L/N;

b) if N is the kernel of a homomorphism ¢ of the Lie ring L then there is
an isomorphism L/N = L¥, and, moreover, ¢ is the composition of the natural
homomorphism L — L/N and an isomorphism of the Lie rings L/N and L¥;

¢c) if A is an ideal of the Lie ring L containing N then there is a Lie ring
isomorphism (L/N)/(A/N) = L/A;

d) if A and B are subrings of the Lie ring L and A is an ideal of B, then there
15 an isomorphism

(B+N)/(A+ N)=B/(A+(BNN)).

In particular,
(B+N)YN=B/(BNN).
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Commutators in elements of a subset ¥ of a Lie ring and their weights are defined
and denoted exactly in the same way as group commutators (see § 1.1).

The ideal of a Lie ring L generated by the set X is denoted by 4{X).
The additive group of ;4(X) is generated by simple commutators of the form
[...llx.ay) a),....a¢), x € X,a; € L, k=0.

The additive subgroup generated by the set X is denoted by .(X), and the
subring (or Lie ring) generated by X is denoted by (X).

If L = (X} is a Lie ring generated by the set X then L = Z L;, where L; is

the homogeneous component of L of weight i (with respect to X), that is, L; is
the additive subgroup, generated by all commutators of weight i in elements of X.
In an analogous way, if L = (x;,x;,...), then L = Y L; ;. . where L; ;, is
the multihomogeneous component of weight 7} in x|, of weight /s in xs , etc., that
is, L, j,... 15 the additive subgroup of I generated by all commutators in elements
X1, X2, ... of weight i in x;, of weight i> in x2, etc. An ideal or an additive
subgroup [ of a Lie ring . = (X) is said to be homogeneous (multihomogeneous)
with respect to the generating set X if

The intersections / N L; (f N L; 4, ) are called the homogeneous (multihomo-
geneous) components of weight i (of multiweight (i), 15, ...)) of a homogeneous
{multihomogeneous) ideal (or additive subgroup) 1.

The members of the lower central series, y;(L), of a Lie ring L are defined by
induction as follows:

yitl) =1L, yu(Ll)=[y(L) L]

(sometimes they are also denoted by L' = y(L)); the members of the derived
series are also defined by induction:

L'=wly=L, L'=LP=[L L) L“*"=[L" L]

It is easy to see that L' C y». (L) for all s € N.
e

It is also easy to see that, if L = (X), then % (L) = }_ L;, where L; is the

imk
homogeneous component of the Lie ring L of weight 1 (with respect to X).

If a Lie ring L is also a K-module where multiplication by any element of K
1$ a homomorphism of L, then L is said to be a K-Lie algebra. If K is a subring
of R, then the R-module L @y R may be regarded in a natural way as an R-Lie
algebra with Lie muluplication given by:

Ih@rph@rn]l=[.L]®rnrn.
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As a K-Lie algebra, L is isomorphically embedded into the K-Lie algebra L @ R
by the mapping | — [ @ I. It follows easily from the definitions that

yi(L ®R) = yi(L) @R and (L®R) =L" @R;

in particular, y;(L @ R) =0 < yi(L) =0.

Let G be an abelian group. A Lie ring L is said to have a G-grading or to
be G-graded, if to each element g € G there corresponds a subgroup L, of the
additive group of L such that

L=Y L and Ly Lp] S Lasp foralla, b€ G.

pely

For example, if L is a C-Lic algebra, and ¢ is an automorphism of L of finite
order n, then the additive group of L decomposes as a C-vector space into the
direct sum of the eigenspaces of the linear transformation ¢:

L=Lo®L ®...®L,_,

where L ={leL|l¥=o'l},i=0,1,..., n—1,and w is a primitive n-th root
of unity. Here we have [L,. L,] € L., where a, b, a + b are residues modulo n,
so that this decomposition gives a Z/nZ-grading of L.

The facts of the theory of varieties, common to arbitrary algebraic systems, hold
also for Lie rings. There exist free n-generator Lie rings whose elements are linear
combinations of commutators in the free generators. More precisely, the free Lie
ring F = {x;, x3,...), freely generated by elements x|, x, ..., decomposes into
the direct sum F = @®F; of its homogencous components, and also decomposes
into the direct sum F = @F; ;,  of its multihomogeneous components. Two
linear combinations of commutators in the free generators are equal only il one
may be transformed into another by applications of the Jacobi identity and the
anticommutativity and distributivity laws, A more constructive description is given
by the theorem which says that the additive group of F is a free abelian group
freely generated by the so-called basic commutators in the free generators (the
definition of basic commutators will be given in § 2.7 for groups — it is exactly the
same for Lie rings). However, we do not need this theorem, although we note that
we shall, in fact, prove in § 2.7 that the basic commutators in the generators really
generate the additive group of a Lie ring.

It is quite straightforward to see that the additive group of the Lie ring F is
generated by simple commutators in the generators, Indeed, it is clear that it is
generated by commutators in the generators; so it is sufficient to express every
commutator as a linear combination of simple commutators. By an obvious induc-
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tion on commutator weight, it suffices to consider commutators of the form
| ESTEE TN 7 M) b S AP x; 1]

We proceed by induction on 5. For s = | such commutators arc simple, and for
s = | we have by the Jacobi identity

[[I;I. TR LY ,'_”. [IJ] I TR X LJ}-} =
= [[[—rr‘;- Ajvgevnn 'r:'r]- [ij Xjaveren X ”‘ .l'_|;~'|—
—[1Xiys Xiga - o e o Xipa X 10 (X0 X e ey x50l

By the induction hypothesis the second summand on the right-hand side is equal to
a linear combination of simple commutators in the generators. In the first summand
on the right-hand side the subcommutator

“'rrllixl}'- A I (o -Il—;l‘ lxﬂ‘xj‘}‘ s '1'rj. ||]

is a commutator of smaller weight and so, by induction on the weight, it is a
linear combination of simple commutators in the generators. Hence, the entire first
summand is also a linear combination of simple commutators in the generators.

Since application of the identities of the free Lie ring to a commutator in the
generators transforms it into a linear combination of commutators in those same
generators with the same multiplicities of occurrence, the assertion proved above
yields the following useful technical lemma: in an arbitrary Lie ring any commu-
tator in elements vy, y2...., v, i$ a linear combination of simple commutators in
these elements, each one of which has the same weight in each of ¥, va.....¥,.
Though this fact was established for commutators in the free generators, it is clear
that any equation which holds in the free Lie ring also holds in any other Lie ring.

The Jacobi identity allows to “extract” any element, occurring in a simple com-
mutator, to the start. More precisely the following lemma holds: if xy occurs in a
commutator, then this commutator is a linear combination of simple commutators
in the same elements, each one of which starts with xy. The proof is by repeated
application of the Jacobi identity to the simple commutators given by the previous
lemma:

[[LH. ...H_;I, X, I= —E.Iu. IH],....H_;I. ] =

= —[xp. laty, ... asq). ag, ... )+ [xp.a;. [ay, ... a;_),...]=...

and so on.
If I is an element of the free Lie ring F, then the equation / = 0 may be regarded
as an identity in the variables occurring in / — that is, the free gencrators of F. The
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class of all Lie rings which satisfy the given family of identitics V constitutes a
variety of Lie rings. The free ring of this variety is the factor-ring of the free Lie
ring F by the verbal ideal V(F) generated by the values of all words from V at
arbitrary elements of F. (This is an analogue of a verbal subgroup. It is sometimes
called a T-ideal.)

A Lie ring L is said to satisfy the n-th Engel condition (for short, L is an n-Engel
Lie ring) if

for all x, vy € L. A number of fundamental results on Engel Lie rings have been
proved, and we state them here to facilitate reference.

1.3.1 Theorem (Kostrikin [76]). If a d-generator Lie algebra over a field of char-
acteristic p satisfies the n-th Engel condition where n < p (or n is arbitrary in the
case of p = 0), then it is nilpotent of (d, n)-bounded nilpotency class.

Zel'manov [157] proved that in the case of characteristic zero there is even a
global bound for the nilpotency class, independent on the number of generators.
But in the case of positive characteristic Razmyslov [119] showed that the bound in
Kostrikin's Theorem cannot be independent of the number of generators since there
exist non-soluble, locally nilpotent, (p — 2)-Engel Lie algebras of characteristic
p = 5 (and non-soluble locally nilpotent groups of exponent p = 5).

Kostrikin's Theorem 1.3.1 gives a positive solution to the Restricted Burnside
Problem for groups ol prime exponent p because the associated Lie rings of such
groups are {p — 1)-Engel by a theorem of Magnus [100] and Sanov |126]. Recently
Zel'manov [159, 160] also obtained a positive solution to the Restricted Burnside
Problem for groups of prime-power exponent p*. This follows from his theorem
on the local nilpotency of n-Engel Lie algebras of characteristic p for any n and
p and from his reduction theorem [158].

The reader, interested in the proofs of these theorems of Kostrikin, Razmyslov
and Zel'manov, is referred to the books [78, 121, 145] and to the oniginal papers
[76, 119, 157-160]). We shall prove in §3.4 only Higgins’ Theorem [39] on the
nilpotency of soluble Engel Lie rings and, in §3.3, the Magnus-Sanov Theorem
mentioned above.

In many cases there are theorems for Lie rings which are analogous to corre-
sponding theorems about groups. Thus, at the beginning of Chapter 3, we state a
few analogues of theorems on groups whose proofs (which we do not give) are
mostly based on commutator calculations (for Lie rings such calculations are even
easier than for groups). But there may be substantial differences and sometimes Lie
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rings in certain sense are worse than groups. For example, the structural constants
e, el =e3, [er,esl=e, [es,e]l=e2

define a 3-dimensional simple Lie algebra over any field including the finite field
G F(p) of prime order p — in which case it is a simple Lie algebra consisting of
p* elements. However, a group of order p* is necessarily nilpotent.

§ 1.4 Mappings, homomorphisms, automorphisms

As a rule we use power notation for the action of mappings: @¥ denotes the image
of a under the action of . But sometimes other notation is used: ag or @(a). The
same commenl applies to images of subsets.

The automorphisms of a group G comprise a group Aut G, which will be always
regarded as a subgroup of the natural semidirect product G~ Aut &, Thus, the image
a¥ of an element @ € G under the action of an automorphism ¢ € Aut G may be
regarded as conjugate of a under ¢. We may also write

Colp) =g e Glg¥=¢g).
[G. o]l = (g, ¢ll g € G) = (g '8"| g € G)

and so on.

A section M/N of a group G is said to be g-invariant, where ¢ € Aul G, if
MY =M and N¥ = N.

If M/N is @-invariant, then ¢ induces the automorphism @ of M/N by the rule
(mN)® = m¥N. We shall usually denote the induced automorphism by the same
letter, that is, we shall write ¢ instead of @. and Can (@) instead of Can (@), etc.

An automorphism ¢ of a group G (or a Lie ring L) is called regular if Cg;(¢) = 1
(or Cp () =0).

§ 1.5 Group actions on sets

A group G is said 1o act on a set 2, if for every g € G there is a one-to-one mapping
of the set  onto itself, usually also denoted by g: @ —» wg (or @ — @*), such
that

(wgr) g2 = wlg182)
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for all @ e 2 and gy, g2 € G. In particular, @l = w for all @ € & and the
mapping @ — wg~' is inverse to the mapping @ — wg. In other words an action
of a group G on a set Q is a homomorphism of G into the group of all one-to-one
mappings of the set £ onto itself. The action is said to be faithful if the kernel
of this homomorphism is trivial. The elements of  are often called points. For
ey € £2 the subset

woG = {wyg| g € G)

15 called an orbit under the action of G. The subset
Gu = g € G| g = an)

is a subgroup called the stabilizer of the point wy. There is a one-to-one corre-
spondence between the set of (right) cosets of the point stabilizer G, in G and
the orbit wyG:

G g < wog.

If the set £2 is finite, then |G : G, | = |wpG| and, in particular, |G| is a multiple
of |wyG| by Lagrange’s Theorem.

For example, every group faithfully acts on itself by right multiplication: a — ag
for a, g € G, that is, the image of an element a under the action of g equals ag. A
group G also acts on any of its normal subgroups N' < & by conjugation: n — n¥,
where n € N, g € . The kernel of this action is the centralizer C(N), the orbits
are the conjugacy classes, the point stabilizers are the centralizers of the elements
C¢(g). In an analogous way G acts by conjugation on any of its normal sections
M /N, the kernel of this action is the centralizer of the section M/N — that is the
largest subgroup H satisfying the property [H, M| < N.

As an illustrative application of the notion of group action, let us prove the
so-called Poincaré's Theorem: if H is a subgroup of finite index n in an arbitrary
group G then A contains a normal subgroup of G whose index in G is also finite
and does not exceed n!. We consider the action of & on the set of right cosets of
H, defined by

(Hx)g = Hxg.

The kernel of this action is the desired normal subgroup; its index is bounded
by n! since the corresponding factor-group embeds in the symmetric group of all
permutations of the set of n right cosets of H and this group has order n!.

Any group of automorphisms G = Aut H of a group (or other algebraic system -
Lie ring, vector space, etc.) /{ acts on the set H in a natural way:

he=h*, heH, gedi,
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where the left-hand side defines the action and the right-hand side is the image of
the element A under the automorphism g.

§ 1.6 Fixed points of automorphisms

Here we prove a few well-known results on fixed points of automorphisms which
will be used subsequently.

1.6.1 Theorem. Let G be a finite group, @ an automorphism of G, and N a normal
g-invariant subgroup of G. Then

ICoin(w)] = |Cole)l.

Proof. Note that, for any group H and automorphism ¥ € Aut H, the number of
elements of the form x ~'x¥, x € H, isequal to |H : Cy ()|, since x~'x¥ depends
only on the coset of Cy(¥) 1o which x belongs. More precisely, the mapping
xCuy(y) = x 'x¥ is a one-to-one correspondence between the set {x 'x¥| x €
HY} and the set of right cosets of Cy(yr): it is well defined and injective since

xhxV =y W ey =) T =0T @ yx e Cr().

Now elements of the form g~ 'g¥ for ¢ = gN € G/N are images of the elements
2 'g¥ of G in the factor-group G/N. Every coset g 'g¥ = g 'g¥N of N contains
at most |N| elements of the form g~'g¥ and each element of the form g~'g¥ lies
in such a coset g~ 'g*N = g~ '2%. Therefore

INI- 1127 '8%l2 € G/NY > Iz '2%| g € GI.

Hence,

Gl JG/N _ 0 1GI G
ICal@)l —  |Cqn ()l INIIConig)l  |Canlp)l

and this implies |Cayn(g)| = [Coly)| as required.
The theorem is proved.

This result may be strengthened if the order of the automorphism is coprime to
the order of the normal subgroup.

1.6.2 Theorem. Ler G be a finite group, ¢ an awomorphism of G, and N a
normal g-invariant subgroup of G whose order is coprime to the order of ¢, thar
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is (IN], l¢l) = 1. Then
Conlp) = Colg)N/N.

Proof. We shall prove equivalently that each g-invariant coset gN of N contains
an element of C; ().

We proceed by induction on |¢|. Suppose first of all that |¢| = p is a prime
number. The sizes of the g-orbits, which constitute a partition of the g-invariant
coset gN, divide |¢| = p, and hence are equal either to p or to 1. If all orbits
were of size p, then p would divide |g/N| = |N|, and this would contradict the
condition (|N|, |¢|) = 1. Therefore there must be an orbit of size 1, consisting of
clements of Cg ().

Now let the order |¢| = mn be a composite number with m > 1 and n > 1. By
the induction hypothesis we have

Comnl(g") = Col¢"ININ = Col¢")/Cale") NN,

The centralizer Cg,n(¢) is contained in Cg,y(¢") and hence embeds isomorphi-
cally into Cal@")/ Col(e@") N N. Under this natural embedding the image also cen-
tralizes ¢: indeed, each g-invariant coset gV is ¢"-invariant and there exists gy €
Cole")NgN sothat golCale" )M gN) is g-invariant since Cr{p") 1s @-invariant.
By the induction hypothesis applied to the automorphism ¢ acting on Cg(¢") as
an automorphism of order n, the g-invariant coset go(Cg(¢") M gN) contains an
element of C¢; (). This element is what is required, since go(Cgs(¢")NN) € gN.
The theorem is proved.

1.6.3 Corollary. Let G be a finite group, ¢ — an automorphism of G such that
(1G], l¢l) = L. If ¢ centralizes all factors of some subnormal series of G

|=K:J"_3K:ﬂ]ﬁ'2ﬂ---'5]g.r=c.
then ¢ = 1.

Proof. We shall prove by induction on i that K; = Cg(g) for all i. By hypothesis
K, < Cg(ip). By Theorem 1.6.2

Crin(@)K; /K; = Ki /K,

whence Cg,_ (@)K; = K4, and, since K; < Cg(p) by the induction hypothesis,
we have K;,, < Cs(g).

1.6.4 Corollary. Let G be a finite group and ¢ be an automorphism of G such that
(|G, l¢}) = 1. Then
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a) G = Colp)lG.p):
b) [[G, ¢l @]l =[G, ¢l

Proof. a) Since g¥ = glg, @] for any g € G, ¢ acts trivially on G/[G, ¢]. Hence
G = Cgl(@)[G. ¢] by Theorem 1.6.2.
b) We use a). Applying the formula [ab, ¢] = |a, c]? - |b, ¢] we obtain

[G. ¢l = [Ca@IG.9l.¢l <ICule). ¢l (G, ¢l.¢] =[G, ¢l ¢l.

1.6.5 Corollary. If the group G of Corollary 1.6.4 is abelian, then (in additive
notation)

G =Cglp)®[G, ¢l

Proof. By Maschke's Theorem the Z{g}-submodule Cg(¢) has a ¢-invariant direct
complement U: G = Cg(p) & U. Since Cy(g) = 0, we have [U.¢| = U by
Corollary 1.6.4. We now get

(G.e)l=[Cele) @ U,¢)=|U.p]l=U,
and G = Cg(p) @ U = Colp) @ [G, ¢).

Corollary 1.6.3 may be strengthened by dropping the subnormality condition on
the series.

1.6.6 Theorem. Let G be a finite group and ¢ be an awtomorphism of G such that
(|G|. l@l) = 1. If for some series

=Ko=K =K:=...=K, =G

all cosets kK; are @-invariant for all k € K,y and foralli = 0,1, ... 5 =1, then
g=1

Proof. 1t is clearly sufficient to show that gH € Cg(y) for any ¢-invariant coset
gH where H is a subgroup contained in Cg(¢). Then an obvious induction on i
will show that K; € Cg(g) for all i. We have g¥ = gh for some h ¢ H and,
further, g‘?’t = gh* for all k € N, since h € H < Cg(yp). Hence, if |¢| = n, then
g = g* = gh", whence h" = 1, and therefore also h = 1, since (|g|, |h]) = 1 by
hypothesis.

The theorem is proved.
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§ 1.7 The Jordan normal form of a linear transformation of finite order

This section also contains a few well-known results.

1.7.1 Theorem. Ler i@ be an element of finite order n in the group of nondegenerate
linear transformations of a vector space V over a field k. If the characreristic of
k is coprime to n or is 0, then the Jordan normal form of ¢ over a suitable field
extension of k is diagonal, and the eigenvalues of @ are n-th roots of uniry.

Proof. Straightforward calculation of the n-th power of a Jordan box of size greater
than | x | shows that the equation

(.‘T’. | )=( "‘)=E

is possible only if @" = | and na"~! = 0. Since n # 0 by the hypothesis on the
characteristic, the second equation implies @ = 0, which contradicts the first one.
Hence all Jordan boxes have size | x | and it is then clear that the eigenvalues of
@ are n-th roots of unity.

The theorem is proved.

1.7.2 Theorem. Let p be a prime number and let ¢ be an element of order p*
in the group of nondegenerate linear transformations of a vector space V over a
field k of characteristic p. Then all eigenvalues of ¢ are equal to | and V has a
k-basis with respect to which the matrix of ¢ is in Jordan normal form, all of its
boxes are of size at most p* x p*, and there exists ar least one box of size greater
than p*~' x p*-1L.

Proof. Over a field of characteristic p we have
0=1-¢" =(1-g)",

which means that ¢ is a root of the polynomial (1 — A)7", Thus the minimal
polynomial of ¢ divides (1 — 2)" and hence all of the eigenvalues of ¢ are roots
of the polynomial (I — A)". Therefore, all of them are equal to I. In particular
they are contained in k and it follows from the proof of the Jordan Normal Form
Theorem that in this case V has a k-basis with respect to which the matrix of ¢ 18
in Jordan normal form.
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Thus the Jordan normal form of ¢ consists of boxes of the form

1

Let us compute the p*-th power of such a box:

11 P I C:,. Cf,,

I ] ] C:,.. ,

_ c,

|

ch

1
Since ¢” = 1, we have Cp = Cf,.- = ... = 0. Itis easy to see that C}, is divisible
by p.if i = p*, and E':: = 1. Hence the size of each box is at most p* x pt.

The same calculations show that if all boxes have size at most p*~' x p*~!, then
4;;:r1“'I = |, a contradiction since |@| = p*. Therefore there exists at least one box
of size greater than p*~! x pf~!,

The theorem is proved.

1.7.3 Corollary. Let p be a prime number. If @ is an automorphism of order p* of
an abelian p-group V then Cy(g) # 1.

Proof. The subgroup £2,(V) may be regarded as a vector space over the field
GF(p) and @ as a linear transformation of £2,(V) (see §1.1). By Theorem 1.7.2,
1 is an eigenvalue of ¢. Non-trivial eigenvectors with eigenvalue 1 are clearly
non-trivial elements of Cq,v;(g) < Cvig).

1.7.4 Corollary. Let p be a prime number and let @ be an automorphism of order

p* of an abelian p-group V, where |Cy(g)| = p". Then the rank of V is at most
k

pn.

Proof. As above we think of the subgroup £2,(V) as a vector space over G F(p)
and ¢ as a linear transformation of £2,(V). By Theorem 1.7.2 all eigenvalues of
@ are equal to |1 and the vector space £2,(V) has a GF(p)-basis with respect
to which the matrix of ¢ is in Jordan normal form, its boxes being of sizes <
p* x p*. IUis easy to see that the subset of this basis, corresponding to a given box,
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contains a single eigenvector lying in Cq, vy(¢). It is also clear that eigenvectors,
corresponding to different boxes, are linearly independent. Therefore the dimension
d = dim Cg (yy(g) is equal to the number / of boxes. The rank of the group 2,(V),
that 1s, dim£2,(V'), 1s equal to the sum of the dimensions of the boxes and hence
is not greater than p*l. We observe finally that

p? = |Ca,n(@)| < |Cv(p)| = p",

whence l =d < n.
The corollary is proved.

It is clear, that we have, in fact, also proved the analogous result for dimensions
of vector spaces.

1.7.5 Corollary. Let p be a prime number and let @ be a linear transformation of
order p* of a vector space V over a field of characteristic p. If the dimension of
the subspace of fixed elements Cy () is finite and equals n, then the dimension of
V is at most p*n.

§ 1.8 Varieties and free groups

A (group) word v = v(x) in the variables x = (x,, x2, ..., x,) (or a word in the
(group) variables x|, x2, ..., x,) is an element of the free group with free generators
X1, X2, ..., X,. The value v(g) of the word v(X) at the elements g = (g, g2, ..., &)
of some group ( is the image of the element v(x) under the homomorphism which
extends the mapping x; — g;, i = 1,2, ..., n.

Let v(x) = v{x), x3,...,x,) be some word. A group & is said to satisfy the
identity v(x) = 1 if the values of the word v(x) at any elements of the group G
are trivial, or, in other words, if the verbal subgroup v(G) is trivial.

Let V = [v,(x)} be a set of words. The class of all groups satisfying all of the
identities v, € V is called the variety of groups My, defined by the set of identities
V. The factor-group of the free group F = (x;, x»,...) by its verbal subgroup

VIF)=(v.(g)l g=(g1,82%...), gi€F, vy €V)

is called the free group of the variety My. If h; are elements in an arbitrary group
G from My, then the mapping x; —» h; induces a homomorphism of F/V(F)
into G.

It is not difficult to see that all groups in My satisfy an identity if and only if
the countably-generated free group of 9y satisfies that identity.
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Birkhoff's Theorem states that varietics are precisely those classes of groups
which are closed under taking subgroups, homomorphic images and cartesian prod-
ucts.

For many varieties there is a standard notation. The variety of all abelian groups
(defined by the identity [x, v] = 1) is denoted by %, the variety of all soluble
groups of derived length k (defined by the identity d; = 1, see the Preface) is
denoted by 2%, the variety of all nilpotent groups of nilpotency class ¢ (defined by
the identity [x;. x2, ..., Xer1] = 1) is denoted by .., and the variety of all groups
of given finite exponent n (defined by the identity x" = 1) is denoted by ‘B,,.

Many of group-theoretic results may be formulated in terms of varieties. For
example, the positive solution of the Restricted Burnside Problem for groups of
prime-power exponent p* means that all locally nilpotent groups of exponent p*
constitute a variety (whose free m-generator groups are denoted by B(m. .

Sometimes the language of the theory of varieties is also useful for proving
theorems. For example, 1t may be more convenient to do a calculation first in the
free group of a variety and then to apply it later to all groups in the variety. Another
typical example is: suppose we succeed in proving that all groups satisfying a
certain condition are nilpotent. If this class of groups constitutes a variety, then we
automatically get the boundedness of the nilpotency class of these groups. Indeed,
if there were groups G; in this class of unboundedly large nilpotency classes
¢; — oC, then their cartesian product X G; would be non-nilpotent, although it

belongs to the same variety by Birkhoff’s Theorem.

The theory of varieties, naturally, has its own problems and specific ways of
reasoning. We reproduce here the following simple result, which was independently
and more or less simultaneously published in [73, 97, 146].

1.8.1 Theorem. [f every non-trivial group of some variety M is distinct from its
commutator subgroup, then the variety is soluble (that is M € U for some k).

Proof. By a standard argument, like that mentioned above for nilpotency, it is
sufficient to show that all groups of the variety 9 are soluble. Suppose, on the
contrary, that 91 contains non-soluble groups. It is then clear that the free group
F of 9 on a countable set of free generators x;, x2, ... is also non-soluble.

Let us consider the sequence of isomorphic copies F; of the group F

T

Flo>FRS5... 5> F5 Fog—... (1.8.2)

together with homomorphisms 7, which are defined on the free generators by the
rule
T X => [Izj_[..i'zjl. i=12,...

(here, on the left-hand side x; € F;, and on the right-hand side x3;_;, x3; € Fi ).
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It is not difficult to see that in the cartesian product

FixFx...xFx...,

all r-threads, that is, elements of the form
(a.at,at’,.... ar'....),

constitute a subgroup H, and the set of all elements with only finitely many non-
trivial coordinates forms a normal subgroup N. The section HN /N is called the
direct limit of the spectrum (1.8.2) and is denoted by lim F;.

It 1s important to note that this group is non-trivial: for instance, the element
(xy, X7, X172, ...) € H does not belong to N, since x; ' = & (x;, X2, ..., X2) # |
for all i by virtue of the non-solubility of the group F.

By Birkhoff's Theorem the group ll_r'n F; also belongs to the variety 9. We shall

now show that this group coincides with its commutator subgroup. Indeed, the
group lim F; is generated by the images of the threads

(xj, x;T, x;-rz,...‘xj-r’,., D, J=12,...,

where the x; are the generators of F. But, modulo N, for each j the following
congruence holds:

. R .
[.r‘,-.,rjt.xjrz, ..... T, =0T gt ) =

= (1, [x2;-1. 225, [x2p-0, x25)7,..) =

= [(I,.Igj_h Xaj T, .. () x25, X951, }]

This means that all generators of the group lim F; belong to its commutator sub-

group, which therefore coincides with the group itself.
Thus the non-trivial group IE_n F; € M coincides with its commutator subgroup,

contradicting the hypothesis of the theorem.

§ 1.9 Groups with operators

Let §2 be a group. A group G is said to admit £ as a group of operators (G is an
Q-group), if € acts on G (not necessarily faithfully) as a group of automorphisms,
or, in other words, if there is a homomorphism of £ into Aunt G.
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§-groups may be regarded as algebraic systems which, in addition to the group
operations, have unary operations corresponding to the action of the elements of
2. Q-subgroups of an £2-group are its $2-invariant subgroups; the homomorphisms
of an ©2-group commute with the action of the operators from € if o is a homo-
morphism of an ©2-group G, then (g“)” = (g" )" for all g € G, w € Q.

The basic properties of the theory of varieties, common to arbitrary algebraic
systems, hold also for £2-groups: there exist free m-generated Q2-groups whose
elements, called Q-group words, or simply Q-words, define as Q2-identities varieties
of Q-groups (varieties of groups with operators); the free groups of these varieties
are factor-groups of the free Q2-groups over verbal Q-subgroups, etc.

As an abstract (“conventional”) group, a free $2-group with free generators
ETT & T x, is a free group on free generators x;*, i = 1,2,..., n,w e 82,
on which £2 acts as follows:

(x&Y =xY". wecQ i=12..., n.
Therefore it is clear that every €2-word has the form
G- - s =], w e

Example. Let p be a prime number. All groups & which admit an automorphism
w such that

] v |
" =1 and x-x¥-x¥ .....x¥ =1foralxeg,

constitute a variety of (¢)-groups M,,. It is interesting to note that if ¢ = | then the
group G is of exponent p, and if G is a finite p’-group, then the automorphism ¢ is
regular. This variety will be studied in Chapter 7 where we shall prove an analogue
of the positive solution of the Restricted Burnside Problem: locally nilpotent groups
from 9N, form a subvariety of (g)-groups.

§ 1.10 Higman’s Lemma

Let F be a free group (or a free Q-group) with free generators x,.x;.....x,.
Forevery i = 1,2,..., n consider the homomorphism #; of F into itself which
extends the mapping

xi» . x> fork #£i.
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It is clear that Kerd; = {xf} (or Keri; = (,rfﬂ}] is the normal closure of x; in
F. For any subset J C {1,2,...,n} we put

D; = m Ker ;.
jed

Next we shall consider only commutators in the generators x; and their inverses,
we shall say that such a commutator depends on x; if it involves x; or x j".
1.10.1 Lemma. 7The subgroup D; is generated by commutators in the generators
x; and their inverses each of which depends on all of the elements x; for j € J.

Proof. We proceed by induction on the cardinality of J. First let J = {j}, then
D; = {.rf}. Since ,r;-' = x;[x;,a] for all @ € F, then D; = {x;, [x;,all a € F).
Each element of F is a product of the generators x; and their inverses and so, by
repeated application of the standard commutator identities

[, vw] = [u, w]fu, v)[u, v, w]; [uv, w] = [u, w][u, w, v][v, w),

! each of

we can express the [x;,a] as a product of commutators in x; and x;°
which depends on the element x;.
Now let J' = J U({k}, thatis Dy = D, N (x]) and let b be an arbitrary element

of D; N {..'cf }. By the induction hypothesis the element b is the product
b=cics...c (1.10.2)

of commutators ¢; each of which depends on x; for every j € J. If among the ¢;
there are some which do not depend on x;, we subsequently transpose them to the
left, preserving the order of their occurrence, by the formula

r

ee .= ..cce, ). ..,

where ¢ is a commutator depending on x;, ¢ is a commutator which does not
depend on x;, and the dots denote that part of the product (1.10.2) which is not
changed at this step. It is clear that these transpositions preserve (1.10.2) and that
all additional factors [c¢, ¢’| arising are both dependent on all the x;, i € J and on
xi. As a result we get

b=dd;...deer...e.,

where each of the d; does not depend on xy, and each of the ¢; depends on x; for
all j € J'. Applying ; to this equation we obtain

] :dfdz"'df'l
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since #;(h) = | because of the way we chose b, and because, clearly, ?;(e;) = 1
for all ¢;, depending on x;. Hence,

b=eer...e.

and this proves the assertion of the lemma for J'.
The lemma 1s proved.

1.10.3 Higman’s Lemma ([41]). An arbitrary element w of the free n-generator
group F with free generators x,. x», ..., x, may be represented as a product

W=y V... Vm_y,

n}r and each of the elements v; has the form

IR T
vy =w ﬁﬂﬁj‘iﬁp'

where | < jj < j»<... < j, <n

: . rol %
(The order in which the elements v; = w'="" "#;#; ... #, occur here is im-
material.)

Proof. Tt may be easily checked that the following equalities hold for the homo-
morphisms

hthe = and  9; = 8,;0; fori # j.
Let us denote by | — &; the mapping a — ala®;)”'. We have

a(l = 3)9; = (a(@d) "), = ad, (@)™ = ad,(@d;)™" = 1.
and this means that

a(l — &) e Ker@d;, = E-'[;]. (1.10.4)

It is also easy to se¢ that
b(l —#;) = b, forany b € Dy,. (1.10.5)
Therefore

w=w(l — o)1 = d)...(1 —8,)

_______ |- By expanding the brackets and using the defi-
nition of the mappings | — ¥, we express the element w to get the desired result.
The lemma is proved.
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This result is often used in combinatorial arguments in group theory. For our
purposes it will be convenient to record two of its corollaries. We shall now prove
the first of them directly.

1.10,6 Corollary. Let M and N be verbal subgroups of the free n-generator group
F on free penerators x), x», . . ., x, and let J be an arbitrary subset of {1, 2, ..., nj.
Then, for any element v € D; N MN, there is an element w € Dy N M such that
v=w (mod N).

Proof. For any a € M, b € N we have

ab(l —#) = ab((ab)dy) ' =
= ab(b¥y) "ad,) ' = a(l — %) (mod N), (1.10.7

since the verbal subgroup N is ¥g-invariant and normal.
By hypothesis v = ab, where @ € M, b € N. We apply to this equation the
mappings 1 — 3,, where J = [}, 2, ..., i,}. In view of (1.10.5) this does not

change the left-hand side, since v € D, by hypothesis. Using also (1.10.7), we get

v=v(l =)l =3,)...(1 =)=
=ab(l —9,)(1 —&,)...(1 =) =
=a(l — o, )1 = 8,)...(1 —#.) (mod N).

The element w = a(l — & )(1 —#;)...(1 — #;,) satisfies the conclusion of the
corollary: it belongs to M, since M is verbal, and to D; by (1.10.4).
The corollary is proved.

Analogous assertions hold in free nilpotent groups and their proofs are no dif-
ferent from the proofs in this section. We shall recall them in the next chapter (in
§2.7) after giving the relevant definitions.

We now derive another corollary of Higman's Lemma the proof of which in-
volves a standard argument using extra generators.

1.10.8 Corollary. Suppose that p is a natural number and that f, x,, X2, ..., X4
are arbitrary elements of a group G. Then

Of - xf™'xTh = he T G- S (1.10.9)

O=a, = pr—1

where & = 0 or |, the product involves the factor f*7 and h is a product of powers
of commutators each of which contains at least p — | occurrences of every element
Xy, X3, . ... xg and at least one occurrence of f.
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Proof. Here we have to control the number of occurrences of elements whereas
Higman's Lemma indicates only the existence of occurrences. However we can
nevertheless use Higman's Lemma here by considering a multiple set of generators.
Namely, let

_f. X Xyg2e00ns Xlp=1+ X201 X220 000 Kipmlo oo n Lgdls Xg2o oo v Xelp=1

be free generators of a free group F. We apply Higman's Lemma 1.10.3 to the
word

. p
= (fxnxiz... Xp1X21X22 .. X2pot « . X1 Xa2 o Xdp—1)

to get
W= U vs...U,, (1.10.10)

where u € Kerdy N {)Ker#,;; and each of the elements v; has the form
i.J
U = w' U Iﬁhi}j:...l’;‘,.
&, € {00, Fure-- - Pip-rn Baps - P2pore - By - Bap—1}.

where the homomorphisms @, and ¢;; are defined as follows:

o: f— 1 Xij = Xjj for all i, j;
Dyt Xy — 11 x5 = x5 forall (i, j) # {s.t)s f— f.

Since v=' = wity, ... hp—1thay ...y ... B . Bgp = f7 for some 5, the
product clearly involves the factor f=7.
We now apply to (1.10.10) the homomorphism extending the mapping

f—=fi xjj— x ftoralli. j.

It is clear that the image of (1.10.10) under this homomeorphism is (1.10.9) which
satisfies the conclusion of Lemma 1.10.8 (in particular, for each i, occurrences
of elements x;;, x;», ..., Xip—1 In commutators the product of whose powers is u,
guarantee that & (the image of «) contains at least p — | occurrences of x;).

The corollary is proved.
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Nilpotent groups

Al the beginning of this chapter we use commutator calculations to prove some
standard facts connected with nilpotent groups. We then prove some sufficient
conditions for soluble groups to be nilpotent.

Schur’s Theorem on groups with finite central factor-groups is included for the
sake of completeness. We are more interested in converses of this result for finite-
by-nilpotent groups, since their proofs prepare the reader for the more complicated
analogous arguments which are used in Chapters 4 and 5 for Lie rings and for
nilpotent groups with almost regular automorphisms of prime order.

Then we use the language of tensor products of abelian groups to study linear
properties of the lower central serics of groups. As an application we give an
account of the theory of (r-) isolators which is of particular interest for (7-)
torsion-free groups.

We give definitions of basic commutators and the collecting process which are
important for further applications. We prove the consistency of the collecting pro-
cess and the fact that the factors of the lower central series ol a group are generated
by images of basic commultators in its generators. However, we do not prove (nor
do we use) the fact that images of these basic commutators are free generators in
this case.

The section on finite p-groups contains, as well as elementary properties, both
P. Hall’s Theorem on the quotients of the lower central series of a normal subgroup
of a group and the proof of the so-called Zassenhaus’ identity which holds in any
group of prime exponent.

§ 2.1 Commutators and commutator subgroups

Definitions of commutators and of commutator subgroups were given in § 1.1.
Their properties listed in this section are valid for any group.

2.1.1 Lemma. The following hold for any elements a, b, c € G of an arbitrary
group G:
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a) ab = bala,b]. a" =ala,bl;

b) [a.b])" = |b,al;

¢) [ab, ¢l = [a.c)” - [b,c]l = [a,c]-la,c.b] - |b, ¢];

d) la, bc] = |a, ¢] - |a, b]) = |a,c] - [a.b] - [a, b.c]

e) (Wirt's identiry) la. b7, ¢]” - [b.e™ . a) - [e,a™ " B)* = 1.

Proof is by the direct calculation. For example, we obtain the first part of ¢) as
follows:

la,c]® - 1b,c] = b7 a" ¢ acbb™ ¢ 'be = b~'a" ¢ abe = [ab, c).

and the second part follows from a).
We prove e):

(a, b7 . e)? - (b,e7 " a) - e,a” ' b) =
=b""a.b7"| ¢ [a. b Jebx
xce ' b.e7 ' a7 b, ¢ Jaex
xa e.a "17b e.a " Jba =
= b7 "6 ale [a, b7 |ebx
xe e bla Vb, ¢ Nacx
xa '[a”', elb” [c,a Jba =

=b ' ba b lac a7 b ab ¢ b %
———r —_— — — — —

Veb™ e "ba bl e bela e x
—i--:—-c—-c—-(—-t—-c——v-—r—:r—r—:-
xa tacla! ¢ b! a~'ba =

—?{—1—{—1’.—{—{—

—a'vlac'a'a ¢ "'b oa
— i — — A A A — —

(The arrows denote cancellations.)

2.1.2 Three Subgroup Lemma. Let N be a normal subgroup of an arbitrary group
G f for subgroups A, B, C = G we have

[[A.BL.Cl=N and [|[B,C]l.Al =N,
then we also have [|C, A), B] < N.

Proof. It is clearly sufficient to prove the lemma in the case when N = | and we
shall assume that fact in what follows. By Witt's identity 2.1.1 e) we have for any
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acA be B, ceC
[ﬂ, b-l, I’.']h . [b, {._1‘.”}:' . [f, H-I,b]u = ].

The first two factors on the left are trivial since they lie in [[A, B], C] and
[[B. C), A, respectively. Hence [¢,a™', b]* = | and therefore

If,ﬂ-].h] - {lﬂ',a-lqb]ﬂ:’“ ! = -Iﬂ'l = 1.

As a runs through A so does @' so that we also get [c,a,b) =1 forany a € A,
b e B,c e C. Hence, b € Cg(|c, a]) for any b € B, and therefore B < Cg([c, a]),
that is, [c,a] € Cg(B) for any a € A, ¢ € C. But [C, A] is generated by the
elements [c, a] and hence [C, A] < Cz(B) so that ||C, A], B] = 1.

The lemma is proved.

2.1.3 Corollary. The following hold for any group G for any natural numbers m

and n:

a) [ym(G), yu(G)] = Y (G
b) [¥n (G). £ (G)] < &y (G), for n = m (where §(G) = 1).

Proof. Denote for short () = y;, §;(G) = &;. We prove a) by induction on n.
For n = 1 by definition [y, 1] = yw4 for all m. For n = 1 by the induction
hypothesis

|}"'m| V=14 YI.] = [Vm+n—l~ }’I] = ¥m+u-

and also
I.]'fls Yorrs yﬂ—l] = IyrH+l" ]”n—li = Vintn-

Therefore, by the Three Subgroup Lemma we deduce that
|}"'m~ }"frl = [}"n‘ Vm] == [}’n 1. ¥1. Hu] = Ymin-

We prove b) by induction on m. For m = | we have |y, &,] < &,-) for every
n, since £, /&, is the centre of G/£,_,. For m > 1 by the induction hypothesis

lyrn-]:{m YI] E I‘:u-m-t-ll yl] -, IFI! ‘:n-—rn-l-ll E g-u-rﬂr

and also
[{nu ¥i. }’m—ll E I.clr—ll }"'-u—ll = h"hr—lt q-rr—ll = {:n—m-

So, by the Three Subgroup Lemma we also get

[Ym: &nl = 171 Yin=1.8u] = En-m-
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2.14 Corollary. If A, B, C are normal subgroups of an arbitrary group G, then
the following holds:

[[A, B].C] < [[B. C], A] - [[C, A). B] = ([A, C]. B] - [|A.[B. C]].

Proof. We only need apply the Three Subgroup Lemma, regarding the product
[[B.C).A] - [[C.A).B] as a normal subgroup containing both [|B,C], A] and
[[C, A], B].

2.1.5 Proposition. Ler G be an arbitrary group and k any natural number. Then

a) ¥ (G) contains all commutators of weight = k in the elements of G;

b) w(G) is generated by the simple commutators of weight k in the elements of
G'.

c) if G = (M), then the subgroup vi(G) is generated by the simple commutators
of weight = k in the elements of M and their inverses.

Proof. a) Induction on k. For k = | the assertion is trivial. Now let & > 1 and
let ¢ be a commutator of weight » = k. Then ¢ = [¢}, ¢2], where ¢) and ¢; are
commutators of weight ry, o, respectively, with vy + r2 = r. By the induction
hypothesis ¢; € ¥, (G) and ¢3 € y,.(G). Therefore,

¢ = |y, 2] € [y, (G), ¥ (G)] = . (G) = w(G)

by 2.1.3 a).
b) Let us set
H[;={|.XJ,.’.‘1 ...... vwllxieG, i=12..... k).
Since [x), xa, ..., uy = [xf.x,..., xi ], we have Ny < G. It is clear, via

a), for example, that Ny < w(G). We prove the reverse inclusion by induc-
tion on k. For k = 1 it is trivial. For k > 1 the images of all commutators
[x1, x2, ..., xp—1] of weight & — | lie in the centre of the factor-group G /N, since
[x), X3, ..., xi-1], x] € Ny for all x € G. Hence, [N;_;, G] = N;. By the induc-
tion hypothesis we now get

(G) = p-1(G). G] = [Ny, G] = Ny
¢) According to b) we have
villG)Y={lxj.x0 ...l € G, i =1.2....,k).

We may express each element x; as a product of elements of M and their inverses.
Repeated application of 2.1.1 ¢), d) yields the desired conclusion.
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§ 2.2 Definitions and basic properties of nilpotent groups

The following theorem establishes the equivalence of different definitions of nilpo-
tent groups.

2.2.1 Theorem. For a group G the following conditions are equivalent:
a) yes 1 (G) = I;
b) £ A(G) = G;
c) G has a central series of length ¢

G=G12G212...2G.2 Gy = 1,

that is, a series such that |G;, G] < Gy foralli =1,2,... ¢
d) G satisfies the identity

[x1, 22,000 Xe] = 1

Proof. Let us assume c¢). Then induction on i shows that ¥(G) < G;: indeed
wl(G) =G, =G, and if y(G) < G,, then

¥i4+1(G) = ln(G), G] = |G, G = Gig-

Therefore, y.41(G) = G4 = 1. In an analogous way for all i we have £;(G) =
Gogr=i: indeed, &6H(G) = G, since |G, G] = 1, and if (G) = Go41-i, then
the inclusion |G, ;, G| = G._iy1 = &(G) implies that the image of G._; in
G /LG is contained in its centre, which means that £, (G) = G,_;. In particular,
LAG)=0G.

We have proved that ¢) = a) and ¢) = b). Conversely, the upper and lower
central series are clearly central series, so that a) = ¢) and b) = ¢).

Finally, it is immediate from Proposition 2.1.5 that a) < d).

The theorem is proved.

Definition. A group G, satisfying the conditions of Theorem 2.2.1 is called nilpo-
rent, and the least natural number ¢ for which these conditions are satisfied is called
the nilporency class of the group G.

Often a group is said to be nilpotent of nilpotency class ¢ if it is, in fact, nilpotent
of class < ¢.

By Theorem 2.2.1 nilpotent groups of class < ¢ constitute a variety which we
denote by 91.. By Proposition 2.1.5 the subgroup y:(G) is verbal in any group
G. If F is a free group, then the factor-group F/y.41(F) is the free group of the
variety ‘1,
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We now prove the useful fact that the nilpotency identity may be verified by
considering only generating elements of a group.

2.2.2 Theorem. If a group G is generated by the set M, then it is nilpotent of class
< ¢ if and only if any commutator of weight ¢ + | in elements of M is trivial.

Proof. For each natural number k define the subgroup
Mg = ({Imy,mz.....mi)| mi € M)9)

to be the normal closure of all commutators of weight k in elements of M. The
theorem will be proved if we show that M; = y(G) for all k € [,

Clearly, M; < n(G).

To prove the reverse inclusion we use induction on k. For & = 1 we have M|, =
(M) = G = y(G). Let k = ]. Notice that in the factor-group G /M, the images of
all commutators of the form [m,, ma, ..., my_1l, m; € M, having weight k — 1, lie
in the centre of G /M,. This follows from the fact that [m, mz, ..., m_.m| € M
for each m € M and from the fact that an element centralizing all generators of
the group, necessarily lies in the centre of that group.

We have therefore proved that [M,_,, C] < M,. By the induction hypothesis we
now get

VL{G} -— {Yl-l{c]1 GI — lMﬂ—ln Gi E Mﬂt

as required.
The theorem is proved.

Remark. The analogue of Theorem 2.2.2 does not hold for soluble groups: there
exist groups G = (M) with 8 (m, m, ..., ma) = 1 forall my, ms, . ... my € M,
which are not, however, soluble of derived length k.

The next theorem collects some elementary properties of nilpotent groups which
are easily proved by induction on the nilpotency class.

2.2.3 Theorem. Let G be a nilpotent group and let N and H be subgroups of G,
N being normal: N 9 G. Then the following hold:

a)if N # 1, then [N,G] < N;

byif N #£ |, then NN Z(G) # 1;

c)if H# G, then Ng(H) = H;

diIf HG =G, then H = G;

ey H ix subnormal in G.
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Proof. a) Since G is nilpotent, we have [N, G,...,G] = | for some k. But if
—

k
[N, G] = N, then substituting we get [N, G].G] = [N,G] = N, and so on,
so that [N, G,...,G) = N for all /. Taking i = k this contradicts the condition
I‘-_.‘:,_-'
Nl '
b) Choose the least s = 0, for which [N, G,...,G]# 1. Then [N, G,...,G] =
. T —

5 L}

< NN Z(G), since

(IN.G....,G),G)=[N.G,...,G] = 1.
— — e,

A il

¢) By induction on the nilpotency class ¢ of G. For ¢ = | the group is abelian and
Ng(H)=G = H.Now lete = |. If Z(G) £ H, then Ng(H) = Z(G)H > H. If,
however, Z(G) < H, then by the induction hypothesis Ng (/1) = H where I is
the image of H in G = G/Z(G). The full inverse image of Ng(H) is, therefore,
larger than H and it coincides with Ng(H), since

xH € Ng(H) ¢ (HZ(G))* < HZ(G) & H* < HZ(G) = H & x € Ng(H).

d) By induction on the milpotency class ¢ of G. For ¢ = 1 we have G' =1 and
the result is obvious. For ¢ = 1 by the induction hypothesis H =  where bars
denote images in G/Z(G). Therefore, HZ(G) = G. Then

G =|HZ(G), HZ(G)]=H'

using 2.1.1 ¢),d), sothat G = HG'= HH' = H.
e) It is easy to see that the series

H < HH(G) = HO(G) < ... £ HL(G)=HG =G,

where ¢ is the nilpotency class of G, is a subnormal series: for every i, H nor-
malizes HZ;(G) and &, ,(G) normalizes HE; (G) since

1£i+1(G). HE(G)) = [841(G), G = &:(G) = HEG(G).
The theorem is proved.

A finite group is nilpotent if and only if it is the direct product of its Sylow
subgroups. The necessity of this condition will be obtained as a corollary to a
theorem on m-isolators in § 2.5, and its sufficiency will follow from the fact that
finite p-groups are nilpotent, which will be proved in § 2.8.
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It is possible, however, 10 prove the necessity by more elementary means using
properties of automorphisms of order coprime to the order of the group. Suppose
a finite group G is nilpotent; let us prove that it is the direct product of its Sylow
subgroups — which is equivalent to the fact that all of the Sylow subgroups are
normal. We use induction on the order of the group. Since G is nilpotent, it has a
normal subgroup H of prime index p. (One can take for Hf any of the maximal
subgroups of G containing the commutator subgroup.) By the induction hypothesis
all of the Sylow subgroups of H are normal in H, and hence all of them are
characteristic in H. Therefore all of them are normal in G. So, for each prime
number g # p the Sylow g-subgroup of + 15 normal.

It remains to show that the Sylow p-subgroup of G is also normal. If @ is a
non-trivial element of the factor-group G/H, then its order is p, and one can
choose its inverse image a lying in a Sylow p-subgroup P of . It is clear that
G = P-H,, where H, is the Hall p'-subgroup of H. It therefore suffices to prove
that [P. Hy] = |, and since [P N H, H,/] = | in the nilpotent group H, it suffices
to show that [a, H,] = 1. If this is not so, then the element a, normalizing the
subgroup H,, induces on it by conjugation an automorphism of coprime order. By
Corollary 1.6.4 b) we get

I[Hj-"" al.al = [Hp‘- al # 1.
By repeated substitution we therefore obtain

[...1I1Hy.al.al..... al=Hy.a]l # |
e — i —

for all n € M. This obviously contradicts the nilpotency of G.

§ 2.3 Some sufficient conditions for soluble groups to be nilpotent

The following theorem often facilitates the use of induction in proving that a group
is nilpotent.

2.3.1 Theorem (P. Hall [30]). Ler N be a normal subgroup of a group G. If N
is nilpotent of class k and the G/[N, N| is nilpotent of class ¢, then G irtself is
nilpotent and its nilpotency class is bounded by f(k.c) = (¢ — I}MT""' + k.

Proof. Using the fact that G/[N, N] is nilpotent of class ¢ we shall prove the
formally more general assertion that y;u +1(G) = y(N) for all k € N. We
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proceed by induction on k, simultaneously calculating f(k,c). For k = 1 the
hypothesis gives y.4+1(G) < y2(N), so that we may put f(l,¢) = c.

Now suppose that £ > 1 and that yr4 . )41(G) = p41(N)). For any 5 € N
consider the commutator subgroup

Vrkeyrs+1(0) = Vi1 (G), G, ..., G] =

< [%s1(N).G.....G)=[N,...,N,G,...,Gl.

= " "

i k+1 5

Repeated application of 2.1.4 gives

IN,....N,G] = |IN,CGIN, ..., N]-IMN,IN,GLLN,...,N]
T —
k+1

o IN, L NG N, G
and furthermore

[N,...,N,G,...,G] <

]

-

k41 &

< J] UN.G.....G)....IN.G.....G)] (2.3.2)

— e’

fytetiiey=s i
h Tegn

{here, by definition, [N, G, ..., ] = N).
— —

i
For sufficiently large s > (k + 1)(c — 1) + | at least one of the summands i; of

the sum iy + ...+ ip4 = s will be greater than ¢ — |, and each commutator on
the right-hand side of (2.3.2) will contain a subcommutator

[N, oy G| with i, = c. (2.3.3)
Now 2.1.4 allows us 1o "transpose” any of the normal subgroups to the beginning
of the commutator subgroups:
[[A, B], C] < [[A,C], B]-[[A, B, C]] = |[C, A}, B] - [IC, B], A].

Repeated application of this enables us to “pull out” the long subcommutators
of the form (2.3.3) in the right-hand side of (2.3.2) to the beginning, so that for
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s =(k+ Dic— 1)+ 1 we get:

[T uv.G.....Gl....IN.G.....Gll = [IN.G,....,G].N....,N].
—— — — o

Py i =1

fi fian 'y IS
(Here we have replaced [N, G,...,G] with i, > ¢ by the larger subgroup
‘-——:_,-—"
IN.G...., <], and [N, G.....Gli’orﬂther i; by N.)
M, o —— —

L J'_,

As a result for s = (k + 1(c — 1) + | we have

nyl;!.f}-—l':G]'r Gr' "»G] E I[NrG ..... G]. N ..... N] E
-. - R :r Pl _;_ ;
<[CG.G.....CGLN,....N| <[[N.NLLN...., N] = yes2(N).
" = —
c+1 k k

The last step again uses the condition y.4+,(G) < [N, N].
Thus, if we put f(k+1,¢) = flk,c)+k+1)c=1)+1, then yru41.041(G) <

< w+2(N), as required.
It is not difficult to compute, starting from f(1, ¢} = ¢, that

fhkd=(@=D+142c=D+1+3c-)+1+...

k(k + 1)

ot kle=1D+1=(c-1) + k.

The theorem is proved.

2.3.4 Corollary. Ifin a variety of groups (or in a variety of groups with operators)
I, all metabelian groups are nilpotent of class < ¢, then any soluble group in
M is nilpotent and its nilpotency class is (s, c)-bounded by some function g(s, ¢),
where s is the derived length of the group. (In other words, if M NA* < M. then
MmN A - mgfs.:-]-)

Proof. By induction on the derived length s of the group. The case 5 = | is trivial,
and the case s = 2 is covered by hypothesis. For s = 2, we consider the free
countably-generated group F of the variety 9t N 2A*. It is sufficient to prove that
F is nilpotent of class < g(s.¢). By the induction hypothesis F' is nilpotent of
class < g(s — 1,¢), and F/F" is nilpotent of class < ¢ by hypothesis. Therefore,
by Theorem 2.3.1, F is nilpotent of class

(s —Le)egls—1lay+1)
2

<(-1nk +g(s — 1. ¢).
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It is easy to see that the proof of Corollary 2.3.4, based on Theorem 2.3.1,
gives as an explicit expression for g(s, ¢) a polynomial in ¢ with leading term
22721l o2 -1 However, this bound may be significantly improved.

2.3.5 Theorem. [f, in a variety of groups (or in a variety of groups with operators)
M, all metabelian groups are nilpotent of class < ¢, then any soluble group in M is
nilpotent and its nilpotency class does not exceed ‘ffl—‘ where 5 is the derived length
of the group.

Proof. We shall at first prove the theorem in the technically simpler case of (ordi-
nary} varieties of groups, and then we shall indicate how the arguments should be
modified to include varieties with operators.

We use induction on the derived length s. The case s = | is trivial and the case
s = 2 is covered by the hypothesis of the theorem.

Before making the induction step we find conditions under which a semidirect
product of two groups belongs to the given variety M. Let the group word wix) =

= w(xy, x2...., x,) be one of the identities, defining M (see §1.8). Regarding y;,
z (i =1,2,...,n) also as free generators of a free group, we represent the value
w(yZ) = w(yi7), ¥222, - ... ¥nZy) in the form

w(yz) = w(z) - ¢, (¥, 2), (2.3.6)

where ¢, (v, ) is an element of the normal closure

({}’-li Mag.ooon }I”}t:l‘”":#:l}

of the subgroup vy, ¥>, ..., ¥,} in the group (v, y2,.... ¥nu 2 224 - -« Zn)y SO that
the word ¢, (¥, Z) has the form

}-I.';" . 1.’:-‘ _— 1}';:’, vi = L6(z).

where ;(z) are some words in z), 22, ..., Zns
(The presentation (2.3.6) may be obtained by transposing all the powers of the
z; to the beginning, preserving the order of their occurrence, by using the formulae

where ¢ = x|, v = =%r(Z) and r(z) is some word in z;, 23, ..., 2. Another
explanation of (2.3.6) consists in the fact that the image of w(¥Z) under the ho-
momorphism extending the mapping v, — |,z — z (i = 1,2,.... n) is ob-
viously equal to w(z); the kernel of this homomorphism is the normal closure
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{{¥r, ¥, ooes )= and w(Z) is an element of that coset of the kernel which
contains w(yz).)
We fix notation ¢,.(¥, Z) from (2.3.6) for the word w.

2.3.7 Lemma. A semidirect product A B of groups A and B belongs 1o the variety
M if and only if the group B belongs to M and c,.(a. b) = | for each identiry w
of M and arbitrary elements ay, az, ..., a, € Aand by, by, ..., b, € B.

Proof. f A » B € M, then B € 9, since B is a factor-group of A > B. There-
fore, w(b) = 1 for any by, bs:,.... b, € B. Furthermore, w(ﬁf:} = | for any
ay,ds, ....a, € A. Hence, by virtue of (2.3.6), we have c,.(a, by =1.

Suppose, conversely, that B € 9 and ¢,.(a, b) = | for any ay, a», ceenly € A,
by, bs, ..., b, € B. Then also w(b) = | and, therefore, by (2.3.6), w(ab) = 1. But
arbitrary elements of the semidirect product A > B have the form ab;. axbs, . ...
ayb,. Therefore A > B salisfies each identity w of 91, that is A > B € M.

The lemma is proved.

2.3.8 Lemma. Suppose that the group G belongs to the variety Y. Then for any
normal subgroup A of G and any normal subgroup C < Cg(A) the natural semidi-
rect product A » (G/C) also belongs 1o M.

Proof. Set B = G/C. By Lemma 2.3.7 it is sufficient to show that B belongs
to M and ¢,.(ab) = | for every identity w of the variety 9% and any elements
Ay, a,.... a, € Aand by, ba,.... b, € B. It is clear that B € M since it is a
factor-group of G € M, Now let us choose in G arbitrary inverse images b ; of the

elements b, i =1,2....,n Since w(&f:] = | and w(fr} =1, by (2.3.6) we have
¢y la, b) = 1. It remains to note, that

(@, b) = c.(a. b),
since the word ¢,.(@., b) has the form

a'-a’-... ~af:. v, = +1,(b),

]

where f,-{f;} are some words in by, by, ..., b, € B, and, clearly,

TS riby
[ = -

T =

by the definition of the action of B = G/C on A.
The lemma is proved.

Now we proceed with the induction step in the proof of Theorem 2.3.5.
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2.3.9 Lemma. Suppose that the variety O satisfies the conditions of Theorem 2.3.5
and let GG be a soluble group in o of derived length 5. Then

Proof. Induction on the derived length s. The case s = | is trivial and, if s = 2,
we need to show that [G'. G, ..., G = 1. This follows from the hypothesis of
S — —

.
Theorem 2.3.5, since ¥+ (G) = 1 for the metabelian group G € 9.

Suppose that s > 2. Then [G"“~" G'] is normal in G and G/[GY" ", G']
lies in 9M. As G’ centralizes the section V = GY~"/[G"~", G'], the group
G /G’ acts on it by conjugation. By Lemma 2.3.8 the natural semidirect prod-
uct V » G /G’ also belongs to 9. The group V » G/G’ is metabelian and hence
(v, j."f,:"G’, oG KG" ] = | by the hypothesis of Theorem 2.3.5. This may be ex-

"

r
pressed in terms of the inverse images as:

[G*".G.G,....Gl<[GY ", G

-
If we replace GY~Y by W = [G"~", G, ..., G'] in this argument, we obtain that
— —
i
W,G,G,...,Gl < [W.G'|=[G"", G, G,....G'.
— e

I3 i+l

An obvious induction on j yields

G*"".G,G.....Gl < 1G""", G, G, ..., G),
_— -
o 4

and, in particular,

(Y1, G, Gy . Gl S GV, 6, 600, G
A L T

ah= |

But the right-hand side here is 1 by the induction hypothesis applied 10 G’ since
G' is soluble of derived length s = 1 (note that (G")* 2 = G,

The lemma is proved.



§ 2.4 The Schur-Baer Theorem and its converses 43

We now finish the proof of Theorem 2.3.5. Suppose that s > 2 and let C be
a soluble group in 1 of derived length 5. By the induction hypothesis applied to
G/G""", we have Yris-1o+(G) < G Y, where f(s —1,¢) = 'ﬂl—]'

Hence, by Lemma 2.3.9,

}",r'{.:—l.:~1+-:-"'+|[{f] = [FI{:-I.:']+I[G}1 G.G,....0] =
P S

I

<G V.G, G, ...,G]=1.
——

Pl

Hence G is nilpotent of class at most

fe=1Lo+e = ——+c' =

which is the required bound.

The proof of the theorem in the case of ordinary varieties of groups is now
complete. In the case of varieties of groups with operators 2, the proof may be
obtained by more or less word for word repetition of the same arguments. The
difference lies in the fact that in this case subgroups are Q-invariant subgroups,
the free generators freely generate a free $2-group, the identities (£2-words) are
elements of the free §2-group, etc. In particular, the elements ¢,.(¥. z) from (2.3.6)
have the form

Viy Vi e W = E602),

where 1;(Z) are elements of the semidirect product {z;, 72, .... 2.} ~ 2.

§ 2.4 The Schur-Baer Theorem and its converses

Although we are primarily concerned with converses of the Schur-Baer Theorem,
we prove it here for the sake of completeness in spite of the fact that the methods
used are different from anything we have vet mentioned.

2.4.1 Theorem. [f the index of the centre of a group G is finite {and equals n),
then the commutator subgroup of G is also finite (and its order is n-bounded).

Proof. Put Z = Z(G) for short and decompose G into a union of cosets of Z:

G=g1ZUg,ZVU.. . Ug,Z.
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As follows from 2.1.1 ¢), d), all commutators of elements of G are of the form
lg..g;)i.j=12,..., n. Therefore the commutator subgroup of G is contained
in the commutator subgroup of (g, g2...., g,) and so we may assume that G =
{g1.82..... &n). Then Z, as a subgroup of finite index n in the finitely generated (n-
generated) group G, is also finitely generated by an n-bounded number of elements
by Schreier’s Theorem. Now for any g € G and fori = 1,2,...,n put

£ig = zi(g)gies

where zi(g) € Z, and gi() € {21...-. gn }. Straightforward calculation shows that
the mapping

9 g~ [ [
fm|
is a homomorphism of G into £ (the so-called transfer homomorphism). It is easy
to see that #(z) = 2" for all z € Z. Since Z is an abelian group, Ker#? 2 G'. As
a result we get

|l =G NZ)=(G' NnZ),

which means that G'N Z has finite exponent dividing n. Since G'NZ is a subgroup
of the finitely generated abelian group Z, it is itself finitely generated (with the
same bound on the number of generators). Hence G' M Z is finite (and its order is
n-bounded).

Since |G': G'NZ| < |G : Z] = n, we obtain that G’ is also finite of n-bounded
order.

The theorem is proved.

The converse of Theorem 2.4.1 is false — it is easy to construct an example of a
group with finite commutator subgroup whose centre is small (and coincides with
the commutator subgroup). For example, take

(5 = {E;,f},'l I = N: [ﬂj,ﬂj]: [h;,bj]':[.ﬂ',',b_;]: 1 fori ?EJ',
[a;, b;] = c.[a;.¢] = [b;.c) =1 forall i; ¢2 =1).

Then G’ = (¢) is a group of order 2 while Z(G) = (¢} has infinite index.
However there are some valid weaker assertions of a converse nature,

2.4.2 Theorem. [f the set of all commutators {[g, h]| g, h € G} of the elements of
a group G is finite (and consists of n elements), then |G : £5(G))| is also finite (and
n-bounded).

Proof. We shall need the following simple lemma.
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243 Lemma. For any element a of an arbitrary group G there is a one-lo-one
correspondence between the set of commutators of the form {[g. a|| g € G} and the
set of (right) cosets of the centralizer Cg(a).

Proof. We associate with the coset Cg(a)g the commutator [g, a]. This mapping
is well defined since, for any other representative of the same coset g' = ¢g.
¢ € Cgla), we have

lg".al =lcg.al =lc,al*-lg.al=1* - |g.a] = [g.al.

It is clear that this mapping is onto the whole set {[g.a]| g € G}. Also distinct
elements have distinct images: if [x, a] = [v. a], then

=1 -1 l

v~ al = [x.al [y al= (el v al=yyal =1,
which means that xyv~! € Cg(x).

The lemma is proved.

To make it easier to understand more complicated arguments which will occur
in Chapters 4 and 5, we give another version of the prool of this simple lemma.
For a fixed element @ € G define the mapping

ftat x = [x,a)

from G into the set of commutators of the elements of G. Though, of course, this
mapping is not a homomorphism, we have shown, in fact, that the full inverse
images of the [x, a| are the cosets of Cg(x), and the “kernel” - the full inverse
image of the identity element — is Cg; (x), so that its index is equal to the cardinality
of {|x.a]| x € G}. (In Chapters 4 and 5 some generalized centralizers of bounded
indices are defined in an analogous way as the kernels of certain homomorphisms.)

We now return to the proof of Theorem 2.4.2. By Lemma 2.4.3, the hypothesis
of the theorem imply that |G : Cs(g)] < n forany g € G.

Now suppose that ¢y, ¢2, ..., ¢, are all the commutators of elements of . For
each ¢; we fix representatives b; ; of the cosets of Cgic;). The total number of
elements b; ; is obviously n-bounded, since |G : Cg(c;)| < n for all i. It follows
from the proof of Lemma 2.4.3 that for any ¢ € G and for each ¢; there is a
representative b; ;i) such that |g, ¢;] = |b; jig. ;).

Now put

M =()Calbi) N[ Colew.

i k
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where the intersection is taken over all ¢; and over all b; ;. Since both the index
of each centralizer and the number of centralizers is n-bounded, the index of the
intersection |G : M| is also n-bounded.

It remains to prove that M C & (G). It is clear that it is sufficient to show that
[m,g),g:1=1forany m € M and any g, g: € G.

But the commutator [m, g] coincides with one of the ¢;, and hence,

[, g1, 821 = e, g2] = [ev, by j] = [m, g1, by 4]
for some b; ;. We now apply Witt’s identity 2.1.1 e):

lngl‘b'Jlﬁ IHI r_; I.‘;,-..r '[hl'.j--"ﬂhl'.,gl_l]m

Here the second factor is 1, since [g;', b I] coincides with one of the ¢,, and
m € Cglc,) by the construction of M. For lha same reason m € Cg(b; ), so that

the third factor is also 1. Therefore, [m,g.,b;_j]”il = 1, whence [m, g), g2] =
[m, g1, bi ;] = 1, as required.
The theorem i1s proved.

If, as well as satisfying the hypothesis of Theorem 2.4.2, the group & is finitely
generated (by s elements), then even the index of the centre of G is finite (and
(n, 5)-bounded).

2.4.4 Theorem. Suppose that G is an s-generator group, s finite, and rthat
{lg.h]| g.h € G} is finite and consists of n elements. Then |G : Z(G)| is also
Jinite and (n, 5)-bounded.

Pmof By Lemma 2.4.3 we haw: |G : Cg(g)| < n for each g € . Suppose
that & = la,, as,....a,). Then ﬂ Cela;) has finite (n, 5)-bounded index and is

contained in the centre of (i, because it centralizes each generator of G.
The theorem is proved.

We also recall the following general theorems of P. Hall [29]. If, in an arbitrary
group G, the subgroup 4 (G) i1s finite (of order n), then |G @ {x(G)] 15 also
finite (and (n, k)-bounded). There are examples of groups G with 34 (G) finite,
in which the index |G : £ -1(G)| is already infinite, so that 2k is best possible. If
G is in addition finitely generated (by s clements), then |G : £,(G)| is also finite
(and (n, k, 5)-bounded).

We prove here only the following simpler theorem which will be used later.
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2.4.5 Theorem. Suppose that G is an arbitrary group with y(G) finite (of order
n). Then G has a nilpotent subgroup of nilpotency class k whose index is finite fand
(k. n)-bounded).

Proof. The centralizer Cg(y(G)) has all the desired properties. Indeed, its index

1s n-bounded, since G/Cs(y:(G)) embeds in the automorphism group of y.(G)

which has order < n!. We prove that C;(14(G)) 15 nilpotent of class < k. [t suffices

to show that [¢;. ¢, ..., cheq] = 1 for any ¢y, ..., Cr+1 € Cg(ye(G)). But this

follows at once from the fact that [¢), ¢2, ... . ¢x) € 3 (G) and ¢4y € Co(p(G)).
The theorem 15 proved.

(With an eye on future generalizations in Chapters 4 and 5 we observe that the
subgroup Cg(y1(()), constructed in the proof of Theorem 2.4.5, may be defined as
the intersection of the "kernels™ of the mappings u,: x — |x,a], where a € y(G),
defining “kernel” to mean the full inverse image of the identity element.)

Theorem 2.4.1 was proved by Schur in [127]. Baer [3] also proved that if in an
arbitrary group the index of the k-th member of the upper central series is finite
and equals n, then the order of the (k + 1)-th member of the lower central series
15 also finite and (n, k)-bounded.

& 2.5 Lower central series. Isolators

It 1s convenient to use the language of tensor products of abelian groups (see
§1.2) to describe linear properties of lower central series. The same facts may,
of course, be obtained by direct commutator calculations, but the use of tensor
products provides substantial "economies of thought”. An account of the theory of
isolators is given as an application at the end of this section.

2.5.1 Lemma. Let A and B be subgroups of a group such thar [A, B] < Z{{A, B)).
Then the mapping

e (a, by — |a, b]

is linear in both arguments, that is p(ayasz, b) = |ay, bllas, b) and pla, byb:) =
= |a, b ]la, bz], for any a,a,,a: € Aand b, b, b: € B.

Proof. Straightforward application of 2.1.1 ¢) and d). For example,
ula@az, b) = |a), b)* - |az, b] = [a), b][az, b].

since (a1, b] € Z({A, B)) by hypothesis,
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2.5.2 Theorem. Suppose that G is an arbitrary group and x denotes the image
of an element x in the factor-group G/G'. Then, for any natural number n, the

mapping
(A ROH®...8%) = [ x,. .., ] (G)

induces a homomorphism of the tensor product G/G' @ ... ® G/G" onto y,(G)/

—

L

[ Va1 (G).

Proof. We set y; = y;(G), for short. For some k suppose that @ and b are images
of a € yy and b € G in y/yi4+) and G /G’ respectively. Consider the mapping

p:a®b— [a.blyisa

from y; /141 ®G/G' into Y141/ vi+2. This mapping is well defined, since [+, G]
< Ve+2 and [y, G'] = yps2. Since [y, G] = Wy = Z(G/yi42), it is linear in
each of its arguments by Lemma 2.5.1. Hence (see § 1.2), the mapping p induces a
homomorphism of y /e @ G/ G’ into yesy/yes2. This is a homomorphism onto
the whole factor-group ¥i.1/%+2, since [y, Gl = yr41-

We now prove the theorem by induction on n. For n = | the result is trivial.

For n = 1, it follows from the induction hypothesis that the mapping
(O @...0x-) @Xxy) = [x1,..., Xn—1]¥n @ Xy

induces a homomorphism of G/G'® ... ® G/G" onto y,—1 /¥, ® G/ G'. The com-

e

position of #; and u (as defined above with k = n — 1) obviously induces the
required homomorphism

i {ilﬁilﬁ---ﬁxxj)i;'lxl ---- x"—r]yﬂﬁx” _u}
F} [_I|,,.I'j+.. .,XH]H|+I(G}

of G/G'®...Q G/G" onto ¥, /yy+1.

-

The theorenm is proved.

Now we are in a position to use linear properties of tensor products of abelian
groups.

2.5.3 Corollary. Suppose that G is an arbitrary group such that G / G" has exponent
m. Then v, (G)/vas 1 (G) has exponent dividing m, for all n.
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Proof. The result follows from Theorem 2.5.2 and from the fact that the exponent
of a tensor product of abelian groups divides the exponents of each of the factors
(see § 1.2).

2.54 Corollary. Suppose that G is a nilpotent group of class ¢ such that GG’
has exponent m. Then G has finite exponent dividing m".

Proof. This follows from the preceding corollary.

2.5.5 Corollary. Suppose that for some set of prime numbers m and some k € M the
orders of all elements of the factor-group yi(G)/yi. (G) are finite and m-numbers,
Then the same holds for y,(G)/yvus1(G), forall n = k.

Proof. It is clearly sufficient to consider y44,(G)/yi42(G). In the proof of Theorem
2.5.2 we established the existence of a homomorphism of y.(G)/ 1 (G)R G/ G’
onto ¥i+1(G)/yies2(G). Now y(G)/yi41(G) & G/ G is generated by elements of
the form a & b, where a € ¥ (G)/»+1(G), and b € G/G'. By hypothesis we
have, in additive notation, ma = 0 for some 7-number m. Therefore m(a @ b) =
ma &b =0,

2.5.6 Corollary. If a group G is finitely generated by d elements, then v,(G)/
Y1 (G) is generated by d" elements, for each n.

Proof. This follows from Theorem 2.5.2, since the rank of the tensor product of
abelian groups does not exceed the product of the ranks of the factors — see § 1.2

It is not difficult to show that a subgroup of a finitely generated nilpotent group
is also finitely generated, and the number of its generators is bounded in terms of
the number of generators of the group and its nilpotency class. This follows from
Corollary 2.5.6 and from the following general result.

2.5.7 Proposition. [f a group G has a subnormal series of length n with evelie
factor-groups, then each of its subgroups may be generated by n elemenis.

Proof. Induction on n. For n = 1, we have that G and all of its subgroups are
cyclic. Suppose that 7 > 1, and let

G=G, G bE...BG, I

be a subnormal series of G with cyclic factor-groups. If H is an arbitrary subgroup
of G, then the factor-groups

H/(HNG:) = HG:/Gy = G/G>
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are cychic. Hence H/(H N G3) i1s generated by a single element, and an arbitrary
inverse image of this element together with H M G, generate /. By the induction
hypothesis H N G- 1s generated by n — | elements. Hence H is generated by n
elements.

The proposition is proved.

We now apply Theorem 2.5.2 to construct isolators and the largest periodic
subgroups in nilpotent groups.

Definition. Let 7 be a subset of the set of all prime numbers. A natural number
is said to be a w-number, if it is the product of numbers from .

Definition. For any subset M of a group G the subset
I.(M) = {x ¢ G| x" € M for some m-number n = n(x))

is called the mw-iselator of M (or simply the iselator of M if m is the set of all
primes). If the set m = {p} consists of only one element, then we write 7,(M)
instead of Im}{M}.

The following result shows how important the concept of isolator is in the theory
of nilpotent groups.

2.5.8 Theorem. Suppose that G is a nilpotent group, m is a set of of prime numbers
and H is a subgroup of G. Then the m-isolator I, (H) is a subgroup of G.

Proof. We may clearly assume that G = (/. (H)). We note that this assumption is
inherited by all factor-groups of G. We therefore have to prove that G = I, (H).
We use induction on the nilpotency class ¢ of the group G.

The result is easily verified for abelian groups. Therefore, for any element g € G,
there is a w-number m such that g” € w(G)H.

Now consider an arbitrary commutator [g,, g2, ..., 2.1 of weight ¢, where ¢ is
the class of G. To each element g; there corresponds a w-number m; and an element
k; € y2(G) such that gk, € H. Since ¥.(G)/y.+1(G) = y.(G) is a homomorphic
image of FFHG' ®...® G/G" (Theorem 2.5.2), it follows that

e

i,

[g;mklu Rgr!kh ceea B

T R T

ke l=1g1, 82, ..., 8]

Now mmsy...m. is clearly a m-number and the lefi-hand side of the above equa-
tion belongs to H, since g"k; € H, for all i. Thus (g1, g2 ..., g € I.(H).
Therefore, the abelian group y,.(G), generated by the commutators gy, g2, ..., 2.]
(see 2.1.5), is contained in /. (H).
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By the induction hypothesis applied to G/y.(G), for any element g € &, there
is a w-number m such that g" € Hy.(G), that is g" = hz for some 7 € y.(G)
and i € H. Since y.(G) € I,(H), as was proved above, there is a m-number s
such that z* € H. As aresult g™ = h'z* € H. But ms is also a w-number so that
g € I, (H), as required.

The theorem is proved.

Definition. The isolator /(1) of the identity subgroup of a nilpotent group G is
also a subgroup by Theorem 2.5.8 called the w-torsion part of G (the torsion or
periodic part of the group, if m is the set of all primes).

Obviously, if the isolator I, (1) is a subgroup, then it is characteristic. Therefore
we have the following corollary to Theorem 2.5.8.

2.5.9 Corollary. If a periodic group is nilpotent, then it is the direct product of its
Svlow subgroups.

We now record a result which we shall need later,

2.5.10 Proposition. The periodic part T(G) of a finitely generated nilpotent group
(G is finite.

Proof. It follows from Corollary 2.5.6 that G has a finite normal series with cyclic
factors. Hence the subgroup T(G) is finitely generated by Proposition 2.5.7. By
Corollary 2.5.6 all factors of the lower central series of T(G) are finitely generated
as well. Since they, like T (), are periodic groups, they are finite. Thus T(G) is
also finite.

The proposition is proved.

To conclude this section we remark that to many theorems about lower central
series there correspond dual results about properties of upper central series — see, for
example, the book of Warfield [153]. Thus, for example, if the centre of a nilpotent
group has no mw-torsion, then the group itself is m-torsion-free, etc. However, we
do not know whether there is any automatic procedure for obtaining such dual
results.

§ 2.6 Nilpotent groups without torsion

In this section m will always denote a set of prime numbers. All our results will
be proved for nilpotent groups without w-torsion (see § 2.5). Their proofs are not
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essentially any more difficult than their proofs in the special case of torsion-free
groups, that is, where 7 is the set of all primes.

The following theorem shows that extracting m-rools in nilpotent groups without
m-torsion is a well-defined operation.

2.6.1 Theorem. Ler G be a nilpotent group without m-torsion, that is, such that
I;(1)=)1.Thenforx, yve G

a) if x" = y" for a w-number n, then x = y;

b) if x™y" = ¥"x" for m-numbers m, n, then xy = yx.

Proof. a) Induction on the nilpotency class ¢ of G. For ¢ = 1 the group is abelian
and

.&'” — };,n o .In_}’_” =] {.x},—l]:r = 1II

and, since G has no w-torsion by hypothesis, xy~' = I. Thus x = y. Forc > 1, we

have x = v (mod Z(()) by the induction hypothesis, thal is, x = vz, z € Z(G).
By hypothesis (yz)" = x" = y" = y"z" = ¥" = " = |. But G has no m-torsion
and so z = 1, which implies that x = y, as required.

b) It is clear that it suffices to prove this assertion in the case where one of m, n is
1 (then x™y" = y"x™ = x"y = yx™ = xy = yx). Thus, we shall assume without
loss of generality, that x™y = yx™. This implies that x" = y~'x™y = (y " 'xy)™.
It now follows from a) that x = v 'xv, that is xy = yx, as required.

The theorem is proved.

2.6.2 Theorem. For any group G and any natural numbers i, j the following holds
U (piG)), L (i (GO = (s (G)).

(Note that the subset I (3 (()) is a subgroup for every i since it coincides with
the full inverse image of the m-isolator of the identity subgroup of the nilpotent
factor-group G/y,(G).)

Proof. We put H = G/I(yi4+;(G)). The group H is obviously nilpotent of class
< i+ j — | and has no m-torsion. Since for k < i + j it is evident that [, (y.(H)) =
Le (v (G /17 (yi=(G)), it will be sufficient to prove that

= (H)). L (v (H)] = 1.

For any a € I (yi(H)), b € I.(y;(H)) we have a" € y(H) and b" € y,;(H) for
some s-numbers m and n. Therefore, by 2.1.3 a), [a™, b"] € yi4;(H) = |, that is
a™bh" = b"a™. But H is m-torsion-free, and hence we have ab = ba by Theorem
2.6.1.
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Hence [a, b] = 1 for any a € I;(y(H)), b € I;(y;(H)). as required.
The theorem is proved.

§ 2.7 Basic commutators and the collecting process

Suppose that a group (& has a subnormal series

G=Gi1zGz..2G, 26 =1
with cyclic factors (¢;) = G;/G; 4. Let us choose inverse images ¢; € G of the
elements ¢;. Then every element g € G may be uniquely represented in the form

g=c e ... ek (27.1)

where 0 < i, < |&| if [¢,] < oo, and i; € & if |¢;| = oo. We prove this by induction
on n: for n = 1, the group G = (¢y) is cyclic and the assertion is obvious. For
n > |, the image g of the element g in the cyclic factor-group G /G is uniquely
represented in the form E-'I‘, where 0 < i, <= IE"I' |. Then by the induction hypothesis
applied to the element ¢"'g € Ga, it is uniquely represented in the form

i I
Cg=03 03 ...y,
which gives the unique representation in the required form (2.7.1).

A group which has a subnormal series with cyclic factors is called polvevelic.
For finite groups this is equivalent to solubility, but infinite polycyclic groups
constitute a proper subclass of the soluble groups. Many of their properties are
similar to the properties of nilpotent groups.

Having a central series with finitely generated factors is, of course, sufficient for
a group to be polycyclic. Hence, finitely generated nilpotent groups are polycyclic,
by Corollary 2.5.6.

The representation of an element of a group in the form (2.7.1) looks like a
decomposition of a vector over a basis of a vector space. The elements ¢y, ¢, ..., Cpy
are called a Mal'cev basis of the group G. The product of two elements of the
form (27.)a=¢] ¥ ... ¢, b= {';' {'-i' .+ ¢i", may be also represented
in the form {E.T_I}

ab = .c-‘r'":'j] -c‘{:';'}] S c,’rr““:';’.
Here the exponents f;.{: J} are, of course, functions of the vectors § = (. 2. ....
in)e J = (1. jo. ..., Ju). Infact the fi(i. j) define the complete multiplication table



54 Chapter 2 Nilpotent groups

of the group, that is, they carry full information about its structure. In many cases
it is sufficient to know that the fk{: j) are polynomials in the “"coordinates” i, j.

The explicit form of these polynomials depends on the particular Mal’cev basis of
the group chosen.

In this section we shall construct a Mal'cev basis for free nilpotent groups,
consisting of the so-called basic commutators in the free generators. We observe
that it is important to be able to do calculations in free nilpotent groups. Firstly,
many results may be regarded as facts about the structure of the free nilpotent
groups. For example, Kostrikin's Theorem giving a positive solution to the Re-
stricted Burnside Problem for groups of prime exponent p means that, for the free
n-generated nilpotent group F of class ¢, the (finite) index of the subgroup FF is
(n, p)-bounded (and does not depend on ¢). Secondly, calculation in free nilpotent
groups is also a method of proving theorems.

There arc many ways of defining basic commutators for free nilpotent groups.
The product of two elements of the form (2.7.1) is usually brought to the same
form by means of a sequence of transformations, and this procedure is called a
collecung process. We shall describe the basic commutators and the collecting
process of P. Hall. (For another more general way of defining basic commutators,
see the work of Shirshov [132].)

Let F be a free nilpotent group of class ¢ with free generators xj, xa, ..., X,.
The following definition of basic commutators uses induction on their weight and
simultaneously defines a linear order on them.

Definition. The elements x;, x2,...,x, are basic commutators of weight 1 in
Xy, X2, ..., Xp. Commutators of weight 1 are linearly ordered arbitrarily. If ¢; and
¢; ar¢ basic commutators of weight ¢, and i, respectively, then the commutator
[c1. ¢2] is a basic commutator of weight i) + i, if the following two conditions are
satisfied:

a) ¢; > ¢ and

b) if ¢; = [¢11, ¢12], where ¢;; and ¢ are basic commutators, then ¢;2 < ¢3.

Basic commutators of greater weight are by definition greater (in the linear order)
than basic commutators of smaller weight. The linear order on basic commutators
of the same weight is defined arbitrarily.

For example, suppose that F = {(x;, x2,x3). Put xy < x» < x3 for weight
1. Then, according to the definition, the basic commutators of weight 2 will be
[x2, x1], [x3, x1], [x3, x2]. Let us order them, for instance, in the following way:
[x2, x1] < [x3, x1] < [x3, x2]. Then the basic commutators of weight 3 will be

[xa, xp, 20 ] Lxa, xns x2)e [ 20, 23]y [xa, 20, 00

[x3, 2y, 02l Dea, xg, &3]y [, x0, xa], s, x, xal.
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Next, the basic commutators of weight 4 will be

lx2, xy x, & ] [x2, x5, %0, 22). ..

[Lxa, X )y Lz, a0l [lxa, %20 Doz, dl [1xa, 22l L,

here dots denote the remaining simple basic commutators.
The following important theorem will be proved here only in part.

2.7.2 Theorem. The factors of the lower central series of the free group F with
free generators x|, x1, ..., x, are free abelian groups: for each k € N, the factor-
group yi(G)/yvi1(G) is freely generated by the basic commutators of weight k in
o T o PR

We shall only prove here that the v (G)/yi41(G) for all k are generated by basic
commutators of weight k in x;, x;.....x, — this will follow from the collecting
process described below.

2.7.3 Corollary. The basic commutators in the free generators x,. Xz, ..., Xy of the
[ree nilpotent group F[y,..1(F) of class ¢ taken in their order, constitute a Mal'cev
basis of F/y .1 (F). If €| < ¢ = ... = ¢y are all basic commutators of weight
< ¢, then each element g € F [y, \(F) may be uniquely represented in the form

g=c-cF-...- ¢, i€l (2.7.4)

Now we proceed to describe the collecting process. We shall need the formulae
gathered in the following lemma.
We use the abbreviation: v, ;u] = [v, u, u, ..., ul.
e ——

i

2.7.5 Lemma. For any u.v € F and for all k the following congruences hold
modulo v (F):

a) v = uvlv. ul;

by va ™" = o, aullv. aul. . (v, 30l v, 1wl (mod v (F));

&) v lu=wlv.u] v

d) v 'um" = w o, v, wsl. e se] ™ v, 2w o7 (mod yi(F)).

Since commutators of the form [v, ;u] belong to 4 (G) for s = k — 1, in the
formulae b) and d) the dots denote, of course, only a finite number of factors.

FProof. It is easy o verify a) and ¢) by direct calculation.
Next we have

1= [vouw"]=(v.a v ullv.u,u”"],
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whence,

lv,u ™ = [vou, w0 )" [v,ou)"

Applying this to [[v, u], "], where [v, u] takes the role of v, we get on substituting

[v, H-Il = |v, u, L-r"]'"l . [u‘:..:]_l —
=(lvowcu,u ') oww)™) ! vaa)! =
= [v, u, ullv, u,u,u"" Yo, u]l™".

We now repeat the process with [[v, u, u], u™"], etc. Commutators of weight = k
are trivial modulo 4 (F), and so after a finite number of steps this process yields

(v, u™"] = [, 2ullv, qu) ... [v. 3u) " v, ] ™" (mod i (F)).
But vu~' = w'v[v,u"'], and so b) is proved. It is also easy to verify that
- =1

v T = u~ v, w"]7'w™!, so that the same congruence gives d).
The lemma is proved.

These formulae enable us to transpose basic commutators in such a way that the
additional factors emerging are also basic commutators or their inverses. This is
guaranteed by the following lemma, which is an easy consequence of the definition
of basic commutators.

2.7.6 Lemma. [f v, u, |v.u| are basic commutators in the free generators of a
free group F, then the commutators [v, yu] are also basic commurators in the free
generators for all k.

The collecting process involves considering group words, written in the form

c‘,.l' c; fees €y (2.7.7)
where ¢; = *1, and the ¢; are basic commutators. The collected part of the word
(2.7.7) is by definition its initial segment (reading from the left) of the form

c:';1 "—';2 -...~L'_f',
where we recall that ¢, = ¢; = ... <= cn are all basic commutators and, by
contrast with (2.7.7), the exponents {, belong to Z. Every step of the collecting
process transforms the word (2.7.7) identically, lengthening its collected part.

In order to represent any element of £ modulo 3., (F) in the form (2.7.4), that

is, in the collected form, it is sufficient to apply the collecting process, which we
are about to describe, to the representation of this element as a product of the free
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generators x, x2, ..., x, of F and their inverses, that is to its representation in the
form (2.7.7), where all commutators ¢; are of weight [.

The collecting process consists of consecutive stages, each of which is devoted
to the “collecting” of all the occurrences of a given basic commutator ¢;,, while it
still occurs in the non-collected part of the product (2.7.7) — under the condition
that all basic commutators smaller than ¢;, are already “collected”, that is, do not
occur in the non-collected part of (2.7.7). Here we say that the commutator c;,
occurs in (2.7.7) if this product contains ¢ as a factor, where ¢ = £1.

Thus, at the first stage we collect all occurrences of ¢ (for example, ¢, = x|,
if xj = xa = ... = x,). At the start the first occurrence (from the left) of ¢ is
transferred to the first place — the subwords v'u/, where e, f = £1,u = ¢ and v is
a basic commutator greater than ¢, are replaced by the right-hand sides of formulae
2.7.5. Note that each such substitution transfers the first occurrence of ¢; one step
to the left, and that all emerging additional factors are also basic commutators. The
latter is true by Lemma 2.7.6, because here we always have v = u, so that i, v and
[v, u] are basic commutators. After several such substitutions the first occurrence
of ¢, will be at the beginning of the product (2.7.7) and will constitute its collected
part. Next, the first occurrence of ¢, in the non-collected part is transferred in the
same way by 2.7.5 to the left, to the collected part, and so on.

Ultimately, there will be no occurrences of ¢; in the non-collected part. The
collected part will be a power of ¢, and all additional factors emerging will be
basic commutators greater than ¢,. The first stage is complete.

We proceed by induction. Suppose that after the first k stages of the collecting
process the collected part has the form

1 i iy
LI 'CE .---ICJ.l

and the non-collected part contains only basic commutators v greater than ¢ with
the property that if v = [v, vs], then v; < ;.

Al stage k + 1 all occurrences of ¢4 are consecutively transferred to the left,
to the end of the collected part. Namely, the subwords viu’, where ¢, f = %1,
i = ¢p+ and v 1s one of the basic commutators which 1s not only greater than
¢ but also greater than ¢4y, since we always transfer the first occurrence of ¢4,
1o the left, are replaced by applying 2.7.5. Here, either the weight of v is 1 and
then v, u] is a basic commutator, or v = vy, v2], and by the induction hypothesis
s < 0 = Cpep, 50 that [v, «] is also a basic commutator by definition. Therefore,
all additional factors appearing are basic commutators by Lemma 2.7.6. It is also
clear that all of them are greater than ¢4, and if v = [vy. v2] is such an additional
factor which appeared at stage k + 1, then vy < ¢44;.

After a finite number of such steps the collected part will be lengthened by a
power of ¢4y, and in the non-collected part only basic commutators greater than
cpe1 will be left. Also, if v = vy, va| is such a commutator, then va < ¢4 (we



58 Chapter 2 Nilpotent groups

pointed out above that this property held for commutators appearing at stage & + |
and it 1s valid for other commutators by the induction hypothesis). This completes
stage k + 1.

Since in a free nilpotent group of class ¢ there is only a finite number of basic
commutators in the free generators which occur in a given element, a group word, it
follows that this collecting process will transform that group word to the collected
form (2.7.4) in a finite number of steps.

The collecting process is a way of doing calculations in free nilpotent groups
and it may be used to carry out calculations in specific cases. However, it may be
also used to prove certain theorems. For example, we have just used the collecting
process lo prove that, for all k, the factor-groups %(G)/%+1(G) are generated by
the basic commutators of weight & in the generators of a group . In the next
chapter we shall use this process to prove Zassenhaus’ identity

[x, Y. Yoo .‘.FI = | {mud }{n+l{G}}.
e —

=1

which is satisfied by every group of prime exponent p. But here we record only
one example of such calculations.

Example. In any group G of exponent 3 the following congruence holds:
[x.y.¥] =1 (mod y(G))
for arbitrary elements x, y € G.

Proof. It is clearly enough to prove, that we have [x, y, v] € F?, where x, y are
free generators of a free nilpotent group F of class 3. We consider the power
(xy) € F?* and transform it using the collecting process:

(xy)* = x y xyxy = x*y[y, x]yxy =
—— P

= xyly, x]{y, x)[y, x, x)yly. x]y =

=’y [y, x)ly, x, ylly, x)0y, x, Iy, x, X[y, xly =
T LT T TP T PR T PP PP PP A—

=2y [y, x]ly, x, ylly, x, ylly. x1[y. x, y)-
Ly, x, ¥lly, x. x][y. x)[y, x, ¥] =
= vy, x Py, x, y Py, ko x] = (v, x, Py, x, x) (mod F7),
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Here the element being transferred at any given step is underlined in bold. The dot-
ted underlining means that the element in question commutes with the transferred
element and does not give rise to additional factors.

Since the left-hand side of the resultant congruence lies in F } we have
[v.x. ¥]*[v.x, x] € F?. Since x and y are free generators and F* is a verbal
subgroup, this inclusion will hold also after replacing x by x* (that is, we apply
the homomorphism extending the mapping x — x?, ¥y — ¥). As a result we see
that

Filoly. 2y v ) =v.x ] vxx) =

= [y, x. ¥][¥. x. x] (mod F?),

Multiplying the elements [y, x, v)°[v, x.x] and [v. x, ¥][v. x. x] from F*, we ob-
tain [v. x, x)* € F?, whence, [v, x. x] € F?, as required.

(In fact it may even be proved that any group of exponent 3 satisfies [v, x, x] = 1
and [x), x3. X3, x4] = 1))

Concluding this section we extend Higman's Lemma to free nilpotent groups.
The statements and proofs of all results analogous to those in § 1.10, may be
obtained by simply reproducing the latter, replacing free groups by free nilpotent
groups of some class ¢. Note that, in view of the collecting process formulae, one
need only consider commutators in the free generators x; (and not in .x; and ,x,-‘t)
in the statements and proofs of such theorems.

§ 2.8 Finite p-groups

In this section p will always denote a prime number.
Definition. A group P is called a finite p-group if |P| = p" for some n.

It follows immediately from Lagrange’s Theorem that the order of any element
of a finite p-group is a power of p.

The proof of the following important theorem is also based on the arithmetical
argument.

2.8.1 Theorem. Every finite p-group is nilpotent.

Proof. By induction on the order of the group it is obviously sufficient to show that
every finite p-group P has a non-trivial centre. The cardinality of the conjugacy
class of elements containing a given element g € P is equal to the index of its
centralizer, |P : Cp(g)| (because the centralizer Cp(g) is the stabilizer of the
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pont g and the conjugacy class containing g is an orbit of P acting on itself by
conjugation). Clearly, this number is either divisible by p, or equal to 1. In the latter
case, evidently, g € Z(P). But the group P of order p" is the union of pairwise
non-intersecting conjugacy classes. Since at least one of them has cardinality 1,
that consisting of the identity element alone, it follows by an obvious divisibility
argument that there must be at least p—1 more one-element classes, whose elements
therefore belong to Z(F).

The theorem is proved.

We observe that Corollary 2.5.9 and Theorem 2.8.1 provide a criterion for a
finite group 1o be nilpotent.

2.8.2 Corollary. A finite group is nilpotent if and only if it is the direct product of
its Sylow subgroups.

We proceed to give some elementary properties of finite p-groups.

2.8.3 Corollary. In an arbitrary finite p-group
a) every maximal subgroup is normal and has index p;
b) every normal subgroup of order p is contained in the centre of the group.

Proof. a) If M is a maximal subgroup of a finite p-group P, then Np(M) > M
by Theorem 2.2.3 ¢), since P is nilpotent; therefore Np(M) = P, thatis M < P.
Now if Z is an element of order p from Z(F/M) and z € P is its inverse image,
then {z. M} clearly has order p|M| and coincides with P, since M is maximal.

b) If N is a normal subgroup of order p of a finite p-group P, then NNZ(P) # |
by Theorem 2.2.3 b), since P is nilpotent. Since |[NNZ(FP)|, which 1s not 1, divides
the prime number |V| = p by Lagrange’s Theorem, we have IN N Z(P)| = p =
IN|,thatis NN Z(P)=N.

The theorem is proved.

Definition. The subgroup ®(P) = P'P? of a finite p-group P is called the Frattini
subgroup of the group P.

2.8.4 Lemma. Let P be a finite p-group. Then
a) the Frattini subgroup $(P) is the intersection of all maximal subgroups of P;
by if (®(P). M) = P, for some subset M, then (M) = P.

Proof. Let us denote by [ the intersection of all maximal subgroups of P. For any
maximal subgroup M of P we have M <1 P and |P/M| = p by Corollary 2.8.3.
In particular, P/M is abelian and has exponent p, whence M 2 P and M 2 PP,
Therefore [ 2 O P).
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To prove the reverse inclusion we consider P/®(P). This is an elementary
abelian group of exponent p and may be regarded as a vector space over the
field GF(p) (see §1.1). It is easy to see that the intersection of all subspaces of
codimension | is {0}. (Indeed, by the replacement theorem each non-zero vector
a may be included in some basis {4, = a,ds. ..., a,} of this vector space. The
subspace spanned by {as....,a,} has codimension | and does not contain a.)
Therefore, the intersection of all maximal subgroups of the factor-group P/®(F)
is 1. The full inverse images of the maximal subgroups of P/®(P) are clearly
maximal subgroups of P. So their intersection, which contains /, is contained in
d(P).

b) Let us assume that (M) = P. Then the proper subgroup (M) is contained in
some maximal subgroup H. By a) we have H 2 @(P), whence

P={(M ®(P))=(M®P)C HO(P) =

a contradiction.
The lemma is proved.

A minimal system of generators of a group 1s a set of generators such that any
proper subset generates a strictly smaller subgroup.

2.8.5 The Burnside Basis Theorem. A ser of elements of a finite p-group P is a
minimal system of generators for it if and only if the images of these elements in
the factor-group P/ D(P), viewed as a vector space over G F(p). form a basis.

Proof. Let a aa, ..., a, be the inverse images of some basis {a;,ds. ..., iy} of
P/®(P). Itis then clear that (a;. a-, ..., a,, ®(P)) = P, whence by Lemma 2.8.4
b) we have {a;.a., ..., a,) = P. No one of the elements «; can be deleted in the

left-hand side of this equation, because the images of the remaining elements will
not generate P/®(P).

Now suppose that a), aa, ... a, constitute a minimal system of generators of P.
Then their images @y, @>. .. .. d, obviously generate P/&(P). If they were linearly
dl:]}cndent in the vector 'ipacc P /@ ( F), then some proper subset of them — elements
Ay s <vesen a; . § < n,say. — would form a basis. Then, by what was proved above,
iy iy oeos a;, would generate P. But this contradicts the minimality of the system
of generators a, @z. .. .. ay.

The theorem is proved.

We remark that it is an immediate consequence of this theorem that the cardi-
nality of a minimal system of generators of a finite p-group is an invariant of the

group.

2.8.6 Theorem. Suppose that P is a finite p-group.
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a) Every normal subgroup N 9 P may be included into some central series of
P with factors of order p.

b) Every subgroup H < P mayv be included into some subnormal series of P
with factors of order p.

FProof. a) Induction on the order of P. Since P is nilpotent, we have Z(P)NN # |
by 2.2.3 b). Let z be an element of order p from Z(P)N N. Then by the induction
hypothesis P/{z) has a central series containing N/(z), with factors of order p.
The complete inverse images of the terms of this series together with the subgroup
{z) will form the desired central series of P containing V.

b) Since P is nilpotent, we have Ng(H) = H for every proper subgroup H by
2.2.3 ¢). It is therefore easy to construct a subnormal series of P containing H by
starting with f/, then taking its normalizer, then the normalizer of the normalizer,
and so on. The factors of this series are finite p-groups and by a) they have central
series with factors of order p. The complete inverse images of the terms of these
series taken together form the desired subnormal series of P containing .

The theorem is proved.

Now we move on from elementary facts about finite p-groups to more advanced
results. The first of them is remarkable in that a rather simple condition yields an
unexpectedly strong conclusion.

2.8.7 Theorem (P. Hall [28]). Let N be a normal subgroup of a finite p-group P
which is contained in y,(P). Then all factors of the lower central series of N, with
the possible exception of the last, have order = p* (that is |y;(N)/y; .1 (N)] = p*,
whenever y; - (N) # 1).

Proof. We first prove a generalization of the Three Subgroups Lemma.

2.8.8 Lemma. For normal subgroups A and B of an arbitrary group and for any
k the following inclusion holds:

|A, »(B) =[A,B,B,..., B
— r—

1-

(Note that a more general assertion is also true: for any & and normal subgroups
A, By, By, ..., By of an arbitrary group the following holds:

[A,[B, Bs, ... B)] < []IA. Bactys Brays - -+ Baw])
TeS
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Proof. Induction on k. For k = 1 the assertion is trivial. For k = 1, by the induction
hypothesis we have

[A, v-1(B), B] = [A, B, B...., B.B]=|A,B.B,...,B).
i e
k-1 k

Also by the induction hypothesis, applied to the subgroups (A, B] and B instead
of A and B, we have

([B. AL pu—i(B)] < [IB.Al.B.B.....Bl=|A.B. B, .... Bl.
——— — e ——
k=1 k

Hence, by the Three Subgroups Lemma 2.1.2, we also have

(A, m(B)] = [w-1(B),B.A] = [A. B, B, ... B]
j..

The lemma is proved.

We return to the proof of the theorem. Suppose that y;(N) # 1, that is,
[¥(N), N] # 1. By Theorem 2.8.6 a) there exists a normal subgroup M < P, such
that ¥4 (N) > M, |y (N) : M| = p and [y;1(N), P] = M. Clearly, therefore
[v:(N). N] £ M. By hypothesis N < y,(P), and so [y;(N),y:(P)] # M. By
Lemma 2.8.8 we have [y;(N). y:(P)] < |w(N). P, P,..., P and hence

LR Rl fead®

lyi(N),P.P,....P| £ M. (2.8.9)

]

Denoting images mod ¥, .| (N) by bars, consider the series

VilN) = [y(N), Pl = |yiN). PPl = ... 2 [i(N), P, P, ..., Pl=1

for P = P/y;41(N). We have

[w(N), PP, ..., Pls#1,

because otherwise

[y (NP, P,..., Pl, P] < [yin1(N), Pl = M,
— —
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which contradicts (2.8.9). Therefore all inclusions in (2.8.10) are strict inclusions,
since for k < 5 — 1 by Theorem 2.2.3 a), we have

v (N), Po...,Pl=1%(N).P,....P. Pl < [W(N)LP,..., P]
N — — p— — ——

k k=1 k=1

for the nen-trivial normal subgroup [3;(N), P, .... P] of P. Thus, each of the s
[
k=1
factors of the series (2.8.10) has order > p. The product of these orders is the
order of the factor-group ¥ (N)/y;+1(N), and hence the latter is at least p*.
The theorem is proved.

Now we shall prove a result which we need to prove the Magnus-Sanov Theorem
on the (p — 1)-Engel condition for the associated Lie ring of a group of prime
exponent.

2.8.11 Theorem (Zassenhaus' identity). For any group G of prime exponent p

and for any elements x, v, v;, v, ..., ¥p-1 € G the following congruences hold:

a) [T [x.yecn ¥e@y oo Yap-nl = 1 (mod y,41(G));

mes,
b) lx, ¥, ¥, ... yl=1 (mod ypei(G)).
e —
=1
Proof. We recall the abbreviation [v, i, u, ..., u|=|v,  u.
.

We show first that a) implies b). Putting yj = y2 = ... = y,_| = y in a), we

get
[, poiy)P71 =1 (mod yp41(G)).

Since (p—1)! = =1 (mod p), we deduce b) at once since & is a group of exponent
p.

It suffices to prove a) for free generators x, ¥, vi, ¥2,.... ¥p—1 Of a free group

F of the variety 9, N B, of nilpotent groups of class p and of exponent p (we
shall use the extra generator y in the proof). We apply the collecting process to
the left-hand side of the equation

(xy)...(xy)=(xy)' =1,
Ji

If v < x for basic commutators of weight 1, then we shall obtain a product of
basic commutators

}rP " .IP .a: . ﬂ'l] et Hﬁ"i -b B l_r_ ;}‘—l}r]y = l, {2.8.]2)
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where a; denotes a product of powers of basic commutators of weight i =
2,3,..., p—1,and b denotes a product of powers of basic commutators of weight
p, different from [x, ,—;v]. Note that all basic commutators occurring in b have
weight = 2 in x.

We now compute the power y to which [x, ,—,y] occurs in (2.8.12). It is clear
from the description of the collecting process (see §2.7) that a simple commutator
|x, ,¥] appears only when we pass the element y to the left over commutators
[x, . 1¥] which arose from previous steps. Therefore [x, ,—, ¥] appears only

a) at the successive passing over the first element x of any p — | of the p
elements y, which originally were to the right of this element x, that is, C} '
times, and

b) at the successive passing over the second x of all p — | elements y, which
were placed to the right of this second element x, that is, | more.

All together we have y = C5™' + 1 = p+ 1.

Since F has exponent p, we may put ¥ = | and drop the factor y" - x” in
(2.8.12).

We shall also need the set R of all commutators in x. v, vy, ya..... Vp—1, which
involve at least two equal vaniables.

2.8.13 Lemma. a) The subgroup (R) is normal in F.

b) If ¢ is a commutator in X, ¥, ¥y, ¥2. ..., Ypo1 of weight i inx, jiny, k, in y,,
s=12..., p — 1, then the commutator obtained from ¢ by replacing x by x*, v
by ¥, v, by ¥¥ (A, p, v, € N) is equal to ¢ - r, where

k

] k :-l'.
X=l",ﬂ.j'ul 2 ¥

1

L MERPPRR U
and r is a product of commutators from R, each of whose weights is greater than
that of c.

Proof. This follows from 2.1.1 ¢), d).

We now replace all occurrences of y in (2.8.12) by the product ¥, - y2-...-y,-1.
By 2.1.1 ¢), d) one can transform the resulting equation to the form

way...apab- [T leoyzm. yea ... Yrip-nl =1 (2.8.14)

Te%, |

(after changing notation) where q; is a product of powers of basic commutators of
weight i =2,3,..., p — 1 and b is a product of powers of basic commutators of
weight p, from R.

Now let v be an integer whose image in Z/pZ generates the multiplicative
group of the field GF(p) = Z/pZ, that is has order p — 1 in it. We replace
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all elements x, yj, y2..... ¥p—1 In (2.8.14) by their v-th powers and collect the
resulting equation. By Lemma 2.8.13 we obtain

e

pd s - I
dy ay...ap—b- n (X2 Yritys Ya2ps v o5 Yuip-n] =1
."TEE'_". i
where a» is the same as in (2.8.14), and the a;, i = 3,..., p — 1 and b have the

same properties as a; and b in (2.8.14).
Taking the (—v?)-th power of (2.8.14) and collecting the result, we get

—?: ¥ £ ¥
azl ﬂg...aﬂ_|b - 1_[ Fx,}':r:l]u}'n{Zj,r.-..,}rn(p-”] - L'
!TESF.. ]

where the element a, is as before, and a;, ' have the same properties as a; and
b. This follows from the fact that the commutators of commutators occurring in
(2.8.14) lie in R, since all of them involve at least two occurrences of x. Thus, after
applying 2.1.1 and the collecting process, there appear no commutators of weight
1 in each vanable x, v, v2, ..., Vp—1, Other than those in the brackets associated
with the power —v?, which arise from the product

l_[ (X, ¥aciys Yagye oo v VYaip-1))-

neS,

Multiplying the resultant equations in order to get rid of as, for the same reasons
we get

4
pl=yp=

i i L
ﬂj"'ﬂp—lb . l_] 1% Yaitys Y2y oo o Ya(p=1)] =1,

b | 'Eij.-|

where a’ and b” have the same meaning as before. By our choice of v, we have
v? —v? = 3 (v 2 — 1) % 0 (mod p), whence there exists an integer s such that
(v” —v?)s = 1 (mod p). Taking the s-th power of the resultant equation, collecting
the result and using the same argument as before, we get

[1."" -|rz}_\'

asy...ap 1b- n [, ¥rctys ¥r@rs -+« s Yuip-n) =1

mES,
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(after changing notation), where a; and & have the same meaning as before. In a
group of exponent p we may drop the exponent (v” —v?)s, congruent to 1 modulo
p, so that we get

ay...apb- l—[ X ¥aciys ¥ri2po o e v Yaip-nl = 1.

:rESP i

Proceeding in the same manner we can successively eliminate all commutators

of weight < p — 1, the product of the commutators of weight 1 in each variable
Xy Yis P2yacns ¥p-1 being always equal to
H [x. ¥ae13s ¥aezpe v e s Yeip-1l-
TES, |

Eventually we obtain
bo-by-ba-...-bpy =1, (2.8.15)

where b; denotes the product of the powers of those commutators which con-
tain exactly i occurrences of the element x. The multilinear component of the
left-hand side, that is the product of commutators of weight 1 in each variable

P TS . TR ¥p-1 (which is, of course, a part of b)) is equal to
]_[ 1 Yy Yrep o Yatp-nl-
TES, |

We rewrite (2.8.15) additively in the abelian group y,(F) and replace x in it by

x' foreachi=0.1,2...., p — 1. The following system of equations is obtained:
=1
Y ilbj=0, i=01.....p~1
j=n

The matrix of coefficients (i/) has determinant of Vandermonde type and is non-
degenerate modulo p. This implies that

bo=b =...=b, =0,

and, in particular, b; = 0.
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We explain this in more detail. The system of equations under consideration may
be represented in matrix form with coefficients from the field Z/pZ = GF(p)

by 0

_ by 0
@p-| =]
by 0

where the coefficients &;; = (i — 1)/~ are residues modulo p. The Vandermonde
determinant of the matrix (e;;)

detl)= [ Gi=D-G-= [] G-

I =izefy=p |=fz=i=p

15 not 0, as i} — iz #£ 0 for all factors. Therefore the inverse matrix (o; _,-)" EX1SLS.
Multiplying by it on the left and using the associativity of matrix multiplication
we get

bo by 0 0
b] —1 bl —1i 0 0

. = (o)™ - (eij)) - , =) -].1=] -
bpi by 0 0

(Another form of the same argument goes like this: the non-degeneracy of the
matrix (¢;;) implies that there is a solution (a@o,q,...,a,-) of the system of
linear equations

(Xp, X1, 00en IF_|)'|:¢I’”:I=(O,LO.---'{']-

p=1

Then, taking a linear combination of the equations Y i/b; = 0 with coefficients
=

a; gives

p=1 p=1 p=1 fp=1
0= Zﬂj = Zl"b; = Z (Eﬁf l")b; =b|,}

i=0 =0 =0 \i=0

Hence, b; = 0. Now we rewrite this equation in the form
bhlo+tb1+bat+...+b =0,

where by ; denotes a linear combination of commutators of weight ¢ in y; (and, of
course, of weight | in x). Exactly the same arguments with respect to the variable
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yi (replacing y; by y{, i =0.1,..., p — 1, etc.) yield
by =0,

where the multilinear component of the left-hand side 1s

Z [, ¥ae1ps Yri2e -+ - Yap-n)-
.-'T'ES;.-q
Repeating these arguments successively with respect to all variables x, v, v2. ...,

J"ﬂ'-’ll we Obl&m
Z [x, ¥=(1ps ¥e2ys oo+ s :l',.'r{_n—lll =0,

b 4 ES‘,_|

as required.
The theorem is proved.
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Associated Lie Rings

Witt’s identity
la,b~", ¢l - [b.c ", af -le.a ' b =1,

which holds in every group, looks similar to the Jacobi identity
[a, b, cl+|b,c,al+[c,a,b] =0,

which holds in Lie rings. Apart from the multiplicative notation, the difference lies
in the fact that in Witt’s identity there are additional conjugating factors, or, using
the formula x' = x - [x, y], additional factors which are commutators of greater
weight, One can omit these additonal factors and thus define a Lie ring using the
group operations, but, of course, a lot of information about the group will be lost.
In fact, it is only for nilpotent (or residually nilpotent) groups that such a transition
to Lie rings makes sense.

Here we give not only the standard definition of the associated Lie ring, based
on the lower central series, but also an analogous construction, based on arbitrary,
so-called, strongly central series. This construction will be used in Chapter 5.

We prove the nilpotency of soluble groups of prime exponent, as an illustration
of the advantages of using Lie rings which are more linear objects than groups.

We also prove the Magnus-Sanov Theorem that the associated Lie ring of a
group of prime exponent p is (p — 1)-Engel. This result reduces the Restricted
Burnside Problem for groups of prime exponent to Kostrikin's Theorem 1.3.1 on
Engel Lie algebras. The proof given here may well not be the shortest possible, but
it may help us see the kind of difficulty which may be encountered in passing from
groups to Lie rings and back. We shall also imitate this proof later at an analogous
point in the positive solution of the Restricted Burnside Problem for groups with
a splitting automorphism of prime order (Chapter 7).

One of the important advantages of studying a more linear object — a Lie ring — is
the fact that one can extend the ground ring and decompose the Lie ring into a sum
of the analogues of eigenspaces which arise under the action of an automorphism.
We give an account of this technique at the beginning of the next chapter which
deals with automorphisms of Lie rings.
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§ 3.1 Results on Lie rings analogous to theorems about groups

Here we state a few theorems about Lie nings whose proofs may be easily obtained
by translating the proofs of the analogous theorems about groups into the language
of Lie rings.

The terms of the lower central series y;(L) of a Lie ring L were defined in § 1.3.
Nilpotent Lie rings are defined analogously to nilpotent groups using the following
theorem.

3.1.1 Theorem. The following conditions are equivalent for a Lie ring L:

a) Yerr (L) =0;
b) L has a central series of length ¢

L=LizL;>z...2L. 2L =0,

that is, such that [L;. L) < Lig foralli =1.2,...,¢;
c) the Lie ring L satisfies the identiry

Definition. A Lie ring L, satisfying the conditions of Theorem 3.1.1, is said to
be nilpotent, and the least natural number ¢ for which they hold, is called the
nilpotency class of L (sometimes another term — “index of nilpotency™ — is used).

One often says that a Lie ring is nilpotent of class ¢ meaning that it is nilpotent
of class < ¢.

We note that, in order to prove that a Lie ring is nilpotent, it is sufficient to
verify the nilpotency identity for its generators.

3.1.2 Theorem. If a Lie ring is generated by a subset M, then it is nilpotent of
class < ¢ if and only if every commutator of weight ¢ + 1 in elements of M is equal
to 0.

The proof of this theorem follows easily from a description of the terms of the
lower central series, which we also give here for completeness’ sake.

3.1.3 Proposition. Suppose that L is an arbitrary Lie ring and that k is a positive
integer. Then

a) the ideal v, (L) contains all commutators of weight = k in elements of L;

b) the additive subgroup yy (L) is generated by the simple commutators of weight
k in elements of L;
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c) if L = (M), then the additive subgroup y,(L) is generated by the simple
commutators of weight = k in elements of M, it is also generated by the basic
commutators of weight > k in elements of M; in particular, if L is finitely generated
(with s generators), then for each k € M, the additive group y, (L) vis (L) is also
finitely generated (with a (k, 5)-bounded number of generators).

The definition of soluble Lie rings is also completely analogous to the definition
of soluble groups.

3.1.4 Theorem. The following conditions are equivalent for a Lie ring L:
a) L' =0y
b) L has a series of ideals of length s with commutative factors

L=l L. . BLBL =1,

that is, such that |L;, L;] < Ly, foralli =0,1,...,. v — 1.
¢) L satisfies the identity

8 (x), X2, ..., x2) =0

{For the definition of 8, see the Preface, and for the definition of the terms of
the derived series L' see § 1.3.)

Definition. A Lie ring, satisfying the conditions of Theorem 3.1.4, is said to be
soluble, and the least natural number s for which they hold, is called the derived
lengrth of L. (sometimes the term — “index of solubility” — is used).

It is often said that a Lie ring is soluble of derived length 5, meaning that it is
soluble of derived length < s.

Remark. The analogue of Theorem 3.1.2 does not hold for solubility: there
exist examples of Lie rings G = (M) with 8;(m;, m1,...,mu) = 1 for any
my,....,mx € M, which, however, are not soluble of derived length k.

The following two theorems are Lie ring analogues of Theorems 2.3.5 and 2.4.5,
and their proofs may be easily obtained by translating the group theoretic commu-
tator calculations into the language of Lie rings.

3.1.5 Theorem. [f all soluble Lie rings of derived length 2 in some variety of Lie
rings are nilpotent of class < c, then any soluble Lie ring of derived length 5 in this

ot i i : =
variety is nilpotent of class < .

3.1.6 Theorem. [f the ideal y; (L) in an arbitrary Lie ring L is finite and has order
n {or, for Lie algebra L, is of finite dimension n), then the Lie ring (Lie algebra)
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L contains a nilpotent subring of class k of finite (k, n)-bounded index (of finite
(k. n)-bounded codimension).

(Here the index of a subring means its index as a subgroup of the additive group
of the ring.)

§ 3.2 Constructing a Lie ring from a group

We first give the definition of the associated Lie ring which is defined in terms
of the lower central series of a group. This construction is then generalized to the
case of arbitrary so-called strongly central series.

Let G be a group. We shall put 3, = . (G). k € M, in those cases where there
is only one ambient group & so that no danger of confusion arises.

3.2.1 Definition. The additive group of the associared Lie ring L(G) of a group
{7 15 the direct sum

o
L(G) = & n/ns.

writing the abelian groups y; /14 additively.

For each & € M the direct summand y; /4 is called the homogeneous compo-
nent of L(G) of weighr k. Multiplication in L(G) is defined for the elements of
the homogeneous companents by

la+ yis1- b+ }"_;'rll = la. b] + Vidj+ie

where a + ¥4y and b + y;4 are the images of the elements a € y; and b € y; in
factor-groups y;/yi+1 and y;/y;+1. respectively, and [a, b] + ¥ 441 is the image
of the group commutator [a, b] in the factor-group yi4;/¥i+j+i. Multiplication is
then extended to L{G) by linearity.

(Note that it may very well happen that ¢ + yic1. £+ yj41] = 0 in L(G),
although [a, #] # | in G, — we only need [a,b] € ¥ 1j41.)

Definition. The elemenis of the homogeneous component y; /¥4 of weight k of
the Lie ring L(G) are called homogeneous elements of L{G) of weight k.

3.2.2 Theorem. Definition 3.2.1 defines a Lie ring structure on L(G).

If G is nilpotent of class ¢, then L{G) is also nilpotent of exactly the same class
¢, and if G is also finite, then |L(G)| = |G|. If G is soluble of derived length s,
then L(G) is alse soluble of derived length < 5.
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Every automorphism @ of the group G induces an awlomorphism of the Lie ring
L{(s) by its action on the factor-groups y; [ v;+1 and if G is finite and the order of ¢ is
coprime to the order of G, then @ faithfully acts on L(G) and |Cp6,(¢)) = |Cs ().

(The automorphism induced on L(G) by ¢ is usually also denoted by ¢.)

Proof. The correctness of the definition of multiplication of homogeneous elements
in L(G) follows from 2.1.3 a) and 2.1.1: if &' + yis1 = a + ¥ € /i and
b+ yjs1 = b+ yjs1 € ¥j/¥j41. then @’ = ag,, where g) € yi4), and " = bg,,
where g2 € ¥4, and then

[a',b'] = lag:, bg2] = la, b] (mod yi4;41),
since [yi, ¥is1l - [Vitr, ¥i1 = ¥isjerr
Anticommutativity and the Jacobi identity are multilinear and it therefore suffices

to verify them for homogeneous elements. Let a = a + yiq1 € ¥i/Visr, b =
b+ yj-1 € ¥i/¥j+1 and ¢ = ¢ + Vi1 € ¥a/Visr. Then

[a, B] = [a.b] + Vixjsr = —[b. @) + Visjsr = —[b, dl,
since [a, b] = b, a]™' for group commutators. Also we have
[a.b,cl+[b,c.al + ¢, a, b] = la,b.c] +[b,c,al +[c,a, bl + Yigjsks1 = 0,
because of Witt’s identity 2.1.1 e) for group commutators
la, b7 ) - [b, ¢ al - [e,a” ! b =1
and

la, b~ el =la.b™"¢]-lla, b™" el b) = [a, b7, c] =
= [[a.b]", c1 = [a,b,¢]™" (M0d iy juks1)

by 2.1.1 and 2.1.3 a) (analogously for [b, c¢~', a]" and [c,a ', b]“).
The fact that the nilpotency classes of G and L(G) are the same for G nilpotent,
is established by the following lemma.

3.2.3 Lemma. [n the associated Lie ring of an arbitrary group G, the following
hold for any k:
a) e/ ve+r = wllar a2, ..., acll ai € /)

b) (LG)) = & yi/visn.
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{Here the right-hand side of a) is the additive subgroup, generated by the Lie
ring commutators. )

Proof. By Proposition 2.1.5 the factor-group i /y1+ is generated by the images
of the commutators [g, g1, ....g:] of weight k in elements g; € G. Using the
definition of multiplication in the associated Lie ning, one can easily prove that
the image of such a commutator of weight k is equal to the Lie ring commutator
[, 820000 2c). where g; is the image of g in yi/y>. So, passing to additive
notation, we get i/ Ve = + (21, 22, .. .. 2:ll & € 1 /y2), which proves assertion
a).

Since (g1, 82..... 2] € yl(L(G)), it follows from a) that y(L(G)) = {31 vil

[¥isr: the reverse inclusion follows from the fact that [y, ¥l < Yman-
The lemma is proved.

The fact that |G| = |L(G)|, if G is a finite nilpotent group, follows from the
equations

Gl =][w/vinl and (LG =[] 1n/vial.
F=| i=I
where ¢ is the nilpotency class.
If the group G satisfies the solubility identity

55(II-IE--~-.I3'}= 1,

then, by the definition of multiplication in the associated Lie ring, the same identity
is satisfied by the homogeneous elements of L(G), and, since this identity is
multilinear, it is satisfied by L(G) itself.

If ¢ € AutG, then for homogeneous elements @ = a + ¥+ € ¥/yi+1 and
b=b+yj+) € ¥;j/¥j+1. we have

[a@, bl¥ = la, bl +¥ip i1 = [a%. B )+ ¥isjer = [@% + yigr, B + v541) = [@%, B°).

By definition we extend the action of the induced automorphism ¢ to L(G) from
the abelian groups ¥, /¥4 by linearity, and so, for any [, = 3 fi,, b = ¥ b,

where [;; € ¥./ve1, 1 = 1.2, 5 € N, we have

¥ ¥
(h. L) = [En Zrz,} = (EH.;.-’:, }) =
= Dl bl = D I 05 = [Zf PR ] = Uf. 1),
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This means that ¢ really is an automorphism of the Lie ring L(G).

In the case where G is a finite nilpotent group, the faithfulness of an induced
automorphism of order coprime to the order of & follows from Corollary 1.6.3,
since an automorphism acts trivially on L(() if and only if it centralizes all factors
of the lower central series of G. With the same hypothesis it follows from Theorem
1.6.2 that |Crgy(9)] = [Calw)l.

The theorem 15 proved.

Remark. By contrast with nilpotency class, the derived length of the associated
Lie ring L(G) may be smaller than the derived length of the group G, even if the
group G is nilpotent.

Lemma 3.2.3 a) has a useful corollary.

3.2.4 Corollary. For any group G the associated Lie ring L(G) is generated by
its homogeneous component v [ys of weight |, and if the group G is generated by
a set M, then the Lie ring L(G) is generared by the images of the elements of M
in the factor-group yi/ys.

Although the associated Lie ring may be constructed starting with an arbilrary
group, it is clear that it reflects only the properties of the factor-group G f ﬂ ¥ (G),

=]

since, clearly,
L(G) = L(G/ﬂ }f.-[G}).
i=I

For example, L{B(m, p)) = L{B(m, 7)), although the free m-generated Bum-
side group B(m, p) of prime exponent p is infinite (and insoluble) for m = 2 and
for any prime number p = ﬁﬁ'.r' by the Adian-Novikov Theorem [1, 116], and the

group E’{m p) = B(m, pj,/ |'"] ¥ (B(m, p)) is finite by Kostrikin's Theorem [76].

A Lie ring may also be cnnatruucd using other types of central series.
Definition. A series of a group G
G=K>K:>...>K.> Koy =1 (3.2.5)
is said to be strongly central if [K;, K] < Kjyj forall i, j=1,2,...,c
It is clear that any strongly central scrics is automatically normal and central,

and if a group G has a strongly central series of length ¢, then it is nilpotent of
class = ¢. The next theorem is completely analogous to Theorem 3.2.2.
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3.2.6 Theorem. Suppose that the group G has a strongly central series (3.2.5).
Then if we replace the subgroups y; by K; everywhere in Definition 3.2.1, we define
on the direct sum

Lgl(G) = @ Ki/Kiq

the structure of a Lie ring which is nilpotent of class not greater than the nilpotency
class of G, furthermare, the derived length of this Lie ring is not greater than the
derived length of G.

If G is also finite, then |L g (G)| = [(G)].

If ¢ is an auwtomorphism of the group G such that all subgroups K, are -
invariant, then its induced action on the factor-groups K/ Ky, defines an au-
tomorphism of the Lie ring Lg(G). If, further, the order of ¢ as a group au-
temorphism is coprime to the order of G then @ acts faithfully on Ly (G) and

ICLyiai(@)] = |Cel@)).

Proof. The fact that L g () is given a Lie ring structure by the definition is verified
by simply repeating the first part of the proof of Theorem 3.2.2, with the letter y
replaced by K.

It follows from the definition of multiplication in Ly (G), that if some commuta-
tor identity is satisficd by G, then this identity is also satisfied by the homogeneous
elements of Lx(G). As the nilpotency and solubility identities are multilinear, this
implies, that the nilpotency class and the derived length of L g (&) are not greater
than the nilpotency class and the derived length of G. respectively.

The rest of the proof is dealt with precisely as in Theorem 3.2.2.

The theorem is proved.

We now give some examples. If G is a nilpotent group and 7 any set of primes,
then, according 1o Theorem 2.6.2 the subgroups I, (¥ (G)) form a strongly central
series of G/7,(1), and this gives rise to a Lie ring via Theorem 3.2.6. Note that
in general we cannot speak of a strongly central series of G itself, since /,(1)
15 not necessarily central. But if /(1) = 1. that is, G has no x-torsion, then the
I+ (y:(G)) form a strongly central serics of the group G.

Another important example is the so-called lower central p-series {4;(G)) of a
finite p-group G which is defined inductively as follows:

M(G) =G, kg (G) = [1(G), G) - (A (G

(this is the most rapidly descending central series whose factors have exponent p).

We remark that unlike the associated Lie ring defined using the lower central
series, the Lie ring L x(G) may have a smaller nilpotency class than the nilpotency
class of G. The simplest example is the group G = D x C, where D = (a. b| a* =
b* = 1. a” =a~') is a dihedral group, and C = (¢} is a cyclic group of order 2.
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We put K = G, Ky = (¢’) x {¢) = D' x C, K3 = (a®) = D'. ILis easy to see that
the subgroups K; form a strongly central series of G, and that the corresponding
Lie ring 1s commutative, since [K,, K|] < K3 and K>, K3 < Z(G).

Nevertheless, for a m-torsion-free nilpotent group G, the Lie ring constructed
using the strongly central series of w-isolators /;(y;(G)) behaves well from this
point of view.

3.2.7 Theorem. Let G be a m-torsion-free nilpotent group for some set of primes
. Then the nilpotency class of the Lie ring L constructed via Theorem 3.2.6 using
the strongly central series of mw-iselators I (yi(G)) is the same as the nilpotency
class of G as a group.

Proof. Let k be the nilpotency class of the Lie ring L. It is sufficient to prove that
the nilpotency class of ( is not greater than k since the reverse inequality follows
from Theorem 3.2.6. Translating Lie ring multiplication into the language of the
group G we get

(81,82, ---. gra1] € In(yis2(G))

for any g,. 23, .... 2k+1 € G. In other words, for arbitrary g;,22,...,8+1 € G
there is a w-number n such that

(g1, 82.---. 8k+1])" € Viy2(G).

The simple commutators of weight k& + 1 generate the subgroup yy4(G) (see
2.1.5 b)), and hence the orders of all elements of the abelian factor-group
v 1(G)/¥i42(G) are finite m-numbers. It follows from Corollary 2.5.5 that
Vi1 (G) itself has the same property. But & has no m-torsion by hypothesis and
50, J41(G) = 1, as was required.

The theorem 15 proved.

§ 3.3 The Lie ring of a group of prime exponent

In this section we prove the Magnus-Sanov Theorem on the (p—1)-Engel condition
for the associated Lie ring of a group of prime exponent p. This theorem reduces
the Restricted Burnside Problem for groups of prime exponent p to the analogous
problem for (p — I)-Engel Lie rings, which was solved positively by Kostrikin
{Theorem 1.3.1).

Here the situation is more transparent than it is in the case of groups of composite
exponent p*, since the (p — 1)-Engel identity is, in fact, multilinear.
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3.3.1 Lemma. The following two conditions are eguivalent for any Lie algebra L
over a field of characteristic p > 0:

a) [x, v, ¥s....¥l=0 foranvx, y€L;
—
pr=1I
b) E [x, Y200 Ye2hs - - Yaip-1n] =0 forany x, yj. y2,.... 5 € L.
-'IEEI,-.-|
Proof. b) = a). Putting vy = yv2 = ... = yp—) = y in b), we get (p — 1)!x
X[x, v, ¥, ..., y] = 0, whence [x,y.v,..., vl = 0, as (p — [)! is a non-zero
— —— R ———— o —

p=1 p=1
element of the field.

a) = b). On substituting ¥y = y; + y2 + ... + ¥p,—1 in a) we sece that the

multihomogeneous component of weight | in each variable x, vy va, .. .. Yp—1 Of
the resultant equation coincides with the left-hand side of b). In order to extract it
we now substitute ina) y =iy, +ya+...+ vy, fori =012, ..., p — 1. This

gives the system of equations
S M =0, i=0,1.2...p-1,

where M, is the sum of all multihomogeneous elements of weight k in y,. The
matrix (i*) has a Vandermonde determinant which is not equal to 0. Therefore
My =0forall k=0,1,2,.... p~— L. (See the more detailed explanation in the
proof of Theorem 2.8,11.)

Thus, in particular, M, = 0. By replacing y» by iy» in this equation, using the
same argument as above, one can extract the sum of all homogeneous components
of weight 1 in y) and in y», and so on. This process leads to b).

The lemma is proved.

3.3.2 Theorem (Magnus [100], Sanov [126]). The associated Lie ring L{P) of
any group P of prime exponent p satisfies the identities

pa=0 and [a. b.b..... bl =0.

| _p——
=1

Proof. Since the factor-groups y; (P)/y; ., (P) have exponent p, the Lic ring L(P)
satisfies the identity pa = 0. Thus, the Lie ring L(P) may be regarded as a Lie
algebra over G F(p). By Lemma 3.3.1 it suffices to prove that

Y M@ baqty. bry. ... bagpo)) =0 (3.3.3)

| E-'E-iu 1
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for any a. by, ba, ..., bp-y € L(P). Since this identity is multilinear, the elements
a, by, by, ..., b,y may be taken to be homogeneous elements of L(P).

It is convenient at this point to exploit the fact that groups of exponent p form
a variety in which there are free groups. Namely, let F be the free group with free
generators x, vy, ¥2,..., ¥p—1. By Theorem 2.8.1] a), we have

| EES S I Yuip-nl =1 (mod F7 - ypi1(F)). (3.34)

meS,

It is natural to try to apply the homomorphism @ of the group F into P which
extends the mapping

X —a, y,-—bfh i=02,....,p-1,

where @ and b; are the inverse images of the elements a € y,,(P)/y,+1(P),
by € vy, (P)/ys,+:1(P), respectively. However, though the image of the left-hand
side of (3.3.4) under ¢ is certainly equal to

[] @ beay, brcays - . bripny]

!TEblg ]

and resembles the left-hand side of (3.3.3), and the image of the subgroup F?
is 1, the argument is not quite valid. In fact (3.3.3), which we want to prove, is
equivalent, in terms of the group P, to the congruence

n la, E’::{I;- E’n{:!j, seay Brr{p—ljl =1 (mod Vogtsi=+..+1, 1 0P,

mes,

but the image of ¥p+1 (F ) under # 15 not necessarily contained in yy 45,4 45, +1(F).
Note that the original paper of Magnus [100] contained such a gap; it was filled
by him a bit later (101], but the same mistake was reproduced in the book [102].

This difficulty is overcome with the help of Higman's Lemma from § 1.10. The
congruence (3.3.4) i1s equivalent o requiring

n [11 Yoritys ¥ri2do oo v }"rrip—l]] e F'. ¥p4 |(F)!

JrESP 1

where we see that the product is contained in the intersection of the normal closures
of all the elements x, y;. y2...., ¥,—1. Since the subgroups F7 and y,4(F) are
verbal, Corollary 1.10.6 may be applied to yield

1—[ [ ¥rciys Yrips - - - Yr(p-n] = w (mod FF), (3.3.5)

TS, |
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where w € Y (F)NEEH) N GHINGHN..NL ).
By Lemma 1.10.1 the element w is a product

W=0C]Creuue. iy (3.3.6)

of commutators ¢; of weight = p + |, each depending on all of the elements x,
Yia Y2, ..., ¥p—1. Applying & to (3.3.5), we get

l_[ [a, f’:nl.:- E’.-rm ----- E‘:np—n] = u:'ﬂL-

JTGSI. i

since 2 (FP)y = 1.
It remains to show that w” € Yy 40,4. 4s,,41(P). Indeed, w” = ¢]'-¢] .. .-¢! and

each ¢! is a commutator of weight > p + 1 in the elements @, by, b2, ..., b, or
their inverses and each .:'" is depending on all of the elements a, by by, .. E‘p—l
Using the fact that [y,{P} pj[F]] < ¥4;(P), it is clear that single occurrences of
the elements 4, E:q bz ..... b,, p in c" contribute the sum s + 5 + 52+ ...+ 5,
to the index of that member of the IGWEI' central series of P, which must contain
the commutator ¢. But the weight of ¢ as a commutator in a, by, bz bp 1

is at least p+ 1 — therefore there must h-l: at least one additional occurrence which
increases that index by at least one. As a result we have

&
Ci € Vagdsi+.t1, |+I(P]

for all i, and therefore w” € yy4s 445, ,+1(P).
The theorem is proved.

§ 3.4 The nilpotency of soluble Lie rings satisfying the Engel condition

3.4.1 Theorem (Higgins [39]). If a soluble Lie algebra L of derived length s over
a field of characteristic p satisfies the n-th Engel condition, that is if

[x.¥.¥.....¥] =0
— —

L]

forall x, vy € L and either p = 0, 0rn < p, then L is nilpotent of class < 21,

Proof. All Lie algebras of characteristic p satisfying the n-th Engel condition,
form a variety of Lie rings. Therefore, by virtue of Theorem 3.1.5, it is sufficient
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to prove the theorem in the case where 5 = 2, because the desired bound on the
nilpotency class follows from the statement of Theorem 3.1.5, provided that one
can prove for 5 = 2 that the nilpotency class is at most n + 1. We may therefore
assume in what follows that s = 2, that is, that L is soluble of derived length 2.

By repeating the proof of Lemma 3.3.1 more or less word for word, we find that
L satisfies the identity

EM Yri1)s Yri2)s << s Yrim) = 0. (3.4.2)
TES,
It follows from the Jacobi identity [[a,b],c] = —|[b,¢],a] — [[c.al,b] =

la, b, €]l + [la,c], b], that a soluble Lie ring of derived length 2 satisfies the
identity [|a, b|. c] = |la, c], k] for a € y»(L), and hence also satisfies

lﬂ.f?n{u-bnm ----- hn{hl = [a, by, by, ..., B

for any a € y»(L), k € N and any permutation & € 8.
Thus on substituting x = [x;, x2] in (3.4.2), we obtain the identity

0= lehxz- Vailys ¥y oo o0 Yam] =
reS,

=n!lx,x2, 9, %2, ..., Yul.

Since n! # 0 by hypothesis, this is equivalent to the identity yielding nilpotency
of class n 4+ |, namely

I.?.|. P PRI 3ﬂ+1] = l!:'r

(just substitute 2) = x|, 2 =X, 3 =YL, W =Y -+ e+ Tn42 = M )+
The theorem is proved.

The associated Lie ring of a soluble group of derived length s of prime exponent
p is also soluble of derived length < s by Theorem 3.2.2 and satisfies the identities
pa = 0and |a,b,b,...,b] = 0 by Theorem 3.3.2. This enables us to apply

— e’

p=I
Theorem 3.4.1 to soluble groups of prime exponent.

3.4.3 Corollary. Every soluble group G of der:t've'd length 5 of prime exponent p
is nilpotent and its nilpotency class is ar most {:TZ_T‘

Proof. It is clear that we may assume G to be finitely generated. We use induction
on s. By the induction hypothesis G/G"~" is nilpotent. Hence G is abelian-by-
nilpotent and therefore residually finite by a theorem of P. Hall [31]. Let {N;} be
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a family of normal subgroups of finite index in G intersecting trivially. It is clear
that it is sufficient to prove that each of the factor-groups G /N, is nilpotent of the
required nilpotency class. We may therefore assume that G is finite. As a finite
p-group it is nilpotent, and it only remains to apply Theorem 3.4.1 to its associated
Lie ring.

The corollary is proved.

Note that Corollary 3.4.3 may be also proved without using Theorem 3.1.5,
which was given in § 3.1 without proof. For we have shown in the proof of
Theorem 3.4.1 that soluble Lie algebras of derived length 2 and characteristic p,
satisfying the (p — 1)-Engel condition, are nilpotent of class < p. This implies
that soluble groups of derived length 2 of prime exponent p are also nilpotent of
class < p. We may now apply Theorem 2.3.5 directly, since groups of exponent
p form a variety. This yields the conclusion of Corollary 3.4.3.

It was Meier-Wunderli [112] who proved in 1951 that metabelian groups of
prime exponent p are nilpotent of class = p; his work, however, says nothing
about the nilpotency of soluble groups of exponent p of arbitrary derived length.

The bound for the nilpotency class in Theorem 3.4.1 may be improved to ':I—_‘I'

{and, hence, to ”% in Corollary 3.4.3). We leave this for the reader as an
exercise simply outhning the way by stating the following proposition.

3.4.4 Proposition (Higgins [39]). If a soluble Lie algebra L of derived length s of
characteristic p satisfies the n-th Engel condition:

forall x, vy € L and either p =0, orn < p, then for all k = 1
a) [w(L), L, L,..., L] € v (L),
I'_v_”
b) Yns2(L) S yip (L") and
¢) L is nilpotent of class < 5:;:'1—'
Here ¢) follows from b) by an obvious induction on the derived length s and b)
15 an easy consequence of a). One can prove a) noting first that if a € y(L') then

[Hr bﬂ'l]?r b#l?}! SRR b:llmll = l-ﬂ'f b]! bl """" bm] (mod Fi+1 (L'))

for any m € M and any permutation 7 € §,,. Now apply arguments similar to
those used in the proof of Theorem 3.4.1.
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Chapter 4

Lie rings admitting automorphisms
with few fixed points

In this chapter we prove theorems of Higman, Kreknin and Kostrikin on regular
automorphisms of Lie rings, including Kreknin’s Theorem on regular automor-
phisms of arbitrary finite order. Then a theorem on almost regular automorphisms
of prime order is proved: if the number of fixed elements is finite (or has finite
dimension) then there is a nilpotent subring of bounded nilpotency class and of
bounded index (or codimension).

§ 4.1 Extending the ground ring

Let L be a Lie ring, and ¢ an automorphism of L of finite order n. Let w be a
primitive n-th root of unity. We shall consider the Lie ring L = L ®z Z|w] with
¢ acting naturally, where Z[w] is regarded as a trivial Z{g)}-module.

We introduce analogues of eigenspaces.

Definition. The additive subgroup of the Lie ring L
L=lelLll*=0dl).

is called a @-component of L with respect to «'. The clements of ¢-components
are called ¢-homogeneous.

Definition. An ideal / of the Lie ring L is said to be @-homogeneous, if 1 =
n=1 .
Y INniL.
i=l}

Though L is not a vector space, “almost all” of L decomposes into an “almost
direct” sum of g-components.
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4.1.1 Lemma. a) The following inclusion holds

nL COL 404 ... +"'[.

by lflo+4+... 4+, =0, where l; ".’:, thennl; =0 forallj=0,1,...,n—
L.

¢) If the additive group of L has no n-torsion, which means that for any | € L the
equality nl = 0 implies | = 0, then the sum of g-components "L & 'L & ...&" 'L
is direct.

- ) n=| o,
Proof. a) Foreacha € Landeachi =0,1, ..., n—1 we define‘a =Y wa?.
i=0

It is casy to sce that 'a € 'L:

n=1 n=1
f'ﬂ]w _ (Zw—-n ..,p') Zw-n T =
p=l) w=[}
=1 n—I|
— o - zw-uxﬂﬂ ! S an:raw =af -fa,

=0 r=0

since w" =1 and ¢" =
On summing we get na:

a=1 n=1

E a —ZZ ¥ —Za*" Zm I — na*' = na,

i=0 s=0 i=l}

n=1

because for & = 0 it is clear that ¥ «" = n, and for k # 0 (mod n) we have
i=0

. |

Y @* = 0. (Indeed, for k # 0 (mod n) we have
i=(

n=1
wk- E :w z:wnﬂm_zm;x

f=0) j=0

n=1
since " = 1, that is, the sum ¥ w'* does not change on being multiplied by ;
i=l}
=1
therefore 3~ ' =0, since o' # 1.)

[
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n—I
b) Applying the automorphisms ¢*, k = 0, 1,..., n—1,10 Y I =0 (where

=l

I; € 'L) we obtain the following n equations
f.u-l- f|+ I13++ I"_|_=ﬂ
+ o' -+ w b+ "Vl =0
o+ -1, 4 w 4. 4+ D =0

I(J - wl:l-—l . l;i + w:ln—l] . FZ ok ol wm-nm-n i ‘J”_] =10

In order to show that n - [; = 0 for some i, we multiply each of these equations
by an appropriate power of @ to make the coefficient of [; equal to 1 and we then
sum all of these equations. It is easy to see that after cancellation each [;, j # i,

=1

will have coefficient ) w'/~% which is 0 (see above). Therefore we get n-l; =0,
k=0
as required.
c¢) This is an immediate consequence of b).
The lemma is proved.
4.1.2 Lemma. For any i and j
(L./L) gL,

where | + j is calculated module n. In particular, the sum of the @-componenis
L+\L+...+"Lisa subring of the Lie ring L.

Proof. Fora € 'L and b € /L. we have
[a.b]F = [a®, b¥] = [ -a.w’ - b) = &'t - [a. b],

and so [a, b] € “*/L.
The lemma is proved.

We set

n=1|
. L
a = E w “a¥ 'L
i=(}

and call ‘a @-component of the element a € L. As we have already seen, we have

na="a+'a+...+"'a. (4.1.3)
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§ 4.2 Regular automorphisms of soluble Lie rings

Here we prove the Kreknin-Kostrikin Theorem on the nilpotency of a soluble Lie
ring with a regular automorphism of prime order. We identify the combinatorial
formulation of this theorem as a fact on free Z/nZ-graduated Lie rings, which will
be useful later.

4.2.1 Theorem (Kreknin, Kostrikin [82]). [f a soluble Lie ring L of derived length
s admits a regular autfomorphism @ of prime order p, then it is nilpotent and its
nilpotency class is ar most wi-]l,_;‘—L

We first prove a formally more general assertion for the subring pL.

4.2.2 Theorem. If ¢ is an automorphism of prime order p of a Lie ring L then, for
any s, we have

Vipae(pL) € ial{Crie)) + L',

(p=1y-=1

where f(p,5) = =

Proof. We extend the ground ring by a primitive p-th root of unity @, setting
L = L ® zZ[w] and specily the action of ¢ on L by regarding Z[w] as a trivial
Z{p)-module. It suffices to prove the assertion of the theorem for L, since

a(Ci (@) = iwlCr(@)) ®2Z[w), LY =LY ®2Z(w]
and yr(pl) = y/(pL) ® zZ[w)

(these equations follow easily from the definitions). Therefore, if
}”Hﬂ.t}ﬂ(FE:} C «(Cj(p)) + fi=
then

yf{;:.a'!-i-l':pf-'} & | = ]“'ﬂp.ﬁ']+l(p£) ML & l (_:
C (@{Cr(@) + L") ® 2Z[w)NL & 1 = (g{CLig)} + L) @ 1,

(see § 1.2). So we may assume from the outset that the ground ring contains o,
that is, L = L.

Let H denote the subring "L + 'L + ... + ""'L (see Lemma 4.1.2). By
Lemma 4.1.1 a) we have pL © H and hence the result follows from the last
part of the following proposition.

4.2.3 Proposition. For every 5 we have
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a) [y (HY H H. ..., H] € yusi(H) +a("L), n = 1
o ——— ey - —
p=1
b} }"r['p—llrr-rE':H} c Hr+[{H‘} “+id {HL}. n=0;
) Yrpam+r (HY C HY +:a(°L), where

fp.s)=1+(p=-D+(p~1V +...+(p-D"= '[F;Erz-]'

Proof. a) It is clear from the definitions that the ideals H' and 3 (H') are -
homogeneous. So, in order to prove a) it is sufficient to show that

e, Ny By, =ty 1] € Yarr (H') + i (°L) (4.2.4)

for any ¢-homogeneous elements “¢ € y,(H" )N L and " y; € “ L. This is obvious
if i, =0 for some r =0,1,..., p — |; we therefore assume from now on that
ir #0,forall r =0,1,...,p— 1.

Note that any permutation of the elements "' vy, " va, ..., ‘v v,y does not change
the commutator (4.2.4) modulo the subgroup ¥, (H'). This follows from the
Jacobi identity — for [a, b, ¢] = [a, ¢, b] + [a, [b, c]] and thus, if a € y,(H") then
la. [b, ¢]] € Vs 1 (H"), since [b,c) € H forb.c e H.

Our aim is to rearrange the elements "y, vy, ... "'y, | in the left-hand side
of (4.2.4) by means of a permutation & € §,_; in order to obtain the congruence

iﬂ -+ i.n-l]} + f::tl] +...+ :..'I".'r] =0 {m"j'd FL

where the left-hand side is the sum of several first upper indices of the resultant
commutator. Then by Lemma 4.1.2

[’"f‘, h”.‘\flﬂ'{ljp rnl:l.}‘ﬂ‘z] rrrrr :””,r.'l'{.'l:}l c {'L.

for an initial segment of the resultant commutator so that the original commutator
(4.2.4) lies in Yy (H') +5a("L).
We now prove the following number-theoretic lemma.

4.2.5 Lemma, Let p be a prime number and let i, . .., iy be non-zero elements of
G F(p) (not necessarily distinct). We form the set

M= ZMSE (,2,....kt,

18

where, by definition, the sum is O for § = ¢. Then either M = GF(p). or |M| =
k+ 1.
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Proof. We proceed by induction on k. For convenience we denote by M(s) the
set of all sums involving {i|, ..., is}. For k = |, we have |[M(1)| = [{0,§,}] = 2,
since i} # 0. Next, if any of the sums o +i;.,, where o € M(k), does not belong
1o M(k) then |[M(k + 1)| = |[M(k)] + 1 > k + 2 by the induction hypothesis.
But if o +d;. € M(k) for all & € M(k), then, starting from 0 we find that 0,
Bpgy 2igsyy ooy (p = Digsy lie in M(k). These elements are all distinct, because
ir+) # 0 by hypothesis, hence |M(k)| = |[M(k + 1)] = p, that is Mk + 1) =
GF(p).
The lemma is proved.

We now have p — 1 upper indices iy, is, ..., i p—1 all of which are distinct from
0 modulo p. By Lemma 4.2.5 every residue modulo p may be represented as a
sum of some subset of these indices. In particular, the —ip may be represented
in this way. Transposing the elements “ vy with the corresponding upper indices
in order to place them immediately after the element ¢ we obtain a commutator
with an initial segment from "L, which lies in ;4(Cy(¢)) and equals (4.2.4) modulo
Yas1 (H').

b) This follows from a) by induction on n. For n = 0 we have y»(H) = »(H'),
and for n = 0 we have

}-"tp—nnu{H} = }":,«.:—mu—|1+2+p—|(H} =
- [F[;J—JHH—I:HE{HL H H, ..., H] - []"-':(HFL H.H,..., H]
ey et e et

=1 =1

by the induction hypothesis. An application of a) to the right-hand side completes
the proof.

¢) Induction on s. For s = 1, obviously, y2(H) = H'. For s = |, according to
b} we have

Yiipsi#t (H) = Yip-ngips-ne1+1(H) =
= Vip-nfips-n+2(H) € Yipe—n+ (H') +ia (OL).

We now apply the induction hypothesis on the soluble Lie ring H' of derived
length s — 1 to the right-hand side of the above inclusion:

Yrips-n (H) € (HN ™+ 34(OL) = H™ + 34 ("L).

The proof of the proposition, and therefore of Theorem 4.2.2 is complete.
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Proof of Theorem 4.2.1. By hypothesis "L = 0 and L"" = 0. Therefore, by
Theorem 4.2.2, we have

0= yrpn+ilpl) = P'“P””-'-I}"f[p,,.1+|(t}.

In particular, this implies that the abelian group yyp..41(L) is a p-group. This
group is clearly @-invariant, and, if it is not trivial, then the automorphism ¢ of
order p must have non-trivial fixed points in it (Corollary 1.7.3). This contradicts
the hypothesis of the theorem and hence yy ;.41 (L) = 0, as required.

The theorem is proved.

We point out that we have also proved the following combinatorial fact.

4.2,6 Theorem. Let p be a prime, 5 a natural number and let [ = f(p.s) =
LB oy By 0y gy are any elements of an arbitrary Lie ring with
arir:r‘rrary formal upper indices i), i. ..., i f+1 € Z attached 1o them, then the simple
commultator

Uy By 7y

may be represented as a linear combination of commutators, each of which has
the same entry set "y, "v2, ..., i1y 41 and either belongs to L' or contains a
subcommutator with its upper index sum zero modulo p.

Proof. We can say that Theorem 4.2.6 has already been proved because in the
course of proving Proposition 4,2.3 we were using only the Jacobi identity and were
actually transforming commutators of ¢-homogeneous elements without changing
the entry set, and the subcommutators from L clearly had upper index sums
zero (mod p). This metamathematical argument may be made more rigorous by
formalizing it within a free Lie ring as follows,

Let @ be a primitive p-th root of unity and let F be a free Lie ring over Z[w]
with free generators " y;,” y2. ..., ir-1yre1.Foreachi = 1.2,..., p— 1 denote by
"F the additive subgroup of F generated by all commutators in the free generators
by ey, oL i ¥y+1, Such that the upper index sum of their entry set is i modulo
p.
Note that the additive group of the ideal ;4("F) is generated by all commutators
in elements 'y, " ya. ..., "1+t y . which have subcommutators with upper index
sum zero (mod p).

We define an automorphism ¢ of order p of F by putting /¥ = &' -[ for elements
le'F,i=0.1..... p — 1, and extending the action of ¢ to the sum F = ¥ ' F

by linearity. It is clear that the additive subgroups ' F are the ¢-components. Since
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the additive group F has no torsion, by Lemma 4.1.1 ¢), we have
F="Fa&'F®...®&"'F,
By Proposition 4.2.3 ¢) (here H = F) the following holds:
My 2y Py € F9 iy (OF). (4.2.7)

But the ideals F*) and ;4("F) are evidently multihomogeneous with respect to
the free generators “y,. Hence the left-hand side of (4.2.7) belongs to the mul-
tihomogeneous component of the right-hand side of weight | in each of the
iy, 2y, s, fr41y 5.y which means that the equation required by Theorem 4.2.6
holds. Since the elements "y, 2y, ..., r+1yg4y are the free generators of F, ex-

actly the same holds for an arbitrary Lie ring L.
The theorem 15 proved.

§ 4.3 Regular automorphisms of Lie rings

The main result of this section is Kreknin's Theorem on the solubility of a Lie ring
with a regular automorphism of finite order. Higman’'s Theorem on the nilpotency
of a Lie ring with a regular automorphism of prime order will follow from this
theorem of Kreknin and from Theorem 4.2.1 of Kreknin and Kostrikin on the
nilpotency of soluble Lie rings with a regular automorphism of prime order. This
alternative proof of Higman's Theorem also provides an explicit upper estimate
for Higman’s function bounding the mipotency class. Here we also single out the
combinatorial formulations of these theorems as facts about free Z/nZ-graduated
Lie rings which will be referred to in the next section.

4.3.1 Theorem (Kreknin [83]). [f a Lie ring admits a regular auromorphism of
[finite order n, then it is soluble and its derived length is not greater than 2" — 2.

First we prove the following assertion about the subring nL.
4,3.2 Theorem, If @ is an automorphism of finite order n of a Lie ring L, then
(nL) T <y OL,
where "L = [l +1° +19 + ...+ "l e Lyand f(n) =2""" — 1.

By contrast with the method of argumentation in the preceding section, we
first prove the corresponding combinatorial result and then deduce Theorem 4.3.2
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from it. There is an advantage in doing this — one may consider the Lie ring to be
decomposed into a direct sum of @-components which helps avoid certain technical
complications.

4.3.3 Proposition. Suppose that o is a primitive n-th root of unity and thar the Lie
ring H over Zlw] admits an automorphism ¢ of order n, where H is decomposable
into the direct sum of @-components:

H="Heo'Ha’Ha...o" 'H.

Then, forallk =1,2,.... n-—1,
a) H¥ ' nkp c (TH 2 H L TH) 4+, OH),
b) Hll"-—l] - {k-l-]H.l:-i-iH““.u—lH} +MI{'}H}.'

¢) H¥'-V c (" H).

(Here, as usual, (**"H **2H, ..., ""'H) denotes the subring generated by the
w-components **TH, MIH "lH )

Proaf. Note first of all that under the hypothesis of the proposition the following
clearly hold for all s:

HO ="& HY N A,

i=

H“'I"1"'H - Z [H['T-I.I'-'l"ff, Hi.i-l}ﬁrHl.

e

(4.3.4)

where w=0,1,....n =1, u,v=10
We shall need the following simple lemma.

4.3.5 Lemma, Suppose thar a, b, ¢ are natural numbers such that 1 <a <n — 1,
l<b<n—land 1 <c <n— 1. Ilfa+b=c (modn), then either both a > ¢
and b = ¢, orbotha < cand b < ¢.

Proof. Since @ < n and b < n we also have a+b < 2n. Therefore, either a+b = ¢,
or a+ b = ¢+ n. In the first case, clearly a = ¢ and b = ¢ In the second case
both numbers are greater than ¢, because if any of them was less than c, then their
sum would be less than ¢ + n, since the other is less than n.

The lemma is proved.

We prove parts a) and b) of Proposition 4.3.3 simultaneously by induction on k.
For &k = 1 part a) means that

HN'H < (CHH,....""VH) + ,,°H).
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According to (4.3.4) the additive subgroup H' N 'H is generated by commutators
of the form [x,y], where x € 'H, y € /H and i + j = | (mod n). If any
of the residues i, j modulo n is 0, then |x, y] € ,4(°H). If, however, both are
greater than 0, then by Lemma 4.3.5 both of them are greater than 1, so that
[x,¥le CHH, ..., "=LH). For k = 1 part b) means that

H < *H.H, ..., "~V H) 44 OH)

which follows from a) and (4.3.4).

Now suppose that £ > 1. We prove a) first of all using the induction hypothesis
for both a) and b). By (4.3.4) the additive subgroup H' N NkH s gentrated by
commutators of the form [x, y], where x € H¥ "V N iH, ye HZ® -V niH
and i + j = k (mod n). If any of the residues i, j is 0 (mod n), then [x, y] €
w{CH)Y. If both of them are greater than 0, then by Lemma 4.3.5 either both are
greater than k, or both are less than k. In the first case it is clear that {x, y] €
1{it-l-l H. R+2H 11111 n=I H:h

In the second case we apply b) to the subring #®"'~" which contains x and y:

HE ' c kg |5, . "TH) + 4(°H).

Therefore the element y € H® '~ is equal modulo ;4(°H) to a linear combination
of commutators of the form

q
[y, uz, ... ug), u €"H, ivzk, Y i,=j (modn).

i=l

By repeatedly applying the Jacobi identity [a, [b, ¢]] = [a. b. ¢])—|a. c. b], every
commutator of the form

[x, [y, us, .., ug)]

may be expressed as a linear combination of simple commutators of the form

Lx, Mxcny, Ha(2yy v oo “n{q]l-

where & € S,. Therefore, the commutator [x, y] is equal modulo ;4{*H) to a linear
combination of simple commutators of the form

E"
(x,vi,v2,...,v), v e’H, j =k, EJ’,EI(TMH!HL
i=1
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each of which certainly satisfies
P+ j1+ja+...+ jy =k (mod n).
If for such a commutator we have j, =k, then
i+ h+j+...4 jg-1 =0 (mod n),
which means that [x, vy, vz, ..., v,;—] € °H whence
[x,v.05,.... 0] € JOOH).
If, however, j, > k, then clearly
i+j+i2+...4 jg-1 =t #0 (mod n),
and 1 > k by Lemma 4.3.5. In this case
(X, U1y ooy Vg1, V) € CHOWHY C VH2H L =1 Hy.
So, in any case the commutators [x, vy, va, ..., vy | are contained in
YL TV HY 4 0 (CH).
This subring therefore also contains [x, y], as required.

We now prove b). Using the induction hypothesis for k — | we apply b) to the
Lie ring H¥7);

(th*"i}fz"'-n c
g [:HII"".I FkH, H[f 1y n"+IH. ey HEE‘ 'y N -r-—lH} + jJ{ﬂH}.
The additive subgroups H* ' N4ty H " nn=T Y are clearly contained
in the subring **'H,**?H, ..., "' H) which also contains the additive subgroup

H® "N *H by a) as proved above. Therefore,
H‘T‘—'} — {HE:"-1}}[II‘-I-|] E {k+IH. k+2H ----- H_IH} + ‘_d{uH}-

as required.
Part ¢) follows from b) on putting k = n — 1.
The proposition 1 proved.

Before we turn to the proof of Theorem 4.3.2, we state a combinatorial conse-
quence of the proposition just proved. We recall the definition of the identities for
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soluble varictics:

8y =[x, x2)s  Bisr = |8p(xy, ooy )y Splxpgy, ooy X))
4.3.6 Theorem. Suppose that n is a natural number and set f(n) = 22~V If
"y e, Ty ey are any elements of an arbitrary Lie ring with arbitrary for-
mal upper indices iy, is, ..., i fim € & attached 1o them, then the commuiator
B 10 (", e, Ty )

may be represented as a linear combination of commutators each of which has the
same entry set "' vy, " ya, ...,y p and contains a subcommutator with iis upper
index sum zero modulo p.

Proof. All we need do 1s o repeat the proof of Theorem 4.2.6 with obvious modi-
fications. We can, in fact, say that Theorem 4.3.6 has already been proved because
in the course of proving Proposition 4.3.3 we were using only the Jacobi identity
and were, in fact, transforming commutators of ¢-homogeneous elements without
changing the entry set, and the subcommutators from "L clearly had upper index
sums zero (mod p). This metamathematical argument may be made more rigorous
by formalizing it within a free Lie ring as follows.

Let w be a primitive p-th root of unity and let F be a free Lie ring over Z[w]

with free generators "y, " y2, ..., "™ ys,. For each i = 1,2,...,n — 1 denote
by ' £ the additive subgroup of the Lie ring F generated by all commutators in
the free generators "y, "y, ..., /" yco. such that the upper index sum of their

entry set is { modulo p.

Note that the additive group of the ideal ;;(" F} is generated by all commutators
in elements " yy, “y3, ..., "/ y 4y such that they have subcommutators with upper
index sum zero (mod p).

We define an automorphism ¢ of order p of F by putting [¥ = &' - for elements
le'F,i=0,1,..., n — 1, and extending the action of ¢ 10 the sum F =% 'F

by linearity. It is clear that the additive subgroups ' ' are the g-components. Since
the additive group F has no torsion, by Lemma 4.1.1 ¢), we have
F="F@'Fe..e"'F.
By Proposition 4.3.3 ¢) we have

52n i_|(fl}!|1j!}'2+ ey ‘:II-I}FI{H}] = I.-I.I‘{HF-}'

But the ideal ;4{"F) is clearly multithomogeneous with respect to the free gener-
ators " y,. Hence the left-hand side belongs to the multihomogencous component
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of the right-hand side of weight | in cach of the "y, “ys, ... "y, which
means that the equation required in Theorem 4.3.6 holds. Since the elements
'{;-.J!_-p_-,...,"r-"'_-,-m} arc the free generators of F, exactly the same holds for
an arbitrary Lie nng L.

The theorem is proved.

Proaf of Theorem 4.3.2. We extend the ground ring by a primitive n-th root of
unity @ by putting L = [ ®z Z{w) and defining the action of ¢ on L by regarding
Zlw] as a trivial Z({p)-module. It is sufficient to prove the theorem for L since

WPy = "L @z Zlw] and (nL) = (nL)'" @4 Z|w]

(these equations easily follow from the definitions), and therefore if (n AN
0z
;ﬁr( f.]l.. then

@1 =) "NLe1C L)@z 2wl NLe ] = ,C0L)@ 1.
We may therefore assume from the very beginning that the ground ring contains
w, that 15, L = L.

Put f(n) =2* '~'. By Lemma d.1.1 a) we have nL € °L +'L +...+"" 'L
and it is therefore sufficient to show that

Spe g ("3, By 0y ) € (L)

for any @-homogeneous elements “y, € "L, s = 1,2,..., f(n). But this easily
follows from Theorem 4.3.6.
Theorem 4.3.2 is proved.

4.3.7 Corollary. Suppose thai the Lie ring L admits a regular automorphism of
finite order n.

a) If the additive group of L has no n-torsion, that is, nf = Q implies | = Q, then
L is soluble of derived length at most 2" ' — 1.

b) If n is a prime number, then L is soluble of derived length at most 2"~' — 1.

Proof. a) By Theorem 4.3.2 we have

e T |

a® LT = () N € OL) € u(CLle)) =

Restriction on the additive group of L now implies that L2 '~ = .
b) If n is a prime, then the Sylow n-subgroup of the additive group of L is
trivial, since otherwise an automorphism of prime order n acting on it would have
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non-trivial fixed points by Corollary 1.7.3. Hence the additive group of L has no
n-torsion and the result now follows by applying a).

Proof of Theorem 4.3.1. Let L be a Lie ring, ¢ € AutL, |¢| = n and C;(¢) =0
We define

={a e L| n*-a =0 for some k = k(a) € N}.

It is clear that 7" is a g-invariant ideal of L. By Theorem 4.3.2
= (nL)¥ N = pfm . L @D

where f(n) = 2¥"'=! and so L'~V C T. Therefore, in order to prove Theo-
rem 4.3.1 it is sufficient to show that 7% '=" = 0, since then

LIZ‘" =2) {L{'-'" I-—l]}l!?" =1} - Tfl' . = 0.

We decompose the abehan periodic group T into a direct sum of its Sylow
subgroups

T=T,®T)p®..0T,,

where n = py' py* ... p¥ is the decomposition of n as a product of prime-powers.

It is clear that these Sylow subgroups are in fact g-invariant subrings. It therefore
suffices to prove that each of the subrings T, is soluble of derived length = 2"~ 1,

Suppose that for some prime p € {p;, p2, ..., pr} we have n = p* - 5, where
(p.s) = 1. We decompose the finite cyclic group (g) inlo the direct product of
Hall subgroups

(@) = (@tp x (@) ps

where, of course, (¢}, = (¢') and (¢}, = {fppl} Then Cr, (") = 0 (where T, is
the Sylow p- r~:|.1t!~g,l'r;m1:- of the additive group T'), since otherwise the autcmorphnm
¢* of order p* normalizing the non-trivial abelian p-subgroup Cr, (qzlf’ ), would
have in it non-trivial fixed points (see Corollary 1.7.3), which would lie in

Cr,{e"™ ) NCr,(¢") = Cr,(9),

contrary to the condition Cy(g) =10

Hence the T, admits a regular automorphism ¢” whose order is coprime to the
orders of all elements of its additive periudic group. Therefore, ,P’ Corollary 4.3.7,
T, is soluble of derived length < 27=1 — 1 since the order of ¢/ is obviously not
greater than n.

Theorem 4.3.1 1s proved.
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4.3.8 Corollary (Higman [40], Kreknin [83], Kreknin and Kostrikin [82]). [fa Lie

ring admits a regular automorphism of prime order p, then it is nilpotent, and its

nilpotency class is bounded by some number h(p) which depends only on p and is
Pl i

not greater than LF—T[L_—E-—

Proof. Such a Lie ring is soluble of derived length < 27~! — | by Corollary 4.3.7,

L —pFt
and therefore, by Theorem 4.2.1, it is nilpotent of class < L’%
We also give a combinatorial formulation of this theorem.

4.3.9 Corollary. For any prime number p there exists a natural number h(p)
i =t o :
depending only on p and not greater than %—-‘ such thar if vy, 2ya, ...
Wp=1 yy -1 are any elements of an arbitrary Lie ring with arbitrary formal upper

indices iy, 11, ..., g+ € L attached to them, then the simple commutator

iy 4. 03 .
I TR ¥ T MR 1]

may be represenied as a linear combination of commutators, each of which has
the same entry set " yy, " ya, ..., "=y and contains a subcommutator with
upper index sum zero modulo p.

Proof. This may be deduced from Corollary 4.3.8 by using free Lie rings in ex-
actly the same way as the proofs of Theorems 4.2.6 and 4.3.6 are deduced from
Propositions 4.2.3 and 4.3.3 respectively.

By the Jacobi identity [a. [b. ]l = |a. b, ¢] = |a. ¢. b} any commutator may be
expressed as a linear combination of simple commutators, each having the same
entry set. Hence the ideal of the free Lie ring on free generators "'y, "vs. ...,
fup-t vy v+ Whose additive group is generated by commutators in the generators,
each having a subcommutator with upper index sum zero (mod p), may also
be generated by simple commutators, each having an initial segment with upper
index sum zero (mod p). This remark allows us to strengthen the conclusion of
Corollary 4.3.9.

4.3.10 Corollary (Higman-Kreknin-Kostrikin Theorem). For any prime number
p there exists a natural number h(p) depending only on p and not greater than

-1 w ! I R < 2 . B
{-'JT. such that if "'y ."ys, ..., el vl are any elements of an arbi-
trary Lie ring with arbitrary formal upper indices i), is. .. ., inip+1 € L attached

to them, then the simple commuitator

e TR TP e i+
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may be represented as a immr combination of simple commuiators, each of which
has the same entry set "y, "*y1, ..., ety o1 and contains a subcommutator
with upper index sum zero modulo p.

For every prime number p there clearly exists a least number A(p) satisfying
Corollary 4.3.8 (or, equivalently, Corollaries 4.3.9 and 4.3.10). We call this Hig-
man's function and from now on we reserve for it the notation h(p).

The fact that Higman's function turns out to be the same whether it is defined
in terms of Corollary 4.3.8 or in terms of Corollanes 4.3.9 and 4.3.10, warrants
explanation. As we saw in the proof of Corollary 4.3.9 (or in the proofs of The-
orems 4.2.6 and 4.3.6), the value of h(p) which fits Corollary 4.3.8, also fits
Corollaries 4.3.9 and 4.3.10.

To see the converse, we suppose that i( p) is a number satisfying Corollary 4.3.10
and then prove that any Lie ring L with a regular automorphism ¢ of prime order p
1s necessarily nilpotent of class < h(p). For L= L @z Z|w] where w is a primitive
p-th root of unity, we have pL. € 'L 4+ 2L+ ...+ "'L. Then by Corollary 4.3.10

h“’}“}f;,{p”q{i] = }’h[p]-qu{f?i] Cal'L) =

P
Thus the additive group of the subring yym-1(L) is a p-group — therefore it is
trivial, since otherwise the automorphism ¢ of order p acting on it would have
non-trivial fixed points by Corollary 1.7.3.

§ 4.4 Almost regular automorphism of prime order

Here we generalize the Higman-Kreknin-Kostrikin Theorem on Lie rings with a
regular automorphism of prime order to the case where either the set of fixed
points is finite, or, for Lie algebras, the fixed points constitute a finite-dimensional
subspace. This “almost regularity” of the automorphism implies that the Lic ring is
“almost nilpotent” in the sense that there is a subring of bounded nilpotency class,
the bound depending only on the order of the automorphism, and of bounded index
(or codimension), the bound depending also on the number (or dimension) of fixed
points.

For convenience we shall use the terms like “{ p, m)-bounded quantity” to mean
that for any natural p and m there exists a natural number f(p,m), such that this
quantity does not exceed f(p.m).

4.4.1 Theorem. Le! ¢ be an automeorphism of prime order p of a Lie ring (alge-
bra) L. If the number of fixed poinis Cy (i) is finite and equal to |Cp(p)| =
(the dimension of the subalgebra Cyp () is finite and equal to g), then L has a
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subring {subalgebra) of (p. q)-bounded index (codimension), which is nilpotent of
p-bounded class.

(Here the index of a subring is its index as a subgroup of the additive group of
the ring.)

Froof. This exploits the Higman-Kreknin-Kostrikin Theorem on Lie rings with
regular automorphisms of prime order in its combinatorial form as a result about
Lie rings with a Z/pZ-graduation (Corollary 4.3.10). The method of constructing
the nilpotent subring of bounded index resembles the proofs of the converses
of the Schur-Baer Theorems in § 2.4. Instead of centralizers it uses generalized
centralizers relative to the commutation of ¢-components of the Lie ring.

We note that it seems impossible to prove that a Lie ring with an almost regular
automorphism of prime order necessarily contains a subring of bounded index with
a regular automorphism of prime order.

Al first we prove a consequence of the Higman-Kreknin-Kostrikin Theorem,
which is also of combinatorial nature.

In what follows p is the prime occurring in the hypothesis of the theorem.

4.4.2 Proposition. For any m and n there exists an (m,n, p)-bounded number
f = fim,n, p) such that any simple commutator of weight f in the elements
"xi1,"xa, ..., "xp of an arbitrary Lie ring with arbitrary upper indices i, # 0
(mod p) artached 1o them, is equal to a linear combination of commutarors, each
having the same entry set X = {"x,| | <5 < f} and each either containing a
subcommutaror of the form

Ky k

Frw frws, o b ). B, e X, (4.4.3)
which has m initial segments with upper index sum zero modulo p:

ki+ka+...+k, =0(mod p), i=1.2,..., m

l=srn=srn<...<r,=1,
or containing a subcommutator of the form
fw, cr e . (4.4.4)
where *w € X and each of the n simple commutators ¢; has the form

[J“Hhhuzi....k‘uﬁl‘ hu’_‘:E X
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with upper index sum zero modulo p:

ki +kad ...+ k =0 (mod p).

m=1

We canput fim,n, p) = 1+ 3 (h(p)+1)*'-n', where h(p) is Higman's function
i=l
asin § 4.3.

Proof. It is clearly sufficient to prove this proposition regarding the elements
fxy,"xy, ..., x; as the free generators of a free Lie ring L. We define on L
the Z/ pZ.-graduation

L=LoB L @&L:B...BL,,,

where for each s the additive subgroup L, is generated by all commutators in the
generators ' xy, Pxa, ... '/ x having upper index sum congruent to 5 modulo p.
For brevity we write h = h(p) for the Higman's function.
We recall that Corollary 4.3.10 states that for any elements 'a; € L, | =

1,2,..., A+ 1, the simple commutator
Pay, Pay, ..., " ayy ]

of weight & + | is equal to a linear combination of simple commutators in the
same elements, each having the same entry set and each having an imtial segment
from Ly which is an initial segment with upper index sum zero modulo p.

In fact, the proof of the proposition consists in multiple applications of this
assertion. Before giving it in full using the inevitable formalism of induction, we
highlight its basic ideas by doing the first steps. The initial segment of weight 4 + |
of the commutator under consideration,

[F’I|.F!.I'1. . ,..ffxf]. (4.4.5)

is equal to a linear combination of commutators with the same entry set and
with initial segments from L so that the whole commutator (4.4.5) is a lincar
combination of commutators of the form

k ks k. k..
l I.r]'|'| --rr'_-|.-|---- xfl..l '_rr"_“__,]‘

r<h+1, ki+ki+...+k =0 (mod p),

with the same entry set. For each such commutator put

| K k> ke ke i
" J_'!-'l = "l l-tr'” xa'y seny Kjg . xhni
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(it is clear that 'y, € Ly _,) and denote

Koy oo — kra

y ="y fors > 2.

Note that =y, = [*-1x; _, ¢y), where

ks

i k&,
) =[ IX,'I. b o .T,'_I = Lu.

We obtain a simple commutator of the form

I T R

whose weight is not less than f — k. For sufficiently large f we have f — h =
h + 2, and we may then apply the same transformation to each of the resultant
commutators, substituting its initial segment of weight i + 1 by its expression as a
linear combination of simple commutators in the same elements *~'y,, f3y,,
with initial segments from Ly. In each of these transformed commutators an element
of the form "“'}-. = ["“'x.-r_ﬂ ¢ either occurs in the initial segment from Ly —
and this is a step towards the form (4.4.3) or does not occur there — and this serves
for accumulation of occurrences of subcommutators from Ly and may be regarded
as a slep towards the form (4.4.4). These transformations may be performed often
enough, if f is large enough, since at each step, on replacing the variables, the
weight diminishes at most by A.

These first steps may be illustrated by a picture (“l. ¢." being the abbreviation
for “linear combination™):

[x1, X200 xrl= L c [lco, x), x....)
.
= Lc |y, yu...)of weight = f —h
= L e [[ealy) ¥l y....]
[
lLe.  fz1, 2z....] of weight > f —2h

i

Now we start the full exposition of the proof of the proposition.
We consider commutators of the form

'y, By, "yl (4.4.6)

where for each s the element v, has the from

i

vy =[x c0,....c), k=0 (4.4.7)
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where “x denotes one of the elements of X (the entry set of the commutator
(4.4.5)), and each element ¢; € Ly also has the form (4.4.6) with r < h 4+ 1 and
hh+ir+...+i =0 (mod p).

We define the height of the commutator (4.4.6) inductively as a sum of heights
of the elements "y(s = 1,2,..., r) the height of an element (4.4.7) being equal
to the sum of k and the sum of the heights of the elements ¢y, c2, ..., cpy fork =0
the height of an element * y, = "“x of the form (4.4.7) is 0 by definition.

We introduce an HKK-transformarion of the commutator (4.4.6) which consists
in

a) representing it as a linear combination of simple commutators in the same
elements 'y, ?ys, ..., "y, with initial segments from L, of weight < h + 1, that
is, commutators of the form

Rl L T ky: 1, (4.4.8)
where

c= I.I.II."’F” ‘:E,}FJ:'!‘ e 'ku-},r_‘rl S L[]..
w<h+1., ki+k+...+k, =0 (mod p), (4.4.9)

and, in light of this
b) changing notation

& Ky | '

1 ] — ll- LT ]
="""y,, fors = 2

._!z! = —-[(.'. _"‘rn'-u FI]’

This transformation is possible by Corollary 4.3.10. We shall say that the resultant
commutators of the form

[Frrrgy, Boetgy, L, ke gn—ul (4.4.10)
are obtained from (4.4.6) by means of HKK-transformation.
4.4.11 Lemma. Every commutator of the form (4.4.10), obtained from the commu-
tator (4.4.6) by means of HKK-transformation, is also a commutator of the form
(4.4.6), and its height is precisely | greater.
Proof. Tt is clear that the elements "z, = %y, for s > 2 have the required
form (4.4.7). For s = | we substitute into *++'z; = [y, . ¢| the expression for

kesty, | given by (4.4.7):

ky Ky o] — +1 o
*Izl =[ I,}‘:’,....-'E] . I‘h1 [ O i IO . PP o 'CI*
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Here the ¢; have the form (4.4.6) with r = h <+ | and ¢ is also of the form (4.4.6)
with r < h + 1 by (4.49). Hence 'z, has the form (4.4.7), and the whole
commutator (4.4.10) has the form (4.4.6).
Evaluating the height of (4.4.10), we see that the only difference between it and
the height of (4.4.6) is the additional occurrence of the element ¢ € Ly in b=z,
The lemma is proved.

If HKK-transformation is applied sufficiently many times, it produces commu-
tators satisfying the conclusion of Proposition 4.4.2.

4.4.12 Lemma. If a commutator of the form (4.4.6) has weight r < h + |, and

m=

height = fi(m.n, p) = 3 (h(p)+ 1) -n', then it is equal to a linear combination
i=1

of commutators, each containing either a subcommutator of the form (4.4.3), or a
subcommutator of the form (4.4.4) from the conclusion of proposition 4.4.2,

Proof. We construct a graph of occurrences of subcommutators ¢ € Ly in the
commutator (4.4.6). Its vertices will be partitioned into different levels, and each
level will be partitioned into groups. The vertices of level | are the elements ¢; from
the expressions (4.4.7) for all elements " y,, occurring in the commutator (4.4.6)
under consideration. These vertices ¢; of level | are partitioned into groups with
respect to elements " v, — they form a group if they occur in the same expression
(4.4.7). Every element ¢; of level 1 also has the form (4.4.6) by definition and
by formulae (4.4.7) it contains other elements from Ly — the latter are called the
vertices of level 2 connected with the given vertex of level 1. The vertices of level
2 are partitioned into groups in the same way, and so on.

It is obvious, that the total number of vertices of this graph is equal to the height
of the original commutator (4.4.6). We note also that each vertex is connected with
the vertices of the next level from not more than &+ 1 groups, and at level | there
are also not more than & + 1 groups, since the ambient commutator (4.4.6) has
weight » < h + | by the hypothesis of the lemma.

We shall show that either the number of levels is at least m, or at least one of the
groups in some level contains at least n vertices. Indeed, if we suppose that this is
not the case, then at level 1 there are less than (h + 1)n vertices, since there are al
most h + 1 groups at this level, and then at level 2 there are less than (h + 1)*n”
vertices, because each vertex of level | is connected with vertices of level 2 from
at most h + | groups each containing less than » vertices, and so on. It is easy to
establish by induction that at level i there are less than (h + 1)'n' vertices. The
total number of vertices will be less than

mr=1

Z(h[p}i + 1Y n' = fitm.n.p).

=]
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which contradicts the hypothesis of the lemma.

But if some group at some level has at least n vertices, then there is a subcom-
mutator of the form (4.4.4). And if the number of levels is at least m then there is
a nested chain of subcommutators from Ly of length m. Transforming them in turn
starting from inside, by the Jacobi identity [a, [b. c¢]] = la, b, ¢] — la, ¢, b], into
linear combinations of simple commutators (in the elements of X = {"‘ x:}) from
Ly, we eventually reach a linear combination of commutators, each containing a
subcommutator of the form (4.4.3).

The lemma is proved.

To prove Proposition 4.4.2 we apply HKK-transformation to the commutator
(4.4.5), then 1o each commutator of the form (4.4.6) in the resultant linear combina-
tion which is equal to (4.4.5), and so on, fi(m, n, p) times. At every step the weight
of each commutator of the form (4.4.10) is less than the weight of the commutator
(4.4.6) from which it was obtained by means of HKK-transformation, by not more
than h+1. Hence, if the initial weight is at least f(m, n, p) = (h+1)-fi(m, n, p)+1
then it is possible to apply HKK-transtormation f,(m, n, p) times. If the resultant
linear combination contains commutators of the form (4.4.6) of weight = A + 1,
then we proceed to apply HKK-transformation to them, until we get a linear com-
bination of commutators of the form (4.4.6) of weight r < & + 1, which is equal
to the commutator (4.4.5).

Since the (4.4.5) is also a commutator of the form (4.4.0) of height 0, then after
the transformations described above, it will be expressed by Lemma 4.4.11 as a
linear combination of commutators of the form (4.4.6) of weight < h + | and
height = fy(m, n, p). Application of Lemma 4.4.12 completes the proof of the
proposition.

We now turn to the proof of Theorem 4.4.1. Suppose that L is a Lie ring and ¢
is an automorphism of L. of prime order p. We first consider the case where the
number of fixed points is finite: |C; (¢)] = q. Let L = L ®z Zlw], where  is a
primitive p-th root of unity, and define the natural action of ¢ on L by regarding
Zlw)] as a trivial Z{g)-module. It is easy to see that C; (¢) = Cp(y) @z Z[w],
and hence |Cj(g)| = |Cr(g)|”~" = g"~'. If the assertion of Theorem 4.4.1 has
been proved for L, then the intersection of its subring of (p, ¢”~')-bounded index,
which is nilpotent of p-bounded class, with L will clearly be the desired subring
of L of (p,q)-bounded index, which is nilpotent of the same p-bounded class.
We may therefore assume from the outset that the ground ring contains w, that is,
L=L.

At first we shall prove — and this will be the main part of the proof of the
theorem - that the subring pL contains a subring of (p, g)-bounded index (in pL)
which is nilpotent of p-bounded class.
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As it was shown in § 4.1
pLeL+'L+. .. +77'L,

where 'L are the g-components of L. In each of the g-components ‘L for i # 0
we shall construct generalized centralizers of different levels s = 1,2..... h+1
(we recall that h = h(p) is Higman's function). These are the additive subgroups
'K (s) < 'L which contain each other and have (p, ¢)-bounded indices in ‘L. Since
I°L| = |C1(g)| = g, the subring

pLOCKMh+ 1), Kth+1)...., =YK (h + 1)),

generated by the generalized centralizers of level & + 1, has (p, ¢g)-bounded index
in pL. We shall prove that this subring is nilpotent of class < f(h+1. k., p), where
[ is the function appearing in the statement of Proposition 4.4.2, and therefore will
be the sought one (at this stage of the proof of Theorem 4.4.1, dealing with pL).
We put N = f(h + 1, h, p) for brevity.

Definition. A partern of a commutator in @-homogeneous elements “x, € “L
is defined to be its bracket structure together with the arrangement of the upper

indices in it. The commutator itself will be called the value of this pattern at the
elements " x,.

For example,
(I'a, b, %), ’d. %]} and [['x,%y.*z]. [, 0]
are values of the same pattern
{1, Fx, ), P S5

We shall further need homomorphisms which resemble the mappings w,: x —
[x.a] into the set of commutators arising in the proof of Lemma 2.4.3.
For every ordered set (of arbitrary length k)

F=("x, ", )
of g-homogencous elements “x, € “L we choose j < p — |, such that

JHh 4+ 4+ =0 (mod p),
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and define a homomorphism

i Ay = Un."xx, . .0 ), Yy elL,
from the additive subgroup ‘L into VL. Since |"L| = g, the following result holds.
4.4.13 Lemma, For any X we have /L : Ker ;| < g.

The construction of generalized centralizers is achieved by induction, simultane-
ously fixing of certain ¢-homogeneous elements, called representatives of different
levels. First we put ‘K (1) = "L for all i # 0.

Next, for each element ¢ € "L which may be represented as a value of some
pattern of weight < N at g-homogeneous elements “x, € “L for i, # 0, we
fix one such presentation for each possible pattern of weight < N. The fixed
@-homogeneous elements "x, occurring in all of these presentations are called
representatives of level 1, level being indicated by parenthesis: “x,(1). It is clear
that the total number of representatives of level | is (p, ¢)-bounded, since the
number of all patterns of weight = N = f(h + 1, h, p) is evidently p-bounded
and the number of elements ¢ € °L is at most g.

Now we construct the generalized centralizers / K (2) of level 2, putting for each
j‘: L2,....p0—=1

TK(@2) = ﬂKETﬂ;,

where ¥ = ("x,(1),%x2(1), ..., “x¢(1)) runs through all ordered sets of lengths
k < N of representatives of level 1 (and, of course, j+ i1 +ir+...+ir =0
{(mod p) in accordance with the definition of the homomorphisms #;). Since the
number of these ordered sets is clearly (p, ¢)-bounded, and the index of each of
the subgroups Ker#; in /L is at most ¢ by Lemma 4.4.13, then the index of
the subgroup JTK(2)in /L is also (p, ¢)-bounded. (We recall that the index of an
intersection of subgroups is not greater than the product of their indices.)

We note that the following centralizing property holds for the elements /y €
4K (2) with respect to the representatives of level 1:

Py, (1), xa(l), .., % (1] = 0,
whenever j +iy +i2+...+iz =0 (mod p) and k = N.
Now we proceed by induction. Suppose that for r < h + | and for each j =

1,2,..., p—1 we have alreaqy constructed generalized centralizers of levels < 1,
that is additive subgroups of /L

K ='K@) = ... = K@)
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of (p. g)-bounded index in /L, and that we have fixed representatives “x,(¢,) € “ L
for i, # 0 of levels g, = t, whose total number is (p, g)-bounded. Suppose also
that for every s < r the following centralizing property holds for the elements
Jy & /K () with respect to the representatives of levels < s:

7y, ""xy(8)). PxalEa). ... " xp(e)] = 0
whenever /y € K (s), k <N, (4.4.14)
gj<s(i=12,..., ky and j+ij+ix+...+i =0 (mad p).

Now for j =1,2,..., p— 1 set

K+ 1) = ﬂﬁerﬁ‘;.

where ¥ = ("xy(g)). "xa(£2), ..., " x; (£4)) runs through all ordered sets of lengths
k < N of representatives of levels £, < r (and, of course, j +i, +...+i, =0
(mod p) in accordance with the definition of the homomorphisms ;). The total
number of all such ordered sets is obviously (p, g)-bounded, and the index of
each of the subgroups Ker#; in /L is at most ¢ by Lemma 4.4.13. Thus the
index of the subgroup 'K (r + 1) in /L is also (p. g)-bounded. It is also clear that
IK(t+1)</K(1).

It follows from the construction that the centralizing property (4.4.14) holds for
the elements 'y € /K (r + 1) for s = ¢ + | with respect to the representatives of
levels < t.

Next, for every element ¢ € "L which may be represented as a value of some
pattern of weight < N at g-homogeneous elements "x, € "K(t + 1) for i, # 0,
we fix one such representation for each possible pattern of weight < N, The fixed
¢-homogeneous elements " x,, occurring in all of these representations, are called
the representatives of level (r + 1): “x,(r + 1). It is clear that the total number of
representatives of level (r 4 1) is also (p, ¢)-bounded.

We have finished the inductive definition of the generalized centralizers /K (1).
JKQ2),..../Kth+1), j=1L2.....p—-1.

As was already noted at the beginning of the proof, the subring

UK+ 1. Kth+D..... P=VK (h + 1)),

generated by the generalized centralizers of level i 4 | intersects pL in a subring
of (p.q)-bounded index in pL. We shall prove that this subring is nilpotent of
class < N = f(h + 1, h, p) where f is the function from Proposition 4.4.2. For
this it is sufficient to show that every simple commutator of weight N of the form

[;1 Y. '.:_".': ..... “yal. r.‘_'-‘.., e” Kith+1). (4.4.15)
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in elements generating this subring is equal to 0 (see 3.1.2). In order to do this,
in turn, it is sufficient by Proposition 4.4.2 to show that commutators of the form
(4.4.3) and (4.4.4) from the conclusion of Proposition 4.4.2, applied to the com-
mutator (4.4.15) with m = h + 1 and n = h, are all equal to 0.

We consider first the commutator

Uy, e1,0a,..., cn] (4.4.16)

of the form (4.4.4). For every s = 1,2, ..., h we replace ¢, by its expression as
a value of a pattern of weight < N at the representatives of level s which were
fixed above. This is possible, since ¢, is the value of a pattern of weight < NV at
elements of 'K (h+1), i # 0, and since we have inclusions ‘K (s) 2 'K (h+ 1) for
all s = A, so that, by construction, there is also a representation of ¢, as a value
of that same pattern at representatives of level s.

Expanding the inner brackets using the formula [a, [b, ¢]] = [a, b, c] = [a. ¢, b],
we represent (4.4.16) as a linear combination of commutators of the form

[fy. ), ..., (), (D), L (D), (), L ().
iye K+ ). (4.4.17)

Here, for simplicity, we have dropped the lower indices on the representatives
since the only important thing here is that they are placed in order of increasing
level.

The main idea in what follows is to represent each of the commutators (4.4.17)
as a linear combination of simple commutators with initial segments of weight
h 4 1 consisting of representatives of different levels 1,2, ..., h and the element
Ty & 'K (h + 1). (This will allow us via the Higman-Kreknin-Kostrikin Theorem
to apply the centralizing property (4.4.14) as a result of which all these initial
segments will turn out to be equal to 0.) To achieve this we begin by using the
formula [a, b, ¢] = [a.c,b] + [a, |b, c]] to transpose the first (from the left) in
(4.4.17) representative of level | to the left to the second place directly after the
element / y, then to transpose the first in (4.4.17) of the representatives of level
2 to the left to the third place, and so on, aiming to arrive to a commutator with
initial segment

[y, " (1), ®x(2), ..., "x(h)].

Of course, in performing such transformations some additional summands will
appear. Nevertheless, they also may all be transformed into linear combination
of commutators of a similar form, and they will also be equal to 0 by some
generalization of formulae (4.4.14).



§ 4.4 Almost regular automorphism of prime order 113

Definition. A quasirepresemtative of level 5 15 a commutator in representatives
which contains only one representative of maximal level s, the levels of the re-
maining representatives being smaller than 5. The representatives themselves are
also regarded as quasirepresentatives of the same level.

4.4.18 Lemma. If "3y(g)), 2%2(&2), ..., “Xp(e) are quasirepresentatives of levels
g, = 5 (u = 1,2,...,k) and an element 'y either belongs to 'K(s) or is a
guasirepresentative of level s, then

Uy, "Zi(8), "R (e2), .. " Re(80)] = 0, (4.4.19)
whenever j +i)y +ix+...+i; =0 (mod p)and k < N.

Proof. We express each of the quasirepresentatives %, (£,) as a commutator in the
representatives of levels < s and using the formula [a, (b, c]] = la. b.¢] —[a. ¢, b]
we expand the inner brackets in the commutator (4.4.19) as a commutator in these
representatives and / y.

If /'y € /K (s), then (4.4.19) is equal to a linear combination of commutators of
the form (4.4.14), which are equal to 0.

If /v is a quasirepresentative of level s, then the element /v, as a commutator
in representatives, is equal to a linear combination of simple commutators in rep-
resentatives which start with the unique representative of maximal level s, which
belongs to / K (s) by definition. Again the commutator (4.4.19) is equal to a linear
combination of commutators of the form (4.4.14), which are all equal 10 0.

The lemma is proved.

4.4.20 Lemma. Any commutator of the form (4.4.17) is equal to a linear combina-
tien of commutators of the form

Uy, " 5(1), 2%(2), ..., U (h). " % (Engt)e - (4.4.21)

in whose initial segments after 'y € 'K (h + 1) are situated quasirepresentatives,
one from each level 1,2, ... h, in order of increasing level,

Proof. To the commutator (4.4.17) we apply a collecting process which will be
defined now (this is not to be mixed up with the collecting process for groups from
§ 2.7). At each step the commutator (4.4.17) will be equal to a linear combination
of commutators of the form

oy, VR, R(2), ... ), R () (4.4.22)

in /y and quasirepresentatives, each having the property that to the left of the
first quasirepresentative (from the left) of any given level there lie only /v and
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quasirepresentatives of lower levels. In particular, (4.4.17) is also a commutator
of form (4.4.22). In such commutators (4.4.22) the collected part is the maximal
initial segment of the form

Fy. P&, ..., Bk s =1,

which contains to the right of / y quasirepresentatives one of each level 1.2,...,s
placed in order of increasing level.

The main step in the collecting process is to transpose in each of the commutators
(4.4.22) the first quasirepresentative of level s + 1 (from the non-collected part) -
say, the element X(s + 1) - to the left, to the end of the collected part, using the
formula

[...bxs+D...1=0.. 26+ 1), b...0+[...[b, s+ 1)]...]

(where dots denote unaltered parts). After a finite number of such transpositions,
(4.4.22) will be transformed into a commutator with the longer collected part in
a sum with a linear combination of additional summands. However, all of these
additional summands are also commutators of form (4.4.22), being shorter than
that one to which this step of the collecting process is applied. Indeed, firstly,
in the additional commutator of the form [...[b, X(s + 1)]...] which arises, the
subcommutator [b, ¥(s+ 1)}] is a quasirepresentative of level s 4- 1, since the level of
the quasirepresentative b is less than 5 + | by definition of (4.4.22); secondly there
are no quasirepresentatives of levels = s+ 1 to the left from the quasirepresentative
[b, x(s + 1)]. because there were none such to the left of x(s + 1).

Note also that all commutators of the form (4.4.22) which appear, including
the shorter ones, contain quasirepresentatives of all levels 1,2, .., h. Of course,
greater levels cannot appear so that this collecting process will finish after a finite
number of steps, and (4.4.17) will be represented by the desired linear combination.

The lemma is proved.

We now show that any commutator of form (4.4.21) is 0. By the Higman-
Kreknin-Kostrikin Theorem 4.3.10, the initial segment of (4.4.21) of weight h + 1,
namely,

oy, 95201), 282, ... " R0

is equal to a linear combination of simple commutators in the same elements
Ty, mE(D), 2x¥(2..... “t(h) with initial segments from "L. If such an initial
segment contains /y then on representing it as a linear combination of simple
commutators with the same entry set beginning with v, we get 0 by Lemma
4.4.18, since {v € /K (h + 1). If such an initial segment does not contain -f}- then
it contains exactly one quasirepresentative “x(s) of maximal level s. Representing
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such an initial segment as a linear combination of simple commutators with the
same entry sel beginning with “x(s), we also get 0 by Lemma 4.4.18.

MNow by Lemma 4.4.20 any commutator of form (4.4.17), and hence any com-
mutator of form (4.4.16), is equal to 0.

We now consider the commutator

bk € X, (4.4.23)

Frawy, Bws, .. ,j'"w,].
of the form (4.4.3) from the conclusion of Proposition 4.4.2, applied to (4.4.15)
with m = h + | and n = h. This commutator has h + | distinct initial segments
with upper index sums zero modulo p:

kytkad oo +k =0(mad p), i=1,2,.... h+1,

l<rnp<r<...<rgy =1.

The commutator (4.4.23) belongs o U7 and is a commutator of elements from
the generalized centralizers ' K (h==1) of level h+1. It may therefore be represented
as a value of the same pattern at representatives of level h + |

Fixth+ D Bxth + Do xh + 1) (4.4.24)

(Here, the lower indices are again dropped for simplicity.)

Next, the initial segment of length r;, of (4.4.24) also belongs to "L and is a
commutator in elements from the generalized centralizers ' K (h) of level h, since
'K (h) = 'K (h + 1). We replace it by its expression as a value of the same pattern
at representatives of level A and so on. As a result, (4.4.23) will be equal to a
commutator of the form

B Fx M w@n b @) e+ D e+ D]
(4.4.25)

4.4.26 Lemma. Every commuitator of the form (4.4.25) is equal to a linear combi-
nation of commutators of the form

[Frx(n), =x(2)...., M xCh 4+ 1), " x(Epe2)s - 1) (4.4.27)

whase initial segments contain one quasirepresentative of each of the levels 1, 2, .. ..
h 4+ 1 locared in order of increasing level.

Proof. This is absolutely analogous to the proof of Lemma 4.4.20, the only differ-
ence being that the collected parts of the commutators, appearing in the course of
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the collecting process, are initial segments of the form
(), =&(2), ..., "%, 5= 1

Now in essentially the same way as in the case of (4.4.21), it is proved that
any commutator of the form (4.4.27) is equal to 0. For this we apply the Higman-
Kreknin-Kostrikin Theorem 4.3.10 to its initial segment of weight i 4 1 in order
to represent it as a linear combination of simple commutators in the same elements
U, 2X(2), ..., " %(h + 1) with initial segments from “L. Each of these latter
initial segments contains exactly one quasirepresentative “i(s) of maximal level
s. Expressing such initial segments as linear combinations of simple commutators
with the same entry set, beginning with " X (s), we get 0 by Lemma 4.4.18.

Hence, by Lemma 4.4.26, commutators of the form (4.4.25), and therefore also
commutators of the form (4.4.23), are equal to 0.

Therefore the subring

("Kth+ D.2Kth+D,..., PUK(h + 1))

generated by generalized centralizers of level i + 1 is nilpotent of class < N =
flh+1,h, p), where f is the function in the statement of Proposition 4.4.2.
We have proved that the subring

Ly=pLn{'K(h+1),2K(h+1),....," " K(h + 1)),

which has a (p, g)-bounded index in pL, is nilpotent of p-bounded class. We now
finish the proof of Theorem 4.4.1 in the case of a finite number of fixed points.
Note that the subring L, is clearly @-invariant since all of the additive subgroups
pL,'K(h+1),2K(h+1),...,7"'K(h + 1) are g-invariant.
We shall prove that the subring

1
L?=FLI=”EL| P!ELI}

has (p, g)-bounded index in L and that it also contains a subring of (p, g)-bounded
index which is nilpotent of p-bounded class.

The assertion about the index |L : L;| is elementary: if a;,as, ..., a, are the
representatives of the cosets of L, in pL, then ay = pby, a2 = pba, ..., ar = pb,
for some elements by, bs,.... b, € L. Now for any ! € L we have: pl € a; + L,

for some i and hence pl = a; + 1, = pb; + 1, for some I} € L,. This implies
pll —b;)e Ly, thatis [ — b; € L5, so that { € b; + L,. Hence,

by + LU by + L) U...U(b, + Ly) = L
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and the index of the additive subgroup L- in L is not greater, than r = |pL : L,|.
It is clear that L is also g-invariant.
Suppose that the subring L, is nilpotent of class g — | where g = g(p), that is,
ye(L1) = 0. Then we have

0= y(L1) 2 velpla) = pPye(La),

5o that the additive subgroup y,(L») is a p-group whose exponent divides p*.
This subgroup is clearly @-invariant, and, since |Cp{g)| = g, its rank is (p.g)-
bounded by Corollary 1.7.4. Hence the subring y,(L>) is finite and its order is
(p. g)-bounded. By Theorem 3.1.6 this implies that L, contains a subring of (p. g)-
bounded index which is nilpotent of class < g. This subring is what is required,
since its index in L is also (p, g)-bounded.

So, we have completed the proof of Theorem 4.4.1 in the case of a finite number
of fixed points.

Now let L be a Lie algebra with an automorphism ¢ of prime order p, and let
dim C; (¢) = g =< oo. If the characteristic of the ground field is equal to p, then
by Corollary 1.7.5 the dimension of the whole algebra L is (p, g)-bounded.

For the case where the characteristic of the ground field is different from p, the
proof may be obtained by simply repeating the above arguments in the case of
a finite number of fixed points, replacing the words “order [C; (¢)|" and “index"
by “dimension dim Cy (¢)" and “‘codimension”, respectively (note, that here, under
the hypothesis on the characteristic, we have L = "L @ 'L & ... & "~'L after
extending the ground field by a primitive p-th root of unity).

The theorem is proved.

§ 4.5 Comments

The contents of § 4.1 -4.3 are 10 a large extent taken from Chapter VIII of [49],
where the proof of the Higman-Kreknin-Kostrikin Theorem from the works of
Kreknin and Kostrikin [82, 83] is given. We have introduced only a few modifi-
cations in order to emphasize the combinatorial natwre of this theorem, because it
is in that form that it is used in § 4.4. It is also more convenient to consider first
of all a Lie ring which is a direct sum of its ¢-components, and only afterwards
to apply the result to the general case.

Regular automorphisms of prime order. The upper bound for the Higman's
function h(p) in Corollaries 4.3.8, 4.3.9, 43.10 is very far from Higman's conjec-

ture that i(p) = f%l for p > 2 and #(2) = 1. In [40] Higman has constructed
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examples showing that k(p) = Z7* for p > 2. In the same paper Higman has
shown that A(5) = 6. In addition, Scimemi has verified with the aid of a computer
that #(7) = 12, and 1. Hughes confirmed this later in [47].

It is quite straightforward to prove that i(2) = 1 and h(3) = 2. For p = 2 we
only have to consider in a Z/2Z-graduated Lie ring L = "L + 'L a commutator
of weight 2 in elements from 'L, which clearly belongs to “L. For p = 3 one
has to consider in a Z/3Z-graduated Lie ring L = "L + 'L + ?L, commutators
[a, b, ¢] of weight 3 in elements a, b, ¢ either from 'L or from *L. If a,b,c € 'L
ora,b,c €L, then [a, b, c] € "L. In all other cases one can assume without loss
of generality that a € 'L; if b € 2L, then [a,b] € "L; and if b & 'L and ¢ € %L,
then by the Jacobi identity we have

[a,b,c] = [a, ¢, b] +[a,[b,cl] € 4 ("L),

since both [a, ] and [b, ¢] are in °L.
For applications of the Higman-Kreknin-Kostrikin Theorem to groups with reg-
ular or almost regular automorphisms of prime order see Chapter 5.

Regular automorphisms of non-prime order. Kreknin [84] proved that a finite-
dimensional Lie algebra admitting a regular automorphism of infinite order, is also
soluble. The proof is by reduction to the case where the regular automorphism has
finite order.

Unfortunately, in the case of composite order, Kreknin's Theorem 4.3.1 on the
solubility of Lie rings with a regular automorphism does not allow us to estimate
the derived length of a nilpotent group with a regular automorphism, because there
is no good correspondence between the derived length of a nilpotent group and
that of its associated Lie ring. (However, Kreknin's Theorem has been recently
successfully used in the “modular” case, where an automorphism of order p*
acts on a finite p-group - see Chapter 8, and in the theory of pro-p-groups of
finite coclass — see the Comments in § 5.4.) Perhaps progress could be made if the
following cunjecture were t{} be Emved if a Lie ring admits a regular automorphism
of order p* (or of order pl oo Pk =k + ks + ...+ k), then it has a
series of nested ideals whose length is bounded in terms ﬂt" k and whose factor-
rings are nilpotent of (p, k)-bounded class. This conjecture corresponds to some
known results about finite groups with regular automorphisms — see § 5.4.

Up to now such a theorem is known to be true only in the simplest case where
the regular automorphism has order 4. We consider the situation where 2L = L,
@ e AutL, |@| =4 and Cy(@) = 0. Then L = L@ L] = ]L_-F- 2], + 3L, where
L are the @-components. For the ideal H = j4(—1 + 1¥"| | € L) we have, first of
all H = ("L, L) (that is, H is generated by 'L and *L as a Lie ring). Secondly,
the factor-ring L/H is nilpotent of class | because * L admits the automorphism of
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order 2 induced by ¢, which acts like multiplication by —1 and by the hypothesis
21 = L.

Simple combinatorics show that the Lie ring H is nilpotent of class < 3. To
prove this assertion it is sufficient to show that an arbitrary simple commutator of
weight 4 in elements from 'L or *L is 0. Note that [a,b] =0,ifae 'L, be 'L,
We consider all possible patterns; without loss of generality we may assume that
an element from 'L, if it occurs, is placed at the start:

Il*ri*ql*1|*1=ﬂ:

I 3

b Yw) = e T Y T = P Y T T = 0

[l"‘1 E*‘

i I

Fi*1l*--*=1*}=[l*~]*~ i, 3

# 0x] = ["% Y%, Y% %] =0

[T, 3%, *x, 3*] =0 ['* %% %]=0.

Analogous calculations of a slightly more complicated nature show that also
[Lf:*, l.] = (), so that, in particular, y3(3=(L)) = 0. This theorem 15 due to Kovies
who proved in [79] the same (but more difficult) assertion for groups with a regular
automorphism of order 4.

As we saw, the “combinatorial” value of Higman's function, satisfying Corol-
laries 4.3.9 and 4.3.10, is the same with the value fitting Corollary 4.3.8 on the
nilpotency of Lie rings with a regular automorphism of prime order. It would be
interesting to know whether a similar phenomenon occurs for Kreknin's functions
in the statements of Theorems 4.3.1 and 4.3.2 — we had to double the function
from 4.3.2 in order to prove Theorem 4.3.1.

Regular groups of automorphisms, In the theory of finite groups a lot of progress
has been made in the study of groups with regular groups of automorphisms, that
15 groups G such that Cg(A) = 1 for some group of automorphisms A < Aut G,
which is not assumed to be cyclic, but has order coprime to the order of G. On
the one hand, such a group must be soluble (this was verified by Clemens [15]
modulo the classification of finite simple groups). On the other hand. for soluble
groups with this property, the so-called nilpotent length is bounded (see § 5.4).
However, for Lie rings there is a simple example showing that the existence of a
regular group of automorphisms is not sufficient for the solubility of a Lie ring,
even in the case where the regular group of automorphisms is a four group (that is.
non-cyclic of order 4). Let L be a three-dimensional simple Lie algebra (over an
arbitrary field of characteristic # 2) with basis ey, ¢2. 3 and structural constants

IE]. Eg} = ¢, Ifj. t"_t,] = . [:‘:‘3. c’;l = £3.
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Linear transformations, which have matrices

)= ()

relative to ey, e», ¢y, generate a subgroup A < AutL such that [A] = 4 and
Cr(A)=0.

Almost regular automorphisms. If, for whatever reasons, it is known beforehand,
that a Lie ring admitting an almost regular automorphism of prime order p, is
soluble of derived length s, then it may turn out to be more valuable to estimate the
index of the nilpotent subring in terms of 5, p and g and its class in terms of p and s
(where g is the number of fixed points) — this was done in [63]. Although this paper
contains only a theorem on nilpotent groups with almost regular automorphisms of
prime order which are soluble of derived length s, the analogous result on soluble
Lie rings (without the additional nilpotency hypothesis) can be proved in exactly
the same way.

Theorem 4.4.1 was proved in [68] under the additional assumption that pL = L;
the extension to the general case was also obtained independently by Medvedev
[1H1].

For almost regular automorphisms of prime order it would be interesting to find
out the best (or better) estimates for the index and nilpotency class of the subring
mentioned in Theorem 4.4.1. Of course, as we have already said, the exact values
of Higman's function A(p) are not yet known, but it is possible to look for the best
(or better) estimates in the form of functions depending on A(p) as we in fact did in
the proof of Theorem 4.4.1. (Note that explicit expressions for these functions may
be easily extracted from the proof of Theorem 4.4.1.) For example, may h(p) + |
be a bound for the nilpotency class of a subring of (p, ¢)-bounded index? As it was
shown by Hartley and Meixner in [35], this is true in the case p = 2. On the other
hand it is apparently impossible to prove that a Lie ring, satisfying the conditions
of Theorem 4.4.1, necessarily contains a subring of (p, ¢)-bounded index which
is nilpotent of class h(p).

As far as almost regular automorphisms of composite order are concerned, it is
natural to conjecture that if a Lie ring admits an automorphism of order n, having a
finite number g of fixed points, then it should contain a subring of (n, g)-bounded
index, which is soluble of n-bounded derived length. However, up to now, this has
not been proved even in the simplest case n = 4.



Chapter 5

Nilpotent groups admitting automorphisms
of prime order with few fixed elements

The results of this chapter are based on the theorems of the previous one about
automorphisms of Lie rings. First of all we prove Higman's Theorem bounding
the nilpotency class of a nilpotent group which admits a regular automorphism of
prime order.

We next show the rather unexpected fact that the Higman-Kreknin-Kostrikin
Theorem is applicable to the “modular” case of finite p-groups with an automor-
phism of order p. We prove that if a finite p-group admits an automorphism of
order p with exactly p™ fixed points then it contains a subgroup of (p, m)-bounded
index which is nilpotent of class h(p).

Then a theorem on nilpotent groups with an almost regular automorphism of
prime order is proved: if a nilpotent group admits an automorphism of prime order
p with exactly m fixed points then it contains a subgroup of (p, m)-bounded index
which is nilpotent of p-bounded class. In the proof of this theorem considerable
difficulties in going from groups to Lie rings and back have to be overcome. These
difficulties arise because there is no good correspondence between subgroups of
the group and subrings of the associated Lie ring.

We have included also the results of Makarenko, who refined the bounds for the
nilpotency class of the subgroups in the theorems on almost regular automorphisms,
and of Medvedev, who generalized the theorem on periodic nilpotent groups with
an almost regular automorphism of prime order to the case of arbitrary nilpotent
groups.

The latest results of Shalev and the author on automorphisms of order p* acting
on p-groups with few fixed points are contained in Chapter 8.

§ 5.1 Regular automorphisms of prime order

Using the Higman-Kreknin-Kostrikin Theorem one can obtain a bound for the
nilpotency class of a nilpotent group which admits a regular automorphism of
prime order p. In the case of a periodic group it suffices 1o consider its associated
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Lie ring. By Corollary 1.7.3 the Sylow p-subgroup of such a group is trivial.
Then, by Theorem 1.6.2, the induced automorphism of the associated Lie ring is
also regular. Hence, by Corollary 4.3.8, this Lie ring is nilpotent of class < A(p),
and hence the group is also nilpoient of the same nilpotency class. But we cannot
in general claim that the regularity of an automorphism of a group implies the
regularity of the induced automorphism of the associated Lie ring. Nevertheless
using another construction we are able to reduce the proof of the following theorem
to the case of a regular automorphism of a Lie ring.

5.1.1 Theorem (Higman [40]). If a nilpotent group G admits a regular automor-
phism @ of prime order p, then iis nilpotency class is at most h(p), where h(p)
is Higman's function bounding the nilpotency class of a Lie ring with a regular
automorphism of prime order p.

Proof. We fix notation as follows: ¢ is the nilpotency class of the group G and
¥i = y(G) are the members of the lower central series of G.

We note first of all that & has no p-torsion. For if it had we would have a non-
trivial subgroup I,(1), which, being a characteristic subgroup, is also g-invariant.
Since [,(1) is nilpotent, its centre Z(/,(1)) is a non-trivial abelian @-invariant
p-subgroup. Then Cz¢ an(e) # 1 by Corollary 1.7.3, which contradicts the fact
that ¢ is regular.

By Theorem 2.6.2 the series of p-isolators

G = fp(]"'!) = "p(]"ﬂ-} Z .= "IJJ(YI'J = l’,rr(]"r-l-l] = Ip“} =1

of the members of the lower central series of G is a strongly central series of G.
According to Theorem 3.2.6 this series gives rise o a Lie ring

L= J@l fp{}"i};“lfphﬂ'i-l]1

where the nilpotency class of L coincides with the nilpotency class of G by The-
orem 3.2.7. Therefore, if we prove that the induced automorphism ¢ of L is also
regular, then an application of the Higman-Kreknin-Kostrikin Theorem will finish
the proof.

It is clear that it is sufficient to show that ¢ induces regular automorphisms
of all the factor-groups G/1,(y;). By an obvious induction on ¢, it is sufficient
to show this for G/f,(y.). Assuming the contrary we have Cgjp (@) # L
SUP]JCI'SE that gf:,{"l-‘;} € Cr;”“m,]{gﬂ) for g ¢ fp{].-’,'_l. Since -l’p{}"r') = Z(G) (this
is a particular case of the result that the series of p-isolators {/,(y;)} is strongly
central in groups without p-torsion), the group (g, /,(3.)} is commutative. Hence
the elements g, 2. g%, ..., 2% ' commute since they lie in this group. Thus it is
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clear that
g:8°8" .2 €Culy)

and so g - g¥ - g“’: S -g'i""'l = 1, since Cg(g) = |. But we have

g g%-g% ... g% =g" (mod I,(y.)).

so that we get g” = 1 (mod 7,(y,)). This means, however, that g/,(y.) is a non-

trivial element of order p in G/1,(y.), which contradicts the definition of /,(3,).
Thus, Cg1,1y,) (@) = 1 for all i, and therefore C; () = 0. By Corollary 4.3.8,

L is nilpotent of class < h(p) and hence G is also nilpotent of class < h(p).
The theorem is proved.

If we happen to know the derived length of a group in advance, then it may be
better to use Theorem 4.2.1 instead of Corollary 4.3.8. By essenually repeating the
proof of Theorem 5.1.1 we obtain the following result.

5.1.2 Theorem. If a nilpotent group which is soluble of derived length s admits a
regular automorphism of prime order p, then its nilpotency class is at most %

§ 5.2 Nilpotent p-groups with an automorphism of order p

Suppose that P is a nilpotent p-group, ¢ an automorphism of order p of P and
ICplg) = p™. We ask the question: how can one restrict the structure of G in
terms of p and m?

At first glance the Higman-Kreknin-Kostrikin Theorem does not seem relevant
to this situation. As we saw in the case of a regular automorphism, the orders
of the group elements are coprime to p, and ¢ acts on abelian sections and on
the associated Lie ring in a semi-simple, diagonalizable way, which seems quite
impossible for the action of an automorphism of order p on a vector space over a
field of characteristic p. However, as was first noticed by Alperin, the generalized
combinatorial form of Corollary 4.3.10 allows us 1o apply the Higman-Kreknin-
Kostrikin Theorem in the “modular” case. In fact, by Theorem 1.6.1 and Corollary
1.7.4, the ranks of the @-invariant sections of P are bounded, and, modulo small
subgroups or small indices, one has to consider sections of large exponent where
the Higman-Kreknin-Kostrikin Theorem can work.

5.2.1 Theorem. If a nilpotent p-group P admits an automorphism ¢ of prime order
pwith exactly p™ fixed points, then it has a subgroup of ( p, m)-bounded index which
is nilpotent of class < h(p), where h(p) is Higman's function.
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Proof. At first we shall prove the existence of a subgroup of (p, m)-bounded index
with a slightly worse bound on the nilpotency class, namely, h(p) + 1. For what
follows we put & = h(p).

Consider the Lie ring L = L(P) ®@z Z[w] , where @ is a primitive p-th root of
unity, and ¢ acts naturally on L. By Lemma 4.1.1 a) and Corollary 4.3.10 we have

Vi1 (pL) € ia{Cr(g)).
5.2.2 Lemma. /n the Lie ring L we have p" ;4 (Cpi{g)) = 0.

Proof. We note first that it is easy to deduce from the definitions that
b
Crpylp) = _Ql Cyiya (o) and Culp) = Cypip) @z Zlw),
I=

where y; = y;(P). By Theorem 1.6.1 we have
1Cy iy @) < ICp()| = p7,
so that, in additive notation, p™C,, /,_,(¢) = 0 by Lagrange’s Theorem. Hence
p"Crlg) = 0 whence also p™;4{Cy(®)) = 0. (Indeed, every element of ;4 {Cr())
is a linear combination of elements of the form [¢, ay, ..., a;], where ¢ € Cy ().
We have for such elements
pUle.ay, ..., a) = [p"e,ay, ..., al=10a,.... 4] =0.)
The lemma is proved.
By this lemma we have

P (LY = p" v (pL) = pTia{CLie)) = 0.

Since yp(L) = @ y(L)/yis(L), this implies that all factor-groups ¥;(P)/
i=l

Jvis1(P) for i = h + | have exponents dividing p™*"+! Furthermore, by Corol-
lary 1.7.4 the ranks of all these factor-groups are at most pm (we recall that
ICy o (@) = ICp(@)] = p™). The restrictions on the rank and exponent taken
together clearly restrict the orders of these abelian factor-groups:

AP) /v (P)] < pm(antfe+ 1) foralli > h+1.
h‘"r;{ Yi+l =p =
It is clear that the same estimate is valid for any g-invariant subgroup P;:

i (P Visar (P < p™ ™0 forall i = h+ 1. (5.2.3)
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On the other hand by P. Hall's Theorem 2.8.7 we have:

19 (5 (P ¥isr (7 (P = p" as soon as yig (v (P)) # L.

Compare this inequality with (5.2.3), setting P, = py(P). We see that when
N = pm(m + h + 1) + 1, the only way to avoid a contradiction is to conclude
that yp42(pw(P)) = 1. Thus we have found a subgroup yx(P) of P which is
nilpotent of class < h + | and whose corresponding factor-group is nilpotent of
class < pm(m + h + 1).

However, a minor modification in the proof enables us to restrict the structure
of P even more. This modification involves applying the above argument to the
group P (@) which admits the automorphism ¢ with exactly p"*' fixed points. We
obtain

Y2y (Plg))) = 1.

where M = pim+ 1)im+1+h+1)+1.
The automorphism ¢ centralizes the factors of the lower central series of the
group P{p) so that

V(PN /Y1 (P{@))] < ICpigy ()] = p"*!

(and the left-hand side is even = p™ for s = 2, since y2(P(g)) = P). Hence

[P{g) : pu(P{e)l = p™ M= and |P 2y (Pg))] < p"™M1.

Thus yau(Plw)) 1s the required subgroup of (p.m)-bounded index, which is
nilpotent of class < h + 1.

We shall now show that P even has a subgroup of (p. m)-bounded index which
1s nilpotent of class < h. By what we have just proved we may assume that P
is nilpotent of class h + 1. It was shown above that p"*t*+1[(P) = 0. Since

vnsa(P) = 1. this means that y,.(P)*"""" = 1. Since a homomorphism exists
of the tensor product P/P'®...@ P/P onto yu41(P) = st (PY yus2(P), we
h:-]
have
[ ax™ ... an1” )= lar az.....apa "

and for r = r(p, m) large enough (for instance, r = i_ﬂﬁ-lﬂj + 1) the right-hand
side of this equation is equal to 1.

Furthermore, using the fact that [y, y;| = w4, for all i, j we see that every
commutator of weight 4 + 1 which involves at least one element from P’ lies in
vi+3, and hence equals 1.

Thus we have shown that every commutator of weight # + | in the genecrators
of P7 P’ is equal to 1. Hence this subgroup is nilpotent of class < h(p) (see
Theorem 2.2.2), and, since both the rank and the exponent of the abelian factor-
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group P/(P" P') are (p, m)-bounded, its order, that is |P : P" P'|, is also (p, m)-
bounded.
The theorem is proved.

Note that we may extract an explicit bound for the index of a milpotent subgroup
of class < h(p) + 1, namely

purp{m + 1 Mm4+h41),

and an explicit upper bound for the value i(p) is contained in §4.3. It is equally
easy Lo obtain a bound for the index of a nilpotent subgroup of class < h(p).

If we happen to know the derived length 5 of the group P, it may turn out to
be better to estimate the index and the nilpotency class by functions which also
depend on 5. Such estimates are produced using Theorem 4.2.2 in essentially the
same way as above,

5.2.4 Theorem. [f a soluble p-group P of derived length s admits an automorphism
@ of prime order p with exacily p™ fixed points, then it has a subgroup of index

i1t =1
< FWH“H‘HJ(I.‘T-‘_-H“-FE)

— ¥

which is nilpotent of class < L"‘P';.," + 1.

Proof. We note that a soluble p-group P is locally finite and locally nilpotent. And,
since the ranks of the abelian sections of P are bounded, it is finitely generated and
hence finite and nilpotent. It then suffices to repeat the proof of Theorem 5.2.1 with
the obvious modifications — replacing certain functions and replacing the reference
to Lemma 4.1.1 a) and Corollary 4.3.10 by a reference to Theorem 4.2.2. We leave
this to the reader as an exercise.

We state two applications of Theorem 5.2.1. The first of them deals with finite
p-groups of maximal class, that is, p-groups of order p” and of nilpotency class
n— 1. Without plunging into the theory of such groups we merely point out that any
p-group P of maximal class has an element s such that [Cp(s)] = p: (see [10] or
[48, Chapter II1]). It is clear that s” &€ Z(P) and hence s induces an automorphism
of P of order p by conjugation. We may therefore apply Theorem 5.2.1.

5.2.5 Corollary. Every finite p-group of maximal class contains a subgroup of
p-bounded index which is nilpotent of class = h(p).

In the next chapter we shall also show that in any p-group of maximal class the
commutator subgroup (which has index p?) is nilpotent of p-bounded class. How-
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ever the papers of Shepherd [131) and Leedham-Green and McKay (93] contain
stronger results on p-groups of maximal class.

5.2.6 Corollary. Any locally finite p-group in which there is a centralizer of an
element of prime order p which is finite of order p", is almost nilpotent and satisfies
the conclusion of Theorem 5.2.1.

Proof. The group theoretical property “containing a subgroup of index < k, which
is nilpotent of class = d, for given k and 4", may be expressed as a universal
formula of the predicate calculus. All finitely generated subgroups of the group in
the statement of the corollary which contain the given element x of order p with
finite centralizer of order p™, form a local covering. Each of these subgroups is a
finite p-group which admits an automorphism of prime order, induced by x, with
exactly p™ fixed points. Thus each subgroup in the local covering satisfies Theorem
5.2.1, and therefore the whole group also sausfies this property by Mal'cev's Local
Theorem.

We note that, by a theorem of Blackburn [11], a group satisfying the hypothesis
of Corollary 5.2.6, even has an abelian subgroup of finite index. The essence of
Corollary 5.2.6 lies in the bounds obtained from Theorem 5.2.1, because there is
no bound on the index of an abelian subgroup or even of a nilpotent subgroup of
class ¢, where ¢ is a constant not dependent either on p or m. This is shown by
the following example.

5.2.7 Example. Let p be a prime greater than 2 and let w be a primitive p-th root
of unity over Z. We denote by Z,|w] the factor-ring of the ring Z[w] over the
ideal p'Z[w], and by U/ we denote the free (p — 1)-generated Z, {@]-module. The
group of matrices of the form

(]l a ax ... ap-2
1 a) . .
A={ - a» aj € Lpw) }
O T aj
N |-

is commutative and acts on U in the natural way. The element
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also acts on U and, by conjugation, on A. It may therefore be considered as an
automorphism of the semidirect product P = U/ X AL

It is easy to compute that for & # 0 (mod p) there are exactly p elements
b € Ly |w] such that (w* — 1)b = 0. From this, elementary calculations yield the
order of the centralizer

ICp(@)] = |Cu(@)] - ICale)] = p~' - pr~2 = p*r—3,

This number does not depend on 5. At the same time the minimal index of a
subgroup of P, which is nilpotent of class exactly p — 1, tends to infinity with s.

§ 5.3 Nilpotent groups with an almost
regular automorphism of prime order

In this section we prove a generalization of Higman's Theorem 5.1.1 on nilpotent
group with regular automorphisms of prime order to the case where the number of
fixed points is finite: from this “almost regularity” of the automorphism follows the
“almost nilpotency™ of the group — the existence of a subgroup which has index
bounded in terms of the number of fixed points and the order of the automorphism,
and which is nilpotent of class bounded in terms of the order of the automorphism
only. This is first of all proved for a periodic nilpotent group with an almost regular
automorphism of prime order p, where by Theorem 5.2.1 it suffices to consider the
case of a p'-group. The result is then extended to the general case (this extension
is due to Medvedev [111]). This extension, however, leads to worse bounds on the
index and on the nilpotency class (bounds which were in any case far from best
possible).

On the other hand Makarenko [103,104] showed that in this situation there is a
(p, g)-bounded number s (where ¢ is the number of fixed points), such that the
subgroup generated by all s-th powers is nilpotent of class < h(p) — and this bound
for the nilpotency class cannot, of course, be improved.

5.3.1 Theorem. If a periodic nilpotent group G admits an automorphism  of prime
order p having a finite number g of fixed points, then 1t has a subgroup of (p. q)-
bounded index which is nilpotent of p-bounded class.

This group-theoretic result, which is analogous to Theorem 4.4.1 on Lie rings,
cannot, however, be derived from the latter as easily as in the case of a regular
automorphism. Certainly, by Theorem 5.2.1, the group G may be assumed to be a
p'-group, so that the induced automorphism ¢ of the associated Lie ring L(G) has
the same number g of fixed points. By Theorem 4.4.1 the Lie ring L(G) contains
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a subring of (p, g)-bounded index, which is nilpotent of p-bounded class. But this
says nothing about the nilpotency class of any of the subgroups of G since there
is no good correspondence between subgroups of & and subrings of the associated
Lie ring (just like an upper bound on the derived length of the Lie ring L(G) says
nothing about the derived length of the group ).

We note also that we could not prove that under the hypothesis of Theorem 5.3.1
the group necessarily contains a subgroup of (p, ¢)-bounded index with a regular
automorphism of order p; apparently, this seems to be wrong.

The proof of the theorem exploits the method of constructing generalized cen-
tralizers which was developed in the course of the proof of Theorem 4.4.1. In an
analogous way we construct for G (via its associated Lie ring £(G), extended
by w — a primitive p-th root of unity) representatives and augmented subgroups
of increasing levels which have the centralizing property. In order to do this we
need to translate propertics of the elements of the Lie ring over Z|w] into group
theoretic language. The main idea which enables us in the end to use the technique
developed in the proof of Theorem 4.4.1, is to prove that G, rather than a subgroup
of G, is itself nilpotent of p-bounded class. The advantage of such an approach
lies in the fact that, in order to prove the nilpotency of the group itself, it suffices
to prove that its associated Lie ring is nilpotent of the required class. However, the
disadvantage of this approach lies in the fact that such an assertion is false!

This big “disadvantage” is overcome by induction on a complex parameter which
controls the possibility of representing commutators in @-homogeneous elemenis
of the Lie ring as commutators in representatives of higher levels (in the language
of the proof of Theorem 4.4.1). If this parameter is smaller for any subgroup of
(p. g)-bounded index arising in the construction, then the induction hypothesis
may be applied, and if it remains constant for long enough, then we can prove
that L((7) is nilpotent of p-bounded class, and, therefore, that ¢ is nilpotent of
the same class.

We move on now to the details.

Proof of Theorem 5.3.1. Since G 1s nilpotent it 15 the direct product of its Sylow
subgroups; in particular, G = G, x G, where G, is a p-group, and G, is a
p'-group, both normal Hall subgroups being g-invariant. Therefore,

Cely) = Cq, (9) x Cy ().

We may apply Theorem 5.2.1 to the p-group G . so that it is sufficient to prove
Theorem 5.3.1 in the case where G is a nilpotent p'-group which we shall from
now on assume. We note in particular that for cvery k € M, g € G there exists a
unique element & € G, such that «” = g (in fact, u = g/ for some j € N, since
the mapping ¢ — g-"l is an automorphism of the cyclic group {g): uniqueness
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follows, for instance, from 2.6.1 a)). The same is true for any abelian section of
G, where we shall use additive notation to denote u = (1/ pk)g.

We recall that & = h(p) denotes Higman's function.

We shall construct a decreasing series of subgroups K (s), the generalized central-
izers of levels s =< 2h + 1, which have (p, g)-bounded indices. We simultaneously
shall compute inr them the value of a certain induction parameter. If, for any of
the subgroups K(r), this value is less than that for G itself, then, by the induction
hypothesis, K(r), and hence also (, contains the required subgroup of (p, g)-
bounded index, which is nilpotent of p-bounded class. If, however, this parameter
remains constant up to level 2k + 1, then we shall prove that in this case the group
itself is nilpotent of class < f(h + 1, 2h, p), where f is the function appearing
in the statement of Proposition 4.4.2. The same bound f(h + 1.2k, p) will also
fit as a bound on the nilpotency class of a subgroup of (p, g)-bounded index in
the conclusion of the theorem, because it may be incorporated in the induction
hypothesis. For the rest of the proof we put N = f(h + 1, 2h, p).

Let L(G) be the associated Lie ring of G. Since G is a periodic p'-group, we
have |Cyi6)(¢)| = |Ce ()| by Theorem 1.6.2.

We put L = L(G) @z Z|w], where w is a primitive p-th root of unity, and we
regard the Lie ring L(G) as embedded in L by the rule | -—» [ ® 1.

Since G is a periodic p’-group, we have

pbL=L="Le'Le...e"'L,

where the 'L are the g-components of L in the sense of §4.1. By contrast with
the proof of Theorem 4.4.1 we shall only consider here commutators in elements
of L which are homogeneous of weight 1, that is, elements of the form ¥ @ r,
where r € Z[w], and ¥ is the image of x € G in G/ (G). We recall that x =
O +'x + ...+ "'x, where for every i

) L
'x = w”+,r"° e'l

A gl

1
Py

(see §4.1). This notation will remain fixed for what follows and we shall say that
these elements ‘x € 'L are ¢-components of the image ¥ of x € G in G/y(G),
which latter group is viewed as a homogeneous component of weight 1 of the Lie
ring L{G).

We shall construct the generalized centralizers K (s), simultaneously fixing the
representatives following the analogy of the proof of Theorem 4.4.1. The trouble is
that here the generalized centralizers must be subgroups of G, while the centralizing
property is naturally defined within the Lie ring L = L(G) &z Z[w]. This is why
we have to translate this property into group theoretical terms and it is also why



$ 5.3 Nilpotent groups with an almost regular automorphism of prime order 131

along with representatives in the g-components of the Lie ring we here also fix
corresponding elements in G. This translation is done using the following lemma
which gives a certain sufficient condition (there may very well be also a similar
necessary condition, but we do not need it).

5.3.2 Lemma. Suppose that the following congruence holds:

j+i+ir+...+ir =0 (mod p),

or some k, where j, iy, 12, ..., [; are residues modulo p. Then in order to have
Je 0 P
RS TTRET SO “xp] =0,
in the Lie ring L for ¢-homogeneous elements 'y € 'L, “x, e "L, s = 1,2, ...k,

which are homogeneous of weight 1, it is sufficienr that, for every ordered ser a,,
a3, ..., ap of residues modulo p. the following congruence holds in G:

=1 i
.l! i "‘:
]_[([}'er'.x-_'f ..... xf ]) = 1 (mod y42(G)).
1=
(Here, of course, the ¢-homogeneous elements “v. " x, ..., iy of L are con-
structed from the corresponding group elements v, xy, ..., x; in the above-men-

tioned sense.)

Proof. We substitute the expressions of the /y, " x,:

[y ”-Tni"-l': 2 ] =
1 -1 - -
I' 4 = 3 o ] 4 s =i ] L= =ix8 = I = -5 =¥
= 4] ¥ i X — @ X, E I i
P i= P a=A{l P x=l) P =0
p=I1
! ! o'l ot 't
= —= E w E FORD LR, L X |-
P I=l) siugy Ppug e . srgugoer §oomaml ey

where the y, x; are the images of y, x; € G in G/y2(G), regarded as elements of

L.Since j+iy+...+ix =0 (mod p), the summation range in the inner sum on
the right-hand side may be written in the form

i1(sp—851) +ialso — s2) + ... +iplso — i) =1 (mod p).



132 Chapter 5 Nilpotent groups admitting automorphisms of prime order

Therefore, as it is easy to see, this inner sum is partitioned into several sums of

the form
& " N
Z:([EI'I'_E?“.E;’ IP"txf ]) B
t={)
By the definition of multiplication in the Lie ring L(G) these sums are equal to 0
in L if and only if the corresponding congruences in the statement of the lemma
hold.
The lemma 1s proved.

We now need homomorphisms, analogous to those used in the proof of Theorem
4.4.1, but this time defined for the group G.

For every ordered set x = (x;,x2,..., x;) of elements of G (of size k) and
for every ordered set a = (a),a2,..., a) of residues modulo p, we define a
homomorphism

=1

?(x,a) y — ]_[ ([}'. xfﬂ‘-tf"}. .o .Ifu'])ﬂr - Yas2(G)

r=0

of G into ¥ (G)/ys2(G) (the product on the right-hand side is a product of
images of commutators of weight k + 1).

5.3.3 Lemma. For any X and a we have |G : Ker #(x,a)| < g.

Proof. The image of an element y under the homomorphism 2 (x, @) is equal to the
product of commuting elements of an orbit under the action of the automorphism
¢ on the abelian group yi4(G)/y+2(G). Hence this image belongs to Cpg,(¢)
and so

|G : Kerd?(x,a) <€) = |Calw)| = q.

The lemma is proved.

Associated with the ordered set ¥ = (x), x3, ..., x;) as above, we now define
the subgroup

-1
K(x) = hﬂ (Ker#(x,a))*,

=0 &

where a runs through all ordered sets a = (ay, az, ..., a) of residues modulo p
of size k. The total number of subgroups involved in this intersection is obviously
(p. k)-bounded, and the index of each of them is at most g by Lemma 5.3.3.
Hence, the index |G : K(x)| is also (p, g, k)-bounded. (We recall that the index of
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the intersection of subgroups is less than or equal to the product of their indices.)
Moreover, K (x) is g@-invariant by construction.

From the definition we see that K (x) has the following centralizing property
relative to ¥ = (x, x3,...,x;): forany y € K(x)

iy

[y, xp, %2, .. fx ] =0 (5.3.4)
whenever j+i) +ix+ ...+ i =0 (mod p).

We recall that the pattern of a commutator in ¢-homogeneous elements hxs €L
is its bracket structure together with the arrangement of upper indices in it, and
that such a commutator is called the value of its pattern at the elements " x,. From
now on we restrict our attention to commutators only in g-homogeneous elements
which are homogeneous of weight |.

We turn now to the promised inductive construction of generalized centralizers
of levels i = 2h + 1, that is, subgroups K (i) of G of (p, g)-bounded index, and
to the simultaneous specification of representatives. We put K(1) = G.

For every homogeneous element ¢ € Cpg)(¢) of weight = N we express ¢ (at
level 1) as the values of all possible patterns p of weight < N = f(h 4 1, 2h, p)
in @-homogeneous clements which are homogeneous of weight 1 of the form
Jy(1) = r - ‘x(1), where r € Z[w] and ‘x(1) is a ¢-component of the image of
x(1) € G in G/ (G) (of course, we only do this for such pairs (¢, p) for which
such an expression exists). The level is indicated in parentheses and both / y(1) € L
and x(1) € G are called representatives of level 1. It is clear that the total number
of representatives of level 1 is (p, g)-bounded since it is clear that the total number
of patterns of weight = N = f(h + 1, 2h, p) is p-bounded, and the number of
homogeneous clements ¢ € Cpgy(@) 1s at most g.

Now we define the subgroup

K(@2) =) K(x(1)

iy

where x(1) = (x; (1), x21), ..., x¢(1)) runs through all ordered sets of size & for
all k = N, consisting of representatives of level 1. Note that K (2) is g-invariant
since all K(x) are g-invariant. The index of K(2) is (p, g)-bounded since the
indices of the subgroups K(x) and the number of them are (p, g)-bounded. The
subgroup K(2) is a generalized centralizer relative 1o the representatives of level
1 in the following sense: for every z € K(2)

Uz, "y (D), Bya). L (D1 =0

whenever j+iy+ix+...+ip =0 (mod p) and & = N. This follows from (5.3.4).
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Now suppose thal we have already constructed subgroups K(1) = K(2) = ... =
K (s) for some 5 < 2h + 1 and, for every i < s, have fixed representatives of level
i of the form /y(i) = r - /x(i), where r € Z[w) and /x(i) is a g-component of the
image of x(i) € K(i) in G/y(G). We next define the subgroup

K(s+1) = K(E(s)),

;fr}

where x(s) = (x;(&1), x2(€2), ..., x4(gr)) runs through all ordered sets of sizes
k = N, consisting of representatives of levels g; < s. It is clear that K'(s + 1) <
K (s). Also K (54 1) 18 ¢-invariant, since the K (x) are g-invariant, and its index is
(p. g)-bounded, since the indices and the number of the K (x) are (p, g)-bounded.
The subgroup K (s + 1) 1s a generalized centralizer relative to the representatives
of level < s in the following sense: for every z € K(s + 1)

Uz, "yi(er), Zyalead, ... " ye(ex)) = 0 (5.3.5)

whenever g; < s forall i, j+i;4+...+i, =0 (mod p) and k < N. This follows
from (5.3.4).

For every homogeneous element ¢ € Cpq)(@) of weight = N we express ¢ at
level s+ 1 as the values of all possible patterns p of weight = N = f(h+1, 2h, p)
at g-homogeneous elements which are homogeneous of weight 1 of the form
iy(s +1) =r-Jx(s + 1), where r € Z[w], and /x(s + 1) is a @-component of
the image of x(s + 1) € K(s + 1) in G/ (G) (again, for such pairs (c, p) for
which such an expression exists). Both /y(s + 1) € L and x(s 4 1) € G are called
representatives of level s + 1. It 1s clear that the total number of representatives
of level 5 4+ | is (p, g)-bounded since it is clear that the total number of patterns
of weight < N = f(h + 1, 2h, p) is p-bounded, and the number of homogeneous
elements ¢ € Cpgy(@) is at most g.

This completes the inductive definition of the generalized centralizers K (/) and
the representatives of levels i < 2h + 1.

We now make some comments on the differences between this situation and
that considered in the proof of Theorem 4.4.1 and on ways of overcoming the
difficulties which arise. As we have already said, our objective is to prove that
the group G itself is nilpotent of p-bounded class < N, or, equivalently, that the
same is true for the Lie ring L(G). In order to do this it is sufficient to show
that every commutator of weight N in the ¢-homogeneous elements of L which
are homogeneous of weight 1 is equal to 0. To achieve this it is in turn enough,
by Proposition 4.4.2, to consider the commutators mentioned in the statement of
Proposition 4.4.2 which involve a large number of subcommutators from “L. It
would then be natural to try to apply to them the collecting process described at
the end of the proof of Theorem 4.4.1. However, that process gave the desired
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result there because it produced commutators with long enough initial segments
filled by representatives (or quasirepresentatives) of different levels. In the proof of
Theorem 4.4.1 the existence of the necessary reserve of representatives of different
levels followed automatically from the fact that we were considering commutators
in elements of maximal level and could replace subcommutators from °L by the
values of the same patterns at elements of lower levels (because the subgroups of
higher levels are contained in the subgroups of lower levels). But here we have
to deal with commutators in arbitrary ¢-homogeneous elements of L which are
homogeneous of weight 1, and we can replace the subcommutators from “L by
values of the same patterns at representatives of the 1-st level only.

This difficulty is overcome by introducing an induction parameter which controls
the possibility of replacing commutators from YL by values of the same patterns at
representatives of high levels. The proof of the theorem then proceeds by induc-
tion on this parameter. This gives a reduction to the case, where the substitutions
mentioned above are possible. And in this case we only need repeat almost word
by word, with little technical modification, the arguments from the end of the proof
of Theorem 4.4.1.

Definition. The induction parameter is a triplet (q, q, 1), where

g =Cq(@)l, qg=1(q.q....97)
qi = |Crioypari@)l. i=12,... N, 1=|PG),

where P(G) is the number of pairs (¢, p), where ¢ is an element of Cy ) (¢) which
may be represented as a value of the pautern p of weight < N at ¢-homogeneous
clements of L which are homogeneous of weight 1.

By (g(H). g(H), r(H)) we shall mean a similarly constructed triplet, formed rel-
ative 1o the g-invariant subgroup H (in particular, (g, g. t) = (g(G). §(G), t(G))),
and P(H) we shall use to denote the corresponding set of pairs (¢, p) for the sub-
group H.

We order the set of vectors § = (g1, g3, . - .. gn) in an inverse lexicographic way
s0 that

@1 = (@n.qi2.-- -, qin) < g2 = (g21.922. ..., gin) «
< forsome k > 1, g\; = gy forall i <k and gq;; > gu.

We also order the set of triplets (g, g, 1) lexicographically:

(q1.G1.11) < (g2, G2. 12) <> either g < g2,
or g1 = q> and q; < §,
or gy =¢2. 1 =qg2and 1y < 5.
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5.3.6 Lemma. For any g-invariant subgroup H we have

(g(H), qg(H), t(H)) = (q(G),g(G), 1(G)).

Proof. 1t is clear that g(H) = q(G), since Cy(g) € Cglg). Now let g(H) = g(G),
that is, Cg(e) © H; we want to prove that in this case §(F) < §(G). Suppose
that for some k > 1 we have g;(H) = ¢;(G) for all i < k; we now have to show
that g (H) = q(G). Since |Cgi¢)| = |Cyly)| and ¢;(H) = ¢;(G) forall i < k&,
then |C,, (1) (@) = [Cyui6y(w)|. Obviously, C,, (s;(¢) € Cyc)(¢) so that these two
subgroups are identical; we set C = C,,y)(¢) = C,,g)(¢) for short. By Theorem
1.6.2 we have

Crinripaimn(@) = C - ya (H) v (H) = C/C Ny (H),
and also
Cr6)/116) (@) = C - Yt (G)/ ¥4 (G) = C/C Ny (G).

The order of C/C My (H) is clearly not less than the order of C/C My 1(G).
Hence, g, (H) = q:(G), as required.

Finally, suppose that g(H) = g(G); we shall prove in this case that r(H) = 1(G).
In order to do this we define an injective mapping from the set of pairs P(H),
defining the number ¢ (H), into the corresponding set of pairs P(G) as follows.

Suppose that the homogeneous element ¢ € Cpyy(g) of weight k, kK = N, is the
image in y(H)/yei1(H) of ¢ € Cpyan(p) € Cyyi6(p), and also that ¢ € Crig(¢)
is the image of ¢ in (G)/31+1(G). We have shown that if g(H) = g(G) then
Cole) Ny (H) = Cole) N y(G) for all i. Therefore, by Theorem 1.6.2, we have

Cromypaun(@) = (Colp) N y(H))/(Colp) Ny (H)) =
= (Cg () N1 (G)/(Cole) Ny (G = CoiGiim 6 (@).

Hence, the mapping p: ¢ = ¢ is an isomorphism of Cp, 1y/y..cn(9) with

Cri6rn a6y (@). .
Next, suppose that ¢ is equal to the value of the pattern p of weight k = N
at ¢-homogeneous elements which are homogeneous of weight | of the Lie ring

L(H) ®z Z[w], that is, let (c, p) € P(H). We define the mapping
v (e.p) = (€, p).

The following lemma shows that if §(H) = §(G) then (¢, p) belongs to the set
P(G).
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5.3.7 Lemma, Suppose that g{H) = q(G) where H is a g-invariant subgroup of
G and that the homogeneous element ¢ € Cyy(@) of weight k, k = N, which is
the image in yi(H)/ i (H) of the element ¢ € Cg(g), is equal to the value of
the pattern p of weight k at the p-homogeneous elements /' v; = r; - ' x; which are
homogeneous of weight 1 in the Lie ring L(H) @z Z|w), where r; € Z|w] and the
Jix; are the g-components of the images in H/H' of the elements x; € H. Then the
image ¢ € Crig)(¢) of ¢ in ¥ (G) [ yi+1(G) is equal to the value of the same pattern
p at the @-homogeneous elements ' y; = r; - ''x; which are homogeneous of weight
1 in the Lie ring L(G) ®@z Z[w), the coefficients r; € Z[w) being as above, and /' X;
being the @-components of the images of the x; in G/G".

Proof. Since Z[w] = Z® wZ & ... ® w” *Z, then
LH)®zZlw) = LIH) @wL(H)®...0e" L(H)

(see § 1.2). Hence two elements in L(H) ®z Z[w] are equal if and only if the
corresponding coefficients of 1, w, w?, .. ., w”=? are equal: these coefficients being
elements of L(H). By the definition of the associated Lie ring L(H), two of ifs
elements are equal if and only if their homogeneous constituents are egual. And
two homogeneous elements of L(H) are equal if and only if the corresponding
products of powers of group commutators are congruent modulo the corresponding
members of the lower central series. Analogous assertions are also valid for the
Lie ring L(G) @z Elw).

Therefore, since the @-components * x; are expressed by fixed formulae in the
images in H/H" of the x;, the fact that in L{H)®z Z]w] the element ¢ € Cppy (@)
is equal to the value of the pattern p mentioned in the statement of the lemma, is
equivalent to a system of congruences in group commutators ¢, of weight k in the
elements x;

¢ =[Tee'™ (mod yuyi(H)):

1 =[]e.’ " (mod y, (H));

I = [1ea*™ (mod yisi (H));
o

= Te*r" (mod yis1(H))

(here the i-th congruence expresses the fact that the coefficients of &'~ are equal).
It is also clear that the integers s(i, @) may be taken as depending only on p and on
the r; € Z[w]. But the same congruences clearly also hold modulo y; 1(G) (which
contains ¥4+ (A')}). And modulo y;4 () this system of congruences is equivalent
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to the fact that the element ¢ is equal in the Lie ring L(G) ®z Z[w] to the value

of p.
The lemma 18 proved.

We return now to the proof of Lemma 5.3.6. By Lemma 5.3.7, if g(H) = §(G),
then (c, p) = v(c. p) belongs to P(G), the set which defines the number (). We
have noted above that in this case the mapping p: & —» ¢ is an isomorphism of
C““f”ﬂ”“”{w} with CF‘ff[]fnlltfi}[¢]; Therefore v CIEﬂl"l}’ takes distinct pﬂll’ﬂ o
distinct pairs. Therefore t(H) < 1(G) if g(H) = g((G).

[.emma 5.3.6 15 proved.

It is important in what follows to note that this argument yields that if
(g(H),q(H), 1{H)) = (g(G), q(C), t(G)) then v is in fact a one-lo-one cor-
respondence between the set P(G) of all pairs (¢, p), defining the number t{G).
and the set P(H) of all pairs (¢, p), defining the number ¢(H). In particular it
is not hard to see that in the language of the generalized centralizers K (i) and
representatives of levels i = 1,2,...,2kh + | we have

5.3.8 Lemma. Suppose that, for all levels i = 1,2,...,2h + 1, we have
(q(K (1)), g(K (), t(K(i))) = (g(G), g(G), 1(G)).

Then for each s = 1,2, ..., 2h + | each homogeneous element of Cy (@), which
can be represented as the value of a pattern p at p-homogeneous elemenis (of level
1) which are homogeneous of weight 1, can be also represented as the value of p
ar representatives of level s, that is, elements of the form 1 y(s) = r - 1x(s), where
r € Zlw] and 'x(s) is a w-component of the image of x(5) € K(s) in G/ (G).

Now everything is ready for the completion of the proof of Theorem 5.3.1.
We note that for a given value g of g(G) the number of possible triplets
(g(G), g(G), 1(G)) is clearly (p, g)-bounded. Thus for the proof of the theo-
rem it 15 sufficient to show by induction on the parameter (g(G), g(G), 1{G)),
that (& contains a subgroup of (p, g)-bounded index which is nilpotent of class
< N = f(h+1, 2k, p). At the first induction step we have the case g(G) =g = 1,
which means that ¢ is a regular automorphism. Then & is nilpotent of class
< h =< N by Higman's Theorem 5.1.1.

If, for some i = 1,2,...,2h + |, the induction parameter for K (i) is smaller
than that for G itself, that is, if

(g(K (i), g(K(i). 1(K(i))) < (g(G), g(G), 1(G))

then, by the induction hypothesis applied to the @-invariant subgroup K(i), the
group G contains a milpotent subgroup of class < N which has (p, g)-bounded
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index in K (7). This subgroup is what we want, because the index of K (i) in G is
also (p, g)-bounded.
It therefore suffices to consider the case where, foreachi = 1,2,...,2h + 1,

(g(K (1)), q(K()), t(K(i))) = (¢(G), g(G). t(G))

and this will be assumed in what follows. We shall prove that in this critical
situation G itself is nilpotent of class < N. As is well known, in order 10 establish
this, it is sufficient to show that the Lie ring L = L(G) ®z Z[w] is nilpotent of
class < N (see Theorem 3.2.2 and § 1.3).

We note that we may also assume that Cg(g) < G'. Otherwise Cig,(¢) <
Cg(w), since, by Corollary 1.6.5, we have |G. @] N Cglp) < G, and the proof is
completed by the induction hypothesis applied to the g-invariant subgroup [G, ¢],
whose index is at most g, because G = [G. ¢] - Cgl¢) by Corollary 1.6.4. Hence
we also have Cp(g) = (L), and L is generated by ¢-components ‘ L with i # 0.
Since we need only verify the nilpotency identity on the generators of the Lie ring
{Theorem 3.1.2), in order to prove that the Lie ring L is nilpotent of class = N, it
1s sufficient to show that

'y, Bya, .., Nynl=0 (5.3.9)

for any @-homogeneous elements "y, € "L with i, # 0 which are homogeneous
of weight 1.

In order to do this, according to Proposition 4.4.2, it is sufficient, in turn, to
show that all commutators of the forms (4.4.3) and (4.4.4) from Proposition 4.4.2,
applied to the commutator (5.3.9) with m = h <+ | and n = 2h, are 0 (we recall
that N = f(h+ 1.2h, p), where f is the function in Proposition 4.4.2).

The following argument essentially reproduces the end of the proof of Theorem
4.4.1 on replacing the centralizer property for representatives in the old sense by
the centralizer property for representatives in the new sense. That this is possible is
due to Lemma 5.3.8, which may be applied in the critical situation under consider-
ation to guarantee the representability of commutators from "L in ¢-homogeneous
elements of level | which are homogeneous of weight 1 as values of the same pat-
terns at representatives of higher levels. A small modification, involving enlarging
the parameter » appearing in Proposition 4.4.2 from h to 2k, is necessary only for
commutator of the form (4.4.4).

First we consider the commutator

Frw, 2w, ... M), fwe Py s, “ ) (5.3.10)

of the form (4.4.3) from Proposition 4.4.2 applied to commutator (5.3.9) with
m=h+ 1 and n = 2h. This commutator has h 4+ | ditferent initial segments with
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upper index sums zero modulo p.

ki+ka4... 4k, =0(mod p), i=12,....h+1

l<rn<m<...<rhy =L
Since, foralli =1,2,..., 2h + 1, we have

(q(K(1)), q(K()), 1(K(0))) = (g(G), g(G), 1(G)),

then, by Lemma 5.3.8, the commutator (5.3.10) may be represented as a value of
the same pattern at representatives of level & + 1. Since K (i) = K{i + 1) for all
i, we may then in turn represent the initial segment of weight r, of the resultant
commutator as a value of the same pattern at representatives of level &, then the
initial segment of weight r;,_; of the resultant commutator as a value of the same
pattern at representatives of level h — I, and so on (all these initial segments lie
in UL, as does the commutator (5.3.10) itself). As a result we obtain a commutator
which is equal to (5.3.10) and has the form

[y, ey, By @, R y@n Byt D, e+ ],

where the lower indices are omitted to simplify notation.

We may now apply to this commutator the arguments from §4.4 which were
used 1o prove that (4.4.25) is equal to (). The only madification needed is to replace
the centralizer property (4.4.14) by (5.3.5), and the subgroups / K (s) — by the sets
Uyliy=r-ix, x e K(s), r € Zlwl).

We now consider the commutator

Uy, crea...,cml (5.3.11)

of the form (4.4.4). Foreachs = 1,2, ..., 2h, we replace ¢, € "L in (5.3.11) by its
expression as the value of the same pattern of weight < N at the representatives
of level s which were specified above. This is made possible by Lemma 5.3.8,
since ¢, is the value of some pattern of weight =< N at elements (of level 1) from
'L,i # 0. However, once we have expanded the inner brackets, we cannot directly
apply the arguments which were used to prove that the commutator (4.4.17) is
equal to 0, to every commutator of the form

[y, mx(), .. () x@), L, x(2), . X (2R, e (2R)]
of the resultant linear combination. Indeed, the initial element / y here does not

possess any a priori centralizer property, that is, it neither belongs to the analogue
of a centralizer of high level, nor it is a representative of high level.
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Mevertheless, the arguments which we applied to (4.4.17), allow us to represent
the initial segment

[Py, x(l), o (1), %4 (2), .. (), L = x () )
as a linear combination of commutators of the form
[y, R (1), =RQ). . PR, ™ R AR 1), -]

where the initial segment of weight & + 1, beginning with /y, contains exactly
one quasirepresentative of each of the levels 1, 2, ..., h (in the order of increasing
level).

By the Higman-Kreknin-Kostrikin Theorem 4.3.10, the initial segment of weight
h+1

[fy. 22(1), 22Q). ..., "%()]

of each of these commutators may be expressed as a linear combination of simple
commutators in Jy, "x(1), “x(2), ..., "x(h) with initial segments from L. If
such an initial segment from "L does not contain 'y, then it is O for the same
reasons as used for the commutator (4.4.27). If, however, such an initial segment
from "L contains /y, then we can replace it by a value of the same pattern at
representatives of level 1. We now need only prove that

oD, By D v (e, o By (e) e+ 1),
A 54'_{[}3 +1),..., ""x{ZI;}, o Tj".l'{zﬁ':l] (5.3.12)

is 0. Note that this commutator involves only representatives, and all levels
Epply.... & are less than b 4+ 1. We apply essentially the same collecting process
to it, as we did to (4.4.17). The only difference is that only the first quasirepresen-
tatives from the left of levels = # + | are transposed to the left, and the collected
parts are the initial segments of the form

[y, okt +1)..... "k +9]. s=0.

As a result the commutator (5.3.12) will be expressed as a linear combination of
commutators of quasirepresentatives with initial segments of weight & + 1 of the
form

My, "k h+ 1), 2320,

Applying the Higman-Kreknin-Kostrikin Theorem to such an initial segment, we
obtain a linear combination of commutators in quasirepresentatives of different
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levels with initial segments from "L, all of which are O by the same arguments as
used in the case of (4.4.2]).
The theorem is proved.

Under the hypothesis of Theorem 5.3.1 Makarenko recently obtained a somewhat
different conclusion with best-possible bound for the nilpotency class. (She also
extended this result to the case where the group is not necessarily periodic, but we
prefer o deal first with the periodic case and o refer to the proof later, after the
extension of Theorem 5.3.1 will be obtained.)

5.3.13 Corollary (Makarenko [103]). Under the hypothesis of Theorem 5.3.1 there
is a (p, g)-bounded number s = s(p, q) such that the subgroup G* = (g*| g € G)
is nilpotent of class < h(p).

Proof. We note first that G™" < (G™)" for any m, n € M.

By Theorem 5.3.1, G has a subgroup G of (p, g)-bounded index which is nilpo-
tent of p-bounded class. By Poincaré’s Theorem, & contains a normal subgroup
G, of (p,g)-bounded index & < (|G : G,|)!. By Lagrange's Theorem we have
G* < G, so that, since G* is g-invariant, in order to prove Corollary 5.3.13 we
may assume from the outset that & is nilpotent of p-bounded class ¢ = ¢(p).

By an obvious induction on ¢ it is sufficient to show that, if ¢ > h(p), then for
some (p, g)-bounded natural number r = r(p, g), the subgroup G" = (g"| g € G)
is nilpotent of class < ¢ — 1.

By 4.1.1 a) and the Higman-Kreknin-Kostrikin Theorem 4.3.10, applied to the
associated Lie ring L(G) of G, we have

P Yie 1 (L(G)) = Y1 (PL(G)) € 1a{Cicy(#)).
As in the proof of Theorem 5.2.1 we obtain
ar" M v (L(G)) € qia(Cricy(g)) = 0.
In terms of the group ¢, this means that for / = h 4 | the exponent of

¥i(G)/yi 1 (G) divides gp"*'. In particular, ¥.(G)¥" = 1,if ¢ > h.
Since there is a homomorphism of LG,IG' ®...® G!G" onto ¥.(G), we have

r

LR RN

lgp ?=|

Ir

[‘E]w**"'igz‘ﬂ’ oL .,g,.“'”hl] = [31. £2eens Js'-']

for any g; € G. Hence the subgroup G, generated by the elements g‘”‘w, is
nilpotent of class < ¢ — 1.
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The corollary i1s proved.

An extension of Theorem 5.3.1 to arbitrary nilpotent groups admitting an almost
regular automorphism of prime order, was obtained recently by Medvedev [111].
The following result is formally more general, but its proof makes use of Theorem
5.3.1 and consists in reduction (which is, though, by no means trivial) to the
periodic case.

5.3.14 Theorem. If a nilpotent group G admits an automorphism @ of prime order
p having a finite number q of fixed points, then G has a subgroup of (p, q)-bounded
index which is nilpotent of p-bounded class.

Proof. The property of a group to have a nilpotent subgroup of given nilpotency
class, whose index is bounded by a given number, may be written as a quasiuni-
versal formula in the predicate calculus. It therefore suffices to prove the theorem
(with appropriate bounds for the index and the nilpotency class of a subgroup)
for finitely generated groups. Indeed, the finitely generated subgroups {H,} form a
local covering of G. For each of these subgroups H,, the subgroup {(H,"") is also
finitely generated and ¢-invariant. If the theorem holds for each {H,"%'), then, by
Mal'cev's Local Theorem, it also holds for G itself (see § 1.1).

We therefore suppose that G is a finitely generated nilpotent group with an
automorphism ¢ of prime order p having a finite number g = [Cgly)| of fixed
points. We denote by T = /(1) its periodic part, which 1s a finite subgroup by
Proposition 2.5.10. Since T is the direct product T = T, x T, of its Hall p- and
p’-subgroups, by Remak’s Theorem, G embeds in the direct product of G/ T, and
G /T, . Hence, in order to prove Theorem 5.3.14, we may assume that T is either
a p-group or a p'-group.

The following two lemmas hold in either case.

5.3.15 Lemma. Under the hypothesis of Theorem 5.3.14 the automorphism ¢ in-
duces a regular automorphism of the factor-group G/ T.

Proof. Assume that this is not so and let aT be a non-trivial element of Cg/r(¢)
that is, a € T and a¥ = at for some t € T. We define the subgroup

H=l{aa",..., a "y = (a1, 1%, ..., ey
For every i € M the factor-group y;(H)/yi+ 1 (H) 1s generated by the images of

the commutators of weight i in the elements a. 1, 11%, ..., 11%-...t*" ', Since there
is a homomorphism of G/G' ® ... ® G/G" onto y,(G)/y4:(G), the images of

;
these commutators, which for i = 2 are dependent on at least one of the elements
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of finite order 7, 11%, ..., 1% . -1¥""', also have finite order for i > 2. Hence, the
factors of the lower central series of the group H, from the second one on, are
finite since they are both finitely generated and have finite exponent.

Therefore, the commutator subgroup of H is finite. Then, by Theorem 2.4.4, the
centre of H has finite index in H. Therefore, a™ € Z(G) for some m € Z. Since
H is @-invariant and the image of @™ also belongs to Cg,r(¢), then (a™)¥ = a™1,,
where r, is an element of H of finite order n. We then have

[aﬂﬂf}w — {{am }’Iﬁ')” — [am“}n — ﬂmnr:r — ﬂmlr'

that 1s, a™" belongs 10 Cg(@). But @™ has infinite order, since a € T. This
contradicts the finiteness of Cg ().
The lemma is proved.

{(Note that if we had at our disposal the useful Hall-Petresco formula, then we
could have easily obtained that there is a natural m, large enough (relative to the
nilpotency class of GG and the order of r), such that

@) = @)" = (" =

=g 1" [a, (1" a,r, 02 [a, @)™ = a™)
Applying Theorem 5.1.1 we obtain
5.3.16 Corollary. The factor-group G /T is nilpotent of class < h(p).
We also have

5.3.17 Corollary. If B is a @-invariant normal periodic subgroup of G then
ICo/p(@)l = |Cole)l.

Proof. The periodic part of G/B is clearly the image of the periodic part T of G.
By Lemma 5.3.15 ¢ is regular on G/T so that Cg/g(@) = Cr/g(e). Since T is
finite, we have

ICr/a(p)l = |Crip)l = |Cqlyp)]
by Theorem 1.6.1.

We now prove

5.3.18 Lemma. Let N be a normal g-invariant subgroup of the group G and let
gN be an element of the centralizer Cg y (). Then for every natural k there exists
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n € N such that the image of g*"lﬂ in the factor-group G/[N, G, ..., G belongs
— —

k

Proof. Induction on k. The case k = 0 is covered by the hypothesis. For k > 0 by
the induction hypothesis there is an n’ € N such that the image of g, = g 'n’

bE]CI[IgS o C{?;lH.G.....Gl{W}- that is, g."" = gH1, where n, € [N, G, ..., Gl.
— ————
k=1 k=1
Since g, and n; commute modulo [N, G, ..., G], then modulo [V, G, ..., G],
it —
k k
the elements g1, g1, 1% .. ... 21*"" also commute. The image of their product in
G/IN,G, ..., (7] therefore belongs 0 Co v 6. (). But we have:
M——-I.—-—-' e e
k

¥

g1-81% 8% .8 =g =" 'n) =g" (mod N),
which proves our assertion.
The lemma is proved.

We now turn to the proof of Theorem 5.3.14. We consider first of all the case
where the periodic part T of & 1s a fimite p’-group. Then the group &, being finitely
generated and nilpotent, is a residually finite p'-group (see, for instance, [123,

Theorem 9.38]). Hence, there exists a normal subgroup N suchthat NN T = |
=l
and G/N is a finite p’-group. Replacing, if necessary, N by [] N¥, we may
i=0
f=1 |
assume that N Is g-invariant (note that G / ) N¥ is also a finite p’-group, since
i=f

by Remak's Theorem it embeds in the direct product of the finite p’-groups G/N¥').
We abserve that

[N.G.G,....G]E }’j.+|{G}ﬂN <TNN=1.
— —

h

This means that N = & (G).
We prove now that Cgn(9) = C(@)N/N. Indeed, if gN € Cy n(g), then by
Lemma 5.3.18, there is an element n € N such that

¢ ne Conw.c...c1le) = Colp).

e
I
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Hence, the image of g"" in G/N belongs to the image of Cg(w). Since G/N is a
finite p’-group, the image of g also belongs to the image of Cg(g), as required.
Thus, in particular,

[Canlg) = [Cal@IN/N| = |Csle)/Colp) N NI = |Celp)l = q,

since Cg(@)NN < T'NN = 1. By Theorem 5.3.1, G/N contains a subgroup G /N
of (p, g)-bounded index which is nilpotent of some p-bounded class g = g(p).
Then its full inverse image — the subgroup G, - is nilpotent of class < g + A,
since N < £,(G), as shown above. The subgroup (5, is the required subgroup of
(p, g)-bounded index which is nilpotent of p-bounded class.

We now consider the case where the periodic part 7 of G 15 a finite p-group.

By Corollary 1.7.4 the ranks of all of the @-invariant abelian sections of T are
{p, g)-bounded.

By Corollary 5.3.13 there is a (p, g)-bounded natural number r = r(p, g), such
that 77 is nilpotent of class < h.

We note that the order of T/T" is bounded in terms of p and g. Indeed, the
derived length of T/T" is (p, q)-bounded, since this is true for T itself. Also
the ranks of all factors of the derived series of T/T" are (p, g)-bounded. This,
together with the fact that their exponents are (p, g)-bounded (they divide p"),
yields the desired bound for the order.

We put G, = Ca(T/T"). that is G, = {g € G| [T,g] = T"}. The subgroup
G, is characteristic in G, just as T7 is, and its index is (p, g)-bounded, since
G /G| embeds in the automorphism group of T/T? which is of (p, g)-bounded
order. Therefore it suffices to prove that the theorem holds for G| (which is, of
course, g-invariant).

The factor-group G,/T" is nilpotent of class < h + 1, since ¥4,(G,) = T
by Corollary 5.3.16 and since |T', G,] = T" by definition. The group 7, being
nilpotent of class h, is soluble of derived length < 1 + log, h and so it has a
characteristic series of p-bounded length having abelian factors. The theorem now
follows from the following proposition by an obvious induction on the length of
such a series (since the order of the centralizer of ¢ does not increase in the
factor-groups over subgroups contained in T).

5.3.19 Proposition. Let H be a w-invariant subgroup of G, which contains a normal
@-invariant finite abelian p-subgroup A such that H /A is nilpotent of class s. Then
H contains a g-invariant subgroup of (s, p, q)-bounded index which is nilpotent of
class <=s + h + 1.

Proof. We shall use here the well-known fact that the ranks of all abelian sections
of a Sylow p-subgroup of the automorphism group of a finite abelian p-group
are bounded in terms of the rank of the group (see [23] or [115]). The rank of
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A is (p.g)-bounded by Corollary 1.7.4 and therefore the ranks of all abelian
sections of H/Cy(A) are also (p, q)-bounded, since the latter group embeds in
the automorphism group of A and is a p-group since / is nilpotent.

Our aim is to estimate the order of Cyyc,4)(). By Lemma 5.3.18, for
any element gCx(A) € Cuyc,aly) there exists ¢ € Cy(A) such that the
image of g"c in H/[Cu(A). H..... H] belongs 0 Cuycyiang...H)(¢). Since

e — y—

5

[Cu(A), H,...,H] < y,.1(H) < A, the image of g”¢ in H/A also belongs to
——

Ciralg). The order of Cpyaly) does not exceed g = |Cg(¢)| by Corollary 5.3.17.
Hence. (g ¢)? = | {(mod A) and therefore g”'¢ € Cy(A). that is, the order of an
arbitrary element gCy(A) € Cyyc, () divides p'q.

Thus the exponent of Cpyye-p a1 () 15 (5, p. g)-bounded. Together with the bound
for the nilpotency class (which is at most 5, since H /A is nilpotent of class 5) and
the bound for the ranks of the factors of the lower central series (obtained above
for all abelian sections of H/Cy(A)), this yields a bound for [Cp e, (@)l in
terms of 5, p and g.

The natural semidirect product A ~ H/Cgx(A) admits an automorphism ¢
of prime order p having an (s, p, ¢)-bounded number of fixed points equal to
1CA@) - 1Chyeyar(@)]. By Theorem 5.2.1, A H/Cy(A) contains a subgroup B
of (s, p, g)-bounded index which is nilpotent of class < h. We denote by A, the
intersection of B with A, by B its image in (A » H/Cp(A))/A = H/Cy(A) and
by H, the full inverse image of B < H/Cy(A) in H. Note that the index of H,
in H is (s, p. g)-bounded.

Since the index |A : A)|is (5. p. g)-bounded and the rank of the abelian subgroup
Ais (p, g)-bounded, there is an (s, p, g)-bounded number 1 = (s, p. g), such that
AP < A It is clear that the order of A/A” is also (s, p, g)-bounded. (We replace
A, by A" since A" is characteristic in A and is therefore g-invariant and normal
in H.)

Now we put

Hy= H N Cr(AJAT),

where Cy(A/AP)Y = (h € H| [A h] < A"}, The factor-group H/Cu(A/A™)
embeds in the automorphism group of A/A” and its order is therefore (s, p, g)-
bounded. So, the index of H- in H is also (s, p. g)-bounded.

We shall prove that H> is nilpotent of class < x 4 h 4 I, and is therefore what
we require. We have

Vstns2(H2) < [A, Hy, Ha, .., Ha] =

=

b4l



148 Chapter 5 Nilpotent groups admitting automorphisms of prime order

f[ﬂpr.Hj, H}.....HEJ] E|A|.3H1,H| ..... HLI

h h

By the definition of the semidirect product A » H/Cy(A), the subgroup [A),

H,, ..., H\] coincides with [A,, B, ..., B], which is trivial, since B is nilpotent
'H—n-n-',_n_n" — —

/] ]
of class < h.

The theorem is proved.

5.3.20 Corollary (Makarenko [104]), Under the hypothesis of Theorem 5.3.14 there
is a (p, q)-bounded number s = s(p, q) such that the subgroup G* = (g*| g € G)
is nilpotent of class < h(p).

Proof. As in the proof of Corollary 5.3.13, an application of Theorem 5.3.14 enables
us to assume from the outset that G is nilpotent of p-bounded class ¢ = c(p). It
will then suffice to repeat the proof of Corollary 5.3.13 provided that we show that
the additive group of the ideal ;;(Cy ) (w)) has (p, g)-bounded exponent. This in
turn follows from the fact that the additive group of Cy g, (¢) has {p, ¢)-bounded
exponent.

It is clearly sufficient to prove that Cg; ) () has (p, g)-bounded exponent for
all i. Suppose that gy (G) is an element of Cg/y6)(9). Then by Lemma 5.3.18

there exists n € y;(G) such that the image of g” ' n in G/[%(G), G, ..., Gl=G
R
=i+l
belongs to Cg(¢). (Note that here |y, (G), G, ..., Gl = Yise=i+1l0) =y (G) =
—
e—i+1
1). Hence, by Lagrange’s Theorem, (gf" ""n)q = 1 and therefore g "' & y(G).
This means that the exponent of Cgy,)(w) divides gp* and is therefore (p, g)-
bounded, since ¢ = ¢(p) is (p, g)-bounded.
The corollary is proved.

§ 5.4 Comments

Regular automorphisms. Unlike Lie rings, where the regularity of an automor-
phism implies solubility, and even nilpotency if the order of the regular automor-
phism is prime, in the case of groups one must impose some restrictions on the
group. The example of a free group F = {xu, x1,...,%p-1) and the automorphism
@ cyclically permuting the free generators (x,¥ = x4, where { + 1 is the residue
modulo p), shows that in general the regularity of the automorphism (it is casy to
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see that Ce(@) = 1) does not imply the solubility of the group, even in the case
where || = 2. There exist also infinite soluble groups admitting regular automor-
phisms of prime order (and even of order 2) which are not nilpotent (and whose
derived length 15 not bounded).

On the other hand, by Thompson’s Theorem [140], any finite group admitting
a regular automorphism of prime order, is nilpotent. This allows us to replace
“nilpotent” in the hypothesis of Theorem 5.1.1 by “locally finite™.

For estimates of Higman’s function, see §4.5.

As we said above in §4.5, in the case of composite order, Kreknin's Theorem
4.3.1 does not imply any bound on the derived length of an (even a priori nilpotent)
group with a regular automorphism. Such a hound is known only in the case where
the automorphism is of order 4; more precisely, Kovics proved in [79] that if a
locally finite or a locally nilpotent group G admits a regular automorphism of order
4, then G" = Z(G). We prove here a somewhat weaker result.

If G is a nilpotent periodic group with a regular automorphism of order 4, then the
factor-group G/| G, @] is abelian, because ¢ induces on it a regular automorphism
of order 2. In the associated Lie ring L = L(|G, ¢*]) we have Cz(g) = 0 and
[. = 2L. Therefore, L = ('L,*L) and "L =0 for L = L ®zZ[i], where i = +/—1.
As was shown in §4.5, this implies that L is nilpotent of class = 3, and hence
the group [G, ¢?) is also nilpotent of class < 3. Thus G has a normal series
G = |G.¢’] = | of length 2 whose factors are nilpotent of classes 1 and 3.

On the other hand, under certain conditions, there exists a better correspondence
between a nilpotent group and a Lie ring, which preserves the derived length. For
example, the Baker-Hausdorff formula provides the so-called Mal’cev correspon-
dence (a “category isomorphism™) between radicable torsion-free nilpotent groups
and nilpotent QJ-Lie algebras (see Chapter 8).

Another example is the recent work of Shalev and Zel'manov [130] where they
gave a new, much shorter, proof of the solubility of pro-p-groups of finite coclass
using Kreknin's Theorem. (Earlier Donkin [19] proved that p-adic analytic pro-
p-groups of finite coclass are soluble for p > 3 and Leedham-Green [91] showed
that every pro-p-groups of finite coclass is p-adic analytic. The work of Donkin
applies the classification of simple p-adic Lie algebras, as well as Iwahori and
Matsumoto’s arithmetic theory of p-adic Chevalley groups.)

Kreknin® Theorem turned out to be applicable also in the “modular” case of an
automorphism of order p* acting on a finite p-group with few fixed points — see
Chapter 8.

The example of a Lie ring L with a regular non-cyclic group of automorphisms
A of order 4 from §4.5 may be transformed into a family of examples of nilpotent
groups, admitting A as a regular group of automorphisms. where derived lengths
cannot be bounded by any constant (“function”, depending on A only). To do
this. we introduce a prime factor p into the structural constants of the Lie ring.
Namely, we define a Lie ring R over Z, whose additive group is generated by
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elements ey, e, €3, with structural constants
[e),e:] = pes: lex, 3] = pei: les, ] = pes.

It is easy to see that the factor-ring K/p'R is nilpotent of class s, and its derived
length is equal to [log, s] + 1.

If the additive group of a nilpotent Lie ring is a p-group and its nilpotency class
s is less than p, then the Baker-Hausdorff formula enables us, using the Lie ring
operations, to define a group operation on the same set R/ p® R. The resultant group
P is also nilpotent, its derived length is the same as before and all automorphisms
of the Lie ring acting as before on this set turn out to be automorphisms of
P. (This was noticed by Lazard [89]; this transition from Lie rings to groups
is reversible and is also a so-called categorical isomorphism. Lazard's theorem
generalizes the analogous Mal'cev correspondence [106] for nilpotent torsion-free
radicable groups, see Chapter 8.)

It is easy to verify that the linear transformations defined on the generators

€1, €2, €3 by matnices
| -1
( -1 )and( -1 )
-1 I

generate a regular non-cyclic group A of order 4 of automorphisms of the Lie ring
R.Hence A < Aut P and Cp(A) = 1, but the derived length of the group P tends
to infinity with s and p (s < p).

This easy way of using the Baker-Hausdorff formula has, however, made the
derived length depend on p, but it seems that some more complicated construction
may give examples which are not thus dependent.

In view of the example above the following result of Shumiatskii [134] seems
very natural. He proves that if a finite soluble group of derived length k admits a
regular group of automorphisms of exponent 2 and order 2", then it has a normal
series of length n whose factors are nilpotent of (k, n)-bounded classes; in the case
n = 2, he obtains a k-bounded estimate of the nilpotency class of the commutator
subgroup. It would be interesting to generalize this theorem, for instance, to the
case, where a finite soluble group of derived length & admits a regular group of
automorphisms of order p" or where a finite soluble p-group of derived length &
admits a group of automorphisms of order p" with a given number p™ of fixed
points.

In this book we have been interested in automorphisms of nilpotent groups. We
should mention that within the wider context of the theory of finite groups in
general, a lot of effort has been invested in lrying to prove the solubility of an
arbitrary finite group & admitting a regular group of awtomorphisms A of coprime
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order, that is, where C;(A) = | and (|G}, |A|) = 1. This condition on orders is
essential here, since the group of inner automorphisms of any finite group with
trivial centre acts fixed-point-free. This conjecture has been proved modulo the
classification of finite simple groups (K.-H. Clemens [15]). There is also a number
of partial results (for example. when A is elementary abelian or cyclic of order a
product of two primes, etc.), which do not use the classification theorem, but which,
of course, are based on the techniques and results developed within classification
theory (for instance, signalizer functors).

Within the theory of finite soluble groups much effort has been devoted to
attempting to settle the following conjecture: if A is a regular group of automor-
phisms of a finite soluble group G where the order of A is coprime to that of G
(that is Cg(A) = 1 and (|G|, |A]) = 1), then the nilpotent length of & is at most
n(A). where n(A) denotes the number of prime factors in the decomposition of
|A| into a product of (not necessarily distinct) primes. The nilpotent length h(G)
of a soluble group G is the length of its shortest normal series with nilpotent fac-
tors. Thompson [141] proved that if A is a soluble group of automorphisms of a
soluble group G and (|G|. |A[) = I. then h(G) < 5"V . h(Cg(A)): Kurzweil [87]
achieved a linear bound under the same hypothesis: h(G) = 4n(A) + h(Cg(A)).
Further efforts were applied to obtaining estimates closer to the best possible one
n(A) (in the case of a soluble regular group of automorphisms A). At present this
conjecture has been proved for a large class of groups of automorphisms, including
cyclic ones (Shult [133], Gross [26], Berger [8, 9]); we also cite one of the results
of Turull [142]: h(G) < 2n{A) + h(C;(A)).

If one drops here the coprime condition on the orders, then, for every non-
nilpotent finite group A there exist finite soluble groups of unbounded nilpotent
lengths which admit A as a regular group of automorphisms. Such examples were
constructed by Bell and Hartley |7].

If, however, A is nilpotent, then the coprime condition on the orders can be
omitted at the expense of enlarging the bound for the nilpotent length of G: Dade
[17] proved that if a soluble group H contains a nilpotent subgroup N which
coincides with its normalizer, then the nilpotent length of H is bounded by some
(exponential) function of n(N); it is clear that if Cg(A) = 1 for a group of
automorphisms A of a group G, then the normalizer of A in the nawral semidirect
product & » A coincides with A,

The method used for estimating the nilpotent length is known as the so-called
Hall-Higman Theorems, originating from the works of P. Hall and G. Higman [32]
which contains the reduction of the Restricted Burnside Problem for soluble groups
to groups of prime-power exponents p* , and of W. Feit and J.G. Thompson [20].
proving the solubility of finite groups of odd order. The essence of this technique
lies in considering the action of a group on its commutative invariant sections,
which action is similar to that of a matrix group of linear transformations. This
facilitates the use of results from representation and character theory. For instance,
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one of the key steps in the proof of the Hall-Higman Theorem involves the action
of an automorphism on the enveloping algebra of a representation of a finite group,
which is a full matrix algebra.

Almost regular automorphisms: “the modular case”. Alperin was the first in
[2] to apply the theorem on a regular automorphism ¢ of prime order p of a Lie
ring L, or rather its combinatorial form yup41(pL) € ;4(Cr(w)), to bound the
derived length of a group satisfying the hypothesis of Theorem 5.2.1. For p = 2,
Theorem 5.2.1 was proved by Hartley and Meixner in |35] (in fact, this paper deals
with the more general case of a periodic group with an involution having a finite
centralizer, where the basic fact is Shunkov’s theorem [135] stating that such a
group is locally finite and almost soluble).

In [59] Theorem 5.2.1 was proved giving the bound h(p) + | for the nilpotency
class of a subgroup. This bound was improved to the apparently best possible value
h(p) by Makarenko in her recent work [103].

Within the theory of finite p-groups of maximal class, founded by Blackburn’s
work [10], Shepherd [131] and Leedham-Green and McKay |93] have proved that
if |Cp(g)| = p, where ¢ is an automorphism of prime order p of a finite p-group
P, then P contains a subgroup of p-bounded index which is nilpotent of class
= 2. (They have also shown that a finite p-group of maximal class necessarily
contains a subgroup of index p which is nilpotent of p-bounded class. In Chapter
6 we shall show that the commutator subgroup of a finite p-group of maximal
class which has index p?, is nilpotent of p-bounded class.)

We remark that the answer to a question raised by Leedham-Green and McKay
in [93] on the existence of finite p-groups of maximal class having arbitrarily large
derived lengths (of course, with increasing p), was given by Panfyorov in [118].
Namely, let ey, €2, ..., e, be a basis of a Lie algebra over & F(p) with structural
constants

_ Ei—j}ﬂ;+j, Ifl‘+_j"_fn
el =106 ititj>n '
It is easy to verify that these structural constants really define a Lie algebra which
is nilpotent of class n — 1 and whose derived length is = log,n. The order of
this Lie algebra is p". When n — 1 < p, by Baker-Hausdorff formula, this Lie
algebra may be transformed into a finite p-group of the same order with the same
nilpotency class and derived length (see above).

In further articles Donkin, Leedham-Green, Mann, McKay, Neubiiser, Newman,
Plesken, Shalev and Zel’manov have developed a theory of finite p-groups of
given coclass. A finite p-group is said to have coclass d, if its order is p" for
some n > d and its nilpotency class is n —d. It turns out that every finite p-group
of coclass d contains a subgroup of (p, d)-bounded index which is nilpotent of
class < 2. These results prompt the following interesting questions. Does there
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exist a function f(m) such that any finite p-group admitting an automorphism
of order p with exactly p™ fixed points, contains a subgroup of (p.m)-bounded
index which is nilpotent of class < f({m)? Does there exist a function g{m) such
that any finite p-group admitting an automorphism of order p* with exactly p"
fixed points, contains a subgroup of (p, k. m)-bounded index which is soluble of
derived length < g(m)?

Chapter 8 contains the latest achievments in the “modular” case where a nilpotent
p-group P admits an automorphism of order p* with exactly p" fixed points. It is
proved there that such a group P is almost soluble with a strong bound, in terms of
p and k only, on the derived length of a subgroup of bounded index. The proof is
based on Kreknin's Theorem on Lie rings from Chapter 4. The proof uses group-
theoretic corollary to Kreknin's Theorem, obtained with the help of the Mal'cev
correspondence given by the Baker-Hausdorff formula, and some techniques from
the theory of powerful p-groups, especially, from Shalev's work [129], where a
weak bound, in terms of p, k and m, for the derived length of P was obtained.

We note that in the case |@¢| = 4 one can expect a stronger conclusion since
there is a stronger theorem for regular automorphisms of order 4 (see §4.5).

Almost regular automorphisms of coprime order. If the derived length s of a
group with an automorphism of prime order p with exactly ¢ fixed points i1s known
in advance, then it may turn out to be better to estimate the index of a nilpotent
subgroup in terms of &, p and g and its class in terms of p and s, using a theorem
proved in [63].

Theorem 5.3.1 was proved for metabelian groups by Meixner in [113] and in
the case of p = 2 by Hartley and Meixner in [35]. (They also proved some other
general facts on periodic groups with an involution with finite centralizer using
Shunkov’s Theorem [135].)

Hartley and Meixner [36] proved that if ¢ is an automorphism of prime order p of
a finite soluble group G and |Cg(p)| = ¢. then G contains a nilpotent subgroup of
(p. q)-bounded index. Together with Fong's work [22], where it is proved modulo
the classification of finite simple groups that an arbitrary finite group with an
element of prime order p which has centralizer of order ¢, has a soluble subgroup
of (p, g)-bounded index, this gives the following result: a locally finite group with
an element of prime order p having a finite centralizer of order ¢, has a locally
nilpotent subgroup of (p. q)-bounded index. Combining this with Theorem 5.3.1
we get (modulo the classification of finite simple groups) the following corollary.

5.4.1 Corollary. If a locally finite group contains an elememt of prime order p
having centralizer of finite order g, then it has a nilpotent subgroup of (p,g)-
bounded index whose nilpoency class is p-bounded.

The structure of finite soluble groups with almost regular groups of automorphisms
(modulo the structure of nilpotent groups) was recently significantly clarified. Hart-
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ley and Turau [37] proved that if a finite soluble group admits an automorphism of
prime-power order p* (which is not necessarily coprime to the order of the group)
with exactly ¢ fixed points then it has a subgroup of (g, p.k)-bounded index
whose nilpotent length is at most k (this is a very natural generalization of results
on regular automorphisms). Earlier Meixner [114] proved this theorem under the
additional assumption that p is coprime to the order of the group. Under some ad-
ditional assumptions a more general theorem was proved by Turull [143]. Finally,
in a recent paper [34], Hartley and Isaacs proved that if A is a soluble group of
automorphisms of a finite soluble group G with |Cg(A)| = ¢ and (|G|, |A]) = |
then G contains a subgroup of (g. |A])-bounded index whose nilpotent length is at
most 2n(A)+ 1 (where |A| 15 the product of n(A) not necessarily distinct primes).
It is also shown there that iff A is a finite p-group, the coprime condition on the
orders can be dropped at the expense of increasing by | the nilpotent length in the
conclusion.

Here, estimation of nilpotent length is also done by using the above-mentioned
theorems of Hall-Higman type.

It may be conjectured that if a nilpotent group admits an automorphism of prime-
power order p* having exactly ¢ fixed points, then it has a subgroup of (p, k, g)-
bounded index whose derived length is (p, k)-bounded. We recall, however, that
up to now even the case of a regular automorphism, when g = 1, remains open.
This conjecture is not yet proved either in the case of p* = 4, where the regular
case is known.

We finally point out one more application. P.V. Shumiatskii uses our Theorem
5.3.1 in his preprint On locally finite groups admitiing an automorphism of prime
order whose centralizer is Cernikov, Thechnion, Haifa, 1992, to prove that a locally
finite g-group admitting an antomorphism of prime order p whose centralizer is a
Cernikov group, is soluble. Together with earlier results of B. Hartley (1982, 1988)
and V. Turau (1985), this yields that a locally finite group having an element of
prime order with Cernikov centralizer has a soluble subgroup of finite index. (A
group is said to be Cernikov if it satisfies the minimum condition on subgroups
and contains an abelian subgroup of finite index.)



Chapter 6

Nilpotency in varieties of groups with operators

In this chapter we prove two theorems of a rather general nature, bounding the
nilpotency classes of nilpotent groups in certain varieties of groups with operators
(for groups with operators see § 1.9). Let £2 be a group and let {v,} be a family
of Q-identities defining a variety of operator groups M. We denote by {i,} the
family of (ordinary) group identities obtained from {v,} by replacing all operators
from €2 by 1 and by 901 the variety of groups defined by the identities {1, }.

We first of all suppose that there is a constant ¢ bounding the nilpotency class of
any nilpotent group in 9. The first result (Theorem 6.2.1) then states that, if for
an Q-group G € 9 the semidirect product & > €2 is nilpotent, then the nilpotency
class of G is also bounded by ¢.

Although the requirement that G X €2 is nilpotent seems rather strong. it may
be satisfied automatically — for instance in the case where both G and £ are finite
p-groups.

The author’s result in [56] on the nilpotency of soluble groups with an automor-
phism ¢ of prime order p satisfying the (¢)-identity

’ |
x-x-xv L x" =1

(that is. with a splitring automorphism of prime order p) is a prototype for the first
theorem. If we put ¢ = | we get the identity x” = 1. Now soluble groups of prime
exponent p and of derived length s are nilpotent of class < 5’% by Proposition
3.4.4. Hence, Theorem 6.2.1 will yield that a soluble p-group of derived length s
with & splitting automorphism of prime order p is nilpotent of class < ‘J*;'_;:“]
This specific result is related to the structure theory of finite p-groups admitting a
partition and will be applied in Chapter 7. We shall deduce it in this chapter as a
corollary of a more general theorem. Its consequence is that the nilpotency class
of the commutator subgroup of a finite p-group of maximal class is bounded in
terms of p only.

The second result (Theorem 6.3.1) gives a positive solution to the Restricted
Burnside Problem for a variety of operator groups . provided that this problem
has a positive solution for the corresponding ordinary variety M. More exactly,
suppose that the Restricted Burnside Problem has a positive solution for the variety
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M in the sense that locally nilpotent groups from M constitute a subvariety and,
moreover, that the associated Lie ring of a free group in 9 satisfies a system of
multilinear identities which define a locally nilpotent variety of Lie rings with a
function f(d) bounding the nilpotency class of a d-generator ring in this variety.
We shall prove that if, for an Q-group G € I, the semidirect product G »
is locally nilpotent, then G belongs to a locally nilpotent variety in which the

nilpotency class of a d-generator group is bounded by f (.-:f ]%_ET_—_!])

Again we note that the strong condition that G > £2 is locally nilpotent is auto-
matically satisfied if both G and £ are locally finite p-groups.

Instead of a condition on the identities of the associated Lie ring we could give
an analogous condition on the group identities {u,}. but such a condition would
be stronger. An example given at the end of this chapter shows that the word
“multilinear”™ in this condition is essential.

It is not yet clear whether the condition that the group of operators £2 is finite,
is essential in the second theorem and whether one can choose the function to be
independent of |$2].

The main result of [61), which bounds the nilpotency class of a d-generator
nilpotent group with a splitting automorphism of prime order p (that is, an analogue
of the Restricted Burnside Problem for the variety of groups with operators which
consists of all groups with a splitting automorphism of prime order p was solved
in the positive in [61]) is a prototype for the second theorem. This theorem from
[61] forms the basis for a structural theory of finite p-groups admitting a partition,
including the positive solution of the Hughes problem for almost all finite p-
groups. This theory is expounded in Chapter 7, where we also give the original
proof of the theorem from |61] which yields some additional information and
illustrates some aspects of Lie ring technique. This original proof uses a rather
complicated transition to Lie rings, where Kostrikin’s Theorem 1.3.1 is applied.
Now the theorem from [61] may be obtained as a corollary to a more general
result from this chapter since the identity x” = | (obtained from the {g)-identity
xx®x¥ .t =) implies that the associated Lie ring satisfies the multilinear
identities

px =0 and Z (00 Xa(iys X (2pe - - = 2 Xaip=1) ) =0
TES, )
(equivalent to identities px = O and [x, v, v, ..., y] = 0) from which the identities
ALARALL )

pe |
yielding local nilpotency follow by I{nslrikin'ﬁ Theorem 1.3.1.
The main idea of the proofs of both the theorems in this chapter is an iterative
procedure expressing commutators in terms of commutators of greater weight. The
argument is typical for the theory of nilpotent groups; see, for example, the proof
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of the following elementary fact: if y.(G) = y41(G) in a nilpotent group G then
() = 1. Proof: from the hypothesis we obtain by substitution

W(G) = ¥ (G) = [ (G). Gl = [ (G). (G)] =
=[ml(G). G. Gl =na(G). G, Gl=...

and so on, so that ¥ {(G) = . (G) for all 5 = 1; but yy(G) = | for some N,
since (7 is nilpotent. Hence y.(G) =

The proof of the second theorem is more difficult because of the need to control
the number of generators involved in the iterations. For this purpose we use the
power structure as well as the commutator structure in order to express commu-
tators, not only in terms of commutators of greater weight, but also in terms of
increasing powers of commutators of the same weight

One of the main tools in the proofs i1s Higman's Lemma (see §1.10).

§ 6.1 Preliminary lemmas

We fix notation: £ will denote the group of operators and V = {u,} a set of
Q2-words v, = v, (X, X2, ..., Xuier)s Where xy, x2, ... are free generators of a free

{2-group F. The group F, as an abstract group, E'Dﬂldll't'i a free subgroup F, freely
generated by the elements xy, xa2, ... It is clear that F = {Fﬂ} [F 2] = F.

Definition. The projection of an Q-word v = v(x), x2. ..., ¥,) — an element of
F —is the word v € F, obtained from v by replacing all operators from £2 by the
trivial one, that is, if

V="K X, @ € R,
then
E':.Tr': S, VIR ¢ 8
For example the projection of the {¢)-word x - x¥ . x¥ . _. . x*""" is the word

x”,

We clearly have

6.1.1 Lemma. The projection 9: v - visa hﬁrmﬂmr.rr;;h.-mr of the group F onto
F. which is the identity on F. Its kernel is | F, 2). Also 97 = 0.

We make several remarks on verbal §2-subgroups of F.
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6.1.2 Lemma. Let V be a set of Q-words and V (F) the corresponding verbal -
wubgmup of F. Then U{F ) = V{F ), where V( V(F) } is the projection of V(F) and
V(F) is the verbal subgroup of F defined by the projection V.

Proof. Immediate from the definitions.
6.1.3 Lemma, If V is an Q-subgroup of F then V|F, Q] = V[F, ].

Proof. By Lemma 6.1.1 we have #(V) = #(V) = #(V), that is, the projections
of V and V are equal. Hence their full inverse images are also equal so that
VIF, & = V[F, 2], since Ker# = [F, Q] by Lemma 6.1.1.

6.1.4 Lemma, The subgroups |F, Q) and v, (FQIN F, n = 1,2, ..., are verbal
L-subgroups of F.

Proof. If o is an endomorphism of F then the mapping which coincides with o
on F and is the identity on £ may be extended 10 an endomorphism & of the
semidirect product F > Q. Indeed, for any f,, f> € F, w), @» € £2 we have

S fron)( frn)) = &(fiw froT @) = 6(fi - f3' - @an)) =
=a(fi- i1 ) (an) =a(f))-o(fy" ) (@) =
=a(fi)- (@ (L) - (ww) =0 (f) - w o(fr) - w - wwn =
=a(fy)-wy-o(fs)-w=6(f-w)-a(f;-w),

because o ( fzw'- ) = (o (f2)) ', since the action of a homomorphism of an £2-group
commutes by definition with the action of operators from £2 (see § 1.9).
Now we have

a(|F.2)) =c(|F.2)) =[6(F),a(2)| = [o(F). 2] < [F, ),
and also
gy (FQUNF)=0(p(FQNF) <o(p(F)Na(F) <y (FQNF.

Hence, the subgroups [F, Q] and 3, (FQ)N F of the free Q-group F are invariant
under every endomorphism of F, that is, they are verbal.
The lemma is proved.

The following arguments are variations on the theme of Higman's Lemma and
collecting process. We recall that the normal closure of an element a in a group
H is denoted by (a").
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6.1.5 Lemima. For every m the image of the subgroup
Ym(F)N[F. Q10 [/
=]

in F/ymw+1(F) is generared by rhe images of simple commutators of weight m in
the elements x; and [x;, w], w € Q, which have the form

[ BTN 1 PR R (6.1.6)
where [i1,i2. ...} 2 {1.2,...,n} (that is, the commutator (6.1.6) depends on all
of the elements xy, xs, ..., xu), the dots in simple subcommutators [x; , .. .| denote

occurrences of elements w € L2 (which may not be there, in which case, by definition
[x;,.-..] = x;, ). and the commutator (6.1.6) has at least one such occurrence.

(In particular, since (6.1.6) has weight = n, we obtain automatically that m = n.
That is,

[F. Q10 (Y[ = w(F))

f=|

Proof. The group F is generated by the elements x; and x” = x; - [x;, @], w € £,
and hence it is also generated by the elements x; and [x;, w], @ € Q. Therefore
Y (F)}/¥ims+1 (F) is generated by images of simple commutators of weight m in the
generators x; and [x;, w], @ € £2, which have the form (6.1.6) (see Proposition
2.1.5 ¢)). Hence, an arbitrary element

g € ym(F)NIF. QN[

i=1
modulo y,4(F) is a product

g=d b (mod g (F)) 6.1.7)

of the powers of commutators ¢; of the form (6.1.6). An argument analogous to the
proof of Lemma 1.10.1, shows that each commutator ¢; in (6.1.7) may be taken to
involve all the x|, x3, ..., x,. Indeed, foreach j € {1, 2, ..., n} the homomorphism
t; extending the mapping
xi=>1; xg—=x fork#j

takes g to | because g € (x/*) and takes to | all commutators ¢; which involve x;.
Applying 7; to (6.1.7) we obtain that the product of all powers of the commutators
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occurring in (6.1.7) which do not involve x; is congruent to 1 modulo 4 (F)
and that this product may be omitted (here matters are simplified by the fact that
the commutators ¢; of weight m commute modulo ¥, 41 (F)).

In analogous way it is easy to see that in (6.1.7) every commutator ¢;, regarded as
a commutator in the x; and @ € 2, may be assumed to involve at least one element
w € 2. To show this we apply the projection homomorphism @ to (6.1.7). Since
£ € [F, 2], we have #(g) = . It is also clear that ¢ takes to | all commutators
¢; which involve at least one element @ € 2. Applying ¢ to (6.1.7) we obtain
that the product of all occurring in (6.1.7) powers of commutators which do not
involve any w € £2 is congruent 0 1 modulo 3, (F) and this product may be
also omitted.

The lemma 1s proved.

Definitions. We shall always denote by [x; , .. .| simple commutators of the form

[-xi,.r---]=E-’{JJWI-WL----Wr]u w; € Q, (6.1.8)
where the dots denote occurrences of the elements of £2 (which may not be there,
in which case, by definition [x; ,...] = x; ).

For convenience we introduce the following definition: for an arbitrary com-
mutator in the generators x; of F and the elements @ & £ the total number of
occurrences of the x; is called its X-weight and the total number of occurrences
of the w € £ is called its S2-weight. Of course the sum of the X-weight and the
-weight is equal to the weight of the commutator.

We now prove

6.1.9 Proposition. For every m the image of [F, Q10 (N (x/*) in F/yus1(F) is

=]

generated by commutators in the elements x; and w € Q, having the form

[E77 N E 7N I (6.1.10)
where (i1, i2,...} 2 {1,2,...,n) (that is, the commutator (6.1.10) invelves all of
the x,, xa, ..., x,), all the simple subcommutarors [x; ,...] are of the form (6.1.8)

and the Q-weight of (6.1.10) is at least 1.

Proof. We proceed by induction on m. For m = n the proposition immediately
1] )
follows from Lemma 6.1.5 and from the fact that | F, @] N () {x/*) < y,(F). For

1=l

m > n+ 1 by the induction hypothesis an arbitrary element g € [F, Q] () (x[?)

i=]
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modulo y,,(F) is a product s of powers of commutators of the form (6.1.10).
Then g’ € y(F) and also g»~' € [F, Q)N {x/?) < y.(F), because all

i=l
commutators (6.1.10) clearly belong to [F. ] N [ (x[®) < y,(F). Hence, by
i=l
Lemma 6.1.5, the element ,_:.;x"' modulo y,. (F) is congruent to a product " of
powers of commutators of the form (6.1.10). As a result g = 33" (mod y,+1(F)).
The proposition is proved.

We record one more result of a technical nature,

6.1.11 Lemma. [n an arbitrary nilpotent group the following identiry holds for any
elements a;. a», ..., a; and for any m € Z:

P (6.1.12)

where s is a product of powers of commuiators of weight = k + 1 each of which
involves all of the a,, as, ..., a;.

Proof. This is obtained by repeated applications of standard commutator identities
from 2.1.1 and 2.7.5.

§ 6.2 A Nilpotency Theorem

In this section we prove the first of our results bounding the nilpotency class. We
note that this theorem places no restrictions on the order of the operator group and
so cannot be obtained as a corollary to our second theorem on locally nilpotent
groups, since there the group of operators is finite.

We continue to use the notation from the previous section.

6.2.1 Theorem. Let Q2 be a group, V = (v} a set of Q-words and let I be the
variety of S2-groups defined by the identities V. Suppose that there is a constani ¢
bounding the nilpotency class of any nilpotent group in the variery of groups M
defined by the set of projections V = |i,) of V. Then, if for an Q-group G € M
the semidirect product G > 82 is nilpotent, the nilpotency class of G is at most ¢.

Proof. The free Q-group in M is the factor-group F/V(F) of the free Q-group F
by the verbal subgroup V(F). Hence the set of 2-identities V(F) defines the same
variety 9. At the same time the free group in 901 is the factor-group F/V{(F) of the
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free group F over the verbal subgroup V(F). By Lemma 6.1.2 we have V(F) =
V(F), so that replacing the set of £2-identities V by V() in the hypothesis of the
theorem does not change the varieties 91 and M. Therefore in order to prove the
theorem one can take V to be a verbal £2-subgroup of F and we assume this in
what follows,

It is sufficient to prove that all countably generated £2-subgroups of G are nilpo-
tent of class ¢. We may therefore assume that G is itself countably generated.
Therefore there is a natural homomorphism of F onto G which extends the map-
ping of the free generators x; to the generators of G. This homomorphism extends to
a homomorphism of the semidirect product F €2 onto & > £ which is the identity
on £2. If m is the nilpotency class of G~ €2, then the kernel of this homomorphism
contains 4 (FQ); it also contains the verbal subgroup V, since G € 9L It is
therefore sufficient to prove that the nilpotency class of F/V(F Ny (F)) is
bounded by ¢. Since the subgroups V and F My, (F£2) are verbal (the later, by
Lemma 6.1.4), it is sufficient to show that

[xi, x2, .o Xt ] € VIF N 1 (FR2))

where xy, x3,..., x.4; are free gencrators of F.
The hypothesis of the theorem implies that the following holds in F:

(X1, x20 oo Xer) € Vi (F).
Since V[ F, 2] = V[F, 2] by Lemma 6.1.3, we have
{Ilu.x? iiiii It'-[—l] E V[Fh ﬂh"ﬂr-{-l{F}

s0 that

[xis X2y 000 Xy lJ = U[Fm Q][F N ]"'.lrr-H{Fﬂ]}'
To this we now apply Corollary 1.10.6 with

il
D;=()x/®), M=IFQl N=V(FNyu (FQ),

recalling that [ F, ] and V(F Ny, (FQ)) are verbal subgroups by Lemma 6.1.4.
We obtain

lxp, x2...., Xewt ) = 2¢ (mod V(F Ny (FQ2))),
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T

where 3 € [F, @] N [ {xF®). By Proposition 6.1.9, the element 2 may be taken
i=1

to be a product of powers of commutators of the form (6.1.10), that is,

X1 X2y e ] =€ oo™ (mod VF N ye (F))). (6.2.2)

where each of the elements ¢; is a commutator in the x; and w € €2, having the
form

(T N RN O (6.2.3)

where {i;,i2,...) 2 {1,2...., ¢ + 1}, the simple subcommutators [x;....] are of
the form (6.1.8) and the Q-weight of (6.2.3) is at least |.

Because of the hypothesis {i), 72, ...} 2 {1,2...., e+1}, the commutator (6.2.3),
as a simple commutator in the simple subcommutators [x; . ...J, has weight > c+1.
We express its initial segment of weight ¢ + 1 with the help of (6.2.2). We first
apply to (6.2.2) the endomorphism of the £2-group F extending the mapping

xj—= lxy, ... for j=1,2,..., c+1l, x;—=x;forj=c+l

(this homomorphism may be assumed to have been extended to a homomorphism
of the semidirect product FQ which is the identity on Q). The image of the left-
hand side of (6.2.2) is the following initial segment of (6.2.3)

{7 N £'7S, FONRR £ e | B

and the images of the ¢; on the right-hand side of (6.2.2) are clearly commutators
in the elements Lx; ....] and w € £2, having the form

S A N (e A I (6.2.4)

where {my.ma. ...} 2 {i). 02, ..., 041}, the stars in the simple subcommutators
Ilxi,, - . .], #% %] denote occurrences of elements w € £2 (which may not be present,
in which case, by definition [[x; ,...], **%] = [x; , ... 1) and (6.2.4) has at least one
such occurrence. We substitute the expressions obtained for the initial segment ¢;
of the form (6.2.3) into the original congruence (6.2.2) and transform the resultant
right-hand side by applying 2.1.1 and 2.7.5 10 get

[x1, X3, -y Xl =€ oo (mod VIF 0y (F))), (6.2.5)

where (after changing notation), again, every element ¢; is a commutator in the
elements x; and e € £2, having the form

[ ET N R A (6.2.6)
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where {iy,i2,...} 2 {1,2,..., ¢+ 1} and the simple subcommutators [x; , ... ] are
of the form (6.1.8) — but now the €2-weight of (6.2.6) is at least 2, thal is, (6.2.6)
has at least two occurrences of elements w € €. This is because at least one
occurrence 1s guaranteed by the dots in the simple subcommutators in (6.2.3), and
at least one more by the stars in the simple subcommutators in (6.2.4).

Applying the same substitutions to (6.2.5) we obtain a congruence of the same
form, where each commutator ¢; has at least three occurrences of elements @ €
and so on, increasing the Q2-weight. But if the Q-weight is large enough then all
the ¢; have weight large enough to be comtained in y,,.,(F€2), and hence also in
F Ny (FE2), as they belong to F. Hence,

[x1. X9, ..., Xepr] =1 (mod VF Ny (FE2))),

as required,
The theorem is proved.

§ 6.3 A Local Nilpotency Theorem

We continue using the same notation.

6.3.1 Theorem. Ler 2 be a finite group, V = {v,} a set of -words, M the variety
of Q2-groups defined by identities V and M the variety of groups defined by the
set of projections V = {i,) of identities V. Suppose that the associated Lie ring
L(F / ‘r’(F 1) of the free countably-generated group F / V{F ) of the variety M sat-

isfies a system of multilinear identities which defines a locally nilpoteni variety of
Lie rings with a function [(d) bounding the nilpotency class of a d-generator ring.
If for an 2-group G € M the semidirect product G » S is locally nilpotent, then G
belongs to a locally nilpotent variety in which the nilpotency class of a d-generator

group is bounded by f (‘f ' Ig.zr‘zr-;: )

Proaf. As we saw in the proof of Theorem 6.2.1, replacing the set of Q-identities
V by V(F) in the hypothesis does not change the varieties 9 and M. Therefore,
to prove the theorem, we may take V 1o be a verbal Q- suhgmup of F.

It 1s sufficient to obtain the required estimate f (d I!'cl 5] ) for the nilpotency
class of each d-generator subgroup H of G for all nawral 4. Replacing H by
(H®) we may consider it to be Q-invariant (and d-generator as an $2-group). It

is therefore sufficient to obtain the required estimate for the nilpotency class of G
in the case where G is a d-generator group, and we shall assume that this is the
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case in what follows. Then, since € is finite and G » € is locally nilpotent, this
semidirect product is, in fact, nilpotent of class m, say.

Since finitely generated nilpotent groups are residually finite (see, for instance,
1123]). G has a family {N,} of normal subgroups of finite index with trivial inter-

section. Replacing N, by [} N¥ which also has finite index because Q is finite,
mEid
we may assume the N, to be Q-invariant. Each factor-group G /N, is also a d-

generator Q-group in 9 with the property that the semidirect product (G/N,) » &2
is nilpotent. It is clear that it is sufficient to prove the required estimate for the
nilpolency class of each of these groups. We may therefore assume that G is finite.
Each of its Sylow p-subgroups is also a d-generator £2-group, because it is the
factor-group by the Hall p'-subgroup. Thus, G may be taken to be a finite p-group
for some prime p which we fix for the rest of the section.

Since by Theorem 2.2.2 the identity of nilpotency of given class may be verified
on the generators of the group, it is sufficient to show that any commutator of

weight f (d ' L"l:?;::_rl) + 1 in the generators of G is equal to 1.

Here, instead of working in {, it is convenient to switch to working in a free
group. Let F be a free £2-group with a sufficiently large number of free generators
Xy, X3, ... (or countably many of them) - a reserve of generators will be needed
for technical reasons in the proof. There is a homomorphism of an Q-group F
onto G extending the mapping of x;, xz,..., Xz onto a set of generators for G. It
may be also extended to a homomorphism of the semidirect product F£2 onto G2
which is the identity on €. If m is the nilpotency class of G then the kernel of
this homomorphism contains y,+)(F$2) and if p" is the exponent of the finite p-
group G then the kernel also contains the subgroup F*'; since G € M, the kernel
also contains V. It is therefore sufficient to prove that any commutator of weight

f (d : L%T__I_‘) +1in xp, X0, ... xq is contained in V - FF - (F N puat (FRQ)).
The following proposition is the first step towards an iteration process of ex-

pressing any such commutator in terms of commutators of greater weight or in
increasing powers of commutators.

6.3.2 Proposition. For any k any commurtator g of weight f(k) + 1 in the free
generalors X, Xz, ..., xp of Fis congruent modulo V - F " (Fn Ym+1 1 FS2)) to a
product

g=c' ... mod V- F" - (F N ywa) (FQ))), (6.3.3)

of powers of commuatory ¢; in the xy, x2,..... v; and elements from & where each
¢; has the form
[ ET7 I 7 I (6.3.4)

where (i},i>....)] € {I,2..... kY. the simple subcommutators |x; . ...] have the
Jorm (6.1.8) and every commuiator ¢; either
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a) has at least f(k) + 2 occurrences of the xy, xa, ..., xy (that is, its X-weight
is greater than that of g), or

b) has at least f(k)+ | occurrences of the xy, X2, ..., X (that is, its X-weight is
at least f(k) + 1) and has at least one occurrence of elements w € S (that is, its
Q-weight is ar least 1),

Proof. Let g denote the Lie ring commutator with the same bracket structure as
that of g in generators ¥; of the associated Lie ring L(F) of the free (ordinary)
group F, where %; denotes the image of x; in F f.f"’ considered as an element
of L(F) which is homogeneous of weight | (that is, 2 is obtained from g by
replacing the xy,xs,...,x; by Xy, X3, ..., ¥, respectively). By hypothesis g is
contained in the verbal ideal of L(F) generated by certain multilinear Lie polyno-

mials u;(X;, X3, ..., X, ) (homogeneous of degree w,).
It is well-known that the additive group of this ideal is generated by the values
wilviy, Vizy ..., Viw, ) Of the polynomials u; (xy, X2, ..., X, ) at arbitrary elements v;;

of L(F). Since the u; are multilinear, it is sufﬁci_ent to take for the v; j commutators
in the x; which generate the additive group L(F). The Lie ring L(F) is free and,
hence, multihomogeneous. Therefore we have

. Za;u;(wh Vide e Vi) @ €Z, (6.3.5)

where, for every i, the sum of the weights of the commutators v;y, vz, ..., Uy, in
each variable Xj, X1, ..., X is equal to the weight of g in this variable; in particular,
the sum of the weights of vy, vja, ..., v, 18 F(k) + 1. (In order to simphfy the
notation here the u; are not supposed to be necessarily different for different i.)

Let us translate this statement into the language of the group F. We denote by
#;; group commutators in generators x, with the same bracket structure as that of
v;; in generators X,. Let it; denote the product of powers of group commutators
corresponding to «; as a linear combination of Lie ring commutators (the exponents
of the group commutators are equal to the coefficients of the corresponding Lie
ring commutators), the order of the factors in this product here being irrelevant.
Then, by definition of the associated Lie ring L(F), (6.3.5) is equivalent to the
congruence

g = [, b2, ..., 5™ (mod yray42(F)) (6.3.6)

of products of commutators of weight f(k)+ | modulo ]fftm-sz") (see § 3.2). Here
also, for every i, the sum of the weights of the v;, Uiz, ..., Vi, In each variable
X1, 42, ..., % is equal to the weight of g in this variable.
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For every polynomial «; the fact that the associated Lie ring L(F/V) of the free
group F/V of the variety 91 satisfies the identity »; = 0 is, in turn, equivalent to

B(%), %5, ... %) = 1 (mod yy, 1 (F/V)).

where x; are the images of elements x; in F / V. Lifting up to F this may be written
as

ixy, xa, ..., Xy ) E V. }z'"..H[F}.
To this we apply Corollary 1.10.6 with

Yy

Dy=(h). M=yuu(F). N=V
=1

where it is clear that V and y,,.,(F) are verbal subgroups of F and that it; (x;, x2.

Yy -
.oy Xy, ) belongs o Dy = {.rf} because u;(xy, Xa, ..., X, ) 1s multilinear. We

j=1
obtain

ﬁ,[-’.'h-xz. CECRCIE Ir.r',} = JrIl {m(}d ilr]"

where 31 € yu,+1(F) 0 () (xF). By Lemma 1.10.1

i=
sy =d -dy-...dY 1 ek,

A

where the d; are commutators of weight > w; + | in the x; and each d; involves
all the elements x;, x2, ..., X, -
We rewrite this congruence as

and apply Lemma 6.1.3 to obtain
s (X X)) €[FLQL-V
whence

)l x5 ) €LFLR2 VO FY (F Ny (FQ)).
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To this we apply Corollary 1.10.6 with
ETA] ]
Dy=( Y%, M=[F.Q, N=V-F" (FNyn(FQ)
j=

re:calimg that [F, Q] and F Ny (FQ) are verbal r.ubgroupt. by Lemma 6.1.4 and

both .Lr” and i;(xy, X3, ..., X, ) belong to D; = ﬂ {.r"n We get
J=1

x.'_ll 'EF[-’le-‘TZm . -1-r:rj,-.] = Hj2 {n“}d v . -F.F'r d {AF n }’:,r+1{f'-ﬂ]_}}

wy )

where 3¢, € |F, Q2] N ﬂ{.r;’ﬁ}. By Proposition 6.1.9, the clement »;; may be
i=l

taken 1o be a product of powers of commutators of the form (6.1.10), that is,

sp=el" ... oe™ (mod V. F" o (F N yms(FQ)),

where each ¢; i1s 2 commutator in xy, xz, ..., x,, and @ € £, of the form
£ I £ R (6.3.7)
where (i),i2,...} 2 {1, 2,..., w;}, the simple subcommutators |x; ,...] are of the

form (6.1.8) and the Q2-weight of (6.3.7) is at least |,
As a result we obtain

ﬁ;(.ﬂ..l'g ..... )i'“.} = M) o Mo {mud V- .FPN . (F M }fm+|{f'"ﬂ}}}.
We apply to this congruence the endomorphism of F which extends the mapping
B x) — Eil-u Xy —* ﬂ:’?. vy Ky T E’jlp,u

where ¥y, ¥;3, ..., U;,, are subcommutators from the right-hand side of (6.3.6).

The nature of 2, implies that its image under this endomorphism is equal to
a product of powers of commutators ¥;(d;) which have weight = f(k) + 2 as
commutators in xy, Xa, ..., x; — the weight f(k) + | is gained already from the
single occurrences of the elements v;y, ¥z, ..., Vi, In ;(d;), and, since the weight
of d; is at least w; 41, there must be at least one further occurrence. By the formulae
from 2.1.1 and 2.7.5, every commutator #;(d;) may be represented in the form of
a product of powers of simple commutators of weight = f(k) -+ 2 in the x; — these
commutators have the form (6.3.4) and satisfy the property a).
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From the description of the element 5> given above we see that its image under
#; is equal to a product of powers of commutators #;(e;) which, as commutators
in xi,x2,....x and w € Q, have X-weight at least f(k) + I, gained from the
occurrences of all the elements ;y, ¥;2,.... ¥;,,. and have Q-weight at least |
because the 2-weight of commutators (6.3.7) is at least |. By Proposition 6.1.9
each commutator ¥; (e ;) may be represented as a product of powers of commutators
of the form (6.1.10) of X-weight at least f(k)+ | and of £2-weight at least | which
are also commutators of the form (6.3.4) satisfying property b).

It remains to replace in (6.3.6) the elements u;(D;, %2, ..., Uy,) by the ex-
pressions we have obtained and to rewrite the resulting congruence modulo
Ve FF o (F 0 Y (FQ)):

g = [[(2i(x1) - B ()™ (mod V- F” - (F (1 yyst (FQ))),

where 3 15 an element of }-"m-H.:{f-' ) which may be represented modulo F N
Ym+1(FS2) in the form of a product of powers of simple commutators of weight
> f(k)+2 in the x; which are commutators of the form (6.3.4) satisfying property
a). In light of the collecting process (identities 2.7.5) it is clear that powers ({2, )-
#;(3¢:9))™ of products of powers of commutators of the form (6.3.4) satisfying
either property a) or b) are also products of powers of commutators of the form
(6.3.4) satisfying either property a) or b).
The proposition is proved.

Now we are going to apply consequences of the congruences (6.3.3) to com-
mutators appearing on the right-hand sides of them and then to commutators on
the right-hand sides of the resultant congruences and so on. In the proof of The-
orem 6.2.1 similar iterations allowed us to express the ambicnt commutator mod-
ulo V - (F Ny (FS2)) in terms of commutators of large weight belonging to
F 1 <1 (FS2). Here, however, there is an obstacle: the subcommutators [x; ... .]
appearing on the right-hand side of (6.3.3) may be different elements even for the
same x;, since different elements of €2 are involved (when the weight increases
unboundedly). But to apply the congruences (6.3.3) we require definite dependence
of the weight of a commutator on the number of variables occurring in it. This
dependence is specified by the function f(d) from the hypothesis of the theorem.

The growth of the number of variables occurring in the iteration process will be
bounded by means of introducing p*-th powers of commutators into that process;
their exponents will increase, so that these powers will eventually belong to F/ .

Consider the factor-group X = X/(X'X"). where X = {x%) = {xF} for any free
generator x; of F. The group X is generated by |$2| elements, the images of the
elements x, w € £2, 1s commutative and has exponent p. Its order is thus at most
p'®. The group 2 acts on X in a natural way. The semidirect product XXQis
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nilpotent by the hypothesis of the theorem: this implies that in the series
X=[X.Q=[X,28:>..

all inclusions are strict until the series terminates at the identity subgroup (see
Theorem 2.2.3 a)). Hence, the length of the series is at most |€2].

So, for any elements @, @, ..., e € € and for t+ > |Q|, the commutator
[x, @, @, ..., w] is contained in X'X7. This statement may be elaborated in the
following way.

6.3.8 Lemma. Let x be one of the generators x; of F. For any elements wy, an, . ..,
w, € § and for 1 = |C2| we have

[x, w1, @2, ....00) =d) -d?,-...-d" (mod F™" - (F N\ ¥pa (FR))  (6.3.9)

where in the
d =[[x,...},Ix,-..),---1, (6.3.10)

all subcommutators [x, ...] have the form (6.1.8) and have weight < || and for
every factor df’ in (6.3.9) either

1) d; has X-weight at least 2, or

2) Iy is a multiple of p.

Proof. We have already noted that [x, @y, wa, ..., @], for ¢ > ||, lies in X'X7.
The subgroup X is generated by the elements x* = x[x, @], @ € Q. The elements
x, [x, @] commute modulo X so that their p-th powers generate X'X” modulo
X

The group X is generated by elements x, [x, w], where w € , each of which
has X-weight = 1. Via formulae 2.1.1 and 2.7.5, the commutator subgroup X'
is generated modulo F M y,4(FS2) by commutators in x, [x, w], each of which
has X-weight at least two. By Proposition 6.1.9 each of these commutators may
be expressed as a product of powers of commutators d; of the form (6.3.10)
having X-weight = 2. If any of the 4; again has subcommutators of the form
[x, ), an, ..., ay] with ¢ = ||, then we replace them in an analogous way by
products of p-th powers of x and [x, @] and powers of commutators of X-weight
> 2. The resultant expression is then transformed into a product of powers of
commutators of the form (6.3.10). Every such substitution replaces the factor d:'
in (6.3.9) by a product of factors of a similar form, but where the sum

(X -weight) + (power of p, dividing the exponent)

15 greater. It is also clear that all resultant commutators of the form (6.3.10) satisfy
at least one of the properties 1) or 2) of the lemma.
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After a finite number of such steps all newly appearing factors will belong to
FP . (F N ¥4 (FS2)) and they may be omitted modulo F” - (F N y,4(FQ)).
This process will terminate at the congruence (6.3.9), in which, in commutators of
the form (6.3.10), all subcommutators [+, ...] have weight at most |§2].

The lemma is proved.

We now complete the proof of the theorem. Let g be an arbitrary commutator

of weight f (d . %%) + 1 in the d elements x, x3,...,. ty. We first of all use

Proposition 6.3.2 to express g modulo VEP(F N Yo (FRQ)) in the form of a
product

g=c" ..o (mod V- FP . (F N0 sy (FS2))), (6.3.11)

of powers of commutators ¢; of the form (6.3.4) satistying one of the properties
a), b).

Using Lemma 6.3.8 we replace every occurrence of simple subcommutators of
the form [x, ey, @h, ..., ay|, for r = |2, in commutators ¢; from (6.3.11), by its
expression as a product of powers of commutators of the form (6.3.10) satisfying
one of the properties 1), 2). Each of the resultant commutators ¢; may be expressed
by Lemma 6.1.11 and by formulae from 2.1.1 and 2.7.5 as a product of powers
of commutators of the form (6.3.4). This process gives either commutators of
greater X-weight or p-th powers of commutators of the same X-weight. (Here
formula 6.1.12 and formulae from 2.1.1 and 2.7.5 are applied to the ¢; regarded
as commutators in variables |x; . ...| which are not being changed.)

Taking into account the properties of the original congruence (6.3.11) we ob-
tain that g may be expressed modulo V - FP . (Fn V1 (FE2)) as a product of
the form (6.3.11), where all ¢; of the form (6.3.4) appearing now only contain
subcommutators [x; ,...] of weight < ||, and for each factor .-:f‘. either

a) the X-weight of ¢; is greater than that of g,
or

b) the X-weight of ¢; is equal 1o that of g and the Q-weight of ¢; is at least |,
or

c) the X-weight of ¢; is equal to that of g and &; is a multiple of p.

Now we can start an iteration process aimed at the desired congruence (6.3.11)
with trivial right-hand side. We shall describe its first step in some detail.

The weight of any ¢;, as a simple commutator in subcommutators [x; ,...], is
clearly equal to the X-weight of ¢;. Since in each case a), b), ¢) this weight is

o _ ey .
at least f (d’- %l—r') + 1, the commutator ¢; has an initial segment of weight
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fo1=f(d-BE5) + 1 of the form

(7 N 6 RN R EO | (6.3.12)

Note that, since the subcommutators [x; , ...} have length (weight) at most {£2| and
Xi, € {x1, X2, ..., x4}, al Most

2 15d=1 mllﬂl — 1
dil + |2 + 121" + ...+ Q] l=d+ ———
12— 1
of them may be distinct. Hence, each ¢;, as a simple commutator in subcommutators
. L .
[ 5o |, involves at most d - I?slel—Ll variables,
: ) . .
In particular, there are at most d - L?rlTﬁTl distinct elements among the [x;,...],
[xip. .1 ... Ixi,,,,...]. Let us denote them by yy, y2,.... ¥, Where r < d x

‘T:_?":E‘J’ . We may therefore apply a consequence of a congruence of type (6.3.3) to
C

such an initial segment. Namely, let r be the endomorphism of F extending the
mapping

Xp = ¥y, X3 =+ Y2,..., Xr =+ ¥r; Xrgr = Krgys § 2 .
By Proposition 6.3.2 the simple commutator in x;, x», ..., x,, which is obtained
from (6.3.12) by replacing all elements vy, v2, ..., ¥ by x;,x2,..., x,, respec-

tively, is congruent, modulo V- F"" - (F Ny, (F$)), to a product of commutators
of the form (6.3.4). The image of the left-hand side of this congruence under 1 is
equal to (6.3.12). In the right-hand side of the resulting congruence

(EPP N EN R SR | =

: , . (6.3.13)
Ed}l '...‘d; {mﬂd V FF] ‘{Fﬁ]"mﬁ-!{Fﬂ:l}}!

the images o; of commutators of the form (6.3.4) are commutators in elements of
the form [y; ,...] satisfying Proposition 6.3.2, the letter x being replaced by y.

Obviously, subcommutators of the form [»; ,...] are also commutators of the
form [x;....]. If among them there are “long” commutators [x;, , @y, ws, ..., ;)
with t = |£2|, then by Lemma 6.3.8 we replace all their occurrences by products
of powers of commutators of the form (6.3.10) satisfying the conclusion of this
lemma. We then express the transformed commutators as products of powers of
commutators of the form (6.3.4) by applying Lemma 6.1.11 and formulae from
2.1.1 and 2.7.5, regarding the transformed commutators as commutators in variables
[x;,,...] which are not being changed. As a result we obtain an expression for
(6.3.12) in the form (6.3.13), where all commutators 4;, however, now contain
only subcommutators [x; . ...] of weight = [Q| and, for each factor df'ﬁ either

a') d; has X-weight > f 42,
ar
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b') d; has X-weight = f + 1 and its £2-weight is greater than the 2-weight of
(6.3.12),
or

¢') d; has X-weight = f 4+ | and /; is a multiple of p.

We express the initial segments of weight f (a' . %%) + 1 of all commutators

¢; from (6.3.11) in this way and replace these initial segments in the same congru-
ence (6.3.11) by their expressions. After transformation using Lemma 6.1.11 and
formulae from 2.1.1 and 2.7.5, we obtain a new congruence of the form (6.3.11),
where, however, every factor ¢/’ has a “doubled quality” because of different com-
binations of properties a), b), c¢) and a'), b'), ¢’). That is, either

- its X-weight is = f + 3,
or

~ its X-weight is > f 4 2 and its Q-weight is = 1,
or

— its X-weight is = f + | and its Q-weight is = 2,
or

- its X-weight is = f <+ 2 and k; is divisible by p,
or

— its X-weight is = f + 1, its Q-weight is = | and &; is divisible by p,
or

~ its X-weight is = f + 1 and the exponent k; is divisible by p’.

MNote that in the right-hand side of the resultant congruence all commutators ¢;
of the form (6.3.4) contain only simple subcommutators [x; . ...] of weight < |£2].

The latter remark implies that every commutator ¢; in the new congruence of the
form (6.3.11) also involves at most d - % different subcommutators [x;, . ...] of
weight < |Q2]. Each of the ¢; has X-weight = [+ 1 and so again contains an initial
segment of weight f + | of the form (6.3.12). Again, to these initial segments we
can apply appropriate consequences of congruences (6.3.3) from Proposition 6.3.2.
Subsequent application of Lemma 6.3.8, formulae (6.1.12) and formulae from 2.1.1
and 2.7.5 will express them as products of powers of commutators of the form
(6.3.4) in subcommutators [x; , . ..] of weight < || satisfying a'), b'), ¢’). Inserting
these expressions into the ¢; in the congruence of type (6.3.11) under consideration
produces a new congruence of the form (6.3.11), but where, for ecach factor mf
either the X-weight of ¢;, or the Q-weight of ¢;, or the power of p dividing &,
is greater. Al the same time the number of variables occurring in the congruence
(subcommutators [x; . ...] of weight < [£2]) will still be at most 4 - 1%

More precisely, we define the height of a factor L:‘ in the product (6.3.11) to be
the pair

((X-weight of ¢;) + (power of p. dividing k;); S2-weight of ¢;).
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We order such pairs lexicographically.

In fact, we have shown that subsequent application of Proposition 6.3.2 and
Lemma 6.3.8 to the appropriate initial segment of ¢; and application of formulae
(6.1.12) and formulae from 2.1.1 and 2.7.5 allow us to express the factor f:f in the
form of a product of factors of the same form each of which has greater height.

It is clear that multiple application of such iterations produces new congruences
of the form (6.3.11) in which the heights of all factors increase unboundedly, the
weights of subcommutators [x; , ...] remaining at most |22|. Because of the bound
|£2| on the weights of the subcommutators [, , ...], the Q2-weight of ¢; is bounded
by a function of its X-weight. Hence, if the height of a factor cf’ is large enough,
then the sum

(X-weight of ¢;) + (power of p dividing k;)

is also large enough. When this sum is greater than m + n, the factor ¢/’ belongs
to FF . (FnN Vm=1(FE2)) and may be omitted in (6.3.11). As a result, we obtain

g=1(mod V. F" . (FNyu(FQ))),

as required.
The theorem is proved.

§ 6.4 Corollaries

First we derive consequences of the Nilpotency Theorem 6.2.1.

6.4.1 Corollary. Suppose that P is a soluble locally finite p-group of derived length
s which admits a finite p-group £2 as a group of operators. Suppose also that there
exist elements w), @, ..., w, € £2 such that

iy Ly

x.ox® .o x¥r =]

for all x € P. Then P is nilpotent and its nilpotency class is at most y";'_#

Proof. In order to prove that a group is nilpotent of class k it is sufficient to show
that the identity

{xlerr s ,.Kj,-+|i — I_
holds in it. We may therefore assume that P is finitely generated and, hence, finite.

Then P > € is also a finite p-group and thus nilpotent. Hence, we can apply
Theorem 6.2.1, which yields the required bound on the nilpotency class of P. This
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is because the projection of the given Q-identity is the identity x” = | and, by
Proposition 3.4.4, soluble groups of derived length 5 and of prime exponent p are
nilpotent of class < U%“‘-,—'J

6.4.2 Corollary. If a soluble group G of derived length s admits a splining auto-
morphism @ of prime order p, that is,

2 pe
aFaxaoaxP =1

or all x € G, then G is nilpotent and its nilpotency class is ar most
e [ :
max L‘%},_' hip) ], where h(p) is Higman's function.

Proof. Induction on the derived length 5. For s = | the statement is trivial. Sup-
pose that s = 1. The condition is obviously inherited by factor-groups modulo
@-invariant subgroups. Hence, by the induction hypothesis, G/G" " is nilpotent.
Therefore, G is abelian-by-nilpotent and hence residually finite by P. Hall's the-
orem [31]. If {N,) is a family of normal subgroups of finite index in & with
trivial intersection then Iﬁ’| N¥ } is a family of g-invariant normal subgroups of

f=1

finite index in G with trivial intersection. It is clearly sufficient to prove that ev-
n

ery factor-group G / [} N¥ is nilpotent of appropriate nilpotency class. We may
f=

therefore assume that G is finite.

By Kegel's theorem [54] a finite soluble group with a splitting automorphism of
prime order is nilpotent. Hence G is the direct product of its Sylow ¢-subgroups
all of which are g-invariant. It is easy to see that a splitting automorphism of order
p is regular on p’-groups: if x¥ = x then 1 = x-x¥ - x¥ - . -x¥ ' = x”, whence
x = 1if (Jx|, p) = |. Hence, all Sylow g-subgroups of GG for g # p are nilpotent
of class at most min Iiﬂ% h{p}] by Theorems 5.1.1 and 5.1.2.

We can apply Corollary 6.4.1 to bound the nilpotency class of the Sylow p-
subgroup of G by L=

The corollary is proved.

Recall that a finite p-group is called a p-group of maximal class if, for some
n € M, its order is p" and its nilpotency class is n — 1. Such a group necessarily
contains an element ¢ € P\ P’ with |Cpla)| = p:; in particular, a” € Z(P) (see
[10] or |48, Ch. 111]).

6.4.3 Corollary. The nilpotency class of the commutator subgroup of any finite
p-group of maximal class is bounded in terms of p only.
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Proof. Let |P| = p" and let a € P\ P’ be such that |Cpla)] = p . By the well-
known formula (Lemma 2.4.3) we obtain that

Hlg.all g € P} = |P: Cp(a)| = p"2.

Since {[g,all g € P}| € P and |P : P'| = p* (for any group P), these sets of
cqual orders must coincide: {[g.all g € P}| = P".

Hence, for any h € P', there is an element g € P, such thath = [g,a] = g~'g",
and therefore

h-b .. =
=(g7"'g)  (g7'g)" (g7 g) - (g7 g =g =1

Hence, a induces a splitting automorphism of prime order p of P’ by conjugation.
By Corollary 5.2.5 the derived length of P is bounded in terms of p. Hence, by
Corollary 6.4.2 the nilpotency class of P’ is also bounded in terms of p.
The corollary is proved.

We now turn to consequences of the Local Nilpotency Theorem 6.3.1.

6.4.4 Corollary. Suppose that P is a locally finite p-group which admits a finite p-

group S as a group of operators. Suppose further that therve exist w, @y, ..., w, €
2 such that

R

X ox™., e x¥r =1

forall x € P. Then P belongs to a locally nilpotent variety in which the nilpotency

class of a d-generator group is bounded by k (d‘ . %‘H—'—) where k(d) is the func-
rion bounding the nilpotency class of a d-generared (p - 1)-Engel Lie algebra of

characteristic p.
(The function k(d) exists by Kostrikin's Theorem 1.3.1.)

Proof. The projection of the given Q2-identity is the identity x” = 1. The associated
Lie ring of a group of prime exponent p satisfies the multilinear identities

px = 0 and Z lx&*‘rﬂ”'xﬂ'lﬂ' ...,,th.“,_”] =)

Fi t-S,f. 1

by the Magnus-Sanov Theorem 3.3.2. These identities imply the identities of a
locally nilpotent variety by Kostrikin's Theorem 1.3.1. The semidirect product
P > €2 15 a locally finite p-group and, hence, is locally nilpotent. Therefore, we
can apply Theorem 6.3.1.
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6.4.5 Corollary. If a d-generator nilpotent p-group G admits a splitting auwtomor-
phism ¢ of prime order p, that is,

3 Pl
x-x¥.x¥....xf =1

Jor all x € G, then the nilpotency class of G does not exceed k (d’ . -’::—'1') where
k(d) is the function bounding the nilpotency class of a d-generated (p — 1)-Engel
Lie algebra of characteristic p.

§ 6.5 Comments

Note that in Corollary 6.4.2 we obtain a slightly better bound for the nilpotency
class than that obtained in the original work [56] — there it was fp%l'

The author would be interested to learn about any other varieties where there is
a positive solution to the Restricted Burnside Problem in the “multilinear™ sense
of the hypothesis of Theorem 6.3.1.

Unfortunately, the identities of associated Lie rings of groups of composite orders
p“ are nol multilinear. Therefore, although Zel’'manov [158-160] has obtained the
positive solution to the Restricted Burnside Problem for such groups, we cannot
apply Theorem 6.3.1 to the corresponding operator groups. We show by means
of an example at the end of this section that it 1s in fact impossible to bound the
nilpotency class of these operator groups.

Corollary 6.4.5 is the main result of [61], it is the basis for a structural theory of
finite p-groups admitting a partition, including the positive solution of the Hughes
problem for almost all finite p-groups. This theory is described in Chapter 7,
where we also give the original proof of the theorem from [61], which yields some
additional information and illustrates some aspects of Lie ring technique. This
original proof uses a rather complicated transition to Lie rings, where Kostrikin's
Theorem 1.3.1 is applied. Now the main theorem of [6]1] may be obtained as a
corollary to the more general Theorem 6.3.1 (and, perhaps, with better bounds for
the nilpotency classes) — but, of course, the proof also uses Kostrikin's Theorem
1.3.1.

The main step of the original proof consists in bounding the order of Cg;(¢) in
terms of @ and p (where G is a d-generator p-group with a splitting automorphism
¢ of order p). This also enables us to obtain another result for a group satisfying
the hypothesis of Corollary 6.4.5. Note that a bound of the same kind follows
also @ posteriori from Corollary 6.4.5. Namely, since the nilpotency class and the
number of generators of the group G under consideration are bounded in terms of
d and p, it follows, via Corollary 2.5.6 and Proposition 2.5.7, that every subgroup
of G may also be generated by a (d, p)-bounded number of elements. Since Cg ()
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is nilpotent of the same (d, p)-bounded class and all of the factor-groups of its
lower central series have exponent p, as does Cg(p) itself, the order of Cg(g) is
also bounded in terms of d and p.

We shall see in Chapter 7 how Corollary 6.4.5 is connected with the theory of
finite p-groups admitting a partition which are exactly those p-groups which are
different from their Hughes subgroups. It would be interesting to find analogous
applications of the more general Theorem 6.3.1 possibly by defining some subgroup
generalizing the Hughes subgroup.

Another application of the result of Corollary 6.4.5 is the remark on periodic
compact groups in § 7.5, where it is proved that if such a group contains an open
subset of elements of prime order p then it has a subgroup of finite index contained
in a locally nilpotent variety. This implies also that the group is locally finite and
has bounded exponent. Zel'manov, using the techniques of his positive solution 1o
the Restricted Burnside Problem for groups of exponent p*, proved in [161] that
any periodic compact group is locally finite. It remains an open problem whether
every such group has bounded exponent.

Periodic compact groups may be characterized as periodic profinite groups. It is
sufficient to consider pro-p-groups; the reduction of the above-mentioned problem
to this case is due to Wilson [154].

It is not difficult to show that any pro-p-group has an open subset consisting of
elements of equal order p*. Such a subset can be linked with an automorphism ¢
of order p* of some open subgroup H for which

2 o
x-x¥.x¥ ., .. .x¥ = ]

for all x € H. One can conjecture that a result analogous to Corollary 6.4.5
must be valid for groups admitting such an automorphism. As we have already
remarked, although the projection of the given (¢)-identity is the identity x* = 1,
we cannot combine Theorem 6.3.1 with Zel’manov’s solution of the Restricted
Burnside Problem for groups of exponent p*, because the corresponding Lie ring
identities are not multilinear. Moreover, even for |¢| = 4, it is impossible to bound
the nilpotency class of finitely generated groups with such an automorphism — see
the Example below. One can only suppose that if a nilpotent group H admits such
an automorphism then it belongs to a locally soluble variety — this may turn out to
be enough to prove the boundedness of the exponent of a periodic compact group.

6.5.1 Example. Let (¢) be an automorphism of order 2 of the wreath product
G = (b) 1 {a) of cyclic groups (b) and (a) of orders 2 and 2", respectively, acting
on it in the following way: if

(b)2la) = (a by by ... by | Bl =b3 = ... =B, = |, bb; = b;b,,
b = bjyy. where i + 1 is a residue modulo 2"},
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then a* = a~' and bf = b_;, where —i is a residue modulo 2". Then G, as a
{g)-group, satisfies the (¢)-identity

x-x%.x¥ .x¥ =1 (6.5.2)

Indeed, x « x¥ . X x = (x - x¥)?, because ¢ = I, and, modulo the basis

(by, by, ..., by} of the wreath product, the product x - x¥ is trivial, since a¥ = a'.

Hence, x - x¥ & (b), b2, ..., by) and therefore x - x¥ - x¥ - x¥ = (x - x¥)? = 1,
since (by, ba, ..., ba) has exponent 2.

The projection of the (g)-identity (6.5.2) 1s the identity x* = | and groups

of exponent 4 constitute a locally nilpotent variety by Sanov’s theorem [124].
However, in spite of the fact that G > {g), being a finite 2-group, is nilpotent, the
nilpotency class of the 2-generator group G increases unboundedly with n.



Chapter 7

Splitting automorphisms of prime order
and finite p-groups admitting a partition

We have already come across the variety 9, of operator groups consisting of all
groups with a splitting automorphism ¢ of prime order p, that is, which satisfy the
operator identities

b

" - =1
¥ =x and x -x¥-x¥ ... _.x¥ =1.

Corollary 6.4.2 from the preceding chapter states that all soluble groups in M,
are nilpotent. Corollary 6.4.5 gives a positive solution to the Restricted Burnside
Problem for 9,,: the locally nilpotent groups in 9, form a subvariety or, equiva-
lently, the nilpotency class of a d-generator nilpotent group in 9, is bounded by
a function depending only on d and p (there are simple examples showing that no
such bound for the order exists). We give here another proof of this result which
provides additional information on the associated Lie ring of the semidirect prod-
uct G~ {¢), G € M, and which illustrates some Lie ring technique. This proof
uses Kostrikin’s Theorem 1.3.1 on (p — 1)-Engel Lie algebras of characteristic
p together with generalizations of Higman’s Theorem on regular automorphisms
of prime order applied to the case of a finite p-group with an automorphism of
order p - the Alperin-Khukhro Theorem 5.2.1. The main technical lemma is an
analogue of the Magnus-Sanov Theorem 3.3.2 on the (p — 1)-Engel condition for
the associated Lie ring of a group of prime exponent p.

For finite p-groups, the study of splitting automorphisms of order p is equivalent
to the study of groups admitting a proper partition (or groups which are distinct
from their Hughes subgroup). Thus, theorems on splitting automorphisms give
rise to a structural theory of finite p-groups admitting a partition. This theory
includes a positive solution of the Hughes problem for almost all (in some precise
sense) finite p-groups — in spite of the fact that there exist counterexamples to the
Hughes conjecture. [n the Comments in § 7.5 we indicate how the existence of these
counterexamples is connected with new identities in Lie rings of free groups of
prime exponent. In the opposite direction, we prove in § 7.4 another positive result
bounding the index of the Hughes subgroup under a certain hypothesis on these
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Lie rings. The proof here yields also unconditional results on any finite p-group
whose Hughes subgroup has index p*.

An important methodological principle in this chapter lies in the fact that we
consider free groups of varieties or varieties of operator groups; Higman’s Lemma
is applied several times in different forms. We also introduce certain other universal
groups analogous to free groups of varieties; for example, we prove the existence
of universal counterexamples to the Hughes conjecture.

Different approaches to the study of finite p-groups with a partition are discussed
in § 7.1 where we prove their equivalence. § 7.2 contains the positive solution to
the Restricted Burnside Problem for 01, and § 7.3 is devoted 10 1ts corollanes for
finite p-groups with a partition and, in particular, for the Hughes problem.

§ 7.1 The connection between splitting automorphisms
of prime order and finite p-groups admitting a partition

Definition. A group G is said to have a non-trivial (or proper) partition if it
1s the set-theoretic union of some of its proper subgroups with pairwise trivial
intersections:

G:Uf}a. Gy <G foralle, G,NGy=1 fora#§4.

This definition does not presuppose that G is finite; groups admitting a partition
have been extensively studied both from a general point of view and for particular
classes of groups — see the survey in § 7.5. We are primarily interested here in
finite p-groups admitting a partition. Hitherto the study of such groups has been
carried out exclusively in the context of the Hughes problem. This problem was
posed in 1957 in [45]; to state it, we need the following definition.

Definition. Let p be a prime. The Hughes subgroup H,(G) of a group G (with
respect to a given prime p) is the smallest subgroup of G outside of which all
elements have order p, that is

Hy(G)=(xeG|x" # 1}

(Here, as usual, a subgroup generated by the empty set is trivial by definition; in
this case H,(G) = 1 if G is a group of exponent p.)

Note that H,(G) is a characteristic subgroup of G by definition.
Of course, the Hughes subgroup often coincides with the whole group: on the
other hand, we have observed that the Hughes subgroup is trivial in a group of
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prime exponent p. D.R. Hughes asked: is it true that, if in a finite group G #
H,(G) # 1, then |G : H,(G)| = p? We shall say that a group G satisfies the
Hughes conjecture (for a given prime p) if either H,(G) = G or H,(G) = 1, or
|G : H,(G)| = p.

The Hughes conjecture was proved for groups that are not p-groups in 1959 by
Hughes and Thompson [46] on the basis of the fundamental work of Thompson
on normal p-complements | 140]; in particular, it was proved in [46] that a proper
Hughes subgroup of a finite group is necessarily soluble. Kegel in [54] supple-
mented this result by showing that a proper Hughes subgroup of a finite group is
nilpotent.

However, positive results on the Hughes problem for finite p-groups were of
a partial nature. Most interesting were counterexamples to the Hughes conjecture
first constructed by Wall [147] in 1965 for p = 5 with the value p* for the index
of a non-trivial Hughes subgroup. (See the survey in § 7.5.)

In spite of the existence of counterexamples, one of the aims of this chapter is
a positive solution to the Hughes problem for almost all (in some precise sense)
finite p-groups. Another positive result bounds the index of the Hughes subgroup
under a hypothesis that a certain conjecture on the Lie ring of a free group of
prime exponent is true.

An approach connected with splitting automorphisms of prime order p, which
originates from the works of Hughes and Thompson [46] and Kegel [54], turned
out to be most productive both in formulating problems and in results, We recall
an important definition.

Definition. An automorphism ¢ of a group < is called a splitring automaorphism
of prime order p if

=1 and x-x¥-x¥-...-x¥ =1

for all x € . Note that we do not exclude the case ¢ = | where, of course, G
has exponent p.

The following proposition unites three approaches to the study of finite p-groups
admitting a partition.

7.1.1 Proposition. If P is a finite p-group then the following three conditions are
equivalent:

a) P admits a non-trivial partition;

by P is distinct from its Hughes subgroup: H,(P) # P;

c) P may be expressed as a semidirect product P, ~ (p) where ¢ is a splitting
automorphism of prime order p of P\, here one can take any subgroup of index p
containing Hu,(P) for Py and any element of P outside Py for .
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Proaf. a) = b). Let P = || P, where the F, are proper subgroups of P with

pairwise trivial inl&mecliﬂns#(called components). We prove that all elements of
order greater than p belong to a single component. Then, obviously, the subgroup
H,(P) generated by these elements is also contained in this component and hence
is a proper subgroup. We fix an arbitrary element z of order p in the centre of P.
Now, if x is any element of order greater than p, then (xz)” = xPz/ = xV # |.
Since the components have pairwise trivial intersections, the elements x and xz,
whose p-th powers are equal and non-trivial, must lie in the same component
containing this p-th power. This component also clearly contains z. Hence all
elements of order greater than p belong 10 the single component containing :z.

b) = a). If H,(P) # P, then H,(F) together with cyclic subgroups of order p
outside H,(P) obviously constitute a non-trivial partition of P.

b) = ¢). Let H,(P) # P and let P, be an arbitrary subgroup of index p
containing H,(P). The following idenuty holds for any elements ¢ and x in any
group:

xox?ox¥ . x = (e (7.1.2)
We choose for ¢ an arbitrary element from P\ P;. Now, if x is any element of
P, then neither x¢ ™' nor ¢ belong to Py and hence neither of them belongs to
H,(P) = Pi. By the definition of H,(FP) these elements have order p and by
(7.1.2) ¢ may be regarded as a splitting automorphism of order p of P;_ It is also
clear that P = P, > (g).

c) = b). Let P = Py {p) where @ is a spliting automorphism of prime order
p of Pp. By (7.1.2) we get (xe~ ") =1 for any x € P;. Since any non-trivial
element of P/ Py which has order p is a power of the image of ¢!, any element
of P\ P, is of the form yv@~* for some k % 0 (mod p) and v € P,. Since P is a
normal subgroup, this implies that any element of P\ P, is a power of an element
of the form x¢~', which has order p, and hence has order p itself. Hence by
defimtion we have H,(FP) = P, < P.

The proposition is proved.

Finite p-groups admituing partitions may be regarded as a generalization of
groups of prime exponent p. This makes sense from each of the three points of
view represented in the statement of Proposition 7.1.1. Firstly, any group of prime
exponent p admits a partition consisting of subgroups of order p. Secondly, in
a finite p-group P admitting a partition, all elements outside H,(P) — and their
number is at least |[P|(p—1)/p - have prime order p. Finally, the operator identity
x-x¥ . x¥ . _.x¥" ' = | becomes the identity x” = | on putting ¢ = 1. It is
therefore not surprising that the techniques and results accumulated in the study
of groups of prime exponent may be successfully applied in the study of finite p-
groups admitting a partition. Thus the existence of counterexamples to the Hughes



184 Chapter 7 Splitting automorphisms of prime order and finite p-groups

conjecture is connected with new identities in the associated Lie rings of free
groups of prime exponent and the proofs of the positive results in this chapler use
Kostrikin’s Theorem 1.3.1 on {p — 1)-Engel Lie algebras and an analogue of the
Magnus-Sanov Theorem 3.3.2 on the (p — 1)-Engel condition for the Lie ring of a
group of prime exponent. The approach connected with splitting automorphisms of
prime order p is more “categorical” as it introduces the variety of operator groups
M, defined by the {¢)-identities x*" = x and xx¥x¥ .. x*"" = 1. We can
illustrate the methodological advantages arising by comparing the result of Cody
[16] with [56]. Cody proved that if a finite p-group P is metabelian and distinct
from its Hughes subgroup (that is, admits a partition) then H,(F) is nilpotent of
class = p. In [56] we proved, in particular, that, if in a finite p-group P # H,(P)
and H,(P) is metabelian, then H,(F) is nilpotent of class < p. Comparing with
Cody’s theorem, we see that the hypothesis here is weaker while the conclusion is
the same. However, more importantly, the result of [56] may be stated as follows:
metabelian groups in 9, are nilpotent of class = p. This more “categorical”
formulation in [56] permits the use of induction on derived length to prove the
nilpotency of soluble groups in M, - here we can refer to Corollary 2.3.4 or
Theorem 2.3.5. (In Chapter 6 this result on nilpotency of soluble groups in M1,
was obtained as Corollary 6.4.2 to a more general theorem on varieties of operator
groups.)

Although the nilpotency class of a d-generator nilpotent group in 9, is bounded
by a function depending on & and p only, there is an example showing that there is
no analogous bound for the order (even if we restrict ourselves to finite p-groups
in M, that is, even if the semidirect product is nilpotent). Namely, let

G = (@) % (@) % ... % {ap_1)

be a direct product of p copies of the infinite cyclic group and let ¢ be the
automorphism of G cyclically permuting the factors: a = a;,y, where i + 1 is
a residue modulo p. It is easy to see that ¢ induces a splitting automorphism of
order p of G/{apa, ...ap-1) and hence induces a splitting automorphism of P =
G/(G¥{apay ...ap-1)) for each s € M. It is easy to calculate that |P| = p*7~",

To conclude this section, we prove that the notions of splitting and regular
automorphisms coincide for finite p’-groups.

7.1.3 Lemma, a) If G is a finite p'-group admitting a splitting automorphism ¢ of
prime order p then ¢ is a regular automorphism of G.

b) If ¢ is a regular automorphism of prime order p of a finite group G then g is
a splirting automorphism of G.

Proof. a) If x¥ = x then

2 gl
l=x.x%.x¥ .. ... x¥ =xP,
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whence x = | since x is a p'-clement.
b) By a well-known formula (see, for example, Lemma 2.4.3) we have

Hx~'x¥ | x € G} = |G : Celyp)| = |G,

since Cg(@) = 1 by hypothesis. Hence, since G is finite, these sets coincide:
{x“'x"’l x € G} = G. Therefore, for every a € G, there is an x € G such that
a = x~'x¥ whence

a-a®a¥ . ....a " =) T I ) =1

The lemma is proved.

§ 7.2 The Restricted Burnside Problem for groups
with a splitting automorphism of prime order

The purpose of this section is another proof of the following theorem.

7.2.1 Theorem. For every prime p and every natural d there exisis a number
f(d, p) such that the nilpotency class of any d-generator nilpotent group admitting
a splitting automorphism of order p is not greater than f(d. p).

The scheme of this new proof is as follows. First of all there is an easy reduction
to the case of a d-generator finite p-group P with a splitting automorphism ¢ of
order p. As we have already said, Kostrikin's Theorem 1.3.1 on (p — 1)-Engel Lie
algebras is used. Note, however, that the associated Lie ring of a finite p-group from
M, can be non-(p — 1)-Engel when p = 5, as shown by the examples constructed
in [57] using the existence of non-(p — 1)-Engel identities in the associated Lie
ring of a free group of prime exponent p.

Nevertheless, we show that the associated Lie ring of the semidirect product P{g)
satisfies “almost all” consequences of the (p — 1)-Engel identity. More exactly,
if this Lie ring is represented as the factor-ring L/A of a free (d + 1)-generator
Lie ring (over Z) by an ideal A, then A contains pL and “almost all” of the
(p — 1)-Engel ideal E = ,{[x,¥,...,¥] x,¥ € L). (Note that it is impossible

=1
to prove the inclusion A 2 E + ;:L since the order of P cannot be bounded.)
Next, we consider the “trace™ of the subgroup Cp(g) in L/A - a subring L,/A
corresponding to Cplg) which, although not the associated Lie ring of Cp(y),
has the same order as Cp (). Applying Kostrikin's Theorem 1.3.1 to the (p — 1)-
Engel Lie algebra L/(E + pL) and using the information about A N E, we can
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bound the order of L,/A by a function of 4 and p. Next, by the Alperin-Khukhro
Theorem 5.2.1, the bound on |Cp(g)| implies a bound on the derived length of P
in terms of d and p. We finally need only apply Corollary 6.4.2 on the nilpotency
of soluble groups from 91, In addition, Theorem 5.2.1 allows us to assert that a
finite d-generator p-group P &€ M, also contains a subgroup of (d, p)-bounded
index which is nilpotent of class A(p).

We now proceed with a more detailed exposition.

Proof of Theorem 7.2.1. Suppose that G is a d-generator nilpotent group admitting a
splitting automorphism ¢ of prime order p. If the k elements ay, a3, . .. @, generate

G as a (g)-group then the pk elements a,,a’, af',...,afr'l, i=1,2,....k,
generate G as an abstract group. Therefore, in order to prove the theorem we may
assume that G is d-generator as a (g)-group.

It is not difficult to reduce to the case of finite p-groups, as follows. It is
well-known that finitely generated nilpotent groups are residually finite (see, for

example, [123]). If {N,]) is a family of normal subgroups of finite index in & with

P
trivial intersection then { [ N¥ } is a family of ¢-invariant normal subgroups
i=lI

of finite index in G with trivial intersection. It is clearly sufficient to obtain the

"
appropriate bound on the nilpotency class for each of the factor-groups G ‘/ N Nf .
We may therefore assume that G is finite. I

The Hall p’-subgroup G, of the nilpotent group G is normal and ¢-invariant.
By Lemma 7.1.3 ¢ is regular on G, so that G, is nilpotent of class < h(p),
where h(p) is Higman's function, by Higman’s Theorem 5.1.1. If G, is the Sylow
p-subgroup of G then G = G, x G . Hence G, is a homomorphic image of the
d-generator group G (by the natural homomorphism with kernel G ) and hence it
is also d-generator. It is therefore sufficient to prove the theorem for a d-generator
finite p-group and we shall consider this case in what follows.

In this situation the semidirect product G{g) is also a finite p-group which
is nilpotent of some nilpotency class n. Hence, G{p) may be represented as the
image of the free (d + 1)-generator nilpotent group F of class n with free gener-
ators v, Xy, X2, ..., x4 under the homomorphism # which extends the mapping of
X1, X2, ..., xy onto the generators of G and of vy onto ¢. Clearly, the full inverse
image of G under this homomorphism is the normal closure ([x,, x2, ..., x4}F) of
X1, X2, ..., xg. We put

N = (G- ¥ x € (Ix1 %20 ..., XalF)).
It is easy to see that N is a normal subgroup of F: for any g € F we have

(Ge-y™DPY = (- y ™)) = (- (7)) = (e - g, ¥] -y
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and »*[g, v] € {{x1. x2...., xg}t) since F < ({xy, xa, ..o xgbt )

7.2.2 Lemma. The homomaorphism 0 induces a homomorphism of F /N onto G(g).
that is, N < Ker#.

Proof. For elements generating N we have by (7.1.2)

(G- ¥ = (900 - 2y = (960 -9™) =
Blse) - D) PG .. PG TP =1,

since () € G, and ¢ is a splitiing automorphism of order p of G.
The lemma is proved.

7.2.3 Lemma. The group F /N is a finite p-group.

Proof. This group is nilpotent and is generated by d + | elements of order p.
the images of y ' x v oy L, x4y~ '. Hence all factors of its lower central
series are finite groups of exponent p (see Corollaries 2.5.4 and 2.5.6).

The lemma is proved.

Actually, F/N is a universal object analogous to a free group of a variety, In
order to prove the theorem, it is sufficient by Lemma 7.2.2 to obtain a bound for
the nilpotency class of the image in /N of the normal closure ({x,.x2..... xg153
which is the inverse image of G of course, this bound must depend on d and p
only.

We consider the associated Lie ring L(F/N) of F/N. It is also nilpotent of
class n and is generated by d + | elements, the images in the factor-group by the
commutator subgroup of the generators of F/N which, in turn, are the images of
Vo X1s X2y asnn xg (see 3.2.2 and 3.2.4). Let L be a free n-generator nilpotent Lie
ring of nilpotency class n (over Z) with free generators n. &), Ea. .. .. E4. There is
a Lie ring homomorphism of L onto L(F/N) which extends the mapping of the
n.&n.... £y onto the generators of L(F/N), the aforementioned images of images
of the v, xy,...,xs. The kernel A of this homomorphism is called the ideal of
relations of the Lie ring L/A = L{F/N). The ideal A is homogencous; for every
k € N, its homogeneous component of weight k is generated by homogeneous
clements of L of weight & which have the form 3 «;¢; where «; € Z and ¢; are

i
commutators of weight & in the generators 5. &), £+, ..., &; such that the product
[1¢5" of the group commutators ¢; with the same bracket structure in the generators
.

is irrelevant since commutators of weight & commute modulo 4 (F)).

Yo Xpe X2y ennss xy belongs to N - 441 (F) (here the order of the factors in the product
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Kostrikin's Theorem 1.3.1 states that the nilpotency class and, hence, also the
order of the (p— 1)-Engel (d + 1)-generator Lie algebra L/(pL+ E) over GF(p),
is bounded in terms of d and p. In order to be able to use this, we shall show that
the ideal A contains pL and the larger part of the (p — 1)-Engel ideal

E=sflu,v,v,...,v]Ju,veEL)
— e ——

p=1
Firstly we find generators of the additive group of E modulo pL.

7.2.4 Lemma. The additive group of E is generated modulo pL by elements of the
Sform

KW, W, V2, .. Up 1 B = Z [H.v.-m}.vmz:n---1Un{p—|:]_

NES_"_|
where u, vy, vz, ..., v, € L.
(The elements <u, vy, va, ..., v, are called Kostrikin elements.)
Proof. In a Lie algebra of characteristic p = 0, the identity [u, v, v,...,v]=01is
P

pl
equivalent by Lemma 3.3.1 to the identity

Z [uﬂr Urilps Vm2)s e oo s L':r{;r—-l:] =10.

;r-:SF. I

Hence E is generated modulo pL (as a Lie algebra ideal) by elements of the form

<o, Uy, U2, .., Wy 3> = E [0, Uaqr)s trg2)s - o s Uaip-11):
NESF-;

by, My, M, L, Uy € L.

For any [ € L and m € S, by the Jacobi identity [[a, b],c] = [la,c], b] +
[a, [b, ¢]] we have

[[ug, Woihys Ugq2)s o« - “;rl:p—t}]- l]=
= [[[uo, tairys Unizys o -, Unip=0)s ] Urip-ny]+

+Luo, txirys tni@ys oo s bmp- ) (e 11 = ...
p=1
P Z IHO-HN{IJ-H.‘T[E} ..... li-l',-r“;..” ..... H:n‘p-n].
—
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Therefore summation gives

['C.{Ht:--“hlfzq---‘Hp-;}}-” =
=1

— Z Z [Hﬁ.u,;]}, Hm(2ys « ooy [u_-,{.-]..’l ..... HJ{F._“I =

TER, =0
foad

. E lW.'ﬂ* Ui i lhe Vii2in oo v s ui'..‘T[;J'—l]'] o
i=0 R’ESP 1

where foreachi =0, 1,2,...,p—1

(Vio, Vi Vi2s oo s Vip1) = (o, ey ua, o [ ), ).
So, for every Kostrikin element <€up, uy. .... up1>» and for any [ € L, the
commulator [€ug, uy, ..., Uy 3>, 1] 18 equal 1o a linear combination of Kostrikin
elements. Hence the additive group of E is generated by Kostrikin elements.

The lemma is proved.

The following proposition (Theorem 1 of [75]) will substantially simplify the
notation in what follows.

7.2.5 Lemma. Kostrikin elements are symmetric module pL, that is,

S U, Hp2 = Elaq) Wa(2pe + - s H;-.[p].}} {mod PL}
forany uy us, ..., up, € L and for any permutation & € S,,.
Proof. Since the Kostrikin clements <€y, w2, ... . i3> are invariant under permu-
tations of the elements us. ..., u, by definition, it is sufficient to prove that

KUy U2, U3y ey Hp = Kz, Wy, W3, . ... up3 (mod pl).
We first establish this congruence in the case where u3 = ... = u, = u, and then
apply “linearization” afterwards.

Recall the notation [a,  b) = a. b, B, ..., b]. Note that
C—— o ——
i

[a, [b. nel) = 3 (=1 C)llla. ic). b, p-ic).

i=0



190 Chapter 7 Splitting automorphisms of prime order and finite p-groups

This formula is easily deduced from the Jacobi identity by induction. We apply it
to obtain

=2
Kuyuz iy up = (p =20 ) ([, gl uz], poa—pu] =
s el §

p=2
¥

p=3
==(p=2 ZHHL [y, pua]], p-2—nlt] =

=0
P-E 3 0 .
= (p-2)! Z Z{—1]'+'CL[1[H2. il up ]y poaiu] =
ezl fe=()
=2 P2 .
=(p-2!) (- (Z C.',) (w2, iul ey ], pez-ie] =
i=0 =i
=& Uy, uy, ..., u>3 (mod pL),
— —
p=2
since
p-2

(=" Ch=(="MCH =1 (mod p).

n==r

We now put u =us +... +up in

Ky M U, U= LUy, U, .. i (mod pL).
— — — —
p-2 p=2
MNow let wy, u2,.... u, be the free generators of a free Lie ring. Then this

congruence implies the congruence of its multilinear components (which is the
desired congruence). Since the «; are free generators, the same congruence holds
for arbitrary elements of any Lie ring.

The lemma is proved.

7.2.6 Lemma, The ideal A contains pl.

Proof. It is sufficient to prove that pc € A for any commutator ¢ in the genera-

tors n, £y, &, ..., & of L. Let ¢ denote the commutator with the same bracket
structure in the generators v,x;, xs,...,xy of F and let k be its weight. If
¢ E ({x).x2..... xg15) then (¢- y~')” and y” belong to N by definition. Hence

N contains their product (¢ - y~")? - ¥” which is congruent to ¢” modulo ([¢, v]).
But {[¢, v]) 15 clearly contained in y4 (F), 50 that ¢ € N -y (F). This means
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that pc € A. If, however, & & ({x;,x2....,x4)7), then & = y (recall that ¢ is a
commutator in y, xy, X3, ..., xXg), but ¥* € N whence again pc € A.
The lemma is proved.

The following main technical proposition is an analogue of the Magnus-Sanov
Theorem 3.3.2. Its proof is similar, although it requires somewhat more complicated
arguments. Those parts of the proof of Theorem 3.3.2 which fit here without much
alteration will simply be quoted. It is worth noting that the original proof [61] was
short since it used properties of the Baker-Hausdorff formula; here, since we are
aiming for a more self-contained exposition, we cannot use this short cut.

Further we shall consider only Kostrikin elements <up. uy, .. .. -1 involv-
lng commutators u; in generators n, £y, 82, ..., £y of L. We shall denote by «uy.
[T ip—1>> a product of commutators

[1 o iz @z in )
7ES,

involving subcommutators &; corresponding to Lie ring commutators i, that is,
i; 1s a group commutator with the same bracker structure as u; in the generators
¥y X1 X240 0., &g OF F. The order of the factors here is irrelevant because these
products will appear only in congruences where the factors commute modulo the
corresponding normal subgroups.

7.2.7 Proposition. Every Kostrikin element involving commutators in the generators
&1, 82, . ... &y of L which ix not of the form <a, n, ..., n3 belongs to A, that
— g—

-
is, Kuy uz, ... uy3 € A provided luy,uz, ... upl) # la,n, ... 0}

—,_——
p=

Proof. The difficulties which make the proof of this proposition different from the
proof of Theorem 3.3.2 are connected with the special role of the generator y
and with an asymmetry in the definition of N, which mayv be said to be “verbal”
only with respect to the generators Xy, Xz, ..., xy. In particular, applying homo-
morphisms to congruences modulo N, one has to take care that NV is invariant
under them.

For convenience we shall write

I
Kup izt (P = P = e Kt TP s 2

pP—3

where u; are commutators (in the generators n, &), ..., &, of L) different from n

(the case of s = p is not excluded). Here the CﬂthClElll ‘}, denotes an integer
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whose image in the multiplicative group of Z/ pZ: is inverse 1o the image of (p—s)!
(this is justified by the fact that L/A is a Lie algebra over G F(p) by Lemma 7.2.6).
In an analogous way we denote the corresponding product of group commutators
by iy, ua, ..., Us, (p — $)v3.

For technical reasons, we shall need the set R, of all commutators in the gen-
erators y, xy, Xz, ..., x4 of F which involve at least two equal elements of the set

{xi, X2y 0000 X}

7.2.8 Lemma. a) The subgroup (R.) is a normal subgroup of F and each of its
elements may be wrilten in the form

€1 Cyv vy (7.2.9)

where, for each i, the element ¢; is a product of powers of commutators of weight
i from R,.

b) If ¢ is a commutator from R, in y, xy, x2, ..., xg which has weight iy in v and
weight iy in x, (s = 1,2, ..., d) then the commutator obtained from ¢ by replacing
y by y* and x; by x}" for i, v, € M is equal to ¢ -r where x = i u‘:' -vé‘ el
and r is a product of powers of commutaters from K, each of which has weight
greater than that of c.

Proof. a) If ¢ € R, then [¢,b] € R, for any b € {y, x}, x7,..., x4} so that (R,) <
F. Since commutators in commutators from R, also lie in R,, any product of
powers of commutators from R, may be transformed by formulae of the collecting
process 2.7.5 to the required form (7.2.9). It is also clear that commutators from
R, have weight at least 2 (or even 3 since [x;, x;] = 0).

b) This follows from formulae 2.1.1 ¢), d).

The lemma is proved.

We return to the proof of the proposition. First, we prove that for every s =
2,3,..., p the Kostrikin element <&, &, ..., &, (p — s)n>> belongs to A. We
start with the element (x)x;...x,y)” € N and apply to the product

(Xix2 . Xp¥)XIX2 . XpY) L (DX L X Y)

"

a collecting process of the following form: we move all elements different from
x) to the left preserving the order of their occurrence by the formula

l":‘llah !!!! a;’,] h b e I‘J";I1+ﬂr‘“ . "fai,l'Lx!!ﬂf”'r-'rafr‘b]-r
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where b, a;, € (x2,x3,...%p, ¥}. S0, x3,x3,..., Xp. ¥ are transferred only by oc-
currences of x; and by commutators of the form [x),a;,,...,a; ] appearing at
preceding steps. As a result, we obtain the product

(xaxs...x,¥)0 - nlxha,-,.n,-:, R T 8

where the product is taken over all commutators appearing (in the order in which
they appear); here the case of r = () is not excluded, where [x.a;,..... a; | = x
by definition.

Since (xax3...x,y)" € N, the second factor also lies in N. We rewnite this fact
as

I—[[.n,a,-i.a;:,....u,-.j = | (mod N). (7.2.10)

The number of occurrences of a given commutator [xy, a;,. ... . a;, | on the left of
(7.2.10) may be calculated. Such a calculation is especially easy if it is conducted
modulo p.

7.2.11 Lemma. a) If the weight of |x;, a;,. . ... a;, ), where a; € {xa.x3. ..., Xp. ¥}
is less than p, then the number of its occurrences in (7.2.10) is a multiple of p.

b) If the weight of [xy, a;,, ..., a;, ], where a;, € {x3,x3, ..., ¥p. ¥} is p, then the
number of its occurrences in (7.2.10) is congruent to | modulo p.

Proof. It follows from the description of the collecting process which produced the
product (7.2.10) that the commutator [x, a; ,.... a; ), ai, € {x3, x3,..., x,. ¥}, 0c-
curs in (7.2.10) exactly the same number of times as the subsequence x;. a;,. .. .. ;,
occurs in the sequence

We partition the subsequence by brackets according to the brackets in (7.2.12)
(putting into a pair of brackets the segment of the subsequence which is contained
in one bracket in (7.2.12)). For example, for p = 5, for the underlined subsequence
in

(x1, X2, X3, X4, X5, ¥), (X1. X2, X3, X4, X3, ¥), (X1, X2. X3, X4, X5. V),

(7.2.13)

(xy, X2, X3, X4, X5, ¥), (X}, X2, X3, Xq, X5, V')

we obtain the following bracket structure: (x|, x1), (x5, v), (x2). (Here, of course,
not every bracket structure can appear: it is easy to see that a necessary and
sufficient condition is that the order of elements within a pair of brackets in the
subsequence matches the order x; < x> < ... < x, < y.)
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Thus the set of all subsequences in (7.2.12) which are equal to a given sub-
sequence 15 partitioned into subsets which differ according to different bracket
structures. The cardinalities of these subsets may be easily calculated modulo p.
For a given brackel structure in the subsequence x;, a;,, ..., a; (assuming k pairs
of brackets) the occurrence of this subsequence in (7.2.12) is uniquely determined
by the choice of those k brackeis in (7.2.12) from which the elements of the cor-
responding brackets in the subsequence xy, 4;,. ..., a;, are chosen. The existence
and uniqueness of such an occurrence follows from the fact that each bracket in
(7.2.12) contains exactly one of each of the elements x|, xs,..., x,, y. For ex-
ample, if we choose the 1-st, 2-nd and 3-rd brackets in (7.2.13) (instead of the
2-nd, 3-rd and 5-th ones) then we obtain for (x, x3), (xs, ¥), (x) the uniquely
determined occurrence

(X1, X2, X3, Xg, X5, ¥), (X), X2, X3, Xq, X5, YD (X1, X2, X3, Xg, X5, V),

(-[l- IE.J}, Xgy A5, _v}'r {xlq -‘-'2- xﬁ!"[“-'t'xj"l }’:l-

Therefore, the cardinality of the subset of subsequences which are equal to a
given one and have k pairs of brackets is equal to Cf,, If k < p then this number
is divisible by p. If the weight of [x,, a;,...,a,] 18 less than p then the number
of brackets is certainly less than p for any admissible bracket structure. Hence the
number of occurrences of this commutator in (7.2.10) 1s equal to a sum of certain
C}, with k < p and hence is a multiple of p.

If, however, the weight of [xy, a;,,...,a;,_,] is equal to p then there is only
one admissible bracket structure which gives a contribution not divisible by p
to the multiplicity of the occurrence in (7.2.10) — namely, when the number of
brackets is p: (x), (a;,), (@), ..., (@, ). Hence the number of occurrences of
this commutator in (7.2.10) is congruent w 1 modulo p.

The lemma is proved.

Although at the moment our aim is to prove that
&KX, X2y ey Xy (p—5)¥> =1 (mod N -y (F)) (7.2.14)

for every 5 = 2, for technical reasons we switch to caleulations modulo (R,) - N -
Yp+1(F). So we first prove that

=S TT - T X (p=s)y» =1 (mod (R:) - N - ypsa(F). (7.2.15)

Since all commutators in (7.2.10) involve x;, they commute modulo (R, ).

Note that by Lemma 7.2.11 the left-hand side of (7.2.15) is the multihomoge-
neous component of (7.2.10) of weight 1 in x;,¢ = 1,2,...,5, and of weight
p — s in y (this means that the product of all commutators in (7.2.10) of weight
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linxj,i=12,...,: s, and of weight p — s in ¥ is equal to the left-hand side of
{7.2.15), the order of commutators here being irrelevant as they commute modulo

{(Re)).
We rewrite (7.2.10) as a congruence modulo (R,) - N -y, (F):

[Tixai.ai, . ..oa,) =1 (mod (Re) - N - ypia (F)) (7.2.16)

and apply arguments similar 1o those used in the process of excluding commutators
of smaller weight which appeared in the proof of Theorem 2.8.11. Namely, we
apply to (7.2.16) the homomorphism o of F which extends the mapping

x; — x; foralli, y— "

where v € M is such that its image in Z/pZ has order p — | with respect 1o
multiplication (that is, it generates the multiplicative group of the field G F(p) =
Z[ pZ). Note that all subgroups (R, }, N, yp.1(F) are e-invariant. Then, taking an
appropriate power v~ of (7.2.16) and multiplying the congruences obtained, we
shall get rid of commutators of weight k < p — 1 consecutively. Since y,(F)" <
N - ¥ps1 (F) by Lemma 7.2.6, the exponents of powers of commutators of weight
p in congruences modulo (R} - N - ¥4 (F) may be regarded as residues modulo
p.

Here, however, there are two obstacles which lead o differences between this
and the proof of Theorem 2.8.11 which will be described now. First, it is im-
portant to preserve (modulo p) the multihomogeneous component of weight 1 in
xi,i =1,2,....5, and of weight p — 5 in y. But applying formulae 2.1.1 ¢), d)
to commutators of weight < p may lead not only to the emergence of commuta-
tors from R, but also to commutators of weight I in x;, i = 1,2,...,: ¢, and of
weight p — 5 in y. However. Lemma 7.2.11 a) and the fact that all commutators
containing x; commute modulo (R,) guarantee that additional factors from this
multihomogeneous component lie in y,(F)" < N -y, (F).

Secondly, here we cannot get rid of commutators of weight 1. that is, of x|, sim-
ply by multiplying (7.2.16) by .r,_" since this element does not lie in N. (Also, ap-
plication of the homomorphism o does not give the proper result for weight I since
v? —v!' =0 (mod p).) Instead, we multiply (7.2.16) from the outset by the ele-
ment (x;' y)7 - y~” which lies in N. Since (x;' )7 v~? = x, " (mod ya((x;, ¥})).
we get rid of commutators of weight |. All additional factors will be powers of
commutators in x; and y only and hence they do not change the multihomogeneous
component of (7.2.10) of weight | in x;.i = 1.2,....5, and of weight p — s in v
(we remind the reader that 5 = 2).

As a result we obtain

KX Ko X (p=5)yp =1 (mod (R)-N -y, (F),  (1.2.17)
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where s denotes a product of powers of commutators of weight p which do not
belong to the multthomogeneous component of weight 1 inx;, i =1,2,...,5, and
of weight p — 5 in y.

Transition from (7.2.17) to (7.2.15) is carried out by means of linearization in
the variables x;, xa, ..., x,, in practically the same way as in the proof of Theorem
2.8.11.

We apply to (7.2.17) the homomorphisms #; which extend, respectively, the
mappings

y—=>y Xxj—=1 and x;— x;fori+#j

and leave the subgroups (R,). N, ¥, (F) invariant. The image of the left-hand
side of (7.2.17) under #; is the product of all powers of commutators from (7.2.17)
which do not depend on the x;. Hence, firstly, all powers of commutators which
do not involve any of the x|, x3, ..., x, may be dropped in (7.2.17), and, secondly,
all powers of commutators involving any of the x4y, xi0..... xp may also be
dropped in (7.2.17). As a result, the product of the powers of commutators from
(7.2.17) which have weight | in each of the x|, x3, ..., x, and weight 0 in each of
the x; .1, X;43,---, Xp, 18 congruent to 1. Since the total weight of each commutator
is p, all of them also have weight p — 5 in y. Hence (7.2.15) holds.

Using Lemma 7.2.8 a), we rewrite (7.2.15) as a congruence modulo N - Yp+1(F):

€3:Cy- ... Cp- KX, X200 00y Yo, (p=s)y>=1(mod N -y, (F)), (71.2.18)

where, for every i, ¢; is a product of powers of commutators from R, of weight
i. We apply to (7.2.18) the process of excluding commutators of smaller weight
which was described in the proof of Theorem 2.8.11 and which was used just
above. Now we have no difficulties either with weight 1 or with preserving the
multihomogeneous component of weight 1 in x;,¢f = 1,2,..., %, and of weight
p — 5 in y since here both all commutators of weight = p — | and all new

additional factors appearing belong to (R,} by Lemma 7.2.8.
As a result, we obtain

XX, L X (p =)y =1 (mod N - yps(F)),

where 3¢ denotes a product of powers of commutators of weight p which do not
belong to the multihomogeneous component of weight | in x;,i = 1,2,...,5,
and of weight p — 5 in y. Linearization in the variables x, x5, ..., x,, exactly as
applied above to (7.2.17), transforms this congruence into (7.2.14), as required.

We have therefore proved that <&, &,...,&. (p—5In3 € A. Now our task is
to replace the &, &, ..., £, here by arbitrary commutators uy, us, ..., u, (distinct
from gn) in the variables n, &, &+, ..., E,.
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We rewrite (7.2.14) as a congruence modulo N
XN XDy e X, (P —8)y 2 = c"l" e r::' (mod N), (7.2.19)

where the ¢; are commutators in generators v, X, Xa, ..., Xg from y,.(F), that
is, of weight > p + 1. Before applying to (7.2.19) the homomorphism of F which
extends the mapping

y—=y, X—=ufori=12....: 5. Xx; = x;forj>s,

we must first use an analogue of Higman’s Lemma, as in the proof of Theorem
3.3.2

7.2.20 Lemma. A congruence of type (7.2.19) holds where all commutators c; in
the generators ¥, Xy, X3, ..., x4 have weight > p + | and depend on each of the

B ST 5 TR X5

Proof. We cannot simply refer to Corollary 1.10.6 and Lemma 1.10.1, since N 1s
not a verbal subgroup. Instead, we apply arguments similar to the proofs of these
results since y,,.(F) and N are invanant under the homomorphisms #; defined
above. If, for example, in (7.2.19) there are commutators among the ¢; which
do not depend on x,, then all their powers may be collected at the start of the
right-hand side. Application of i, then shows that their product is congruent to |
modulo N since the image of the left-hand side is | as also are the images of all
commutators depending on x;. We now repeat the process with respect to x», etc.
The lemma is proved.

We assume from now on that (7.2.19) satisfies Lemma 7.2.20.

We now complete the proof of the proposition. Let w, wa. . ... w, be arbitrary
commutators in the generators n, £, &, ..., &, of L which are different from n. If
ki is the weightof w;,i = 1.2,....: 7, then proving that

LUy, U, .. ue, (p =35I € A,
is equivalent 1o establishing
Ky, ity ooy, (p=8)y» =1 (mod N - Yysipi 4k 4p-s+1 (F)) - (7.2.21)
where the &; are the corresponding group commutators in the generators v. xy, x.
- ;!-‘;’:dﬂlppiy to (7.2.19) the homomorphism t of F which extends the mapping

y—=>y xi—u fori=12,....5, x;—x;forj>s.



198 Chapter 7 Splitting automorphisms of prime order and finite p-groups

Since the images of the x, x2, ..., x4 lie in the normal closure ({x;, x2, ..., xq}F)
and the image of y is y, the subgroup N is r-invariant. Hence we obtain

KU U2, (P —S)yE =1(c))" - T(e)” ... - 1) (mod N).

We now need only show that t(c;) belongs 10 ¥, 4, 4. 4k 4p-s+1 (F) for every i.

Since [y;, ¥j] < ¥i+j. a single occurrence in ¢; of each of the x;,i = 1,2,... 5,
contributes &; to the index of that term of the lower central series of F which
contains 7(¢;). But the weight of ¢; is at least p + 1. Hence other occurrences of
the y, x;, X2, ..., Xy, whose total number is at least p — 5 + 1, increase that index
by at least p — s + 1. As a result we have

T(€i) € Viythast. 4k +p-si1(F)

for all i. The congruence (7.2.21) follows and hence <u, us, ..., u,, (p—s)n> €
A, as required.
The proposition is proved.

It is clear that, by Lemma 7.2.4, Proposition 7.2.7 gives the following description
of generators of the additive group (E + A)/A.

7.2.22 Corollary. The additive group of the (p — 1)-Engel ideal E is generated
modulo the ideal A by the elements of the form &a,(p — 1)n3, where a is a
cammurator in the generators n, &y, &, ..., Ejof L.

Recall the notation introduced above:

Ka. (p=I1mz=Ila,nn....n]l=la, p-inl

p=1
We now apply Kostrikin’s Theorem 1.3.1.

7.2.23 Corollary. The additive group of the (p — 1)-Engel ideal E is generated
maodulo the ideal A by the elemenis of the form

L&, wnl, (7.2.24)

where m = p — | and b is a commutator in the generators n, &, &, ..., £ of L
whose weight is bounded by Kostrikin's function k(d, p). depending on d and p
only, which bounds the nilpotency class of the (d + 1)-generator (p — 1)-Engel Lie
algebra L/(E + pL) of characterisric p.

We fix notation kid, p) for this Kostrikin’s function,
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Proof. By the preceding corollary the additive group E is generated modulo A
by elements of the form [a. ,—n], where a is a commutator in the generators
n, &1, &, ..., & of L. By Theorem 1.3.1, the factor-ring L/(E + pL) is nilpotent
of (d. p)-bounded class k(d, p). If the weight of a is greater than k(d, p). then
a € E+ pL and the element a 1s also equal modulo A (which contains pL) to a
linear combination of elements of the form [a,, ,-n] where a; is a commutator
in the generators n,&,42,...,&; of L, and hence [a, ,_n] 15 equal to a linear
combination of elements of the form [a,. 2, an]. The same arguments may be
applied to these elements as long as the weight of a, is greater than k(d, p), etc.
As a result, every element of the form [a. ,_ ;5] may be represented modulo A as
a linear combination of elements of the form (7.2.24) which therefore generate the
additive group £ modulo A.
The corollary is proved.

Corollary 7.2.23 yields a description of all homogeneous elements of E.

7.2.25 Corollary. Every homogeneous element of E is equal modulo A to an ele-
ment of the form [b, ,n] where m = p — | and b is a homogeneous element of 1.
whose weight is at most k{d, p).

Proof. By Corollary 7.2.23 an arbitrary homogeneous element | € E of weight s
1s equal modulo A to a linear combination of elements of the form (7.2.24):

=3 albj,mnl (mod A),
i

where m; = p — | and the weight of &; is at most k(d, p). Since the element /
and the ideals E and A are homogeneous, we may assume that the weight of b;
is § —m; for each j. If r is the maximal weight of the clements b;, then clearly
s —m; < r for all j, that is, m; — 5 +r = 0. Hence we may write

l = [zﬂjlbpm,—swﬂ!-s—rﬂ} {mﬂ'd A}
J

where b = 3 a[b;, m,-,+,1] is a homogeneous element of weight » < k(d. p).
J
The corollary is proved.
Now our main goal is a (4, p)-bounded estimate for the order of the centralizer

Crin(¥) where ¥ is the image of v in F/N. We shall write y = w(F/N), k € M,
for brevity.
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We define the “trace™ of the subgroup Cg n(¥) in the additive group of the Lie
ring L to be the full inverse image L, of the additive subgroup

r_é{(CFfH{j’] v vis)/vis

of the Lie ring L(F/N), where the i-th summand is regarded as a subgroup of the
homogeneous component of L{F/N) of weight i. (In fact, as it is easy to see, L,
1s even a subring, but we do not need this fact.)

Although L, /A is not the associated Lie ring of the group Cg/n(y), their orders
coincide.

7.2.26 Lemma. We have |L|/A| = [Cgn(¥)].

Proof. Consider the normal series
Cen(P)2CeniVNyp2Cen(MNH2...2Cun(M) Ny, 21,

of Cgyn(¥). whose factors are isomorphic to direct summands of L/A:

(Crn(M Ny Crn(¥) N ¥ig1) =
= (Cpn V) N ¥ (Crn(¥) Ny Nyign) = (Crw(3) V) - Vis ) Vi

Hence the order of Cg/n(¥) is equal to

| ey Ny - vie) /il

=l

— as is the order of L,/A.
The lemma is proved.

The following is the key lemma for bounding the order of L,/A.
7.2.27 Lemma. If a is a homogeneous element of L then [a, n] € A.

Proof. Since a is homogeneous of weight 1, say. the hypothesis implies that the
element @ € F belongs to the inverse image of (Cgn(¥) N ¥) - ¥41: here a
denotes the product of powers of commutators in the generators y, x), xz,..., Xy
which corresponds to a as a linear combination of Lie ring commutators of weight
{ in the generators n, &, &,....& of L. Denoting images in F/N by bars, we
may write this as @ = ¢ - g where ¢ € Cgn(y) Ny and g € y;4. Then we have

[@.¥1=[c-g ¥ =[c. 51 -[2. 7] = (&, J] € ¥is2.
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By the definition of multiplication in the Lie ring L(F/N) the image of [a. n]in

L/A, which lies in the_hnmngenenus component of L(F/N) of weight i + 1, is

equal to the image of [a, ¥] in y41/y+2 and hence is trivial. Hence [a, n] € A.
The lemma is proved.

This lemma immediately implies

7.2.28 Corollary. For every homogeneous element b, there is at most one value of
m € M such that the image of [b, ,n) in L/A ix a nontrivial element of L, /A.

Now we are ready to bound the order |L,/A|. It is clear that
LAl = Ly /Ly (E + A) - |[(Ly N (E + A))/A).

Since L,/L, N(E + A) = (L, + E + A)/(E + A), the order of the first factor is
(d, p)-bounded, since A 2 pL by Lemma 7.2.6 and the order of L/(E + pL) is
bounded in terms of d and p by Kostrikin's Theorem 1.3.1.

It therefore remains to bound the order of (L; N(E + A))/A. In view of the fact
that the additive subgroups L, E and A are homogeneous, it is sufficient to bound
the number of images of homogeneous elements in this additive factor-group.

By Corollary 7.2.25 all homogeneous elements of Ly N(E + A) have the form
[b. 1] (mod A), where b is a homogeneous element of L whose weight is not
greater than k(d, p). For each such element b, there is, by Corollary 7.2.28, at
maost one value of m such that the image of [b, ,n] is, modulo A, a non-trivial
element of L. Since A 2 pL, this implies that the number of non-trivial images
of homogeneous elements in (L, N (E + A)}/A does not exceed the number of
homogeneous elements of L/pL of weight = k(d, p) and hence it is (d. p)-
bounded.

Thus we have proved that the order of L;/A and hence also, by Lemma 7.2.26,
the order of Cg n(¥), are (d, p)-bounded.

By Theorem 5.2.1 the finite p-group F/N. which admits the automorphism
of order p induced by conjugation by v which has a (d, p)-bounded number of
fixed points Cg,n(y), possesses a subgroup of (d, p)-bounded index which is
nilpotent of class < h(p), where h(p) is Higman’s function. In particular, this
group 15 soluble of (d, p)-bounded derived length. By the definition of N and by
Proposition 7.1.1 the element v induces a splitting automorphism of order p of
the image of the normal closure ({x;.x2..... 1Y in F/N. Hence, by Corollary
6.4.2, the nilpotency class of the image of ({x;, x3,....xs}") is (4. p)-bounded.

The theorem is proved.
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§ 7.3 The structure of finite p-groups admitting a
partition and a positive solution of the Hughes problem

All results in this section describing the structure of finite p-groups admitting a
partition are consequences of the main Theorem 7.2.1. For finite p-groups, it may
be reformulated using Proposition 7.1.1 as

7.3.1 Theorem. Every d-generaior finite p-group admitting a partition contains a
subgroup of index p which is nilpotent of (d, p)-bounded class not greater than
Sfd =1, p) where [ is the function from the statement of Theorem 7.2.1.

Proof. If a d-generator finite p-group P admits a partition then by Proposition 7.1.1
it may be represented as a semidirect product P = P; » (¢} where g is a splitting
automorphism of order p of P,. The element ¢ may be included in a minimal
system of generators of P in such a way that the remaining d — | elements belong
to P,. (This follows from the Burnside Basis Theorem 2.8.5: it is clear that the
image of ¢ in P/ (P) is non-trivial and together with the image of P, generates
the whole factor-group.) These d — 1 elements generate P, as a (g)-group. Since
P, is a finite p-group, it is nilpotent and we may apply Theorem 7.2.1.
The theorem 1s proved.

It is easy to see that the proof of Theorem 7.2.1 yields also another result for
finite p-groups based on Theorem 5.2.1.

7.3.2 Theorem. If a d-generator finite p-group admits a splitting automorphism of
prime order p then it has a subgroup of (d, p)-bounded index which is nilpotent of
class < h(p), where h is Higman's function.

Proof. Let P be a d-generator finite p-group admitting a splitting automorphism
@ of order p. Then, as it was shown in the proof of Theorem 7.2.1, the order
of Cply) is bounded in terms of & and p. (Although, in the proof of Theorem
7.2.1, such a bound was obtained for the universal group F/N, that is, for the
order of Cg n(¥), the inequality |Cp(@)] < |Cpg/n(y)| holds by Theorem 1.6.1.)
An application of Theorem 5.2.1 completes the proof.

The theorem is proved.

A corresponding theorem for finite p-groups with a partition is derived from
Theorem 7.3.2, in an analogous way using Proposition 7.1.1.

7.3.3 Theorem. Every d-generator finite p-group admitting a partition contains a
subgroup of (d, p)-bounded index which is nilpotent of class < h(p), where h is
Higman's function.
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We shall now prove that the Hughes conjecture holds for almost all finite p-
groups. This is the content of the next two theorems.

7.3.4 Theorem. For a given prime p, the Hughes conjecture holds for all finite
p-groups which contain elements of sufficiently large order p™'P, where « is a
function depending on p only.

7.3.5 Theorem. For a given prime p and a given number d, the Hughes conjecture
is valid for all finite d-generator p-groups of sufficiently large order > pPd-r,
where f is a function depending on d and p only.

It makes sense to fix the number of generators in the statement of Theorem
7.3.5, since if there is a finite p-group which is a counterexample to the Hughes
conjecture, then there exist d-generator counterexamples for all 4 = 3. This follows
from the construction of universal counterexamples to the Hughes conjecture which
will be given later.

Proof. It is clear that we may prove equivalently that any finite 4-generator p-group
P which is a counterexample to the Hughes conjecture has p-bounded exponent
and (d, p)-bounded order. We shall in fact prove this under the formally weaker
hypothesis |P : Hp(P)] = p*. (Although this result includes a positive solution to
the Restricted Burnside Problem for groups of prime exponent as a special case, we
remind the reader that the proof of the main Theorem 7.2.1 is based on Kostrikin's
Theorem 1.3.1.)

We choose a subgroup Pj such that P = Py = H,(P) and |P : P|| = p. By
Proposition 7.1.1, the group P, admits a splitting automorphism ¢ of prime order
p induced by conjugation by an element from P\ P,. We prove that the exponent
of H,(P) is bounded in terms of p. We fix an arbitrary element a € P\ H,(P).
Then for any x € H,(P), both a and ax do not lie in H,(P) and hence have order
p. The subgroup generated by the 2p elements

' ax. (ax)®. {ar}“’! ..... (ax)*’ I

(or, which is 2-generated as a {¢}-subgroup by the ¢ and ax) is g-invariant, that is,
it also admits a splitting automorphism of prime order p. Therefore, by Theorem
1.2.1 1ts mlpotency class is p-bounded by f(2, p) where f is the function appearing
in the statement of Theorem 7.2.1. Hence the exponent of this subgroup. which
is generated by elements of order p, divides the p-bounded number p/® (see
Corollary 2.5.4). But this subgroup contains x = «~'-ax. So, the order of any
element x € H,(P) divides p/>". Since the exponent of P/H,(P) is p, the
exponent of P itself divides the p-bounded number p/P+!,
Theorem 7.3.4 is proved.
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We now prove that the order of P is bounded in terms of & and p. As in the proof
of Theorem 7.3.1, 1t i1s easy 1o see that P; may be generated by d — | elements.
We can choose these elements to lie outside H,(P) and hence having order p (if,
in some set of generators of Py, the elements by, by, .. ., b, belong to H,(P) then
they can be replaced by ab,, ab,, ..., ab, where a is an element of the set which
does not belong to H,(FP)).

By Theorem 7.2.1 the nilpotency class of P, is at most f(d — 1, p), where f
is as above. By Corollary 2.5.3 each factor of the lower central series of P, has
exponent p and by Corollary 2.5.6 it is generated by a (d, p)-bounded number of
elements. Hence the order of Py, and therefore the order of P, is bounded in terms
of d and p.

Theorem 7.3.5 is proved.

Theorem 7.3.5 yields the existence of universal counterexamples to Hughes con-
jecture which also has the form of a positive solution to the Restricted Burnside
Problem for such groups. By the term, a counterexample 1o the Hughes conjeciure,
we shall always mean a finite p-group which is a counterexample to the Hughes
conjecture.

7.3.6 Corollary. Suppose that p is a prime for which there exists a counterexample
1o the Hughes conjecture. Then, for every d = 3, there exists a universal d-generaror
counterexample to the Hughes conjecture such that all d-generator counterexamples
are its homomaorphic images.

Suppose that p is a prime for which there exists a 2-generator counterexample to
the Hughes conjecture. Then there exisis a universal 2-generafor counterexample
such that all 2-generator counterexamples are its homomorphic images.

Proof. At first, we describe a general construction for a universal group analogous to
the group F/N in the proof of Theorem 7.2.1. Let p be a prime, n a natural number
and let F be a free d-generator nilpotent group of class n with free generators
Flo V20 X1, X700 0oy Xg=1. WeE sl

N = “."':{! '}'§’ ) | e Fo(xy, Xa, oo, Xaoa),
where either k; # (0 (mod p) or k> # 0 (mod p)).

It is easy to see that NV 15 a normal subgroup of F: forany g € F

(O 95 0P = (35 308" = O 8 e D) 35t s, gD

and s - [_vf' -y?’ cagle Frofxpoxa, on., X2}
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Since F/N is nilpotent and is generated by elements of order p. for example,

the images of vi. y2, ViXp. ¥4, ..., Y1 Xg-2, it is a finite p-group (see Corollaries
2.5.4 and 2.5.6).

Put F, = F' - . vl i x, .., Xg-2); then |F : Fi| = p?, the factor-group
F‘,lﬁ has ¢xponent p and hence Fy = F" = N. Every g € F\F, has the form
vy -}‘g’ -3¢ where e F'- (), x0..... X4q-2) and either k; 5 0 or k7 # 0 (mod p).

therefore g” € N by construction. Hence all elements of (F/N)\(F,/N) have
order p, that is, Fi/N = H,(F/N).

Although |F/N : H,(F/N)| = pz, it may very well happen that H,(F/N) =1
and F/N is not a counterexample to the Hughes conjecture.

Suppose, however, that P is a counterexample to the Hughes conjecture. Since
|P : H,(P)| = p’. we can choose a subgroup P, of index p* containing H,(P)
and two elements b, by of order p such that they, together with P, generate P.
Since H,(P) # |, there is an element a € H,(P) of order pe.

Now if, in the definition of F/N given above, we put n equal to the nilpotency
class of P and d arbitrary = 3, then the mapping

¥ --}bh _j.'z—.'irbz. Xy —>d, X —* 1 fori 22
extends to a homomorphism # of F into P. Its kernel contains N. Indeed, we have
BON Py = (BB 9 ()7,

and if either k, % 0 or k» % 0 (mod p) then b}' - b5 does not belong to P, while
#(x) € Py since P((x1,x2,..., x4-2)) © Hp(P) S Py and 9(F') € Pi. Hence
by - b5 - 9 (3¢) has order p whence

Dby - B - )Py = 1,

that is, Ker# 2 N. So # induces a homomorphism of F/N into P which is
denoted by the same letter.

It is clear now that the image of x; in F/N, being an inverse image of a which
has order p°, has order = p*. So, H,(F/N) # 1.

By increasing the value of » in the definition of F/N, we shall also obtain
d-generator counterexamples 1o the Hughes conjecture, the order of F/N being a
non-decreasing function of n. But, by Theorem 7.3.5, the order of a d-generator
counterexample to the Hughes conjecture is bounded in terms of  and p. Hence,
the order of F/N stops increasing at some value of n and we shall assume thereafter
that F/N is just the limit group in this sense.

Suppose now that P is any d-generator counterexample to the Hughes conjecture.
We prove that P is a homomorphic image of F/N. Since F/N does not change
with increasing n, we may assume that the nilpotency class of P is not greater
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than n. We choose elements by, b, € P and a subgroup P, = P as above. Since
the images of () and (b:) are distinct in P/P(P), as P(P) T Py, the elements
by, b may be supplemented by d — 2 elements ay, as, ...,ay-2 of Py 1o give a
minimal set of generators of P (by the Burnside Basis Theorem 2.8.5, see also the
proof of Theorem 7.3.1).

The mapping

wiw—=b, va—= by, x;—a, i=12...,d=12

obviously extends to a homomorphism # of F onto P. We must now prove that
its kernel contains N. We have ﬁ({yf'yé”x}f’} = {bf‘bﬁ*ﬂtx}}]f’ and if either
ky % 0 or k» # 0 (mod p) then b\'b% does not belong to Py while #() € Py as
P{xy, x2, .o Xg—2)) = lay, a2, ... ag-2) © Py and #(F') € Py. Hence, the order
of bf'b;’ﬂ(;-:] is p, that is, .:?{[.E}T‘.‘J;’x}f’} = |. So, Ker#* 2 N and # induces a
homomorphism of F/N onto P, as required.

Suppose now that there exists a 2-generator counterexample T to the Hughes
conjecture. Clearly, we have H,(T) < &(T).

Put d = 2 in the definition of F/N, that is, F = {y;, y2) and

N = {((y;" - ¥5' - 2)"| 3¢ € F', and either k, # 0, or k2 # 0 (mod p)).

Let Fy = F'- (¥, ¥)): it is easy to see that F; > N and |F : F\| = p*. Also,
we have F|/N > H,(F/N) and |F/N : H,(F/N)| > p*.

We take n now to be the nilpotency class of T. If by, by are generators of T
then the mapping vy — b, y» — b, extends to a homomorphism # of F onto T
whose kernel contains N. Indeed, we have

B(YY - ya2 - s0)P) = (Y - BET . 9 (50))”

and, if either ky % 0 or k3 # 0 (mod p), then b}' b5 does not belong to (T’ while
?(x) € T' = ®(T). Hence the order c-fbf'f:{-‘ﬂ(x] is p, so that 0 ((b)" -b5 - 5)P) =
I. S0 Ker## 2 N and # induces a homomorphism of F/N onto T which is denoted
by the same letter. Since the exponent of T is greater than p, the exponent of F/N
is also greater than p, so that F/N is a 2-generator counterexample to the Hughes
conjecture.

Increasing the value of n in the definition of F/N, we shall also obtain 2-
generator counterexamples o Hughes conjecture, the order of F/N being a non-
decreasing function of n. But, by Theorem 7.3.5, the order of a 2-generator coun-
terexample to the Hughes conjecture is bounded in terms of 2 and p. Hence, the
order of F/N stabilizes at some value of n, the corresponding limit group F/N in
this sense is the desired universal 2-generator counterexample. The fact that any



§ 7.3 The structure of finite p-groups admitting a partition 207

2-generator counterexample T to the Hughes conjecture is a homomorphic image
of F/N has, in fact, already been established above.
The corollary is proved.

Finally, we give an alternative proof of the Hughes conjecture for almost all finite
p-groups. Theorems 7.3.4 and 7.3.5 may be derived from the following theorem
which is an exact analogue of the Magnus-Sanov Theorem 3.3.2 for counterex-
amples to the Hughes conjecture. Actually, the positive solution to the Hughes
conjecture follows from this theorem directly, via Kostrikin's Theorem 1.3.1, but
its proof uses Lemma 7.2.6 and Proposition 7.2.7 from the proof of Theorem 7.2.1.

7.3.7 Theorem. The associated Lie ring of anv counterexample 1o the Hughes
conjecture has characteristic p and satisfies the (p — 1)-Engel condition.

Proof. Standard arguments show that it is sufficient to prove the theorem for a
universal group F/N, where F is a free nilpotent group of sufficiently large class
n with free generators vy, y2.xy, xa, ... and

N = (O ¥ 0P e F - (xx,..0),
where either ky £ 0 (mod p) or k; # 0 (mod p)).

Let L/A be the associated Lie ring of F/N, where L is a free nilpotent Z-Lie
ring of class n with free generators 1y, 12, &), &, ... and A its ideal spanned by
the (N Ny, (F)y(F)/yie (F) regarded as additive subgroups of homogeneous
components of L. = L(F).

The subgroup N obviously contains both

Ny = (3] 35 - %)l € F' - {x1.x2....). where k; % 0 (mod p))

and
Ny = {{_\'f' . _1';‘: ~3)’| e F' - (xy,x2....), where ks # 0 (mod p)).

It is easy to see that both factor-groups F/N, and F/N> are universal groups
in the sense of the proof of Theorem 7.2.1 (where the images of v, and v, take
the role of the splitting automorphism of prime order p, respectively). Hence, by
Lemma 7.2.6, A contains pL. Furthermore, by Proposition 7.2.7 applied to F/N,,
A contains all Kostrikin elements in commutators in the generators 7. 9. &, &, ...
which are not of the form <a, n,. ..., n; 3. But the latter ones are not of the form

e

=1

“a, na, ...n2 3> and therefore belong to A, by Proposition 7.2.7 applied to F/N-.

— —
=1
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As a result, we get that all Kostrikin elements in commutators in the generators
ni, N2, &1, &2, ... are contained in A, which means that the Lie ring L/A satisfies
the (p — 1)-Engel identity (see Lemma 7.2.4).

The theorem 15 proved.

The positive solution to the Hughes problem now easily follows.

7.3.8 Corollary. a) The nilpotency class of a d-generator counterexample ro the
Hughes conjecture does not exceed kid, p), where k(d, p) is Kostrikin's function
depending on d and p only, which bounds the nilpotency class of a d-generator
(p — 1)-Engel Lie algebra of characteristic p.

by The order of a d-generator counterexample to the Hughes conjecture is
bounded on terms of d and p.

¢) The exponent of a counterexample to the Hughes conjecture is bounded in
terms of p only.

Proof. Let P be a d-generator counterexample to the Hughes conjecture. The
required bounds for the nilpotency class and the order of P follow from Kostrikin’s
Theorem 1.3.1 applied to the associated Lie ring of P whose nilpotency class and
order coincide with those of P. It follows that the exponent of any 3-generator
counterexample is bounded in terms of p only. Now, if b; and b, are chosen as
in the proof of Corollary 7.3.6 (so that they are “independent™ elements outside
H,(F)), then for any a € H,(P) the subgroup (a, by, b;) is also a counterexample
to the Hughes conjecture whenever a” # 1. Hence the order of any a € Hn(F) is
bounded in terms of p only.

§ 7.4 Bounding the index of the Hughes subgroup

We have already mentioned that the existence of finite p-groups which are coun-
terexamples to the Hughes conjecture is connected with new identities in the Lie
rings of free groups of prime exponent. All multilinear identities of these Lie rings
were described by Vaughan-Lee [144] and it is conjectured that all of their relations
are consequences of these multilinear identities. Wall has proved that the index of
the Hughes subgroup in the counterexamples to the Hughes conjecture may be the
larger, the more of the Vaughan-Lee’s multilinear identities arc not consequences
of those of smaller degree (see comments in § 7.5). However, little is known about
which of these identities are really new in this sense. We prove in this section
that if |P : H,(P)] = p* in a finite p-group P then the associated Lie ring of P
satisfies all multilinear identities of degrees < (k — 1){p — 1) + | of the associated
Lie ring of a free group of exponent p. This result is contained in the proof of
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the following theorem; another consequence of this proof is a lower bound for the
nilpotency class of P in terms of the structure of P/H,(P), provided H,(P) # 1.

7.4.1 Theorem. If the associated Lie ring of a free countably-generated group of
prime exponent p is a relatively free Lie ring all of whose identities follow from its
multilinear identities of degree at most 1 +ko(p — 1) then the index of the non-trivial

Hughes subgroup H,(G) # 1 in an arbitrary finite group G is at most phe.

Refore proceeding with the proof of the theorem, we quote some properties of
the multilinear identities of the associated Lie rings of groups of prime exponent
p from the works of Vaughan-Lee [144] and Wall [152] and fix some notation.
It is convenient to consider the factor-group F/F” of a free countably-generated
(nilpotent of class ¢, say) group F with free generators xj, x3, ..., ¥i. ¥2,.... Then
its associated Lic ring L(F/F") may be represented as a factor-ring of a free
Lie ring L (over Z) with free generators &, £2...., Ni. N2, ... by an ideal J, the
images of the generators &, &, ..., N1, N2, ... being identified with the images
of xy, xa, ..., ¥, ¥2, ..., respectively, in (F/FP)/(F/FPY = F/(FP - F') as the
homogeneous component of L{F/F") of weight 1. According to [144], for each
k & M, there is a multilinear identity V; of degree & which holds in L(F/F")
and all multilinear identities of L(F/F7) are exhausted by the consequences of
these Vi. The hypothesis of the theorem means that the ideal I is a verbal ideal
generated by the Lie ring words Vi(5,. 5., .... 5 ) fork < 1 + kp(p — 1). Since
these words are multilinear, the additive group [ is generated by the values

Vil fa, ..., M), k<1+4+ko(p—=1)

where u; € L and, moreover, we can lake the x; to be commutators in the
generators &, &1, ..., ni. N, ... of L.

(Note that the same description is valid also for the associated Lie ring of a free
group of exponent p with a finite number of generators. An appropriate finitely
generated free group F embeds in F by including its free generators in a set of free
generators of F and the corresponding free Lie ring L embeds in L in an analogous
way. If a homogeneous element p belongs to I where L(F/FFP) = LI, then it also
belongs to / since both F” and y;(F) are contained in F7” and y,(F), respectively.
Hence p is a linear combination of the values of the V, at elements of L. It remains
to show that it is sufficient to take only the values of the V; at elements of L. This
is obvious after applying to the resultant equality the homomorphism of L which
is identical on L and which takes the generators of 1. which are outside L to 0.)

We do not need the explicit form of the identities Vi, but only some of their
properties. We denote the ideal whose additive group is generated by the values
Vilpey, oy .oy jtg) of the Vy for k < 5, by I,.
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742 Lemma (144, Lemma 5). For every k € I the Lie ring polynomial Vj, is a
symmetric function modulo I, _, that is,

Vi(iaiys Brys -+ Ban) = Vil g2, oo, ) (mod )
Jor any p; € L and any m € §y.

7.4.3 Lemma [144, Lemma 8. For every k € M the value of the polynomial
Vipty, o, .., ) belongs to 1y if there are at least p equal elements among the
Arguments fiy, fiz, - - -, Hk-

According to this lemma we can reformulate the hypothesis of the theorem as
follows: the additive group [ is generated by the values

Vilpg, pezs oo ite), k=1 +ko(p —1) (7.4.4)

where the p; are commutators in the generators &, &, ...,9y, 12, ... of L and
neither of the w; occurs more than p — [ times.

We continue to use the following convention. Let u(&),&, ..., 0, n2,...) be
a homogeneous Lie ring polynomial of degree s; it is a linear combination
of commutators of weight s in generators &), &, ..., Ny, N2, -... We shall de-
note by u(x,, x2,...,y,¥:,...) a product of powers of group commutators
with the same bracket structure in generators Xy, x2,..., ¥1, ¥2,... and with
exponents equal to the coefficients in the corresponding Lie ring commuta-
tors (the order in which this product is taken is arbitrary since it will oc-
cur only in congruences modulo y,,(F)). So u(&, &, ....0, 02, ...) is the
image of wu(xy, xa, ..., v, ¥2, ... )¥s41(F) under the canonical isomorphism of
yi(F)/ye41(F) onto the additive group of the homogeneous component of L of
weight s induced by the mapping x; — &, v — ni,i=1,2,....

Proof of Theorem 7.4.1. To prove the theorem it is sufficient to show that for any
finite group P the hypothesis |P : H,(P)| = p**' implies that H,(FP) = 1, that
is, that P is a group of exponent p. Since the Hughes conjecture is valid for finite
groups which are not p-groups, we may assume that P is a finite p-group.

Here it is also convenient to deal with some universal group instead of P.
However, unlike the construction of the preceding section, we are not able here to
settle for one universal group, but rather we have to construct a universal group
related to P.

We choose a minimal system of generators of P in such a way that its elements
ay, @z, ..., ay do not lie in H,(P) while the remainder (possibly, empty) is con-
tained in H,(P). Let ¢ be the nilpotency class of P. Let F be a free nilpotent
group of class ¢ with free generators x|, x5, ..., x,, y;. For any element b € P
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the mapping

xi—=a, i=12..... n, yy b

extends to a homomorphism # of F into P. We denote by # the restriction of @
to the subgroup (xy, X2, ..., .1:,,,) which clearly does not depend on the choice of
b. We define the subgroup N of F as the normal closure in F of all elements of
the form

(x¥)” (7.4.5)

where x € (x|, x3,.... Xm) is such that #(x) & H,(P) and y is an arbitrary
element of the normal closure (y;) of y; in F. The factor-group F/N is the
required universal group. This means that the following lemma holds.

7.4.6 Lemma. For any b € P, the homomorphism #, induces a homomorphism of
F/N into P. If P is not a group of exponent p, then F /N is also not a group of
exponent p.

Proof. The second statement follows from the first one: it is sufficient to take b to
be an element of order p® from H,(P). Then the image of y, in F/N has order
divisible by p? since it is an inverse image of b.

To prove the first statement we consider the image of any element (7.4.5) under
y. We have

Py(xy) = 3y (x)Bp(y) = @ (x)Pp(¥). (7.4.7)

By the definition of N we also have #(x) & H,(FP) and 2(y) € (b"y = H,(P)
as y € {_\'{r}l and b € H,(FP). Hence the element (7.4.7) lies outside H,(P) and
therefore its p-th power, which is equal to the image of the element (7.4.5) under
', is equal to |. This means that N < Ker#, and the lemma is proved.

So, in order to prove the theorem, it is sufficient to show that F/N is a group
of exponent p, that is, N = FP. Let L be a free nilpotent Lie ring of class
¢ over Z with free generators &, ..., En.m. Let L/I be the associated Lie
ring of FfF-" and let L/J be the associated Lie ring of F/N. in both cases
we identify the images of the generators &), &+, ..., &,. m with the images of the
Xpo X2y, Xm. Y1, Tespectively, as described at the beginning of the section. By
construction, we have N = F” so that J < I. The group .f'fF‘” is finite and
its order is cqual to that of L/I. Therefore to prove that N > F? (actually, that
N = F?) it is sufficient to show that J > [. By the description of 7 it is sufficient
to prove that J contains all elements of the form (7.4.4).

For technical reasons we have to increase the number of generators. Changing
notation slightly, we consider a free nilpotent group F of class ¢ with free genera-
LOFS Xy, X2, ..oy Xy ¥1y V2. ..., the corresponding free generators of a free Lie ring
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L being &, &, ..., Ey. iy 2, - ... We consider Fasa subgroup of F and L as a
Lie subring of L. We define the subgroup N of F as the normal closure in F of all
elements of the form (xy)” where x € {(x), x2,..., X,) is such that #(x) & H,(P)
and v is an arbitrary element of the normal closure ({y;, v2,...}7).

We choose commutators @y, ; |, @m 3. --.,aq (d = m, that is, possibly an empty
set) of increasing weights in the generators ay, as, ..., a, in such a way that, taken
together, the images of the @y, a2, ..., G, @1 maz.s . . ., g form a Mal'cev basis
for P/H,(P) (that is, their images generate different factors of some chief series of
P/H,(P)). This is possible because, by the choice of the a;, as, ..., a,,, their im-
ages generate P/H,(P) - see § 2.7. Note that d = 1+ kg by hypothesis. We denote
bY Xt 1s Xin42s -+ - » x,;, respectively, the same commutators as .y, dus2, - - - 44,
but in xy, x2,..., X. Since P/H,(F) has exponent p,

a'.g.... .d¥ e H,(P)
only if each of the i, 15, ..., ig is a multiple of p. In other words,
Pl - x . Xl @ HL(P) (7.4.8)
if at least one of the i),i..... iz is not divisible by p.

We denote by deg x; the weight of the commutator x;, § = 1,2,...,d, and we
d

put w = (p — 1)) degx;.

i=l
7.4.9 Lemma. The factor-group F/(N -y, (F)) has exponent p.

Proof. Every f € F may be written in the form f = f. - f, where f, €
{xhxb-- *1-1.:11'.]' and I‘-‘ = “,}"h}’b If} If ﬂl’fr] 'E-r H;}{P} then {fr ' f}')ﬂ €N
by definition.

Now suppose that #(f,) € H,(P). We shall prove that in this case (f, - f,)" €
N -y 1 (F). By Corollary 1.10.8 of Higman’s Lemma we have

{.rl'} -.::-‘{'"I -,..-1‘5"" - =h- l_[ ()X xy - fOEP (7.4.10)

O=a;<p-—1|

where & = 0 or 1, the product involves the factor f*7 and h is a product of powers
of commutators each of which contains at least p — 1 occurrences of every element
X1y X2y 0oy Xy and at least one occurrence of f. In particular, & € 4 (F).

dy

Every element in the brackets in (7.4.10) other than f* has the form (x}" - x5 -
cooxgt e fE ff)y where 0 < @; < p — | for at least one {. In the situation under
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consideration, ¢{( f{) € H,(P) and therefore by (7.4.8) we have
Fxy xy e xyt fOY € Hy(P).

Hence the p-th power of any element in brackets other than f*” belongs to NV by
definition. It now follows from (7.4.10) that f7 € N -y, 1 (F).
The lemma is proved.

If L/J is the associated Lie ring of F/N then it follows from Lemma 7.4.9,
according to the description of the associated Lie ring of F/F7, that for all &

N
Vil fitae ..., peye Joif Zdeg,u,- < w (7.4.11)

=1

where p; are homogeneous elements of L.

The desired result that J > [ will be obtained from (7.4.11) by applying homo-
morphisms of F onto F. In order to construct these homomorphisms we have to
“linearize™ using Higman's Lemma. That is why we had to increase the number
of generators.

Let Vi(utq, pa, ..., ) be an arbitrary element of the form (7.4.4). We shall
distinguish the variables w; as commutators in the & and the ;. By Lemma 7.4.2
without loss of generality, the first r of them w,. p2, ..., e, k = r = 0, may be
assumed to be such that ji; = x;;, for all i < r where j(i) € {1,2,...,d}. (See
the definition of the operator ~ at the beginning of the section.) We change notation
for the remaining k — r variables to v, = p,4;, | <1 < k — r. Each of the v; by
definition either involves at least one n; or is a commutator in the & such that
#(v;) € H,(P). Recall that there may be at most p — 1 equal elements among the
variables u;, v;. We regard this notation as now fixed.

7.4.12 Lemma. The following inclusion holds:

Vilgty, o oo s lpa Miee e Ni-r) € J. (7.4.13)

Proof. According 1o (7.4.11), it is sufficient to verify that

- o
Edﬂg,u,- +k—-r<sw=(p- l]Zdegr,-.

i=l f=|

This inequality follows from the hypothesis that & < 1+kg(p—1). d = 1 4+ kg and
from the fact that among the u; (whose degrees are equal to degji; = deg.x;()
there may be at most p — | repetitions of any element. Indeed, the maximum of
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the sum 3 degu; + k — r is achieved when among the w; there are as many
i=|

elements of greater weights as possible. We now find this maximum, On dividing

we get: k =g(p—1)+1 where 0 <1 < p — |. Suppose that ¢ = d — 1. Then,

since the order on the commutators x; agrees with the increase of their weight, the

maximum of »_ deg p; + k — r is achieved when k = r and is

o

(p=1) E degx; +1-degxy—,.
i=d~g+1

o
This number clearly does not exceed (p — 1) 3" degx; = w.
s

So, it remains 10 show that, indeed, ¢ < d — 1. We have

- k ko(p~1)+1 _ B
q_[p—l]f[ p—1 ]_kUEd]

sincek <1 +ko(p—1)and d = | + k.
The lemma is proved.

:
Setn = ) degu, +k —r. Then, by definition of the associated Lie ring, (7.4.13)

is equivalent to
Vi, ..., s Y1y oees Yimr) = 1 (mod N - y,41(F)).
This may be rewrilten as a congruence modulo N
Viftn, ooy ey Yie e Yeer) = €4 =65 1L - cb (mod N) (7.4.14)

where the ¢; are commutators in the generators x; and y; which have weight greater

-
than ) degjt; + k — r. The following lemma is a variation of Higman's Lemma,
i=l

it is analogous to Lemma 7.2.20.

7.4.15 Lemma. In (7.4.14) all commutators ¢; may be assumed to depend on all of
Vo ooes Yiors

Proof. Again, we cannot simply refer to Corollary 1.10.6 and Lemma 1.10.1, since
N is not a verbal subgroup. Instead, we can apply arguments similar to the proofs
of these results, since y,(F) and N are invariant under the homomorphisms o,
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which extend mappings
vi— 1, yj—= yforj#1, x — xforalli.

If, for example, in (7.4.14) there are commutators among ¢; not depending on y,
then all their powers may be collected at the beginning of the right-hand side. Then
applying &, we see that their product is congruent to | modulo N since the image
of the left-hand side is 1, as well as the images of all commutators depending on
yi. The same thing may now be done relative to y», etc.

The lemma is proved.

We are now ready to prove that J contains every clcmcnt of the form (7.4.4) and

to do this we use the detailed notation Vi(g,..... Ko Vieoon, Vi—,) where pu; and
v; are commutators in the generators &,. &>, ... Eu.m {’-:ee above). The mapping
yvi—=vifor j=1L2..... k—r. vj— lforj=k—r

x;i — x; for all i

extends to a homomorphism p of F into F. It is easy to see that the i image of
N under p is contained in N. So p induces a homomorphism of F/N into F/N
which is denoted by the same letter.

We apply p to the congruence (7.4.14) which satisfies Lemma 7.4.15, 10 obtain

Velity. ... fro Vs Vi) = ple)™ - plea) L. ple)’ (mod N). (7.4.16)

We show that the weight of every p(¢,), as a commutator in the x; and ¥, 18 greater

than z deg u; +.L deg v;. Indeed, the weight of ¢, is greater than Z degp; +k—r
i=l =l =]

and replacing an occurrence of each of the y; (j = 1.2,.... JI' ~ r) by the v;
contributes to the weight of p(c,) as much as does replacing 1 by degv;. So, a]l

f=iF

of the p(c,) belong to y,. (F), where i = E deg u; + ¥ deg v, is the weight of
i=| i=|

those commutators, the product of whose powers is the lefi-hand side of (7.4.16).
That is

Velitr, .. .. fra Ve o) =1 (mod N - st (F)).

By the definition of the associated Lie ring L/J of F/N this means that

Villy, oo iy Vie o e v, ) e J.

We have therefore proved that J 2 /, as required.
The theorem is proved.
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The hypothesis of Theorem 7.4.1 may not be satisfied. Its proof, nevertheless,
yields information on the structure of finite p-groups with large indices of the
Hughes subgroup. The following result generalizes Theorem 7.3.7.

7.4.17 Theorem, If the index of the Hughes subgroup H,(G) in a finite p-group G
is p* then the associated Lie ring of G satisfies all multilinear identities of degrees
at most (k—1)(p— 1)+ 1 which hold in the associated Lie ring of the free countably
generated group of exponent p.

Proof. This has actually already been proved in the course of proving Theorem 7.4.1
for the universal groups F/N. But it may be easily shown that the associated Lie
ring of a factor-group of a group is a homomorphic image of the associated Lie
ring of the group.

The following theorem may find an application in bounding the nilpotency class
of the factor-group by the non-trivial Hughes subgroup in terms of p only (see
Comments in § 7.5).

7.4.18 Theorem. Suppose that the Hughes subgroup H,(G) in a finite p-group
G is non-trivial and that the minimal number of generators of G/H,(G) is m and
the nilpotency class of G/H,(G) is k. Then the nilpotency class of G is ar least
(p— D(m+ktk+ 1)/2 = 1) + 1.

Proof. We recall that the construction of the universal group F/N for the given
group G in the proof of Theorem 7.4.1 starts with a free mlpotent group F whose
nilpotency class ¢ is exactly the nilpotency class of . By Lemma 7.4.9, in the
notation of the proof of Theorem 7.4.1, the factor-group F/N y,.,1(F) has exponent

d
p, where w = (p — 1) 3 degx; and the x; are commutators in the generators
r=1
Xiv X2y enns X,p. Since the nilpotency class of G/H,(G) is k, there is at least one
such commutator of each of the weights 1,2,... k. Hence w = (p = 1im -
I+ 14+24+ ... 4+k=(p—=1)m+kik+1)/2~=1). Since F/N is not a group
of exponent p by the hypothesis, we have y,4(F) # | which means that the

nilpotency class of (7 is at least (p — 1)(m 4+ k(k + 1)/2 - 1) + 1, as required.

& 7.5 Comments

Infinite groups admitting a partition, The delinition of a group admitting a
partition does not presuppose its finiteness. However, although there are some
papers (for example, of P.G. Kontorovich [74]) devoted to arbitrary groups with a
partition, substantial results have only been obtained for particular classes.
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Among infinite groups with a partition there are the groups of prime exponent
p. For them, on the one hand, Kostrikin [76] gave an affirmative solution to the
Restricted Burnside Problem: the nilpotency class (or, equivalently, the derived
length or the order) of an m-generated finite (or, equivalently, soluble or finite)
group of exponent p is bounded in terms of 4 and p. On the other hand, the Adian-
Novikov Theorem [1, 116] states that for sufficiently large p, free m-generator
Burnside groups B(m, p) are infinite (and nonsoluble). Further important results
on the properties of B(m, p) were also obtained in subsequent works of Adian and
others.

Among infinite groups of prime exponent there are counterexamples, constructed
by Ol'shanskii [117], to the problem of O.Yu. Shmidt, that is, infinite groups all of
whose proper subgroups have order p. There also exist variations of these groups
in which all elements outside the commutator subgroup have order p while the
commutator subgroup is neither periodic nor soluble. Such groups clearly also
admit a partition.

Another well-known class of groups with a partition is the class of so-called
Frobenius groups, that s, semidirect products of the form & = N x A where
ANA" = 1foralln € N\{l} and G = N U | J A". Up to now, all that is

neN

known about infinite Frobenius groups, is what can be obtained by relatively casy
deduction from the theory of finite Frobenius groups: if G is locally finite then N
is nilpotent of class = h(p) where p is the least prime divisor of elements of A;
if N is locally soluble and A has clements of finite order then N is nilpotent, cic.
(see, for example, [24, 55]).

Abelian groups admitting a partition are interesting in connection with the geo-
metrical structures which they define (some generalizations of these geometries are
defined also by non-abelian finite p-groups admitting a partition).

In view of the above negative results of Adian-Novikov and Ol'shanskii, there
is no real hope for any general theory of infinite groups admitting a partition.

Finite groups admitting a partition. Much greater progress has been achieved in
the study of finite groups admitting a partition. The works of Hughes and Thompson
[46], Baer [4, 5] and Kegel [52-54] give a classification of those finite groups
admitting a partition which have a proper Fitting subgroup (that is, the groups are
non-nilpotent and contain a non-trivial nilpotent normal subgroup). Suzuki, using
his classification of finite simple groups with nilpotent centralizers [138] and his
discovery of a new series of finite simple groups [137], completed the classification
of non-soluble finite groups with a partition in [139].

Finite Frobenius groups may be characterized as semidirect products of the form
N» A, where A is a group of automorphisms of N such that each of its elements is a
regular automorphism of N. The structure of such groups is very well understood.
By Thompson's Theorem [140] a finite group with a regular automorphism of
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prime order is nilpotent and the Higman-Kreknin-Kostrikin Theorem provides a
bound for the nilpotency class of N in terms of the least prime divisor of the order
of A (Corollary 4.3.8 and Theorem 5.1.1). Beside this, since all elements of A are
regular, all abelian subgroups of A are cyclic and this implies strong restrictions
on the structure of A.

It is remarkable that the theory of finite groups admitting a partition seems to be
1isomorphically embedded in the theory of finite groups itself. Non-soluble finite
groups with a partition are classified and this classification lies at the foundation
of the classification theory of all finite simple groups.

Soluble finite groups with a partition modulo nilpotent groups are exhausted
mainly by Frobenius groups and by semidirect products of the form N > (p)
where g is a splitting automorphism of prime order p of N (see §7.1). We recall
that Hughes and Thompson [46], using Thompsoen's fundamental work on normal
p-complements [140], proved that in this situation N is always soluble. Kegel [54]
complemented this result by proving that N is even nilpotent.

At the same time, as noted by Busarkin and Gorchakov in their book “Finite
groups admitting a partition™ [13], for a long time almost nothing was known
about finite nilpotent groups with a partition except for certain counterexamples
to the Hughes conjecture. In 1959 Hughes and Thompson [46] proved the Hughes
conjecture for finite groups which are not p-groups. It was also proved in [46] that
the proper Hughes subgroup of a finite group is soluble and in Kegel's work [54]
it was proved that the proper Hughes subgroup of a finite group is nilpotent.

The Hughes problem for finite p-groups. As far as finite p-groups are concerned,
positive results on the Hughes problem have been partial. The Hughes conjecture
was proved for p = 2 (Hughes [44]), for p = 3 (Straus and Szekeres [136]), for
metabelian groups (Hogan and Kappe [43]) and for p-groups of nilpotency class
2p — 2 (Macdonald [99]).

The construction of counterexamples to the Hughes conjecture has been of great
interest. The first one was constructed by Wall |147] in 1965 for p = 5 with the
index of a non-trivial Hughes subgroup p*. Later in 1973, Wall [148] showed that
the existence of such counterexamples is connected with new non-(p — 1)-Engel
identities for the associated Lie algebra L(B(n, p)) (of characteristic p) of the free
group B(n, p) of exponent p. In fact, Wall discovered a new identity of degree
2p — | which holds in this Lie algebra. However, the fact that it is really new in
the sense that it is not a consequence of the (p — 1)-Engel identity, has to date
been established only for p = 5,7, 11 with the aid of computer calculations [14].
(It is easy to show, that for p = 2, 3 all identities of L{B(n, p)) follow from the
(p— 1)-Engel identity which here implies nilpotency of class 1 and 3, respectively.)

The method of constructing universal counterexamples to the Hughes conjecture
allowed us to achieve in [57] the best possible value 2p — 1 for the nilpotency
class of a counterexample (under the same hypothesis on L{B{n, p)). In [58] we
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also showed that the consequence of weight 2p of the Wall's identity may be not
a consequence of the (p — 1)-Engel identity also in L(B(2, p)) and confirmed this
for p = 7 with the aid of computer. (Note that in [147] the number of generators
was > 3, that for a 2-generator group there are no new relations in L(B(2. p)) of
degree 2p — 1, as shown by Kostrikin [75], and that for p = 5 there are no new
relations in L(B(2, 5)) whatever, as shown by the computer aided calculations of
Havas, Wall and Wamsley [38].) This new relation of degree 2p was a starting
point for the construction in [38] of even a 2-generator counterexample to the
Hughes conjecture which is a kind of a “monster” in the theory of finite p-groups,
a finite p-group all of whose elements outside the Frattini subgroup have order p
while it itself has elements of order p* (also for p = 7). Earlier in 1969 Macdonald
attracted attention in a special article [98] to the question of the existence of such
a group by showing that its existence would give negative answers to some other
problems on finite p-groups (arising in [42, 50, 98]).

For 2-generator counterexamples the class 2p is best possible, according to
Macdonald [99], and the prime p = 7 is least possible according to Vaughan-Lee’s
computer-aided calculations (private communication).

Recently, Vaughan-Lee [144] found all multilinear identities which hold in the
Lie algebra L(B(n. p)). Wall [152] showed that only those of degrees k(p— 1)+ |
may be really new, that is, not consequences of those of smaller degrees. In the
same paper Wall proved that if, for some rand all k = 1.2..... r. Vaughan-Lee’s
identity of degree k(p — 1)+ | is really new in this sense, then there exists a finite
p-group with non-trivial Hughes subgroup of index p”.

It is conjectured that all relations in L(B(n. p)) follow from its multilinear
identities. To date little is known about which of Vaughan-Lee's identities are
really new: only the above cases of Wall's identity of degree 2(p — 1) + 1 for
p=5.7.11 and. of course, the (p — 1)-Engel identity for all p (which is in fact
equivalent to a multilinear one, as we have seen).

Of course, our Theorem 7.4.1 makes sense only if its hypothesis is satisfied for
the prime p. that 1s, il all relations of L{B(n. p)) follow from a finite number of
multilinear ones. It is quite unclear whether this is true or not. Note thal recently
G. Havas, M.F. Newman and M.R. Vaughan-Lee used a computer to show that for
p =5 the identity of degree 3(p — 1) + 1 is not new in L(B(3. 5)), but this may
be only because the number of generators is small.

There is also a possibility that the proof of Theorem 7.4.1 may be modified
to yield bounds for the index of the Hughes subgroup in some special classes of
p-groups.

We remark in addition that the interesting problem of describing the relations
in L{B{(n, p)) is connected also with other problems in the theory of finite p-
groups. Under the same hypothesis as in Wall's theorem (that for some » for all
k= 1.2.....r Vaughan-Lee's identity of degree k(p ~ 1) + | is really new) we
have constructed in [62) examples of the so-called “secretive™ finite p-groups P
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of rank r(p — 1) + I, that is, such that |P?| = p and |P : Q;(P)] = p'ir-11+!
with £2,(P) = ®(P). So, for p = 5,7.11 and r = 2, this refutes the conjecture
of Blackburn and Espuelas in [12] that if |P?] = p in a finite p-group P then
[P : 2(FP) = p” (they had proved this to be so in the case of P metabelian).
Earlier Wall [149] had constructed examples of secretive p-groups of rank p. It
is worth noting that, although we were able to bound the index of the Hughes
subgroup in Theorem 7.4.1, we could not bound the index |P : &,(P)| in a p-
group P with [ P”| = p under the same hypothesis: that all relations of L{B(n, p))
follow from a finite number of multilinear ones.

In [62], as a corollary to the main theorem, we constructed examples of finite
soluble, non-nilpotent groups in which the generalized Hughes subgroup

Hp(G) = (x € Gl x¥ # 1)

is non-trivial and has index p”'?~D*!_ This contrasts with the positive solution to
the Hughes problem for finite groups which are not p-groups. Under the same
assumptions it is also possible to construct examples of finite p-groups in which
the generalized Hughes subgroup H,:(P) is non-trivial and has index p'(P=1+!,

We note that Scoppola [128] showed that any finite p-group H may occur as a
section of G/H,(G) for some finite p-group G and for some k depending on H.

We exhibit now the evidence for the existence of a bound in terms of p only for
the nilpotency class of the factor-group by the non-trivial Hughes subgroup of a
finite p-group. The hypothesis of the following theorem is a well-known conjecture
which is known to be true for p = 5 (while the cases p = 2 and p = 3 are trivial,
as we have seen above). This theorem appeared in the e-mail exchanges of the
author with E.I. Zel'manov, its proof is based on Theorem 7.4.18,

7.5.1 Theorem. If, for a given prime number p, there is a linear function of
d hounding the nilpotency class of a d-generator (p — |)-Engel Lie algebra of
characteristic p then the nilpotency class of a finite p-group by the non-trivial
Hughes subgroup is bounded in terms of p onlv.

Proof. Let @(p)d be the linear function from the hypothesis of the theorem. Suppose
that P is a finite p-group such that the Hughes subgroup H,(F) is non-trivial and
the nilpotency class of P/H,(P) is k. We fix some minimal system of generators
of P/H,(P) and consider a non-trivial commutator of weight & in these generators.
The number m of the generators involved in this commutator is obviously at most
k. These m generators together with an element of order p® from H,(P) generate a
group G which satisfies the hypothesis of Theorem 7.4.18 with parameters m and k
for the number of generators of G/H,(G) and the class of G/H,(G), respectively.

By Theorem 7.4.18, the nilpotency class of G is at least (p— 1) (m+k{k+1)/2—
1)+ 1. On the other hand, the nilpotency class of & is at most @(p)(m + 1), since
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we may assume that m > 2 which implies, by Theorem 7.3.7, that the associated
Lie ring of G is a (p — 1)-Engel Lie algebra over G F(p). Taking into account that
m = k we obtain that

(p—1Vm+k(k+1)/2-D+1<a(p)m+1) <a(p)k+1).

Since the lefi-hand side is a quadratic function of & and the right-hand side is a
linear one, this inequality implies that k is bounded in terms of p only.

7.5.2 Corollary. There is a number ¢ such that the nilpotency class of the facior-
group of anv S-group by the non-trivial Hughes subgroup does not exceed c.

Proof. It is known from the work of G. Highman on the Restricted Burnside Pro-
blem for exponent 5 that the hypothesis of Theorem 7.5.1 is satisfied for p = 5 with
a(5) = 25. (We note that recently G. Havas, M.F. Newman and M.R. Vaughan-
Lee used a computer to show that a(5) = 6 which, together with some additional
information, yields that the factor-group of any 5-group by the non-trivial Hughes
subgroup is, in fact, always abelian.)

Periodic compact groups. We shall consider topological compact groups all of
whose elements have finite orders. Every such a group is profinite, that is. it is an
inverse limit of a spectrum of finite groups. It is easy to show that every periodic
compact group contains an open subset consisting of elements of the same order.
This means that there is a subgroup of finite index such that some of its cosets
consists of elements of equal orders. The following are well-known conjectures:

a) every periodic compact group is locally finite;

b) every periodic compact group is a group of finite exponent.

Recently, Zel’'manov [161] proved conjecture a) using his solution of the Re-
stricted Burnside Problem for groups of prime-power exponent p* in [158-160].
Actually, he considered periodic pre-p-groups, that is, inverse limits of spectra of
finite p-groups, while the reduction to this case is due to Wilson [154].

Conjecture b) remains unproved.

For periodic compact groups containing an open subset consisting of elements
of prime order, Theorem 7.2.1 may be applied to prove both conjectures for this
special case in a strengthened “uniform” setting.

7.5.3 Corollary. Suppose that a periodic compact group contains an open subsel
consisting of elements of the same prime order. Then it is focally finite, is a group
of bounded exponent and contains a subgroup of finite index which belongs to a
locally nilpotent variety.

Proof. If G is a group satisfying the hypothesis then it contains a subgroup K of
finite index such that all elements in some coset Kg of K have prime order p. By
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Poincaré’s Theorem, K contains a normal subgroup N of finite index and, clearly,
for the same g, all elements of the coset Ng also have order p. By (7.1.2) we
obtain that for any n € N

. ] lu.'l _
n-af -pf oot =(mg)e =1,

Henee N admits a splitting automorphism ¢ of prime order p induced by conju-
gation under g~ .
By definition of profinite groups, N is reudually finite. Replacing the subgroups

N, of finite index by the @-invariant subgroups ['"| N¥', we may assume that there

is a family of g-invariant normal subgroups {K u'} of finite index with trivial in-
tersection. Every finite factor-group N/K, admits a splitting automorphism ¢ of
prime order p and therefore is nilpotent by the Thompson-Hughes-Kegel Theorem
[46, 54]. Hence, by Theorem 7.2.1, the nilpotency class of any d-generator sub-
group of such a factor-group is (d, p)-bounded by f(d, p). (More precisely, if a
subgroup S is generated by J elements then {(§%') is @-invariant and is generated
by dp elemenis — or by the same 4 elements as a (¢}-group. Theorem 7.2.1 may
be applied to () and the nilpotency class of § does not exceed that of {5%¥).)
Since [} K, = 1, the same property is enjoved by the whole group N. Thus N is

the de::i[red subgroup of finite index which belongs to a locally nilpotent variety.

Since N s also a periodic compact group, it contains an open subset consisting of
elements of the same order n. This means that there is a subgroup L < N of finite
index such that all elements of some coset Lh, h € N, have orders equal to n. Now,
let [ be an arbitrary element of L. As we have shown, the subgroup ({h.[h}%")
is nilpotent of p-bounded class f(2. p) (or f(2p, p) at the other interpretation of
the number of generators). This subgroup is generated by elements of order n and
hence it is a group of exponent dividing n/ " by Corollary 2.5.4. But ((h, [h}'*")
obviously contains [. Thus the order of an arbitrary element [ € L divides the
(n, p)-bounded number n/'>"_ Since the index of L in G is finite, G is a group
of bounded exponent.

The local finiteness of G follows from the fact that it is periodic and almost
locally nilpotent.

The corollary 1s proved.

We conjecture that, in general, every periodic compact group contains a subgroup
of finite index which belongs to a locally soluble variety of bounded exponent.

Splitting automorphisms of composite order. This conjecture on periodic com-
pact group would, perhaps, follow from the following generalization of Theorem
7.2.1 if it held: if, for a prime number p and for natural k and 4, a nilpotent
d-generator group G admits a splitting automorphism ¢ of order p*, that is, such
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that
= I|r"-l
xxPx¥ .. x¥ =1

for all x € G, then the derived length of G is bounded in terms of p, k and d.
As in the case of prime order, the notion of a splitting automorphism of order p*
combines the notion of a group of exponent p* with that of a group with a regular
automorphism of order p*. It seems that any proof of the generalization just stated
must also involve using the properties of nilpotent groups from these two classes.
Now, due to the work of Zel'manov, there is a positive solution to the Restricted
Burnside Problem for groups of exponent p*. However, as we noted in § 5.4, up
to now, no upper bound for the derived length of nilpotent periodic groups with
a regular automorphism of order p* has yet been obtained. All the same, even in
the case of order 4, where both properties of groups of exponent 4 and of groups
with a regular automorphism of order 4 are well-known, we could not vet combine
them to settle a conjecture on a splitting automorphism of order 4.

We note that E. Jabara has recently proved that a finite group with a splitting
automorphism of order 4 is soluble.

Splitting automorphisms of prime order. If an arbitrary group admits a split-
ting automorphism ¢ of order 2 or 3 then it is nilpotent of class | or 3, respectively.
For |¢| = 2 this is a simple exercise, while for j¢| = 3 it follows from calculations
similar to those which prove that a group of exponent 3 is nilpotent of class < 3.

The theories of nilpotent groups of prime exponent and of nilpotent groups
with a regular automorphism are involved not only in the definition of a splitting
automorphism of prime order, but also in the (second) proof of Theorem 7.2.1 in
§7.2 (we have noted before that the first proof in § 6.4 also gives an a posteriori
bound for the order of the centralizer of the automorphism). This gives rise to
the following interesting question. By Theorem 7.2.1 all locally nilpotent groups
in the variety M, of (@)-groups (of groups with operators {g}) which consists of
all groups with a splitting automorphism ¢ of prime order p, form a subvariety
LN, s it true that LN, is a join of a nilpotent subvariety M, NN, (where
the nilpotency class e(p) is, of course, p-bounded) and a subvariety B, N LN,
of locally nilpotent groups of exponent p? The join of varieties is. by definition,
the smallest variety which contains them.

This question may be formulated equivalently in terms of a free (g)-group F.
Let N be the verbal (¢)-subgroup of F generated as a verbal subgroup by the
word x - x¥ - x¥ .- .r“‘"", that is, N is the normal closure

N=(g-g" g ...-.¢" " | g F}F).
Is it true that there exists a p-bounded number ¢(p) such that

N}’!r[F] =5 NH'Ephn{-l[F)n NHr[F]FF
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for all n = ¢(p)+ 17 If the answer to this question is affirmative then, in particular,
(Yerm+i (GNP =1 and  yipy4 1 (G7) = |

for any nilpotent group G in 901,,. These statements are also interesting conjectures
in their own right. At the moment we are only able to prove a somewhat weaker
proposition in which, however, the bounds for the nilpotency class are best possible.

7.5.4 Corollary. There exist p-bounded numbers k(p) and [(p) such that the fol-
lowing identities hold in any locally nilpotent group G in M ,:

Lo Pkl.r.lil pi.l;n .
alxp x Xy l=1

(this means that G"""" is nilpetent of class h, that is, yy4) (Gf**"“} = 1) and

fi
b) [.FI-']-.IE-.--:...-T,I,+|IF = |,

where h = h(p) is Higman's function.

The author does not know whether b) here may be replaced by an equation of

the form (y4 (GNP = 1.

Proof. By virtue of Mal'cev's Local Theorem, & may be assumed finitely generated
and hence nilpotent and therefore residually finite. If {N,} is a family of normal

P

subgroups of finite indices with trivial intersection then { [ Nf } is a family of
i=}

g-invartant normal subgroups of finite indices with trivial intersection. It is clearly

L
sufficient to prove the corollary for each of the finite factor-groups G / NN

i=l
which also belong to 91,. So, we need only prove the corollary assuming that G
is finite and nilpotent.

The Hall p’-subgroup of & is nilpotent of class = h(p), since ¢ is regular on it.
We may therefore assume that G is a finite p-group.

We denote Higman's function by h = h(p).

Let xy, x3, ..., x4+ be arbitrary elements of G. We apply Theorem 7.3.2 to the
@-invariant p(h + 1)-generated nilpotent p-subgroup H = ({xy.xa2, ..., x50 }%")
to obtain that H contains a subgroup of p-bounded index r which is nilpotent of
class < h. By Poincaré’s Theorem it contains a normal subgroup of index < r!

1 ¢} ki pa Lige
. I P

which, by Lagrange’s Theorem, contains all elements x;  ,x; ..., x,,, for
some p-bounded number k(p) < r!. Hence

iy ;-t”u

e
g 1=
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But the elements of the form x*"”, x € G, generate G""'. Therefore this subgroup
is nilpotent of class < h, since the identity of nilpotency may be verified on
generators. We have proved a).

In view of the existence of a homomorphism of the tensor product of abelian
groups

n(H)/pn(H)@...& n(H)/y(H)

h+1

onto the factor-group . (H)/yn2(H), the obtained identity a) implies that

b= Trkips

[xp x2,.00, et ]” = 1 (mod y;42(H)).
Hence ¥4 (H)/¥+2(H) has exponent dividing p'"*""*" and the same holds for
all factors of the lower central series of H, starting from the (h + 1)-st one. Since
the nilpotency class of H is p-bounded by Theorem 7.2.1, ¥+ (H) also has a
p-bounded exponent. In particular, for some p-bounded number /{p). the equality
b) holds.

The corollary is proved.

This result also gives corresponding corollaries on the structure of finite p-group
admitting a non-trivial partition by Proposition 7.1.1.

We finally point out one more application of Theorem 7.2.1 obtained by Kovics
[80]: if a group G is locally a residually S/”-group and admits an automorphism
¢ of prime order p such that G = {g~' - g¥| ¢ € G} then G is nilpotent of class
h(p). (The property SI* is one of the generalizations of solubility.)
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Nilpotent p-groups admitting automorphisms
of order p* with few fixed points

The results of Chapters 5 and 7 give a complete, in a certain sense, picture of the
structure of nilpotent groups with automorphisms of prime order close to regular
(splitting or almost regular). As we indicated in the Comments in §5.4 and 7.5,
much less is known about nilpotent groups with such automorphisms of composite
order. This chapter contains the first major breakthrough in this direction. In the
“modular” case where a (locally) nilpotent p-group P admits an automorphism of
order p* with p" fixed points, it is proved that P is almost soluble with a strong
bound, in terms of p and k only, on the derived length of a subgroup of bounded
index.

The proof is based on Kreknin's Theorem on Lie rings from Chapter 4. It
uses a general group-theoretic corollary to Kreknin's Theorem, obtained with the
help of the Mal'cev correspondence given by the Baker-Hausdorff formula. More
precisely, it is proved in § 8.1 that if a nilpotent group G of class ¢ admits an
automorphism ¢ of finite order m then, for some (m, ¢)-bounded number N =
N(m,¢) the subgroup (G™)/"™) is contained in (Co(@)“), where f(m) is the
value of Kreknin's function from Theorem 4.3.2. Another important technique
comes from the theory of powerful p-groups, especially, from Shalev’s work [129],
where a weak bound, in terms of p, k and n, for the derived length of P was
obtained. Standard arguments show that, in the proof of the main theorem, P
may be assumed to be a powerful finite p-group. We then prove, using Kreknin's
Theorem again, that PN s nilpotent of (p, k, n)-bounded class. This allows
us to apply the general corollary mentioned above. It may seem amazing that a
combination of two “weak™ results yields a “strong” one, as if one managed to lift
oncself up by pulling the laces of one's boots.

The resulting bound for the derived length of a subgroup, which is actually
obtained in the proof of the main theorem, is 2 f (p*). This is close to the apparently
best possible value f(p*) (if we require that the function depends on the order of
the automorphism only, compare with the problem at the end of § 8.4). On the
other hand, we did not give ourself labour to record an explicit upper bound for
the index of the subgroup, though such a bound may be easily obtained on the
basis of the bound for Kreknin's function in Theorem 4.3.2, of the bound for the
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index of a powerful subgroup in a finite p-group of a given characteristic rank in
[96] and of the p-adic estimation of the denominators of the coefficients in the
Baker-Hausdorff formula, which may be used for bounding the number N(c, m)
above.

The necessary preliminary material on the Mal’cev correspondence and on pow-
erful p-groups is included without proofs in § 8.1 and 8.2, respectively.

§ 8.1 An application of the Mal’cev correspondence

In this section we derive the following corollary to Kreknin's theorem 4.3.2.

8.1.1 Theorem. Suppose that G is a nilpotent group of class ¢ and ¢ an automor-
phism of G of finite order m. Then, for some (c, m)-bounded number N = N{(c, m),
the subgroup (GY)//'") is contained in the normal closure (Cg(p)C) of the cen-
tralizer Ce(g).

The proof of Theorem 8.1.1 uses the theory of Mal'cev completions of torsion-
free nilpotent groups and the Mal'cev correspondence, which is the so-called cat-
egorical isomorphism between the category of radicable (complete) torsion-free
nilpotent groups and the category of nilpotent {J-Lie algebras and which is given
by the Baker-Hausdorff formula, see [89, 106, 153]. It is actually more convenient
to use a special form of this correspondence, where only m-roots are adjoined
for an appropriate set of primes ¥ = mi(c), which is sufficient for applying the
Baker-Hausdorff formula to nilpotent groups of class ¢.

The Baker-Hausdorff formula appears when a free (nilpotent) group is presented
in a free (nilpotent) associative non-commutative algebra .4 of formal power series
over Q. Let x;, x2, ... be free generators of such an algebra A. For any x € A4,
we set
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It is well-known that if A is a free nilpotent algebra of class ¢ (that is, all
monomials of degrees greater than ¢ are (), then the Lie algebra £ generated by
the x; with respect to the Lie multiplication [a, #] = ab — ba (where on the right-
hand side the operations are in 4), is a free nilpotent Lie algebra of class ¢ and
the ¢* freely generate a free nilpotent group F of class ¢ (with respect to the
multiplication in .4). The elements of L are called Lie elements.

The “Baker-Hausdorff formula™ usuvally means a theorem stating that H(x, y)
is a Lie element in x and y, that is, that H(x, y) belongs to the (J-Lie algebra
generated by x and y. Therefore, all elements of F have the form &' = /1%,
where | = [(x;, x2....) is a Lie clement.

We remark that taking an r-th power of ¢ is equivalent to multiplying ! by r:
(e =e". U_pc can adjoin to F all elements of the form e, deF,re ). The
resulting set F may be shown to be a group which is nilpotent of the same class
¢. Since the same formula (¢')" = ¢’ holds for any | € L, r € Q, this group F is
radicable (or complete), which means that for every a € F and every k € Z there
is b € F such that b* = a. Since F is a torsion-free nilpotent group, the root b
here is unique, by Theorem 2.6.1 a), so that F may be also called a group with
unigque roors. The group F may be regarded as an algebraic system, which has,
besides group operations, unary operations of taking powers in (). Moreover, F
15, in fact, a free radicable nilpotent group of class ¢ and it may be regarded as an
abstract universal radicable closure of the free nilpotent group F which is unique
up to isomorphism (a special case of the Mal'cev completion).

It can be shown that the mapping [ — ¢ (the exponential map) is a one-to-one
correspondence between £ and F. While the Baker-Hausdorff formula expresses
the group operations in F in terms of the Lie ring operation in £, there are inver-
sions of the Baker-Hausdorff formula which reconstruct the operations in the Lie
algebra L, addition and Lie bracket, in terms of the group operations in F. The
exponential map is a so-called categorical isomorphism of £ and F: every state-
ment in terms of a (@-Lie algebra £ may be translated into the statement in terms
of the radicable group F and vice versa. In particular, the (radicable) subgroups
in F correspond precisely to the subalgebras in £, a subgroup is normal in F if
and only if the corresponding subalgebra is an ideal in £, the automorphisms of F
are exhausted by those which are induced by the automorphisms of £, and so on.
It may also be easily shown that the normal closure of a subset in F corresponds
to the ideal in £ generated by this subset and that the terms of the lower central
series of F correspond 1o those of £. The same is true for the terms of the derived
series.

Since the operations are expressed by formulae in free nilpotent groups admitting
exponents in ) and free nilpotent {}-Lie algebras, the same correspondence may
be established for arbitrary nilpotent radicable torsion-free groups and nilpotent
{J-Lie algebras. The sets may be simply identified: for any nilpotent {J-Lie algebra
L., one can define the structure of a radicable torsion-free nilpotent group ¢ on



§ 8.1 An application of the Mal’cev correspondence 229

the same set & = L with respect to the group operation x - v = H(x, v) and, vice
versa, the structure of a (J-Lie algebra may be defined on any radicable torsion-free
nilpotent group using the inversions of the Baker-Hausdorff formula.

It is clear that if A is a nilpotent algebra of class ¢, then the denominators in
the above formulae are divisible only by the primes not greater than ¢. It may be
shown that the same is true for the inverse formulae. This allows us to establish
an analogous category 1somorphism between the 7 -radicable milpotent torsion-free
groups of class < ¢, where & is the set of all primes not greater than ¢, and the
nilpotent Q0 -Lie algebras of class < ¢, where Q. is the subring of ) consisting
of all rational numbers whose denominators are divisible only by the primes in .
(This generalization of the Mal'cev correspondence is due to Lazard [89].)

For a given set of prime numbers 7, a 7-completion of a free nilpotent group
F may be constructed within the algebra A in essentially the same way: {¢"'| ¢ €
F, k € Q).

We note at last that the Mal'cev completions and the Mal'cev-Lazard corre-
spondence may be defined for free nilpotent groups with operators, since for any
group of operators €2 a free (nilpotent) §2-group, as an abstract group, is also a
free nilpotent group (see § 1.9).

Proof of Theorem 8.1.1. Let F be a free nilpotent {g)-group of class ¢ on free
generalors xp, xa2,..., X2, where f = f(m) is the value of Kreknin's function
from Theorem 4.3.2, that is, f is a number such that H') € ;,(Cy (W) for any
Lie ring H with an automorphism  of order m, provided mH = H (one can
take, in particular, f(m) = 2"~" — 1). We set ¥ = m(e!) U m(m). where m(c")
is the set of all primes not exceeding ¢ and w(m) is the set of prime divisors of
m. Let F denote the m-completion of F and let L be the Q.-Lie algebra which
corresponds to F under the category isomorphism of Mal'cev-Lazard given by the
Baker-Hausdorff formula and its inverses. We may regard ¢ as an automorphism
of L acting on the set F = L in the same way.

We have L) < ;4(Cp(p)) by Kreknin's Theorem 4.3.2, since mL = L by
the choice of m. Since C;(fp}ﬁ: Ci. (), we have also ;4(Cp(p)) = {C;-{tp};"}.
so that we get FU) < (Cr(@)") in terms of F. In particular, the normal closure

{Cs {:;p}"_"} contains the commutator §(xy, xa....,. vy ) of weight | in each of the
Xy, X3, ..., X3, which is the left-hand side of the identity of solubility of derived
length f. We rewrite this fact as

Sr(xp,x2,.... X)) = L'fl -c"f R o (8.1.2)

where ¢; € Cplp). g € F. This gguation 15, in fact, an identity in a free m-
radicable nilpotent group F and the elements ¢; and g; depend only on ¢ and m.
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We claim that, for some (c, m)-bounded n = n(c, m), the value Ef(xf, xg, . ,.ng)
of the same commutator & ; belongs to {(Cr(p)"). We need the following

8.1.3 Lemma., Ler g = glxy, x2,..., Xar) be an arbitrary element of F regarded
as a group word in X\, X3, ..., xar with exponents in Q. Then there is a natural
n-number s, depending on g (and on ¢ and m), such that replacing all of the x;
by their s-th powers transforms g inte an element g of F. If g € Cplg), then

g € Crly). All multiples of s inherir these properties of s.

Proof. We use induction on the nilpotency class ¢. If ¢ = [, then g(x}, x3, ..., x3;)
= g*, and g' € F for some w-number 5 by the definition of the m-completion F.
It is clear that every multiple of ¥ has the same property.

Now let ¢ = |. By induction hypothesis applied to the factor-group F ,-’]u;.(ﬁ' ),
whichﬁ may t:-f: identified with the completion of F/y.(F) = F/(F N y,.[f-‘}] =
Fy.(F)/y.(F), there is a w-number ¢ such that the image of g(x|, xj,...,x},)
belongs to the image of F. Hence

glx], x5, ..., xi ) h(xy, xa, ..., x:;)=zer<-iﬁ“_l

where h{x;, xs, ..., x2¢) € F (and h(x,, xa,..., x5r) may be taken to be a group
word in the x; with exponents in Z) and where z = z(x}. x3. ..., x3r) 18 a product
of powers of commutators of weight ¢ with exponents in Q. It follows from the
standard commutator identities that z(xy, x3,...,x5,) = z' in a nilpotent group
of class ¢ (see, for example, Lemma 6.1.11). Since z* € F for some w-number s,
we have

g=glx) ) =k g, x) 2 e F

so that st is a w-number with the required property. Every multiple of st has the
form stu, and we also have

g(x.:fﬂ'. xir:u """" .L';fr"} — h'l{x;“, xi:n ‘‘‘‘ xi‘:v} . E:; "o F

In order to show that g € Cr(p) if g € Cp(p), we consider the set C(¢) =
C(p) as a subalgebra of L. Recall that taking the s-th power in F is equivalent
to multiplying by s in L: F 3 x' = sx € L. Since L is a free nilpotent {¢}-Lie
algebra over (Qy, it is clear that Cy () i1s a homogeneous subalgebra of L. Hence
any g € C;(p) may be expressed in the form

£=£I+£2+...+.&'¢-,
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where g; is a homogeneous element of weight / and g; € Cp(y) for all i. We now
have

gUsX|, 85X, ..., sx3) =58 + 5@+ ... +5g € Crip).

Hence g € Cr(yw) if g € Criy). Asaresult g € Ci(p) N F = Cply). as required.
The same argument is also valid for any multiple of s.
The lemma 15 proved.

We now apply Lemma 8.1.3 to each of the elements ¢;, g occurring on the
right-hand side of (8.1.2). Let N, be the least common multiple of all numbers
which are given for the ¢;, g by Lemma 8.1.3. Then

Br(xM xM L )= (8.1.4)

where ¢; € Cp(y), g € F for all i. This is also an identity in the free nilpotent
group F.

It is natural to try to obtain consequences of the equation (8.]1.4) by substituting
arbitrary elements of the subgroup F™' instead of the x'. However, although F¥
is generated by the elements of the form g™, the derived subgroup (F¥)'"’ may
not be generated by the values of & at these generating elements of FV' only.
In order to overcome this difficulty, we use the following lemma of Blackburn
[M. Blackburn, Conjugacy in nilpotent groups, Proc. Amer. Math. Soc. 16 (1965),
143-148] which was also anticipated in the work of Mal'cev [106].

8.1.5 Blackburn’s Lemma, Forevery prime number p and natural number ¢ there
exists a (¢, p)-bounded number b(c. p) such that, in any nilpotent group of class

< ¢, any product of p"-th powers of its elements is a p"~*"““P-th power for anv
r = b(c, p).
We return to the proof of Theorem 8.1.1. If N, = p{'p5* ... p& is the decom-
position of & in the product of prime-powers, we put
by b, kbl g ey
N=p1+[ r|l_pz+! :J_“Ff b P

where the b{c, p;) are as in Lemma 8.1.5.

It is convenient to prove Theorem 8.1.1 at first for a free nilpotent (¢}-group F,
of class ¢. It is easy to see that any product of N-th powers of elements of F,; is
an N,-th power of an element of F,. Indeed, by Lemma 8.1.5, such a product is a
pi-th power for each i. We need only apply the following elementary lemma.
8.1.6 Lemma. Suppose that for coprime numbers u and v an element ¢ of F, is
both a u-th and a v-th power. Then g is also a wv-th power.
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Proof. The completion F, of F| is a group with unique roots by Theorem 2.6.1.
Let A" = g for some h € F‘;. It suffices to show that h € F,. We have (h")' =g
and hence h" € F| by the hypothesis, and also (h")" = g and hence h* € F)
by the hypothesis. But there exist integers s and ¢ such that su + rv = 1. Hence
h = k" e Fy, as required.

The lemma is proved.

The subgroup (F¥)'/) is generated by the values of §, at the products of N-th
powers of the elements of F,. Since, as shown above, such products are Ny-th pow-
ers, the subgroup (F¥)"/? is contained in the subgroup generated by the elements

of the form &;(g". g2, ..., g;'}, g € Fi. An application of the homomorphism
of F into F;, which extends the mapping x; — g;, i = 1,2,...,2/, to (8.1.4)
shows that 3_,-{31’,”‘ , gf’. N gé';'}l belongs 1o (Cr, ()1} (which contains the image

of (C(p)")) for any g, g2, ..., g € F. Hence (FM)? < (C(p)").

Finally let & be an arbitrary nilpotent group of class < ¢ admitting an automor-
phism ¢ of order p*. Since there is a homomorphism @ of F, onto G, we obtain
that

(GM = 2((FM'Y) < 8((Cx (@)Y = (Cale)),

as required.
The theorem is proved.

§ 8.2. Powerful p-groups

The theory of powerful p-groups, anticipated in Lazard's work [90] on analytic
pro-p-groups, was recently created by Lubotzki and Mann [96]; see also the book
[18]. It has already found a number of applications in the theories of pro-p-groups,
residually finite groups, groups of finite rank and p-groups of given coclass. The
notion of a powerful p-group seems to be a more successful attempt in defining
a “more linear” class of finite p-groups than that of regular p-groups (and it is
actually, in a sense, more general, since the p-th power of a regular p-group is
a powerful p-group). One can say that the theory of powerful p-groups reflects
the properties of the “lincar part” of a finite p-group all of whose abelian sections
have a given bound for their ranks. The relevance to finite p-groups admitting p-
automorphisms with few fixed points is due Lo the fact that their ranks are bounded,
by Corollary 1.7.4.

Definition. A normal subgroup N of a finite p-group G is said to be powerfully
embedded in G if N* = [N.G] for p odd (if N* = [N, G| for p = 2).



§ 8.2 Powerful p-groups 233

Definition. A finite p-group G is called powerful if it is powerfully embedded in
itself.

The following basic lemma will be frequently used, often without reference.

8.2.1 Lemma |96, Theorem 1.2). If M and N are powerfully embedded subgroups
of a finite p-group, then [M, N| and M" are alse powerfully embedded subgroups.

Shalev has strengthened Theorem 1.6 of [96] about powerfully embedded sub-
groups having proved the following remarkable formula (see also the proof of
Lemma 2.6 in [A. Shalev, The structure of finite p-groups and a constructive
proof of the coclass conjecture, Preprint, Jerusalem Univ., 1992]).

8.2.2 Lemma (129, Lemma 3.1]. If M and N are powerfully embedded subgroups
of a finite p-group, then |M. N|? = |M", N].

Definition. A group is said to be a group of (speciafl or sectional, or Mal'cev)
rank r if all of its finitely generated sections may be generated by r elements.

It is clear that the rank of a finite abelian group coincides with the minimal
number of its generators (and so it was defined in § 1.1).

The following theorem is of fundamental importance for the study of groups of
given rank.

8.2.3 Theorem [96]. a) If G is a finite d-generator powerful p-group, then each
subgroup of G may be generated by d elements.

b) If all characteristic subgroups of a finite p-group G may be generated by r
elements then G contains a subgroup of (p, r)-bounded index, which is a powerful
p-group of rank ar most r.

Although in [96] an analogue of b) is proved in which the bound on the ranks
is imposed on all subgroups of G, it may be seen from the proof that it suffices
to restrict the ranks of the characteristic subgroups only. We note also that in [96]
there is an explicit upper bound for the index of a powerful subgroup which appears
in Theorem 8.2.3 b).

8.2.4 Corollary. If a finite p-group P admits an automorphism ¢ of order p*
having exactly p" fixed points, then it contains a subgroup of (p. k. n)-bounded
index, which is a powerful p-group of (p, k. n)-bounded rank.

Proof. If H is a characteristic subgroup of P then, by Theorem 1.6.1, we have
IChywcm (@) < p" so that the rank of H/®(H) is at most np* by Corollary 1.7.4.
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Thus, all characteristic subgroups of P may be generaied by np* elements and, by
Theorem 8.2.3 b), P contains a subgroup of (p, k, n)-bounded index, which is a
powerful p-group of rank at most ap*.

We recall some further properties of powerful p-groups.

8.2.5 Lemma [96]. If G is a powerful p-group then, for each i, the subgroup G v
generared‘ by the p'-th powers consists, in fact, of p'-th powers, and (G" ) =
G"" foralli, j.

The sections G |G""" are elementary abelian for all i. Taking the p-th powers
of elements induces a homomorphism of G" | G* " onto G JGP " and therefore
IG” GP | = |GPT G for all i

We now give the definition of a special class of powerful p-groups which possess
even more linear properties.

Definition. Suppose that p' is the exponent of a powerful p-group G, that is, 1 is
the least number such that G* = 1. If |G” /G7"'| = |G"" /G"" | forall i <1-2
then G is said to be uniformly powerful.

We shall need the following property of such groups.

8.2.6 Lemma [18, § 4.1). Ler G be a uniformly powerful p-group of exponent p'.
Then x¥ € G* implies x € G~ whenever 0 <i < j <1.

§ 8.3 A weak bound for the derived length

We consider here a special case, where P is a uniformly powerful finite p-group
and ¢ an automorphism of P of order p* having exactly p" fixed points. For the
rest of the chapter we fix notation f = f(p*) for the wlue of Kreknin's function
from Theorem 4.3.2 (we may actually put f = f(p*) = 27 =1 ),

8.3.1 Theorem. Suppose that P is a uniformly powerful p-group admitting an
automorphism @ of order p* with exactly p" fixed points. Then the f-th derived
subgroup PV s nilpotent of (p, k, n)-bounded class.

Proof. Taking s arbitrary we apply Kreknin’s Theorem 4.3.2 o the associated Lie
ring L = L(P”) of the subgroup P” which also admits the automorphism ¢ of
order p* . We obtain that

[,.'J'j"L)U] C ja{Crl)). (8.3.2)
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Since (Cy,pyy.p (@)l = p" for all { by Theorem 1.6.1, we have p"Cr{g) =0
in additive notation and therefore p";4(Cr(¢)) = 0. Applying this to (8.3.2) we
get p" Y LYY = 0. In terms of the group P”’ this means that

(PPYY" ™ <y (PP, (8.3.3)
Repeated application of Lemmas 8.2.1 and 8.2.2 yields that
(PPYD = (PP and  y(P™) = (p(P)™
for all a, b, ¢, d € M. Hence it follows from (8.3.3) that
(PO < (P < PP (8.3.4)

Let now p' be the exponent of P. We take s to be the maximal number satisfying
52/ 45 < t, that 15, 5 = [.*f{!f + I.j]. It may be assumed that s20 +n 4+ k27 <
52/ 4 5. Otherwise the exponent of P is bounded in terms of p, k and n. Since
the rank is (p, k, n)-bounded, the order of P is then also (p. k. n)-bounded (see
Lemma 8.2.5) and the result follows.

Thus, we may apply Lemma 8.2.6 to “cancel” the exponent p*' in (8.3.4), that
15, to obtain that

(PO < P,

By Lemma 8.2.2 we get also that (P?)"/) <= PP for some (p.k, n)-bounded
number r.

We may assume that s(2/ +2) > (s + D2/ + 1) & 5 > 2/ + | (otherwise
the order of P is (p, k., n)-bounded — see above). Applying Lemma 8.2.2 again we
have

(P.(PPY, . (P"YD < (P PP, ... . P" <P =1,
———

The last equality holds since s(2/ 4+2) > (s + 1)(2/ 4+ 1) > 1 by the choice of s.
By Lemma 8.2.2, we now have

| =[p_[p.ﬂ”}i,l"l _____ I:_pﬂ’]iﬁ]:[.p_“pu’i _____ Pt_fl]ﬂ’“

where h is a (p, k, n)-bounded number. Since the rank is also (p, &, n)-bounded.
this gives a (p, k, n)-bound for the order of [P, P, ..., P, Since P is a
—— | ——
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nilpotent p-group, this normal subgroup is therefore contained in an appropriate
term of the upper central series with (p. k, n)-bounded number. Hence

[P, PYL. ., P =]
—_— —

for some (p, k, n)-bounded number u, which implies that P/ is nilpotent of class
u.
The theorem is proved.

This theorem already implies a weak bound, in terms of p, k and n, for the
derived length of an arbitrary nilpotent p-group P admitting an automorphism
of order p* having exactly p" fixed points. Indeed, P may be assumed to be a
finite p-group (by Mal'cev’s Local Theorem). By Corollary 8.2.4, P may be also
assumed to be a powerful p-group. We now consider the inequalities

|P/PP 2 |PP/PT 2 . 2 |PP /PP 2 (8.3.5)

which hold for the orders of the elementary abelian sections P?'/ pr by
Lemma 8.2.5. Since, by Theorem 1.6.1, ¢ has at most p" fixed points acting on
each of the P /P?"' | the ranks of the g-invariant sections P¥ /PP are bounded
in terms of p, k and n. Therefore, strict inequalities separate the chain (8.3.5) into
(p, k, n)-boundedly many segments with equalities. This means that P possesses a
serics of (p, k, n)-bounded length with uniformly powerful sections. Each of them
satisfies Theorem 8.3.1 and this clearly gives the desired bound for the derived
length of P.

Such a (p, k, n)-bounded solubility of P was earlier proved by Shalev [129]
using a Lie ring of another kind defined by a uniformly powerful p-group (this
construction comes from the theory of analytic pro-p-groups, see [18]). It is claimed
in [ 129] that the usual associated Lie ring cannot be used in this situation. However,
it is the usual associated Lie ring that we were using above, and it seems that both
constructions carry essentially the same information. We note also that the idea
of using the “cancellation property” of uniformly powerful p-groups given by
Lemma 8.2.6 which is used in our proof goes back to Shalev [129].

§ 8.4 A strong bound for the derived length
of a subgroup of bounded index

In order to obtain a strong bound for the derived length of a subgroup of bounded
index, we first of all extend Theorem 8.3.1 to arbitrary powerlul p-groups.
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8.4.1 Theorem. Suppose that P is a powerful p-group admitting an automorphism
@ of order p* with exactly p" fixed points. Then the f-th derived subgroup P is
nilpotent of (p, k, n)-bounded class.

Proof. Just like al the end of the preceding section, we consider inequalities
\P/P?| > |[PP/PP = .. = PP /PP > (8.4.2)

which hold for the orders of the elementary abelian sections PP /PP by
Lemma 8.2.5. Since, by Theorem 1.6.1, ¢ has at most p" fixed points acting on
each of the P /P?"", the ranks of the @-invariant sections P” /P"'"" are bounded
in terms of p, k and n. Therefore, strict inequalities separate the chain (8.4.2) into
(p.k.n)-boundedly many segments with equalities. This means that P possesses
a series of (p, k. n)-bounded length with uniformly powerful sections.

We use induction on the number of uniformly powerful sections of P, that is, on
the number of strict inequalities in (8.4.2). The case where P is uniformly powerful
itself is covered by Theorem 8.3.1.

Let now P be a uniformly powerful subgroup of P such that P/P"" has fewer
“steps” — uniformly powerful sections — than P. Then by the induction hypothesis
we have

|F~ Pﬂ_ﬂ' ..... P'[.r}] < P.F‘m {843]
e —— —

for some (p, k. n)-bounded number ¢.
On the other hand, by Theorem &.3.1, we have

|FF"'|[F:='"]1II _____ [PP"}ﬁfI] =

for a (p, k, n)-bounded number . By repeated application of Lemma 8.2.2, we
get

(P P, P

One further application of Lemma 8.2.2 yields

[Pp.ﬂlln-:'nl. P{J"} ““““ P{fj] — I- [314.4}
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But taking several, (p, k, n)-bounded, times the mutual commutator with P/)
of both parts of (8.4.3) we get

[P, poo pU']] = [p;!““ pioo PU'll —[P pih Ptfllif" = p#"""
p— ‘ -H-I L '|. 1‘;'1 f—

2 i &

and so on. By an obvious induction,

[P, P PUJI < Fpmn..:r
——— e T

for the (p, k, n)-bounded number v = ¢(1 + 2/ u). We need only use (8.4.4) to get

(P, PO PU) =
I¥—.¢_"

an

for the (p. k, n)-bounded number w = u + v, as required.
The theorem 1s proved.

We now state the main result of this chapter.

8.4.5 Theorem. [fu locally nilpotent p-group P admits an awtomorphism of order
p* having exactly p" fixed points, then it contains a subgroup of (p, k, n)-bounded
index which is soluble of (p. k)-bounded derived length 2 f ( p“}.

Proof. By Mal’cev's Local Theorem, we may assume P to be finitely generated
and therefore finite. By Corollary 8.2.4, P may be assumed to be a powerful p-
group. Then the derived subgroup P/ is nilpotent of (p, k, n)-bounded class by
Theorem 8.4.1.

Applying Theorem 8.1.1 to P we get (P ) < (Cpin (@)™} for some
(p, k, n)-bounded number /. But the subgroup {Cpus(r;:)'”m} is generated by the
elements conjugate to the elements of Cpin(e) all of which have order = p”.
Since it is also nilpotent of (p, k, n)-bounded class, the exponent of (Cpun(w)”"")
is (p, k, n)-bounded by Corollary 2.5.4.

This implies that
pui

((PDYPYIN" < (Cpn()™ )" = 1
for some (p, k, n)-bounded [ and m. An application of Lemma 8.2.2 yields

(PP < (PP = |
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for some (p, k, n)-bounded number g. Since both the rank and the exponent of
P/P" are (p, k, n)-bounded, the order of | P/ P™ | is also (p, k, n)-bounded. Thus
P" is the desired subgroup of (p, k, n)-bounded index which is soluble of (p, k)-
bounded derived length 2 f.

The theorem is proved.

Concluding this chapter, we remark that in the particular case where n = 1, that
is, where the number of fixed points of an automorphism of order p* acting on
a finite p-group P is p, Kiming [72] and McKay [109] proved that P contains
a subgroup of (p. k)-bounded index which is nilpotent of class 2. This gives rise
to the following problem: Does there exist a function d(m) depending on m only,
such that every finite p-group admitting an automorphism of order p* with exactly
p™ fixed points contains a subgroup of (p, m, k)-bounded index which is soluble
of derived length d{m)?
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