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Preface

The idea to write this book, and more important the desire to do so, is
a direct outgrowth of a course I gave in the academic year 1959-1960 at
Cornell University. The class taking this course consisted, in large part,
of the most gifted sophomores in mathematics at Cornell. It was my desire
to experiment by presenting to them material a little beyond that which
is usually taught in algebra at the junior-senior level.

I have aimed this book to be, both in content and degree of sophisti-
cation, about halfway between two great classics, 4 Survey of Modern
Algebra by Birkhoff and MacLane and Modern Algebra by Van der
Waerden.

The last few years have seen marked changes in the instruction given
in mathematics at the American universities. This change is most notable
at the upper undergraduate and beginning graduate levels. Topics that a
few years ago were considered proper subject matter for semiadvanced
graduate courses in algebra have filtered down to, and are being taught
in, the very first course in abstract algebra. Convinced that this filtration
will continue and will become intensified in the next few years, I have
put into this book, which is designed to be used as the student’s first
introduction to algebra, material which hitherto has been considered a
little advanced for that stage of the game.

There is always a great danger when treating abstract ideas to introduce
them too suddenly and without a sufficient base of examples to render them
credible or natural. In order to try to mitigate this, I have tried to motivate
the concepts beforehand and to illustrate them in concrete situations. One
of the most telling proofs of the worth of an abstract concept is what it,
and the results about it, tells us in familiar situations. In almost every
chapter an attempt is made to bring out the significance of the general
results by applying them to particular problems. For instance, in the
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chapter on rings, the two-square theorem of Fermat is exhibited as a direct
consequence of the theory developed for Euclidean rings.

The subject matter chosen for discussion has been picked not only be-
cause it has become standard to present it at this level or because it is
important in the whole general development but also with an eye to this
“concreteness.” For this reason I chose to omit the Jordan-Holder theorem,
which certainly could have easily been included in the results derived
about groups. However, to appreciate this result for its own sake requires
a great deal of hindsight and to see it used effectively would require too
great a digression. True, one could develop the whole theory of dimension
of a vector space as one of its corollaries, but, for the first time around,
this seems like a much too fancy and unnatural approach to something
so basic and down-to-earth. Likewise, there is no mention of tensor prod-
ucts or related constructions. There is so much time and opportunity to
become abstract; why rush it at the beginning?

A word about the problems. There are a great number of them. It would
be an extraordinary student indeed who could solve them all. Some are
present merely to complete proofs in the text material, others to illustrate
and to give practice in the results obtained. Many are introduced not so
much to be solved as to be tackled. The value of a problem is not so much
in coming up with the answer as in the ideas and attempted ideas it forces
on the would-be solver. Others are included in anticipation of material to
be developed later, the hope and rationale for this being both to lay the
groundwork for the subsequent theory and also to make more natural
ideas, definitions, and arguments as they are introduced. Several problems
appear more than once. Problems, which for some reason or other seem
diffieult to me, are often starred (sometimes with two stars). However,
even here there will be no agreement among mathematicians; many will
feel that some unstarred problems should be starred and vice versa.

Naturally, I am indebted to many people for suggestions, comments and
criticisms. To mention just a few of these: Charles Curtis, Marshall Hall,
Nathan Jacobson, Arthur Mattuck, and Maxwell Rosenlicht. I owe a great
deal to Daniel Gorenstein and Irving Kaplansky for the numerous con-
versations we have had about the book, its material and its approach.
Above all, T thank George Seligman for the many incisive suggestions and
remarks that he has made about the presentation both as to its style and
to its content. I am also grateful to Francis McNary of the staff of Ginn
and Company for his help and cooperation. Finally, I should like to ex-
press my thanks to the John Simon Guggenheim Memorial Foundation;
this book was in part written with their support while the author was in
Rome as a Guggenheim Fellow.
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CHAPTER 1

Preliminary Notions

One of the amazing features of twentieth century mathematics has been
its recognition of the power of the abstract approach. This has given rise to
a large body of new results and problems and has, in fact, led us to open up
whole new areas of mathematics whose very existence had not even been
suspected.

In the wake of these developments has come not only a new mathematics
but a fresh outlook, and along with this, simple new proofs of difficult clas-
sical results. The isolation of a problem into its basic essentials has often
revealed for us the proper setting, in the whole scheme of things, of results
considered to have been special and apart and has shown us interrelations
between areas previously thought to have been unconnected.

The algebra which has evolved as an outgrowth of all this is not only a
subject with an independent life and vigor—it is one of the important cur-
rent research areas in mathematics—but it also serves as the unifying thread
which interlaces almost all of mathematics—geometry, number theory,
analysis, topology, and even applied mathematics.

This book is intended as an introduction to that part of mathematics that
today goes by the name of abstract algebra. The term “abstract’ is a highly
subjective one; what is abstract to one person is very often concrete and
down-to-earth to another, and vice versa. In relation to the current research
activity in algebra, it could be described as ‘not too abstract’; from the
point of view of someone schooled in the calculus and who is seeing the pres-
ent material for the first time, it may very well be described as “quite ab-
stract.”

Be that as it may, we shall concern ourselves with the introduction and
development of some of the important algebraic systems—groups, rings,
vector spaces, fields. An algebraic system can be described as a set of objects
together with some operations for combining them.

Prior to studying sets restricted in any way whatever—for instance, with
operations—it will be necessary to consider sets in general and some notions
about them. At the other end of the spectrum, we shall need some informa-
tion about the particular set, the set of integers. It is the purpose of this chap-
ter to discuss these and to derive some results about them which we can call
upon, as the occasions arise, later in the book.
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1. Set Theory. We shall not attempt a formal definition of a set nor
shall we try to lay the groundwork for an axiomatic theory of sets. Instead
we shall take the operational and intuitive approach that a set is some given
collection of objects. In most of our applications we shall be dealing with
rather specific things and the nebulous notion of a set, in these, will emerge
as something quite recognizable. For those whose tastes run more to the
formal and abstract side, we can consider a set as a primitive notion which
one does not define.

A few remarks about notation and terminology. Given a set S we shall
use the notation throughout ¢ € 8 to read “a 7s an element of S.”” In the
same vein, a & S will read ““a is not an element of S.”” The set A will be said
to be a subset of the set S if every element in A is an element of S, that is, if
a € A implies a € S. We shall write this as 4 € S (or, sometimes, as
S O A) which may be read as “4 is contained in S’ (or, S contains 4). This
notation is not meant to preclude the possibility that 4 = S. By the way,
what is meant by the equality of two sets? For us this will always mean that
they contain the same elements, that is, every element which is in one is in
the other, and vice versa. In terms of the symbol for the containing relation,
the two sets A and B are equal, written A = B, if both A < Band B C A.
The standard device for proving the equality of two sets, something we shall
be required to do often, is to demonstrate that the two opposite containing
relations hold for them. A subset 4 of S will be called a proper subset of S
if A  Sbut A4 S (4 is not equal to S).

The null set is the set having no elements; it is a subset of every set. We
shall often describe that a set S is the null set by saying it is empty.

One final, purely notational, remark: Given a set S we shall constantly
use the notation 4 = {a € S|P(a)} to read “A is the set of all elements in
S for which the property P holds.” For instance, if S is the set of integers
and if A is the subset of positive integers, then we can describe A as
A = {a € S|a > 0}. Another example of this' If S is the set consisting of
the objects (1), (2), ..., (10), then the subset 4 consisting of (1), (4), (7),
(10) could be described by 4 = {(¢) € S|s =3n+1,n =0, 1, 2, 3}.

Given two sets we can combine them to form new sets. There is nothing
sacred or particular about this number two; we can carry out the same pro-
cedure for any number of sets, finite or infinite, and in fact we shall. We do
so for two first, because it illustrates the general construction but is not
obscured by the additional notational difficulties.

DerinrrioN. The union of the two sets A and B, written as A U B, is the
set {z|z € 4 or z € B}.

A word about the use of “or.” In ordinary English when we say that
something is one or the other we imply that it is not both. The mathematical
“or” is quite different, at least when we are speaking about set theory. For
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when we say that x is in A or x s in B we mean x is in at least one of A or B,
and may be in both.

Let us consider a few examples of the union of two sets. For any set 4,
A U A = A;in fact, whenever B is a subset of 4,4 U B = A. If A is the
set {xy, To, 23} (i.e., the set whose elements are zy, 25, x3) and if B is the set
{41, Y2, 21}, then A U B = {1, x5, T3, Y1, y2}. If A is the set of all blonde-
haired people and if B is the set of all people who smoke, then A U B con-
sists of all the people who either have blonde hair or smoke or both. Pic-
torially we can illustrate the union of the two sets A and B by:

Here, A is the circle on the left, B that on the right, and A U B is the shaded
part.

DerintTION. The intersection of the two sets A and B, written as A N B,
is the set {x|z € A and = € B}.

The intersection of A and B is thus the set of all elements which are both
in A and in B. In analogy with the examples used to illustrate the union of
two sets, let us see what the intersections are in those very examples. For
any set A, A N A = A;in fact, if B is any subset of 4 then A N B = B.
If A is the set {21, zo, 3} and B the set {y1, ¥, 1}, then A N B = {x,}
(we are supposing no y is an z). If 4 is the set of all blonde-haired people
and if B is the set of all people that smoke, then 4 N B is the set of all
blonde-haired people who smoke. Pictorially we can illustrate the intersec-
tion of the two sets 4 and B by:

Here A is the circle on the left, B that on the right, while their intersection
is the shaded part.
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Two sets are said to be disjoint if their intersection is empty, that is, is
the null set. For instance, if A is the set of positive integers and B the set of
negative integers, then A and B are disjoint. Note however that if C is the
set of nonnegative integers and if D is the set of nonpositive integers, then
they are not disjoint for their intersection consists of the integer 0, so is
not empty.

Before we generalize union and intersection from two sets to an arbitrary
number of them, we should like to prove a little proposition interrelating
union and intersection. This is the first of a whole host of such results that
can be proved; some of these can be found in the problems at the end of this
section.

ProrositioN. For any three sets, A, B, C we have

ANBUO =@ANBUMADNO.

Proof. The proof will consist of showing, to begin with, the relation
AnNBUMANC)cAN BUC) and then the converse relation
AN BUGOcCcANB UMANO.

We first dispose of (ANB U UANC) AN (BULC). Because
Bc B U (, it is immediate that A N BC A N (B U (). In a similar
manner, A N C < A N (B U C). Therefore
AnBuAandcdnNn@BU)YUUNBUO)=4ANBUIO.

Now for the other direction. Given an element 2 € A N (B U 0),
first of all it must be an element of 4. Secondly, as an element in B U C it
is either in B or in C. Suppose the former; then as an element both of A and
of B, z must be in A N B. The second possibility, namely, x € C, leads us
to £ € AN C. Thus in either eventuality z € (A N B) U (4 N 0),
whence AN BUQO)cCcANBUMANDC.

The two opposite containing relations combine to give us the equality
asserted in the proposition.

We continue the discussion of sets to extend the notion of union and of
intersection to arbitrary collections of sets.

Given a set T we say that T serves as an index set for the family & = {4,}
of sets if for every a € T there exists a set A, in the family ¥ The index
set T can be any set, finite or infinite. Very often we use the set of nonnega-
tive integers as an index set, but, we repeat, T can be any (nonempty) set.

By the union of the sets Ao, where o is in 7, we mean the set {z|z € 4,
for at least one « in T'}. We shall denote it by U A.. By the intersection

T
of the sets A,, where « is in 7, we mean the set {z|z € 4, for every

a € T}; we shall denote it by [} Aa. The sets A, are mutually disjoint if
o T

for a £ B, Ay N Apis the null set.
For instance, if S is the set of real numbers, and if T is the set of rational
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numbers, let, fora € T, A, = {x € Slz > «a}. It is an easy exercise to see

that U 4. = S whereas [ 4 is the null set. The sets 4, are not mutually
ac’ T al T

disjoint. .

DeriniTion. Given the two sets A, B then the difference set, A — B, is
the set {xr € A|z € B}.

Returning to our little pictures, if A4 is the circle on the left, B that on the
right, then A — B is the shaded area.

Note that for any set B, the set A satisfies A = (4 N B) U (4 — B).
(Prove!) Note further that B N (A — B) is the null set. A particular case
of interest of the difference of two sets is when one of these is a subset of the
other. In that case, when B is a subset of 4, we call A — B the complement
of Bin A.

We still want one more construct of two given sets A and B, their
Cartesian product A X B. This set A X B is defined as the set of all ordered
pairs (a, b) where a € A and b € B and where we declare the pair (ay, by)
to be equal to (as, by) if and only if @; = ag and b; = bs.

A few remarks about the Cartesian product. Given the two sets A and B
we could construct the sets A X B and B X A from them. As sets these are
distinct, yet we feel that they must be closely related. Given three sets A,
B, C'we can construct many Cartesian products from them: for instance, the
set A X D, where D = B X C;theset E X C, where E = A X B;and also
the set of all ordered triples (a, b, ¢) where a € A, b € B, and ¢ € C. These
give us three distinct sets, yet here, also, we feel that these sets must be
closely related. Of course, we can continue this process with more and more
sets. To see the exact relation between them we shall have to wait until the
next section, where we discuss one-to-one correspondences.

Given any index set 7' we could define the Cartesian product of the sets

A, as a varies over T'; since we shall not need so general a product, we do not
bother to define it.
Finally, we can consider the Cartesian product of a set A with itself,
A X A. Note that if the set A is a finite set having n elements, then the set
A X A is also a finite set, but has n? elements. The set of elements (a, a) in
- A X A is called the diagonal of A X A.
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A subset R of A X A is said to define an equivalence relation on A if:

1) (a,a) € Rforalla € 4;
(2) (a,b) € R implies (b, a) € R;
(8) (a,b) € R and (b, ¢) € R imply that (a, ¢) € R.

Instead of speaking about subsets of A X A we can speak about a binary
relation (one between two elements of A) on A itself, defining b to be re-
lated to a if (@, b) € R. The properties (1), (2), (3) of the subset R immedi-
ately translate into the properties (1), (2), (3) of the definition below.

DrrinitioN. The binary relation, ~, on A is said to be an equivalence
relation on A if for all ¢, b, ¢ in 4:

1) a~a;
(2) a ~bimpliesb ~ a;
(8) a~band b~ cimply a ~c.

The first of these properties is called reflexivity, the second, symmetry,
and the third, transitivity.

The concept of an equivalence relation is an extremely important one
and plays a central role in all of mathematics. We illustrate it with a few
examples.

Example 1. Let S be any set and define a ~ b, for a, b € S, if and only if
a = b. This clearly defines an equivalence relation on S. In fact, an equiva-
lence relation is a generalization of equality, measuring equality up to some
property.

Ezample 2. Let S be the set of all integers. Given a, b € S, define a ~ b
if @ — b is an even integer. We verify that this defines an equivalence rela-
tion of S.

(1) Since 0 = a — a is even, a ~ a.

(2) If a ~b, that is, if ¢ — b is even, then b — a = —(a — b) is also
even, whence b ~ a.

3) If a~b and b ~ ¢, then both ¢ — b and b — ¢ are even, whence
a—c¢=(a—>b)+ (b — ) is also even, proving that a ~ c.

Example 3. Let S be the set of all integers and let n > 1 be a fixed integer.
Define for a, b € S, a ~ b if a — b is a multiple of n. We leave it as an
exercise to prove that this defines an equivalence relation on S.

Ezample 4. Let S be the set of all triangles in the plane. Two triangles
are defined to be equivalent if they are similar (i.e., have corresponding
angles equal). This defines an equivalence relation on S.



sEc. 1 SET THEORY 7

Ezample 5. Let S be the set of points in the plane. Two points a and b
are defined to be equivalent if they are equidistant from the origin. A simple
check verifies that this defines an equivalence relation on S.

There are many more equivalence relations; we shall encounter a few
as we proceed in the book.

DeriniTioN. If A is a set and if ~ is an equivalence relation on A, then
the equivalence class of a € A is the set {z € A|a ~ z}. We write it as
cl(a).

In the examples just discussed, what are the equivalence classes? In
Example 1, the equivalence class of a consists merely of a itself. In Example
2 the equivalence class of a consists of all the integers of the form a + 2m
where m = 0, £1, £2, ...; in this example there are only two distinct
equivalence classes, namely, cl(0) and cl(1). In Example 3, the equivalence
class of a consists of all integers of the form a -+ kn where & = 0, =1,
+2, ...; here there are n distinct equivalence classes, namely cl(0),
cl(1), ..., cl(n — 1). In Example 5, the equivalence class of a consists of
all the points in the plane which lie on the circle which has its center at the
origin and passes through a.

Although we have made quite a few definitions, introduced some con-
cepts, and have even established a simple little proposition, one could say
in all fairness that up to this point we have not proved any result of real
substance. We are now about to prove the first genuine result in the book.
The proof of this theorem is not very difficult—actually it is quite easy—
but nonetheless the result it embodies will be of great use to us.

TuroreM 1.A. The distinct equivalence classes of an equivalence relation
on A provide us with a decomposition of A as a union of mutually disjoint
subsets. Conversely, given a decomposition of A as a umon of mutually dis-
joint, nonempty subsets, we can define an equivalence relation on A for which
these subsets are the distinct equivalence classes.

Proof. Let the equivalence relation oh A be denoted by ~.

We first note that since for any a € A4, a ~ a, ¢ must be in cl(a), whence
the union of the cl(a)’sis all of A. We now assert that given two equivalence
classes they are either equal or disjoint. For, suppose that cl(a) and cl(b)
are not disjoint; then there is an element = € cl(a) N cl(b). Since z € cl(a),
a~ z; since = € cl(b), b ~ 2 whence by the symmetry of the relation,
z~b. However, a~2z and z ~ D by the transitivity of the relation
forces a ~ b. Suppose, now, that y € cl(b); thus b ~ y. However, from
a~band b~ y, we deduce that a ~ y, that is, that y € cl(a). Therefore,
every element in cl(b) is in cl(a), which proves that cl(b) < cl(a). The argu-
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ment is clearly symmetric, whence we conclude that cl(a) < cl(b). The
two opposite containing relations imply that cl(a) = cl(b).

We have thus shown that the distinct cl(a)’s are mutually disjoint and
that their union is 4. This proves the first half of the theorem. Now for the
other half!

Suppose that A = UA, where the 4, are mutually disjoint, nonempty
sets (a is in some index set 7). How shall we use them to define an equiva-
lence relation? The way is clear; given an element o in A it is in exactly one
A,. We define for a, b € 4, a ~ b if a and b are in the same 4,. We leave
it as an exercise to prove that this is an equivalence relation on A and that
the distinet equivalence classes are the 4,’s.

PROBLEMS

1. (a) If A is a subset of B and B is a subset of C, prove that A is a sub-
set of C.

(b) If B < A prove that A U B = A4, and conversely.

(c) If B < A prove that for any set C both B U C c 4 U C and
BNccAdAndc.
2. (@) Prove that AN B=B N A and A UB=BUA.
(b) Prove that A NB NC=4ANBNCJI).

3. Prove that AU BNC)=(AUB)N (4 UDO.

4. For a subset C of S let €’ denote the complement of C in S. For any
two subsets A, B of S prove the De Morgan rules:

(a) (4 ﬂ B)Y =A4"U B.
M) AUB=A4A"NPB.

b. For a finite set C let o(C) indicate the number of elements in C. If 4
and B are finite sets prove o(4 U B) = o(4) + o(B) — o(A N B).

6. If A is a finite set having 7 elements, prove that 4 has exactly 2" dis-
tinet subsets.

7. A survey shows that 639, of the American people likes cheese whereas
76% likes apples. What can you say about the percentage of the American
people that likes both cheese and apples? (The given statistics are not
meant to be accurate.)

8. Given two sets A and B their symmetric difference is defined to be
(A — B) U (B — A). Prove that the symmetric difference of 4 and B
equals (4 U B) — (4 N B).

9. Let S be a set and let S* be the set whose elements are the various sub-
sets of 8. In §* we define an addition and multiplication as follows: If 4,
B € 8* (remember, this means that they are subsets of S):

(1) A+B=(4—-B) U (B~ A4).
(2 A-B=ANB.
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Prove the following laws that govern these operations:
@ A+B+C=4+B+0.
(b) A-(B+C)=4-B+ 4-C.
(c) A-A =A.
(d) A 4+ A = null set.
(e)IfA+B=A+CthenB = C.
(The system just described is an example of a Boolean algebra.)
10. For the given set and relation below determine which define equiva-
lence relations.
(a) S is the set of all people in the world today, @ ~ b if @ and b have
an ancestor in common.
(b) 8§ is the set of all people in the world today, @ ~ b if a lives within
100 miles of b.

(c) S is the set of all people in the world today, a ~ b if @ and b have
the same father.

(d) S is the set of real numbers, a ~ b if a = =+b.

(e) S is the set of integers, a ~ b if both ¢ > b and b > a.

(£) S is the set of all straight lines in the plane, a ~ b if a is parallel
to b.

11. (a) Property 2 of an equivalence relation states that if a ~ b then

b~ a; property 3 states that if a~bd and b~c¢ then
a ~ c¢. What is wrong with the following proof that properties 2
and 3 imply property 1? Let a ~ b; then b ~ a, whence, by
property 3 (using a¢ = ¢), a ~ a.

(b) Can you suggest an alternative of property 1 which will insure us
that properties 2 and 3 do imply property 1?

12. In Example 3 of an equivalence relation given in the text, prove that
the relation defined is an equivalence relation and that there are exactly n
distinct equivalence classes, namely, cl(0), cl(1), ..., cl(n — 1).

13. Complete the proof of the second half of Theorem 1.a.

2. Mappings. We are about to introduce the concept of a mapping of one
set into another. Without exaggeration this is probably the single most
important and universal notion that runs through all of mathematics.
It is hardly a new thing to any of us, for we have been considering mappings
from the very earliest days of our mathematical training. When we were
asked to plot the relation y = 22 we were simply being asked to study the
particular mapping which takes every real number onto its square.

Loosely speaking, a mapping from one set, S, into another, T, is a ‘‘rule”
(whatever that may mean) that associates with each element in S a unaque
element ¢ in 7. We shall define a mapping somewhat more formally and
precisely but the purpose of the definition is to allow us to think and speak
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in the above terms. We should think of them as rules or devices or mech-
anisms that transport us from one set to another.

Let us motivate a little the definition that we will make. The point of
view we take is to consider the mapping to be defined by its “graph.” We
illustrate this with the familiar example ¥ = 2% defined on the real numbers
S and taking its values also in S. For this set S, § X S, the set of all pairs
(a, b) can be viewed as the plane, the pair (a, b) corresponding to the point
whose coordinates are a and b, respectively. In this plane we single out all
those points whose coordinates are of the form (x, 2?) and call this set of
points the graph of y = z2. We even represent this set pictorially as

To find the “value” of the function or mapping at the point z = a we look
at the point in the graph whose first coordinate is ¢ and read off the second
coordinate as the value of the function at z = a.

This is, no more or less, the approach we take in the general setting to de-
fine a mapping from one set into another.

DerintrroN. If S and T are nonempty sets, then a mapping from S to T
is a subset, M, of 8§ X T such that for every s € S there is a unique t € T
such that the ordered pair (s, t) is in M.

This definition serves to make the concept of a mapping precise for us
but we shall almost never use it in this form. Instead we do prefer to think
of a mapping as a rule which associates with any element s in S some element
tin T, the rule being, associate (or map) s € 8 with t € T if and only if
(s,t) € M. We shall say that ¢ is the ¢mage of s under the mapping.

Now for some notation for these things. Let ¢ be a mapping from S to
T'; we often denote this by writing ¢:8 — T or§ = T. If ¢ is the image of
s under ¢ we shall sometimes write this as o:s — ¢; more often, we shall
represent this fact by ¢ = so. Note that we write the mapping ¢ on the right.
There is no over-all consistency in this usage; many people would write
it as ¢ = ¢(s). As a general rule, algebraists write mappings on the right,
other mathematicians writing them on the left. In fact, we shall not be
absolutely consistent in this ourselves; when we shall want to emphasize
the functional nature of ¢ we may very well write ¢ = ¢(s).
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ExamprEs oF MarriNGs. In all the examples the sets are assumed to be
nonempty.

Ezample 1. Let S be any set; define ::8 — S by s = s for any s € 8.
This mapping . is called the identity mapping of S.

Ezample 2. Let S and T be any sets and let ¢, be an element of 7. Define
7:8 — T by r:s — 1y for every s € 8.

Ezample 3. Let S be the set of positive rational numbers and let 7 =
J X J where J is the set of integers. Given a rational number s we can

m
write it as s = — where m and n have no common factor. Definer: S— T
n

by sr = (m, n)

Ezample 4. Let J be the set of integers and S = {(m, n) € J X J|n = 0};

let T be the set of rational numbers; define r: S — T by (m, n)r = = for
n

every (m,n)in S.

Ezample 5. Let J be the set of integers and § = J X J. Define 7:8 — J
by (m, n)r = m + n.

Note that in Example 5 the addition in J itself can be represented in
terms of a mapping of J X J into J. Given an arbitrary set S we call a
mapping of S X S into S a binary operation on S. Given such a mapping
7:8 X 8 — 8 we could use it to define a “product” * in S by declaring
a*b=cif (a, b)r=c¢

Ezample 6. Let S and T be any sets; define r:8S X T — Sby (a, b)r = a
for any (a, b) € 8 X T. This r is called the projection of S X T on S. We
could similarly define the projection of S X T on 7.

Ezxample 7. Let S be the set consisting of the elements z;, s, 23. Define
7:8 — 8 by 17 = xg, Zor = 23, T37 = T1.

Ezample 8. Let S be the set of integers and let T be the set consisting of
the elements E and 0. Define r:S — T by declaring nr = E if n is even and
nr = 0 if n is odd.

If S is any set, let {x;, . .,,} be its subset consisting of the elements
Ty, Ta, .. ., Ty of 8. In particular, {z} is the subset of § whose only element

is z. Given S we can use it to construct a new set S*, the set whose elements
are the subsets of S. We call S* the set of subsets of S. Thus for instance, if
S = {z1, z2} then S* has exactly 4 elements, namely, a; = null set,
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ay = the subset, S, of S, az = {z;}, ays = {z5}. The relation of S to 8*, in
general, is a very interesting one; some of its properties are examined in the
problems.

Example 9. Let Sbe a set, T = 8*;define 7:8 — T by s7 = complement
of {s}inS =8 — {s}.

Example 10. Let S be a set with an equivalence relation, and let T be the
set of equivalence classes in S (note that 7' is a subset of S*). Define r:8§ — T
by s = el(s).

We leave the examples to continue the general discussion. Given a map-
ping 7:S — T we define for ¢ € T, the inverse image of ¢ with respect to
to be the set {s € S|t = sr}. In Example 8, the inverse image of E is the
subset of S consisting of the even integers. It may happen that for some ¢ in
T that its inverse image with respect to = is empty, that is, { is not the image
under 7 of any element in S. In Example 3 which was discussed the element
(4, 2) is not the image of any element in S under the = used; in Example 9,
8, as an element in S*, is not the image under the 7 used of any element in S.

DerinirioN. The mapping 7 of S into T is said to be onto T if given
t € T there exists an element s € S such that ¢ = sr.

If we call the subset, St = {z € T'|z = sr for some s € S} the tmage
of S under 7 then 7 is onto if the image of S under r is all of 7. Note that in
Examples 1, 4, 5, 6, 7, 8, and 10 the mappings used are all onto.

Another special type of mapping arises often and is important: the one-
to-one mapping.

DrrinitioN. The mapping = of S into 7 is said to be a one-to-one mapping
if whenever s; 5% s, then s;7 # sor.

In terms of inverse images, the mapping = is one-to-one if for any ¢t € T
the inverse image of ¢ is either empty or is a set consisting of one element.
In the examples discussed, the mappings in Examples 1, 3, 7, and 9 are all
one-to-one.

When should we say that two mappings from S to T are equal? A natural
definition for this is that they should have the same effect on every element
of S, that is, the image of any element in S under each of these mappings
should be the same. In a little more formal manner:

DeriniTioN. The two mappings o and 7 of S into 7T are said to be equal
if so = st for every s € S.

Consider the following situation: We have a mapping ¢ from S to T
and another mapping r from 7' to U. Can we compound these mappings to
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produce a mapping from S to U? The most natural and obvious way of
doing this is to send a given element s, in S, in two stages into U, first by

applying ¢ to s and then applying 7 to the resulting element s¢ in 7. This
is the basis of the

Dermirion. If 0:8 — T and 7:T — U then the composition of ¢ and =
(also called their product) is the mapping o o 7:S — U defined by means of
s(o o 1) = (so)7 for every s € 8.

Note that the order of events reads from left to right; ¢ o  reads, first
perform ¢ and then follow it up with 7. Here, too, the left-right business is
not a uniform one. Mathematicians who write their mappings on the left
would read ¢ o 7 to mean first perform r and then ¢. Accordingly, in reading
a given book in mathematics one must make absolutely sure as to what
convention is being followed in writing the product of two mappings. We
reiterate, for us o o 7 will always mean: first apply o and then r.

We illustrate the composition of ¢ and r with a few examples.

Example 1. Let S = {21, x5, z3} and let T = 8. Let ¢:8 — S be defined
by 20 = %, Zo0 = 3, 230 = z1; and 7:8 — 8 by 217 = 1, o7 = x3,
237 = To. Thus 2y (c o 7) = (10)7 = L7 = X3, To(0 0 7) = (T90)T = TaT = o,
z3(c o 7) = (230)7 = 217 = z;. At the same time we can compute 7 o o,
because in this case it also makes sense. Now z;(rco) = (zy7)o=
(x10) = 3, To(1 0 0) = (Ta7)0 = 230 = &1, T3(r 0 0) = (TeT)o = oo = T3.
Note that o = 21(7 o ¢), whereas 23 = z((c o 7) whence o o 7 % 70 0,

Ezample 2. Let S be the set of integers, T’ the set S X S, and suppose
¢:8 — T is defined by me = (m — 1,1). Let U = S and suppose that
T — U(=1.8) is defined by (m,n)r =m+n. Thus co7:S — S
whereas 7oc:T — T; even to speak about the equality of oo and
7 o ¢ would make no sense since they do not act on the same space. We now
compute ¢ o 7 as a mapping of S into itself and then 7 o o as one on T into
itself,

Givenm € 8, me = (m — 1, 1) whence m(c o 7) = (mo)r = (m — 1, )7
= (m — 1) + 1 = m. Thus ¢ o r is the identity mapping of S into itself.
What about 7 o ¢? Given (m,n) € T, (m,n)r = m + n whereby
(m, n)(r o o) = ((m, n)r)e = (m + n)o = (m + n — 1, 1). Note that
o ¢ is not the identity map of T into itself; it is not even an onto mapping
of T.

Ezample 3. Let S be the set of real numbers, T the set of integers, and
U = {E, 0}. Define 0:8 — T by so = largest integer less than or equal
tos,and r:T — U defined by nr = E if nis even, nr = 0 if n is odd. Note
that in this case r o ¢ cannot be defined. We compute o o 7 for two real
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numbers s = § and s = r. Now since § =2+ %, (§)¢ = 2, whence
B or) = &o)r=@)r=E; (r)c =3, whence w(cor) = (mo)r =
3)r = 0.

For mappings of sets, provided the requisite products make sense, a
general associative law holds. This is the content of

Lemma 1.1 (Associative Law). If 6:8 = T, 71T — U, and p:U — V,
then (co7)ou = oo (ropu).

Proof. Note first that o o 7 makes sense and takes S into U, thus (¢ o 7) o
also makes sense and takes S into V. Similarly o o (7 o u) is meaningful and
takes S into V. Thus we can speak about the equality, or lack of equality, of
(cor)opand oo (r0op).

To prove the asserted equality we merely must show that for any s € 8,
s((eo7)ow) = s(oo(rou)). Now by the very definition of the composi-
tion of maps, $((6 o 7) o ) = (s(o o 7))u = ((so)7)u whereas s(s o (r o p)) =
(so)(r o w) = ((so)7)u. Thus, the elements s((d 0 7) o u) and s(c o (1o w))
are indeed equal. This proves the lemma.

‘We should like to show that if two mappings o and 7 are properly condi-
tioned the very same conditions carry over to o o 7.

LemMma 1.2. Let 0:S — T and :T — U, then

(1) o o7 s onto if each of o and T 1s onto;
(2) o o T s one-to-one if each of o and T is one-to-one.

Proof. We prove only part (2), leaving the proof of part (1) as an exercise.

Suppose that sy, s5 € S and that s; # s,. By the one-to-one nature of o,
810 % 8p0. Since 7 is one-to-one and s;o and sy,o are distinet elements of T,
(s10)7 % (se0)r whence s;{(oco7) = (810)7 5% (sp0)7 = 83(0 0 7), proving
that o o 7 is indeed one-to-one, and establishing the lemma.

Suppose that o is a one-to-one mapping of 8 onio T'; we call ¢ a one-to-one
correspondence between S and 7. Given any ¢t € T, by the “onto-ness” of ¢
there exists an element s € S such that ¢ = so; by the “one-to-oneness”
of ¢ this s is unique. We define the mapping ¢~ *:T — S by s = to™" if
and only if ¢ = so. The mapping ¢ is called the snverse of . Let us com-
pute o o ¢~ which maps § into itself. Given s € S let ¢ = s, whence by
definition s = tc™!; thus s(c 0o 0™2) = (s0)c™! = to—* = s. We have shown
that ¢ o o™ is the identity mapping of S onto itself. A similar computation
reveals that ¢~ o ¢ is the identity mapping of T onto itself.

Conversely, if ¢:8 — T is such that there exists a u:T — S with the
property that o o u and u o o are the identity mappings on S and 7, respec-
tively, then we claim that ¢ is a one-to-one correspondence between S and 7.
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First observe that o is onto for, given t € T, ¢ = {(u o ¢) = (tu)o (since
u o o is the identity on T') and so ¢ is the image under ¢ of the element tu in
S. Next observe that ¢ is one-to-one for if s;0 = sy0, using that ¢ o y is the
identity on S we have s; = s;(cou) = (810)p = (s30)u = 85(c 0 ) = so.
‘We have now proved

Lemma 1.3. The mapping ¢:8 — T is a one-to-one correspondence be-
tween S and T if and only if there exists a mapping u:T — S such that
o o pand p o o are the identity mappings on S and T, respectively.

Drrimvirion. If S is a nonempty set then A(S) is the set of all one-to-one
mappings of S onto itself.

Aside from its own intrinsic interest 4 (8) plays a central and universal
type of role in considering the mathematical system known as a group
(Chapter 2). For this reason we state the next theorem concerning its na-
ture. All the constituent parts of the theorem have already been proved in
the various lemmas, so we state the theorem without proof.

TaEOREM 1.B. If 0, 7, u are elements of A(S), then:

(1) sorisin A(S);

@ (com)on =00 (row;

(8) there exists an element o (the identity map) in A(S) such that
goL= 100 = 0,

(4) there exists an element ¢~ € A(S) suchthat oo™ = ¢l oo =

We close the section with a remark about A(S). Suppose that S has more
than two elements; let z;, 2o, 3 be three distinct elements in S; define the
mapping ¢:S — 8 by 20 = 2s, %go = 3, %30 = 1, S¢ =s for any
s € 8 different from x;, 25, 23. Define the mapping r:S — 8 by zor = 23,
Z3r = &g, and st = s for any s € S different from 2, 3. Clearly both ¢ and
7 are in A(S). A simple computation shows that zy(s o 7) = 23 but that
Zi(r 0o o) = 1y ¥ 23. Thus o o 7 5% 7 0 ¢. Thisis

Lemma 1.4. If S has more than two elements we can find two elements
o, 7 in A(S) such that ¢ o 7 #% 7 0 0.

PROBLEMS

1. In the following, where ¢:S — T, determine whether the ¢ is onto,
one-to-one, and determine the inverse image of any ¢ € T under o.
(@) S = set of real numbers, T = set of nhonnegative real numbers,
2
so = §&°.
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(b) S = set of nonnegative real numbers, T = set of nonnegative
real numbers, s = s2.

(c) S = set of integers, T = set of integers, so = s%

(d) S = set of integers, T = set of integers, so = 2s.

2. If S and T are nonempty sets, prove that there exists a one-to-one
correspondence between S X T and T X S.

3. If S, T, U are nonempty sets, prove that there exists a one-to-one
correspondence between:

(@) XT)XUand8S X (T X U).

(b) Either set in part (a) and the set of ordered triples (s, ¢, u) where
sES,tET, ue U

4. (a) If there is a one-to-one correspondence between S and T, prove
that there exists one between T and S.

(b) If there is a one-to-one correspondence between S and T and
one between T and U, prove that there is a one-to-one corre-
spondence between S and U.

5. If . is the identity mapping on S, prove that for any o € A(S),
oL = (100 = 0.
*6. If S is any set, prove that it is smpossible to find a mapping of S onto
S*,
7. If the set S has n elements, prove that A(S) has n! (n factorial) ele-
ments.
8. If the set S has a finite number of elements, prove:

(a) If o maps S onto S then ¢ is one-to-one.

(b) If ¢ is a one-to-one mapping of S into itself, then o is onto.

(c) Prove, by example, that both part (a) and part (b) are false if S
does not have a finite number of elements.

9. Prove that the converse to both parts of Lemama 1.2 are false; namely:

(a) If ¢ o 7 is onto, it need not be that both + and 7 are onto.

(b) If ¢ o 7 is one-to-one, it need not be that both ¢ and  are one-to-
one.

10. Prove that there is a one-to-one correspondence between the set of
integers and the set of rational numbers.

11, If 6:8 — T and if 4 is a subset of S, the restriction of o to A, oy, is
defined by ac4 = ao for any a € A. Prove:

(a) o4 defines a mapping of A into 7.

(b) o4 is one-to-one if o is.

(¢) o4 may very well be one-to-one even if ¢ is not.

12. If ¢S — T and 4 is a subset of S such that A ¢ C 4, prove that
(c°1)y = 04 °74.

13. A set S is said to be ¢njinite if there is a one-to-one correspondence be-
tween S and a proper subset of S. Prove:

(a) The set of integers is infinite.

(b) The set of real numbers is infinite.
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(c) If a set S has a subset A which is infinite, then S must be infinite.
(Note: By the result of Problem 8, a set finite in the usual sense is not in-
finite.)

*14. If S is infinite and can be brought into one-to-one correspondence
with the set of integers, prove that there is one-to-one correspondence be-
tween S and S X 8.

*16. Given two sets S and T we declare S < T (S is smaller than T) if
there is a mapping of T onfo S but no mapping of S onto T. Prove that if
S<Tand T < UthenS < U.

16. If 8 and T are finite sets having m and n elements, respectively,
prove that if m < n then S < T.

3. The Integers. We close this chapter with a brief discussion of the set
of integers. We shall make no attempt to construct them axiomatically,
assuming instead that we already have the set of integers and that we know
many of the elementary facts about them. In this number we include the
principle of mathematical induction (which will be used freely throughout
the book) and the fact that a nonempty set of positive integers always con-
tains a smallest element. As to notation, the familiar symbols: a > b, a < b,
|a], ete., will occur with their usual meaning. To avoid repeating that some-
thing is an integer, we make the assumption that all symbols, in this section,
written as lower-case Latin letters will be integers.

Given a and b, with b = 0, we can divide a by b to get a nonnegative re~
mainder 7 which is smaller in size than b; that is, we can find m and r such
that ¢ = mb + r where 0 < r < |b|. This fact is known as the Euclidean
algorithm and we assume familiarity with it.

We say that b 5= 0 divides a if a = mb for some m. We denote that b
divides a by b|a, and that b does not divide a by b 1 a. Note that if a|1 then
a = =1, that when both a|b and b|a, then ¢ = b, and that any b > 0
divides 0. If b|a, we call b a divisor of a. Note that if b is a divisor of g and
of h, then it is a divisor of mg + nh for arbitrary integers m and n. We leave
the verification of these remarks as exercises.

Dermnirion. The positive integer ¢ is said to be the greatest common
divisor of ¢ and b if:

(1) ¢ is a divisor of a and of b;
(2) any divisor of @ and b is a divisor of c.

We shall use the notation (a, b) for the greatest common divisor of a and
b. Since we insist that the greatest common divisor be positive, (a, b) =
(@, —b) = (—a, b) = (—a, —b). For instance, (60, 24) = (60, —24) = 12.
Another comment: The mere fact that we have defined what is to be meant
by the greatest common divisor does not guarantee that it exists. This will
have to be proved. However, we can say that if it exists then it is unique,
for, if we had ¢; and c; satisfying both conditions of the definition above,
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then ¢;|cs and ¢y|¢;, whence we would have ¢; = =cp; the insistence on
positivity would then force ¢; = ¢s. Our first business at hand then is to
dispose of the existence of (g, b). In doing so, in the next lemma, we actually
prove a little more, namely that (a, b) must have a particular form.

Lemma 1.5. If a and b are integers, not both 0, then (a, b) exrists;, more-
over, we can find integers mq and ng such that (a, b) = mea + neb.

Proof. Let 91 be the set of all integers of the form ma 4 nb where m
and n range freely over the set of integers. Since one of a or b is not 0, there
are nonzero integers in 9. Because z = ma + nbisin M, —z = (—m)a +
(~m)b is also in 91; therefore, 9 always has in it some positive integers.
But then there is a smallest positive integer, ¢, in 9; being in 91, ¢ has the
form ¢ = mga + ngb. We claim that ¢ = (a, ).

Note first that if d|a and d|b, then d| (mea + nd), whence d|c. We now
must show that ¢|a and ¢|b. Given any element 2 = ma + nb in 91, then
by the Euclidean algorithm, z = ¢ + r where 0 < r < ¢. Writing this out
explicitly, ma + nb = t(mea + neb) + r, whence r = (m — img)a -+
(n — tngy)b and so must be in 9. Since 0 < r and r < ¢, by the choice of
¢, r = 0. Thus z = fc; we have proved that ¢|z for any z € 9. But ¢ =
la + 0b € 9 and b = 0a + 1b € M, whence c|a and c|b.

We have shown that ¢ satisfies the requisite properties to be (a, b) and
5o we have proved the lemma.

DerinitioN. The integers a and b are relatively prime if (a,b) = 1.
As an immediate consequence of Lemma 1.5, we have the

CoroOLLARY. If a and b are relatively prime, we can find integers m and n
such that ma + nb = 1.

We introduce another familiar notion, that of prime number. By this
we shall mean an integer which has no nontrivial factorization. For technical
reasons, we exclude 1 from the set of prime numbers. The sequence 2, 3, 5, 7,
11, ... are all prime numbers; equally, —2, —3, —5, ... are prime num-
bers. Since, in factoring, the negative introduces no essential differences, for
us prime numbers will always be positive.

Dzrinrrion. The integer p > 1 is a prime number if its only divisors are
=+1, +p.

Another way of putting this is to say that an integer p (larger than 1) is a
prime number if and only if given any other integer n then either (p, n) = 1
or p|n. As we shall soon see, the prime numbers are the building blocks of
the integers. But first we need the important observation,
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Lemma 1.6. If a s relatively prime to b but a|be, then aec.

Proof. Since a and b are relatively prime, by the corollary to Lemma 1.5,
we can find integers m and n such that ma + nb = 1. Thus mac + nbe = ¢.
Now a|mac and, by assumption, a|nbc; consequently, a|(mac + nbc).
Since mac + nbc = ¢, we conclude that a|c, which is precisely the assertion
of the lemma.

Following immediately from the lemma and the definition of prime num-
ber is the important

CoroLrary. If a prime number divides the product of certain integers it
must divide at least one of these integers.

We leave the proof of the corollary to the reader.

We have asserted that the prime numbers serve as the building blocks
for the set of integers. The precise statement of this is the “unique factoriza-
tion theorem.”

TuaroREM 1.C. Any posttive integer a > 1 can be factored in a unique way

as a = p1*pe®2. .. p*t, where py > Py > - -+ > Py are prime numbers and
where each o, > 0.

Proof. The theorem as stated actually consists of two distinet sub-
theorems; the first asserts the possibility of factoring the given integer as a
product of prime powers; the second assures us that this decomposition is
unique. We shall prove the theorem itself by proving each of these sub-
theorems separately.

An immediate question presents itself: How shall we go about proving
the theorem? A natural method of attack is to use mathematical induction.
A short word about this; we shall use the following version of mathematical
induection: If the proposition P(my) is true and if the truth of P(r) for all r
such that my < r < k implies the truth of P(k), then P(n) is true for all
n > myp. This variant of induction can be shown to be a consequence of the
basic property of the integers which asserts that any nonempty set of posi-
tive integers has a minimal element (see Problem 10).

We first prove that every integer a > 1 can be factored as a product of
prime powers; our approach is via mathematical induction.

Certainly my = 2, being a prime number, has a representation as a
product of prime powers.

Suppose that any integer r, 2 < r < k can be factored as a product of
prime powers. If k itself is a prime number, then it is a product of prime
powers. If k& is not a prime number, then & = uv where 1 < u <k and
1 < v < k. By the induction hypothesis, since both « and v are less than £,
each of these can be factored as a product of prime powers. Thus k£ = w
is also such a product. We have shown that the truth of the proposition for
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all integers 7, 2 < r < k, implies its truth for k. Consequently, by the basic
induction principle, the proposition is true for all integers n > mg = 2;
that is, every integer n > 2 is a product of prime powers.

Now for the uniqueness. Here, too, we shall use mathematical induction,
and in the form used above. Suppose that

o= PP ... P = glﬁlqzﬂz . qsﬁs

where p; > ps > - Dr, @1 > gg > -+ - > ¢, are prime numbers, and where
each a; > 0 and each 8; > 0. Our object is to prove:

1) r=-s;
) pr=quP2= @2 -+, Pr = r;
(3) o = 51) Qg = 62; coey Qp = L.

For a = 2 this is clearly true. Proceeding by induction we suppose it to
be true for all integers 4, 2 < u < a. Now, since

a=p*...p% = g1‘31 qgﬂ‘

and since ey > 0, p; | a, hence p; | ¢:"* ... ¢P. However, since p; is a prime
number, by the corollary to Lemma 1.6, it follows easily that p; = ¢;
for some 7. Thus ¢; > ¢; = p;. Similarly, since ¢; |a we get ¢; = p; for some 7,
whence p; > p; = ¢1. In short, we have shown that p; = ¢;. Therefore
a = PP ... po = p PP .. P We claim that this forces a; = 8.

(Prove!) But then b = f"‘—l =py® ... % =™ ... ¢ If b =1 then

ag=:-+=a,=0and By =---= 0, =0; that is, r = s = 1, and we are
done. If b > 1 then since b < a we can apply our induction hypothesis to
b to get:

(1) the number of distinct prime power factors (in b) on both sides are
equal, that is, » — 1 = s — 1, hence r = s;

(2) ag = Bay ..., 0p = By;

(3) P2 = Q2 +-+y Pr = Qr.

Together with the information we already have obtained, namely, p; = ¢,
and a; = B, this is precisely what we were trying to prove. Thus we see
that the assumption of the uniqueness of factorization for the integers less
than ¢ implied the uniqueness of factorization for a. In consequence, the

induction is completed and the assertion of unique factorization is estab-
lished.
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We change direction a little to study the important notion of congruence
modulo a given integer. As we shall see later, the relation that we now in-

troduce is a special case of a much more general one that can be defined in a
much broader context.

DeriniTION. Let n > 0 be a fixed integer. We define a = b mod n if
n| (@ — b).

The relation is referred to as “congruence modulon,” n is called the modu-
lus of the relation, and we read ¢ = b mod » as “‘a is congruent to b modulo
n.”” Note, for example, that 73 = 4 mod 23, 21 = —9 mod 10, ete.

This congruence relation enjoys the following basic properties:

Lemma 1.7

(1) The relation, congruence modulo n, defines an equivalence relation
on the set of integers.

(2) This equivalence relation has n distinct equivalence classes.

8 If a=b mod nand c=d mod n then ¢ +c¢c=b + d mod n and
ac = bd mod n.

(4) If ab = ac mod n and a is relatively prime to n, then b = ¢ mod n.

Proof. We first verify that the relation ‘“‘congruence modulo n” is an
equivalence relation. Since 7|0, we indeed have that n|(¢ — a) whence
a = a mod n for every a. Further, if ¢ = b mod » then n|(a — b), and so
n|(b —a) = —(a — b); thus b = ¢ mod n. Finally, if ¢ = b mod » and
b = cmodn, thenn|(a — b) and n| (b — c) whencen|{(a — b) + (b — o)},
that is, n| (¢ — ¢). This, of course, implies that a = ¢ mod 7.

Let the equivalence class, under this relation, of a be denoted by [a];
we call it the congruence class (mod n) of a. Given any integer a, by the
Euclidean algorithm, ¢ = kn + r where 0 < r < n. But then, a € [r] and
so [a] = [r]. Thus there are at most n distinct congruence classes; namely,
[0], [1], ..., [»n — 1]. However, these are distinct, for if [¢] = [;] with, say,
0 < i< j<mn,thenn|(j — 1) wherej — 7 is a positive integer less than n,
which is obviously impossible. Consequently, there are exactly the n dis-
tinet congruence classes [0], [1], ..., [» — 1]. We have now proved asser-
tions (1) and (2) of the lemma.

We now prove part (3). Suppose that a = b mod # and ¢ = d mod 7n;
therefore, n|(a — b) and n|(c — d) whence n|{(a —b) + (¢ — d)}, and
so n|{(a+¢) — (b+d)}. But then @ + ¢ =b + d mod 7. In addition
n|{(@a — b)ec + (¢ — d)b} = ac — bd, whence ac = bd mod n.

Finally, notice that if ab = ac mod n and if @ is relatively prime to 7,
then the fact that n|a(b — ¢), by Lemma 1.6, implies that n|(b — ¢) and
80 b = ¢ mod n.
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If @ is not relatively prime to n, the result of part (4) may be false; for
instance, 2.3 = 4.3 mod 6, yet 2 # 4 mod 6.

Lemma 1.7 opens certain interesting possibilities for us. Let J, be the
set of the congruence classes mod n; that is, J, = {[0],[1], ..., [n — 1]}.
Given two elements, [¢] and [5] in J,, let us define:

(a) [f+ [ =+
(b) [4l7] = [

We assert that the lemma assures us that this “addition” and “multipli—
cation’’ are well-defined; that is, if [7] = [¢'] and [j] = [4'], then [] + [j] =
47 =0F+71=[1+[7] and that []j] = [][;]. (Verify!) These
operations in J, have the following interesting properties (whose proofs
we leave as exerclses) For any [7], [J], [k] in J»

@) [+ = [ + B . ,
R oy

3) ([i] + 5] + k] = ] + L ,
@ (DI = EIID [associative laws;
(®) [ + [k]) = []l7] + [][k] distributive law;

©) [0] + [i] = [i];

@ [l = [

One more remark: If n = p is a prime number and if [a] 5 [0] is in J),
then there is an element [b] in J, such that [a](b] = [1].
The set J, plays an important role in algebra and number theory. It is

called the set of ntegers mod n; before we proceed much further we will have
become well acquainted with it.

PROBLEMS

1. If a|b and b|a, show that a = =+b.
2. If b is a divisor of g and of %, show it is a divisor of mg + nh.
3. If a and b are integers, the least common multiple of a and b, written
as [a, b] is defined as that positive integer d such that:
(1) a|d and b]d.
(2) Whenever a|z and b|z then d|z.

Prove that [a, b] exists and that [a, b] = a_bb)
4. If a|z and b|z and (a,b) = 1 prove that (ab)|z.
6. If a = py* ... px™ and b = p;Pt ... piP* where the p; are distinet
prime numbers and where each «; > 0, 8; > 0, prove:
1) (a,b) = p1 ... pi’*where 5; = minimum of o; and 8; for each 4.
(2) [a,b] = p"* ... pr"* where v; = maximum of o; and B; for each 7.
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6. Given a, b, on applying the Euclidean algorithm successively we
have:

a=qob+r,0<r <|b|
b=qir1+175,0< 1<

Ty =qorz + 73,0 <13 <1y

Tk = Qk1Th+1 + Thy2, 0 < 1pqe < Thga.

Since the integers r are decreasing and are all nonnegative, there is a first
integer » such that 7,1 = 0. Prove that r, = (a, b). (We consider, here,
ro = [b].)
7. Use the method in Problem 6 to calculate:
(a) (1128, 33).
(b) (6540, 1206).
8. To check that n is a prime number, prove that it is sufficient to show
that it is not divisible by any prime number p, such that p < /7.
9. Show that n > 1 is a prime number if and only if for any a either
(a@,n) = 1orn|a.
10. Assuming that any nonempty set of positive integers has a minimal
element, prove:
(a) If the proposition P is such that
(1) P(myp) is true
(2) the truth of P(m — 1) implies the truth of P(m)
then P(n) is true for all n > my.
(b) If the proposition P is such that
(1) P(my) is true
(2) P(m)istrue whenever P(a)istrueforallasuchthatmo<a <m
then P(n) is true for all n > m,,.
11. Prove that the addition and multiplication used in J, are well-
defined.
12. Prove the properties 1-7 for the addition and multiplication in Ja.
13. If (a,n) = 1, prove that one can find [b] € J, such that [a][b] = [1]
in J,.
*14. If p is a prime number, prove that for any integer a, a® = a mod p.
16. If (m, n) = 1, given a and b, prove that there exists an z such that
z = a mod m and z = b mod n.
16. Prove the corollary to Lemma 1.6.
17. Prove that n is a prime number if and only if in J, [a][b] = [0] im-
plies that [a] = [0] or [b] = [0].
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Supplementary Reading
For sets and cardinal numbers:

BmrxrOFF, G., and MacLANE, 8., A Brief Survey of Modern Algebra. The
Maemillan Company, New York, 1953.



CHAPTER 2

Group Theory

In this chapter we shall embark on the study of the algebraic object
known as a group which serves as one of the fundamental building blocks
for the subject which is today called abstract algebra. In later chapters we
shall have a look at some of the others such as rings, fields, vector spaces,
and linear algebras. Aside from the fact that it has become traditional to
consider groups at the outset, there are natural, cogent reasons for this
choice. To begin with, groups, being one-operational systems, lend them-
selves to the simplest formal description. Yet despite this simplicity of
description the fundamental algebraic concepts such as homomorphism,
quotient construction, and the like, which play such an important role in
all algebraic structures—in fact, in all of mathematics—already enter here
in a pure and revealing form.

At this point, before we become weighted down with details, let us take
a quick look ahead. In abstract algebra we have certain basic systems
which, in the history and development of mathematics, have achieved posi-
tions of paramount importance. These are usually sets on whose elements
we can operate algebraically—by this we mean that we can combine two
elements of the set, perhaps in several ways, to obtain a third element of the
set—and, in addition, we assume that these algebraic operations are sub-
ject to certain rules, which are explicitly spelled out in what we call the
axioms or postulates defining the system. In this abstract setting we then
attempt to prove theorems about these very general structures, always
hoping that when these results are applied to a particular, concrete realiza-
tion of the abstract system there will low out facts and insights into the
example at hand which would have been obscured from us by the mass of
inessential information available to us in the particular, special case.

We should like to stress that these algebraic systems and the axioms
which define them must have a certain naturality about them. They must
come from the experience of looking at many examples; they should be rich
in meaningful results. One does not just sit down, list a few axioms, and
then proceed to study the system so described. This, admittedly, is done
by some, but most mathematicians would dismiss these attempts as poor
mathematics. The systems chosen for study are chosen because particular
cases of these structures have appeared time and time again, because some-
one finally noted that these special cases were indeed special instances of

25
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a general phenomenon, because one notices analogies between two highly
disparate mathematical objects and so is led to a search for the root of
these analogies. To cite an example, case after case after case of the special
object, which we know today as groups, was studied toward the end of the
eighteenth, and at the beginning of the nineteenth, century, yet it was not
until relatively late in the nineteenth century that the notion of an abstract
group was introduced. The only algebraic structures, so far encountered,
that have stood the test of time and have survived to become of importance,
have been those based on a broad and tall pillar of special cases. Amongst
mathematicians neither the beauty nor the significance of the first example
which we have chosen to discuss—groups—is disputed.

1. Definition of a Group. At this juncture it is advisable to recall a
situation discussed in the first chapter. For an arbitrary nonempty set S
we defined A(S) to be the set of all one-to-one mappings of the set S onto
jtself. For any two elements o, 7 € A(S) we introduced a product, denoted
by ¢ o 7, and on further investigation it turned out that the following facts
were true for the elements of A(S) subject to this product:

(1) Whenever o, r € A(S), then it follows that ¢ o 7 is also in A(S).
This is described by saying that A (S) is closed under the product (or,
sometimes, as closed under multiplication).

(2) For any three elements o, 7, u € A(S), co(rou) = (co7)op.
This relation is called the associative law.

(3) There is a very special element « € A(S) which satisfies to o =
oo =g forall ¢ € A(S). Such an element is called an identity ele-
ment for A(S).

(4) For every o € A(S) there is an element, written as ¢, also in 4 (S),
such that 0 o 0™ = ¢~ 0 ¢ = 1. This is usually described by saying
that every element in A(S) has an #nverse in A(S).

One other fact about A(S) stands out, namely, that whenever S has
three or more elements we can find two elements o, 8 € A(S) such that
a o B 5 B o a. This possibility which runs counter to our usual experience
and intuition in mathematics so far, introduces a richness into 4 (S) which
would have not been present except for it.

With this example as a model, and with a great deal of hindsight, we ab-
stract and make the

DErinNiTION. A nonempty set of elements G is said to form a group if in

G there is defined a binary operation, called the product and denoted by -
such that:

(1) a, b € @ implies that a-b € G (closed).
2) a, b, ¢ € @ implies that a-(b-¢) = (a-b)-c (associative law).
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(3) There exists an element ¢ € G such that a-e = ¢-a = a for all
a € @ (the existence of an identity element in @).

(4) For every a € (G there exists an element a™' € @ such that
a-a”! = a7'-a = ¢ (the existence of inverses in G).

Considering the source of this definition it is not surprising that for every
nonempty set S the set A(S) is a group. Thus we already have presented to
us an infinite source of interesting, concrete groups. We shall see later (in a
theorem due to Cayley) that these A(S)’s constitute, in some sense, a
universal family of groups. If 8 has three or more elements, recall that we
can find elements ¢, 7 € A(S) such that ¢ o r % 7 o o. This prompts us to

single out a highly special, but very important, class of groups as in the
next definition.

DEerFINITION. A group @ is said to be abelian (or commutative) if for every
a,b€ G ab=b-a.

A group which is not abelian is called, naturally enough, non-abelian;
having seen a family of examples of such groups we know that non-abelian
groups do indeed exist.

Another natural characteristic of a group @ is the number of elements it
contains. We call this the order of G and denote it by o(G). This number is, of
course, most interesting when it is finite. In that case we say that G is a
finite group.

To see that finite groups which are not trivial do exist just note that if the
set S contains n elements, then the group A(S) has n! elements. (Prove!)
This highly important example will be denoted whenever it appears in this
book by S, and will be called the symmetric group of degree n. In the next
section we shall more or less dissect Sz which is a non-abelian group of
order 6.

2. Some Examples of Groups.

ExamprE 1. Let @ consist of the integers 0, &1, =2, ... where we mean
by a-b for a, b € @ the usual sum of integers, that is, a-b = a + b. Then
the reader can quickly verify that @ is an infinite abelian group in which 0
plays the role of e and —a that of a™.

ExaMmpLE 2. Let G consist of the real numbers 1, —1 under the multi-
plication of real numbers. G is then an abelian group of order 2.

ExampLE 3. Let G = S;, the group of all 1-1 mapping of the set
{1, ©9, 23} onto itself, under the product which we defined in Chapter 1.
@ is a group of order 6. We digress a little before returning to Ss.
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For a neater notation, not just in Sz, but in any group G let us define for
any a €@, a’ =¢, al =a, > =a-q, a® = a-a? ..., a" = a-0*7}, and
a2 = (a2 a7® = (a™)?, etc. The reader may verify that the usual
rules of exponents prevail, namely, for any two integers (positive, negative,
or zero) m, n,

1) a™-a* = g™t
(It is worthwhile noting that, in this notation, if G is the group of Example 1,
a” means the integer na.)

With this notation at our disposal let us examine S; more closely. Con-
sider the mapping ¢ defined on the set z;, s, z3 by

Ty — Ty
[oR Zo — Xy
xr3 — 23
and the mapping
Ty — Ty
I/ Ty — T3
T3 — 21
Checking, we readily see that ¢ = e, ¥ = ¢, and that
Ty — 23
oy Ty — Tg
T3 — 2
whereas
Ty — 21
Yo Ty — X3
T3 — T2
It is clear that ¢-¥ 5= ¢-¢ for they do not take z; into the same image.

Since ¢ = ¢, it follows that ¥~ = y2. Let us now compute the action of
v~ 1.¢ on zy, 29, 3. Since ¢! = ¢ and

Ty —> 23
¥ g — Iy
T3 — 23
we have that
Ty — 23
-1,
2Ry T S e 7

T3 — Xy
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In other words, ¢-¢ = y™"-¢. Consider the elements ¢, ¢, ¥, ¥2, ¢y, Y- o;
these are all distinct and are in @ (since @ is closed), which only has six
elements. Thus this list enumerates all the elements of G. One might ask,
for instance, what is the entry in the list for - (¢-¢)? Using ¢-¢ = ¢ ¢
we see that ¥-(¢-¢) = ¢ -1 ¢) = W ¥ )¢ =¢¢ = ¢ Of more in-
terest is the form of (¢-¢) (V- ¢) = - Y- W-9)) = ¢-W* ¢) = ¢- W1 ¢)
=¢-(¢-¢) = ¢*-¢ = e-¥ = Y. (The reader should not be frightened by
the long, wearisome chain of equalities here. It is the last time we shall
be so boringly conscientious.) Using the same techniques as we have used,
the reader can compute to his heart’s content others of the 25 products
which do not involve e. Some of these will appear in the exercises.

ExampLr 4. Let n be any integer. We construct a group of order n as fol-
lows: G will consist of all symbolsaf,7 = 0, 1,2, ...,n — 1 where we insist
thata® = a" = ¢,a"-0’ = a"if i + 7 <nand a'-a’ = o if ¢ + > n.
The reader may verify that this is a group. It is called a cyclic group of
order n.

A geometric realization of the group in Example 4 may be achieved as
follows: Let S be the circle, in the plane, of radius 1, and let p,, be a rotation
through an angle of 27 /n. Then on € A(S) and p, in A(S) generates a group
of order n, namely, {e, pn, pn> .., pa”™ *}.

3. Some Preliminary Lemmas. We have now been exposed to the theory
of groups for several pages and as yet not a single, solitary fact has been
proved about groups. It is high time to remedy this situation. Although the
first few results we demonstrate are, admittedly, not very exciting (in
fact, they are rather dull) they will be extremely useful. Learning the alpha-
bet was probably not the most interesting part of our childhood education,
yet, once this hurdle was cleared, fascinating vistas were opened before us.

We begin with

Lemma 2.1. If G 18 a group, then

(a) the identity element of G vs unique;

(b) every a € G has a unigue inverse in G,
(¢) for every a € @, (@™ = q;

(d) foralla,b € G, (a-b)™" =b"ta™!

Proof. Before we proceed with the proof itself it might be advisable to see
what it is that we are going to prove. In part (a) we want to show that if
two elements ¢ and f in @ enjoy the property that for every a € G, a =
a-e=¢a=af=sa then e = f. In part (b) our aim is to show that if
z-a=aqaxz=candy-a = a-y = ¢, whereall of a, 2, y arein G, thenz = y.

First let us consider part (a). Since e-a = a for every a € G, then, in
particular, e-f = f. But, on the other hand, since b-f = b for every b € G,
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we must have that e-f = e. Piecing these two bits of information together
we obtain f = ¢-f = ¢, and so e = f.

Rather than proving part (b) we shall prove something stronger which
immediately will imply part (b) as a consequence. Suppose that for a in G,
a-z = ¢ and a-y = e; then, obviously, a-z = a-y. Let us make this our
starting point, that is, assume that a-2 = a-y for @, z, y in G. There is an
element b € G such that b-a = ¢ (as far as we know yet there may be
several such b’s). Thus b-(a-x) = b-(a-y); using the associative law this
leads to

t=c¢cz=(barz=>0(a2z) =b(ay = (ba)yy=cy=y.

We have, in fact, proved that a-z = a-y in a group G forces = y. Simi-
larly we can prove that z-a = y-a implies that z = y. This says that we
can cancel, from the same side, in equations in groups. A note of caution,
however, for we cannot conclude that a-z = y-a implies z = y for we have
no way of knowing whether ¢-z = z-a. This is illustrated in S with @ = ¢,
=9,y = 30_‘1-

Part (¢) follows from this by noting that a™- (@)™ = ¢ = a7 a;
canceling off the a™* on the left leaves us with (a™)~! = a. This is the
analog in general groups of the familiar result — (—5) = 5, say, in the group
of real numbers under addition.

Part (d) is the most trivial of these, for (a-b)- (b ™*-a™?) = a-((b-db"1)-a™?)
=aqa-(e-a”) = a-a”! = ¢, and so, by the very definition of the inverse
(@-b)"! =bt.a7

Certain results obtained in the proof just given are important enough
to single out and we do so now in

Lemma 2.2. Given a, b in the group G, then the equations a-x = b and
y-a = b have unique solutions for x and y in G. In particular, the two can-
cellation laws,

a-u = a-wimplies u = w
and

U-a@ = w-a implies u = w

hold in Q.

The few details needed for the proof of this lemma are left to the reader.

PROBLEMS

1. In the following determine whether the systems described are groups.
In case not, point out which of the group axioms fail to hold.
(a) G = set of all integers, a-b = a — b.
(b) G = set of all positive integers, a-b = ab, the usual product of
integers.
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(¢) G = ag, ay, ..., a5 where
;05 = Qjyj if ¢ +j <7
;0 = Qiyj 1 4+72>7
(for instance, as-a4 = @544-7 = @y since 5+ 4 =9 > 7).
(d) G = set of all rational numbers with odd denominators, a-b =
a + b, the usual addition of rational numbers.
2. Prove that if G is an abelian group, then for all a, b € @ and all in-
tegers n, (a-b)" = a™-b™.
3. If G is a group such that (a-b)? = a2-b%for all a, b € @, show that @
must be abelian.
*4, If G is a group in which (a-b)* = a’-b* for three consecutive integers
1 for all a, b € G, show that @ is abelian.
5. Show that the conclusion of Problem 4 does not follow if we assume
the relation (a-b)* = a*-b* for just two consecutive integers.
6. In S; give an example of two elements z, y such that (z-y)? = 22-32.
7. In S3 show that there are four elements satisfying z* = e and three
elements satisfying 1% = e.
8. If G is a finite group, show that there exists a positive integer N such
that a¥ = efor all a € G.
9. (a) If the group G has three elements, show it must be abelian.
(b) Do part (a) if G has four elements.
(c) Do part (a) if G has five elements.
10. Show that if every element of the group G is its own inverse, then G
is abelian.
11, If @ is a group of even order, prove it has an element a ¢ satisfying
2=e.
12. Let G be a nonempty set closed under an associative product, which
in addition satisfies:
(a) There exists an e € @ such that a-¢ = afor all a € G.
(b) Given a € G, there exists an element y(a) € G such that
a-yla) =e.
Prove that G must be a group under this product.
13. Prove, by an example, that the conclusion of Problem 12 is false if we
assume instead:
(a’) There exists an ¢ € G such that a-e = aforalla € G.
(b’) Given a € G, there exists y(a) € @ such that y(a)-a = e.
14. Suppose a finite set G is closed under an associative product and that
both cancellation laws hold in G. Prove that G must be a group.
16. (a) Using the result of Problem 14, prove that the nonzero integers
modulo p, p a prime number, form a group under multiplication
mod p.
(b) Do part (a) for the nonzero integers relatively prime to n under
multiplication mod n.
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16. In Problem 14 show by an example that if one just assumed one of the
cancellation laws, then the conclusion need not follow.

17. Prove that in Problem 14 infinite examples exist, satisfying the con-
ditions, which are not groups.

18. For any n > 2 construct a non-abelian group of order 2n. (Hint:
imitate the relations in S3.)

19. If S is a set closed under an associative operation, prove that no mat-
ter how you bracket a;as ... an, retaining the order of the elements, you
get the same element in S (e.g. (a1-a2)-(a3-as) = a1-(as-(a5-04)); use
induction on n).

4. Subgroups. Before turning to the study of groups we should like to
change our notation slightly. It is cumbersome to keep using the - for the
group operation; henceforth we shall drop it and instead of writing a-b for
a, b € G we shall simply denote this product as ab.

In general we shall not be interested in arbitrary subsets of a group G for
they do not reflect the fact that G has an algebraic structure imposed on it.
‘Whatever subsets we do consider will be those endowed with algebraic prop-
erties derived from those of G. The most natural such subsets are introduced
in the

DeriniTioN. A subset H of a group G is said to be a subgroup of G if,
under the product in @, H itself forms a group.

The following remark is clear: if H is a subgroup of G and K is a sub-
group of H, then K is a subgroup of G.

It would be useful to have some criterion for deciding whether a given
subset of a group is a subgroup. This is the purpose of the next two lemmas.

Lemma 2.3. A nonempty subset H of the group G 1s a subgroup of G if and
only if

(1) a, b € H implies that ab € H;

(2) @ € H imples that a™* € H.

Proof. If H is a subgroup of @, then it is obvious that (1) and (2) must
hold.

Suppose conversely that H is a subset of @ for which (1) and (2) hold.
In order to establish that H is a subgroup all that is needed is to verify that
¢ € H and that the associative law holds for elements of H. Since the as-
sociative law does hold for @, it holds all the more so for H which is a subset
of . Ifa € H,by (2) a™! € H and so by (1) ¢ = aa™* € H. This com-
pletes the proof.

In the special case of a finite group the situation becomes even nicer for
there we can dispense with (2).
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Lemma 2.4. If H is a nonempty finite subset of a group G and H 1s closed
under multiplication, then H is a subgroup of G.

Proof. In light of Lemma 2.3 we need but show that whenever a € H,
then o™ € H. Suppose that ¢ € H; thus o® = aa € H, ¢® = o% € H,
...,a” € H, ... since H is closed. Thus the infinite collection of elements
a, % ..., a", ... must all fit into H, which is a finite subset of G. Thus
there must be repetitions in this collection of elements; that is, for some
integers r, s with » > s > 0, a" = o°. By the cancellation in @, a"™ = e
(whence ¢ is in H); since r —s — 1 >0, o' " '€ Hand ¢~ = g1
since aa" ™! = ¢"™* = ¢. Thus a™* € H, completing the proof of the
lemma.

The lemma tells us that to check whether a subset of a finite group is a
subgroup we just see whether or not it is closed under multiplication.

We should, perhaps, now see some groups and some of their subgroups.
G is always a subgroup of itself; likewise the set consisting of e is a sub-
group of @. Neither is particularly interesting in the role of a subgroup, so
we describe them as trivial subgroups. The subgroups between these two
extremes we call nontrivial subgroups and it is in these we shall exhibit
the most interest.

Examere 1. Let G be the group of integers under addition, H the subset
consisting of all the multiples of 5. The student should check that H is a
subgroup.

In this example there is nothing extraordinary about 5; we could simi-
larly define the subgroup H, as the subset of G consisting of all the mul-
tiples of n. H, is then a subgroup for every n. What can one say about
H, N H,? It might be wise to try it for Hg N H,.

Exampie 2. Let S be any set, 4(S) the set of 1-1 mappings of S onto
itself, made into a group under the composition of mappings. If zo € S,
let H(zo) = {¢ € A(S)|20¢ = zo}. H(z) is a subgroup of A(S). If for
& # xo € S we similarly define H(z,), what is H(zo) N H(x1)?

Exampre 3. Let @ be any group, a € G. Let (o) = {a'|¢ =0, =£1,
=42, ...}. (a) is a subgroup of G (verify!); it is called the cyclic subgroup
generated by a. This provides us with a ready means of producing subgroups
of @. If for some choice of a, G = (a), then @ is said to be a cyclic group.
Such groups are very special but they play a very important role in the
theory of groups, especially in that part which deals with abelian groups.
Of course, cyclic groups are abelian, but the converse is false.

ExameLe 4. Let G be a group, W a subset of G. Let (W) be the set of all
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elements of @ representable as a product of elements of W raised to posi-
tive, zero, or negative integer exponents. (W) is the subgroup of G genera-
ted by W and is the smallest subgroup of @ containing W. In fact, W is
the intersection of all the subgroups of @ which contain W (this intersec-
tion is not vacuous since @ is a subgroup of G which contains W).

DerintTION. Let G be a group, H a subgroup of G; for a, b € @ we say
a is congruent to b mod H, written as @ = b mod H if ab™! € H.

LemMaA 2.5. The relation a = bmod H s an equivalence relation.

Proof. If we look back in Chapter 1, we see that to prove Lemma 2.5 we
must verify the following three conditions: For all a, b, ¢ € G

(1) a=amod H;
(2) a = b mod H implies b = amod H;
(8) a=bmod H, b = ¢ mod H implies a = ¢ mod H.

[/

Let’s go through each of these in turn.

(1) To show that ¢ = a mod H we must prove, using the very definition
of congruence mod H, that aa™' € H. Since H is a subgroup of @, e € H,
and since aa™ = ¢, aa™* € H, which is what we were required to demon-
strate.

(2) Suppose that a = b mod H, that is, suppose ab™* € H; we want to
get from this b = ¢ mod H, or, equivalently, ba™* € H. Since ab™ € H,
which is a subgroup of G, (ab™!)"! € H; but, by Lemma 2.1, (ab™)"! =
® e = ba™?, and so ba™! € H and b = a mod H.

(3) Finally we require that @ = b mod H and b = ¢ mod H forces a =
¢ mod H. The first congruence translates into ab™ € H, the second into
be~ € H; using that H is a subgroup of G, (ab™2)(bc™") € H. However,
ac™? = aec™ = a(dbb)ct = (ab™V)(be™), hence ac™t € H from which
it follows that ¢ = ¢ mod H.

This establishes that congruence mod H is a bona fide equivalence rela-
tion as defined in Chapter 1, and all results about equivalence relations
have become available to us to be used in examining this particular rela-
tion.

A word about the notation we used. If G were the group of integers under
addition, and H = H, were the subgroup consisting of all multiples of =,
then in @, the relation @ = b mod H, that is, ab™! € H, under the additive
notation, reads as @ — b is a multiple of n. This is the usual number the-
oretic congruence mod n. In other words, the relation we defined using an

arbitrary group and subgroup is the natural generalization of a familiar
relation in a familiar group.

Derintrion. If H is a subgroup of @, a € @, then Ha = {ha|h € H}.
Ha is called a right coset of H in G.
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LemMA 2.6. For all a € G,
Ha = {2z € Gla = z mod H}.

Proof. Let [a] = {x € G|a = 2 mod H}. We first show that Ha  [a].
For if h € H, then a(ha)™ = a(a™A™!) = b, so is in H since H is a
subgroup of G. By the definition of congruence mod H this implies that
ha € [a] for every h € H, and so Ha C [a].

Suppose, now, that z € [a]. Thus ax™' € H, so (az™") ™ = za~ ! is
also in H. That is, za™" = h for some h € H. Multiplying both sides by a
from the right we come up with = ha, and so = € Ha. Thus [a] C Ha.
Having proved the two inclusions [¢] € Ha and Ha C [a], we can conclude
that [a] = Ha, which is the assertion of the lemma.

In the terminology of Chapter 1, [a], and thus Ha, is the equivalence class
of @ in G. By Theorem 1.a these equivalence classes yield a decomposition
of G into disjoint subsets. Thus any two right cosets of H in G either are
identical or have no element tn common.

We now claim that between any two right cosets Ha and Hb of H in G
there exists a 1-1 correspondence, namely, with any element ha € Ha,
where h € H, associate the element hd € Hb. Clearly this mapping is onto
Hb. We aver that it is a one-to-one correspondence, for if h;b = hyb, With
hi, by € H, then by the cancellation law in G, hy = hy and so hja = haa.
This proves

LemMa 2.7. There is a 1-1 correspondence between any two right cosets
of H in Q.

Lemma 2.7 is of most interest when H is a finite group, for then it merely
states that any two right cosets of H have the same number of elements.
How many elements does a right coset of H have? Well, note that H = He
is itself a right coset of H, so any right coset of H in G has o(H) elements.
Suppose now that @ is a finite group, and let & be the number of distinct
right cosets of H in (. By Lemmas 2.6 and 2.7 any two distinct right cosets
of H in G have no element in common, and each has o(H) elements.

Since any a € G is in the unique right coset Ha, the right cosets fill out G.
Thus if & represents the number of distinct right cosets of H in G we must
have that ko(H) = o(G). We have proved the famous theorem due to
Lagrange, namely,

THEOREM 2.A. If G is a finite group and H is a subgroup of G, then o(H)
18 a divisor of o(G).

DerinitioN. If H is a subgroup of G, the sndex of H in G is the number
of distinet right cosets of H in G. ©
0

We shall denote it by ig(H). In case G is a finite group, i¢(#) = o(H) ’
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as became clear in the proof of Lagrange’s theorem. It is quite possible for
an infinite group G to have a subgroup H 5 G which is of finite index in G.

It might be difficult, at this point, for the student to see the extreme im-
portance of this result. As we penetrate the subject more deeply he will
become more and more aware of its basic character. Because the theorem
is of such a stature it merits a little closer scrutiny, a little more analysis,
and so we give, below, a slightly different way of looking at its proof. In
truth, the procedure outlined below is no different from the one already
given. The introduction of the congruence mod H smooths out the listing
of elements used below, and obviates the need for checking that the new
elements introduced at each stage did not appear before.

So suppose again that @ is a finite group and that H is a subgroup of G.
Let hy, ko, ..., hy be a complete list of the elements of H, r = o(H). If
H = @, there is nothing to prove. Suppose, then, that H £ @; thus there
isan a € G, a € H. List all the elements so far in two rows as

hi, hay <., by
hia, hea, ..., ha.

We claim that all the entries in the second line are different from each other
and are different from the entries in the first line. If any two in the second
line were equal, then h,a = h;a with ¢ 5 7, but by the cancellation law this
would lead to h; = hj, a contradiction. If an entry in the second line were
equal to one in the first line, then h,a = h,, resulting in @ = h; " h; € H
since H is a subgroup of @; this violates a & H.

Thus we have, so far, listed 20(H) elements; if these elements account
for all the elements of @, we are done. If not, there is a b € @ which did not
occur in these two lines. Consider the new list

hay by ooy B
h]_a, hza, ey h.a
hib, hsb, . .., hb.

As before (we are now waving our hands) we could show that no two
entries in the third line are equal to each other, and that no entry in the
third line occurs in the first or second line. Thus we have listed 30(H) ele-
ments. Continuing in this way, every new element introduced, in fact, pro-
duces o(H) new elements. Since G is a finite group, we must eventually ex-
haust all the elements of G. But if we ended up using k lines to list all the
elements of the group, we would have written down ko(H) distinct elements,
and so ko(H) = o(@).

It is essential to point out that the converse to Lagrange’s theorem is
false—a group G need not have a subgroup of order m if m is a divisor of
o(@). For instance, a group of order 12 exists which has no subgroup of



SEC. 4 SUBGROUPS 37

order 6. The reader might try to find an example of this phenomenon; the
place to look is in Sy, the symmetric group of degree 4 which has a sub-
group of order 12 which will fulfill our requirement.

Lagrange’s theorem has some very important corollaries. Before we pre-
sent these we make one definition.

DrrmnrTion. If G is a group and ¢ € @, the order (or period) of a is the
least positive integer m such that ¢” = e.

If no such integer exists we say that a is of infinite order. We use the nota-
tion o(a) for the order of a. Recall our other notation, for two integers w, v,
u|v reads: “u is a divisor of ».”

CoroLLARY 1. If G is a finite group and a € @G, then o(a) |o(G).

Progf. With Lagrange’s theorem already in hand, it seems most natural
to prove the corollary by exhibiting a subgroup of @ whose order is o(a).
The element a itself furnishes us with this subgroup by considering the
cyclic subgroup, (a), of G generated by a; (a) consists of e, a, a?, - - -. How
many elements are there in (a)? We assert that this number is the order of a.
Clearly, since a°® = ¢, this subgroup has at most o(a) elements. If it
should actually have fewer than this number of elements, then a* = o’
for some integers 0 < 7 <j < 0(a). Then o/ = ¢, yet 0 < j — 7 < 0(a)
which would contradict the very meaning of o(a). Thus the cyclic sub-
group generated by a has o(a) elements, whence, by Lagrange’s theorem,
o(a) | o(@).

COROLLARY 2. If G is a finite group and a € G, then a*@ = e.

Proof. By Corollary 1, 0(a)|o(@); thus o(G) = mo(a). Therefore, a°® =
a'm,o(a,) = (ao(a))m =" = ¢.

A particular case of Corollary 2 is of great interest in number theory.
The Euler ¢-function, ¢(n), is defined for all integers n by: ¢(1) = 1,
for n > 1 ¢(n) = number of positive integers less than n and relatively
prime to n. Thus, for instance, ¢(8) = 4 since only 1, 3, 5, 7 are the numbers
less than 8 which are relatively prime to 8. In Problem 15 (b) at the end of
Section 3 the reader was asked to prove that the numbers less than # and
relatively prime to # formed a group under multiplication mod n. This
group has order ¢(n). If we apply Corollary 2 to this group we obtain

Cororrary 3 (EULER). If n is a positive integer and a is relatively prime
to n, then a®™ = 1 mod n.
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In order to apply Corollary 2 one should replace a by its remainder on
division by 7. If n should be a prime number p, then ¢(p) =p — 1. If a
is an integer relatively prime to p, then by Corollary 8, a®™" = 1 mod p,
whence a? = g mod p. If, on the other hand, a is not relatively prime to p,
since p is a prime number, we must have that p|a, so that a = 0 mod p,
hence 0 = a® = a mod p here also. Thus

CoROLLARY 4 (FERMAT). If p is a prime number and a is any integer, then
a? = q mod p.

CoroLLARY 5. If @ is a finite group whose order 1s a prime number p, then
@ is a cyclic group.

Proof. First we claim that G' has no nontrivial subgroups H; for o(H)
must divide o(@) = p leaving only two possibilities, namely, o(H) = 1 or
o(H) = p. The first of these implies H = (¢), whereas the second implies
that H = @. Suppose now that o > ¢ € @, and let H = (a). H is a sub-
group of G, H 5 (¢) since a > ¢ € H. Thus H = (. This says that G is
eyclic and that every element in G is a power of a.

Section 4 is of great importance in all that comes later, not only for its
results but also because the spirit of the proofs occurring here are genuinely
group-theoretic. The student can expect to encounter other arguments
having a similar flavor. It would be wise for him to assimilate the material
and approach thoroughly, now, rather than a few theorems later when it
will be too late.

6. A Counting Principle. As we have defined earlier, if H is a subgroup of
G and a € G, then Ha consists of all elements in G of the form ha where
h € H. Let us generalize this notion. If H, K are two subgroups of @, let
HK = {z € G|z = hk, h € H, k € K}. Let’s pause and look at an ex-
ample; in 83 let H = {¢, ¢}, K = {e, #y}. Since ¢ = (¢¢)> = ¢, both H
and K are subgroups. What can we say about HK? Just using the defini-
tion of HK we can see that HK consists of the elements ¢, ¢, ¢y, 6% = ¢.
Since HK consists of four elements and 4 is not a divisor of 6, the order of
Ss, by Lagrange’s theorem HK could not be a subgroup of S;. (Of course,
we could verify this directly but it does not hurt to keep recalling Lagrange’s
theorem.) We might try to find out why HK is not a subgroup. Note that
KH = {¢, ¢, ¢y, ¢¥¢ = ¢} ¢ HK. This is precisely why HK fails to
be a subgroup, as we see in the next lemma.

Lemma 2.8. HK is a subgroup of G if and only if HK = KH.
Proof. Suppose, first, that HK = KH; that is, if h € H and k € K,

then hk = kihy for some k; € K, hy € H (it need not be that k; = k or
hy = hl). To prove that HK is a subgroup we must verify that it is closed
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and every element in HK has its inverse in HK. Let’s show the closure
first; so suppose z = hk € HK and y = 'k’ € HK. Then zy = hkh'k’,
but since kh' € KH = HK, kh' = hyks with hy € H, ky € K. Hence Ty =
h(hoka)k' = (hho)(kok") € HK, and HK is closed. Also z™! = (hk)™! =
k~'h™' € KH = HK, so ' € HK. Thus HK is a subgroup of G.

On the other hand, if HK is a subgroup of @, then for any h € H, k € K,
R € HK and so kh = (W'k))~' € HK. Thus KH c HK. Now if
z is any element of HK, 27} = hk € HK andso z = (z7V)™! = (hk)™! =
k' € KH, so HK  KH. Thus HK = KH.

An interesting special case is the situation when @ is an abelian group
for in that case trivially HK = KH. Thus as a consequence we have the

Cororrary. If H, K are subgroups of the abelian group @, then HK is a
subgroup of G.

If H, K are subgroups of a group @, we have seen that the subset HK
need not be a subgroup of G. Yet it is a perfect meaningful question to ask:
how many distinct elements are there in the subset HK? If we denote this
number by o(HK), we prove

TuEOREM 2.B. If H and K are finite subgroups of G of orders o(H) and
o(K), respectively, then
o(H)o(K)

oHNK)

Proof. Although there is no need to pay special attention to the particular
case in which H N K = (e), looking at this case, which is devoid of some
of the complexity of the general situation, is quite revealing. Here we
should seek to show that o(HK) = o(H)o(K). One should ask oneself, how
could this fail to happen? The answer clearly must be that if we list all the
elements hk, h € H, k € K there should be some collapsing; that is, some
element in the list must appear at least twice. Equivalently, for some
h# hy € H, hk = hyk;. But then hy~'h = kik™'; now since hy € H,
k™! must also be in H, thus hy™'A € H. Similarly, k5~ € K. Since
hy7h o= kk™Y, TR € H N K = (e), so hy™'h = e, whence h = hy, 2
contradiction. We have proved that no collapsing can occur, and so, here,
o(HK) is indeed o(H)o(K).

With this experience behind us we are ready to attack the general case.
As above we must ask: how often does a given element hk appear as a prod-
uct in the list of HK? We assert it must appear o(H N K) times! To see
this we first remark that if iy € H N K, then

ey hk = (hh1)(ha k),

where hhy € H, since h € H, by € HN K C H and by~ 'k € K since
M~ € HN K c K and k € K. Thus hk is duplicated in the product at

o(HK) =
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least o(H N K) times. However, if hk = h'k’, then A~?h' = k(k") ™' = «,
andu € H N K, and so b’ = hu, k' = w™'k; thus all duplications were ac-
counted for in (1). Consequently hk appears in the list of HK exactly
o(H N K) times. Thus the number of distinct elements in HK is the total
number in the listing of HK, that is, o(H)o(K) divided by the number of
times a given element appears, namely, o(H N K). This proves the theorem.

Suppose H, K are subgroups of the finite group G and o(H) > vVo(@,
o(K) > Vo(@). Since HK C G, o(HK) < o(G). However,

o(H)oK) Vo@ Vo) o®
o(H N K) oHNEK)  oHNK)

thus o(H N K) > 1. Therefore, H N K 5% (¢). We have proved the

o(@) > o(HK) =

CororrARY. If H and K are subgroups of G and o(H) > Vo(@),
o(K) > Vo(G), then H N K 5 (e).

We apply this corollary to a very special group. Suppose G is a finite
group of order pg where p and ¢ are prime numbers with p > ¢. We claim
that @ can have at most one subgroup of order p. For suppose H, K are
subgroups of order p. By the corollary, H N K 5 (¢), and being a sub-
group of H, which having prime order has no nontrivial subgroups, we
must conclude that H N K = H, and so H € H N K c K. Similarly
K < H, whence H = K, proving that there is at most one subgroup of
order p. Later on we shall see that there is at least one subgroup of order p,
which, combined with the above, will tell us there is exactly one subgroup
of order p in G. From this we shall be able to determine completely the
structure of G.

PROBLEMS

1. If H and K are subgroups of @, then so is H N K a subgroup of G.

2. For a subgroup H of G define a left coset of H in @ as the set of all
elements of the form ah, b € H. Show that there is a 1-1 correspondence
between the set of left cosets of H in @ and the set of right cosets of H in G-

3. If @ has no nontrivial subgroups prove it must have prime order.

4. Let G be the group of integers under addition, H, the subgroup
consisting of all multiples of a fixed integer n in G. Determine the index of
H, in G and write out all the cosets of H, in G.

5. In Problem 4 what is H, N H,,?

*6. If G is a group and H, K are two subgroups of @ of finite index in
@, prove that H N K is of finite index in G. Can you find an upper bound
for the index of H N K in Q?
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7. Let the mapping ru for @, b real numbers, map the reals into the
reals by the rule, 74p:2 — az +b. Let G = {7,3|a # 0}. Prove that @
is a group under the composition of mappings. Find the formula for 74574

8. In Problem 7 let H = {r; € G|a is rational}. Show that H is a
subgroup of G. List all the right cosets of H in G.

9. (2) In Problem 8 show that every left coset of H in G is a right

coset of H in G.
(b) Give an example of a group G and a subgroup H such that not
every left coset of H in @ is a right coset of H in G.
10. In the group of Problem 7 let N = {r;; € @}. Prove:
(a) N is a subgroup of G.
(d) Ifa € G,n € N, then ana™ € N.

11. If an abelian group has subgroups of orders n and m, respectively,
then show it has a subgroup whose order is the least common multiple of 7
and m.

12. If @ € @ define N(a) = {x € G|za = ax}. Show that N(a) is a
subgroup of G. N (a) is usually called the normalizer or centralizer of a in G.

13. If G is a group, the center of G, Z is defined by Z = {2 € G|zz = x2
all z € G}. Prove that Z is a subgroup of G.

14. Prove that any subgroup of a cyclic group is itself a cyclic group.

15. How many generators does a cyeclic group of order » have? [b € @
is a generator if (b) = G.]

16. If o € G, a™ = e prove that o(a) |m.

17. If in the group @, a® = ¢, aba™" = b? for a,b € @ find o(b).

*18. Let @ be a finite abelian group in which the number of solutions in
G of the equation z" = ¢ is at most n for every positive integer n. Prove
that G must be a cyeclic group.

6. Normal Subgroups and Quotient Groups. Let G be the group Ss and
let H be the subgroup {e¢, ¢}. Since the index of H in @ is 3, there are three
right cosets of H in @ and three left cosets of H in G. We list them:

Right Cosets Left Cosets
H = {e, ¢} H = {e, ¢}
Hy = {¢, ¢¥} vH = (¥, ¥¢ = ¢y°}

Hy? = (¥%, o9°  PH = (¥, ¥%6 = ¢¥}

A quick inspection yields the interesting fact that the right coset Hy is not
a left coset. Thus, at least for this subgroup, the notions of left and right
coset need not coincide. )

In G = S let us consider the subgroup N = {e, ¥, ¥*}. Since the index
of N in @ is 2 there are two left cosets and two right cosets of N in G. We
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list these:
Right Cosets Left Cosets
N = {e, ¢, ¥*} N = {e, ¢, ¥*}
No = {¢,¥¢, 9%}  oN = {¢, ¢¢, ¢y°}
= {¢,¥’¢, ¥o}

A quick inspection here reveals that every left coset of N in @ is a right
coset in G and conversely. Thus we see that for some subgroups the notion
of left coset coincides with that of right coset, whereas for some subgroups
these concepts differ.

It is a tribute to the genius of Galois that he recognized that those
subgroups for which the left and right cosets coincide are distinguished
ones. Very often in mathematics the crucial problem is to recognize and to
discover what are the relevant concepts; once this is accomplished the job
may be more than half done.

We shall define this special class of subgroups in a slightly different way,
which we shall then show to be equivalent to the remarks in the above
paragraph.

DerintTION. A subgroup N of G is said to be a normal subgroup of G if
for every g € Gandn € N, gng™* € N.

Equivalently, if by gNg~ we mean the set of all gng™, n € N, then
N is a normal subgroup of @ if and only if gNg~' C N for every g € G.

Lemma 2.9. N is a normal subgroup of G if and only if gNg~' = N for
every g € G.

Proof. If gNg~™ = N for every g € G, certainly gNg~™ C N, so N is
normal in G.

Suppose that N is normal in G. Thus if ¢ € @, gNg~! < N and g~ 'Ng =
g7 Nt c N. Now, since g"*Ng C N, N = g(g"*Ng)g~* < gNg~*
C N, whence N = gNg~.

In order to avoid a point of confusion here let us stress that Lemma 2.9
does not say that for every n € N and every g € @, gng™! = n. No! This
can be false. Take, for instance, the group @ to be Sz and N to be the sub-
group {e, ¥, ¥*}. If we compute ¢No¢™' we obtain {e, gy ", sy} =
{e, V2, ¥}, yet oo™ 5 . All we require is that the set of elements gNg ™
be the same as the set of elements N.

We now can return to the question of the equality of left cosets and
right cosets.

Lemma 2.10. The subgroup N of G is a normal subgroup of G if and only
if every left coset of N in G is a right coset of N in Q.
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Proof. If N is a normal subgroup of G, then for every g € @, gNg~! =
N, whence (gNg~')g = Ng; equivalently gN = Ng, and so the left coset
gN is the right coset Ng.

Suppose, conversely, that every left coset of N in G is a right coset of
N in G. Thus, for ¢ € G, gN, being a left coset, must be a right coset.
What right coset can it be?

Since g = ge € gN, whatever right coset gN turns out to be, it must
contain the element g; however, g is in the right coset Ng, and two distinct
right cosets have no element in common. (Remember the proof of La-
grange’s theorem?) So this right coset is unique. Thus gN = Ny follows.
In other words, gNg™' = Ngg™' = N, and so N is a normal subgroup of
G.
We have already defined what is meant by HK whenever H, K are
subgroups of G. We can easily extend this definition to arbitrary subsets,
and we do so by defining, for two subsets, A and B,of G, AB = {z € G|z =
ab,a € A,b € B}. As a special case what can we say when 4 = B = H,
a subgroup of G? HH = {hhg|hi, he € H} C H since H is closed under
multiplication. But HH D He = H since e € H. Thus HH = H.

Suppose that N is a normal subgroup of @, and that a, b € G. Consider
(Na)(Nb); since N is normal in G, aNV = Na, and so

NaNb = N(aN)b = N(Na)b = NNab = Nab.

What a world of possibilities this little formula opens! But before we get
carried away, for emphasis and future reference we record this as

Lemma 2.11. A subgroup N of G vs a normal subgroup of G if and only if
the product of two right cosets of N in @ is again a right coset of N in G.

Proof. If N is normal in G we have just proved the result. The proof of
the other half is one of the problems at the end of this section.

Suppose that N is a normal subgroup of G. The formula NaNb = Nab,
for a, b € G is highly suggestive; the product of right cosets is a right
coset. Can we use this product to make the collection of right cosets into
a group? Indeed we can! This type of construction, often occurring in
mathematics and usually called forming a gquotient structure, is of the
utmost importance.

Let G/N denote the collection of right cosets of N in G (that is, the
elements of G/N are certain subsets of @) and we use the product of sub-
sets of G to yield for us a product in G/N.

For this product we claim:

(1) X, Y € G/N implies XY € G/N; for X = Na, Y = Nb for some
a,b € G, and XY = NaNb = Nab € G/N.
() X,Y,Z € G/N, then X = Na, Y = Nb, Z = Ne with g, b, c € G,
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and so (XY)Z = (NaNb)Nc = N(ab)Nc = N(ab)c = Na(bc) (since G is
associative) = Na(Nbc) = Na(NbN¢) = X(YZ). Thus the product in G/N
satisfies the associative law.

(3) Consider the element N = Ne € G/N. If X € G/N, X = Na,
a € G, 50 XN = NaNe = Nae = Na = X, and similarly NX = X. Con-
sequently, Ne is an identity element for G/N.

(4) Suppose X = Na € G/N (where o € G); thus Na™ € G/N, and
NaNa~! = Naa™! = Ne. Similarly Na™Na = Ne. Hence Na™! is the
inverse of Na in G/N.

But a system which satisfies 1, 2, 3, 4 is exactly what we called a group.
That is,

TrEOREM 2.c. If G is a group, N a normal subgroup of @, then G/N 1s
also a group. It is called the quotient group or factor group of G by N.

If, in addition, @ is a finite group what is the order of G/N? Since G/N
has as its elements the right cosets of N in @, and since there are precisely

o(@)

e(N) = —— such cosets we can s3;
1¢(N) o y

Lemma 2.12. If G s a fintte group and N s a normal subgroup of G, then

G
o(G/N) = 02(%\—%-

We close this section with an example.

Let G be the group of integers under addition and let N be the set of
all multiples of 3. Since the operation in @ is addition we shall write the
cosets of N in G as N + a rather than as Na. Consider the three cosets
N, N 4+ 1, N 4 2. We claim that these are all the cosets of N in G. For,
givena € G, a = 3b + ¢ whereb € Gand ¢ = 0, 1, or 2 (¢ is the remainder
of ¢ on division by 3). Thus N+a=N+3b+c= N +3b) +¢c =
N 4 ¢ since 3b € N. Thus every coset is, as we stated, one of N, N + 1,
or N4 2, and G/N = {N, N + 1, N 4+ 2}. How do we add elements in
@/N? Our formula NaNb = Nab translates into: (N + 1) + (N +2) =
N+4+3=Nsince3€C N;(N+2)+N+2)=N+4=N-+1andso
on. Without being specific one feels that G/N is closely related to the
integers mod 3 under addition. Clearly what we did for 3 we could emulate
for any integer n, in which case the factor group should suggest a relation
to the integers mod 7 under addition. This type of relation will be clarified
in the next section.

PROBLEMS

*1. If H is a subgroup of @ such that the product of two right cosets of
H in G is again a right coset of H in @, prove that H is normal in G.
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2. If G is a group and H is a subgroup of index 2 in @, prove that H
is a normal subgroup of G.

3. If N is a normal subgroup of G and H is any subgroup of @, prove
that NH is a subgroup of G.

4. Show that the intersection of two normal subgroups of @ is a normal
subgroup of G.

5. If H is a subgroup of ¢ and N is a normal subgroup of G, show that
H N N is a normal subgroup of H.

6. Show that every subgroup of an abelian group is normal.

*7. Is the converse of Problem 6 true? If yes, prove it, if no, give an
example of a non-abelian group all of whose subgroups are normal.

8. Let G be a group, H a subgroup of G. Let, for g € G, gHg™! =
{ghg™*|h € H}. Prove that gHg™" is a subgroup of G.

9. Suppose H is the only subgroup of order o(H) in the finite group G.
Prove that H is a normal subgroup of G.

10. If H is a subgroup of @, let N(H) = {g € G|gHg™! = H}. Prove:

(1) N(H) is a subgroup of G.

(2) H is normal in N(H).

(3) If H is a normal subgroup of the subgroup K in @, then K <
N(H) (that is, N(H) is the largest subgroup of G in which H is
normal).

(4) H is normal in @ if and only if N(H) = G.

11. If N and M are normal subgroups of @, prove that N is also a
normal subgroup of G.

*12, Suppose that N and M are two normal subgroups of ¢ and that
N N M = (e). Show that for any n € N, m € M, nm = mn.

13. If a cyclic subgroup T of G is normal in @, then show that every
subgroup of T is normal in G.

*14. Prove, by an example, that we can find three groups £ C F C G,
where E is normal in F, F is normal in @, but E is nof normal in G.

15. If N is normal in @ and a € G is of order o(a), prove that the order,
m, of Na in G/N is a divisor of o(a).

16. If N is a normal subgroup in the finite group such that /¢(N) and
o(N) are relatively prime, show that any element z € G satisfying
°Y = ¢ must be in N.

17. Let G be defined as all formal symbols z%’, 7 =0,1,7 =0,1,
2, ...,n — 1 where we assume

z*y’ = 2%y if and only if ¢ = ¢/, j = 7'
P?P=y"=¢n>2

1

Yy =y .

(a) Find the form of the product (z%y’) (z*y®) as 2%,
(b) Using this, prove that @ is a non-abelian group of order 2n.
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(c) If » is odd, prove that the center of G is (e), while if n is even
the center of G is larger than (e).
This group is known as a dthedral group. A geometric realization of this
is obtained as follows: let ¥ be a rotation of the Euclidean plane about the
origin through an angle of 2x/n, and z the reflection about the vertical
axis. G is the group of motions of the plane generated by y and z.

7. Homomorphisms. The ideas and results in this section are closely in-
terwoven with those of the preceding one. If there is one central idea which
is common to all aspects of modern algebra it is the notion of homomor-
phism. By this one means a mapping from one algebraic system to a like
algebraic system which preserves structure. We make this precise, for
groups, in the next definition.

DrrINITION. A mapping ¢ from a group G into a group @ is said to be a
homomorphism if for all a, b € @, ¢(ab) = ¢(a)p(d).

Notice that on the left side of this relation, namely, in the term ¢(ab),
the product ab is computed in G using the product of elements of G whereas
on the right side of this relation, namely, in the term ¢(a)¢(b), the product
is that of elements in G.

Example 0. ¢(x) = e all x € G. This is trivially a homomorphism. Like-
wise ¢(x) = z for every 2 € @ is a homomorphism.

Example 1. Let @ be the group of all real numbers under addition (i.e.,
ab for a, b € @ is really the real number a + b) and let G be the group of
nonzero real numbers with the product being ordinary multiplication of
real numbers. Define ¢:G — G by ¢(a) = 2% In order to verify that
this mapping is & homomorphism we must check to see whether ¢(ab) =
#(a)é(b), remembering that by the product on the left side we mean the
operation in G (namely, addition), that is, we must check if 2°7% = 2%2°¢,
which indeed is true. Since 2% is always positive the image of ¢ is not all
of G, so ¢ is a homomorphism of @ into @, but not onto G.

Ezample 2. Let G = S3 = {¢, ¢, ¥, ¥*, ¢¥, ¢¢°} and G = {¢, ¢}. Define
the mapping f:G — @ by f(¢%) = ¢". Thus f(e) = ¢, f(¢) = ¢, f¥) = ¢,
f@® =e, f(¢¥) = ¢, f(¢¥?) = . The reader should verify that f so
defined is a homomorphism.

Ezample 3. Let G be the group of integers under addition and let @ = G.
For the integer z € @ define ¢ by ¢(z) = 2z. That ¢ is a homomorphism
then follows from ¢(z + y) = 2(z + y) = 2z + 2y = ¢(z) + ¢(¥).
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Ezample 4. Let G be the group of nonzero real numbers under multiplica-
tion, @ = {1, —1},where 1.1 = 1, (=1)(—1) = 1,1(—1) = (=1)1 = —1.
Define ¢:G — G by ¢(z) = 1 if « is positive, ¢(z) = —1 if z is negative.
The fact that ¢ is a homomorphism is equivalent to the statements: positive
times positive is positive, positive times negative is negative, negative times
negative is positive.

Ezample 5. Let G be the group of integers under addition, let G, be the
group of integers under addition modulo 7. Define ¢ by ¢(z) = remainder
of z on division by 7. One can easily verify this is a homomorphism.

The result of the following lemma yields, for us, an infinite class of ex-
amples of homomorphisms. When we prove Theorem 2.d it will turn out
that in some sense this provides us with the most general example of a
homomorphism.

LemMma 2.13. Suppose G is a group, N o normal subgroup of G; define the
mapping ¢ from G to G/N by ¢(z) = Nz for all x € G. Then ¢ is a homo-
morphism of G onto G/N.

Proof. In actuality, there is nothing to prove for we already have proved
this fact several times. But for the sake of emphasis we repeat it.

That ¢ is onto is trivial for every element X € G/N is of the form
X =Ny, y€ G, so X = ¢(y). To verify the multiplicative property
required in order that ¢ be a homomorphism one just notes that if z, y € G,
¢(zy) = Nay = NaNy = ¢(x)$(y).

In Lemma 2.13 and in the examples preceding it, a fact which comes
through is that a homomorphism need not be 1-1; but there is a certain
uniformity in this process of deviating from one-to-oneness. This will
become apparent in a few lines.

DeriNTION. If ¢ is & homomorphism of G into G, the kernel of ¢, Kg, is
defined by Ky = {z € G|¢(z) = &, & = identity element of G}.

Before investigating any properties of K it is advisable to establish
that as a set K, is not empty. This is furnished us by the first part of

LemMa 2.14. If ¢ s a homomorphism of G into G, then:

(1) ¢(e) = &, the unit element of G;

@ ¢@™") = ¢@) foralz € G

Proof. To prove (1) we merely calculate ¢(x)é = ¢(x) = ¢(ze) = o(x)p(e),
so by the cancellation property in G we have that ¢(e) = €.
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To establish (2) one notes that & = ¢(e) = ¢(z2™") = ¢(2)p(z™"), so by
the very definition of ¢(z) ~* in G we obtain the result that ¢(z ™) = ¢(z) .

The argument used in the proof of Lemma 2.14 should remind any
reader who has been exposed to a development of logarithms, of that used
in proving the familiar results that log 1 = 0 and log (1/z) = —log z; this
is no coincidence for the mapping ¢:zx — log « is a homomorphism of the
group of positive real numbers under multiplication into the group of real
numbers under addition.

Lemma 2.14 shows that e is in the kernel of any homomorphism, so any
such kernel is not empty. But we can say even more.

Lemma 2.15. If ¢ s a homomorphism of @ into G with kernel K, then K
8 a normal subgroup of G.

Proof. First we must check whether K is a subgroup of G. To see this one
must show that K is closed under multiplication and has inverses in it for
every element belonging to K.

If z, y € K, then ¢(z) = ¢, ¢(y) = &, where ¢ is the identity element of
G, and so ¢(zy) = ¢(x)é(y) = &€ = &, whence =y € K. Also, if z € K,
é(x) = &, so, by Lemma 2.14, ¢(z %) = ¢(x) ™' = & = ¢;thusz™! € K.
K is, accordingly, a subgroup of G.

To prove the normality of K one must establish that for any ¢ € G,
k € K, gkg' € K; in other words, one must prove that ¢(gkg™) = &
whenever ¢(k) = &. But o(gkg™) = ¢(@e(k)e(g™") = ¢(9)eb(e) ™ =
6(9)#(g) ™! = & This completes the proof of Lemma 2.15.

Let ¢ now be a homomorphism of the group G onto the group G, and
suppose that K is the kernel of ¢. If § € @, we say an element z € G is an
wnwerse image of § under ¢ if ¢(x) = 7. What are all the inverse images of
§? For § = & we have the answer, namely (by its very definition) K. What
about elements § = &? Well, suppose z € @ is one inverse image of J; can
we write down others? Clearly yes, for if k¥ € K, and if y = kz, then
oY) = ¢(kz) = ¢(k)p(x) = &7 = §. Thus all the elements Kz are in the
inverse image of § whenever z is. Can there be others? Let us suppose that
o(2) = § = ¢(x). %gnoring the middle term we are left with ¢(z) = ¢(z),
and 50 ¢(2)¢(r)™* = &. But ¢(z) ™! = ¢(z ™), whence & = ¢(2)p(x)"! =
¢()¢(x™) = ¢(z2™"), in consequence of which zz™* € K; thus z € K.
In other words, we have shown that Kz accounts for exactly all the inverse
images of § whenever z is a single such inverse image. We record this as

Lemma 2.16. If ¢ is a homomorphism of G onto G with kernel K, then the
set of all inverse images of § € G under ¢ in G is given by Kz where x is

any particular tnverse image of j in G.

A special case immediately presents itself, namely, the situation when
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K = (e). But. here., by Lemma 2.16, any § € G has exactly one inverse
image. That is, ¢ is a one-to-one mapping. The converse is trivially true,

namely, if ¢ is a one-to-one homomorphism of G into (not even onto) @, its
kernel must consist exactly of e.

DeriniTION. A homomorphism ¢ from G into @ is said to be an zsomor-
phism if ¢ is one-to-one.

DerintTioN. Two groups @, G* are said to be isomorphic if there is an iso-
morphism of G onfo G*. In this case we write G = G*.

We leave to the reader to verify the following three facts:

(1) G = Q.
2) G = @G* implies G* = G.
(8) @ = G* G* = G** implies G =~ G**,

When two groups are isomorphic, then, in some sense, they are equal.
They differ in that their elements are labeled differently. The isomorphism
gives us the key to the labeling, and with it, knowing a given computation
in one group, we can carry out the analogous computation in the other.
The isomorphism is like a dictionary which enables one to translate a
sentence in one language into a sentence, of the same meaning, in another
language. (Unfortunately no such perfect dictionary exists, for in languages
words do not have single meanings, and nuances do not come through in a
literal translation.) But merely to say that a given sentence in one language
can be expressed in another is of little consequence; one needs the dictionary
to carry out the translation. Similarly it might be of little consequence to
know that two groups are isomorphic, the object of interest might very
well be the isomorphism itself. So, whenever we prove two groups to be
isomorphie, we shall endeavor to exhibit the precise mapping which yields
this isomorphism.

Returning to Lemma 2.16 for a moment, we see in it a means of character-
izing in terms of the kernel when a homomorphism is actually an isomor-
phism.

CoROLLARY. A homomorphism ¢ of G into G with kernel K is an isomor-
phism of G into G if and only if K4 = (e).

This corollary provides us with a standard technique for proving two
groups to be isomorphic. First we find a homomorphism of one onto the
other, and then prove the kernel of this homomorphism consists only of
the identity element. This method will be illustrated for us in the proof
of the very important
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TaEOREM 2.D. Let ¢ be a homomorphism of G onto G with kernel K. Then
G/K =~ G.

Proof. Consider the diagram

% .z

Q
NQ—R

where o(g9) = Kg.
‘We should like to complete this to

Q
NQ D
\\-&

\

N\
\

It seems clear that, in order to construct the mapping ¢ from G/K to G,
we should use G as an intermediary, and also that this construction should
be relatively uncomplicated. What is more natural than to complete the
diagram using
g — ¢(9)
A

P
v -
i

Kg~

With this preamble we formally define the mapping ¢ from G/K to G by:
if X € G/K, X = Ky, then ¢(X) = ¢(g). A problem immediately arises:
is this mapping well-defined? If X € G/K, it can be written as Kg in
several ways (for instance, Kg = Kkg, k € K); but if X = Kg = K¢,
g, 9’ € G, then on one hand ¢(X) = ¢(g), and on the other, ¢(X) = ¢(g’).
For the mapping ¢ to make sense it had better be true that ¢(g) = ¢(¢’).
So, suppose Kg = Kg'; then g = kg’ where k € K, hence ¢(g) = ¢(kg’) =
o(k)p(g") = é(g’) = ¢(g’) since k € K, the kernel of ¢.

We next determine that y is onto. For, if Z € @, £ = ¢(g), ¢ € G (since
¢ is onto) so £ = ¢(g) = ¥(Kyg).

IfX, Y€ G/K,X =Kg, Y =Kf,g,f € G, then XY = KgKf = Kgf,
so that y(XY) = ¢(Kgf) = ¢(gf) = ¢(9)¢(f) since ¢ is a homomorphism of
@ onto G. But ¥(X) = ¥(Kg) = ¢(g), ¥(¥) = ¥(Kf) = ¢(f), so we see
that ¢(XY) = ¢(X)y¥(Y), and ¢ is a homomorphism of G/K onto G.

To prove that ¢ is an isomorphism of G/K onto @ all that remains is to
demonstrate that the kernel of ¢ is the unit element of G/K. Since the unit
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element of G/K is K = Ke, we must show that if y(Kg) = &, then Kg =
Ke = K. This is now easy, for & = y(Kg) = ¢(g), so that ¢(g) = &, whence
g is in the kernel of ¢, namely K. But then Kg = K since K is a subgroup
of G. All the pieces have been put together. We have exhibited a one-to-one
homomorphism of G/K onto G. Thus G/K ~ @, and Theorem 2.d is
established.

Theorem 2.d is important for it tells us precisely what groups can be
expected to arise as homomorphic images of a given group. These must be
expressible in the form G/K where K is normal in G. But, by Lemma 2.13,
for any normal subgroup N of @, G/N is a homomorphic image of G.
Thus there is a one-to-one correspondence between homomorphic images
of G and normal subgroups of @. If one were to seek all homomorphic
images of G one could do it by never leaving @ as follows: find all normal
subgroups N of G and construct all groups G/N. The set of groups so
constructed yields all homomorphic images of G (up to isomorphisms).

A group is said to be simple if it has no nontrivial homomorphic images,
that is, if it has no nontrivial normal subgroups. A famous, long-standing
conjecture is that a non-abelian simple group of finite order has an even
number of elements. It still awaits proof.t

‘We have stated that the concept of a homomorphism is a very important
one. To strengthen this statement we shall now show how the methods and
results of this section can be used to prove nontrivial facts about groups.
When we construct the group G/N, where N is normal in G, if we should
happen to know the structure of G/N we would know that of G “up to N.”
True, we blot out a certain amount of information about @, but often
enough is left so that from facts about G/N we can ascertain certain ones
about G. When we photograph a certain scene we transfer a three-dimen-
sional object to a two-dimensional representation of it. Yet, looking at the
picture we can derive a great deal of information about the scene photo-
graphed.

In the two applications of the ideas developed so far, which are given
below, the proofs given are not the best possible. In fact, a little later in
this chapter these results will be proved in a more general situation in an
easier manner. We use the presentation here because it does illustrate
effectively many group-theoretic concepts.

ArrricaTioN 1 (CavcnY’'s THEOREM FOR ABELIAN GrouUPs). Suppose G
1 a finite abelian group and p | o(G) where p is a prime number. Then there is an
element a % e € @ such that a® = e.

Proof. We proceed by induction over o(@). In other words, we assume
that the theorem is true for all abelian groups having fewer elements than
@. From this we wish to prove that the result holds for G. To start the

t This important result has just been proved by the two young American mathe-
maticians Walter Feit and John Thompson.
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induction we note that the theorem is vacuously true for groups having a
single element.

If @ has no subgroups H = (¢), G, by the result of a problem earlier in
the chapter G must be cyclic of prime order. This prime must be p and G
certainly has p — 1 elements a e satisfying o® = a°@ = e.

So suppose @ has a subgroup N = (¢), G. If p|o(N), by our induction
hypothesis, since o(N) < o(G) and N is abelian, there is an element
b € N, b 5 e, satisfying b? = ¢; since b € N C G we would have exhibited
an element of the type required. So we may assume that p { o(V). Since G is
abelian, N is a normal subgroup of @, so G/N is a group. Moreover,

o(G/N) = ;0%, and since p 1t o(N), p —(%\-% < o(@). Also, since @ is

abelian, G/N is abelian. Thus by our induction hypothesis there is an
element X € G/N satisfying X? = ¢;, the unit element of G/N, X 5 e,.
By the very form of the elements of G/N, X = Nb, b € G, so that X? =
(NDb)? = NbP. Since ¢; = Ne, X? = ¢;, X 5 ¢, translates into Nb? = N,
Nb = N. Thus ¥? € N, b € N. Using one of the corollaries to Lagrange’s
theorem, (B?)°™ = ¢. That is, b°™? = ¢. Let ¢ = b°M. Certainly ¢? = e.
In order to show that ¢ is an element that satisfies the conclusion of the
theorem we must finally show that ¢ > e. However, if ¢ = ¢, ™ = ¢, and
so (Nb)*™ = N. Combining this with (Nb)? = N, pt o(N), p a prime
number, we find that Nb = N, and so b € N, a contradiction. Thus ¢ 5 e,
¢? = ¢, and we have completed the induction. This proves the result.

ArpricaTioN 2 (SYLow’s THEOREM FOR ABELIAN Groues). If G is an
abelian group of order o(@), and if p is a prime number, such that p*|o(@),
p*t1 1 o(@), then G has a subgroup of order p®.

Proof. If & = 0 the subgroup (e) satisfies the conclusion of the result.
So suppose a = 0. Then p|o(@). By Application 1, there is an element
a # e € @ satisfying a® = e. Let 8 = {z € G|2?" = ¢ some integer n}.
Since @ € 8§, a = ¢, it follows that S 5 (¢). We now assert that S is a sub-
group of G Since G' is finite we must only verify that S is closed. If z,
YES, a7 =¢, 47 =e¢ so that (zy)?" T P +my1’ e (we have used
that @ is abelian), proving that 2y € S.

We next claim that o(S) = p® with 8 an integer 0 < 8 < . For, if some
prime ¢|o(S), ¢ ¥ p, by the result of Application 1 there is an element
¢ €8, ¢ # e satisfying ¢? = e. However, ¢?" = ¢ for some 7 since ¢ € S.
Since p™, ¢ are relatxvely prime, we can find mtegers A, u such that A\g +
pp™ = 1, so that ¢ = ¢! = MFHP" = (O McP")* = ¢, contradicting ¢ = e.
By Lagrange s theorem o(S) |0(@), so that 8 < a. Suppose that 8 < «;

consider the abelian group G/S. Since 8 < aand o(G/S) = ( ) , | 0(G/8),

o(S
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there is an element Sz, (z € @) in G/S satisfying Sz = S, (Sz)?” = S for
some integer n > 0. But S = (Sz)?" = Sz®", and so 22" € S; consequently
e = (27)°® = (x“’")”ﬁ = ?""F Therefore, z satisfies the exact requirements
needed to put it in S, in other words, z € S. Consequently Sz = § contra-
dicting Sz > S. Thus 8 < « is impossible and we are left with the only
alternative, namely, that 8 = a. S is the required subgroup of order p°.

We strengthen the application slightly. Suppose T is another subgroup
of G of order p*, T 5% 8. Since @ is abelian ST = T'S, so that ST is a sub-
group of G. By Theorem 2.b

o(8)o(T)  p*p*

O = TsnD ™ oS N 7

and since 8 T, o(S N T) < p*, leaving us with o(ST) = p?, v > a.
Since ST is a subgroup of @, o(ST)|o(G); thus p”|o(G) violating the fact
that o is the largest power of p which divides o(@). Thus no such subgroup
T exists, and S is the unique subgroup of order p*. We have proved the

CoroLraRY. If G is abelian of order o(@) and p*|o(@), p*** t o(Q), there
18 @ unique subgroup of G of order p©.

If we look at G = 83, which is non-abelian, o(G) = 2.3, we see that G
has 3 distinct subgroups of order 2, namely, {e, ¢}, {e, o¥}, {e, ?¥?}, so
that the corollary asserting the uniqueness does not carry over to non-
abelian groups. But Sylow’s theorem holds for all finite groups.

We leave the application and return to the general development. Suppose
¢ is a homomorphism of G onto G with kernel K, and suppose that H is a
subgroup of G. Let H = {x € G|¢(x) € H}. We assert that H is a sub-
group of @ and that H D K. That H D K is trivial, forif 2 € K, ¢(z) = &
isin H, so that K  H follows. Suppose now that z,y € H; hence ¢(z) € H,
¢(y) € H from which we deduce that ¢(zy) = #(x)¢(y) € H. There-
fore, zy € H and H is closed under the product in G. Furthermore, if
r € H, ¢(z) € H and so ¢(z™) = ¢(z) ™ € H from which it follows that
z~' € H. All in all, our assertion has been established. What can we say
in addition in case H is normal in G? Let g € G, h € H; then ¢(h) € H,
whence ¢(ghg™) = ¢(9)¢(h)p(g) " € H, since H is normal in G. Other-
wise stated, ghg™ € H, from which it follows that H is normal in G. One
other point should be noted, namely, that the homomorphism ¢ from G
onto G, when just considered on elements of H, induces a homomorphism
of H onto H, with kernel exactly K, since K € H; by Theorem 2.d we
have that  ~ H/K. _

Suppose, conversely, that L is a subgroup of G and K C L. Let L =
{# € G|% = ¢(l), | € L}. The reader should verify that L is a subgroup
of G. Can we explicitly describe the subgroup T = {y € G|¢(y) € L}?
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Clearly L C T. Is there any element ¢ € T which is not in L? So, suppose
t € T; thus ¢(f) € L, so by the very definition of L, ¢(f) = #(l) for some
1 € L. Thus ¢! = ¢()¢() ™ = & whence > € K < L, thus ¢is in
Ll = L. Equivalently we have proved that T < L, which, combined with
LcC Tyleldsthat L = T.

Thus we have set up a one-to-one correspondence between the set of
all subgroups of @ and the set of all subgroups of G which contain K. More-
over, in this correspondence, a normal subgroup of G corresponds to a
normal subgroup of G.

We summarize these few paragraphs in

Lemma 2.17. Let ¢ be a homomorphibm of G onto G with kernel K. For
H a subgroup of G let H be defined by H = {z € G|¢(x) € H}. Then H
is a subgroup of G and H D K ; if H is normal in G, then H is normal in G.
Moreover, this assoctation sets up o one-to-one mapping from the set of all
subgroups of G onto the set of all subgroups of G whach contain K.

We wish to prove one more general theorem about the relation of two
groups which are homomorphic.

TuroreM 2.5. Let ¢ be a homomorphism of G onto G with kernel K, and let
N be a normal subgroup of G, N = {x € G|¢(z) € N}. Then G/N ~ G/N.
Equivalently, /N = (G/K)/(N/K).

Proqf. As we already know, there is a homomorphism 6 of G onto G/N
defined by 6(7) = Nj. We define the mapping v:G — G/N by v(g) =
N¢(g) for all ¢ € G. To begin with, y is onto, for if § € G, § = ¢(g) for
some g € G, since ¢ is onto, so the typical element Ng in G/N can be
represented as No(g) = ¢(g).

If a,b € G, y(ab) = N¢(ad) by the definition of the mapping ¥. How-
ever, since ¢ is a homomorphism, ¢(ab) = ¢(a)e(b). Thus ¢(ab) =
No(a)p(d) = No(@)No(®d) = ¢(a)y(b). So far we have shown that ¥ is a
homomorphism of G onto G/N. What is the kernel, T, of y? Firstly, if
n € N, ¢(n) € N, so that y(n) = Ne(n) = N, the identity element of
G/N, proving that N C T. On the other hand, if ¢t € T, ¢(f) = identity
element of G/N = N; but ¢(f) = N¢(t). Comparing these two evaluations
of ¥(?), we arrive at N = N¢(t), which forces ¢(f) € N; but this places
tin N by definition of N. That is, T < N. The kernel of y has been proved
to be equal to N. But then ¢ is a homomorphism of G onto G/N with
kernel N. By Theorem 2.d G/N =~ G/N, which is the first part of the
theorem. The last statement in the theorem is immediate from the
observation (following as a consequence of Theorem 2.d) that G ~ G/K,
N ~ N/K, G/N =~ (G/K)/(N/K).
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PROBLEMS

1. In the following, verify if the mappings defined are homomorphisms,
and in those cases in which they are homomorphisms, determine the
kernel.

(a) G is the group of nonzero real numbers under multiplication,
G=0G, ¢k =z2allz € G

(®) G, G as in (a), ¢(z) = 2°.

(¢) G is the group of real numbers under addition, @ = @, ¢(z) =
z+1lallz € G

(@) G, Gasin (¢), ¢(x) = 13z for z € G.

(e) @ is any abelian group, G = G, ¢(z) = 2% all z € Q.

2. Let G be any group, ¢ a fixed element in G. Define ¢:G — @ by
¢(x) = gzg~". Prove that ¢ is an isomorphism of G onto G.

3. Let G be a finite abelian group of order o(G) and suppose the integer
n is relatively prime to o(G). Prove that every g € G can be written as
g = «™ with z € (. (Hint: Consider the mapping ¢:G — G defined by
#(y) = y", and prove this mapping is an isomorphism of @ onto G.)

4. (a) Given any group G and a subset U, let U be the smallest sub-

group of G which contains U. Prove there is such a subgroup U
in Q. (U is called the subgroup generated by U.)

(b) If gug™ € U for all ¢ € @, u € U, prove that U is a normal
subgroup of G.

5. Let U = {zyz~'y ™|z, y € @}. In this case U is usually written as

@ and is called the commutator subgroup of G.
(a) Prove that @ is normal in G.
(b) Prove that G/@ is abelian.
(c) If G/N is abelian, prove that N O G,
(d) Prove that if H is a subgroup of G and H O ¢, then H is normal
in G.

6. If N, M are normal subgroups of @, prove that NM /M ~ N/N N M.

7. Let V be the set of real numbers, and for a, breal, a5 Olet 74p: V—V
defined by 74p(z) = axz +b. Let G = {ras]a, b real, a = 0} and let
N = {713 € G}. Prove that N is a normal subgroup of G and that G/N =~
group of nonzero real numbers under multiplication.

8. Let G be the dihedral group defined as the set of all formal symbols
2y,1=0,1,7=0,1,...,n — 1 where 22 = ¢, y" = ¢, 2y = y 'z. Prove:

(a) The subgroup N = {e, y, %% ..., ¥y" '} is normal in G.
(b) That G/N ~ W, where W = {1, —1} is the group under the
multiplication of the real numbers.

9. Prove that the center of a group is always a normal subgroup.

10. Prove that a group of order 9 is abelian.
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11. If @ is a non-abelian group of order 6, prove that G = Ss.
12. If G is abelian and if N is any subgroup of @, prove that G/N is
abelian.

8. Automorphisms. In the preceding section the concept of an isomor-
phism of one group into another was defined and examined. The special
case in which the isomorphism maps a given group into itself should ob-
viously be of some importance. We use the word ‘““into”’ advisedly, for
groups @ do exist which have isomorphisms mapping @ into, and not onto,
itself. The easiest such example is the following: Let G be the group of
integers under addition and define ¢:G — G by ¢:z — 2z for every
z € @ Since p:z +y — 2(z + y) = 2z + 2y, ¢ is a homomorphism. Also
if the image of z and y under ¢ are equal, then 2z = 2y whence =z = .
¢ is thus an isomorphism. Yet ¢ is not onto, for the image of any integer
under ¢ is an even integer, so, for instance, 1 does not appear an image
under ¢ of any element of G. Of greatest interest to us will be the isomor-
phisms of a group onifo itself.

DzerintTioN. By an automorphism of a group G we shall mean an iso-
morphism of G onto itself.

As we mentioned in Chapter 1, whenever we talk about mappings of a set
into itself we shall write the mappings on the right side, thus if 7:S — 8§,
z € 8, then zT is the image of z under T.

Let I be the mapping of G which sends every element onto itself, that is,
2zl =z for all z € @. Trivially I is an automorphism of G. Let G(G)
denote the set of all automorphisms of @; being a subset of A(®), the set
of 1-1 mappings of G onto itself, for elements of G(G) we can use the
product of A(G), namely, composition of mappings. This product then
satisfies the associative law in A(®), and so, @ fortior:, in @(G). Also I,
the unit element of 4(G), is in @(@), so @(G) is not empty.

An obvious fact that we should try to establish is that @(@) is a subgroup
of A(@), and so, in its own rights, @(@) should be a group. If Ty, T5 are
in @(@) we already know that T,y € A(GF). We want it to be in the smaller
set @(GF). We proceed to verify this. Forallz, y € G, (xy)T1 = (T)(yT1),
(zy)Ts = (xT,)(yTs), therefore

(@y)T1Ty = ((xy)T)Te = (@T1) WT1))Ts
= (@T)T)((WT1)T2) = @T1Te)(yT1Ts).

That is, 71T € @(G). There is only one other fact that needs verifying
in order that @(G) be a subgroup of A(G), namely, that if T € Q(G), then
T7' € a(@. If z, y € G, then (@T T ™)T = (@I HT)(T™HT)
= (zD)(yI) = zy, thus @THYT™) = (zy)T7!, placing 77! in &(Q).
Summarizing these remarks we have proved
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Lemma 2.18. If G is a group, then G(G), the set of automorphisms of G,
18 also a group.

Of course, as yet, we have no way of knowing that @(@), in general, has
elements other than I. If G is a group having only two elements, the reader
should convince himself that @(G) consists only of I. For groups G with
more than two elements @(G) always has more than one element.

What we should like is a richer sample of automorphisms than the ones
we have (namely, I). If the group G is abelian and there is some element
xo € @ satisfying zo # 207", we can write down an explicit automorphism,
the mapping T' defined by zT' = 2™ for all z € G. For any group G, T is
onto; for any abelian @, (zy)T = (@y) ™" =y~ 2™ = 27y~ = @T)@T).
Also 2T = 207 # zg, 50 T 5 I.

However, the class of abelian groups is a little limited, and we should
like to have some automorphisms of non-abelian groups. Strangely enough
the task of finding automorphisms for such groups is easier than for abelian
groups.

Let G be a group; for g € @ define T;:G — @ by 2T, = g zg for all
z € G. We claim that T, is an automorphism of G. First, T, is onto, for
given y € G, let = gyg~'. Then 2T, = g™ (2)g = g™ (gyg™")g = y, s0
T, is onto. Now consider, for z, y € G, (zy)T, = g~ (zy)g = g (x99 y)g
= (¢7'zg) (¢ yg) = (xT,)(yT,). Consequently 7', is a homomorphism of
G onto itself. We further assert that T, is one-to-one, for if 2T, = yT,,
then g~ lzg = g~ lyg, so by the cancellation laws in @, z = y. T, is called
the inner automorphism corresponding to g. If @ is non-abelian, there is a
pair a, b € G such that ab > ba; but then bT, = a~'ba # b, so that
T, £ I. Thus for a non-abelian group G there always exist nontrivial auto-
morphisms.

Let 9(G) = {T, € @(@)|g € G}. The computation of Tg, for g,
h € G, might be of some interest. So, suppose z € G; by definition,
eTen = (gh)'w(gh) = h7g7'agh = (g '29)Th = @T9Th = 2TTh
Looking at the start and finish of this chain of equalities we find that
T = T,Th. This little remark is both interesting and suggestive. It is of in-
terest because it immediately yields that 9(G) is a subgroup of &(G). (Ver-
ify!) 9(@) is usually called the group of inner automorphisms of G. It is sug-
gestive, for if we consider the mapping ¥:G — (@) defined by ¥(g) =
for every g € G, then Y(gh) = T = T Th = ¥(g)¥(h). That is, ¢ is a
homomorphism of @ into @(@) whose image is 4(G). What is the kernel of
y? Suppose we call it K, and suppose go € K. Then y¥(go) = I, or, equiv-
alently, T 5 = . But this says that for any z € G, 2T, = ; however,
zTg, = go~'xgo, and so ¢ = go~'zgo for all z € G. Thus gox = gogo 1xgo =
£go; go must commute with all elements of G. But the center of G, Z, was
defined to be precisely all elements in G which commute with every element
of G. (See Problem 13, Section 5.) Thus K  Z. However, if z € Z, then
«T, = 275z = 2 (az) (since 2z = x2) = z, whence T, = I and so z € K.
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Therefore, Z € K. Having proved both K € Z and Z C K we have that
Z = K. Summarizing, ¢ is a homomorphism of G into G(G) with image
4(@) and kernel Z. By Theorem 2.d (@) = G/Z. In order to emphasize
this general result we record it as

Lemma 2.19. 9(Q) = G/Z, where 4(@) s the group of tnner automorphisms
of @, and Z vs the center of G.

Suppose that ¢ is an automorphism of a group @, and suppose that
a € G has order n (that is, a® = e but for no lower positive power). Then
o))" = ¢(a™) = ¢(e) = ¢, hence ¢@)" =e If ¢(@)” =e¢ for some
0 < m < n, then ¢(a™) = ¢(a)™ = e, which implies, since ¢ is one-to-one,
that ™ = e, a contradiction. Thus

Lemma 2.20. Let @ be a group and ¢ an automorphism of G. If a € G s
of order o(a) > 0, then o(¢(a)) = o(a).

Automorphisms of groups can be used as a means of constructing new
groups from the original group. Before explaining this abstractly, we con-
sider a particular example.

Let G be a cyclic group of order 7, that is, G consists of all a’, where we
assume a’ = e. The mapping ¢:a° — a?’, as can be trivially checked, is an
automorphism of G of order 3, that is, 3 = I. Let z be a symbol which we
formally subject to the following conditions: 23 = ¢, 2%z = ¢(a)’ = a*,
and consider all formal symbols z’a’ where s = 0,1,2,5 = 0,1,2, ..., 6 and
where we declare that z°a’ = z*a! if and only if 7 = k mod 3, I = j mod 7.
We multiply these symbols using the rules: 2® = a” = ¢, 27 'ax = o®. Forin-
stance, zaxa® = z(az)a® = z(za®)a® = z%a®. The reader can verify that one
obtains, in this way, a non-abelian group of order 21.

Generally, if G is a group, T an automorphism of order r of G which is
not an inner automorphism, pick a symbol z and consider all elements
a'g, 1 =0, %1, £2, ..., g € G subject to 2'g = z¥¢’ if and only if
t=¢modr,g = ¢ and 7 g%z = ¢T" for all . This way we obtain a larger
group {@, T}; G is normal in {G, T} and {G, T'}/G ~ group generated by
T = cyclic group of order 7.

We close the section by determining @(G) for all cyclic groups.

Ezxample 1. Let G be a finite cyclic group of order r, @ = (a), a" = e.
Suppose 7' is an automorphism of G. If aT is known, since a‘T = (aT)?,
a'T is determined, so g7 is determined for all ¢ € @ = (a). Thus we need
consider only possible images of a under 7'. Since aT € @, and since every
element in @ is a power of a, aT = o’ for some integer 0 < ¢ < r. However,
since 7' is an automorphism, a7 must have the same order as a (Lemma
2.20), and this condition, we claim, forces ¢ to be relatively prime to r. For
if d[t, d|r, then (aT)"/¢ = ¢*"/D = ¢"D = (¢7)*¢ = ¢;thus aT has order
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a divisor of 7/d, which, combined with the fact that T has order r, leads
ustod = 1. Conversely, for any 0 < s < r and relatively prime to r, the
mapping S:a* — ¢ is an automorphism of G. Thus (@) is in 1-1 corre-
spondence with the group U, of integers less than r and relatively prime to
r under multiplication modulo ». We claim not only is there such a 1-1
correspondence, but there is one which furthermore is an isomorphism.
Let us label the elements of @(G) as T; where T;:a — a’, 0 < 4 < r and
relatively prime to 7; TTj:a — o' — (a7 = a¥, thus T;T; = Ty;. The
m(aé))ping t — T; exhibits the isomorphism of U, onto @(®). Here then,
@ =~

Ezample 2. G is an infinite cyclic group. That is, ¢ consists of all a?,
t =0, &1, &2, ... where we assume that a' = ¢ if and only if ; = 0.
Suppose that T is an automorphism of G. As in Example 1, aT = a’. The
question now becomes, what values of ¢ are possible? Since T is an auto-
morphism of @, it maps G onto itself, so that a = ¢T for some g € G.
Thus a = ‘T = (aT)* for some integer 7. Since aT = a’, we must have
that o = a*, so that a**~! = ¢. Hence ti — 1 = 0, that is, # = 1. Clearly,
since ¢ and ¢ are integers, this must force ¢ = =1, and each of these gives
rise to an automorphism, ¢ = 1 yielding the identity automorphism I,
t = —1 giving rise to the automorphism T:g — g~ for every ¢ in the
cyclic group G. Thus here, @(@) = cyclic group of order 2.

PROBLEMS

1. Are the following mappings automorphisms of their respective
groups?
(a) @ group of integers under addition, T':2 — —2.
(b) G group of positive reals under multiplication, T:z — 2%
(c) G cyclic group of order 12, T:z — z°.
(d) G is the group Ss, T:x — =z~
2. Let @ be a group, H a subgroup of G, T an automorphism of G.
Let (H)T = {hT|h € H}. Prove (H)T is a subgroup of G.
8. Let G be a group, T an automorphism of G, N a normal subgroup
of G. Prove that (N)T is a normal subgroup of G.
4. For G = 83 prove that G = 9(@).
5. For any group @ prove that 9(G) is a normal subgroup of @(G) (the
group Q(®)/9(@) is called the group of outer automorphﬂ,sms of G).
6. Let @ be a group of order 4, G = {e, a, b, ab}, a® = b® = ¢, ab = ba.
Determine G(@).
7. (a) A subgroup C of @ is said to be a characteristic subgroup of G if
(O)T < C for all automorphisms T of G. Prove a characteristic
subgroup of G must be a normal subgroup of G.
(b) Prove that the converse of (a) is false.
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8. For any group G, prove that the commutator subgroup G’ is a
characteristic subgroup of G. (See Problem 5, Section 7.)

9. If G is a group, N a normal subgroup of @, M/ a characteristic sub-
group of N, prove that M is a normal subgroup of G.

10. Let @ be a finite group, T an automorphism of G with the property
that T = z for z € G if and only if £ = e. Prove that every ¢ € G can
be represented as g = z~(zT) for some z € G.

11. Let G be a finite group, T an automorphism of G with the property
that T = z if and only if 2 = e. Suppose further that T2 = I. Prove that
G must be abelian.

*12. Let G be a finite group and suppose the automorphism 7" sends more
than three-quarters of the elements of G onto their inverses. Prove that
2T = z7 for all z € @ and that G is abelian.

13. In Problem 12, can you find an example of a finite group which is
non-abelian and which has an automorphism which maps exactly three-
quarters of the elements of @ onto their inverses?

*14. Prove that every finite group having more than two elements has a
nontrivial automorphism.

*16. Let G be a group of order 2n. Suppose that half of the elements of G
are of order 2, and the other half form a subgroup H of order n. Prove that
H is of odd order and is an abelian subgroup of G.

*16. Let ¢(n) be the Euler ¢-function. If ¢ > 1 is an integer, prove that
n|¢@” — 1).

9. Cayley’s Theorem. When groups first arose in mathematics they
usually came from some specific source and in some very concrete form.
Very often it was in the form of a set of transformations of some particular
mathematical object. In fact, most finite groups appeared as groups of
permutations, that is, as subgroups of S,. (S, = A(S) when S is a finite
set with » elements.) The English mathematician Cayley first noted that
every group could be realized as a subgroup of A(S) for some S. Our
concern, in this section, will be with a presentation of Cayley’s theorem
and some related results.

TrEOREM 2.F (CAYLEY). Every group 1s isomorphic to a subgroup of A(S)
for some appropriate S.

Proof. Let @ be a group. For the set § we will use the elements of G;
that is, put § = G. If ¢ € G define 7,:8(= @) — S(= G) by zr, = zg for
every + € G. If y € @, then y = (yg™1)g = (yg~)r¢, s0 that r, maps S
onto itself. Moreover, 7, is one-to-one, for if z, y € § and zr, = yr,, then
zg = yg, which, by the cancellation property of groups, implies that z = .
We have proved that for every g € G, r, € A(S).

If g, b € @, consider 744 For any z € 8 = G, zrgn = z(gh) = (zg)h =
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(xrg)Th = 27g7h. Note that we used the associative law in a very essential
way here. From zrg, = zr,7n we deduce that 74, = 7,74 Therefore, if
Y:G — A(S) is defined by ¥(g) = 7, the relation rgj, = 7473 tells us that ¥
is a homomorphism. What is the kernel K of y? If go € K, then ¥(go) = 7,
is the identity map on §, so that for z € @, and, in particular, for ¢ € @,
erg, = ¢. But ery; = ego = go. Thus comparing these two expressions for
erg, We conclude that go = ¢, whence K = (¢). Thus by the corollary to
Lemma 2.16 ¢ is an isomorphism of @ into A(S), proving the theorem.

The theorem enables us to exhibit any abstract group as a more concrete
object, namely, as a group of mappings. However, it has its shortcomings;
for if G is a finite group of order o(@), then, using S = G, as in our proof,
A(S) has o(@)! elements. Our group G of order o(Q) is somewhat lost in
the group A(S) which, with its o(G@)! elements, is huge in comparison to G.
We ask: can we find a more economical S, one for which A(S) is smaller?
This we now attempt to accomplish.

Let G be a group, H a subgroup of G. Let S be the set whose elements
are the right cosets of H in G. That is, S = {Hg|g € G}. S need not be a
group itself, in fact, it would be a group only if H were a normal subgroup
of G. However, we can make our group G act on S in the following natural
way: for ¢ € G let {,:S — 8 be defined by (Hz)t, = Hzg. Emulating the
proof of Theorem 2.f we can easily prove:

(1) ty € A(S) for every g € G.
(2) ten = tgln.

Thus the mapping 6:G — A(S) defined by 6(g) = t, is & homomorphism of
G into A(S). Can one always say that 8 is an isomorphism? Suppose that K
is the kernel of 6. If go € K, then 0(go) = t,, is the identity map on S,
so that for every X € 8, Xt,, = X. Since every element of S is a right
coset of H in G, we must have that Hat,) = Ha for every a € @, and
using the definition of f,,, namely, Hat,, = Hago, we arrive at the identity
Hagy = Ha for every a € G. On the other hand, if b € @ is such that
Hzb = Hz for every z € @G, retracing our argument we could show that
b€ K. Thus K = {b € G|Hzb = Hz all z € G}. We claim that from this
characterization of K, K must be the largest normal subgroup of @ which
is contained in H. We first explain the use of the word largest; by this we
mean that if N is a normal subgroup of G which is contained in H, then N
must be contained in K. We wish to show this is the case. That K is a normal
subgroup of @ follows from the fact that it is the kernel of a homomorphism
of G. Now we assert that K < H, for if b € K, Hab = Ha for every
a € G, so, in particular, Hb = Heb = He = H, whence b € H. Finally,
if N is a normal subgroup of G' which is contained in H, if n € N, a € G,
then ana™ € N C H, so that Hana™' = H;thus Han = Haforalle € G.
Therefore, n € K by our characterization of K.



62 GROUP THEORY CH. 2
We have proved

TrroREM 2.6. If G 1s a group, H a subgroup of G, and S is the set of all
right cosets of H in G, then there is a homomorphism 6 of G into A(S) and
the kernel of 6 is the largest normal subgroup of G which is contained in H.

The case H = (¢) just yields Cayley’s theorem (Theorem 2.f). If H
should happen to have no normal subgroup of @, other than (e), in it, then
6 must be an isomorphism of @ into A (S). In this case we would have cut
down the size of the S used in proving Theorem 2.f. This is interesting
mostly for finite groups. For we shall use this observation both as a means
of proving certain finite groups have nontrivial normal subgroups, and
also as a means of representing certain finite groups as permutation groups
on small sets.

‘We examine these remarks a little more closely. Suppose that G has a
subgroup H whose index ¢(H) (that is, the number of right cosets of H in &)
satisfies ¢(H)! < o(@). Let S be the set of all right cosets of H in G. The
mapping, 6, of Theorem 2.g cannot be an isomorphism, for if it were,
6(@) would have o(®@) elements and yet would be a subgroup of A(S) which
has 1(H)! < o(@) elements. Therefore the kernel of 6 must be larger than
(e) ; this kernel being the largest normal subgroup of G which is contained
in H, we can conclude that H contains a nontrivial normal subgroup of G.

However the argument used above has implications even when 7(H)!is
not less than o(@). If o(@) does not divide 7(H) ! then by invoking Lagrange’s
theorem we know that 4(S) can have no subgroup of order o(@), hence no
subgroup isomorphic to G. However, A(S) does contain 6(F), whence 6(G)
cannot be isomorphic to G, that is, 6 cannot be an isomorphism. But then,
as above, H must contain a nontrivial normal subgroup of G.

We summarize this as

Lemma 2.21. If G is a finite group, and H # @ is a subgroup of G such
that o(@) 1t 1(H)! then H must contain a nontrivial normal subgroup of G.
In particular, G cannot be simple.

Applications

(1) Let G be a group of order 36. Suppose that G has a subgroup H of
order 9 (we shall see later that this is always the case). Then i(H) = 4,
4! = 24 < 36 = o(() so that in H there must be a normal subgroup N % (e),
of @, of order a divisor of 9, that is, of order 3 or 9.

(2) Let G be a group of order 99 and suppose that H is a subgroup of @
of order 11 (we shall also see, later, that this must be true). Then i(H) = 9,
and since 99 { 9! there is a nontrivial normal subgroup N = (e) of @ in H.
Since H is of order 11, which is a prime, its only subgroup other than (e) is
itself, implying that N = H. That is, H itself is a normal subgroup of G.
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(3) Let G be a non-abelian group of order 6. By Problem 11, Section 3,
there is an a > ¢ € @ satisfying a® = e. Thus the subgroup H = {e, a} is
of order 2, and +(H) = 3. Suppose, for the moment, that we know that H
is not normal in G. Since H has only itself and (¢) as subgroups, H has no
nontrivial normal subgroups of G in it. Thus & is isomorphic to a subgroup
T of order 6 in A(S), where S is the set of right cosets of H in G. Since
o(A(S)) = i(H)! =38! =6, T = 8. In other words, G = A(S) = S;. We
would have proved that any non-abelian group of order 6 is isomorphic to
83. All that remains is to show that H is not normal in G. Since it might be
of some interest we go through a detailed proof of this. If H = {e, a} were
normal in G, then for every g € @, since gag™ € H and gag™ = ¢, we
would have that gag™ = g, or, equivalently, that ga = ag for every g € G.
Let b € G, b€ H, and consider N(b) = {z € G|zb = bz}. By an ear-
lier problem, N (b) is a subgroup of G, and N(b) D H; N(b) = H since
b & N(b),b d H.Since H is a subgroup of N (b), o(H) |o(N (b)) |6. The only
even number 7, 2 < n < 6 which divides 6 is 6. So o(N (b)) = 6; whence b
commutes with all elements of G. Thus every element of G commutes with
every other element of G, making @ into an abelian group, contrary to
assumption. Thus H could not have been normal in G. This proof is some-
what long-winded but it illustrates some of the ideas already developed.

PROBLEMS

1. Let G be a group; consider the mappings of G into itself, A,, defined
for g € G by 2, = gz for all z € G. Prove that ), is one-to-one and onto,
and that Ngp = M.

2. Let A, be defined as in Problem 1, 7, as in the proof of Theorem 2.f.
Prove that for any g, h € G, the mappings A, 75 satisfy Aern = madg.
(Hint: for x € G consider (A1) and z(TrAg).)

3. If 6 is a 1-1 mapping of G onto itself such that X\,0 = ), for all
g € @G, prove that § = 73 for some b € G.

4. (a) If H is a subgroup of @ show that for every ¢ € @, gHg™ ' is a

subgroup of G.
(b) Prove that W = intersection of all gHg ™! is a normal subgroup
of G.

6. Using Lemma, 2.21 prove that a group of order p?, where p is a prime
number, must have a normal subgroup of order p.

*6. Show that in a group G of order p? any normal subgroup of order p
must lie in the center of G. (Hint: if m is an integer, m? = m mod p.)

*7. Using the result of Problem 6, prove that any group of order P’ is
abelian.

8. If p is a prime number, prove that any group G of order 2p must have
a subgroup of order p, and that this subgroup is normal in G.

9. If o(@) is pg where p and ¢ are distinct prime numbers and if G has
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a normal subgroup of order p and a normal subgroup of order g, prove that
G is cyeclic.
*10. Let o(@) be pg, p > ¢ are primes, prove:
(a) G has a subgroup of order p and a subgroup of order gq.
() If gt p — 1, then G is cyclic.
(c) Given two primes p, ¢, ¢|p — 1, there exists a non-abelian group
of order pg.
(d) Any two non-abelian groups of order pg are isomorphiec.

10. Permutation Groups. We have seen that every group can be repre-
sented isomorphically as a subgroup of A(S) for some set S, and, in par-
ticular, a finite group G can be represented as a subgroup of S, for some 7,
where S, is the symmetric group of degree n. This clearly shows that the
groups S, themselves merit closer examination.

Suppose that S is a finite set having » elements zy, zs, ..., Zn. If
¢ € A(S) = S, then ¢ is a 1-1 mapping of S onto itself, and we could write
¢ out by showing what it does to every element, e.g., ¢:2; — Za, T2 — T4,
T4 — I3, T3 — ;. But this is very cumbersome. One short cut might be

to write ¢ out as
(:1:1 To X3 ... Xn >
Tiy Lip Liy oo Loy

where z;, is the image of z; under ¢. Returning to our example just above,
¢ might be represented by
<x1 Iy X3 x4>
o Xy X1 T3

While this notation is a little handier there still is waste in it, for there
seers to be no purpose served by the symbol z. We could equally well
represent the permutation as

<1 2 ... n )
B g ... in
Our specific example would read as
(1 2 3 4)
2 41 3
Given two permutations 6, ¢ in S,,, using this symbolic representation of 6
and ¢, what would the representation of 8¢ be? To compute it we could

start and see what 6y does to x; (henceforth written as 1).  takes 1 into
11, while ¢ takes 7; into k, say, then 6y takes 1 into k. Then repeat this
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procedure for 2, 3, ..., n. For instance, if 6 is the permutation represented
by

(1 2 3 4)

3 1 2 4

(1 2 3 4)

13 2 4/

then 7; = 3 and ¢ takes 3 into 2, so & = 2 and 6y takes 1 into 2. Similarly
6:2 — 1,3 — 3,4 — 4. That is, the representation for 6y is

(1234)
2 1 3 4

and ¢ by

If we write
0_(1 2 3 4:)
“\3 1 2 4
and
’ <1 2 3 4)
“\1 3 2 4/
then

W‘(l 2 3 4>(1 2 3 4)_(1 2 3 4)
3 1 2 4/\1 3 2 4 2 1 3 4
This is the way we shall multiply the symbols of the form
1 2 ... »n 1 2 ... n
<¢1 ... z'n)' <k1 ke ... k,,)
Let S be a set and 8 € A(S). Given two elements a, b € S we define

a = ¢b if and only if b = af® for some integer 7 (i can be positive, negative,
or 0). We claim this defines an equivalence relation on S. For:

(1) a = 4a since a = af® = qe.

(2) If a = 4b, then b = af’, so that a = b6, whence b = 4a.

(3) If a=4b, b =4, then b = af’, ¢ = b6’ = (a6")¢’ = a6**’, which
implies that a = gc.

This equivalence relation by Theorem 1.a induces a decomposition of S
into disjoint subsets, namely, the equivalence classes. We call the equiv-
alence class of an element s € S the orbit of s under 6; thus the orbit of s
under 6 consists of all the elements s6%, ¢ = 0, =1, =2, --- .

In particular, if S is a finite set and s € S, there is a smallest positive
integer ! = I(s) depending on s such that s§* = s. The orbit of s under 8
then consists of the elements s, s, s6%, ..., s6" 1. By a cycle of § we mean
the ordered set (s, s8, s6?, ..., s8"%). If we know all the cycles of § we
clearly know 8 since we would know the image of any element under 6.
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Before proceeding we illustrate these ideas with an example. Let
. (1 2 3 45 6)
"\2 1356 4

where S consists of the elements 1, 2, ..., 6 (remember 1 stands for z;,
2 for z, etc.). Starting with 1, then the orbit of 1 consists of 1 = 16°,
16 = 2, 1% = 29 = 1, so the orbit of 1 is the set of elements 1 and 2.
This tells us the orbit of 2 is the same set. The orbit of 3 consists just of 3;
that of 4 consists of the elements 4, 46 = 5, 462 = 50 = 6, 46° = 66 = 4.
The cycles of 8 are (1, 2), (3), (4, 5, 6).

We digress for a moment, leaving our particular 6. Suppose that by the
cycle (4, 2, ..., 7,) we mean the permutation ¢ which sends ¢; into 2g, 45
into 43 ... 4, into 4, and ¢, into 21, and leaves all other elements of S fixed.

Thus, for instance, if S consists of the elements 1,2, ..., 9, then the symbol
(1, 3, 4, 2, 6) means the permutation

<123456789>
36 4251789

We multiply cycles by multiplying the permutations they represent. Thus
again, if S has 9 elements,

1235 641 8
12 3 8 O\/L 2 3456789
=(231 89)(823164759)
12 3 8 9
=<238 64759)

Let us return to the ideas of the paragraph preceding the last one, and
agk, given the permutation

(123456789)
2381647509/

what are the cycles of 62 We first find the orbit of 1; namely, 1, 16 = 2,
12 =20=3, 18 =30=8, 16* =80 =5, 10° = 50 = 6, 1% = 66 = 4,
167 = 46 = 1. That is, the orbit of 1 is the set {1, 2, 3, 8, 5, 6, 4}. The
orbits of 7 and 9 can be found to be {7}, {9}, respectively. The cycles of 8
thus are (7), (9), (1, 16, 16% ..., 16% = (1, 2, 3, 8, 5, 6, 4). The reader
should now verify that if he takes the product (as defined in the last
paragraph) of (1, 2, 3, 8, 5, 6, 4), (7), (9) he will obtain 6. That is, at least
in this case, § is the product of its cycles.
But this is no accident for it is now trivial to prove

P TN
ot O Ot
o o o
PSRN BN |

Levma 2.22. Every permutation is the product of its cycles.
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Proof. Let 6 be the permutation. Then its cycles are of the form
(s, 80, . . ., s6"™1). By the multiplication of cycles, as defined above, and since
the cycles of § are disjoint, the image of s’ € S under 4, which is s’ 6, is the
same as the image of s under the product, ¥, of all the distinct cycles of
8. So 6, ¥ have the same effect on every element of S, hence § = ¢, which is
what we sought to prove.

If the remarks above are still not transparent at this point, the reader
should take a given permutation, find its cycles, take their product, and
verify the lemma. In doing so the lemmas, itself will become obvious.

Lemma 2.22 is usually stated in the form: every permutation can be
uniquely expressed as a product of disjoint cycles.

Consider the m-cycle (1, 2, ..., m). A simple computation shows that
2 ...,m)=(1,2)1,3) ... (1,m). More generally the m-cycle
(@1,a9, . . .,0m) = (@1,02)(a1,a3) . . . (@1, an). Thisdecompositionisnotunique;
by this we mean that an m-cycle can be written as a product of 2-cycles
in more than one way. For instance, (1, 2, 3) = (1, 2)(1, 3) = (3, 1)(8, 2).
Now, since every permutation is a product of disjoint cycles and every
cycle is a product of 2-cycles, we have proved

LeMma 2.23. Every permutation is a product of 2-cycles.

We shall refer to 2-cycles as transpositions.

DErINITION. A permutation 6 € S, is said to be an even permutation if
it can be represented as a product of an even number of transpositions.

The definition given just insists that 6 have one representation as a
product of an even number of transpositions. Perhaps it has other repre-
sentations as a product of an odd number of transpositions. We first want
to show that this cannot happen. Frankly, we are not happy with the
proof we give of this fact for it introduces a polynomial which seems
extraneous to the matter at hand.

Consider the polynomial in n-variables p(zy, ..., #s) = 11 (@: — =).
1<J

If 9 € 8, let 6 act on the polynomial p(zy, ..., z.) by 0:p(@y, ..., Za) =
I @i —z) — II @ewy — moen)- It is clear that 6:p(zy, ..., za) —
<5 <y
+p(@y, ..., z,). For instance, in S5, § = (134)(25) takes
Py, ..., xs) = (X1 — @) (X1 — T3) (@1 — %4) (zy — 5) (X2 — 23)

X (22 — %4) (32 — @5) (@3 — 24) (T3 — T5) (T4 — Ts)
into
(x5 — 5) (X3 — @a) (s — 21) (w3 — €2) (W5 — 24) (35 — 1)

X (w5 — %) (x4 — T1) (@4 — Z2) (X1 — T2)

which can easily be verified to be —p(z1, - . ., Z5).
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If, in particular, 6 is a transposition, 8:p(21, ..., Z,) — —p&1, - .., Tn).
(Verify!) Thus if a permutation II can be represented as a product of
an even number of transpositions in one representation, II must leave
p(zy, ..., T,) fixed, so that any representation of II as a product of trans-
position must be such that it leaves p(zy, ..., z,) fixed; that is, in any
representation it is a product of an even number of transpositions. This
establishes that the definition given for an even permutation is a significant
one. We call a permutation odd if it is not an even permutation.

The following facts are now clear:

(1) The product of two even permutations is an even permutation.

(2) The product of an even permutation and an odd one is odd (likewise
for the product of an odd and even permutation).

(3) The product of two odd permutations is an even permutation.

The rule for combining even and odd permutations is like that of com-
bining even and odd numbers under addition. This is not a coincidence
since this latter rule is used in establishing 1, 2, and 3.

Let A, be the subset of S, consisting of all even permutations. Since the
product of two even permutations is even, A, must be a subgroup of S,.
We claim it is normal in S,. Perhaps the best way of seeing this is as
follows: let W be the group of real numbers 1 and —1 under multiplica-
tion. Define ¢:8, — W by ¥(s) = 11if sis an even permutation, y(s) = —1
if s is an odd permutation. By the rules 1, 2, 3 above ¢ is a homomor-
phism onto W. The kernel of ¢ is precisely A.,; being the kernel of a homo-
morphism A4, is a normal subgroup of S,. By Theorem 2.d, S,/4, =~ W,
S0, since

Sn 0(Sn)

2= o7 = o(52) - 252

we see that 0(4,) = 4nl. 4, is called the alternating group of degree n.
We summarize our remarks in

Lemma 2.24. 8, has as a normal subgroup of index 2 the alternating group,
Ay, consisting of all even permutations.

At the end of the next section we shall return to S, again.

PROBLEMS

1. Find the orbits and cycles of the following permutations:

1 2345678
(a)(z 9>'

4 5 6 7 9 8
1 3 4
(b)( 4 3

N W

5

1

56)
6 1 2

ot



sEc. 11 ANOTHER COUNTING PRINCIPLE 69

2. Write the permutations in Problem 1 as the product of disjoint
cycles.
3. Express as the product of disjoint cycles:
(@) (1,2, 3)(4, 5)(1, 6,7, 8, 9)(1, 5).
(b) (1,2)(1, 2, 3)(1, 2).
4. Prove that (1,2, ..., n)™' = (n,n — 1,n —2, ..., 2 1).
. Find the cycle structure of all the powers of (1,2, ..., 8).
6. (a) What is the order of an n-cycle?
(b) What is the order of the product of the disjoint cycles of lengths
My, Moy + . vy MzT
(¢) How do you find the order of a given permutation?
7. Compute a'ba where
1) a= 1, 3, 5)(17 2) b 1,5,7,9).
@) a=(5,79) b= (1,2 3).
8. (a) Given the permutation z = (1, 2)(3, 4), y = (5, 6) (1, 3), find a
permutation a such that a™'za = y.
(b) Prove that there is no a such that a™'(1, 2, 8)a = (1, 3)(5, 7, 8).
(c) Prove that there is no permutation a such that a™*(1, 2)a =
@, 9, 5).
9. Determine for what m an m-cycle is an even permutation.
10. Determine which of the following are even permutations:
(@ (1,2,3)(,2).
M) (1,2,38,4,5)1,2,3)4,5).
(©) (1,2)1,3)(1, (2, 5).
11. Prove that the smallest subgroup of S, containing (1,2) and
(1,2, ...,n) is S,. (In other words, these generate S,.)
*12. Prove that for n > 3 the subgroup generated by the 3-cycles is 4.
*13. Prove that if a normal subgroup of 4, contains even a single 3-cycle
it must be all of 4,.
*14. Prove that 45 has no normal subgroups N £ (e), 45.
15. Assuming the result of Problem 14, prove that any subgroup of 45
has order at most 12.

(=11

]

11, Another Counting Principle. Mathematics is rich in technique and
arguments. In this great variety one of the most basic tools is counting.
Yet, strangely enough, it is one of the most difficult. Of course, by counting
we do not mean the creation of tables of logarithms or addition tables,
rather, we mean the process of precisely accounting for all possibilities in
highly complex situations. This can sometimes be done by a brute force
case-by-case exhaustion but such a routine is invariably dull and violates
a mathematician’s sense of aesthetics. One prefers the light, deft, delicate
touch to the hammer blow. But the most serious objection to case-by-case
division is that it works far too rarely. Thus in various phases of mathematics
we find neat counting devices which tell us exactly how many elements,
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in some fairly broad context, satisfy certain conditions. A great favorite
with mathematicians is the process of counting up a given situation in two
different ways; the comparison of the two counts is then used as a means
of drawing conclusions. Generally speaking, one introduces an equivalence
relation on a finite set, measures the size of the equivalence classes under
this relation, and then equates the number of elements in the set to the
sum of the orders of these equivalence classes. This kind of an approach
will be illustrated in this section. We shall introduce a relation, prove it is
an equivalence relation, and then find a neat algebraic description for the
size of each equivalence class. From this simple description there will flow
a stream of beautiful and powerful results about finite groups.

Derinrrion. If o, b € @, then b is said to be a conjugate of a in @ if there
exists an element ¢ € G such that b = ¢ ac.

‘We shall write, for this, a ~ b and shall refer to this relation as conjugacy.
Levmma 2.25. Conjugacy is an equivalence relation on G.

Proof. As usual, in order to establish this, we must prove that

(1) a~a;
(2) a ~ b implies that b ~ qa;
(3) a ~b, b~ cimplies that a ~ ¢

for all a, b, ¢ in G.
We prove each of these in turn.

(1) Since a = ¢ 'ae, a ~ a, with ¢ = e serving as the ¢ in the definition
of conjugacy.

(2) If a ~ b, then b = z%az for some z € G, hence, & = (7)) b(z™?)
and since ¥y = ™' € G and a = y by, b ~ a follows.

(3) Suppose that a ~ b and b ~ ¢ where a, b, ¢ € G. Then b = 2 %az,
¢ = y by for some z, y € G. Substituting for b in the expression for ¢ we
obtain ¢ =y~ zaz)y = (vy) ta(zy); since 2y € G, a~c is a con-
sequence.

For a € G let C(a) = {z € G|a~z}. C(a), the equivalence class of a
in G under our relation, is usually called the conjugate class of a in G; it
consists of the set of all distinct elements of the form ylay as y ranges
over G.

Our attention now narrows to the case in which @ is a finite group.
Suppose that C(a) has ¢, elements. We seek an alternative description of
cq. Before doing so, note that o(@) = Zc¢, where the sum runs over a set
of a € G using one a from each conjugate class. This remark is, of course,
merely a restatement of the fact that our equivalence relation—con-
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jugacy—induces a decomposition of @ into disjoint equivalence classes—the
conjugate classes. Of paramount interest now is an evaluation of c,.

In order to carry this out we recall a concept introduced in Problem
12, Section 5. Since this concept is important—far too important to leave
to the off-chance that the student solved the particular problem—we go
over what may very well be familiar ground to many of the readers.

Derintrion. If a € G, then N(a), the normalizer of a in G, is the set
N(a) = {z € G|za = ax}.

N(a) consists of precisely those elements in G which commute with a.

LeMmMma 2.26. N(a) 2s a subgroup of G.

Proof. In this result the order of @, whether it be finite or infinite, is of
no relevance, and so we put no restrictions on the order of G.

Suppose that z, y € N(a). Thus za = az and ya = ay. Therefore,
(zy)a = z(ya) = z(ay) = (ra)y = (ax)y = a(zy), in consequence of which
zy € N(a). From azr =2za it follows that z7'a =z (az)z™" =
7 (za)z™ = az™?, so that ™! is also in N(a). But then N(a) has been
demonstrated to be a subgroup of G.

We are now in a position to enunciate our counting principle.

(@)
o(N(a))°

the number of elements conjugate to a in G 1s the index of the normalizer of
ain Q.

TuEOREM 2.H. If G is a finite group, then ¢, = ; in other words,

Proof. To begin with, the conjugate class of a in G, C(a), consists exactly
of all the elements 2 az as z ranges over G. ¢, measures the number of
distinet 2™ az’s. Our method of proof will be to show that two elements in
the same right coset of N(a) in G yield the same conjugate of a whereas
two elements in different right cosets of N(a) in G give rise to different
conjugates of a. In this way we shall have a one-to-one correspondence
between conjugates of ¢ and right cosets of N (a).

Suppose that z, y € G are in the same right coset of N(a) in G. Thus
Yy =nz where ne& N (a), and S0 e = an Therefore, sincey™! = (nz)™' =
g0, ylay = 27 lana = 27" naz = 7 'ax, whence z and y
result in the same conjugate of a.

If, on the other hand, x and y are in different right cosets of N(a) m G
we claim that 2™ tazx # y~ ay Were this not the case, from £ %az = y " ay
we would deduce that yz'a = ayz™*; this in turn would imply that
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yx~! € N(a). However, this declares z and y to be in the same right coset
of N(a) in G, contradicting the fact that they are in different cosets. The
proof is now complete.

COROLLARY.

o(@)
o(N(a))

where this sum runs over one element a in each conjugate class.

o =2

Proof. Since o(@) = Z¢,, using the theorem the corollary becomes
immediate.

The equation in this corollary is usually referred to as the class equation
of G.

Before going on to the applications of these resvlts let us examine these
concepts in some specific group. There is no point in looking at abelian
groups because there two elements are conjugate if and only if they are
equal (that is, ¢, = 1 for every a). So we turn to our familiar friend, the
group Ss. Its elements are ¢, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2). We
enumerate the conjugate classes:

Cle) = {e}
€(1,2) = {(1,2),(1,3)71(1,2)(1,3),(2,3)7(1,2)(2,3),(1,2,3)"%(1,2) (1,2, 3),
(1,3,2)711, 2)(1, 3,2)} = {(1,2), (1, 3), (2,3)} (Verify!)
C(1,2,3) = {(1,2,3), (1, 3,2)} (after another verification).

The student should verify that N((1, 2)) = {¢, (1, 2)} and N((1, 2, 3)) =
{e, (1, 2,3), (1, 3, 2)}, so that C,2) = % =3,¢1,23) = % = 2.

AppricaTioNs oF THEOREM 2.H. Theorem 2.h lends itself to immediate
and powerful application. We need no artificial constructs to illustrate its
use for the results below which reveal the strength of the theorem are
themselves theorems of stature and importance.

Let us recall that the center Z(@) of a group @ is the set of all @ € G
such that axz = za for all z € @. Note the

SusLEMMA. a € Z if and only if N(a) = G. If G is finite, a € Z if and
only if o(N(a)) = o(®).

Proof. If a € Z, za = az for allz € @, whence N(a) = G. If, conversely,
N(a) = G, za = az for all z € @, so that ¢ € Z. If G is finite, o(N(a)) =
0(@) is equivalent to N(a) = G.



sEc. 11 ANOTHER COUNTING PRINCIPLE 73

AppLICATION 1
TuroREM 2.1. If 0(G) = p™ where p is a prime number, then Z (@ = (e).

Proof. If a € G, since N(a) is a subgroup of G, o(N(a)), being a divisor
of o(G) = p" must be of the form o(N(a)) = p™; ¢ € Z(G) if and only
if ny = n. Write out the class equation for this @, letting z = o(Z(®)). We
get p" = o(@) = Z(p"/p™*); however, since there are exactly z elements
such that n, = n, we find that

3
=t 3 L
ng<n P e
Now look at this! p is a divisor of the left-hand side; since n, < n for each
term in the 2 of the right side,

n

—_—= pn"na

P
pa

so that p is a divisor of each term of this sum, hence a divisor of this sum.

Therefore,
pn
JICEPESEE

ng<n pna

Since e € Z(G), 2z # 0; thus z is a positive integer divisible by the prime p.
Therefore, z > 1! But then there must be an element, besides e, in Z()!
This is the contention of the theorem.

Rephrasing, the theorem states that a group of prime-power order must
always have a nontrivial center.

We can now simply prove, as a corollary for this, a result given in an
earlier problem.

CoroLLARY. If o(@) = p° where p is a prime number, then G is abelian.

Proof. Our aim is to show that Z(G) = G. At any rate, we already know
that Z(Q®) # (e) is a subgroup of G so that o(Z(®)) = p or p. If o(Z(@)) = p?,
then Z(@) = G and we are done. Suppose that o(Z(@)) = p; let a € G,
a & Z(®@). Thus N(a) is a subgroup of G, Z(@) < N(a), a € N(a), so that
o(N(a)) > p yet by Lagrange’s theorem o(N(a)) |o(G) = p®. The only way
out is for o(N(a)) = p? implying that ¢ € Z(G), a contradiction. Thus
o(Z(®)) = p is not an actual possibility.

AppricATION 2. We now use Theorem 2.h to prove an important theorem
due to Cauchy. The reader may remember that this theorem was already
proved for abelian groups as an application of the results developed in the
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section on homomorphisms. In fact, we shall make use of this special case
in the proof below. But, to be frank, we shall prove, in the very next
section, a much stronger result, due to Sylow, which has Cauchy’s theorem
as an immediate corollary, in a manner which completely avoids Theorem
2.h. To continue our candor, were Cauchy’s theorem itself our ultimate
and only goal, we could prove it, using the barest essentials of group theory
in a few lines. [The reader should look up the charming, one-paragraph
proof of Cauchy’s theorem found by McKay and published in the American
Mathematical Monthly, Vol. 66 (1959), page 119.] Yet, despite all these
counter-arguments we present it here as a striking illustration of Theorem
2.h.

TrEoREM 2.7 (CAUCEHY). If p ¢s @ prime number and p|o(G), then G has an
element of order p.

Proof. We seek an element a % e € @ satisfying o? = e. To prove its
existence we proceed by induction on o(G); that is, we assume the theorem
to be true for all groups T such that o(T) < o(G). We need not worry about
starting the induction for the result is vacuously true for groups of order 1.

If for any subgroup W of G, W # @ were it to happen that p|o(W),
then by our induction hypothesis there would exist an element of order p in
W, and thus there would be such an element in G. Thus we may assume that
P is not a divisor of the order of any proper subgroup of G. In particular, if
o € Z(@), since N(a) = G, p 1 o(N(a)). Let us write down the class equa-
tion:

o(@
o@) = oZ@) + 3, o(N(a))

Since p|o(@), p 1 o(N(a)) we have that
o(@
P loar@y’

o(@
N6 o(N(a)) ;
since we also have that p|o(G), we conclude that

o(G@

(O(G> T e o(zx(r@)z))) = o(E)).

Z(@) is thus a subgroup of G whose order is divisible by p. But, after all,
we have assumed that p is not a divisor of the order of any proper subgroup
of @, so that Z(@) cannot be a proper subgroup of G. We are forced to
accept the only possibility left us, namely, that Z(@) = G. But then @
is abelian; now we invoke the result already established for abelian groups
to complete the induction. This proves the theorem.

and so

p




sEc. 11 ANOTHER COUNTING PRINCIPLE 75

We conclude this section with a consideration of the conjugacy relation
in a specific class of groups, namely, the symmetric groups S,,.

Given the integer 7 we say the sequence of positive integers ny, ns, . . .
Ny, My S Mg < - - - <y constitute a partition of nifn = n; + ng +- - -+ 0.
Let p(n) denote the number of partitions of n. Let us determine p(n) for
small values of n:

p(1) = 1since 1 = 1 is the only partition of 1

p(2) =2since2 =2and2 =141

p@B) =3sinced =3,3=1+23=1+1+1

p(4) =5since4 =4,4=1+3,4=1+1+2,
4=14+141+1,4=2+42

Some others are p(5) = 7, p(6) = 11, p(61) = 1,121,505. There is a large
mathematical literature on p(n).

Every time we break a given permutation in S, into a product of disjoint
cycles we obtain a partition of n; for if the cycles appearing have lengths
ny, Ng, ..., Ny, respectively, n; < ny < --» <n,, thenn =n; +ny +
-++ 4 n,. We shall say a permutation ¢ € S, has the cycle decomposition
{n1, ne, ..., n,} if it can be written as the product of disjoint cycles of
lengths ny, ng, ..., Ny, ny <Ny < -+ < Ny Thus in Sy

123456789
- = (1)(2,3)(4, 5,6)(7) (8,9
6(1325647“) (1)(2,3)(4,5,6)(7) 8,9

has cycle decomposition {1, 1, 2,2, 3};notethat 1 1424243 = 9.
We now aim to prove that two permutations in S, are conjugate if and
only if they have the same cycle decomposition. Once this is proved, then
S, will have exactly p(n) conjugate classes.

To reach our goal we exhibit a very simple rule for computing the con-
jugate of a given permutation. Suppose that ¢ € S, and that o sends
i — 7. How do we find 6*¢8 where § € S,? Suppose that 6 sends ¢ — s
and j — t; then 6206 sends s — t. In other words, to compute 6~ o6 replace
every symbol in o by its image under 6. For example, to determine 8~ o6
where § = (1, 2, 3)(4, 7) and ¢ = (5, 6, 7)(3, 4, 2), then, since §:5 — 3,
6 —6,7—43—1,4—7 2— 3, 670 is obtained. from ¢ by
replacing in ¢ 5 by 5, 6 by 6, 7 by 4, 3 by 1, 4 by 7, and 2 by 3, so that
070 = (5, 6,4)(1, 7, 3).

With this algorithm for computing conjugates it becomes clear that two
permutations having the same cycle decomposition are conjugate. For if
o = (a1, g, - -+, Any) (b1, b2, -, by .. (@1, Ta, ..., Tn,) AR T = (0, X3y

_— p—1
coey o) (B, Bay ney Bry) - (X1, X2y - -5 Xn,), then T = 6700 where one
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could use as 6 the permutation

<a1 0 «v. Qng b1 .uv bny ... 2oL x,,,,)
a ag ... An P11 oeer By oo X1 eer Xmr

Thus, for instance, (1, 2)(3, 4, 5)(6, 7, 8) and (7, 5)(1, 3, 6)(2, 4, 8) can be
exhibited as conjugates by using the conjugating permutation

(12345678)
75136 2 48

That two conjugates have the same cycle decomposition is now trivial
for, by our rule, to compute a conjugate, replace every element in a given
cycle by its image under the conjugating permutation.

We restate the result proved in the previous discussion as

Lemma 2.27. The number of conjugate classes in Sy, is p(n), the number of
partitions of n.

Since we have such an explicit description of the conjugate classes in
S, we can find all the elements commuting with a given permutation. We
illustrate this with a very special and simple case.

Given the permutation (1, 2) in S,, what elements commute with it?
Certainly any permutation leaving both 1 and 2 fixed does. There are
(n — 2)! such. Also (1, 2) commutes with itself. This way we get 2(n — 2)!
elements in the group generated by (1, 2) and the (n — 2)! permutations
leaving 1 and 2 fixed. Are there others? There are n(n — 1)/2 transpositions
and these are precisely all the conjugates of (1, 2). Thus the conjugate class
of (1, 2) has in it n(n — 1)/2 elements. If the order of the normalizer of
(1, 2) is r, then, by our counting principle,

n(n — 1) _o(Sn) _1_@_}
2 o e

Thus r = 2(n — 2)!. That is, the order of the normalizer of (1, 2) is
2(n — 2)!. But we exhibited 2(n — 2)! elements which commute with
(1, 2); thus the general element o commuting with (1, 2) is ¢ = (1, 2)'r
where ¢ = 0 or 1, 7 is a permutation leaving both 1 and 2 fixed.

As another application consider the permutation (1, 2, 3, ..., n) € S,.
We claim this element commutes only with its powers. Certainly it does
commute with all its powers, and this gives rise to n elements. Now any
n-cycle is conjugate to (1,2,...,7n) and there are (n — 1)! distinct

n-~cycles in 8. Thus if « denotes the order of the normalizer of (1,2, ..., n)
in 8,, since 0(S,)/u = number of conjugates of (1, 2, ..., n) in S, =
(n— 1),

n!

m—n1 "
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So the order of the normalizer of (1, 2, ..., n) in 8, is n. The powers of

(1, 2, ..., n) having given us n such elements, there is no room left for
others and we have proved our contention.

PROBLEMS

(mn—n)!
(b) Using this, find the number of conjugates that the r-cycle
1,2, ...,7) hasin S,.

1
1. (a) In S, prove that there are ; distinet 7 eycles.

(c) Prove that any element ¢in .S, Wl?ich commutes with (1,2, ...,7)
is of the form ¢ = (1,2,...,7)7 where 1 = 0, 1,2, ..., r, 7
is a permutation leaving all of 1, 2, ..., r fixed.

2. (a) Find the number of conjugates of (1, 2)(3, 4) in S,, n > 4.

(b) Find the form of all elements commuting with (1, 2)(3, 4) in S,.

3. If p is a prime number, show that in S, there are (p — 1)! +1
elements z satisfying 2 = e.

4. If in a finite group G an element a has exactly two conjugates, prove
that G has a normal subgroup N = (e), G.

6. (a) Find two elements in 45, the alternating group of degree 5, which

are conjugate in S5 but not in As5.
(b) Find all the conjugate classes in 45 and the number of elements
in each conjugate class.

6. (a) If NV is a normal subgroup of @ and a € N, show that every

conjugate of ¢ in G is also in N.

(b) Prove that o(N) = Z¢, for some choices of a in N.

(c) Using this and the result for Problem 5(b), prove that in Aj
there is no normal subgroup N other than (¢) and A45.

7. Using Theorem 2.i as a tool, prove that if o(G) = p”, p a prime
number, then @ has a subgroup of order p® for all 0 < o < n.

8. If o(@) = p™, p a prime number, prove that there exist subgroups
N;1=0,1, ..., r (for some r) such that G =Ny DN; DNy D ---
D N, = (¢) where N; is a normal subgroup of N;_; and where N;_1/N;
is abelian.

9. If o(@) = p™, p a prime number, and H > @ is a subgroup of G,
show that there exists an z € G, z € H such that ™ Hz = H.

10. Prove that any subgroup of order ™ in a group @ of order p", p
a prime number, is normal in G.

*11. If o(@) = p”, p a prime number, and if N 5 (¢) is a normal subgroup

of @, prove that N N Z 5= (¢) where Z is the center of G.

12. If G is a group, Z its center, and if G/Z is cyclic, prove that G must
be abelian.

13. Prove that any group of order 15 is cyclic.

14. Prove that a group of order 28 has a normal subgroup of order 7.
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15. Prove that if a group @ of order 28 has a normal subgroup of order 4,
then @ is abelian.

12. Sylow’s Theorem. Lagrange’s theorem tells us that the order of a
subgroup of a finite group is a divisor of the order of that group. The con-
verse, however, is false. There are very few theorems which assert the
existence of subgroups of prescribed order in arbitrary finite groups. The
most basic, and widely used, is a classic theorem due to the Norwegian
mathematician Sylow. We present here a very elegant and elementary
proof of Sylow’s theorem; the proof in the form we give it is due to Wie-
landt and appeared in the journal Archiv der Matematik, Vol. 10 (1959),
pages 401-402.

TaroreM 2.K (SYLow). If p is a prime number and p*|o(@), then G has a
subgroup of order p°.

Before entering the proof of the theorem proper we digress slightly to a
brief number-theoretic and combinatorial discussion.

The number of ways of picking a subset of & elements from a set of »
elements can easily be shown to be

n n!
<k> " kln — k)1
If n = p®m where p is a prime number, and if p"|m but p" T { m, consider
(p"‘m> _ (®@*m)!
r* ] @)@m — p%)!
_p“m(p"‘m— D...o*m—1) ... @m —p*+1)
I I B o R

. .. p°m . .
The question is: what power of p divides ( o > ? Looking at this number,
p

written out as we have written it out, one can see that except for the term
m in the numerator, the power of p dividing (p*m — %) is the same as that
dividing p* — 7, so all powers of p cancel out except the power which divides

(Z’“m) ey (P“m)
yus p*

Proof of the Theorem. Let 9N be the set of all subsets of G which have p*

elements. Thus 97 has (p
P

m. Thus p"

m
N )elements. Given My, My € 9 (M, is a sub-
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set of (¢ having p* elements, and likewise so is M,) define M; ~ M g if
there exists an element g € @ such that M; = Mog. It is immediate to
verify that this defines an equivalence relation on 917. We claim that there
is at least one equivalence class of elements in 9 such that the number of
elements in this class is not a multiple of p™ ™, for if p" ™ is a divisor of the
size of each equivalence class, then p"** would be a divisor of the number

am (43
of elements in 9N. Since 9N has (pa > elements and p™ ! ¢ (p m>’ this
4

pd
cannot be the case. Let {My, ..., M,} be such an equivalence class in 91
where p" ™ { n. By our very definition of equivalence in 9, if g € G,
for each 2 =1, ..., n, Mg =M, for some j, 1 <j<n We let

H = {g € G| Mg = M,}. Clearly H is a subgroup of G, for if a, b € H,
then Mla = Ml, Mlb = M1 whence Mlab = (Mﬂl)b = M1b = M1. We
shall be vitally concerned with o(H). We claim that no(H) = o(®); we leave
the proof to the reader, but suggest to him the argument used in the count-
ing principle in Section 11. Now no(H) = o(G) = p*m; since p"*! { n and
17| p®m = no(H), it must follow that p*|o(H), and so o(H) > p*. How-
ever, if m; € My, then for all h € H mih € M. Thus M, has at least
o(H) distinct elements. However, M; was a subset of G containing p® ele-
ments. Thus p* > o(H). Combined with o(H) > p* we have that o(H) = p*.
But then we have exhibited o subgroup of G having exactly p* elements, namely
H. This proves the theorem; it actually has done more—it has constructed
the required subgroup before our very eyes!

What is usually known as Sylow’s theorem is a special case of Theorem
2.k, namely the

COROLLARY. If p™|o(@), ™™ 1 o(@), then G has a subgroup of order p™.

A subgroup of G of order p™, where p™|0(G), p™ T 1 o(®), is called a
p-Sylow subgroup of G. The usual Sylow theorem then has two other parts
to it: one of these asserts that any two p-Sylow subgroups of G are conjugate
in G and the other states that the number of p-Sylow subgroups of G is of
the form 1 + kp. We shall not go into a proof of these here. In the supple-
mentary problems, a combination of the problems 21-24 yields their proofs.

PROBLEMS

1. In the symmetric group of degree 4, Sy, find a 2-Sylow subgroup and
a 3-Sylow subgroup.

2. Prove that a group of order 108 must have a normal subgroup of
order 9 or 27.
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SUPPLEMENTARY PROBLEMS

There is no relation between the order in which the problems appear and
the order of appearance of the sections, in this chapter, which might be
relevant to their solution. No hint is given regarding the difficulty of any
problem.

1. (a) If G is a finite abelian group with elements ay, @z, ..., as, prove
that aias ... ay is an element whose square is the identity.
(b) If the G in part (a) has no element of order 2 or more than one
element of order 2, prove that ayas ... a, = e.

(¢) If @ has one element, y, of order 2, then aas ... an = ¥.
(d) (Wilson's theorem). If p is a prime number, then

(p— D= —1(p).

2. If p is an odd prime and if 1 +3+4+ -+ 1/(p—1) =a/b
where a, b are integers, prove that p|a. If p > 3, prove that p*|a.

DrrinrTioN. A group @ is said to be solvable if there exist subgroups
G=NyDN;,DNyD -+ DN, = (¢ such that N; is normal in N;_;
and N;_;/N; is abelian.

3. Prove that a solvable group always has an abelian normal subgroup
M, such that M # (e).
4. Prove that the homomorphic image of a solvable group is solvable.
5. If G is a group and N is a normal subgroup of G such that both N
and G/N are solvable, prove that G is solvable.
6. Prove that a subgroup of a solvable group is solvable.
7. Find all the automorphisms of S;, the symmetric group of degree 3.
8. Show that the equation z%ax = o™ is solvable for z in a group @ if
and only if ¢ is the cube of some element in G.
9. Prove that zax = b is solvable for z in G if and only if ab is the square
of some element in G.
10. Prove that (1, 2, 8) is not the cube of any element in S,.
11. Suppose @ is a group such that ¢(z) = 2" defines an automorphism
of G. Prove that for all @ € @, ™~ is in the center of G.
12. If p is an odd prime number, a 5 0 is said to be a quadratic residue
of p if there exists an integer z such that 2> = a mod p. Prove:
(a) The quadratic residues mod p form a subgroup @ of the group
of nonzero integers mod p under multiplication.
1

() 0(Q) = F——-
(c) If ¢ € Q,n & Q (nis called a nonresidue), then ng is a nonresidue.
(d) If ny, ny are nonresidues, then nyny is a residue.

(e) If a is a quadratic residue of p then ¢®~1/2 = 1 mod p.
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13. Prove that in the integers mod p, p a prime number, there are at
most 7 solutions of 2” = 1 mod p for every integer n.

14. Give an example of a non-abelian group in which (zy)® = z3® for
all z and y.

16. If G is a group, 4 a subgroup of G and if N is a normal subgroup of
@, prove that if both 4 and N are solvable then so is AN.

16. If G is an abelian group and if a, b in G have orders m, n, respectively,
prove that there is an element ¢ in G whose order is the least common
multiple of m and n.

17. In the finite abelian group G prove that the number of solutions of
z" = ¢, where n|o(@®), is a multiple of n.

18. Same as Problem 17, but do not assume the group to be abelian.

19. If A and B are subgroups of G, define 4 to be conjugate to B if
B = z7 YAz for some 2 € G. Prove:

(a) The relation of being conjugate is an equivalence relation on
the set of subgroups of G.

() If N(4) = {z € G|z 4z = A} then there is a one-to-one
correspondence between the right-cosets of N(4) in G and the
distinet conjugates of A.

20. Let G be a finite group and H a subgroup of G. For 4, B subgroups
of G define A to be conjugate to B relative to H if B = z Az for some
z € H. Prove:

(a) This defines an equivalence relation on the set of subgroups of G.
(b) The number of subgroups of G conjugate to A relative to H
equals the index of N(4) N H in H.
21. (a) If @ is a finite group and if S, is a p-Sylow subgroup of @ of
order p™, prove that S, is the only subgroup of @ of order p™
lying in N (S,).
(b) If S, is a p-Sylow subgroup of G and if a, of order p*, is in N(S,),
then a € Sp.
(c) Prove that N(N(S,)) = N(Sp).
22. (a) If @ is a finite group and if S, is a p-Sylow subgroup of G prove
that the number of conjugates of S, in G is not a multiple of p.
(b) Bresking up the conjugate class of S, further by using con-
jugacy relative to Sy, prove that the conjugate class of S, has
1 4+ kp distinet subgroups. (Hint: Use part (b) of Problem 20
and Problem 21.)
23. (a) If S, is a p-Sylow subgroup and B a subgroup of order p* in G,
prove that if B is not contained in some conjugate of S, the
number of conjugates in G of S, is a multiple of p.
(b) Using part (a) and Problem 22, prove that B must be contained
in some conjugate of S,.
(c) Prove that any two p-Sylow subgroups of @ (for the same prime
p) are conjugate. (This is the second part of Sylow’s theorem.)
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24. Using Problems 22 and 23, prove that n,, the number of p-Sylow
subgroups in @, is of the form n, = 1+ kp. (This vs the third part of
Sylow’s theorem.)

26. (a) Using Problem 24 prove that if o(G) = 36 then @ has either 1

or 4 3-Sylow subgroups.

(b) If o(@) = 56 prove that G has 1 or 8 7-Sylow subgroups. In the
latter case, prove that the 2-Sylow subgroup of G must be
normal in G.

26. If o(@) = 42, prove its 7-Sylow subgroup is a normal subgroup.

27. Prove that a group of order 48 must have a normal subgroup of
order 8 or 16.

28. Making a case-by-case discussion, using the results developed in the
chapter, prove that a group of order less than 60 either is of prime order or
has a nontrivial normal subgroup.

29. (a) If p > ¢ are distinct primes, prove that a group of order pq is

solvable.

() If gt (p — 1) prove that a group of order pq is cyclic.

(c) Prove that any two non-abelian groups of order pg are iso-
morphie.

30. Show that a group cannot be written as the set-theoretic union of
two proper subgroups.

31. If a group @ has a proper subgroup of finite-index, prove it has a
normal subgroup of finite-index.

32. If G is a group and if ¢ € G has finite order and only a finite number
of conjugates in G prove that these conjugates generate a finite normal
subgroup of G.

Supplementary Reading

Bugnsioe, W., Theory of Groups of Finite Order, Second Edition. Cam-
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Harr, MarsuALL, Theory of Groups. The Macmillan Company, New York,
1959.
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McKay, James H., “Another proof of Cauchy’s group theorem,” American
Mathematical Monthly, Vol. 66 (1959), page 119.

Seear, I. E., “The automorphisms of the symmetric group,” Bulletin
of the American Mathematical Society, Vol. 46 (1940), page 565.



CHAPTER 3

Ring Theory

1. Definition and Examples of Rings. As we indicated in Chapter 2 there
are certain algebraic systems which serve as the building blocks for the
structures comprising the subject which is today called modern algebra.
At this stage of the development we have learned something about one
of these, namely groups. It is our purpose now to introduce and to study a
second such, namely rings. The abstract concept of a group has its origins
in the set of mappings, or permutations, of a set onto itself. In contrast,
rings stem from another, and more familiar source, the set of integers.
We shall see that they are patterned after, and are generalizations of, the
algebraic aspects of the ordinary integers.

In the next paragraph it will become clear that a ring is quite different
from a group in that it is a two-operational system; these operations are
usually called addition and multiplication. Yet, despite the differences, the
analysis of rings will follow the pattern already laid out for groups. We
shall require the appropriate analogs of homomorphism, normal subgroups,
factor groups, etc. With the experience gained in our study of groups we
shall be able to make the requisite definitions, intertwine them with mean-
ingful theorems, and end up proving results which are both interesting and
important about mathematical objects with which we have had long
acquaintance. To cite merely one instance, later on in the book, using the
tools developed here, we shall prove that it is impossible to trisect an angle
of 60° using only a straight-edge and compass.

DeriNiTioN. A nonempty set R is said to be an associative ring if in B
there are defined two operations, denoted by + and - respectively such
that for all @, b, cin R:

(1) a+bisin R.
2 a+db=b+a.
@) @+b+c=a+ ®+c).
(4) There is an element 0 in R such that @ + 0 = a (for every a in R).
(5) There exists an element —a in R such that @ + (—a) = 0.
(6) a-bisin R.
7) a-(b-¢) = (a-b)-c. .
@®) a(b+c¢)=ab+acand (b+c)a=b-a+ca (the two dis-
tributive laws).
83
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Axioms (1) through (5) merely state that R is an abelian group under the
operation + which we call addition. Axioms (6) and (7) insist that B be
closed under an associative operation, -, which we call multiplication.
Axiom (8) serves to interrelate the two operations of R.

Whenever we speak of ring it will be understood we mean associative
ring. Nonassociative rings, that is, those in which axiom 7 may fail to hold
do occur in mathematics and are studied, but we shall have no occasion to
consider them.

It may very well happen, or not happen, that there is an element 1 in
R such that a-1 = 1-a = a for every a in R; if there is such we shall
describe R as a ring with unit element.

If the multiplication of R is such that a-b = b-a for every a, b in R then
we call R a commutative ring.

Before going on to work out some properties of rings, we pause to examine
some examples. Motivated by these examples we shall define various
special types of rings which are of importance.

ExamprE 1. R is the set of integers, positive, negative, and 0; 4 is the
usual addition and - the usual multiplication of integers. R is a commuta-
tive ring with unit element.

ExampLE 2. R is the set of even integers under the usual operations of
addition and multiplication. R is a commutative ring but has no unit
element.

ExampiE 3. R is the set of rational numbers under the usual addition and
multiplication of rational numbers. B is a commutative ring with unit
element. But even more than that, note that the elements of R different
from O form an abelian group under multiplication. A ring with this latter
property is called a field.

ExamprE 4. R is the set of integers mod 7 under the addition and multi-
plication mod 7. That is, the elements of R are the seven symbols 0, T, 2,
3, 4, 5, 6 where:

(1) T4 7 = k where k is the remainder of ¢ + j on division by 7 (thus,
for instance, 4 + 5 = 2 since 4 + 5 = 9, which, when divided by 7, leaves
a remainder of 2).

(2) 1:7 = m where m is the remainder of 4j on division by 7 (thus, 5-3 = 1
since 53 = 15 has 1 as a remainder on division by 7).

The student should verify that R is a commutative ring with unit element.
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However, much more can be shown, namely, since:
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the nonzero elements of R form an abelian group under multiplication. R

is thus a field. Since it only has a finite number of elements it is called a
finite field.

ExaMpLE 5. R is the set of integers mod 6 under addition and multiplica-
tion mod 6. If we denote the elementsin R by 0, 1, 2, ..., 5, one sees that
2.3 =0, yet 2 ¢ 0 and 3 5 0. Thus it is possible in a ring R that a-b = 0
with neither @ = Onor b = 0. This cannot happen in a field (see Problem
10, end of Section 2), thus the ring R in Example 5 is certainly not a field.

Every example given so far has been a commutative ring. We now
present a noncommutative ring.

ExampLE 6. R will be the set of all symbols a;;61; + @015 + as16; +

2

00809 = . aije,, wWhere all the a;; are rational numbers and where we
iy Jml

decree: 9 5

6y 2 aieii = 2, Bijei;

7,J=1 2, J=1

if and only if for all ¢, 7 = 1, 2, a;; = Bi;.

2 2 2
) > e+ 2 Bieii = 2 (ouj + Biies.
1,7=1 2,j=1 1yf=1
2 2 2
3) ( > aijeij) : ( 2 Bi;eij) = 2 Yijeis
2,j=1 2, 5=1 2,5=1

2
where vi; = D, ol = aiBij + ioBaj.

y=1
This multiplication, when first seen, looks rather complicated. However,
it is founded on relatively simple rules, namely, multiply Zeage; by
ZB;;e:; formally, multiplying out term by term, and collecting terms, and
using the relations e;;-ex; = O for j # k, €,j-¢; = e; in this term by term
collecting.
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To illustrate the multiplication, if @ = e;; — €s; + €spand b = ez -+ 3¢y
then

a-b = (e11 — ea1 + €22)- (622 + 3e12)
= ej1-€9 + 3e11-€13 — €21°€22 — 361-€12 1 €22- €3 1 3ez0- €13
=0+ 3612 — 0 — 3692 + €22 + 0
= 3e12 — 32z + €32 = 312 — 2es.
Note that e;;-e12 = e;2 whereas e;o-e;; = 0. Thus the multiplication in

R is not commutative. Also it is possible for u-v = 0 with u # 0 and
v # 0.

The student should verify that R is indeed a ring. It is called the ring of
2 X 2 rational matrices. It, and its relatives, will occupy a good deal of
our time later on in the book.

Examprg 7. Let C be the set of all symbols (o, B) where a, 8 are real
numbers. We define:

1) (a, B) = (v, 8) if and only if « = vy and 8 = 4.
In C we introduce an addition by defining for 2 = (o, 8), ¥y = (v, )
@) z+y= (B + (8 =(@+7B+3.

Note that z 4 y is again in C. We assert that C is an abelian group under
this operation with (0, 0) serving as the identity element for addition, and
(—a, —B) as the inverse, under addition, of (e, g).

Now that C is endowed with an addition, in order to make of C a ring
we still need a multiplication. We achieve this by defining:

for X = (e,8),Y = (v,9)inC
) XY = (o ) (v, 8) = (avy — B8, ab + Bv).

Note that X-Y = YV-X. Also X-(1, 0) = (1, 0)-X = X so that (1, 0)
is a unit element for C.

Again we notice that X-Y € C. Also, if X = (a, 8) 5 (0, 0) then, since
@, 8 are real and not both 0, ¢ 4+ 82 # 0 thus

)
T\ + 6t

is in C. Finally we see that

o —B
(o B) - (a2 A 62> = (1,0).
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All in all we have shown that C is a field. If we write (o, 8) as a + B the

reader may verify that C is merely a disguised form of the familiar complex
numbers.

ExampLz 8. This last example is often called the ring of real quaternions.
This ring was first described by the Irish mathematician Hamilton. Initially
it was extensively used in the study of mechanies; today its primary interest
is that of an important example, although it still plays key roles in geometry
and number theory.

Let @ be the set of all symbols ey + 17 + apj + ask where all the
numbers ag, @, @, and ag are real numbers. We declare two such symbols,
oy + a1t + asj + ask and By -+ B17 4 B2j + Bsk to be equal if and only
if oy = By for ¢ = 0, 1, 2, 3. In order to make Q into a ring we must define
a + and a- for its elements. To this end we define:

(1) for any X = ap + oyt + asj + agk, ¥ = Bo + Bt + Baj + B3k in
Q X +7Y = (a + arf + agj + ask) + (8o + B1% + B2j + Bsk) =
(g 4+ Bo) + (a1 + B1)t + (ag + Bo)j + (a3 + B3)k

and

(2 XY = (a0 + gt + agj + agh)-(Bo + Bt + Boj + Bsk) =
(coBy — 1By — By — asBs) + (agfy + a1Bo + sz — azbe)i +
(aoBs + a@sBo + asBi — ai1fB3)j + (aoBs + asBo + a1 — asfi)k.

Admittedly this formula for the product seems rather formidable; how-
ever, it looks much more complicated than it actually is. It comes from
multiplying out two such symbols formally and collecting terms using the
relations: 2 =2 =k =4k = —1, 4= —ji=k, jk= —kj =1, kv =
—ik = 7. The latter part of these relations, called the multiplication table
of the quaternion units, can be remembered by the little diagram; as you go

around clockwise you read off the product, e.g., @ =k, jk = ¢, ki = J,
while going around counterclockwise you read off the negatives.

Notice that the elements &1, =i, =j, =k form a non-abelian group of
order 8 under this product.
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The reader may prove that @ is a noncommutative ring in which
0=04+040j+4+0k and 1 =1 4 0 4+ 0j 4 0k serve as the zero and
unit elements respectively. Now if X = ay + a1 4+ asj + ask isnot 0, then
not all of ap, a;, as, ag are 0; since they are real, 8 = a? + o® + ag® +
as? # 0 follows. Thus

A gimple computation now shows that X-Y = 1. Thus the nonzero ele-
ments of @ form a non-abelian group under multiplication. A ring in
which the nonzero elements form a group is called a dewision ring or skew-
field. Of course, a commutative division ring is a field. @ affords us a division
ring which is not a field. Many other examples of noncommutative division
rings exist, but we would be going too far afield to present one here. The
investigation of the nature of division rings, and the attempts to classify
them form an important part of algebra.

2. Some Special Classes of Rings. The examples just discussedinSection 1
point out clearly that although rings are a direct generalization of the
integers certain arithmetic facts to which we have become accustomed in
the ring of integers need not hold in general rings. For instance we have
seen the possibility of a¢-b = 0 with neither a nor b being zero. Natural
examples exist where a-b 5 b-a. All these run counter to our experience
heretofore.

For simplicity of notation we shall henceforth drop the dot in a-b and
merely write this product as ab.

Derinrrion. If R is a commutative ring then a % 0 € R is said to be a
zero-divisor if there exists a b € R, b £ 0, such that ab = 0.

DrrintTION. A commutative ring is an ¢ntegral domain if it has no zero-
divisors.

The ring of integers, naturally enough, is an example of an integral
domain.

DEeriniTION. A ring is said to be a division ring if its nonzero elements
form a group under multiplication.

The unit element under multiplication will be written as 1, and the
inverse of an element a under multiplication will be denoted by a ™.

Finally we make the definition of the ultra-important object known as
a field.
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DerinirioN. A field is a commutative division ring.

In our examples in Section 1, we exhibited the noncommutative division
ring of real quaternions and the following fields: the rational numbers,
complex numbers, and the integers mod 7. Chapter 5 will concern itself
with fields and their properties.

We wish to be able to compute in rings in much the same manner in
which we compute with real numbers, keeping in mind always that there
are differences—it may happen that ab = ba, or that one cannot divide.
To this end we prove the next lemma which asserts that certain things we
should like to be true in rings are indeed true.

Lremma 3.1, If B is a ring, then for all a, b € R

(1) a0 = 0a = 0.
@) a(—b) = (—a)b = —(ad).
&) (—a)(—b) = ab.

If, in addition, R has a unit element, 1, then

4 (—la = —a.
¢ (-=D(=1) =1

Proof.

(1) If a € R, then a0 = a(0 +0) = a0 + a0 (using the right dis-
tributive law), and since R is a group under addition, this equation implies
that a0 = 0.

Similarly, 0a = (0 4+ 0)a = O0a + O, using the left distributive law, and
80 here too, 0a = 0 follows.

(2) In order to show that a(—b) = —(ab) we must demonstrate that
ab + a(—b) = 0. But ab + a(—b) = a(d + (=b)) = a0 =0 by use of
the distributive law and the result of part (1) of this lemma. Similarly
(—a)b = —(ab).

(8) That (—a)(—b) = ab is really a special case of part (2); we single it
out since its analog in the case of real numbers has been so stressed in our
early education in grade school. So on with it:

(—a)(=b) = —(a(—b)) (by part (2))
= —(—(ab)) (by part (2))
= ab

since —(—2) = z is a consequence of the fact that in any group (u™) ™ = .

(4) Suppose that R has a unit element 1; then a + (—1)a = la +
(=1)a = (1 + (=1))a = 0a = 0, whence (—1)a = —a. In particular, if
a= —1, (—=1)(=1) = —(—=1) = 1, which establishes part (5).



90 RING THEORY CH. 3

With this lemma out of the way we shall, from now on, feel free to com-
pute with negatives and 0 as we always have in the past. The result of
Lemma 3.1 is our permit to do so. For convenience, a + (—b) will be
written as a — b.

The lemma just proved, while it is very useful and important, is not very
exciting. So let us proceed to results of greater interest. Before we do so
we enunciate a principle which, though completely trivial, provides a
mighty weapon when wielded properly. This principle says no more or less
than the following: if a postman distributes 101 letters to 100 mailboxes
then some mailbox must receive at least two letters. It does not sound very
promising as a tool, does it? Yet it will surprise us! Mathematical ideas can
often be very difficult and obscure, but no such argument can be made
against this very simple-minded principle given above. We formalize it and
even give it a name.

Tue Piceon-HoiLe PrincipLE. If n objects are distributed over m places,
and if n > m then some place recetes at least two objects.

An equivalent formulation, and one which we shall often use is: If n
objects are distributed over » places in such a way that no place receives
more than one object then each place receives exactly one object.

We immediately make use of this idea in proving

LeMma 3.2. A finite integral domain s a field.

Proof. As we may recall, an integral domain is a commutative ring such
that ab = 0 if and only if at least one of a or b is itself 0. A field, on the
other hand, is a commutative ring with unit element in which every non-
zero element has a multiplicative inverse in the ring.

Let D be a finite integral domain. In order to prove that D is a field we
must

(1) produce an element 1 € D such that al = q for every a € D;

(2) for every element a % 0 € D produce an element b € D such that
ab = 1.

Let 24, 2, ..., x, be all the elements of D, and suppose that a ¢ 0 € D.
Consider the elements za, za, ..., 2,a; they are all in D. We claim that
they are all distinct! For suppose that z;a =z;a for 15;; then (z; — z;)a=0.
Since D is an integral domain and a 5 0, this forces z; — z; = 0, and
s0 z; = x;, contradicting ¢ # j. Thus 24, zsa, ..., z,a are n distinct
elements lying in D which has exactly n elements. By the pigeon-hole
principle these must account for all the elements of D; stated otherwise,
every element y € D can be written as z,a for some z;. In particular, since
a € D, a = z;a for some z;) € D. Since D is commutative, a = z;0 =
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az;. We propose to show that z;, acts as a unit element for every element
of D. For, if y € D, as we have seen, y = z;a for some z; € D, and so
Yzs, = (2,0)%, = z:(ax;)) = z,0 = y. Thus z;, is a unit element for D and
we write it as 1. Now 1 € D so by our previous argument, it too is realizable
as a multiple of a; that is, there exists a b € D such that 1 = ba. The lemma
is now completely proved.

CoRroLLARY. If p is a prime number then J,, thering of integers mod p, s a
field.

Proof. By the lemma it is enough to prove that J,, is an integral domain,
since it only has a finite number of elements. If a, b € J, and ab = 0
then p must divide the ordinary integer ab, and so p, being a prime must
divide a or b. But then either ¢ = 0 mod p or b = 0 mod p, hence in J,
one of these is 0.

PROBLEMS

R is a ring in all the problems.

1. If a, b, ¢, d € R evaluate (a + b)(c + d).

2. Prove that if a, b € R then (a + b)? = a? + ab + ba + b, where
by 2? we mean zz.

3. Find the form of the binomial theorem in a general ring; in other
words, find an expression for (a 4+ b)™ where 7 is a positive integer.

4. If every x € R satisfies 2> = z prove that B must be commutative.
(A ring in which 2% = z for all elements is called a Boolean ring.)

b. If R is a ring, merely considering it as an abelian group under its
addition we have, in Chapter 2, defined what is meant by na wherea € R
and n is an integer. Prove that if a, b € R and n, m are integers then
(na)(mb) = (nm)(ab).

6. An integral domain D is said to be of characteristic O if the relation
ma = 0 where 0 > a € D and m is an integer can only hold if m = 0.
D is said to be of finite characteristic if for some a 5 0 in D and some integer
m % 0, ma = 0. The characteristic of D is then defined to be the smallest
positive integer p such that pa = 0 for some a # 0 in D. Prove:

(a) If D is of characteristic p then pz = 0 for all x € D.
(b) The characteristic of an integral domain is either 0 or a prime
number.

7. If R is a system satisfying all the conditions for a ring with unit
element with the possible exception of @ + b = b + a, prove that the axiom
a+b =>4+ a must hold in R and that R is thus a ring. (Hint: expand
(@ +b)(1 + 1) in two ways.)

8. Show that the commutative ring D is an integral domain if and only
if for a, b, ¢ € D with a » 0 the relation ab = ac implies that b = ¢.



92 RING THEORY CH. 3

9. Prove that Lemma 3.2 is false if we drop the assumption that the
integral domain is finite.

10. Prove that any field is an integral domain.

11. Using the pigeon-hole principle prove that if m and = are relatively
prime integers and a and b are any integers, there exists an integer = such
that z = @ mod m and x = b mod n. (Hint: consider the remainders of
a,a+m,a+2m, ...,a+ (n — 1)m on division by =.)

12. Using the pigeon-hole principle prove that the decimal expansion of
a rational number must, after some point, become repeating.

3. Homomorphisms. In studying groups we have seen that the concept
of a homomorphism turned out to be a fruitful one. This suggests that the
appropriate analog for rings could also lead to important ideas. To recall,
for groups a homomorphism was defined as a mapping such that ¢(ab) =
¢(a)¢p(d). Since a ring has two operations, what could be a more natural
extension of this type of formula than the

DerFINITION. A mapping ¢ from the ring R into the ring R’ is said to be a
homomorphism if

(1) ¢(a +b) = ¢(a) + 6(b)
(2) ¢(ad) = d(a)e(b)

for all a, b € R.

As in the case of groups let us again stress here that the 4 and - occur-
ring on the left-hand sides of the relations in (1) and (2) are those of R
whereas the + and - occurring on the right-hand sides are those of R'.

A useful observation to make is that a homomorphism of one ring, R,
into another, R’, is, if we totally ignore the multiplications in both these
rings, at least a homomorphism of R into R’ when we consider them as
abelian groups under their respective additions. Therefore, as far as
addition is concerned, all the properties about homomorphisms of groups
proved in Chapter 2 carry over. In particular, merely restating Lemma
2.14 for the case of the additive group of a ring yields for us

Lemma 3.3. If ¢ s a homomorphism of R into R’ then

(1) ¢(0) = 0.
(2) ¢(—a) = —¢(a) for every a € R.

A word of caution: if both R and R’ have the respective unit elements
1 and 1’ for their multiplications it need not follow that (1) = 1’. However,
if R’ is an integral domain, or if R’ is arbitrary but ¢ is onto, then ¢(1) = 1’
is indeed true.
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In the case of groups, given a homomorphism we associated with this
homomorphism a certain subset of the group which we called the kernel
of the homomorphism. What should the appropriate definition of the kernel
of a homomorphism be for rings? After all, the ring has two operations,
addition and multiplication, and it might be natural to ask which of these
should be singled out as the basis for the definition. However, the choice
is clear. Built into the definition of an arbitrary ring is the condition that
the ring forms an abelian group under addition. The ring multiplication
was left much more unrestricted, and so, in a sense, much less under our
control than is the addition. For this reason the emphasis is given to the
operation of addition in the ring, and we make the

Drrintrion. If ¢ is a homomorphism of B into R’ then the kernel of ¢,
I(¢), is the set of all elements a € R such that ¢(a) = 0, the zero-element
of R".

Lemma 3.4. If ¢ is @ homomorphism of R into R’ with kernel I(¢) then:

(1) I(¢) is a subgroup of R under addition.
@) If a € I(¢) and r € R then both ar and ra are in I(¢).

Proof. Since ¢ is, in particular, a homomorphism of R, as an additive
group, into R’, as an additive group, (1) follows directly from our results
in group theory.

To see (2), suppose that a € I(¢), r € R. Then ¢(a) = 0 so that
d(ar) = ¢(a)¢(r) = 0¢(r) = 0 by Lemma 3.1. Similarly ¢(ra) = 0. Thus
by the defining property of I(¢) both ar and ra are in I(¢).

Before proceeding we examine these concepts for certain examples.

Ezxample 1. Let R and R’ be two arbitrary rings and define ¢(a) = 0 for
all a € R. Trivially ¢ is a homomorphism and I{¢) = R. ¢ is called the
0-homomorphism.

Ezample 2. Let R be aring, R’ = R and define ¢(x) = z forevery z € R.
Clearly ¢ is a homomorphism and I($) consists only of 0.

Ezample 3. Let J(+/2) be all real numbers of the form m + n4/2
where m, n are integers; J(1/2) forms a ring under the usual addition and
multiplication of real numbers. (Verify!) Define ¢:J(1/2) — J(1/2) by
é(m + n\/2) = m — n+/2. ¢ is a homomorphism of J(1/2) onto J(/2)
and its kernel I(¢), consists only of 0. (Verify!)

Ezample 4. Let J be the ring of integers, J,, the ring of integers modulo
n. Define ¢:J — J, by ¢(a) = remainder of a on division by n. The
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student should verify that ¢ is a homomorphism of J onto J,, and that the
kernel, I(¢), of ¢ consists of all multiples of n.

*Example 5. Let R be the set of all continuous, real valued functions on
the closed unit interval. B is made into a ring by the usual addition and
multiplication of functions; that it is a ring is a consequence of the fact
that the sum and product of two continuous functions are continuous
functions. Let F be the ring of real numbers and define ¢:R — F by
¢(f(x)) = f(3). ¢ is then a homomorphism of R onto F and its kernel
consists of all functions in R vanishing at « = 3.

All the examples given here have used commutative rings. Many beautiful
examples exist where the rings are noncommutative but it would be pre-
mature to discuss such an example now.

DerintTIoN. A homomorphism of R into R’ is said to be an isomorphism
if it is a one-to-one mapping.

DerinrrioN. Two rings are said to be isomorphic if there is an isomor-
phism of one onto the other.

The remarks made in Chapter 2 about the meaning of an isomorphism
and of the statement that two groups are isomorphic carry over verbatim
to rings. Likewise, the criterion given in Lemma 2.16 that a homomorphism
be an isomorphism translates directly from groups to rings in the form

LeMmma 3.5. The homomorphism ¢ of R into R’ is an isomorphism if and
only if I(¢) = (0).

4. Ideals and Quotient Rings. Once the idea of a homomorphism and its
kernel have been set up for rings, based on our experience with groups, it
should be fruitful to carry over some analog to rings of the concept of
normal subgroup. Once this is achieved one would hope that this analog
would lead to a construction in rings like that of the quotient group of a
group by a normal subgroup. Finally, if one were an optimist, he would
hope that the homomorphism theorems for groups would come over in their
entirety to rings.

Fortunately all this can be done thereby providing us with an incisive
technique for analyzing rings.

The first business at hand, then, seems to be to define a suitable ‘“normal
subgroup’’ concept for rings. With a little hindsight this is not difficult. If
you recall, normal subgroups eventually turned out to be nothing else than
kernels of homomorphisms, even though their primary defining conditions
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did not involve homomorphisms. Why not use this observation as the key-
stone to our definition for rings? Lemma 3.4 has already provided us with
some conditions that a subset of a ring be the kernel of a homomorphism.
We now take the point of view that, since no other information is at present
available to us, we shall make the conclusions of Lemma 3.4 as the starting
point of our endeavor, and so we define

DeriniTIoN. A nonempty subset U of R is said to be a (two-sided) ideal
of R if:

(1) U is a subgroup of R under addition.
(2) For every v € U and r € R, both ur and ru are in U.

Condition (2) asserts that U “‘swallows up” multiplication from the right
and left by arbitrary ring elements. For this reason U is usually called a
two-sided ideal. Since we shall have no occasion, other than in some of the
problems, to use any other derivative concept of ideal, we shall merely use
the word ideal, rather than two-sided ideal, in all that follows.

Given an ideal U of a ring R let B/U be the set of all the distinct cosets
of U in R which we obtain by considering U as a subgroup of B under
addition. We note that we merely say coset, rather than right coset or
left coset; this is justified since R is an abelian group under addition. To
restate what we have just said, B/U consists of all the cosets, a + U,
where ¢ € R. By the results of Chapter 2, R/U is automatically a group
under addition, this is achieved by the composition law (a + U) +
b+ U) = (a+0b) + U. In order to impose a ring structure on R/U we
must define, in it, a multiplication. What is more natural than to define
@+ U)® + U) = ab + U? However, we must make sure that this is
meaningful. Otherwise put, we are obliged to show thatif ¢« + U = o’ 4+ U
and b+ U = b’ 4+ U then under our definition of the multiplication,
@+ U)b+TU) = (@ + U)® + U). Equivalently, it must be established
that ab + U = o'’ + U. To this end we first note that since
a+ U=4da 4+ U,a = a + uy where u; € U;similarly b = b’ 4 u, where
ug € U.Thusab = (&’ + uy) (b’ + ug) = a’b’ + usd’ + a'ug + ujusg; since
U is an ideal of R u,b’ € U, a'us € U, and wuy € U. Consequently
wb’ + a’us + urus = ug € U. But then ab = o'’ + ug, from which we
deduce that ab + U = a'b’ + uz + U, and since uz € U, ug + U = U.
The net consequence of all this is that ab + U = a'b’ + U. We at least have
achieved the principal step on the road to our goal, namely of introducing a
well-defined multiplication. The rest now becomes routine. To establish that
R/U is a ring we merely have to go through the various axioms which define
a ring and check whether they hold in R/U. All these verifications have a
certain sameness to them, so we pick one axiom, the right distributive law



96 RING THEORY CH. 3

and prove it holds in R/U. The rest we leave to the student as informal
exercises. f X =a+ U, Y =b4+ U, Z =c+ U are three elements of
R/U,wherea,b,c € R,then X +YV)Z = ((a+U)+ 0+ 0U)(c+U) =
(@ +b) + e +U0U) =(@+Dbe+U=ua4+0b + U=
(ac+U)+@c+U)=(@@+V)c+U)+0+U)c+U)=XZ+ YZ

R/U has now been made into a ring. Clearly, if R is commutative then
soisR/U,for(@a+ U)o+ U)=ab+U=0ba+ U= (b+ U)a+ U).
(The converse to this is false.) If R has a unit element 1, then B/U has a
unit element 1 + U. We might ask: in what relation is B/U to R? With the
experience we now have in hand this is easy to answer. There is a homomor-
phism ¢ of R onto R/U given by ¢(a) = a + U for every ¢ € R, whose
kernel is exactly U. (The reader should verify that ¢ so defined is a ho-
momorphism of R onto B/U with kernel U.)

We summarize these remarks in

Lemma 3.6. If U s an ideal of the ring R then R/U s a ring and s a
homomorphic image of R.

With this construction of the quotient ring of a ring by an ideal satis-
factorily accomplished we are ready to bring over to rings the homomor-
phism theorems of groups. Since the proof is an exact verbatim translation
of that for groups into the language of rings we merely state the theorem
without proof, referring the reader to Chapter 2 for the proof.

TreEOREM 3.A. Let R, R’ be rings and ¢ a homomorphism of R onto R’
with kernel U. Then R’ is isomorphic to R/U. Moreover there is a one-to-
one correspondence between the set of ideals of R’ and the set of ideals of
R which contain U. This correspondence can be achieved by associating
with an ideal W' in R’ the ideal W in R defined by W = {z € R|¢(z) € W'}.
With W so defined R/W is isomorphic to R'/W'.

PROBLEMS

1. If Uis an ideal of R and 1 € U prove that U = R.
2. If F is a field prove its only ideals are (0) and F itself.
3. Prove that any homomorphism of a field is either an isomorphism
or takes each element into 0.
4. If R is a commutative ring and a € R show that:
(a) aR = {ar|r € R} is a two-sided ideal of R.
(b) Show by an example that this may be false if B is not commuta-
tive.
5. f U, Vareidealsof Rlet U4+ V = {u +v|u € U, v € V}. Prove
that U + V is also an ideal.
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6. If U, V are ideals of R let UV be the set of all elements that can be
written as finite sums of elements of the form uv where v € U and » € V.
Prove that UV is an ideal of R.

7. In Problem 6 prove that UV c U N V.

8. If R is the ring of integers, let U be the ideal consisting of all mul-
tiples of 17. Prove that if V is an ideal of R and R © V O U then either
V =Ror V = U. Generalize!

9. If U is an ideal of R, let r(U) = {2 € R|zu = 0 for all u € U}.
Prove that »(U) is an ideal of R.

10. If Uis anideal of R let [R:U] = {z € R|rz € U for every r € R}.
Prove that [R: U] is an ideal of R and that it contains U.

11. Let R be a ring with unit element. Using its elements we define a
ring B by defining a®b=a+b+ 1, and a-b =ab +a + b where
a, b € R and where the addition and multiplication on the right-hand side
of these relations are those of R.

(a) Prove that E is a ring under the operations @ and -.
(b) What acts as the O-element of B?
(c) What acts as the 1-element of B?
(d) Prove that R is isomorphic to Z.

*12. In Example 6 of Section 1 of this chapter we discussed the ring of
rational 2 X 2 matrices. Prove that this ring has no ideals other than
(0) and the ring itself.

*13. In Example 8 of Section 1 of this chapter we discussed the real
quaternions. Using this as a model we define the quaternions over the
integers mod p, p an odd prime number, in exactly the same way, however,
now considering all symbols of the form oy 4 a7 + asj + azk where
ag, a1, o, g are integers mod p.

(a) Prove that this is a ring with p* elements whose only ideals are
(0) and the ring itself.
**(b) Prove that this ring is not a division ring.

If R is any ring a subset L of R is called a lefi-ideal of R if
(1) L is a subgroup of R under addition.
(2) r € R, a € L implies ra € L.

(One can similarly define a right-ideal.)

An ideal is thus simultaneously a left- and right-ideal of E.

14. For a € R let Ra = {za|z € R}. Prove that Ra is a left-ideal of E.

15. Prove that the intersection of two left-ideals of R is a left-ideal of R.

16. What can you say about the intersection of a left-ideal and right-
ideal of R?

17. If R is a ring and a € R let (@) = {z € R|az = 0}. Prove that
r(a) is a right-ideal of R.
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18. If R is a ring and L is a left-ideal of R let N(L) = {x € R|za =0

for all a € L}. Prove that N\(L) is a two-sided ideal of R.
*19, Let R be a ring in which 23 = z for every z € R. Prove that R is a

commutative ring.

20. If R is a ring with unit element 1 and ¢ is a homomorphism of R onto
R’ prove that ¢(1) is the unit element of R’.

21. If R is a ring with unit element 1 and ¢ is a homomorphism of R into
an integral domain R’ such that I(¢) > R prove that ¢(1) is the unit
element of R’.

5. More Ideals and Quotient Rings. We continue the discussion of ideals
and quotient rings.

Let us take the point of view, for the moment at least, that a field is the
most desirable kind of ring. Why? If for no other reason, we can divide in a
field, so operations and results in a field more closely approximate our
experience with real and complex numbers. In addition, as was illustrated
by Problem 2 in the preceding problem set, a field has no homomorphic
images other than itself or the trivial ring consisting of 0. Thus we cannot
simplify a field by applying a homomorphism to it. Taking these remarks
into consideration it is natural that we try to link a general ring, in some
fashion, with fields. What should this linkage involve? We have a machinery
whose component parts are homomorphisms, ideals, and quotient rings.
With these we will forge the link.

But first we must make precise the rather vague remarks of the preceding
paragraph. We now ask the explicit question: under what conditions is the
homomorphic image of a ring a field? For commutative rings we give a
complete answer in this section.

Essential to treating this question is the converse to the result of Problem
2 of the problem list at the end of Section 4.

Lemma 3.7. Let R be a commutative ring with unit element whose only
ideals are (0) and R itself. Then R is a field.

Proof. In order to effect a proof of this lemma for any a = 0 € R we
must produce an element b > 0 € R such that ab = 1.

So, suppose that a 5 0 is in R. Consider the set Ra = {za|z € R}. We
claim that Ra is an ideal of R. In order to establish this as fact we must
show that it is a subgroup of R under addition and that if v € Ra and
r € R then ru is also in Ra. (We only need to check that ru is in Ra for
then ur also is since ru = ur.)

Now, if 4, v € Ra then w = rja, v = roa for some r;, ro € R. Thus
u+v =ra+ra=(ry +ro)a € Ra;similarly —u= —ria = (—ry)a € Ra.
Hence Ra is an additive subgroup of R. Moreover, if » € R, ru=
r(ria) = (rr)a € Ra. Ra therefore satisfies all the defining conditions for
an ideal of R, hence is an ideal of R. (Notice that both the distributive law
and associative law of multiplication were used in the proof of this fact.)



SEC. 5 MORE IDEALS AND QUOTIENT RINGS 99

By our assumptions on B, Ra = (0) or Ra = R. Since 0 £ ¢ = la € Ra,
Ra 7# (0); thus we are left with the only other possibility, namely that
Ra = R. This last equation states that every element in R is a multiple of
a by some element of R. In particular, 1 € R and so it can be realized as a
multiple of a; that is, there exists an element b € R such that ba = 1.
This completes the proof of the lemma.

DerintTION. An ideal M # R in a ring R is said to be a mazimal ideal of
R if whenever U is an ideal of R such that M € U C R then either R = U
or M =U.

In other words an ideal of R is a maximal ideal if it is impossible to
squeeze an ideal between it and the full ring. Given a ring R there is no
guarantee that it has any maximal ideals! If the ring has a unit element
this can be proved, assuming a basic axiom of mathematics, the so-called
axiom of choice. Also there may be many distinct maximal ideals in a
ring RB; this will be illustrated for us below in the ring of integers.

As yet we have made acquaintance with very few rings. Only by con-
sidering a given concept in many particular cases can one fully appreciate
the concept and its motivation. Before proceeding we therefore examine
some maximal ideals in two specific rings. When we come to the discussion
of polynomial rings we shall exhibit, there, all the maximal ideals.

Example 1. Let R be the ring of integers, and let U be an ideal of R.
Since U is a subgroup of R under addition, from our results in group
theory, we know that U consists of all the multiples of a fixed integer n¢; we
write this as U = (ng). What values of ny lead to maximal ideals?

We first assert that if p is a prime number then P = (p) is a maximal
ideal of R. For if U is an ideal of R and U D P then U = (n) for some
integer ng. Since p € P < U, p = mn, for some integer m; because p is a
prime this implies that np =1 or ng =p. If ng =p then PC U =
(ng) C P, sothat U = Pfollows;if ng = 1,thenl € U, hencer = 1r € U
for all » € R whence U = R follows. Thus no ideal, other than R or P itself
can be put between P and R, from which we deduce that P is maximal.

Suppose, on the other hand that M = (ng) is a maximal ideal of B. We
claim that no must be a prime number, for if ny = ab, where a, b are positive
integersthen U = (@) D M,hence U = RorU = M.If U = Rthena =1
is an easy consequence; if U = M, then a € M and so a = rn, for some
integer r, since every element of M is a multiple of no. But then np = ab =
rnob, from which we get that rb = 1, so that b = 1, ng = a. Thus no is
a prime number.

In this particular example the notion of maximal ideal comes alive—it
corresponds exactly to the notion of prime number. One should not, how-
ever, jump to any hasty generalizations; this kind of correspondence does
not usually hold for more general rings.
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Ezample 2. Let R be the ring of all the real-valued, continuous functions
on the closed unit interval. (See Example 5, Section 3.) Let

M = {f(=) € RIf@) = 0}.

M is certainly an ideal of R. Moreover, it is a maximal ideal of R, for if the
ideal U contains M and U 5% M, then there is a function g(x) € U, g(z) € M.
Since g(x) € M, g(3) = a#0. Now h(z) = g(@) — a is such that
h3) =g(3) —a=0, so that h(z) € M < U. But g(z) is also in U;
therefore & = g(z) — h(z) € U and so 1 = aa™" € U. Thus for any func-
tion ¢(z) € R, t(x) = 1i(z) € U, in consequence of which U = R. M is there-
fore a maximal ideal of R. Similarly if v is a real number 0 < v < 1, then
M, = {f(z) € R|f(y) = 0} is a maximal ideal of E. It can be shown
(see Problem 4 at the end of this section) that every maximal ideal is of
this form. Thus here the maximal ideals correspond to the points on the
unit interval.

Having seen some maximal ideals in some concrete rings we are ready
to continue the general development with

TueoreM 3.8. If R is a commutative ring with unit element and M is an
ideal of B then M is a maximal ideal of R if and only if R/M is a field.

Proof. Suppose, first, that M is an ideal of R such that R/M is a field.
Since R/M is a field its only ideals are (0) and R/M itself. But by The-
orem 3.a there is a one-to-one correspondence between the set of ideals of
R /M and the set of ideals of R which contain M. The ideal M of R corre-
sponds to the ideal (0) of R/M whereas the ideal R of R corresponds to
the ideal R/M of R/M in this one-to-one mapping. Thus there is no ideal
between M and R other than these two, whence M is a maximal ideal.

On the other hand, if M is a maximal ideal of R, by the correspondence
mentioned above R/M has only (0) and itself as ideals. Furthermore R/M
is commutative and has a unit element since R enjoys both these properties.
All the conditions of Lemma 3.7 are fulfilled for B/M so we can conclude,
by the result of that lemma, that R/M is a field.

We shall have many occasions to refer back to this result in our study of
polynomial rings and in the theory of field extensions.

PROBLEMS

1. Let R be a ring with unit element, R not necessarily commutative,
such that the only right-ideals of R are (0) and R. Prove that R is a division
ring.
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*2. Let R be a ring such that the only right ideals of R are (0) and R.
Prove that either B is a division ring or that R is a ring with a prime number
of elements in which ab = 0 for every a, b € R.

8. Let J be the ring of integers, p a prime number, and (p) the ideal
of J consisting of all multlples of p. Prove: -

(a) J/(p) is isomorphic to J,, the ring of integers mod 'p

(b) Using Theorem 3.b and part (a) of this problem, that J, is a
field.
**4, Let R be the ring of all real-valued continuous functions on the
closed unit interval. If M is a maximal ideal of R prove that there exists
areal numbery,0 < v < 1,suchthat M = M, = {f(z) € R|f(v) = 0}.

6. The Field of Quotients of an Integral Domain. Let us recall that an
integral domain is a commutative ring D with the additional property
that it has no zero-divisors, that is, if ab = 0 for some a, b € D then at
least one of a or b must be 0. The ring of integers is, of course, a standard
example of an integral domain.

The ring of integers has the attractive feature that we can enlarge it to
the set of rational numbers, which is a field. Can we perform a similar
construction for any integral domain? We will now proceed to show that
indeed we can!

DeriNITION. A ring R can be imbedded in a ring R’ if there is an isomor-
phism of R into R’. (If R and R’ have unit elements 1 and 1’ we insist, in
addition, that this isomorphism takes 1 onto 1’.)

R’ will be called an over-ring or extension of R if R can be imbedded in
R'.

With this understanding of imbedding we prove

TrEOREM 3.c. Every integral domain can be imbedded in a field.

Proof. Before becoming explicit in the details of the proof let us take an
informal approach to the problem. Let D be our integral domain; roughly

a
speaking the field we seek should be all quotients 3 where a, b € D and

a
b # 0. Of course in D, 3 may very well be meaningless. What should we

a .
require of these symbols —Z-)? Clearly we must have an answer to the following

three questions:

9
o

(1) When is Z = -1

&.
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(2) What is - + 52
atis— 4+ -7
b d
. ac
(3) Whatis—-?
bd

a ¢
In answer of (1), what could be more natural than to insist that 3= p

if and only if ad = be? As for (2) and (3), why not try the obvious, that is,
define

a + c an
b d bd bd bd

In fact in what is to follow we make these considerations our guide. So
let us leave the heuristics and enter the domain of mathematics, with pre-
cise definitions and rigorous deductions.

Let9n be the set of all ordered pairs (a, b) where a, b € D and b 0.
(Think of (a, b) as a/b.) In 9 we now define a relation as follows:

(a, b) ~ (c, d) if and only if ad = be.

We claim that this defines an equivalence relation on 9. To establish this
we check the three defining conditions for an equivalence relation for this
particular relation.

(1) If (a, b) € M then (a, b) ~ (a, b) since ab = ba.

) If (a, 1), (¢, d) € M and (a, b) ~ (¢, d) then ad = be, hence ¢cb = da,
and so (¢, d) ~ (a, ).

3) If (a, b), (¢, d), (e, f) are all in I and (a, b) ~ (¢, d) and (¢, d) ~
(e, f) then ad = bc and ¢f = de. Thus bef = bde, and since bc = ad, it
follows that adf = bde. Since D is commutative, this relation becomes
afd = bed; since, moreover, D is an integral domain and d £ 0 this relation
further implies that af = be. But then (a, b) ~ (e, f) and our relation is
transitive.

Let [a, b] be the equivalence class in 9% of (a, b), and let F be the set of all
such equivalence classes [a, b] where a, b € D and b # 0. F is the candidate
for the field we are seeking. In order to create out of F a field we must
introduce an addition and a multiplication for its elements and then show
that under these operations F forms a field.

We first dispose of the addition. Motivated by our heuristic discussion at
the beginning of the proof we define:

[a, b] + [¢, d] = [ad + be, bd].

Since D is an integral domain and both b ¢ 0 and d 5% 0 we have that
bd # 0; this, at least, tells us that [ad + be, bd] € F. We now assert that
this addition is well-defined, that is, if [a, b] = [a, b'] and [¢, d] = [¢/, d']
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then [a, b] + [¢, d] = [a’, b'] + [¢/, d']. To see that this is so, from [a, b] =
[a’, b'] we have that ab’ = ba’; from [¢, d] = [¢/, d’] we have that cd’ =
dc’. What we need is that these relations force the equality of [a, b] +
[¢, d] and [a’, b'] 4 [¢/, d']. From the definition of addition this boils down to
showing that [ad + be, bd] = [a'd’ + b'¢/, b'd'], or, in equivalent terms,
that (ad + be)b'd’ = bd(a’d’ 4 b'¢’). Using ab’ = ba’, cd’ = dc’ this be-
comes: (ad + bo)d'd’ = adb'd’ + beb'd’ = ab’dd’ + bbled’ = ba'dd’ +
bb'de’ = bd(a'd’ + b’c’), which is the desired equality.

Clearly [0, b] acts as a zero element for this addition and [—a, b] as the
negative of [a, b]. It is a simple matter to verify that F is an abelian group
under this addition.

We now turn to the multiplication in F. Again motivated by our pre-
liminary heuristic discussion we define [a, b]l¢, d] = [ac, bd]. As in the case
of addition, since b 5% 0, d # 0, bd > 0 and so [ac, bd] € F. A computation,
very much in the spirit of the one just carried out, proves that if [a, b] =
[a’,b"] and [¢, d] = [¢/, d'] then [a, bl[¢, d] = [a’, b][¢/, d’]. One can now show
that the nonzero elements of F' (that is, all the elements [a, b] where a = 0)
form an abelian group under multiplication in which [d, d] acts as the unit
element and where

le, d]™ = [d, ] (since ¢ = 0, [d, c] is in F).

It is a routine computation to see that the distributive law holds in F.
F is thus a field.

All that remains is to show that D can be imbedded in F. We shall
exhibit an explicit isomorphism of D into F. Before doing so we first notice
that for x £ 0, ¥ ¢ 0 in D, [az, 2] = [ay, y] because (ax)y = z(ay); let us
denote [az, z] by [a, 1]. Define ¢:D — F by ¢(a) = [a, 1] for every a € D.
We leave it to the reader to verify that ¢ is an isomorphism of D into F,
and that if D has a unit element 1, then ¢(1) is the unit element of F. The
theorem is now proved in its entirety.

F is usually called the field of quotients of D. In the special case in which
D is the ring of integers, the F so constructed is, of course, the field of
rational numbers.

PROBLEMS

1. Prove that if [a, b] = [a/, b'] and [¢, d] = [¢/, d’] then [a, bllc, d] =
[, ¥]¢, d].

2. Prove the distributive law in F.

3. Prove that the mapping ¢:D — F defined by ¢(a) = [a, 1] is an
isomorphism of D into F.

4. Prove that if K is any field which contains D then K contains a
subfield isomorphic to F. (In this sense F is the smallest field containing D.)
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*5. Let R be a commutative ring with unit element. A nonempty subset
S of R is called a multiplicative system if:
@W»ogs.
(2) s1, sz € S implies that s;s2 € S.
Let 9% be the set of all ordered pairs (r, s) where » € R, s € 8. In 9 define
(r, 8) ~ (', §') if there exists an element " € S such that

s'(rs' — &) = 0.

(a) Prove that this defines an equivalence relation on 9.
Let the equivalence class of (r, s) be denoted by [r, s], and let

Ry be the set of all the equivalence classes. In Rg define [ry, s;] +
[r, o] = [r18s + 7281, 8185] and [ry, si][rs, so] = [r179, s18a].

(b) Prove that the addition and multiplication described above are
well-defined and that Rs forms a ring under these operations.

(¢) Can R be imbedded in Rg?

(d) Prove that the mapping ¢:R — R, defined by ¢(a) = [as, §] is
2 homomorphism of R into Rg and find the kernel of ¢.

(e) Prove that this kernel has no element of S in it.

() Prove that every element of the form [s;, sp](where s;, so € 8)
in Rg has an inverse in Rg.

6. Let D be an integral domain, a, b € D. Suppose that ¢™ = b and
a™ = b™ for two relatively prime integers m and n. Prove that @ = b.

7. Euclidean Rings. The class of rings we propose to study now is moti-
vated by several existing examples—the ring of integers, the Gaussian
integers (Section 8), and polynomial rings (Section 9). The definition of
this class is designed to incorporate in it certain outstanding characteristics
of the three concrete examples listed above.

DrriNITION. An integral domain R is said to be a Euclidean ring if for
every a 5% 0 in R there is defined a nonnegative integer d(a) such that:

(1) For all a, b € R, both nonzero, d(a) < d(ab).
(2) For any a, b € R, both nonzero, there exist f, » € R such that
a = tb + r where either r = 0 or d(r) < d(b).

We do not assign a value to d(0). The integers serve as an example of a
Euclidean ring, where d(a) = absolute value of a acts as the required
function. In the next section we shall see that the Gaussian integers also
form a Euclidean ring. Out of that observation, and the results developed
in this part, we shall prove a classic theorem in number theory due to

Fermat, namely, that every prime number of the form 4n 4+ 1 can be
written as the sum of two squares.



SEC. 7 EUCLIDEAN RINGS 105

We begin with

TreorEM 3.0. Let R be a Euclidean ring and let A be an ideal of R. Then

there exists an element ag € A such that A consists exactly of all agz as z
ranges over R.

Proof. If A just consists of the element 0, put ap = 0 and the conclusion
of the theorem holds.

Thus we may assume that 4 > (0); hence there is an a 3 0 in 4. Pick
an ag € A such that d(ao) is minimal. (Since d takes on nonnegative integer
values this is always possible.)

Suppose that a € A. By the properties of Euclidean rings there exist
t, r € R such that a = tag 4 r where r = 0 or d(r) < d(a). Since ag € A
and A is an ideal of R, tag is in 4. Combined with a € A this results in
a—tag € A;but r = a — tag, whence r € A. If r # 0 then d(r) < d(ag),
giving us an element r in A whose d-value is smaller than that of ag, in
contradiction to our choice of ay as the element in 4 of minimal d-value.
Consequently » = 0 and a = taq, which proves the theorem.

We introduce the notation (a) = {za|z € R} to represent the ideal of
all multiples of a.

DgeriNITION. An integral domain R with unit element is a principal ideal
ring if every ideal A in R is of the form A = (a) for some a € R.

Once we establish that a Euclidean ring has a unit element, in virtue of
Theorem 3.d, we shall know that a Euclidean ring is a principal ideal ring.
The converse, however, is false; there are principal ideal rings which are
not Euclidean rings. [See the paper by T. Motzkin, Bulletin of the American
Mathematical Society, Vol. 55 (1949), pages 1142-1146, entitled ‘“The
Euclidean Algorithm”].

CoroLLARY TO THEOREM 3.D. A Euclidean ring possesses a unit element.

Proof. Let R be a Euclidean ring; then R is certainly an ideal of B, so that
by Theorem 3.d we may conclude that R = (uy) for some ug € R. Thus
every element in R is a multiple of ug. Therefore, in particular, uo = uec
for some ¢ € R. If a € R then a = zuq for some z € R, hence ac = (zug)c
= z(ugc) = zup = a. Thus ¢ is seen to be the required unit element.

Derinirion. If o 5 0 and b are in a commutative ring R then a is said to
divide b if there exists a ¢ € R such that b = ac. We shall use the symbol
alb to represent the fact that a divides b and a { b to mean that a does
not divide b.
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The proof of the next remark is so simple and straightforward that we
omit it.

ReMaRE. (1) If a|b and b|c then alc.
(2) If a|b and a|c then a| (b = ¢).
(8) If a|b then a|bx for all x € R.

DeriNiTION. If 0, b € R then d € R is said to be a greatest common
divisor of @ and b if:

(1) d|a and d|b.
(2) Whenever c|a and ¢|b then ¢|d.

‘We shall use the notation d = (a, b) to denote that d is a greatest common
divisor of ¢ and b.

LemMa 3.8. Let R be a Euclidean ring. Then any two elements a and b in
R have a greatest common divisor d. Moreover d = Aa + ub for some \, u € R.

Proof. Let A be the set of all elements ra 4 sb where r, s range over R.
We claim that 4 is an ideal of R. For suppose that z, y € A; therefore
T =110+ 81b, ¥ = roa + S3b, and sox £y = (r; £ ro)a + (51 £ s2)b € A.
Similarly, for any « € R, uz = u(ria + s;1b) = (ury)a + (usid) € A.

Since A is an ideal of R, by Theorem 3.d there exists an element d € A
such that every element in 4 is a multiple of d. By dint of the fact that
d € A and that every element of A is of the form ra + sb, d = \a + wb
for some \, u € R. Now by the corollary to Theorem 3.d, R has a unit
element 1, thus ¢ = 1la 4 0b € A, b = Oa + 10 € A. Being in A they are
both multiples of d whence d|a and d|b.

Suppose, finally, that c¢|a and ¢|b; then ¢|Aa and ¢|ub so that ¢ certainly
divides Ae¢ + pb = d. Therefore d has all the requisite conditions for a
greatest common divisor and the lemma, is proved.

DeriNrrioN. Let R be a commutative ring with unit element. An element
a € R is a unit in R if there exists an element b € R such that ab = 1.

Do not confuse a unst with a unit element! A unit in a ring is an element
whose inverse is also in the ring.

Lemma 3.9. Let R be an integral domain with unit element and suppose
that for a, b € R both a|b and b|a are true. Then a = ub where u is a unit
n R.

Proof. Since a|b, b = za for some z € R; since b|a, a = yb for some
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y € R Thus b = 2(yb) = (zy)b; but these are elements of an integral
domain, so that we can cancel the b and obtain zy = 1; y is thus a unit in
R and a = yb, proving the lemma.

DeriviTioN. Let B be a commutative ring with unit element. Two ele-
ments a and b in B are said to be associates if b = ua for some unit % in R.

The relation of being associates is an equivalence relation. (Problem 1
at the end of this section.) Note that in a Euclidean ring any two greatest
common divisors of two given elements are associates (Problem 2).

Up to this point we have, as yet, not made use of condition (1) in the
definition of a Euclidean ring, namely that d(a) < d(ab) for b 5% 0. We now
make use of it in the proof of

Lemma 3.10. Let R be a Euclidean ring and a, b € R. If b s not a unit in
R then d(a) < d(ab).

Proof. Consider theideal A = (a) = {za|z € R} of R. By condition (1) for
a Euclidean ring, d(a) < d(za) for z # 0 in R. Thus the d-value of ¢ is the
minimum for the d-value of any element in A. Now ab € A4;if d(ab) = d(a),
by the proof used in establishing Theorem 3.d, since the d-value of
ab is minimal in regard to 4, every element in A is a multiple of ab. In
particular, since a € A, a must be a multiple of ab; whence a = abz for
some z € R. Since all this is taking place in an integral domain we obtain
bz = 1. In this way b is a unit in R, in contradiction to the fact that it was
not a unit. The net result of this is that d(a) < d(ab).

Dzerinition. In the Euclidean ring R a nonunit = is said to be a prime
element of R if whenever # = ab where a, b are in R then one of ¢ or bis a
unit in R.

A prime element is thus an element in R which cannot be factored in R
in a nontrivial way.

Lemma 3.11. Let R be a Euclidean ring. Then every element in R 1s either
a unitin B or can be written as the product of a finite number of prime elements
of R.

Proof. The proof is by induction on d(a).

If d(a) = d(1) then a is a unit in B (Problem 3), and so in this case, the
assertion of the lemma is correct.

We assume that the lemma is true for all elements z in B such that
d(x) < d(a). On the basis of this assumption we aim to prove it for a. This
would complete the induction and prove the lemma.

If @ is a prime element of R there is nothing to prove. So suppose that
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a = bc where neither b nor ¢ is a unit in E. By Lemma 3.10, d(b) < d(be) =
d(a) and d(c) < d(bc) = d(a). Thus by our induction hypothesis b and ¢
can be written as a product of a finite number of prime elements of R;
b= mime ... Tn, € = mTh ... T, Where the 7’s and ="’s are prime elements
of R. Consequently a = bc = mmy ... mpmimy ... T and in this way @ has
been factored as a product of a finite number of prime elements. This
completes the proof.

DzrixiTionN. In the Euclidean ring R, @ and b in R are said to be relatively
prime if their greatest common divisor is a unit of R.

Since any associate of a greatest common divisor is a greatest common
divisor, and since 1 is an associate of any unit, if ¢ and b are relatively
prime we may assume that (a, b) = 1.

Lemma 3.12. Let R be a Euclidean ring. Suppose that for a, b, ¢ € R,
a|bc but (a,b) = 1. Then alc.

Proof. As we have seen in Lemma 3.8, the greatest common divisor of
a and b can be realized in the form Aa + pb. Thus by our assumptions,
Aa + wb = 1. Multiplying this relation by ¢ we obtain Aac + wbec = c.
Now a|Xac, always, and a|ubc since a|bc by assumption; therefore
a| (\ac + wbc) = c. This is, of course, the assertion of the lemma.

We wish to show that prime elements in a Euclidean ring play the same
role that prime numbers play in the integers. If = in R is a prime element
of R and a € R then either = |a or (r, @) = 1, for, in particular, (=, a) is a
divisor of = so it must be « or 1 (or any unit). If (r, a) = 1, one-half our
agsertion is true; if (x, @) = =, since (r, a)|a we get 7|a, and the other half
of our assertion is t rue.

Lemma 3.13. If x is a prime element in the Euclidean ring R and w|ab
where a, b € R then = divides at least one of a or b.

Proof. Suppose that = does not divide a; then (w, a) = 1. Applying
Lemma 3.12 we are led to «|b.

CoroLLArY. If m s a prime element in the Euclidean ring R and
7|a102 . .. Gy then m divides at least one of a;, as, ... G

We carry the analogy between prime elements and prime numbers
further and prove

TueorEM 3.8 (UNiQUE FacToRIZATION THEOREM). Let R be a Euclidean
ring and a # 0 a nonunit in R. Supposethat a = mmy ... wp = miwh .\ Ty
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where the m, and = are prime elements of R. Then n = m and each 1r,,
1 < ¢ < n is an associate of some =), 1 <7 < m and conversely each w7, s
an associate of some .

Proof. Look at the relation @ = mmy. . .7, = m75. .., 7rl|7rl7r2 Ty
hence m|mimy. . . 7, By Lemma 3.13 7, must divide some 7; since =, and
'zrz are both pr1me elements of R and |, they must be assoclates and

= um where S is a umt in R. Thus mmy ... 7, = mymy ... Ty =
u17rl1rz My g - 7rm, cancel off =, and we are left withmy ... 7, =
UyTg o . 7r:._17r:_,_1 .. m, Repeat the argument on this relation with =,.
After n steps, the left 51de becomes 1, the right side a product of a certain
number of 7’ (the excess of m over n). This would force n < m since the =’
are not units. Similarly, m < n, so that n = m. In the process we have
also showed that every r, has some 7, as an associate and conversely.

Combining Lemma 3.11 and Theorem 3.e we have that every nonzero
element in a Euclidean ring R can be uniquely written (up to associates) as a
product of prime elements or is a unit in R.

We finish the section by determining all the maximal ideals in a Euclidean
ring.

In Theorem 3.d we proved that any ideal A in the Euclidean ring B is of
the form A = (ap) where (ap) = {2ag|z € R}. We now ask: what condi-
tions imposed on @y insure that 4 is a maximal ideal of B? For this question
we have a simple, precise answer, namely

LemMa 3.14. The ideal A = (ap) 18 a maximal ideal of the Buclidean ring R
of and only if ag 1s a prime element of R.

Proof. We first prove that if ag is not a prime element then 4 = (a,) is
not a maximal ideal. For, suppose that ag = bc where b, ¢ € R and neither
b nor ¢ is a unit. Let B = (b); then certainly a, € B so that A C B. We
claim that A # B and that B # R.

If B = R then 1 € B so that 1 = zb for some z € R, forcing b to be a
unit in R, which it is not. On the other hand, if A = Bthenb &€ B = 4
whence b = xay for some z € R. Combined with ay = be this results in a
= zcag, in consequence of which xz¢c = 1. But this forces ¢ to be a unit
in R, again contradicting our assumption. Therefore B is neither 4 nor R
and since A < B, A cannot be a maximal ideal of .

Conversely, suppose that ay is a prime element of R and that U is an
ideal of R such that A = (ag) € U C R. By Theorem 3.d, U = (uy).
Since ag € A € U = (ug), ap = xuo for some z € R. But a, is a prime
element of R, from which it follows that either z or uo is a unit in E. If
Ug is & unit in B then U = R (see Problem 5). If, on the other hand zisa
unit in B, then z~* € R and the relation ag = zuo becomes up = z7'ao € 4
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since 4 is an ideal of R. This implies that U C A; together with A c U
we conclude that U = A. Therefore there is no ideal of R which fits
strictly between A and R. This means that A is a maximal ideal of E.

PROBLEMS

1. In a commutative ring with unit element prove that the relation: a
is an associate of b, is an equivalence relation.

2. In a Euclidean ring prove that any two greatest common divisors
of a and b are associates.

8. Prove that a necessary and sufficient condition that the element a
in the Euclidean ring is a unit is that d(e) = d(1).

4, Prove that in a Euclidean ring (@, b) can be found as follows:

b= goa+r; where d(r) < d(a)
a=qr +rs where d(rz) < d(ry)
ry = qors + 73 where d(rz) < d(rg)

Tn—1 = Qnln
and r, = (a, b).

6. Prove that if an ideal U of a ring R contains a unit of R then U = R.

6. Prove that the units in & commutative ring with a unit element form
an abelian group.

7. Given two elements a, b in the Euclidean ring R their least common
multiple ¢ € R is an element in R such that a|c and b|c¢ and such that
whenever a|z and b|z for € R then c¢|z. Prove that any two elements
in the Euclidean ring R have a least common multiple in R.

8. In Problem 7, if the least common multiple of o and b is denoted by

ab

a, b], prove that [a, b] = .
[a, b], prove that [a, b] )

8. A Particular Euclidean Ring. An abstraction in mathematics gains in
substance and importance when, particularized to a specific example, it
sheds new light on this example. We are about to particularize the notion
of a Euclidean ring to a concrete ring, the ring of Gaussian integers. Apply-
ing the general results obtained about Euclidean rings to the Gaussian
integers we shall obtain a highly nontrivial theorem about prime numbers
due to Fermat.

Let J[7] denote the set of all complex numbers of the form a 4+ b: where
a and b are integers. Under the usual addition and multiplication of com-
plex numbers J[7] forms an integral domain called the domain of Gaussian
tniegers.
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Our first objective is to exhibit J[¢] as a Euclidean ring. In order to do
this we must first introduce a function d(z) defined for every nonzero
element in J[7] which satisfies:

(1) d(z) is a nonnegative integer for every z 5 0 € J[4].
(2) d(z) < d(zy) for every y = 0 in J[3].

(3) Given u, v € J[4] there exist ¢, » € J[7] such that » = tu + r where
r = 0ord{) <du).

Our candidate for this function d is the following: if x = a + b € J[4]
then d(z) = a® + b% The d(z) so defined certainly satisfies property (1);
infact, if > 0 € J[¢] then d(z) > 1. Asis well-known, for any two complex
numbers (not necessarily in J[7]) z, y, d(zy) = d(z)d(y), thus if z and ¥
are, in addition in J[¢], and y £ 0 then since d(y) > 1, d(z) = d(2)1 <
d(z)d(y) = d(zy), showing that condition (2) is satisfied. All our effort now
will be to show that condition (3) also holds for this function d in J[i]. This
is done in the proof of

TaeoreM 3.F. J[i] 7s a Euclidean ring.

Proof. As was remarked in the discussion above, to prove Theorem 3.f
we merely must show that, given z, y € J[4] there exists ¢, » € J[z] such
that y = t& + » where r = 0 or d(r) < d(z).

We first establish this for a very special case, namely, where y is arbitrary
in J[7] but where z is an (ordinary) positive integer n. Suppose that
y = a + b¢; by the division algorithm for the ring of integers we can find
integers , v such that ¢ = un + u; and b = vn -+ v; where u; and v; are
integers satisfying |u;| < 3n and |v|< 3n. Lett = u+viandr = u; +
vii; then y=a+ bl =un+ u + n + v1)7 = (u 4+ vi)n + uy + vt
=tn+r. Since d(r) = d(uy + v18) = u® + 0,2 <n¥/4 +n2/4 <n® =
d(n) we see that in this special case we have shown that y = in + r with
r = 0ord{) <dn).

We now go to the general case; let £ 0 and y be arbitrary elements
in J[4]. Thus 2% is a positive integer n where Z is the complex conjugate of
z. Applying the result of the paragraph above to the elements yZ and n we
see that there are elements ¢, » € J[i] such that yZ =in 4+ r with r =0
or d(r) < d(n). Putting into this relation n = z% we obtain d(y% — tz%) <
d(n) = d(2%); applying to this the fact that d(y& — {z%) = d(y — tz)d(£) and
d(zZ) = d(z)d(Z) we obtain that d(y — tx)d(Z) < d(z)d(&). Since z # 0,
d(Z) is a positive integer this inequality simplifies to d(y — &) < d(z).
We represent y = tx + ro where ry = y — tz; thus ¢ and ro are in J[7] and
as we saw above, ro = 0 or d(rg) = d(y — tz) < d(z). This proves the
theorem.

Since J[4] has been proved to be a Euclidean ring, we are free to use the
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results established about this class of rings in the previous section to the
Euclidean ring we have at hand, J[¢].

Lemma 3.15. Let p be a prime integer and suppose that for some integer ¢
relatively prime to p we can find integers = and y such that 2 + y* = cp.
Then p can be written as the sum of squares of two integers, that is, there exist
integers a and b such that p = a® + b2

Proof. The ring of integers is a subring of J[Z]. Suppose that the integer p
is also a prime element of J[4]. Since cp = 2% + 32 = (x + y3)(z — ¥i), by
Lemma 3.13, p|(z + y1) or p|(z — yi) in J[z]. But if p|(z + yi) then
x + y2 = p(u + vi) which would say that z = pu and y = pv so that
p also would divide z — yi. But then 2?|(z + yi)(z — y5) = ¢p from
which we would conclude that p|c contrary to assumption. Similarly if
p| (z — y7). Thus p is not a prime element in J{z]! In consequence of this, p =
(a + bi) (g + di) where @ 4 bi and g + di are in J[7] and where neither
a + binor g + di is a unit in J[¢]. But this means that neither a® + 52 =1
nor g2+ d2=1. (See Problem 2.) From p = (a -+ bi)(g+di) it
follows easily that p = (a — bi) (¢ — dt). Thus p? = (a -+ bi) (g + dr)
(a — b1) (g — di) = (a® 4 b?) (¢®> + d?). Therefore (a®+ b%)|p* so
a?+b%2 =1, p or p?; a® + b?s£1 since a + bt is not a unit, in J[];
a? 4 b? 54 p?, otherwise g2 + d? = 1, contrary to the fact that g + d7 is
not a unit in J[7]. Thus the only feasibility left is that a® 4 b2 = p and
the lemma is thereby established.

The odd prime numbers divide into two classes, those which have a
remainder of 1 on division by 4 and those which have a remainder of 3 on
division by 4. We aim to show that every prime number of the first kind
can be written as the sum of two squares, whereas no prime in the second
class can be so represented.

Lemma 3.16. If p is a prime number of the form 4n + 1 then we can solve
the congruence 2? = ~1 mod p.

-1
Proof. Let z = 1. 2.3 ... £—§~ Since p — 1 = 4n, in this product for

z there are an even number of terms, in consequence of which

z=(—1)(-2)(-3) ... (~<?—;—}->) But p — k = —k mod p, so that

2= <1. 2. ...,?i_'z'_l>(—1)(~2) (_(10_;_1>

p—1lp-+1
=12 v —— . (p—1
2 5 -1

= (p—1)! = —1mod p.
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We are using here Wilson’s theorem, proved earler, namely that if p is
a prime number (p — 1)! = —1(p).

To illustrate this result,if p = 13,2 = 1. 2. 8.4. 5.6 = 720 = 5 mod 13
and 52 = —1 mod 13.

THEOREM 3.6 (FERMAT). If p is a prime number of the form 4n + 1 then
p = a? + b® for some integers a, b.

Proof. By Lemma 3.16 there exists an « such that 22 = —1 mod p. z can
be chosen so that 0 < z < p — 1 since we only need to use the remainder
of z on division by p. We can restrict the size of z even further, namely to
satisfy |z| < p/2. For if z > p/2 then y = p — z satisfies 4> = —1 mod
p but |y| < p/2. Thus we may assume that we have an integer  such that
|z| < p/2 and 2® + 1 is a multiple of p, say cp. Now ¢p =22 +1 <
p?/4 + 1 < p? hence ¢ < p and so p 1 ¢. Invoking Lemma 3.15 we obtain
that p = a® + b2 for some integers a and b, proving the theorem.

PROBLEMS

Find all the units in J[7].
If a + bi is not a unit in J[] prove that a® + b2 > 1.
Find the greatest common divisor in J{z] of:
(a) 3 4+ 47 and 4 — 31.
() 11 + 77 and 18 — =
4. Prove that if p is a prime number of the form 4n + 3 then there is
no z such that z = —1 mod p.

5. Prove that no prime of the form 4n + 3 can be written as a® + b2

where a and b are integers.

6. Prove that there is an infinite number of primes of the form 4n 4 3.
*7. Prove there exists an infinite number of primes of the form 4n -+ 1.
*8. Determine all the prime elements in J[z].

*9, Determine all positive integers which can be written as a sum of two
squares (of integers).

Ll o o

9. Polynomial Rings. Very early in our mathematical education—in fact
in junior high school or early in high school itself—we are introduced to
polynomials. For a seemingly endless amount of time we are drilled, to the
point of utter boredom, in factoring them, multiplying them, dividing them,
simplifying them. Facility in factoring a quadratic becomes confused with
genuine mathematical talent.

Later, at the beginning college level, polynomials make their appearance
in a somewhat different setting. Now they are functions, taking on values,
and we become concerned with their continuity, their derivatives, their
integrals, their maxima and minima.
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We too shall be interested in polynomials but from neither of the above
viewpoints. To us polynomials will simply be elements of a certain ring
and we shall be concerned with algebraic properties of this ring. Our
primary interest in them will be that they give us a Euclidean ring whose
properties will be decisive in discussing fields and extensions of fields.

Let F be a field. By the ring of polynomials in the indeterminate, z,
written as Flz], we mean the set of all symbols ag + az +-- -+ a,z",
where n can be any nonnegative integer and where the coefficients
ay, @, ..., Gy, are all in F. In order to make a ring out of F[x] we must be
able to recognize when two elements in it are equal, we must be able to
add and multiply elements of F[z] so that the axioms defining a ring hold
true for Flz]. This will be our initial goal.

We could avoid the phrase ‘“the set of all symbols” used above by intro-
ducing an appropriate apparatus of sequences but it seems more desirable
to follow a path which is somewhat familiar to most readers.

DserinitioN. If p(z) = ag + a1z +- - -+ anx™ and q(z) = by + bz +
»+++ bz are in Flz] then p(z) = q(z) if and only if for every integer
7 Z 0, a; = bi-

Thus two polynomials are declared to be equal if and only if their corre-
sponding coefficients are equal.

DrrintrioN. If p(x) = ag + a1z +- - -+ a,z™ and q(x) = by + bz +
-« ++ b,z™ are both in F[z] then p(z) + q(@) = ¢o + ¢z + - - - + ¢s2* where
for each 7, ¢; = a; + b..

In other words, add two polynomials by adding their coefficients and
collecting terms. To add 1 + z and 3 — 2z + 2® we consider 1 + z as
1+ z + 022 and add, according to the recipe given in the definition, to
obtain as their sum 4 — z + 22,

The most complicated item and the only one left for us to define for
F[z], is the multiplication.

Derintrion. If p(x) = ao + a1z + -+ -+ a,2™ and g(z) = by + bz +
<o+ byz™ then p(x)q(@) = co + 1z +---+ cxz® where ¢, = aby +
@—1b1 + as—sbs +- - -+ agbs.

This definition says nothing more than: multiply the two polynomials
by multiplying out the symbols formally, use the relation z%f = z*+8
and collect terms. Let us illustrate the definition with an example:

plx) =14+2z—2* q@) =2+ 2%+ 2°%
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Here ap =1, a1 =1, 00 = =1, a3 =0, =---=0, and by = 2, b, = 0,
bg-—“— 1,b3=1,b4=b5 e e = O.Thus

Cop = agbg = 1.2 = 2,

¢1 = aibg + agb; = 1.2 4 1.0 = 2,

o = agbo + a1b1 + agbs = (—=1)(2) + 1.0 + 1.1 = —1,

3 = agbo + @by + a1bs + agbs = (0)(2) + (=1)(0) + 1.1 + 1.1 = 2,

¢ = asbo + asby + ashy + aibs + aghy = (0)(2) + (0)(0) + (—1)(1)
+ (@) +1(0) =0,

cs = agbo + asby + asbs + aghs + a1bs + agbs = (0)(2) + (0)(0) + (0)(1)
+ (=D@) + W) + 0)(0) = -1,

ce = agbo + asby + ashs + agbs + agby 4+ aibs + agbs = (0)(2) + (0)(0)
+ O)(@) + 0@ + (=1DO) + (HO) + (1)(0) =0,

cp=cg=--=0.

Therefore, according to our definition,

QA4+2z—2)Q+2*+28) =co+cz+--=2+ 2z — 22 + 2% — 25,

If you multiply these together high-school style you will see that you get
the same answer. Our definition of product is the one the reader has always
known.

Without further ado we assert that Fz] is a ring with these operations,
its multiplication is commutative, and it has a unit element. We leave the
verification of the ring axioms to the reader.

Derintrion. If f(z) = ag + @12 +- - - + a.2" £ 0 and a, 5% 0 then the
degree of f(x), written as deg f(2), is n.

That is, the degree of f(z) is the largest integer ¢ for which the ¢th
coefficient of f(zx) is not 0. We do not define the degree of the zero poly-
nomial. We say a polynomial is a constant if its degree is 0. The degree
function defined on the nonzero elements of F[z] will provide us with the
function d(x) needed in order that F[x] be a Euclidean ring.

Lemma 3.17. If f(z), g(x) are two nonzero elements of Flx] then
deg (f(z)g(z)) = deg f(x) + deg g(x).
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Proof. Suppose that f(z) = ag + a1z +---+an2™ and g(z) = by +
byz + -+ -+ bpz® and that a, > 0 and b, £ 0. Therefore deg f(z) = m
and deg g(z) = n. By definition f(z)g(z) = ¢o + c1z +- -+ cxz® where
Ct = atbo + at_lbl +eee albt_l -+ aobt. We claim that Cmdgn = ambn #= 0
and ¢; = 0 for 4 > m + n. That ¢y = amb, can be seen at a glance by its
definition. What about ¢; for ¢ > m + n? ¢; is the sum of terms of the form
a;b;_;; since ¢ = j + (i — 7) > m + n then either j > m or (i —j) > n.
But then one of a; or b;_; is 0, so that a;b;—; = 0; since c; is the sum of a
bunch of zeros it itself is 0, and our claim has been established. Thus the
highest nonzero coefficient of f(x)g(x) iS ¢m-+n, Whence deg f(z)g(z) = m +n
= deg f(2) + deg ¢(2).

Cororrary. If f(z), g(x) are nonzero elements in Flx] then deg f(z) <
deg f(2)g(x).

Proof. Since deg f(z)g(z) = deg f(z) + deg g(z), and since deg g(x) > 0
this result is immediate from the lemama.

COROLLARY. Flz] ©s an integral domain.

We leave the proof of this corollary to the reader.

Since F[z] is an integral domain, in light of Theorem 3.c we can construct
for it its field of quotients. This field merely consists of all quotients of
polynomials and is called the field of rational functions in x over F.

The function deg f(x) defined for all f(z) 5 0 in F[x] satisfies:

(1) deg f(x) is a nonnegative integer.
(2) deg f(x) < deg f(x)g(x) for all g(z) == 0 in Flz].

In order for Flz] to be a Euclidean ring with the degree function acting as
the d-function of a Euclidean ring we still need that given f(z), g(x) € Flz]
there exist i(z), r(z) in Flz] such that f(z) = t(z)g(x) + r(x) where either
r(z) = 0 or deg 7(z) < deg g(z). This is provided us by

Lemma 3.18 (TuE DivisioN ALgoriTaM). Given two polynomials f(z) and
g(z) £ 0 in Flz] then there exist two polynomials t(x) and r(z) in Flx] such
that f(z) = t(x)g(z) + r(z) where r(z) = 0 or deg r(x) < deg g(x).

Proof. The proof is actually nothing more than the ‘“long-division”
process we all used in school to divide one polynomial by another.

If the degree of f(x) is smaller than that of g(x) there is nothing to prove,
for merely put #(z) = 0, r(z) = f(z) and we certainly have that f(z) =
0g(x) + f(z) where deg f(x) < deg g(x) or f(z) = 0.

So we may assume that f(z) = ay + a1 +- -+ + a,2™ and g(x) = bo +
byx =+ - - - + byz™ where a,, % 0, by, # 0 and m > n.
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Let fi(x) = f(x) — (@m/bn)2™ "g(z); thus deg fi(z) < m — 1, so by in-
duction on the degree of f(z) we may assume that f;(z) = #;(z)g(z) + r(z)
where r(z) = 0 or deg r(z) < deg g(z). But then f(z) — (@n/bn)z™ "g(z)
= t;(z)g(x) + r(z), from which, by transposing we arrive at f(z) =
((@m/ba)z™ ™" + t1(2))g(x) + r(2). If We put i(z) = (am/bn)z™ ™ + t;(z) We
do indeed bhave that f(z) = t(x)g(z) + r(z) where #(z), r(z) € Flz] and
where r(z) = 0 or deg r(z) < deg g(z). This proves the lemma.

This last lemma fills the gap needed to exhibit F[z] as a Euclidean ring
and we now have the right to say

TaeorREM 3.H. Flz] is a Euclidean ring.

All the results of Section 7 now carry over and we list these, for our
particular case, as the following lemmas. It could be very instructive for
the reader to try to prove these directly, adopting the arguments used in
Section 7 for our particular ring F[xz] and its Euclidean function, the degree.

Lemuma 3.19. Flz] ©s a principal ideal ring.

LemMma 3.20. Given two polynomsials f(x), g(z) in Flz] they have a greatest
common dwisor d(x) which can be realized as d(z) = Nz)f(x) + u(@)g(x).

What corresponds to a prime element?

DErFINITION. A polynomial p(z) in F[z] is said to be irreducible over F if
whenever p(z) = a(x)b(xr) with a(z), b(x) € F|z] then one of a(z) or b(x)
has degree 0 (i.e., is a constant).

Irreducibility depends on the field; for instance the polynomial % + 1
is irreducible over the real field but not over the complex field, for there
22+ 1= (z +9)(x — 1) where s> = —1.

LemMma 3.21. Any polynomial in Flx] can be written in a unique manner
as a product of irreducible polynomials in Fx].

LemMA 3.22. The ideal A = (p(z)) in Flz] is a mazimal ideal if and only
if p(x) 1s irreductble over F.

In Chapter 5 we shall return to take a much closer look at this field
Flx]/(p(z)) but for now we should like to compute an example.

Let F be the field of rational numbers and consider the polynomial
p(x) = 28 — 2 in F[z). As is easily verified, it is irreducible over F whence
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Flz]/(z® — 2) is a field. What do its elements look like? Let 4 = (z® — 2),
the ideal in Flz] generated by z® — 2.

Any element in F[z]/(x® — 2) is a coset of the form f(z) + A of the ideal
A with f(z) in Flz]. Now, given any polynomial f(x) € F[z], by the division
algorithm, f(zr) = #(z)(z® — 2) + r(x) where r(z) =0 or deg r(z) <
deg (#® — 2) = 3. Thus r(z) = ao + a1z + a2 where ag, a1, a are in F;
consequently f(x) + 4 = ag + a1z + ag2® + () (@®—2) + 4 = ay +
@z + asz® + A since #(z)(x® — 2) is in A, hence by the addition and
multiplication in Flz]/(x® — 2), f@@) + 4 = (ap+ 4) + a1z + 4) +
as(z + A)2 If weput ¢ = z + A, then every element in F[z]/(z® — 2) is of
the form ag -+ a;t + ast? with aq, a1, as in F. What about ¢? Since £ — 2 =
@+ A3 —2=2—24+4=4=0 (since 4 is the zero element
of Flz]/(z® — 2)) we see that 2 = 2.

AISO, if [223) =+ at + a2t2 = bo + blt + b2t2, then (ao - bo) + (Gq - bl)t -+
(as — bo)t? = 0, whence (ag — bo) + (a1 — b))z + (az — bg)a® is in 4 =
(z® — 2). How can this be since every element in A has degree at least 3?
Only if ag — by + (a1 — by)z + (ag — by)2? = 0, that is, only if ag = by,
a; = by, as = bs. Thus every element in F[z]/(z® — 2) has a unique
representation as ag + a;t + agt> where ag, a1, as € F. By Lemma 3.22,
Flz]/(z® — 2) is a field. It would be instructive to see this directly; all that
it entails is proving that if ag + a;t + a3t® ¢ 0 then it has an inverse of
the form « + Bt + vt°. Hence we must solve for «, 8, v in the relation
(ap + a1t + ast?) (@ + Bt + vt2) = 1, where not all of ay, a;, as are 0. Multi-
plying the relation out and using £ = 2 we obtain (@ + 2098 + 2a17) +
(are + a8 + 2027)t + (ase + @B + agn)f® = 1; thus:

aox + 2458 + 201y = 1
sy + apf -+ 2ay = 0
aga + a8 + agy = 0.

We can try to solve these three equations in the three unknowns «, 8,
v. When we do so we find that a solution exists if and only if:

a03 + 2(1,13 + 4a23 -—_ 6a0a1a2 # 0.

Therefore the problem of proving directly that F[z]/(z® — 2) is a field
boils down to proving that the only solution in rational numbers of

1) ap® + 2a;® + 4as® = 6agaa;

is the solution @y = @; = a5 = 0. We now proceed to show this. If a
solution exists in rationals, by clearing of denominators we can show
that a solution exists where ao, a;, a, are integers. Thus we may assume that
ap, a1, ag are integers satisfying (1). We now assert that we may assume
that ao, a1, a; have no common divisor other than 1, for if ay = bod, a; =
bid and a; = bad where d is their greatest common divisor, then substituting
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in (1) we obtain d®(bo® + 2b,% + 4b5%) = d3(6bgbibs), and so b® + 20,3 +
4by% = 6bgb1bs. The problem has thus been reduced to proving that (1)
has no solutlons in integers which are relatively prime. But then (1)
implies that ao is even so that ag is even; substituting ay = 2a, in (1)
gives us 4ap® + a;® + 2a,° = 6aga,as. Thus a13, and so, al is even;
a, = 20;. Substituting in (1) we obtain 2a¢® + 40, + 49® = 6aga;as.
Thus a5, and so ay, is even! But then ag, a1, a; have 2 as a common factor!
This contradicts that they are relatively prime, and we have proved that
the equation a® + 2a,% + 4a,® = 6aga,a, has no rational solution other

Flz]
@ -2

than ag = a; = as = 0. Therefore we can solve for ¢, 8, v and ———

is seen, directly, to be a field.

PROBLEMS

1. Find the greatest common divisor of the following polynomials over
F, the field of rational numbers:

(a) 2® — 62 + = + 4 and 2° — 6z + 1.

() 22+ 1and 26 + 2% + 2 + 1.

2. Prove that:

(a) 2?2 + = + 1 is irreducible over F, the field of integers mod 2.

(b) z® + 1 is irreducible over the integers mod 7.

(c) z® — 9 is irreducible over the integers mod 31.

(d) 23 — 9 is reducible over the integers mod 11.

3. Let F, K be two fields F < K and suppose f(z), g(z) € Flz] are

relatively prime in F[z]. Prove that they are relatively prime in K[z].

4. (a) Prove that 2% 4+ 1 is irreducible over the field F of integers mod 11
and prove directly that F[z]/(z? + 1) is a field having 121 ele-
ments.

(b) Prove that 22 + = + 4 is irreducible over F, the field of integers
mod 11 and prove directly that Flz]/(z> + z + 4) is a field
having 121 elements.

*(c) Prove that the fields of part (a) and part (b) are isomorphic.
5. Let F be the field of real numbers. Prove that F[z]/(z* + 1) is a
field isomorphic to the field of complex numbers.
*6. Define the derivative f'(x) of the polynomial

f@) = a0+ ez +- -+ an2”
as f'(x) = ay + 2a9% + 3agz? +- - - + naz
Prove that if f(z) € F[z], where F is the field of rational numbers, then f(z)

is divisible by the square of a polynomial if and only if f(z) and f’(z) have
a greatest common divisor d(z) of positive degree.
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7. If f(z) is in F[z], where F is the field of integers mod p, p a prime, and
f(z) is irreducible over F of degree n prove that F[z]/(f(x)) is a field with
p"™ elements.

10. Polynomials over the Rational Field. We specialize the general dis-
cussion to that of polynomials whose coefficients are rational numbers.
Most of the time the coefficients will actually be integers. For such poly-
nomials we shall be concerned with their irreducibility.

DrriNiTioN. The polynomial f(z) = ag + a1z +- - - + @,2", where the
ag, a1, g, - . ., Gy are integers is said to be primitive if the greatest common
divisor of ag, @y, ..., @, is 1.

Lemma 3.23. If f(z) and g(x) are primative polynomials then f(z)g(x) is a
primitive polynomial.

Proof. Let f(x) = ap + ayz +- -+ anz™ and g(&) = by + bz +-- -+
bnx™ Suppose that the lemma was false; then all the coefficients of
f(x)g(x) would be divisible by some integer larger than 1, hence by some
prime number p. Since f(z) is primitive, p does not divide some coefficient
a;. Let a; be the first coefficient of f(z) which p does not divide. Similarly
let by, be the first coefficient of g(z) which p does not divide. In f(z)g(x) the
coefficient, of 27%*, ¢, ., is

1) Cipk = Qbx + (@j41bk—1 + Gjp2bp—s + - -+ aj4xbo)
+ (@j—1brg1 + @j_obpye + -+ + aobiyr)-

Now by our choice of by, p|bk—1, bk—2, - . . s0 that p| (a;1br—1 + @jyobk—2+
«++ 4+ aj4rbo). Similarly, by our choice of aj, p|aj—1, @j—s, ... so that
Pl (@j—1bp1 + @j—gbrse +- -+ aobry;). By assumption, p|c;jyx Thus by
(1), p|azy, which is nonsense since p f a; and p { by. This proves the
lemma.

Derintrion. The content of the polynomial f(x) = ag + ez +---+

a,z", where the a’s are integers, is the greatest common divisor of the
integers ao, a;, ..., G

Clearly, given any polynomial p(zx) with integer coefficients it can be
written as p(z) = dg(zx) where d is the content of p(z) and where ¢(z) is a
primitive polynomial.

TaEOREM 3.1 (Gavss’ LeMMA). If the primitive polynomial f(x) can be
Sactored as the product of two polynomials having rational coefficients <t can be
factored as the product of two polynomials having integer coefficients.
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Proof. Suppose that f(x) = u(z)v(z) where u(z) and »(x) have rational
coefficients. By clearing of denominators and taking out common factors
we can then write f(z) = (a/b)A(z)u(z) where a and b are integers and where
both A(z) and u(x) have integer coefficients and are primitive. Thus
bf(z) = aN(x)u(z). The content of the left-hand side is b, since f(z) is
primitive; since both X\(z) and u(z) are primitive, by Lemma 3.23 \(z)pu(z)
is primitive, so that the content of the right-hand side is a. Therefore
a=>, (a/b) =1 and f(x) = Nx)u(r) where \(z) and u(z) have integer
coefficients. This is the assertion of the theorem.

DerINITION. A polynomial is said to be integer monic if all its coefficients
are integers and its highest coefficient is 1.

Thus an integer monic polynomial is merely one of the form ™ + a;z» ! 4
-«++ a, where the a’s are integers. Clearly an integer monic polynomial
is primitive.

COROLLARY. If an integer monic polynomial factors as the product of two
nonconstant polynomsals having rational coeffictents then it factors as the
product of two integer monic polynomials.

We leave the proof of the corollary as an exercise for the reader.

The question of deciding whether a given polynomial is irreducible or not
can be a difficult and laborious one. Few criteria exist which declare that a
given polynomial is or is not irreducible. One of these few is the following
result

TreEoREM 3.7 (THE ESENSTEIN CRrITERION). Let f(z) = ag + ayz +
agx? 4+« -+ a,x™ be a polynomial with integer coeflicients. Suppose that for
some prime number p, p 1 an, P|a1, P|ag, ..., P|ao, p* 1 ao. Then f(z) s
wrreducible over the rationals.

Proof. Without loss of generality we may assume that f(z) is primitive,
for taking out the greatest common factor of its coefficients does not
disturb the hypotheses, since p { a,. If f(z) factors as a product of two
rational polynomials by Gauss’ lemma it factors as the product of two
polynomials having integer coefficients. Thus if we assume that f(z) is
reducible, then

f@) = (bo + bix +- -+ bx")(co + c1& + -+ -+ cax®),

where the b’s and ¢’s are integers and where r > 0and s > 0. Reading off the
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coefficients we first get ag = boco. Since p| ag, p must divide one of by or c,.
Since p? t ag, p cannot divide both by and c;. Suppose that p|bo, » 1 co.
Not all the coefficients by, ..., b, can be divisible by p; otherwise all the
coefficients of f(z) would be divisible by p, which is manifestly false since
P 1 an. Let by be the first b not divisible by p, ¥ < r < n. Thus p|bz—; and
the earlier b’s. But az = bico + br—i1 + br—2e + - -+ + bocx, and p|az,
P|br—1,b5—3, ..., bo, S0 that p|brco. However, p t ¢y, p 1 by which conflicts
with p|bgco. This contradiction proves that we could not have factored
f(z) and so f(z) is indeed irreducible.

PROBLEMS

1. Let D be a Euclidean ring, F its field of quotients. Prove the Gauss
lemma for polynomials with coefficients in D factored as products of poly-
nomials with coefficients in F.

2. If p is a prime number, prove that the polynomial 2™ — p is irreducible
over the rationals.

3. Prove that the polynomial 1 + 2 +---+ 2%, where p is a prime
number, is irreducible over the field of rational numbers. (Hint: Consider
the polynomial 1 + (¢ + 1) + (x + 1)2 +---+ (z + 1)*7, and use the
Eisenstein criterion.)

4. If m and n are relatively prime integers and if <a: - %)I (ag + ayz +

-+ -+ a,z") where the a’s are integers, prove that m|a, and n|a,.
5. If o is rational and x — o divides an integer monic polynomial, prove
that o must be an integer.

11. Polynomial Rings over Commutative Rings. In defining the poly-
nomial ring in one variable over a field ¥, no essential use was made of the
fact that F was a field; all that was used was that F was a commutative
ring. The field nature of F only made itself felt in proving that Flx] was
a Buclidean ring.

Thus we can imitate what we did with fields for more general rings.
While some properties may be lost, such as “Euclideanism’’ we shall see
that enough remain to lead us to interesting results. The subject could have
been developed in this generality from the outset, and we could have
obtained the particular results about F[z] by specializing the ring to be a
field. However, we felt that it would be healthier to go from the concrete
to the abstract rather than from the abstract to the concrete. The price we
pay for this is repetition, but even that serves a purpose, namely, that of
consolidating the ideas. Because of the experience gained in treating poly-
nomials over fields, we can afford to be a little sketchier in the proofs here.
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Let R be a commutative ring with unit element. By the polynomial ring
in « over R, R[x], we shall mean the set of formal symbols ay + a;z +-- -+
ant™, where ag, a1, ..., @y are in R, and where equality, addition, and
multiplication are defined exactly as they were in Section 9. As in that
section, R[z] is a commutative ring with unit element.

We now define the ring of polynomials in the n-variables z;, ..., x, over
R, R[z;, ..., Z4], as follows: Let R; = R[], Ry = Ry[z,)], the polynomial
ring in z3 over Ry, ..., Ry = R,_;[x,]. R, is called the ring of polynomials
inzy, . .., T, over B. Its elements are of the form Za;;,. . ; 2172, . .. 2,7,
where equality and addition are defined coefficient-wise and where multipli-
cation is defined by use of the distributive law and the rule of exponents
(@ mo™ ... ') (my™ L zd) = @y ARt g intin Of particular
importance is the case in which B = F is a field; here we obtain the ring
of polynomials in n-variables over a field.

Of interest to us will be the influence of the structure of R on that of
R[z1, ..., Zn]. The first result in this direction is

LeEmMA 3.24. If R 1s an integral domasn then so ts R[z].

Proof. For 0 # f(z) = ag + ayz +- - -+ an,2™, where a, # 0, in R[z],
we define the degree of f(x) to be m; thus deg f(x) is the index of the highest
nonzero coefficient of f(z). If R is an integral domain we leave it as an
exercise to prove that deg (f(z)g(x)) = deg f(z) + deg g(x). But then for
f(x) %0, g(x) = 0 it is impossible to have f(x)g(z) = 0. That is, R[z] is
an integral domain.

Making successive use of the lemma immediately yields the
CoROLLARY. If R s an integral domain, then so is R[zy, . . ., Z,).

In particular, when F is a field, Fl[z,, . .., z,] must be an integral domain.
As such, we can construct its field of quotients; we call this the field of
rational functions in zy, . .., z, over F and denote it by F(zy, ..., z,). This
field plays a vital role in algebraic geometry. For us it shall be of utmost
importance in our discussion, in Chapter 5, of Galois theory.

However, we want deeper interrelations between the structures of R and
of R[xy, ..., z,] than that expressed in Lemma 3.24. Our development now
turns in that direction.

Exactly in the same way as we did for Euclidean rings, we can speak
about divisibility, units, etc., in arbitrary integral domains, R, with unit
element. Two elements a, b in R are said to be associates if a = ub where u
is a unit in R. An element a which is not a unit in R will be called irreducible
(or a prime element) if whenever a = bc with b, ¢ both in R then one of b or
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¢ must be a unit in E. An irreducible element is thus an element which
cannot be factored in a ‘“nontrivial”’ way.

DErINITION. An integral domain, R, with unit element is a unigue fac-
tortzation domain if

(a) any nonzero element in R is either a unit or can be written as the
product of a finite number of irreducible elements of E;

(b) the decomposition in part (a) is unique up to the order and associates
of the irreducible elements.

Theorem 3.¢ asserts that a Fuclidean ring is a unique factorization
domain. The converse, however, is false; for example, the ring Flz;, ],
where F is a field is not even a principal ideal ring (bence is certainly not
Euclidean) but as we shall soon see it is a unique factorization domain.

In general commutative rings we may speak about the greatest common
divisors of elements; the main difficulty is that these, in general, might
not exist. However, in unique factorization domains their existence is
assured. This fact is not difficult to prove and we leave it as an exercise;
equally easy are the other parts of

Lemma 3.25. If R is a unique factorization domain and if a, b are in R,
then a and b have a greatest common divisor (a, b) in R. Moreover, if a and b
are relatively prime (ie., (a,b) = 1), whenever a |bc then alc.

CoroLLARY. If a € R is an irreducible element and a|bc, then a|b or alc.

We now wish to transfer the appropriate version of the Gauss lemma
(Theorem 3.i), which we proved for polynomials with integer coefficients,
to the ring R[z], where R is a unique factorization domain.

Given the polynomial f(z) = ag + @z +- - -+ anz™ in R[z], then the
content of f(x) is defined to be the greatest common divisor of aq, ay, ...,
@n- It is unique within units of R. We shall denote the content of f(z) by
¢(f). A polynomial in R[] is said to be primitive if its content is 1 (that is,
is a unit in R). Given any polynomial f(z) € R[z] we can write f(z) =
af1(x) where a = ¢(f) and where f;(z) € R[z] is primitive. (Prove!) Except
for multiplication by units of R this decomposition of f(z), as an element
of R by a primitive polynomial in R[z], is unique. (Prove!)

The proof of Lemma 3.23 goes over completely to our present situation;
the only change that must be made in the proof is to replace the prime
number p by an irreducible element of B. Thus we have

Lemma 3.26. If R is a unique factorization domain, then the product of two
primative polynomials in R(x] is again a primitive polynomial in R[x].
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Given f(z), g(2) in E[z] we can write f(z) = afi(z), g(x) = bgy(z), where
a = ¢(f), b = ¢(g) and where f;(x) and g, (z) are primitive. Thus f(z)g(z) =
abfy(x)g,(x). By Lemma 3.26, f;(z)g;(z) is primitive. Whence the content
of f(x)g(x) is ab, that is, it is ¢(f)c(g). We have proved the

CoroLLARY. If R is a unique factorization domain and if f(z), g(x) are in
R[z], then c(fg) = c(f)clg) (up to units).

By a simple induction, the corollary extends to the product of a finite
number of polynomials to read as: ¢(fifs ... fx) = c(fi)e(f2) ... c(fi).

Let R be a unique factorization domain. Being an integral domain, by
Theorem 3.c, it has a field of quotients F. We can consider R[z] to be a
subring of F[z]. Given any polynomial f(z) € Flz], then f(z) = (fo(z)/a),
where fo(x) € R[z] and where a € R. (Prove!) It is natural to ask for the
relation, in terms of reducibility and irreducibility, of a polynomial in R[x]
considered as a polynomial in the larger ring Flz].

LemMa 3.27. If f(x) n R[z] is both primitive and irreducible as an element
of Rlz], then it zs irreducible as an element of Flx]. Conversely, if the prima-
tive element f(x) in R[x] is srreducible as an element of Flz], it zs also irreduct-
ble as an element of R[x].

Proof. Suppose that the primitive element f(z) in R[z] is irreducible in
R[z] but is reducible in Flz]. Thus f(z) = g(z)h(z), where g(z), h(z) are in
Flz] and are of positive degree. Now g(z) = (go(2)/a), h(z) = (ho(z)/b),
where a, b € R and where go(z), ho(z) € R[z]. Also, go(x) = ag1(),
ho(z) = Bhi(zx), where a = c¢(go), B = ¢(ho), and g1(z), hi(z) are primitive
in R[z]. Thus f(z) = (aB/ab)g,(x)hi(z), whence abf(x) = aBgi(z)hi(z). By
Lemma 3.26, g;(x)h;(z) is primitive, whence the content of the right-hand
side is @B. Since f(z) is primitive, the content of the left-hand side is ab;
but then ab = aB; the implication of this is that f(z) = g;(z)hi(z), and
we have obtained a nontrivial factorization of f(z) in R[z], contrary to
hypothesis. (Note: this factorization is nontrivial since each of g;(z), hi(x)
are of the same degree as g(z), h(z), so cannot be units in R[z] (see Problem
4).) We leave the converse half of the lemma as an exercise.

Lemma 3.28. If R is a unique factorization domasn and if p(x) is a primi-
tive polynomial in R[], then it can be factored in a unique way as the product
of irreducible elements in R[z].

Proof. When we consider p(x) as an element in F[z], by Lemma 3.21,
we can factor it as p(z) = p1(z) ... pr(x), where p;(x), P2(2), . . ., Pr(z) are
irreducible polynomials in F[z]. Each p,(z) = (f.(z)/a.), where f;(z) € R[z]
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and a; € R; moreover, fi(z) = ¢,g.(x), where ¢; = ¢(f;) and where ¢;(x)
is primitive in R[xz]. Thus each pi(x) = (c;g.(x)/as), where a;, ¢; € E and
where ¢,(x) € R[z] is primitive. Since p;(z) is irreducible in F[z], ¢;(x) must
also be irreducible in F[z], hence by Lemma 3.27 4t ¢s trreductble in R[z].

Now

Ca .

p@) = p1(@) ... pal) = ff—-—"i"kqxx) .. (),

aas ... Q

whence 105 . .. axp(x) = cicz .. . cxq1(®) . . . qu(x). Using the primitivity of
p(z) and of ¢1(z) ... qx(z), we can read off the content of the left-hand side
as a;0s . . . a and that of the right-hand side as¢ics . . . ¢x. Thus ayas . . . ax =
¢iC2 ... Cr, whence p(z) = ¢1(2) ... qx(z). We have factored p(z), in R[z],
as a product of irreducible elements.

Can we factor it in another way? If p(z) = r,(z) ... r%(z), where the
ri(z) are irreducible in R[z], by the primitivity of p(z), each r;(x) must be
primitive, hence irreducible in F[z] by Lemma 3.27. But by Lemma 3.21
we know unique factorization in F[z]; the net result of this is that the
r;(x) and the ¢;(z) are equal (up to associates) in some order, whence p(x)
has a unique factorization as a product of irreducibles in R[z].

We now have all the necessary information to prove the principal
theorem of this section.

TuroreM 3.X. If R 7s a unique factorization domain, then so is R[z].

Proof. Let f(z) be an arbitrary element in R[z]. We can write f(z) in a
unique way as f(z) = ¢f1(z) where ¢ = ¢(f) is in R and where f;(z), in R[z],
is primitive. By Lemma 3.28 we can decompose fi(x) in a unique way
as the product of irreducible elements of R[z]. What about ¢? Suppose
that ¢ = a1(@)as(z) ... an(@) in R[z]; then 0 = deg ¢ = deg (a;(x)) +
deg (as(z)) +-- -+ deg (am(x)). Therefore, each a,(x) must be of degree 0,
that is, it must be an element of E. In other words, the only factorizations
of ¢ as an element of R[x] are those it had as an element of B. In particular,
an irreducible element in R is still irreducible in R[z]. Since R is a unique
factorization domain, ¢ has a unique factorization as a product of irreduc-
ible elements of R, hence of R[z].

Putting together the unique factorization of f(x) in the form ¢f;(xz) where
fi(z) is primitive and where ¢ € R with the unique factorizability of ¢
and of f(x) we have proved the theorem.

Given R as a unique factorization domain, then B, = R[z;] is also a
unique factorization domain. Thus Ry = Ry[z;] = R[z;, x5] is also a
unique factorization domain. Continuing in this pattern we obtain
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CororLarY 1. If R ¥s a unique factorization domain then so is
R[:cl, ceey xn]

A special case of Corollary 1 but of independent interest and importance is

CoRroLLARY 2. If F is a field then Flzi, ..., x,] is a unique factorization
domain.

PROBLEMS

1. Prove that R[z] is a commutative ring with unit element whenever
Ris.

2. Prove that R[zy, ..., z,) = R[z,, ..., ;] where (Z;, ..., 1,) is a
permutation of (1, 2, ..., n).

3. If R is an integral domain, prove that for f(z), g(z) in R[x],
deg (f(x)g(z)) = deg (f(x)) + deg (9(z)).

4. If R is an integral domain with unit element, prove that any unit
in R[z] must already be a unit in R.

5. Let R be a commutative ring with no nonzero nilpotent elements
(that is, a™ = 0 implies ¢ = 0). If f(z) = ap + a1z ++ - -+ @,2™ in R[z] is
a zero-divisor, prove that there is an element b 5 0 in R such that bag =
bay =--+= ba, = 0.

*6. Do Problem 5 dropping the assumption that R has no nonzero
nilpotent elements.

*7. If R is a commutative ring with unit element, prove that ag + a;z +
-+ a,z" in R[z] has an inverse in R[z] (i.e., is a unit in R[z]) if and only
if ap is & unit in R and ay, ..., a, are nilpotent elements in E.

8. Prove that when F is a field, F[z;, ;] is not a principal ideal ring.

9. Prove, completely, Lemma 3.25 and its corollary.

10. (a) If R is a unique factorization domain, prove that every f(z) €
R[z] can be written as f(z) = af;(x) where a € R and where
f1(x) is primitive.

(b) Prove that the decomposition in part (a) is unique (up to associ-
ates).

11. If R is an integral domain, and if F is its field of quotients, prove
that any element f(z) in Flx] can be written as f(z) = (fo(z)/a), where
Jfo(x) € R[x] and where a € R.

12. Prove the ‘“‘converse part” of Lemma 3.27.

13. Prove Corollary 2 to Theorem 3.k.

14. Prove that a principal ideal ring is a unique factorization domain.

16. If J is the ring of integers, prove that J[z;, ..., Z,] is a unique
factorization domain.
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SUPPLEMENTARY PROBLEMS

1. Let R be a commutative ring; an ideal P of R is said to be a prime
ideal of R if ab € P, a, b € R implies that @ € P or b € P. Prove that P
is a prime ideal of R if and only if R/P is an integral domain.

2. Let R be a commutative ring with unit element; prove that every
maximal ideal of R is a prime ideal.

3. Give an example of a ring in which some prime ideal is not a maximal
ideal.

4. If R is a finite commutative ring (i.e., has only a finite number of
elements) with unit element prove that every prime ideal of R is a maximal
ideal of R.

5. If F is a field, prove that F[z] is isomorphic to F[t].

6. Find all the automorphisms ¢ of F[z] with the property that ¢(f) = f
for every f € F.

7. If R is a commutative ring, let N = {z € R|z" = 0 for some integer
n}. Prove:

(a) N is an ideal of R.
() In B = R/N if 2" = 0 for some m then % = 0.

8. Let R be a commutative ring and suppose that 4 is an ideal of E.
Let N(4) = {z € R|z" € A for some n}. Prove:

(a) N(4A) is an ideal of B which contains 4.
(b) N(N(4)) = N(4).
N(A) is often called the radical of A.

9. If n is an integer, let J, be the ring of integers mod n. Describe N
(see Problem 7) for J, in terms of n.

10. If A and B are ideals in a ring R such that A N B = (0), prove
that for every a € A4, b € B, ab = 0.

11. If Ris aring, let Z(R) = {x € R|zy = yz all y € R}. Prove that
Z(R) is a subring of R.

12. If R is a division ring, prove that Z(R) is a field.

13. Find a polynomial of degree 3 irreducible over the ring of integers,
J3, mod 3. Use it to construct a field having 27 elements.

14. Construct a field having 625 elements.

15. If F is a field and p(z) € F[z], prove that in the ring

_ Flz]
@)

N (see Problem 7) is (0) if and only if p(z) is not divisible by the square of
any polynomial.

16. Prove that the polynomial f(z) = 1 4+ x + ® 4+ z*is not irreducible
over any field F.

17. Prove that the polynomial f(x) = 2* 4 2z + 2 is irreducible over
the field of rational numbers.
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18. Prove that if F is a finite field its characteristic must be a prime
number p and Fnconta'ms p"™ elements for some integer. Prove further that
if @ € F then a® = a.

19. Prove that any nonzero ideal in the Gaussian integers J[7] must
contain some positive integer.

20. Prove that if R is a ring in which a* = a for every a € R then R
must be commutative.

21. Let R and R’ be rings and ¢ a mapping from R into R’ satisfying:

(@) ¢(z + y) = ¢(z) + ¢(y) for every z, y € R.

(b) ¢(zy) = ¢(2)9(y) or ¢(y)$().
Prove that for all a, b € R, ¢(ab) = ¢(a)¢(d) or that, for all a, b € R,
o(a) = ¢(b)p(a). (Hwnt: If a € R, let W, = {z € R|¢(ax) = ¢(a)¢(x)}
and U, = {z € R|¢(az) = ¢(z)¢(a)}.)

Supplementary Reading

ZAarisk1, Oscar, and Samurr, Pierre, Commutative Algebra, Vol. 1. D.
Van Nostrand Company, Inc., Princeton, New Jersey, 1958.

McCov, N. H., Rings and Ideals, Carus Monograph Series, No. 8. Open
Court Publishing Company, La Salle, Illinois, 1948.

Topic for Class Discussion

Morzkin, T., “The Euclidean algorithm,” Bulletin of the American Mathe-
matical Society, Vol. 55 (1949), pages 1142-1146.



CHAPTER 4

Vector Spaces and Modules

Up to this point we have been introduced to groups and to rings; the
former has its motivation in the set of one-to-one mappings of a set onto
itself, the latter, in the set of integers. The third algebraic model which we
are about to consider—vector space—can, in large part, trace its origins
to topics in geometry and physics.

Its description will be reminiscent of those of groups and rings—in
fact, part of its structure is that of an abelian group—but a vector space
differs from these previous two structures in that one of the products
defined on it uses elements outside of the set itself. These remarks will
become clear when we make the definition of a vector space.

Vector spaces owe their importance to the fact that so many models
arising in the solutions of specific problems turn out to be vector spaces.
For this reason the basic concepts introduced in them have a certain
universality and are ones we encounter, and keep encountering, in so many
diverse contexts. Among these fundamental notions are those of linear
dependence, basis, and dimension which will be developed in this chapter.
These are potent and effective tools in all branches of mathematics; we
shall make immediate and free use of these in many key places in Chapter
5 which treats the theory of fields.

Intimately intertwined with vector spaces are the homomorphisms of
one vector space into another (or, into itself) These will make up the bulk
of the subject matter to be considered in Chapter 6.

In the last part of the present chapter we generalize from vector spaces
to modules; roughly speaking, a module is a vector space over a ring instead
of over a field. For finitely generated modules over Euclidean rings we
shall prove the fundamental basis theorem. This result allows us to give a
complete description and construction of all finite abelian groups.

1. Elementary Basic Concep’fs

DErinITION. A nonempty set V is said to be a vector space over a field F
if V is an abelian group under an operation which we denote by -+, and

130
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if for every o € F, v € V there is defined an element, written as a,inV
subject to-

1) a@v +w) = av + ow
2) (a4 By =0av+pv
(3) «(By) = (aB)v

4) lv=v

for all o, B € F, v, w € V (where the 1 represents the unit element of F
under multiplication).

Note that in Axiom (1), above, the + is that of V, whereas, in Axiom
(2), on the left-hand side it is that of ¥ and on the right-hand side it is
that of V.

We shall consistently use the following notations:

(a) F will be a field

(b) Lower case Greek letters will be elements of F; we shall often refer
to elements of ¥ as scalars.

(c) Capital Latin letters will denote vector spaces over F.

(d) Lower case Latin letters will denote elements of vector spaces. We
shall often call elements of a vector space vectors.

If we ignore the fact that V has two operations defined on it and view it,
for & moment, merely as an abelian group under +, Axiom (1) states
nothing more than the fact that multiplication of the elements of V by a
fixed scalar « defines a homomorphism of the abelian group V into itself.
From Lemma 4.1, which is to follow, if « 5 0 this homomorphism can be
shown to be an isomorphism of V onto V.

This suggests that many aspects of the theory of vector spaces (and of
rings, too) could have been developed as a part of the theory of groups,
had we generalized the notion of a group to that of a group with operators.
For students already familiar with a little abstract algebra this is the pre-
ferred point of view; since we assumed no familiarity, on the reader’s part,
with any abstract algebra, we felt that such an approach might lead to a
too sudden introduction to the ideas of the subject with no experience to
act as a guide.

ExampLe 1. Let F be a field and let K be a field which contains F as
a subfield. We consider K as a vector space over F, using as the + of the
vector space the addition of elements of K, and by defining, for « € F,
v € K, av to be the products of « and v as elements in the field K. Axioms
(1), (2), () for a vector space are then consequences of the right-distributive
law, left-distributive law and associative law, respectively, which hold for
K as a ring.
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ExampLe 2. Let F be a field and let V be the totality of all ordered

n-tuples, (a1, ..., a,) where the , € F. Two elements (o, ..., a,) and
(B1, ..., Ba) of V are declared to be equal if and only if a, = B, for each
i=1,2, ..., n. We now introduce the requisite operations in ¥ to make

of it a vector space by defining:

(1) (aly Leey O‘n) + (ﬂl; “eey 611.) = (al +Bly 5] +62: LY an+6n)
@) y(agy + -y an) = (vou, ..., yay) fory € F.

It is easy to verify that with these operations, V is a vector space over F.
Since it will keep re-appearing we assign a symbol to it, namely F™.,

ExampLe 3. Let F be any field and let V' = F[z], the set of polynomials
in z over F. We choose to ignore, at present, the fact that in Flz] we can
multiply any two elements, and merely concentrate on the fact that two
polynomials can be added and that a polynomial can always be multiplied
by an element of F. With these natural operations F[z] is a vector space
over F.

Examprr 4. In Flz] let V, be the set of all polynomials of degree less
than n. Using the natural operations for polynomials of addition and
multiplication V, is a vector space over F.

What is the relation of Example 4 to Example 2? Any element of V, is
of the form @y + ayz +-- -+ a,_12" "}, where «, € F; if we map this
element onto the element (ag, ay, ..., an—;) in F™ we could reasonably
expect, once homomorphism and isomorphism have been defined, to find
that V, and F™ are isomorphic as vector spaces.

DeriniTioN. If V is a vector space over F and if W C V then W is a
subspace of V if under the operations of V, W, itself, forms a vector space
over F. Equivalently, W is a subspace of V whenever wy, wo € W, a, 8 € F
implies that ow; + Bw, € W.

Note that the vector space defined in Example 4 is a subspace of that
defined in Example 3. Additional examples of vector spaces and subspaces
can be found in the problems at the end of this section.

Dzerinrrron. If U and V are vector spaces over F then the mapping T
of U into V is said to be a homomorphism if

1) (uy +ug)T = u; T + u,T
@) (u)T = a(u,T)

for all uy, us € U, and all « € F.

As in our previous models, a homomorphism is a mapping preserving
all the algebraic structure of our system.
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If T, in addition, is one-to-one we call it an 4somorphism. The kernel of
T is defined as {u € U|uT = 0} where 0 is the identity element of the
addition in V. It is an exercise that the kernel of 7T is a subspace of U and
that T' is an isomorphism if and only if its kernel is (0). Two vector spaces
are said to be isomorphic if there is an isomorphism of one onto the other.

The set of all homomorphisms of U into V will be written as Hom (U, V).
Of particular interest to us will be two special cases, Hom (U, F) and Hom
(U, U). We shall study the first of these soon; the second, which can be
shown to be a ring, is called the ring of linear transformations on U. A
great deal of our time, later in this book, will be occupied with a detailed
study of Hom (U, U).

We begin the material proper with an operational lemma which, as in the
case of rings, will allow us to carry out certain natural and simple computa-
tions in vector spaces. In the statement of the lemma, O represents the
zero of the addition in V, o that of the addition in F, and —v the additive
inverse of the element v of V.

LemMma 4.1. If V is a vector space over F then

(1) a0 =0 fora € F.

@ ov=0forv V.

38 (—a)v = —(aw) fora € F,vE V.

(4) If v 5~ 0 then aw = 0 wmplies that & = o.

Proof. The proof is very easy and follows the lines of the analogous
result proved for rings; for this reason we give it brieily and with few
explanations.

(1) Since a0 = a(0 + 0) = a0 + a0, we get «0 = 0.

(2) Since ov = (0 + 0)v = ov + ov we get ov = 0.

(3) Since 0 = (@ + (—a))v = av + (—a)y, (—a)p = — (o).
(4) If av = 0 and « # o then

0=0a"0=0aYw) = (ala)v = 1v =

The lemma just proved shows that multiplication by the zero of V or of
F always leads us to the zero of V. Thus there will be no danger of confusion
in using the same symbol for both of these, and we henceforth will merely
use the symbol 0 to represent both of them.

Let V be a vector space over F and let W be a subspace of V. Considering
these merely as abelian groups construct the quotient group V/W; its
elements are the cosets v + W where » € V. The commutativity of the
addition, from what we have developed in Chapter 2 on group theory,
assures us that V/W is an abelian group. We intend to make of it a vector
space. If « € F, v + W € V/W define a(v + W) = av + W. As is usual,
we must first show that this product is well-defined, that is, if v + W =
v + W then a( + W) = a(’ + W). Now, because v + W =o' + W,
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v — v’ is in W; since W is a subspace a(v — ¢’) must also be in W. Using
part (3) of Lemma 4.1 (see Problem 1) this says that ev — e’ € W and so
avt+W=a+W. Thusa@+W)=aw+W =o'+ W =a@ +W);
the product has been shown to be well-defined. The verification of the
vector-space axioms for V/W is routine and we leave it as an exercise.
We have shown

Levma 4.2. If V 1s a vector space over F and if W is a subspace of V then
V' /W is avector space over F, where, for vy + W,vo +-W € V/Wanda € F

@) @ +W)+ @+ W)= (@1 +v) +W.
(2) a(Ul + W) = ol -I— w.

V /W is called the quotient space of V by W.

Without further ado we now state the first homomorphism theorem for
vector spaces; we give no proofs but refer the reader back to the proof of
Theorem 2.d.

THEOREM 4.A. If T 4s a homomorphism of U onto V with kernel W then V
18 1somorphic to U/W. Conversely, if U is a vector space and W a subspace of
U then theic 1s a homomorphism of U onto U/W.

The other homomorphism theorems will be found as exercises at the end
of this section.

Derinrrion. Let V be a vector space over F and let Uy, ..., U, be sub-
spaces of V. V is said to be the wnternal direct sum of Uy, ..., U, if every
element » € V can be written in one and only one way as v = u; + ug +
-« + u, where u, € U,.

Given any finite number of vector spaces over F, Vi, ..., V, cousider
the set V of all ordered n-tuples (vy, ..., v,) where v, € V,. We declare two
elements (vy, ..., v,) and (%, ..., v5) of V to be equal if and only if for
each 7, v, = v;. We add two such elements by defining (vy, ..., v,) +
(w1, <., wy) b0 be (1 + wy, va + we, ..., v, + w,). Finally, if « € F and
1y « - ., v0) € V we define a(vy, ..., v,) to be (avy, avs, ..., av,). To check
that the axioms for a vector space hold for V with its operations as defined
above is straightforward. Thus V itself is a vector space over F. We call
V the external direct sum of Vy, ..., V, and denote it by writing V = V; @
@V,

THEOREM 4.B. If V s the internal direct sum of Uy, ..., U, then V s
isomorphic to the external direct sum of Uy, ..., U,.
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Proof. Given » € V, v can be written, by assumption, in one and only
one way as v = uj + Uz + - - -+ u, where u, € U,; define the mapping T
of Vinto U@ --@ U, by vT = (uy, ..., u,). Since v has a unique
representation of this form, 7' is well-defined. It clearly is onto, for the
arbitrary element (wy, ..., w,) C Ui @ @ U, is wT where w = w; +
-«-+ w, € V. We leave the proof of the fact that 7" is one-to-one and a
homomorphism to the reader.

Because of the isomorphism proved in Theorem 4.b we shall henceforth
merely refer to a direct sum, not qualifying that it be internal or external.

PROBLEMS

1. In a vector space show that a(v — w) = o — aw.
2. Prove that the vector spaces in Example 4 and Example 2 are
isomorphic.

3. Prove that the kernel of a homomorphism is a subspace.

4. (a) If F is the field of real numbers show that the set of real-valued,
continuous functions on the closed interval [0, 1] forms a vector
space over F.

(b) Show that those functions in part (a) for which all nth derivatives

exist forn = 1, 2, ..., form a subspace.
5. (a) Let F be the field of all real numbers and let V be the set of all
sequences (a1, g, « - ., Gy, - -.), &, & F, where equality, addition

and scalar multiplication are defined componentwise. Prove that
V is a vector space over F.
() Let W = {(ay, ...,y ...) € V| lim a, = 0}. Prove that W

n—ro

is a subspace of V. °
*(c) Let U = {(a1, ..., @n, ...) € V| 2 a7 is finite}. Prove that
2=1
U is a subspace of V and is contained in W.

6. If U and V are vector spaces over F, define an addition and a mul-
tiplication by scalars in Hom (U, V) so as to make Hom (U, V) into a
vector space over F.

*7, Using the result of Problem 6 prove that Hom (F™, F™) is isomor-
phic to F™™ as a vector space.

8. If n > m prove that there is a homomorphism of F™ onto F™
with a kernel W which is isomorphic to F™~™,

9. If v ¢ 0 € F™ prove that there is an element 7 € Hom (F™, F)
such that vT # 0.

10. Prove that there exists an 1somorphism of F into

Hom (Hom (F™, F), F).
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11, If U and W are subspaces of V provethat U+ W = {v & V|v =
u+w, u€ U, w& W} is a subspace of V.

12. Prove that the intersection of two subspaces of V is a subspace of V.

13. If A and B are subspaces of V prove that (4 + B)/B is isomorphic
to A/(A N B).

14. If T is a homomorphism of U onto V with kernel W prove that there
is a one-to-one correspondence between the subspaces of V and the sub-
spaces of U which contain W.

15. Let V be a vector space over F and let V5, ..., V, be subspaces of
V. Suppose that V =V ~+ Vy+---+ V, (see Problem 11), and that
Vi Vit + Vi + Vi +-+ Vo) = (0) foreverys = 1,2, ...,
n. Prove that V is the internal direct sum of Vy, ..., V.

16. Let V = Vi@ --@ Va; prove that in V there are subspaces V;
isomorphic to V; such that V is the internal direct sum of the V;.

17. Let T be defined on F® by (zy, 22)T = (azy =+ Bxs, vy + 82)
where a, 8, v, 6 are some fixed elements in F.

(a) Prove that T is a homomorphism of F® into itself.
(b) Find necessary and sufficient conditions on «, 8, v, 8 so that T
is an isomorphism.

18. Let T be defined on F® by (z1, x5, 23)T = (a1121 + @122 +
1323, Q91T + s + o33, (31T + 3oy + 0633553). Show that T is a
homomorphism of F® into itself and determine necessary and sufficient
conditions on the «;; so that T is an isomorphism.

19. Let T be a homomorphism of V' into W. Using T, define a homomor-
phism T* of Hom (W, F) into Hom (V, F).

20. (a) Prove that F¥ is not isomorphic to F™ for n > 1.

(b) Prove that F® is not isomorphic to F®.

21. If V is a vector space over an infinite field F prove that V cannot be

written as the set-theoretic union of a finite number of proper subspaces.

2. Linear Independence and Bases. If we look somewhat more closely
at two of the examples described in the previous section, namely Example
4 and Example 3, we notice that although they do have many properties
in common there is one striking difference between them. This difference
lies in the fact that in the former we can find a finite number of elements,
1, z, 2% ..., " ! such that every element can be written as a combination
of these with coefficients from F, whereas in the latter no such finite set of
elements exists.

We now intend to examine, in some detail, vector spaces which can be
generated, as was the space in Example 4, by a finite set of elements.

Dzrmvition. If V is a vector space over F and if vy, ..., v, € V then
any element of the form ayv; + asvs +- - -+ a0y, where the o; € F, is a
linear combination over F of vy, ..., V.
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Since we usually are working with some fixed field F we shall often say
linear combination rather than linear combination over F. Similarly it will
be understood that when we say vector space we mean vector space over F.

DerintrIoN. If S is a nonempty subset of the vector space V then L(S),
the linear span of S, is the set of all linear combinations of finite sets of
elements of S.

We put, after all, into L(S) the elements required by the axioms of a
vector space, so it is not surprising to find

Lemma 4.3. L(S) 7s a subspace of V.

Proof. If v and w are in L(S) then » = Xys; +- - -+ Mpsp and w = gty +
-+~ pmbn Where the N’s and u's are in F' and the s; and ¢; are all in S. Thus,
for o BEF, av + pw = a(\i8y + -+ + NnSn) + Blurty +- -+ Mombm) =
(enp)sy + -« -+ (@An)sn + (Bu)ty +- - -+ (Bum)tnm and so is again in L(S).
L(8S) has been shown to be a subspace of V.

The proof of each part of the next lemma is straightforward and easy
and we leave them as exercises to the reader.

LemMa 4.4. If S, T are subsets of V then

(1) S < T tmplies L(S) < L(T).
(2) LS U T) = L(S) + L(T).
(8) L(L(S)) = L(S).

DxrriniTioN. The vector space V is said to be finite-dimensional (over F)
if there is a finite subset S in V such that V' = L(S).

Note that F™ is finite-dimensional over F for if S consists of the n-
vectors (1, 0, ..., 0), (0,1,0, ...,0), ..., (0,0, ...,0,1) then V = L(S).

Although we have defined what is meant by a finite-dimensional space
we have not, as yet, defined what is meant by the dimension of a space.
This will come shortly.

DeriNirion. If V is a vector space and if vy, .. ., v, are in V, we say that
they are linearly dependent over F if there exist elements Ay, ..., M\, in F,
not all of them 0, such that \jv; + Asva ++ - -+ N = 0.

If the vectors vy, ..., v, are not linearly dependent over F, they are said
to be linearly independent over F. Here too we shall often contract the
phrase “linearly dependent over F” to “linearly dependent.” Note that if
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vy, ..., U, are linearly independent then none of them can be 0, for if
v, = 0, say, then avy + Ovg +- -+ Ov, = 0 for any o # 0 in F.

In F® it is easy to verify that (1, 0, 0), (0, 1, 0), and (0, 0, 1) are linearly
independent while (1, 1, 0), (3, 1, 3), and (5, 3, 3) are linearly dependent.

We point out that linear dependence is a function not only of the vectors
but also of the field. For instance the field of complex numbers is a vector
space over the field of real numbers and it is also a vector space over the
field of complex numbers. The elements v; = 1, vp = ¢ in it are linearly
independent over the reals but are linearly dependent over the complexes,
since 7y 4+ (—1)vp, = 0.

The concept of linear dependence is an absolutely basic and ultra-
important one. We now look at some of its properties.

LemMa 4.5. If vy, ..., v, € V are linearly independent, then every element
in their linear span has @ unique representation n the form Ay + -+ -+ Apop
with the \; € F.

Proof. By definition, every element in the linear span is of the form
Moy 4+ -+ Awn. To show uniqueness we must demonstrate that if
Mg o An = pyy o pap then Ny = py, Xg = g, oo oy Ay = ppe
But if \p; +---4 ANvr = mv; +-- -+ unv, then we certainly have
(M = wdvs + g = p2)vg +- -+ (\n — pa)vn = 0, which by the linear in-
dependence of vy, ..., v, foreces Ay —ug =0,A0 — o =0, ..., Ay — pp = 0.

The next theorem, although very easy and at first glance of a somewhat
technical nature, has as consequences results which form the very founda-
tions of the subject. We shall list some of these as corollaries; the others
will appear in the succession of lemamas and theorems that are to follow.

TaEOREM 4.C. Ifv1, ..., 0, are in V then either they are linearly independ-
ent or some vy, 18 a linear combination of the preceding ones, vy, . . ., Vp_;.

Proof. If vy, ..., v, are linearly independent there is, of course, nothing
to prove. Suppose then that a;v; +-- -+ v, = 0 where not all the o’s
are 0. Let k¥ be the largest integer for which o 0. Since «; = 0 for
1>k, aw +--+ vy = 0 which, since ar 0, implies that v =
o M=oy — agy —cc—  opal—) = (—aptay)v; +---+
(—an ap—_1)vk_1. Thus vy is a linear combination of its predecessors.

CorOLLARY 1. If vy, ..., vn9n V have W as linear span and if vy, ..., vk
are linearly independent, then we can find a subset of vy, ..., vy of the form

V1, V2, ..., Vg, Vi ..., V; consisting of linearly independent elements whose
linear span 1s also W.
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Proof. If vy, ..., v, are linearly independent we are done. If not, weed
out from this set the first v, which is a linear combination of its predecessors.
Since vy, .. ., ) are linearly independent, j > k. The subset so constructed,
ULy « v ey Vky o+ oy Vi—1, Uj41, -« -, Uy hasn — 1 elements. Clearly its linear span
is contained in W. However, we claim that it is actually equal to W; for
given w € W w can be written as a linear combination of vy, ..., v,. But in
this linear combination we can replace v; by a linear combination of v, .
vj—1. That is, w is a linear combination of vy, ..., v;_1, vj41, ..., ¥p.

Continuing this weeding out process, we reach a subset vy, .. ., v, Vigy ooy
v;, whose linear span is still W but in which no element is a linear combina-
tion of the preceding ones. By Theorem 4.c the elements v;,
v;, aust be linearly independent.

.« ey

coep Uk Vggy v ey

CoroLLARY 2. If V 4s a finite-dimensional vector space then it contains a
fintte set vy, . . ., v, of linearly independent elements whose linear span is V.

Proof. Since V is finite-dimensional it is the linear span of a finite number
of elements u;, ..., Un. By Corollary 1 we can find a subset of these,
denoted by vy, ..., v, consisting of linearly independent elements whose
linear span must also be V.

DeriNiTiON. A subset S of a vector space V is called a basts of V if S
consists of linearly independent elements (that is, any finite number of
elements in S is linearly independent) and V' = L(S).

In this terminology we can rephrase Corollary 2 as

CoROLLARY 3. If V is a finite-dimensional vector space and if Uy, .. ., Unm
span V then some subset of Ui, . . ., Un forms a basis of V.

Corollary 3 asserts that a finite-dimensional vector space has a basis

containing a finite number of elements vy, ..., v,. Together with Lemma
4.5 this tells us that every element in V has a unique representation in the
form aiv; +- -+ anv, wWith oy, ..., o, in F.

Let us see some of the heuristic implications of these remarks. Suppose
that V is a finite-dimensional vector space over F; as we have seen above,
V has a basis vy, ..., v,. Thus every element » € V has a unique repre-
sentation in the form v = ayv; +- - -+ an,. Let us map V into F™ by
defining the image of ayv; + - - - + @z, to be (ay, ..., @,). By the unique-
ness of representation in this form, the mapping is well-defined, one-to-one
and is onto; it can be shown to have all the requisite properties of an
isomorphism. Thus V is isomorphic to F™ for some n, where in fact » is
the number of elements in some basis of V over F. If some other basis of
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V should have m elements, by the same token V would be isomorphic to
F™ _Since both F™ and F™ would now be isomorphic to V, they would
be isomorphic to each other.

A natural question then arises! Under what conditions on n and m are
F™ and F™ isomorphic? Our intuition suggests that this can only happen
when n = m. Why? For one thing, if F should be a field with a finite number
of elements,—for instance, if F = J,, the integers modulo the prime number
p—then F™ has p” elements whereas F™ has p™ elements. Isomorphism
would imply that they have the same number of elements, and so, we
would have n = m. From another point of view, if F were the field of real
numbers, then F™ (in what may be a rather vague geometric way to the
reader) represents real n-space, and our geometric feeling tells us that n-
space is different from m-space for n % m. Thus we might expect that if
F is any field then F™ is isomorphic to F™ only if n = m. Equivalently,
from our earlier discussion, we should expect that any two bases of ¥ have
the same number of elements. It is towards this goal that we prove the
next lemma.

Levma 4.6. If vy, ..., v, 25 @ basis of V over F and of wy, ..., wpin V
are linearly independent over F then m < n.

Proof. Every vector in V, so, in particular w,, is a linear combination
of v, ..., v,. Therefore the vectors wy, vy, ..., v, are linearly dependent.
Moreover, they span V since vy, ..., v, already do so. Thus some proper
subset of these W, vy, ..., v, With & < n — 1 forms a basis of V. We have
“traded off”’ one w, in forming this new basis, for at least one v,. Repeat the
procedure with the set wm_1, Wn, v, ..., v,,. From this linearly dependent
set, by Corollary 1 to Theorem 4.c, we can extract a basis of the form
Win—1, Wiy Vgqy ++ -, U5, 8§ < m — 2. Keeping up this procedure we eventually
get down to a basis of V of the form wy, ..., Wn—_1, Wpn, Va, Vs . ..; since
w; is not a linear combination of ws, ..., Wy,_1, the above basis must
actually include some ». To get to this basis we have introduced m — 1
w’s, each such introduction having cost us at least one v, and yet there
isavleft. Thusm — 1 <n — 1 and so m < n.

This lemma has as consequences (which we list as corollaries) the basic
results spelling out the nature of the dimension of a vector space. These
corollaries are of the utmost importance in all that follows, not only in this
chapter but in the rest of the book, in fact in all of mathematics. The
corollaries are all theorems in their own rights.

CoroLLARY 1. If V 1s finite-dimensional over F then any twn bases of V
have the same number of elements.
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Proof. Let vy, ..., v, be one basis of V over F and let w;, ..., w, be
another. In particular, wy, ..., wy, are linearly independent over F whence,
by Lemma 4.6, m < n. Now interchange the roles of the v’s and w’s and
we obtain that n < m. Together these say that n = m.

CoROLLARY 2. F™ is {somorphic F if and only if n = m.

Proof. F™ has, as one basis, the set of n vectors, 1,0,...,0), (0, 1, 0,
eeey0),...,(0,0,...,0,1). Likewise F™ has a basis containing m vectors.
An isomorphism maps a basis onto a basis (Problem 4, end of this section),
hence, by Corollary 1, m = n.

Corollary 2 puts on a firm footing the heuristic remarks made earlier
about the possible isomorphism of F™ and F™. As we saw in those remarks
V is isomorphic to F™ for some n. By Corollary 2, this n is unique, thus

CoroLLARY 3. If V s finite-dimensional over F then V s isomorphic to
F™ for a unique integer n; in fact, n is the number of elements in any basis
of V over F.

DrrinitioN. The integer n in Corollary 3 is called the dimension of V
over F.

The dimension of V over F is thus the number of elements in any basis
of V over F.

We shall write the dimension of V over F as dim V, or, the occasional
time in which we shall want to stress the role of the field F, as dimp V.

CoROLLARY 4. Any two finite-dimensional vector spaces over F of the same
dimension are isomorphic.

Proof. If this dimension is 7 then each is isomorphic to F™, hence they
are isomorphic to each other.

How much freedom do we have in constructing bases of V? The next
lemma asserts that starting with any linearly independent set of vectors
we can ‘“‘blow it up” to a basis of V.

Levma 4.7. If V 4s finite-dimensional over F and of uy, ..., um € V are
linearly independent then we can find vectors Um1, - - -, Um4r 20 V such that
Uty « vy Umy Umly «  +y Umr 05 @ Dasis of V.

Proof. Since V is finite-dimensional it has a basis; let 5, ..., va be a
basis of V. Since these span V, the vectors %, ..., Um, v1, - -+, V» als0 span
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V. By Corollary 1 to Theorem 4.c there is a subset of these of the form

UL, +++y Um, Viy --., ¥, Which consists of linearly independent elements
which span V. To prove the lemma merely put wmi1 = iy - ) Ungr =
V.

r

‘What is the relation of the dimension of a homomorphic image of V to
that of V? The answer is provided us by

LemMa 4.8. If V s finite-dimenstonal and ¢f W is a subspace of V then W
18 finite-dimensional, dim W < dim V and dim V/W = dim V — dim W.

Proof. By Lemma, 4.6, if n = dim V then any n -+ 1 elements in V are
linearly dependent; in particular, any n + 1 elements in W are linearly
dependent. Thus we can find a largest set of linearly independent elements
in W, wy, ..., Wnand m < n. If w &€ W then wy, ..., Wy, wis a linearly
dependent set, whence aw + ajw; + - -+ anty, = 0, and not all of the
a/sare 0. If @ = 0, by the linear independence of the w; we would get that
each o; = 0, a contradiction. Thus « 0, and so w = —a H(eyw; +-- -+
anWy,). Consequently, wy, ..., wy, span W; by this, W is finite-dimensional
over F, and furthermore, it has a basis of m elements, where m < n. From
the definition of dimension it then follows that dim W < dim V.

Now, let wy, ..., wy be a basis of W. By Lemma 4.7, we can fill this out
to a basis, wy, ..., Wy, vy, ..., 0 of V, where m 4+ r = dim V and m =
dim W.

Let 3, ..., D, be the images, in V = V/W of v, .. ., v,. Since any vector

v € Visof theformv = aywy + + + + 4+ amwWm + By + + -+ + B0y, then 3,
the image of v, is of the form & = 815, + ++ « + 8,7, (since w; = Wg = ++ - =
Wy, = 0). Thus 7y, ..., 7, span V/W. We claim that they are linearly in-
dependent, for if v49; +---+ v,5, = 0 then yy; +-- -+ v, € W, and
80 v101 + - - -+ v = Mwy +- - - + AW, which, by the linear independ-
ence of the set wy, ..., Wy, v1, ..., v, forces y; =+ =y, = Ay =-.-=
M = 0. We have shown that V/W has a basis of r elements, and so,
dim V/W=r=dim V—m=dim V — dim W.

CororraRrY. If A and B are fintte-dimensional subspaces of a vector space
V then A + B is finite-dimensional and dim (A + B) = dim (4) + dim (B)
— dim (4 N B).

+ B

=~

A
Proof. By the result of Problem 13 at the end of Section 1,

10EB’ and since A and B are finite-dimensional we get that dim (4 + B)
. . (A+B
— dim B = dim ——-———>=dim<
B ANB

Transposing yields the result stated in the lemma.

)=dim A —dim (4 N B).
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PROBLEMS

1. Prove Lemma 4.4.
2. (a) If F is the field of real numbers, prove that the vectors (1, 1,
0,0), (0,1, —1,0), and (0, 0, 0, 3) in F™* are linearly independ-
ent over F.
(b) What conditions on the characteristic of F would make the three
vectors in (a) linearly dependent?
3. If V has a basis of n elements give a detailed proof that V is isomor-
phic to F™.
4. If T is an isomorphism of ¥ onto W prove that 7' maps a basis of V'
onto a basis of W.
6. If V is finite-dimensional and T is an isomorphism of V into V
prove that 7' must map V onto V.
*6. If V is finite-dimensional and T is a homomorphism of V onto V
prove that 7 must be one-to-one, and s0, an isomorphism.
7. If V is of dimension n show that any set of n linearly independent
vectors in V forms a basis of V.
8. If V is finite-dimensional and W is a subspace of V such that dim V =
dim W prove that V = W.
9. If V is finite-dimensional and 7T is a homomorphism of V into itself
which is not onto prove that there is some v # 0 in ¥ such that v7 = 0.
10. Let F be a field and let F[z] be the polynomials in x over F. Prove
that F[z] is not finite-dimensional over F.
11. Let V,, = {p(z) € Flz]|deg p(z) < n}. Define T by

(a0 + o1z +- -+ ap_12® HT
=ay+ ai(z + 1) + as(z + 1)2 +- -t oz + 1)"‘1.

Prove that T is an isomorphism of V, onto itself.

12. Let W = {C\!o + ar ++ an_lxn_l E F[.’Z?”OZO + ay +'+
an—; = 0}. Show that W is a subspace of V,, and find a basis of W over F.

13. Let vy, ..., v, be a basis of V and let wy, ..., w, be any n elements
in V. Define T on V by (\vy 4+ -« M) T = Mwy + -+ -+ Mol

(a) Show that T is a homomorphism of V into itself.
(b) When is T an isomorphism?

14. Show that any homomorphism of V into itself, when V is finite-
dimensional, can be realized as in Problem 13 by choosing appropriate
elements wy, ..., Wy.

15. Returning to Problem 13, since vj, ..., v, is a basis of V, each
Wi = anly + - -+ amn, o € F. Show that the n? elements a;; of F
determine the homomorphism 7'

*16. If dimp V = n prove that dimp (Hom (V, V)) = n?.

17. If V is finite-dimensional and W is a subspace of V prove that there

is a subspace Wy of V such that V =W @ W,.
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3. Dual Spaces. Given any two vector spaces, V and W, over a field F
we have defined Hom (V, W) to be the set of all vector space homomor-
phisms of V into W. As yet Hom (V, W) is merely a set with no structure
imposed on it. We shall now proceed to introduce operations in it which
will turn it into a vector space over F. Actually we have already indicated
how to do so in the descriptions of some of the problems in the earlier
sections. However we propose to treat the matter more formally here.

Let S and T be any two elements of Hom (V, W); this means that these
are both vector space homomorphisms of V into W. Recalling the definition
of such a homomorphism, we must have (v; + v5)S = v:8 + 025 and
(aw1)S = «(v18) for all vy, vy € V and all @ € F. The same conditions also
hold for T.

We first want to introduce an addition for these elements S and T in
Hom (V, W). What is more natural than to define S + T by declaring
v(S + T) = vS + vT for allv € V? We must, of course, verify that S + T'
is in Hom (V, W). By the very definition of S 4+ T, if vy, v € V then
(0 + ) S+ T) = (v + v2)S + (v1 + v2)T';since (v; + v2)8 = v1S + 058
and (v; + v3)T = ;T + v,T and since addition in W is commutative we
get (v; +v)(S + T) = v48 + 017 4 vsS + v2T. Once again invoking the
definition of S + T the right-hand side of this relation becomes v1(S + T) +
v9(S + T);we have shown that (v; +v)(S+ T) =v,(S+ T) +v:(S+ T).
A similar computation shows that () + T) = a@(@S + T)). Con-
sequently S + T is in Hom (V, W). Let 0 be that homomorphism of V
into W which sends every element of V onto the zero element of W; for
S € Hom (V, W) let —8 be defined by v(—8) = — ®S). It is immediate
that Hom (V, W) is an abelian group under the addition defined above.

Having succeeded in introducing the structure of an abelian group on
Hom (V, W) we now turn our attention to defining AS for A € F and S €
Hom (V, W), our ultimate goal being that of making Hom (V, W) into a
vector space over F. For A € F and S € Hom (V, W) we define A\S by
v(AS) = A(®S) for all v € V. We leave it to the reader to show that AS is
in Hom (V, W) and that under the operations we defined, Hom (V, W) is
a vector space over F. However, we have no assurance that Hom (V, W)
has any elements other than the 0 homomorphism. Be that as it may, we
have proved

LemMma 4.9. Hom (V, W) is a vector space over F under the operations
described above.

A result such as that of Lemma 4.9 really gives us very little information;
rather it confirms for us that the definitions we have made are reasonable.
We would prefer some results about Hom (V, W) that have more of a bite
to them. Such a result is provided us in
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TueoRrEM 4.0. If V and W are of dimensions m and n, respectively, over F
then Hom (V, W) s of dimension mn over F.

Proof. We shall prove the theorem by explicitly exhibiting a basis of
Hom (V, W) over F consisting of mn elements.

Let vy, ..., vn be a basis of V over F and wy, ..., w, one for W over F.
Ifv € Vthenv = Ay + -+ -4 N\ Where Ay, ..., \y, are uniquely defined
elements of F'; define T';;:V — W by vT;; = \w;. From the point of view
of the bases involved we are simply letting v, T;; = 0for k 5 7 and v;T;; = w;.
It is an easy exercise to see that T';;isin Hom (V, W). Since 4 can be any of
1,2, ...,mandjanyof 1,2, ..., nthere are mn such T;’s.

Our claim is that these mn elements constitute a basis of Hom (V, W)
over F. For, let S € Hom (V, W); since v,S € W, and since any element
in W is a linear combination over F of wy, ..., w,, v1S = a;w; + ajaws +
-+ -+ ay Wy, for some ayy, ayg, ..., a1, in F. In fact, v;8 = eyw; +---+
Wy, fOI' 7 = 1, 2, ceey ML Consider So = 0(11T11 + a12T12 + . +
a1nTin + a9 Toy +- -+ a2nTon +-++ anTy + -+ @inTin +---+
1Ty + -+ -+ amal'mn. Let us compute vzS, for the basis vector vz Now
So = (el + -+ amiTm + 4 omalmn) = a1 (@Ti1) +
a1oWrT12) +- -+ am1Tm1) + -+ cmn(OkTmn). Since v;T;; = 0 for
1 5% k and vpTk; = w;, this sum reduces to vpSy = apywr +- -+ + paWn,
which, we see, is nothing but v5S. Thus the homomorphisms Sy and S agree
on a basis of V. We claim this forces Sy = S (see Problem 3, end of this
section). However Sy is a linear combination of the 7';;’s, whence S must
be the same linear combination. In short, we have shown that the mn
elements Ty1, T2, -+, Tiny +++y Tmiy - -y T'mn span Hom (V, W) over F.

In order to prove that they form a basis of Hom (V, W) over F there
remains but to show their linear independence over F. Suppose that
B11T11 + Bi2Tie +- -+ BinTin +- -+ BuaTa +- -+ BinTin +---+
BmiTmi +- -+ BmnTmn = 0 with B;; all in F. Applying this to vz we get
0 = 0BT +- -+ BijTs; 4+ BunTmn) = Brawr + Brows +- -+
BrnWs since viT;; = O for 7 = k and v;Ty; = w;. However, wy, ..., w, are
linearly independent over F, forcing Bx; = O for all & and j. Thus the T';;
are linearly independent over F, whence they indeed do form a basis of
Hom (V, W) over F.

An immediate consequence of Theorem 4.d is that whenever V 7 0)
and W s (0) are finite-dimensional vector spaces then Hom (V, W) does
not just consist of the element 0, for its dimension over F is nm 2> 1.

Some special cases of Theorem 4.d are themselves of great interest and
we list these as corollaries.

CoroLLary 1. If dimp V = m then dimp Hom (V, V) = m?.
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Proof. In the theorem put V = W, and so m = n, whence mn = m?.
CoroLLARrY 2. If dimp V' = m then dimy Hom (V, F) = m.

Proof. As a vector space F is of dimension 1 over F. Applying the theorem
yields dimy Hom (V, F) = m.

Corollary 2 has the interesting consequence that if V is finite-dimensional
over F it is isomorphic to Hom (V, F), for, by the corollary, they are of
the same dimension over F, whence by Corollary 4 to Lemma 4.6 they
must be isomorphic. This isomorphism has many shortcomings! Let us
explain. It depends heavily on the finite-dimensionality of V, for if V is
not finite-dimensional no such isomorphism exists. There is no nice, formal
construction of this isomorphism which holds universally for all vector
spaces. It depends strongly on the specialities of the finite-dimensional
situation. In a few pages we shall, however, show that a ‘‘nice’’ isomorphism
does exist for any vector space V into Hom (Hom (V, F), F).

DerintrioN. If V is a vector space then its dual space is Hom (V, F).

We shall use the notation V for the dual space of V. An element of V
will be called a lgnear functional on V into F.

If V is not finite-dimensional then V is usually too large and wild to be
of interest. For such vector spaces we often have other additional struc-
tures, such as a topology, imposed and then, as the dual space, one does
not generally take all of our V but rather a properly restricted subspace.
If V is finite-dimensional its dual space V is always defined, as we did it,
as all of Hom (V, F).

In the proof of Theorem 4.d we constructed a basis of Hom (V, W)
using a particular basis of V and one of W. The construction depended
crucially on the particular bases we had chosen for V and W respectively.
Had we chosen other bases we would have ended up with a different basis
of Hom (V, W). As a general principle, it is preferable to give proofs,
whenever possible, which are basis-free. Such proofs are usually referred to
as invariant ones. An invariant proof or construction has the advantage,
other than the mere aesthetic one, over a proof or construction using a
basis in that one does not have to worry how finely everything depends
on a particular choice of bases.

The elements of V are functions defined on V and having their values
in F. In keeping with the functional notation, we shall usually write
elements of V as f, g, ete. and denote the value on v € V as f(v) (rather
than as of).

Let V be a finite-dimensional vector space over F and let vy, ..., v, be
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a basis of V; let 4, be the element of ¥ defined by 4,(»,) = 0 for ¢ = j,
B,(v,) = 1, and G,(yvy + -+ + o, + -+ + aw,) = . In fact the 4,
are nothing but the T,; introduced in the proof of Theorem 4.d, for here
W = F is one-dimensional over F. Thus we know that 9y, ..., 9, form a
basis of V. We call this basis the dual basis of vy, ..., v,. Ifv £ 0 € V, by
Lemma 4.7 we can find a basis of the form v; = o, vz, ..+, Un and so there
is an element in V, namely 9, such that 9;(v;) = ﬁl(v) = 1 < 0. We have
proved

Lemuma 4.10. If V is finite-dimensional and v 5 0 € V then there is an
element f € V such that f(v) = 0.

In fact Lemma 4.10 is true if V is infinite-dimensional, but as we have
no need for the result, and since its proof would involve logical questions
that are not relevant at this time, we omit the proof.

Let vo € V, where V is any vector space over F. As f varies over 7V,
and v, is kept fixed f(vo) defines a functional on V into F; note that we are
merely interchanging the role of function and variable. Let us denote this
function by T'y,; in other words T',,(f) = f(vo) for any f € V. What can we
say about T,,? To begin with, T, (f + ¢) = (f + g)(v0) = f(vo) + g(vo) =

Too(f) + Toylg); furthermore, Tuy(Af) = () @) = M) = Ty (7). Thus
T, is in the dual space of V'! We write this space as f} and refer to it as the
second dual of V.

A
Given any element v € V we can associate with it an element T, in V.
A
Define the mapping ¢:V — 14 by wp = T, for every v € V. Isy a homo-

morphism of V into f}? Indeed it is! For, Tyiw(f) = f0 +w) = f(v) +
fw) = To(f) + Tow(f) = (Ty + Tw)(f), and 80 Tpiw = Ty + Ty, that is,
W+ wy = vy + wy. Smnlarly for A € F (\v)¢ = A(vy). Thus ¢ defines a

homomorphism of V into ﬁ’ The construction of y used no basis or special
properties of V; it is an example of an invariant construction.

When is ¢ an isomorphism? To answer this we must know when vy = 0,
or equivalently, when T, = 0. But if 7, = 0 then 0 = T',(f) = f(v) for all
f € V. However as we pointed out, without proof, for a general vector
space, given v 5 0 there is an f € V with f(v) # 0. We actually proved this
when V is finite-dimensional. Thus for V finite-dimensional (and, in fact,
for arbitrary V) ¢ is an ison}\orphism. However, when V is finite-dimensional

¥ is an isomorphism onto f>’ when V is infinite-dimensional y is not onto.
If V is finite-dimensional, by the second corolla,ry to Theorem 4.d, V

and ¥ are of the same dimension; 51mllar1y, V and V are of the same dimen-

sion; since ¢ is an isomorphism of V into V the equality of the dimensions
forces ¥ to be onto. We have proved
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Lemma 4.11. If V 48 finite-dimensional then ¢ ¢s an tsomorphism of V
A
onto V.,

A
‘We henceforth identify V" and f}, keeping in mind that this identification
is being carried out by the isomorphism .

Dermrrion. If W is a subspace of V then the annihilator of W, A(W) =
{fFEV|fw) =0allw € W},

We leave as an exercise to the reader the verification of the fact that
A(W) is a subspace of V. Clearly if U € W then A(U) D A(W).

Let W be a subspace of V, where V is finite-dimensional. If f € V let
f be the restriction of f to W; thus f is defined on W by f(w) = f(w) for
every w € W.Since f € V, clearly f € W. Consider the mapping T:V — W
defined by fT = ffor f € V. It is immediate that (f + ¢)T = fT + ¢T
and that (\f)T = \(fT). Thus 7' is a homomorphism of V into W. What is
the kernel of T'? If f is in the kernel of T then the restriction of f to W must
be 0; that is f(w) = 0 for all w € W. Also conversely if f(w) = 0 for all
w & W then f is in the kernel of T. Therefore the kernel of T is exactly
A(W).

We now claim that the mapping 7' is onto W. What we must show is that
given any element i € W then % is the restriction of some f € V, that is
h = f. By Lemma 4.7 if wy, . . ., Wy, is a basis of W then it can be expanded
to a basis of V of the form w;y, ..., Wy, v1, ..., v, where r + m = dim V.
Let W be the subspace of V spanned by vy, ..., v Thus V=W W,.
If h € W define f € 7 by: let v € V be written as v = w + w1, w € W,
w; € Wy, then f(v) = h(w). It is easy to see that f is in ¥ and that 7 = h.
Thus h = fT and so T maps V onto W. Since the kernel of 7 is A(W) by
Theorem 4. W is isomorphic to V/A(W). In particular they have the same
dimension. Let m = dim W, n = dim V and r = dim A(W). By Corollary
2 to Theorem 4.d, m = dim W and n = dim V. However, by Lemma, 4.8
dim V/A(W) = dim V — dim A(W) = n — r, and so m = n — r. Trans-
posing, 7 = n — m. We have proved

THEOREM 4.E. If ‘V 18 finite-dimensional and W is o subspace of V then
W is isomorphic to V/A(W) and dim A(W) = dim V — dim W.

CororrarY. A(A(W)) = W.

Proof. Remember that in order for the corollary even to make sense,

since W<V and A(A(W)) ¥, we have identified V with 7. Now
W < A(A(W)), for if w € W then wy = T, acts on V by T,(f) = f(w)
and so is 0 for allf € A(W). However dim A (A (W)) = dim V — dim 4 (W)
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(applying the theorem to the vector space V and its subspace A (W)) so
that dim A(A(W)) = dim V — dim A(W) = dim V — (dim V — dim W) =
dim W. Since W < A(A(W)) and they are of the same dimension, it
follows that W = A(A(W)).

Theorem 4.e has application to the study of systems of linear homogeneous
equations. Consider the system of m equations in 7 unknowns
0112y + G19%s + - -+ @1a%, = 0

2121 + GooTs ++ -+ agn, = 0

m1%1 + GmaZe + - -+ GunTp = 0

where the a;; are in F. We ask for the number of linearly independent

solutions (zy, ..., &) there are in F to this system.
In F™ let U be the subspace generated by the m vectors (a1, a1g, - . -, G1n),
(ag1, ags, - .-, Q2n)y ey (@m1y Gm2y - -5 Gma) and suppose that U is of

dimension 7. In that case we say the system of equations is of rank r.

Letv; = (1,0, ...,0),0=(0,1,0,...,0), ...,v,= (0,0, ...,0, 1)
be used as a basis of F™ and let 91, 9, .. ., 9, be its dual basis in F™. Any
fE€ F™ ig of the form f = z0; + 2a05 + - -+ 2,0, Where the z; € F.
When is f € A(U)? In that case, since

(@11y - -y 01n) € U, 0 = flary, asz, - .., @1n) =
f (1111”1 + - tage,) = (1’101 + x202 +- -:I——x 0.)(ayvy + - - -+ ay2,) =
21011 + Zottyg + -+ - Tplin since 9; (v,) =0 for 757 and 9;(v;) = 1.

Similarly the other equations of the system are satisfied. Conversely, every
solution (zi, ..., %) of the system of homogeneous equations yields an
element, z;0; + -+ -+ xu0n, in A(U). Thereby we see that the number of
linearly independent solutions of the system of equations is the dimension
of A(U), which, by Theorem 4.e is n — r. We have proved the following

TuEOREM 4.7, If the system of homogeneous linear equations:

a1y +- o+ 0102, = 0

a217%y +' -+ Uonln = 0

A1y +++ *F Qs = 0,

where a;; € F is of rank r then there are n — r linearly independent solutions
in F™,
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CoroLrarY. If n > m, that is, if the number of unknowns exceeds the
number of equations, then there is a solution (zy, ..., ) where not all of
L1y o0y Ty are 0.

Proof. Since U is generated by m vectors, and m < n, r = dim U <
m < n; applying Theorem 4.f yields the corollary.

PROBLEMS

1. Prove that 4(W) is a subspace of V.

9. If S is a subset of V let A(S) = {f € V|f(s) = 0 all s € S}. Prove
that A(S) = A(L(S)) where L(S) is the linear span of S.

3. If 8, T € Hom (V, W) and v,S = »,T for all elements v; of a basis
of V prove that S = T

4. Complete the proof, with all details, that Hom (V, W) is a vector
space over F.,

5. If ¢ denotes the mapping used in the text of V into V give a complete

proof that ¢ is a vector space homomorphism of V into V
6. If V is finite-dimensional and v; 5 v5 are in V prove that there is
an f € V such that f(vy) # f(vs).
7. If W, and W, are subspaces of V, which is finite-dimensional
describe A (W, + W) in terms of A(W;) and A(W,).
8. If V is finite-dimensional and W; and W, are subspaces of V
describe A(W; N W) in terms of A(W;) and A(W5).
9. If F is the field of real numbers find A(W) where:
(a) W is spanned by (1, 2, 3) and (0, 4, —1).
(b) W is spanned by (0,0,1, —1), (2,1,1,0), and (2, 1,1, —1).
10. Find the ranks of the following systems of homogeneous linear equa-
tions over F, the field of real numbers, and find all the solutions.
(a) 2y + 229 — 323 + 4ry = 0
2, + 3.’132 — X3 = 0
651)1 + T3 + 2:'54 = 0.
(b) =1 + 3z + 23 =0
T + 4wy + 23 = 0.
@ztrtaztaatas=0
Zq + 2582 =0
4oy +T2o+ 23+ 24+ 25 =0
$2—x3—‘394"'$5=0.
11. If f and g are in V such that f(v) = 0 implies g(v) = O prove that
g = N for some A € F.

4. Inner Product Spaces. In our discussion of vector spaces the specific
nature of F as a field, other than the fact that it is a field, has played
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virtually no role. In this section we no longer consider vector spaces V over
arbitrary fields F; rather, we restrict F' to be the field of real or complex
numbers. In the first case V is called a real vector space, in the second, a
complex vector space.

We all have had some experience with real vector spaces—in fact both
analytic geometry and the subject matter of vector analysis deal with
these. What concepts used there can we carry over to a more abstract
setting? To begin with we had in these concrete examples the idea of
length; secondly we had the idea of perpendicularity, or, more generally,
that of angle. These became special cases of the notion of a dot product
(often called a scalar or inner product).

Let us recall some properties of dot product as it pertained to the special
case of the three-dimensional real vectors. Given the vectorsv = (z;, 5, 23)
and w = (yi1, Ya, ¥3), Where the z’s and y’s are real numbers, the dot prod-
uct of v and w, denoted by v-w, was defined as v-w = zy; + zoys +
z3y3. Note that the length of v is given by /v -v and the angle 6 between
v and w is determined by

vew
cos f = —F/——F—-
Voo Vw-w

What formal properties does this dot product enjoy? We list a few:

(1) v.v > 0andv-v = 0if and only if » = 0.
@) vow=w-v

3) u-(aw + pw) = a(u-v) + Bu-w)

for any vectors u, v, w and real numbers «, 3.

Everything that has been said can be carried over to complex vector
spaces. However to get geometrically reasonable definitions we must make
some modifications. If we simply define v-w = z;y; + Za2y2 + 23ys for
v = (z1, x5, x3) and w = (¥;, Ys, y3) where the 2’s and y’s are complex
numbers, then it is quite possible that v-» = 0 with v # 0; this is illus-
trated by the vector v = (1, 4, 0). In fact, v-» need not even be real. If,
as in the real case, we should want v-v to represent somehow the length of
v, we should like that this length be real and that a nonzero vector should
not have zero length.

We can achieve this much by altering the definition of dot product
slightly. If @ denotes the complex conjugate of the complex number «,
returning to the » and w of the paragraph above let us define v-w =
T(§y + Zofs -+ 237s. For real vectors this new definition coincides with the
old one; on the other hand, for arbitrary complex vectors » # 0, not only
is v-v real, it is in fact positive. Thus we have the possibility of introducing,
in a natural way, a nonnegative length. However, we do lose something;
for instance it is no longer true that v-w = w-v. In fact the exact relation-



152 VECTOR SPACES AND MODULES CH. 4

ship between these is v-w = 7. Let us list a few properties of this dot
product:

Q) vw=uwD

(2) v-v >0, and v-v = 0 if and only if » = 0.
8) (au -+ Bv) w = a(u-w) + Bl -w)

“) u-(aw 4 Bw) = a(u-v) + flu-w),

for all complex numbers «, 8 and all complex vectors «, v, w.
We reiterate that in what follows F is either the field of real or complex
numbers.

DrrmnrrioN. The vector space V over F is said to be an ¢nner product
space if there is defined for any two vectors u, v € V an element (u, v) in
F such that:

1) (u,v) = @, u)
2) (w,u) > 0and (u,w) =0if and onlyif u =0
8) (au + pv, w) = alu, w) + B, w)

forany u,v,w € Vandea, 8 € F.

A few observations about properties (1), (2), and (3) are in order. A
function satisfying them is called an inner product. If F is the field of com-
plex numbers, property (1) implies that (u, w) is real, and so property (2)
makes sense. Using (1) and (3) we see that (u, o + fw) = (aw + Bw, u) =
a(v, u) + Bw, w) = a@, w) + B(w, u) = aly, v) + By, w).

We pause to look at some examples of inner product spaces.

ExamprE 1. In F™ define, for w = (as, ..., a,) and v = (By, ..., Bn),

(u, ) = aufy + asfs +- -+ anBy. This defines an inner product on
Fo,

Exampre 2. In F® define for u = (oy, @) and v = (81, B2), (u, v) =

20181 + a1Bs + @By + asBs. It is easy to verify that this defines an inner
product on F®.

Examprr 3. Let V' be the set of all continuous complex-valued func-
tions on the closed unit interval [0, 1]. If f(£), ¢(t) € V define (f(t), g(®)) =

1
f 1) g(@) dt. We leave it to the reader to verify that this defines an inner
0

product on V.

For the remainder of this section V will denote an inner product space.
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DerivitioN. If v € V then the length of v (or norm of v), written as

[l v, is defined by || v || = V' (@, v).

Levma 4.12. If w, v €V and o, BEF then (au + By, ou + o) =
adi(u, w) + aB(u, v) + @B, w) + BB, v).

Proof. By property (3) defining an inner product space, (au + Bv, au +
Bv) = a(u, au + Bv) + B(v, au 4 Bv); but (v, au + Bv) = a(u, u) + B(u, v)
and (v, au + Bv) = a@v, u) + B, v). Substituting these in the expression
for (au 4+ Bv, au + Bv) we get the desired result.

COROLLARY. || o || = |af || u|.

Proof. || au ||* = (ou, au) = aa(u, u) by Lemma 4.12 (with v = 0). Since
aa = |a|?and (v, u) = ||u||?, taking square roots yields || au || = |a| | u|.

We digress for a moment, and prove a very elementary and familiar
result about real quadratic equations.

LemMma 4.13. If a, b, ¢ are real numbers such that
a > 0 and a)? + 2b\ + ¢ > 0 for all real numbers \ then b*> < ac.

Proof. Completing the squares,
2 1 2 b?
o\ + 2B\ + ¢ = - (a\ + b)? + c___).
a a

Since it is greater than or equal to 0 for all A, in particular this must be true
2

—-b
for A = — . Thus ¢ — — > 0, and since a > 0 we get b* < ac.
a a

We now proceed to an extremely important inequality, usually known
as the Schwarz inequality

THEOREM 4.6. If u, v € V then |(w,v)| < [ u] | v |-

Proof. If w = 0 then both (u, v) =0 and |u || [|v || = 0, so that the
result is true there.

Suppose, for the moment, that (u, v) is real and w # 0. By Lemma 4.12,
for any real number A, 0 < O\ + v, M + v) = N(u, w) + 2(u, )\ +
(v, v). Let @ = (u, u), b = (u, v), and ¢ = (v, v); for these the hypothesis
of Lemma 4.13 is satisfied, so that b? < ac. That is, (u, v)® < (u, u)(, v);
from this it is immediate that | (u,v) | < [ || [ v ||.
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If & = (u, v) is not real, then it certainly is not 0, so that u/« is mean-

ingful. Now,
u 1 1
<—-: v) =—(u,v) = (u,0) =1,

a a (u, v)

and so it is certainly real. By the case of the Schwarz inequality discussed
in the paragraph above,

e el
since

2=
we get 1S”u[[[l:vil,

whence |a| < || u || || v |. Putting in that a = (u, v) we obtain
[, )| < ||u] ||v ], the desired result.

Specific cases of the Schwarz inequality are themselves of great interest.
We point out two of them.

(1) ¥V = F®™ with (u,v) = a1 By + -+ apBn, where u = (ay, ..., ay)
and v = (81, ..., Bn) then Theorem 4.g implies that
larBy + -+ anBal® < (Jau|® +- -+l D([B1] +- -+ [Ba]?).

(2) If V is the set of all continuous, complex-valued functions on [0, 1]

1
with inner product defined by (f(¥), ¢(¥)) = f f® g@ dt, then Theorem
4.g implies that 0

2

1
fo 1) 700 de

1 1
sfo lf(t)[2dtf0 lg@)|? dt.

The concept of perpendicularity is an extremely useful and important
one in geometry. We introduce its analog in general inner product spaces.

Dzrinirion. If u, v € V then u is said to be orthogonal to v if (u,v) = 0.

_Note that if u is orthogonal to v then v is orthogonal to u, for (v, u) =
(u,v) =0=0.

DeriNtrion. If W is a subspace of V, the orthogonal complement of W,
W+, is defined by Wt = {z € V|(z, w) = O forallw € W}.
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Lemma 4.14. W is a subspace of V.

Proof. If a, b € W™ then for all &, 8 € F and allw € W, (aa + 6b, w) =
a(a, w) + B(b, w) = 0 since a, b € W,

Note that W N W+ = (0), for if w € W N W+ it must be self-orthog-
onal, that is (w, w) = 0. The defining properties of an inner product
space rule out this possibility unless w = 0.

One of our goals is to show that V' = W + W=. Once this is done, the
remark made above will become of some interest, for it will imply that V
is the direct sum of W and W+.

DeriNiTioN. The set of vectors {v,} in V is an orthonormal set if

(1) each v; is of length 1 (i.e., (v;, v;) = 1)
2) for < =3, (v;,v,) = 0.

Lemma 4.15. If {v;} is an orthonormal set then the vectors in {v;} are linearly
independent. If w = oqv; ++ - -+ apvpthen oy = (w,v;) fori = 1,2, ..., n.

Proof. Suppose that aiv; + agvs + -+ apw, = 0. Therefore 0 =
(alvl +---+ Qplnp, vi) = al(vly U,,,) +---+ an(vm Uz)- Since (vj) 2)—,,) =0
for j 4 ¢ while (v, v;) = 1, this equation reduces to «; = 0. Thus the »/’s
are linearly independent.

If w= oqv; +---+ o, then computing as above yields (w, v;) = «;.

Similar in spirit and in proof to Lemma 4.15 is

Lemma 4.16. If {v1, ..., v,} 18 an orthonormal set in V and of w € V then
u=w— (w,v)v; — (W, va)vs —+-— (W, VY)v; —+ -+ — (W, V)0, 5 orthog-
onal to each of vy, V2, ..., Un.

Proof. Computing (u, v;) for any 7 < n, using the orthonormality of-
V1, ..., Uy yields the result.

The construction carried out in the proof of the next theorem is one which
appears and reappears in many parts of mathematics. It is a basic pro-
cedure and is known as the Gram-Schmidt orthogonalization process. Al-
though we shall be working in a finite-dimensional inner product space,
the Gram-Schmidt process works equally well in infinite-dimensional
situations.

THEOREM 4.H. Let V be a finite-dimensional inner product space; then V
has an orthonormal set as a basts.
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Proof. Let V be of dimension n over F and let v, ..., v, be a basis of V.
From this basis we shall construct an orthornormal set of n vectors; by
Lemma 4.15 this set is linearly independent so must form a basis of V.

We proceed with the construction. We seek n vectors wy, ..., w, each
of length 1 such that for 7 # j, (w;, w;) = 0. In fact we shall finally pro-
duce them in the following form: w; will be a multiple of v;, we will be
in the linear span of w; and vy, ws in the linear span of wy, we, and vs, and
more generally, w; in the linear span of wq, wy, ..., W1, V.

Let
U1

1 m ;
then n
1 U1

1
. <n ol Ton n) =~ e =

whence || w1 | = 1. We now ask: for what value of « is cw; + vz orthogonal
to wi? All we need is that (cw; + v, w;) = 0, that is a(w;, w;) +
(v, wy) = 0. Since (w;, wy) = 1, & = — (vg, wy) will do the trick. Let us =
— (vg, wi)w; + vy} ug is orthogonal to w; since v; and vy are linearly
independent, w; and v, must be linearly independent, and so us # 0.
Let wy = (ug/| uz ||); then {wy, we} is an orthonormal set. We continue.
Let ug = —(vs, wy)w; — (v3, wy)ws + v3; a simple check verifies that
(ug, wy) = (ug, wy) = 0. Since w;, we, and v3 are linearly independent
(for w;, wy are in the linear span of v; and vs), uz # 0. Let wg = (ug/|| us |);
then {w;, ws, ws} is an orthonormal set. The road ahead is now clear.
Suppose that we have constructed wy, ws, ..., w;, in the linear span of
v1, ..., v;, which form an orthonormal set. How do we construct the next

one, w;y1? Merely put w;y = —@ipr, W)W — Qigr, W)Wz — -+ —
(Vie1, Wo)Ws + Vo1, That w,g 5 0 and that it is orthogonal to each of
wy, ..., w, we leave to the reader. Put wir; = (Wap1/|| wir1 [)!

In this way, given r linearly independent elements in V we can construct
an orthonormal set having r elements. If particular, when dim V = n,
from any basis of V we can construct an orthonormal set having n elements.
This provides us with the required basis for V.

We illustrate the construction used in the last proof in a concrete case.
Let F be the real field and let V be the set of polynomials, in a variable z,

over F of degree 2 or less. In V we define an inner product by: if p(z),
1

q(z) € V then (plz), ¢(x)) = | p(x)g(x) dz. Let us start with the basis
—1

v1 =1, v3 = x, v3 = 22 of V. Following the construction used

V1 1 1
W1 = = T 5
2
[ ol \/ L do V2
—1

Ug = —(vg, W1)wy + vy,
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which after the computations reduces to u; = z, and so

U _ z \/5
“Twl [ R
z° dx

Wa

-1
finally, ug = — (v3, w1)w; — (vs, wo)wg + v3 = e + 22, and so
-1
T e
Us 3 + ‘
w3z = = T ==
-1
[l us || \/f (“__ + x2)2 s
-\ 3

We mentioned the next theorem earlier as one of our goals. We are now
able to prove it.

10
Z (=1 4+ 32%).

THEOREM 4.1. If V s a finite-dimensional inner product space and if W is
o subspace of V then V.= W + W. More particularly, V is the direct sum
of Wand W+.

Proof. Because of the highly geometric nature of the result, and because
it is so basic, we give several proofs. The first will make use of Theorem 4.h
and some of the earlier lemmas. The second will be motivated geometrically.

First Proof. As a subspace of the inner product space V, W is itself an
inner product space (its inner product being that of V restricted to W). Thus

we can find an orthonormal set wy, ..., w, in W which is a basis of W. If
v € V,by Lemma 4.16, vy = v — (v, w)w; — (v, we)ws — - - - — (v, ww, is
orthogonal to each of wy, - - -, w, and so is orthogonal to W. Thus v, € W+,

and since v = vy + (v, w)wy + - -+ @, w)w,), v € W + W, Therefore
V =W + W. Since W N Wt = (0), this sum is direct.

Second Proof. In this proof we shall assume that F is the field of real
numbers. The proof works, in almost the same way, for the complex num-
bers; however, it entails a few extra details which might tend to obscure the
essential ideas used.

Let v € V; suppose that we could find a vector wg € W such that
lv —wo| < |v—w] for allw € W. We claim that then (» — wo, w) =0
for all w € W, that is, v — wo € W.

If w € W, then wo + w € W, in consequence of which

v — wo, v — wo) < (v — (wo + w), v — (wo + w)).

However the right-hand side is (w, w) + (v — wo, v — wo) — 2(v — wo, W),



158 VECTOR SPACES AND MODULES CH. 4

leading to 2(v — wo, w) < (w, w) for allw € W. If m is any positive integer,

since % € W we have that

2 w w o w 1
"(U'“’wo,w)=2 v_wOJ—')S - - =~—2-('w,w),
m m m

m m

and so 2(v — wy, w) < (1/m)(w, w) for any positive integer m. However
1/m)(w, w) — 0asm — o, whence 2(v — wo, w) < 0. Similarly, —w €W,
and 500 < —2(v — wo, w) = 2(v — wo, —w) < 0, yielding (v — wg, w) =0
forallw € W. Thusv — wo € W, hencev € wo + W+ C W + W

To finish the second proof we must prove the existence of a wy € W
suchthat || — wqg || < [|v — w || for allw € W. We indicate sketchily two
ways of proving the existence of such a w.

Let uy, ..., ur be a basis of W; thus any w € W is of the form w =
Mug + 0+ Agup. Let 8g = (ug, uj) and let v; = (v, ug) for v € V. Thus
W—=w v—w) = @—Nug—— MNll, V= MW — -~ NWp) =
(v, ) — ZAN;Bs — 22N;v;. This quadratic function in the N’s is nonnegative
and so, by results from the calculus, has a minimum. The \'s for this mini-
mum, M@, @, ..., 0@ give us the desired vector wy = A @uy +- -+
+ kk(")uk inW.

A second way of exhibiting such a minimizing w, is as follows. In V define
ametric { by ¢(z,y) = ||z — y ||; one shows that ¢ is a proper metric on V,
and V is now a metric space. Let S = {w € W| ||lv — w || < || v ||}; in this
metric S is a compact set (prove!) and so the continuous function f(w) =
|» — w] defined for w € S takes on a minimum at some point wy € 8.
We leave it to the reader to verify that wo is the desired vector satisfying
v —wo || £ [[v—w] forallw & W.

CoroLLARY. If V 1s a finite-dimensional inner product space and W is a
subspace of V then (WH)* = W.

Proof. If w € W then forany u € W, (w, u) = 0, whence W < (WH)*.
Now V =W+ Wand V =Wt 4+ (WH)+; from these we get since the
sums are direct dim (W) = dim (W*)). Since W < (W+)* and is of the
same dimension as (W) it follows that W = (W) *.

PROBLEMS

In all the problems V is an inner produet space over F.
1. If F is the real field and V is F® show that the Schwarz inequality
implies that the cosine of an angle is of absolute value at most 1.
2. If F is the real field find all 4-tuples of real numbers (a, b, ¢, d)
such that for « = (a1, a2), v = (81, B2) € F® (u, v) = acyfy + bazfs +
ca1fz + daoB; defines an inner product on F®,
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8. In V define the distance ¢(u,v) from u to v by ¢(u,v) = [|u — v .
Prove that:
1) ¢(u,v) > 0 and {(u,v) = 0 if and only if u = v.
(@) §(w,v) = @, w).
@3) t(u,v) < ¢(u, w) + r(w, v) (triangle inequality).
4. If {wy, ..., wn} is an orthonormal set in V, prove that

i | (ws, 0) 2< || v ||? for any v € V.

(Bessel tnequality)
5. If V is finite-dimensional and if {wy, ..., w,} is an orthonormal set

m
in V such that Y | (w;,v)|? = [ v||* forevery v € V, prove that {wy, . . ., W)
i=1
must be a basis of V.

6. If dim V = n and if {wy, ..., wy,} is an orthonormal set in ¥V prove
that there exist vectors w41, . . ., wpsuch that {ws, ..., Wn, W1, ..., Wa}
is an orthonormal set (and basis of V).

7. Use the result of Problem 6 to give another proof of Theorem 4.i.

8. In V prove the parallelogram law:

Tutol®+lw—vl®=20ul*+Iv]?.

Explain what this means geometrically in the special case V = F®, where
F is the real field, and where the inner product is the usual dot product.
9. Let V be the real functions y = f(z) satisfying d?y/dz? + 9y = 0.
(a) Prove that V is a two-dimensional real vector space.

(b) In V define (y, 2) = f yz dz. Find an orthonormal basis in V.
0
10. Let V be the set of real functions y = f(z) satisfying
d®y d%y

dy
@—6&?+11£—6y=0.

(a) Prove that V is a three-dimensional real vector space.

0
(b) In V define (u,v) = f wv dz. Show that this defines an inner
product on V and find an orthonormal basis for V.
11. If W is a subspace of V and if v € V satisfies (v, w) + (w,v) <
(w, w) for every w € W, prove that (v, w) = 0 for every w € W.
12. If V is a finite-dimensional inner product space and if f is a linear
functional on V (i.e., f € V) prove that there is a uo € V such that f(v) =
(v, up) for allv € V.



160 VECTOR SPACES AND MODULES CH. 4

5. Modules. The notion of a module will be a generalization of that of a
vector space; instead of restricting the scalars to lie in a field we shall allow
them to be elements of an arbitrary ring.

This section has many definitions but only one main theorem. However
the definitions are so close in spirit to ones already made for vector spaces
that the main ideas to be developed here should not be buried in a sea of
definitions.

DzriniTioN. Let B be any ring; a nonempty set M is said to be an
R-module (or, a module over R) if M is an abelian group under an operation
+ such that for every » € R and m & M there exists an element rm in M
subject to:

1) r(a +b) =ra+rd
(2) r(sa) = (rs)a
@) (r+ s)a =ra+ sa

foralla,b & M andr, s € R.

If R has a unit element, 1, and if 1m = m for every element m in M then
M is called a unital R-module. Note that if R is a field, a unital R-module
is nothing more than a vector space over R. All our modules shall be unital
omes.

Properly speaking, we should call the object we have defined a left R-
module for we allow multiplication by the elements of R from the left. Simi-
larly we could define a right R-module. We shall make no such left-right dis-
tinction, it being understood that by the term R-module we mean a left
R-module.

Exampre 1. Every abelian group G is a module over the ring of inte-
gers!

For, write the operation of G as + and let na, for a € @ and 7 an integer,
have the meaning it had in Chapter 2. The usual rules of exponents in
abelian groups translate into the requisite properties needed to make of @
a module over the integers. Note that it is a unital module.

ExamprE 2. Let R be any ring and let M be a left-ideal of R. Forr € R,
m € M let rm be the product of these elements as elements in R. The
definition of left-ideal implies that rm € M, while the axioms defining a
ring insure us that M is an R-module. (In this example, by a ring we mean
an associative ring, in order to make sure that r(sm) = (rs)m.)

ExampLE 3. The special case in which M = R; any ring R is an R-
module over itself.



SEC. 5 MODULES 161

ExampLE 4. Let R be any ring and let ) be a left-ideal of B. Let M con-
sist of all the cosets, @ 4+ \, where a € R, of A in R.

In M define (@ +N) + GO+ N =(@+b) +rand rla + ) = ra + \.
M can be shown to be an E-module. (See Problem 2, end of this section.)
M is usually written as R — M\ (or, sometimes, as R/\) and is called the
difference (or quotient) module of R by .

An additive subgroup A of the R-module M is called a submodule of M
if whenever » € R and a € A then ra € A.

Given an R-module M and a submodule A we could construct the
quotient module M /4 in a manner similar to the way we constructed
quotient groups, quotient rings, and quotient spaces. One could also talk
about homomorphisms of one E-module into another one, and prove the
appropriate homomorphism theorems. These occur in the problems at the
end of this section.

Our interest in modules is in a somewhat different direction; we shall at-
tempt to find a nice decomposition for modules over certain rings.

DeriNiTioN. If M is an R-module and if M1, ..., M, are submodules of
M then M is said to be the direct sum of My, ..., M,if every element m € M
can be written in a wnique manner as m = m; + my +- - -+ m, where
my €M1, M2€M2, ceny m,,CMs.

As in the case of vector spaces, if M is the direct sum of M, ..., M, then
M will be isomorphic, as a module, to the set of all s-tuples, (my, ..., m,)
where the 7th component m, is any element of M,, where addition is com-
ponentwise, and where r(my, ..., ms) = (rmy, rms, ..., rms) for r € R.
Thus, knowing the structure of each M, would enable us to know the struc-
ture of M.

Of particular interest and simplicity are modules generated by one ele-
ment; such modules are called cyclic. To be precise:

DerFintTIoN. An RB-module M is said to be cyclic if there is an element
mo € M such that every m € M is of the form m = rmy where r € E.

For R, the ring of integers, a cyclic R-module is nothing more than a
cyclic group.
We still need one more definition, namely,

DeriNITION. An R-module M is said to be finitely-generated if there exist
elements ay, . .., a, € M such that every m in M is of the formm = ria; +
Tolg + -+ Taln.

With all the needed definitions finally made, we now come to the theorem
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which is the primary reason for which this section exists. It is often called
the fundamental theorem on finitely-generated modules over Euclidean rings.
In it we shall restrict B to be a Euclidean ring (see Chapter 3, Section 7);
however the theorem holds in the more general context in which R is any
principal ideal domain.

TuEorEM 4.3. Let R be a Euclidean ring; then any finitely-generated R-
module, M, is the direct sum of a finite number of cyclic submodules.

Proof. Before becoming involved with the machinery of the proof, let us
see what the theorem states. The assumption that M is finitely-generated
tells us that there is a set of elements ay, ..., a, € M such that every ele-
ment in M can be expressed in the form rya; -+ reas =+ - - - + 740, Where the
r; € R. The conclusion of the theorem states that when R is properly condi-
tioned we can, in fact, find some other set of elements by, ..., b, in M
such that every element m € M can be expressed in a unique fashion as
m = s1by +- - -+ s,b, with s; € R. A remark about this uniqueness; it does
not mean that the s; are unique, in fact this may be false; it merely states that
the elements s,b; are. That is, if m = s;b; +-- -+ seby and m = siby +
-+ -+ sb, we cannot draw the conclusion that s; = 7,82 = 83, ..., 8q = 8,
but rather, we can infer from this that s;b; = s1by, ..., 85bg = s3b,.

Another remark before we start with the technical argument. Although
the theorem is stated for a general Euclidean ring we shall give the proof in
all its detail only for the special case of the ring of integers. At the end we
shall indicate the slight modifications needed to make the proof go through
for the more general setting. We have chosen this path to avoid cluttering
up the essential ideas, which are the same in the general case, with some
technical niceties which are of no importance.

Thus we are simply assuming that M is an abelian group which has a
finite-generating set. Let us call those generating sets having as few ele-
ments as possible minimal generating sets and the number of elements in
guch a minimal generating set the rank of M.

Our proof now proceeds by induction on the rank of M.

If the rank of M is 1 then M is generated by a single element, hence it is
cyclic; in this case the theorem is true. Suppose that the result is true for all
abelian groups of rank ¢ — 1, and that M is of rank g.

Given any minimal generating set ay, ..., a, of M, if any relation of the
form nya; + noas +- - -+ nga, = 0 (ny, ..., n, integers) implies that
1A = Nalg =~ -+ = Ny, = 0, then M is the direct sum of My, Mo, ...,

M, where each M; is the cyclic module (ie., subgroup) generated by
a; and so we would be done. Consequently, given any minimal gener-
ating set by, ..., b, of M, there must be integers 7y, ..., 7, such that
riby +- - -+ by = 0 and in which not all of rby, 79bs, ..., rsb, are 0.
Among all possible such relations for all minimal generating sets there is a
smallest possible positive integer occurring as a coefficient. Let this integer
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be s; and let the generating set for which it occurs be ay, . . ., aq. Thus
1) 8101 + 8289 +- - -+ s4a, = 0.

We claim that if ria1 +---+ 7,0, = 0 then s;|ry; for r = ms, + ¢,
0 <t < s1, and so multiplying equation (1) by m and subtracting from
ria; + -+ 140 = Oleads tota; + (ry — msp)ag +- - -+ (ry — msg)a, = 0;
since ¢ < s; and s; is the minimal possible positive integer in such a relation,
we must have that ¢ = 0.

We now further claim that s;|s; for ¢ = 2, ..., ¢. Suppose not; then
81 1 89, 82y, 80 82 = mas; + ¢, 0 <t < s;. Now a7 = a; + maay, ay, ...,
a, also generate M, yet s;a1 + tas + ssg3 +- - -+ s,a, = 0; thus ¢ occurs
as a coefficient in some relation between elements of a minimal generating
set. But this forces, by the very choice of s;, that either ¢ = 0 or ¢ > s;.
We are left with ¢ = 0 and so0 s; | se. Similarly for the other s;. Let us write
8; = MySy.

Consider the elements a;* = ay + meas + msas +- - -+ mqay, ag, ...,
ay. They generate M ; moreover, s;a;* = 810y + MoS10s + - - - + MS1a, =
8101 + 820 + - - -+ 8pa = 0. If rya1* + roa9 + - - - 4 r4a, = 0, substitut-
ing for a;*, we get a relation between qay, ..., a, in which the coefficient of
ay is ry; thus s;|r; and so r1a:* = 0. If M, is the cyclic module generated
by a;* and if M, is the submodule of M generated by a,, ..., a,, we have
just shown that M; N My = (0). But My + My = M since a;*, a, ..., a4
generate M. Thus M <s the direct sum of My and M. Since M, is generated
by as, ..., aq, its rank is at most ¢ — 1 (infact, it is ¢ — 1), so by the indue-
tion M, is the direct sum of c¢yclic modules. Putting the pieces together we
have decomposed M into a direct sum of cyclic modules.

CoROLLARY. Any finite abelian group ts the direct product (sum) of cyclic
groups.

Proof. The finite abelian group @ is certainly finitely-generated, in fact
it is generated by the finite set consisting of all its elements. Therefore ap-
plying Theorem 4.j yields the corollary.

Suppose that R is a Euclidean ring with Euclidean function d. We modify
the proof given for the integers to one for R as follows:

(1) Instead of choosing s; as the smallest possible positive integer occur-
ring in any relation among elements of a generating set, pick it as
that element of R occurring in any relation whose d-value is minimal.

(2) In the proof that s;|r; for any relation ria; + - - -+ 7,0, = 0, the
only change needed is that r; = ms; + ¢ where either

t=0ord®) <d(s);
the rest goes through. Similarly for the proof that s;|s;.
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Thus with these minor changes the proof holds for general Euclidean
rings, whereby Theorem 4.j is completely proved.

We return to finite abelian groups. Let G be a finite abelian group of
order p;*'pe®? ... pr**, the p; distinct primes. Then G is the direct product
of its Sylow subgroups Sy, . . ., Sp,. For what we are about to say, from this
remark, it will be sufficient to consider the case wherein G is of order p", p a
prime number.

@ is the direct product of cyclic groups Gy, . .., Gy of orders p™, ..., p"*

respectively, where ny; > ng >+ > ng. Let us call ny, ng, ..., ny the in-
variants of G. (Very often, p™, p™, ..., p"* are called the invariants.) What
must be true for these?
The order of GG is
o(GDo(G)
o(Gy N Gy)

and since the product of Gy and Gy is direct, G4 N Gz = (e); that is,
0(G1Gs) = 0(G1)o(Gs) = p™p™ = p™T™2, Continuing we get p" = 0o(@) =
0(G1Gs ... Gy) = p™T " *m% Thusng + ng ++- -+ ng = n. In terms pre-
viously used (Chapter 2, Section 11) ny, .. ., n form a partition of z.

Given an abelian group of order p™ we get a partition of n. On the other
hand, given a partition of n, n = ny 4+ ng 4 - - 4+ ng, we can construct an
abelian group of order p®, in the following way: let Gy be a cyclic group of
order p™, G5 one of order p™, ..., G one of order p™*; let G be the external
direct product of Gy, ..., Gy. G is an abelian group of order p”.

Therefore for each partition there is an abelian group and for each
abelian group, a partition. If we showed that the invariants of G charac-
terize G up to isomorphism, we would have a one-to-one correspondence
between the partitions of n and the non-isomorphic abelian groups of order
p". One can show this to be the case, that is, G is isomorphic to Gy, where
both are abelian groups of order p”, if and only if they have the same in-
variants (see Problem 15, end of this section).

Let p(n) be the number of partitions of 7. Then

TavorEM 4.K. The number of non-isomorphic abelian groups of order
p" is p(n).

CoroLLARY. The number of mon-isomorphic abelian groups of order
PP . .. PKE, p, distinct primes, 18 p(ny)p(ng) ... p(ng).

PROBLEMS

1. Verify that the statement made in Example 1 that every abelian
group is a module over the ring of integers is true.
2. Verify that the set in Example 4 is an R-module.
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3. Suppose that R is a ring with a unit element and that M is a module
over R but is not unital. Prove that there exists an m < 0 in M such that
rm = 0 for all r € R.

Given two R-modules M and N then the mapping T from M into N is
called a homomorphism (or R-homomorphism or module homomorphism) if
@) (m1+ mo)T = mT + meT
() (rm)T = r(m,T)
for all my, mg € M and all r € R.

4. If T is a homomorphism of M into N let K(T) = {z € M|zT = 0}.
Prove that K(T) is a submodule of M and that I(T) = {zT |z € M} isa
submodule of N.

5. The homomorphism 7' is said to be an isomorphism if it is one-to-one.
Prove that T is an isomorphism if and only if K(T) = (0).

6. Let M, N, Q be three R-modules, and let T be a homomorphism of
M into N and 8 a homomorphism of N into Q. Define TS:M — @ by
m(TS) = (mT)S for any m € M. Prove that TS is an R-homomorphism
of M into @ and determine its kernel, K(TS).

7. If M is an R-module and A4 is a submodule of M/ define the quotient
module M /A (use the analogs in group, rings, and vector spaces as a guide)
so that it is an R-module and prove that there is an R-homomorphism of M
onto M/A.

8. If T is a homomorphism of M onto N with K(T) = A, prove that N
is isomorphic (as a module) to M /A.

9. If A and B are submodules of J/ prove:

(a) A N Bis a submodule of M.

() A+ B = {a+bla€c A, b & B} is a submodule of M.
(c) (A + B)/B is isomorphic to 4/(4 N B).

10. An R-module M is said to be irreducible if its only submodules are (0)
and M. Prove that any unital, irreducible B-module is cyclic.

11. If M is an irreducible R-module prove that either M is cyclic or that
for every m € M and r € R, rm = 0.

*12. If M is an irreducible R-module such that rm # 0 for some r € B
and m € M, prove that any R-homomorphism T of M into M is either an
isomorphism of M onto M or that mT = 0 for every m € M.

13. Let M be an R-module and let E(M) be the set of all R-homo-
morphisms of M into M. Make appropriate definitions of addition and
multiplication of elements of E(M) so that E(M) becomes a ring. (Hint:
imitate what has been done for Hom (V, V), V a vector space.)

*14, If M is an irreducible R-module such that rm < 0 for some r € B
and m € M, prove that E(M) is a division ring. (This result is known as
Schur’s lemma.)
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*15. Show that any two finite abelian groups having the same invariants
are isomorphic.
16. How many non-isomorphic abelian groups are there of order 25?
Show how you would construct them all.
17. Describe how you would construct all abelian groups of order 16,200.
How many such non-isomorphic groups are there?
18. Give a complete proof of Theorem 4.j for finitely-generated modules
over Euclidean rings.
19. Let M be an R-module; if m € M let A\(m) = {z € R|am = 0}.
Show that A(m) is a left-ideal of R. It is called the order of m.
20. If Ais a left-ideal of R and if M is an R-module show that for m € M,
Mn o= {zm|z € A} is a submodule of M.
*21. Let M be an irreducible R-module in which rm # 0 for some r € R
and m € M. Let mp 5 0 € M and let A(mp) = {z € R|amg = 0}.
(a) Prove that A(myp) is a maximal left-ideal of R (that is, if \ is a
left-ideal of R such that B D A D A(mg) then A =R or A =
A(my)).
(b) As R-modules, prove that M is isomorphic to B — N(mq) (see
Example 4).

Supplementary Reading

Harmos, P. R., Finite-Dimenstonal Vector Spaces, second edition. D. Van
Nostrand Company, Inc., Princeton, 1958.



CHAPTER 5

Fields

In our discussion of rings we have already singled out a special class which
we called fields. A field, let us recall, is a commutative ring with unit ele-
ment in which every nonzero element has a multiplicative inverse. Put
another way, a field is a commutative ring in which we can divide by any
nonzero element.

Fields play a central role in algebra. For one thing, results about them
find important applications in the theory of numbers. For another, their
theory encompasses the subject matter of the theory of equations which
treats questions about the roots of polynomials.

In our development we shall touch only lightly on the field of algebraic
numbers. Instead, our greatest emphasis will be on aspects of field theory
which impinge on the theory of equations. Although we shall not treat the
material in its fullest or most general form, we shall go far enough to in-
troduce some of the beautiful ideas, due to the brilliant French mathe-
matician Evariste Galois, which have served as a guiding inspiration for
algebra as it is today.

1. Extension Fields. In this section we shall be concerned with the rela-
tion of one field to another. Let F be a field; a field K is said to be an exten-
ston of F if K contains F. Equivalently, K is an extension of F if F is a sub-
field of K. Throughout this chapter F will denote a given field and K an ex-
tension of F.

As was pointed out earlier, in the chapter on vector spaces, if K is an
extension of F, then, under the ordinary field operations in K, K is a vector
space over F. As a vector space we may talk about linear dependence, di-
mension, bases, etc., in K relative to F.

DrriniTioN. The degree of K over F is the dimension of K as a vector
space over F.

We shall always denote the degree of K over F by [K:F]. Of particular
interest to us is the case in which [K:F] is finite, that is, when K is finite-
dimensional as a vector space over F. This situation is described by saying
that K is a finite extension of F.

167
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We start off with a relatively simple but, at the same time, highly effective
result about finite extensions, namely,

TuroreM 5.A. If L s a finite extension of K and if K s a finite extension
of F, then L 1s a finite extension of F. Moreover, [L:F] = [L:K]K:F].

Proof. The strategy we employ in the proof is to write down explicitly
a basis of L over F. In this way not only do we show that L is a finite ex-
tension of F, but we actually prove the sharper result and the one which is
really the heart of the theorem, namely that [L:F] = [L:K][K:F].

Suppose, then, that [L:K] = m and that [K:F] = n. Let vy, ..., v, be
a basis of L over K and let wy, ..., w, be a basis of K over F. What could
possibly be nicer or more natural than to have the elements v,w;, where
i=1,2...,m7=12 ..., 7, serve as a basis of L over F? Whatever
else, they do at least provide us with the right number of elements. We now
proceed to show that they do in fact form a basis of L over F. What do we
need to establish this? First we must show that every element in L is a
linear combination of them with coefficients in F, and then we must dem-
onstrate that these mn elements are linearly independent over F.

Let ¢ be any element in L. Since every element in L is a linear combina-
tion of vy, . . ., v, With coefficients in K, in particular, { must be of this form.
Thus ¢t = kyw; + -+ - + knom, where the elements kg, ..., k, are all in K.
However, every element in K is a linear combination of wy, ..., w, with
coefficients in F. Thus k; = fryw; +- -+ fiaWny ..., ks = fawy +---
+ finWny oy km = fmawi +- - -+ funn, Where every f;; is in F.

Substituting these expressions for &y, ..., &y into t = kg 4+ -+ bptm
we obtain ¢ = (friwy + -+ fiawp)vy +- -+ s + - -+ frunWn)Vm.
Multiplying this out, using the distributive and associative laws, we finally
arrive at ¢ = fuvw; 4o+ fia0iWs + - fipaw; ot frnlmWn.
Since the f;; are in F, we have realized ¢ as a linear combination over F of
the elements v,w;. Therefore, the elements vaw; do indeed span all of L over
F, and so they fulfill the first requisite property of a basis.

We still must show that the elements v,w; are linearly independent over F.
Suppose that fiyviw; 4 -+ fiaywn +-- -+ Fioaw; &+ -+ frunbmWn = 0,
where the f;; are in F. Our objective is to prove that each f;; = 0. Regroup-
ing the above expression yields (fi;w; +- - -+ fiaWa)vy +- -+ Faw; +
oo Finon)os o (a0 - L0 = 0.

Since the w; are in K, and since K D F, all the elements k; = faw; +- -
+ finwn are in K. Now kyvy -« -+ kb, = 0 with &y, .. ., kn € K. But,
by assumption, vy, ..., v, form a basis of L over K, so, in particular they
must be linearly independent over K. The net result of this is that k; =
ks =---=ky, = 0. Using the explicit values of the k;, we get

Jawy +- -+ fiawn =0 for 1=1,2,...,m.
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But now we invoke the fact that the w; are linearly independent over F;
this yields that each f;; = 0. In other words, we have proved that the VW5
are linearly independent over F. In this way they satisfy the other requisite
property for a basis.

‘We have now succeeded in proving that the mn elements v.w; form a basis
of L over F. Thus [L:F] = mn; since m = [L:K] and n = [K:F] we have
obtained the desired result [L: F] = [L:K][K:F].

Suppose that L, K, F are three fields in the relation L © K D F and, sup-
pose further that [L:F] is finite. Clearly, any elements in L linearly inde-
pendent over K are, all the more so, linearly independent over F. Thus the
assumption that [L:F] is finite forces the conclusion that [L:K] is finite.
Also, since K is a subspace of L, [K:F] is finite. By the theorem, [L:F] =
[L:K][K:F), whence [K:F]|[L:F). We have proved the

CoroLrrary. If L is a finite extension of F and if K 1s a subfield of L which
contains F, then [K:F] | [L:F].

Thus, for instance, if [L:F] is a prime number, then there can be no
fields properly between F and L. A little later, in Section 4, when we discuss
the construction of certain geometric figures by straight-edge and compass,
this corollary will be of great significance.

DeriNITION. An element a € K is said to be algebraic over F if there exist
elements ag, @, . . ., @, in F, not all 0, such that aga™ + aja” ™ +- - - + a, = 0.

If the polynomial q(z) € F[z], the ring of polynomials in z over F, and
if g(z) = Box™ =+ B1&™ ! + - - -4 B, then for any element b € K, by ¢(b)
we shall mean the element Bob™ + B:b™ ! +- - - 4 B in K. In the expres-
sion commonly used, q(b) is the value of the polynomial ¢(x) obtained by
substituting b for z. The element b is said to satisfy q(z) if ¢(b) = 0. In
these terms a € K is algebraic over F if there is a nonzero polynomial
p(zx) € Flz] which a satisfies, that is, for which p(a) = 0.

Let K be an extension of F and let a be in K. Let 910 be the collection of
all subfields of K which contain both F and a. 97 is not empty for K itself
is an element of 917. Now, as is easily proved, the intersection of any number
of subfields of K is again a subfield of K. Thus the intersection of all those
subfields of K which are members of 91 is a subf‘ield of K. We denote this
subfield by F(a). What are its properties? Certainly it contains both F and
a, since this is true for every subfield of K which is a member of 9. More-
over, by the very definition of intersection, every subfield of K in 91t con-
tains F(a), yet F(a) itself is in 9. Thus F(a) ts the smallest subfield of K con-
taining both F and a. We call F(a) the subfield obtained by adjoining a to F.

Our description of F(a), so far, has been purely an external one. We now
give an alternate and more constructive description of F(a). Consider all
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these elements in K which can be expressed in the form 8y + Bia +---
~+ B:a°; here the §'s can range freely over F and s can be any nonnegative
integer. As elements in K, one such element can be divided by another, pro-
vided the latter is not 0. Let U be the set of all such quotients. We leave it
as an exercise to prove that U is a subfield of K.

On one hand, U certainly contains F' and a, whence U D F(a). On the
other hand, any subfield of K which contains both F and a, by virtue of
closure under addition and multiplication, must contain all the elements
Bo + Bia +- - -+ Bsa* where each 8, € F. Thus F(a) must contain all
these elements; being a subfield of K, F(a) must also contain all quotients
of such elements. Therefore, F(a) D U. The two relations U C F(a),
U D F(a) of course imply that U = F(a). In this way we have obtained an
internal construction of F(a), namely as U.

We now intertwine the property that a € K is algebraic over F with
macroscopic properties of the field F(a) itself. This is

TuarorEM 5.8, The element a € K 1s algebraic over F if and only if F(a) s
a finite extension of F.

Proof. As is so very common with so many such “if and only if”’ proposi-
tions, one-half of the proof will be quite straightforward and easy, whereas
the other half will be deeper and more complicated.

Suppose that F () is a finite extension of F and that [F(a):F] = m. Con-
sider the elements 1, a, a?, ..., a™; they are all in F(a) and are m + 1 in
number. By Lemma 4.6, these elements are linearly dependent over F.
Therefore, there are elements og, @i, ..., an in F, not all 0, such that
ol + aja + aga® + -+ ama™ = 0. Hence o is algebraic over F and
satisfies the nonzero polynomial p(z) = ey + ey +- - - + o™ in Flz] of
degree at most m = [F(a):F]. This proves the “if”’ part of the theorem.

Now to the “only if”’ part. Suppose that ¢ in K is algebraic over F. By
assumption, a satisfies some nonzero polynomial in F[z]; let p(z) be a poly-
nomnial in F[z] of smallest positive degree such that p(a) = 0. We claim that
p(z) is irreducible over F. For, suppose that p(z) = f(x)g(x) where f(z),
g(x) € Flz]; then 0 = p(a) = f(a)g(a) (see Problem 1) and, since f(a) and
g(a) are elements of the field K, the fact that their product is 0 forces f(a) = 0
or g(a) = 0. Since p(z) is of lowest positive degree with p(a) = 0, we must
conclude that one of deg f(z) > deg p(x) or deg g(x) > deg p(x) must hold.
But this proves the irreducibility of p(z).

‘We define the mapping y from F[z] into F(a) asfollows. Foranyh(z) € Flz],
h(z)¢ = h(a). We leave it to the reader to verify that ¥ is a ring homo-
morphism of the ring F[z] into the field F(a) (see Problem 1). What is V,
the kernel of y? By the very definition of ¥, V = {h(z) € F[z]|h(a) = 0}.
Also, p(z) is an element of lowest degree in the ideal V of F[z]. By the results
of Section 9, Chapter 3, every element in V is a multiple of p(z), and since
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p(x) is irreducible, by Lemma 3.22, V is a maximal ideal of F[z]. By The-
orem 3.b, F[z]/V is a field. Now by the general homomorphism theorem for
rings (Theorem 3.a), F[z]/V is isomorphic to the image of F[z] under y.
Summarizing, we have shown that the image of F[z] under ¢ is a subfield of
F(a). This image contains ¢ = a and, for every a € F, e = . Thus the
image of F[z] under ¢ is a subfield of F(a) which contains both F and a;
by the very definition of F(a) we are forced to conclude that the image of
F[z] under ¢ is all of F(a). Put more succinctly, F[z]/V is isomorphic to
F(a).

Now, V = (p(z)), the ideal generated by p(x); from this we claim that
the dimension of F[xz]/V, as a vector space over F, is precisely equal to
deg p(x) (see Problem 2). In view of the isomorphism between F[z]/V and
F(a) we obtain the fact that [F(a):F] = deg p(z). Therefore, [F(a):F] is
certainly finite; this is the contention of the “only if’’ part of the theorem.
Note that we have actually proved more, namely that [F(a):F] is equal to
the degree of the polynomial of least degree satisfied by a over F.

The proof we have just given has been somewhat long-winded, but de-
liberately so. The route followed contains important ideas and ties in results
and concepts developed earlier with the current exposition. No part of
mathematics is an island unto itself.

‘We now re-do the “only if”’ part, working more on the inside of F(a).
This re-working is, in fact, really identical with the proof already given; the
constituent pieces are merely somewhat differently garbed.

Again let p(z) be a polynomial over F of lowest positive degree satisfied
by a. Such a polynomial is called a minimal polynomial for a over F. We
may assume that its coefficient of the highest power of « is 1, that is, it is
monic; in that case we can speak of the minimal polynomial for a over F
for any two minimal, monic polynomials for a over F are equal. (Prove!)
Suppose that p(z) is of degree m; thus p(z) = 2" + oy 2" +- -+ ay
where the a, are in F. By assumption, a® + a;a™™* 4+ - -+ @, = 0, whence
" = —oya"t — a2 — .- — a,. What about a”'? From the above,
"t = —@a® — 00"t — .- — ana; if we substitute the expression for
o™ into the right-hand side of this relation, we realize a"** as a linear com-
bination of the elements 1, a, . .., a® ! over F. Continuing this way, we get
that a™**, for k > 0, is a linear combination over F of 1, a, a?, ..., a™ ..

Now consider T' = {By + B1a + - -+ Bn—18""|Bo, B1y - -y Bn—1 € F}.
Clearly, T is closed under addition; in view of the remarks made in the
paragraph above, it is also closed under multiplication. Whatever further
it may be, T has at least been shown to be a ring. Moreover, T' contains both
F and a. We now wish to show that 7' is more than just a ring, that it is, in
fact, a field.

Let 0 u = By + 1o+~ Bnya”* be in T and let h(z) = Bo +
Bz +- -+ Bp_yz" "t € Flz]. Since u > 0, and » = h(a), we have that
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h(a) # 0, whence p(z) t h(z). By the irreducibility of p(z), p(x) and h(x)
must therefore be relatively prime. Hence we can find polynomials s(z)
and #(z) in F[z] such that p(x)s(z) + h(z)t(z) = 1. But then 1 = p(a)s(a) +
h(a)t(a) = h(a)t(a), since p(a) = 0; putting into this that u = h(a), we
obtain ut(a) = 1. The inverse of  is thus ¢(a); in ¢(a) all powers of a higher
than n — 1 can be replaced by linear combinations of 1, @, ..., a® ™~ over
F, whence t(a) € T. We have shown that every nonzero element of T' has
its inverse in T'; consequently, 7 is a field. However, T' C F(a), yet F and a
are both contained in 7', which results in 7' = F(a). We have identified
F(a) as the set of all expressions By + B1o +-- -+ Br_ia™ L.

Now T is spanned over F by the elements 1, a, . .., a® " in consequence of
which [T':F] < n. However, the elements 1, a, @ ..., a® " are linearly in-
dependent over F, for any relation of the form vq <4 vi¢ +-- -+ Yn_16™"L
with the elements v; € F, leads to the conclusion that a satisfies the poly-
nomial yo + y12 + - -+ + yp—12" T over F of degree less than n. This con-
tradiction proves the linear independence of 1, a, ..., a® %, and so these
elements actually form a basis of T over F, whence, in fact, we now know
that [T:F] = n. Since T = F(a), the result [F(a):F] = n follows.

DreriNitioN. The element a € K is said to be algebraic of degree n over
F if it satisfies a nonzero polynomial over F of degree n but no nonzero
polynomial of lower degree.

In the course of proving Theorem 5.b (in each proof we gave), we proved
a somewhat sharper result than that stated in that theorem, namely,

TrarorEM 5.¢. If a € K s algebraic of degree n over F then [F(a):F] = n.

This result adapts itself to many uses. We give, now, as an immediate
consequence thereof, the very interesting

TarorEM 5.0. If a, b in K are algebraic over F then a == b, ab, and a/b
(4 b % 0) are all algebraic over F. In other words, the elements in K which
are algebraic over F form a subfield of K.

Proof. Suppose that a is algebraic of degree m over F while b is algebraic
of degree n over F. By Theorem 5.c the subfield T = F(a) of K is of degree
m over F. Now b is algebraic of degree n over F, a fortior: it is algebraic of
degree at most n over T which contains F. Thus the subfield W = T'(b)
of K, again by Theorem 5.c is of degree at most n over T. But [W:F] =
[W:T][T:F] by Theorem 5.a; therefore, [W:F] < mn and so W is a finite
extension of F. However, a and b are both in W, whence all of a = b, ab and
a/b are in W. By Theorem 5.b, since [W: F] is finite, these elements must be
algebraic over F, thereby proving the theorem.
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Here, too, we have proved somewhat more. Since [W:F] < mn, every
element in W satisfies a polynomial of degree at most mn over F, whence the

CoroLrARY. If a and b in K are algebraic over F of degrees m and n respec-

tively, then a £ b, ab, and a/b (if b % 0) are algebraic over F of degree at
most mn.

In the proof of the last theorem we made two extensions of the field F.
The first we called T'; it was merely the field F(a). The second we called W
and it was T'(b). Thus W = (F(a))(b); it is customary to write it as F(a, b).
Similarly, we could speak about F (b, a); it is not too difficult to prove that
F(a,b) = F(b, a). Continuing this pattern, we can define F(a;, ay, ..., a,)
for elements a4, ..., a, in K.

DerinrTioN. The extension K of F is called an algebraic extension of F
if every element in K is algebraic over F.

We prove one more result along the lines of the theorems we have proved
so far.

TrEoREM 5.E. If L s an algebraic extension of K and if K s an algebraic
extension of F then L is an algebraic extension of F.

Proof. Let u be any arbitrary element of L; our objective is to show that »
satisfies some nontrivial polynomial with coefficients in F. What informa-
tion do we have at present? We certainly do know that u satisfies some
polynomial 2" + ¢12"* 4+ -+ o, Where ¢y, ..., o, are in K. But K is
algebraic over F; therefore, by several uses of Theorem5.¢c,M = F(oy, . . .,0s)
is a finite extension of F. Since u satisfies the polynomial " + oy2" ™t +
- -++ o, whose coefficients are in M, u is algebraic over M. Invoking The-
orem 5.b yields that M (u) is a finite extension of M. However, by Theorem
5.8, [M(w):F] = [M(u):M][M:F), whence M (u) is a finite extension of F.
But this implies that u is algebraic over F, completing the proof of the
theorem.

A quick description of Theorem 5.e: algebraic over algebraic is algebraic.
The preceding results are of special interest in the particular case in
which F is the field of rational numbers and K the field of complex numbers.

DreriNTION. A complex number is said to be an algebraic number if it
is algebraic over the field of rational numbers.

A complex number which is not algebraic is called transcendental. At the
present stage we have no reason to suppose that there are any transcen-
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dental numbers. In the next section we shall prove that the familiar real
number e is transcendental. This will, of course, establish the existence of
transcendental numbers. In actual fact, they exist in great abundance;in a
very well-defined way there are more of them than there are algebraic num-
bers.

Theorem 5.d applied to algebraic numbers proves the interesting fact
that the algebraic numbers form a field; that is, the sum, products, and
quotients of algebraic numbers are again algebraic numbers.

Theorem 5.e when used in conjunction with the so-called ‘“fundamental
theorem of algebra” has the implication that the roots of a polynomial
whose coefficients are algebraic numbers are themselves algebraic numbers,

PROBLEMS

1. Prove that the mapping y:F[z] — F(a) defined by h(z)¥ = h(a) is
a homomorphism.

2. Let F be a field and let F[z] be the ring of polynomials in z over F.
Let g(z), of degree n, be in Flz] and let V' = (g(z)) be the ideal generated by
g(z) in Flz]. Prove that F[z]/V is an n-dimensional vector space over F.

3. (a) If V is a finite-dimensional vector space over the field K, and if F

is a subfield of K such that [K: F] is finite, show that V is a finite-
dimensional vector space over F and that moreover dimp (V) =
(dimg (V) ([K:F]).

(b) Show that Theorem 5.4 is a special case of the result of part (a).

4. (a) Let R be the field of real numbers and @ the field of rational

numbers. In R, 4/2 and 4/3 are both algebraic over Q. Exhibit a
polynomial of degree 4 over Q satisfied by /2 + /3.
(b) What is the degree of /2 + /3 over Q? Prove your answer.
(c) What is the degree of v/2 /3 over Q?
6. With the same notation as in Problem 4, show that /2 4+ /5 is
algebraic over @ of degree 6.
*6. (a) Find an element u € R such that Q(+/2, V/5) = Q(u).
(b) In Q(+/2, v/5) characterize all the elements w such that Q(w) =
Q(V2, V/5).

7. (a) Prove that F(a, b) = F(b, a).

(b) If (43, 25, ..., %) is any permutation of (1, 2, ..., n), prove that

F(a1, ey an) = F(ail, Qigy oo vy O )
8. If a, b € K are algebraic over F of degrees m and n, respectively,

and if m and n are relatively prime, prove that F(a, b) is of degree mn
over F.
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9. Suppose that F is a field having a finite number of elements, g.
(a) Prove that there is a prime number p such thata+a+---+a=0
foralla € F. T ve—

(b) Prove that g = p" for some integer n.
(¢) If a € F prove that a? = a.
(d) If b € K is algebraic over F prove that b2 = b for some m > 0.

p-times

An algebraic number a is said to be an algebraic integer if it satisfies an
equation of the form a™ 4+ a;a™ ™' +---+ @, = 0, where v, ..., a, are
integers.

10. If a is any algebraic number, prove that there is a positive integer n
such that na is an algebraic integer.

11. If the rational number r is also an algebraic integer, prove that r
must be an ordinary integer.

12. If ¢ is an algebraic integer and m is an ordinary integer, prove:

(a) a + m is an algebraic integer.
(b) ma is an algebraic integer.

13. If « is an algebraic integer satisfying o® + @« +1 =0 and 8 is an
algebraic integer satisfying 8% + 8 — 8 = 0, prove that both « + 8 and
af are algebraic integers.

**14. (a) Prove that the sum of two algebraic integers is an algebraic in-
teger.
(b) Prove that the product of two algebraic integers is an algebraic
integer.

15. (a) Prove that sin 1° is an algebraic number.

(b) From part (a) prove that sin m° is an algebraic integer for any
integer m.

2. The Transcendence of e. In defining algebraic and transcendental
numbers we pointed out that it could be shown that transcendental num-~
bers exist. One way of achieving this would be the demonstration that some
specific number is transcendental.

In 1851 Liouville gave a criterion that a complex number be alge-
braic; using this, he was able to write down a large collection of trans-
cendental numbers. For instance, it follows from his work that the number
.101001000000100 ... 10 ... is transcendental; here the number of zeros
between successive ones goes as 11, 21, - -+ - ,nl e

This certainly settled the question of existence. However, the question
whether some given, familiar numbers were transcendental still persisted.
The first success in this direction was by Hermite, who in 1873 gave a proof
that e is transcendental. His proof was greatly simplified by Hilbert. The
proof that we shall give here is a variation, due to Hurwitz, of Hilbert’s
proof.
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The number = offered greater difficulties. These were finally overcome by
Lindemann, who in 1882 produced a proof that = is transcendental. One
immediate consequence of this is the fact that it is impossible, by straight-
edge and compass, to square the circle, for such a construction would lead
to an algebraic number g such that 62 = . But if 6 is algebraic then so is 62,
in virtue of which = would be algebraic, in contradiction to Lindemann’s
result.

In 1934, working independently, Gelfond and Schneider proved that if a
and b are algebraic numbers and if b is irrational, then a® is transcendental.
This answered in the affirmative the question raised by Hilbert whether

2VZ was transcendental.

For those interested in pursuing the subject of transcendental numbers
further, we would strongly recommend the charming books by C. L. Siegel,
entitled Transcendental Nwmbers (Princeton University Press), and by
1. Niven, Irrational Numbers (Carus Monographs).

To prove that e is irrational is easy; to prove that = is irrational is much
more difficult. For a very clever and neat proof of the latter, see the paper
by Niven entitled “A simple proof that = is irrational,” Bulletin of the
American M athematical Society, Vol. 53 (1947), page 509.

Now to the transcendence of e. Aside from its intrinsic interest, its proof
offers us a change of pace. Up to this point all our arguments have been of an
algebraic nature; now, for a short while, we return to the more familiar
grounds of the calculus. The proof itself will use only elementary calculus;
the deepest result needed, therefrom, will be the mean value theorem.

TrEOREM 5.F. The number e s transcendental.

Proof. In the proof we shall use the standard notation f (z) to denote the
1th derivative of f(z) with respect to z.

Suppose that f(z) is a polynomial of degree r with real coefficients.
Let F(z) = flx) + @) + f@P@) +---+ fP@). We compute
(d/dzx)(e™*F (z)); using the fact that f 1 (z) = 0 (since f(z) is of degree r)
and the basic property of e, namely that (d/dz)e® = ¢%, we obtain
(d/dz)(e™F (x)) = —e"f(x).

The mean value theorem asserts that if g(x) is a continuously differentia-
ble, single-valued function on the closed interval [z,, 5] then

g(@1) — g(=z2)

=gM (2, + 0z, — 1)), where 0 <6 <1
T1 — To

We apply this to our function e F(z) which certainly satisfies all the
required conditions for the mean value theorem on the closed interval
[#1, zo] where 2; = 0 and 2, = k, where k is any positive integer. We then
obtain that e *F(h) — F(0) = —e™"™f(8,h)k, where 6; depends on % and is
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some real number between 0 and 1. Multiplying this relation through by
¢ yields F(k) — F(0)e* = —e"~%%f(6,%). We write this out explicitly:

F(1) — eF(0) = —e“"f(8)) = ¢
¢9) F(2) — ¢F(0) = —287%f(20,) = ¢

F(n) — "F(0) = —ne"*~"5(ng,) = e,.

Suppose now that e is an algebraic number; then it satisfies some relation
of the form

) ne” + Cpg® T+t e+ 0o = 0,

where cg, ¢1, ..., C, are integers and where ¢y > 0.

In the relations (1) let us multiply the first equation by ¢;, the second by
¢o, and so on; adding these up we get ¢;F(1) + coF(2) +- - -+ ¢, F(n) —
F(0)(cie + coe® +- -+ cne™ = cre1 + Coeg + -+ -+ Cnep

In view of relation (2), cie + co® +- - -+ cae" = —co, Wwhence the above
equation simplifies to

(3) coF(0) + ciF(1) +-- -+ c,F(n) = c1e; ++ -+ Cnén.

All this discussion has held for the F(x) constructed from an arbitrary
polynomial f(x). We now see what all this implies for a very specific poly-
nomial, one first used by Hermite, namely,

2?71 — 2)?(2 — x)? ... (n — z)P.

flx) = o =Dl

Here p can be any prime number chosen so that p > n and p > ¢, For
this polynomial we shall take a very close look at F(0), F(1), ..., F(n) and
we shall carry out an estimate on the size of €, €3, ..., €.
‘When expanded, f(x) is a polynomial of the form
oz? 01

_S?.qf.!.)f_p—l_F o + +-
@w-11" G- @-0D!

where ag, a4, ..., are integers.

When 7 > p we claim that f () is a polynomial, with coefficients which
are integers all of which are multiples of p. (Prove! see Problem 2.) Thus for
any integer j, (), for i > p is an integer and is a multiple of p.

Now, from its very definition, f(x) has a root of multiplicity p at z = 1, 2,
ve,n.Thusforj=1,2, ...,m f() =0, fV() =0, ..., f*7V(@) =0.

2P +1

..
H
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However, F(j) =f(G) +fP0) +- -+ 220 + 20 +---+700);
by the discussion above, forj = 1, 2, ..., n, F(j) s an integer and is a mul-
tiple of p.

What about F(0)? Since f(x) has a root of multlphclty p—1Llatz =0,
f0) = fR0) =---=f*2(0) = 0. For 7 > » f(0) is an integer which
is a multiple of p. But f®~1(0) = (n!)? and since p > n and is a prime
number, p { (n!)? so that f®~(0) is an integer not divisible by p. Since
F(O) = f0) + fP©) +---+ f2720) + f*720) + fP0) +---+
F®(0), we conclude that F(0) is an integer nmot divisible by p. Because
co> 0 and p > ¢y and because p t F(0) whereas p|F(1), p|F(2), ...,
p|F(n), we can assert that ¢oF(0) + ciF(1) +-- -+ c.F(n) is an integer
and s not divisible by p.

However, by (3), coF(0) + ciF(1) +- -4 caF'(n) = crey + -+ + Cpep.
What can we say about ¢;? Let us recall that

— A0 (1—39)? ... (n—18;)7(16;)P %

“7 (p—1)!
where 0 < 6; < 1. Thus
» PP (mh?
l ‘PI < ( 1)'
As P —> ®©, e"n? (n')p 0
@—-D1 "

(Prove!) whence we can find a prime number larger than both ¢y and n and
large enough to force [cie; +- -+ Cren| < 1. But creg 4+ cren =
coF(0) +- - -+ ¢, F(n), so must be an integer; since it is smaller than 1 in
size our only possible conclusion is that cje; 4 -+ cne, = 0. Conse-
quently, ¢oF (0) +- - -+ ¢, F(n) = 0; this however is sheer nonsense, since
we know that p t (coF(0) +- - -+ ¢,F(n)), whereas p|0. This contradic-
tion, stemming from the assumption that e is algebraic, proves that ¢ must
be transcendental.

PROBLEMS

1Usmgthemﬁmtesenesfore,e—l—l— + —I— + —I— +

prove that e is irrational.
2. If g(z) is a polynomial with integer coefficients, prove that if p is a

prime number then for ¢ > p,
@ ( 9(z) )
dz* \(p — 1)!

is a polynomial with integer coefficients each of which is divisible by p.
3. If a is any real number, prove that (¢™/m!) — 0asm — o,
4. If m > 0 and n are integers, prove that ¢™/™ is transcendental.
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3. Roots of Polynomials. In Section 1 we discussed elements in a given
extension K of F which were algebraic over F, that is, elements which satis-
fied polynomials in F[z]. We now turn the problem around; given a poly-
nomial p(z) in F[z] we wish to find a field K which is an extension of F in
which p(z) has a root. No longer is the field K available to us, in fact it is
our prime objective to construct it. Once it is constructed, we shall examine
it more closely and see what consequences we can derive.

Derinrrion. If p(z) € Flz] then an element a lying in some extension
field of F is called a root of p(z) if p(a) = 0.

We begin with the familiar result known as the Remainder Theorem.

Lemma 5.1. If p(x) € Flz] and if K is an extension of F, then for any ele-
ment b € K, p(z) = (x — b)glx) + p(b) where g(z) € K[x] and where
deg g(z) = degp(z) — 1.

Proof. Since F C K, Flz] is contained in K[z], whence we can con-
sider p(z) to be lying in K[r]. By the division algorithm for polynomials
in K[z], p(z) = (x — b)g(x) + r where ¢(z) € K[z] and where r =0
or deg r < deg (x — b) = 1. Thus either r = 0 or deg r = 0; in either
case r must be an element of K. But exactly what element of K is it?
Since p(z) = (x — b)gx) + r, p(b) = (b — b)g(b) + r = r. Therefore,
p(x) = (x — b)g(b) + p(b). That the degree of g(x) is one less than that of
p(z) is easy to verify and is left to the reader.

CoroLLARY. If a € K s a root of p(x) € Flz], where F C K, then in
K[z], (x — a)|p(2).

Proof. From Lemma 5.1, in K[z], p(@) = (z — a)g(@) + pla) =
(x — a)g(z) since p(a) = 0. Thus (z — a)|p(x) in K[z].

DerinNITION. The element a € K is a root of p(x) € Flz] of multiplicity
m if (z — a)"|p(z), whereas (z — o)™t t p(z).

A reasonable question to ask is: How many roots can a polynomial have
in a given field? Before answering we must decide how to count a root of
multiplicity m. We shall always count it as m roots. Even with this conven-
tion we can prove

LeMMa 5.2. A polynomial of degree n over a field can have at most n roots in
any extension field.

Proof. We proceed by induction on n, the degree of the polynomial p(z).
If p(z) is of degree 1, then it must be of the form ax + 8 where o, 8 are
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in a field F and where o # 0. Any a such that p(a) = 0 must then imply
that aa + 8 = 0 from which we conclude that ¢ = (—8/a). That is, p(z)
has the unique root —B/a, whence the conclusion of the lemma certainly
holds in this case.

Assuming the result to be true in any field for all polynomials of degree
less than n, let us suppose that p(z) is of degree n over F. Let K be any
extension of F. If p(z) has no roots in K then we are certainly done, for the
number of roots in K, namely zero, is definitely at most 7. So, suppose that
p(x) has at least one root @ € K and that a is a root of multiplicity m. Since
(x — a)™|p(x), m < nfollows. Now p(z) = (z — a)™q(x) where ¢(z) € K[z]
is of degree n — m. From the fact that (z — a)™** { p(z), we get that
(x — a) 1 g(x) whence, by the corollary to Lemma 5.1, a is not a root of
q(x). If b 5 a is a root, in K, of p(z) then 0 = p(b) = (b — a)"¢(b); how-
ever, since b — a # 0 and since we are in a field, we conclude that ¢(b) = 0.
That is, any root of p(z), in K, other than a must be a root of g(x). Since
q(z) is of degree n — m < n, by our induction hypothesis ¢(z) has at most
n — m roots in K, which, together with the other root @, counted m times,
tells us that p(z) has at most m + (n — m) = n roots in K. This completes
the induction and proves the lemma.

One should point out that commutativity is essential in Lemma 5.2. If
we consider the ring of real quaternions, which falls short of being a field only
in that it fails to be commutative, then the polynomial z* + 1 has at least 3
roots, 4, j, k (in fact, it has an infinite number of roots). In a somewhat
different direction we need, even when the ring is commutative, that it be
an integral domain for if ab = 0 with ¢ 0 and b # 0 in the commutative
ring R, then the polynomial ax of degree 1 over R has at least two distinet
rootsz = 0and z = bin R.

The previous two lemmas, while interesting, are of subsidiary interest.
We now set ourselves to our prime task, that of providing ourselves with
suitable extensions of F in which a given polynomial has roots. Once this is
done, we shall be able to analyze such extensions to a reasonable enough de-
gree of accuracy to get results. The most important step in the construction
is accomplished for us in the next theorem. The argument used will be very
reminiscent of some used in Section 1.

TrEoREM 5.6. If p(x) 28 a polynomial in Flx] of degree n > 1 and is irre-
ducible over F, then there is an extension E of F, such that [E:F] = n, in
which p(x) has a root.

Proof. Let Flz] be the ring of polynomials in z over F and let V = (p(z))
be the ideal of F[x] generated by p(z). By Lemma 3.22 V is a maximal ideal
of F[z], whence by Theorem 3.b, E = F[z]/V is a field. This E will be shown
to satisfy the conclusions of the theorem.
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First we want to show that E is an extension of F; however in fact, it i 1s
not! But let F be the image of F in E, that is, F = {a + V[a € F}.

assert that F is a field isomorphic to F; in fact, if ¢ is the mapping from

Flz
F[x] into —[V—] = FE defined by f(x)¢ = f(z) + V, then the restriction of ¥

to F induces an 1somorphlsm of F onto F. (Prove!) Using this isomorphism,
we identify F and F'; in this way we can consider E to be an extension of F.

We claim that E is a finite extension of F of degree n = deg p(z), for the
elements 1+ V,z+V, @+ V)2 =22+V,...,c+ V)i=2'+7, ...,
(+ V)* 1 =2a""1+ V form a basis of £ over F. (Prove!) For con-
venience of notation let us denote the element 2y = z 4+ V in the field E
as a. Given f(z) € F[z], what is f(z)¢? We claim that it is merely f(a), for
since y is & homomorphism, if f(z) = By + 81z +- - - + Bz*, then flz)y =
Bov + B) (xy) +- - -+ Bid) (xy)*, and using the identification indicated
above of By with 38, we see that f(z)¢ = f(a). In particular, since p(z) € V,
p(x)¢Y = 0; however, p(2)y = p(a). Thus the element a = x in E 1s a root of
p(z). The field E has been shown to satisfy all the properties required in the
conclusion of Theorem 5.g, and so this theorem is now proved.

An immediate consequence of this theorem is the

CoroLLARY. If f(x) € Flz], then there is a finite extension E of F in which
f(x) has a root. Moreover, [E:F] < deg f(z).

Proof. Let p(x) be an irreducible factor of f(z); any root of p(z) is a root
of f(x). By the theorem there is an extension E of F with [E:F] = deg p(x)
< deg f(z) in which p(x), and so f(x) has a root.

Although it is, in actuality, a corollary to the above corollary, the next
theorem is of such great importance that we single it out as a theorem.

TaeoreM 5.8. Let f(x) € Flz] be of degree n > 1. Then there is an exten-
sion E of F of degree at most n! in which f(z) has n roots (and so, a full com-
plement of roots).

Proof. In the statement of the theorem a root of multiplicity m is, of
course, counted as m roots.

By the above corollary there is an extension B, of F with [Ey:F] < n in
which f(z) has a root . Thus in Eg[z], f(z) factors as f(z) = ( — a)g(x)
where ¢(z) is of degree n — 1. Using induction (or continuing the above
process), there is an extension E of Eq of degree at most (n — 1)!in which
q(z) has n — 1 roots. Since any root of f(z) is either « or a root of ¢(z), we
obtain in E all nroots of f(z). Now, [E:F] = [E:Eo)[Eo:F1 < (n — 1)!In = n!
All the pieces of the theorem are now established.
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Theorem 5.h asserts the existence of a finite extension E in which the
given polynomial f(z), of degree n, over F has n roots. If f(z) = agz™ +
a;z" "t .. .4 a,, ag = 0 and if the » roots in E are o, ..., an, making
use of the corollary to Lemma 5.1, f(z) can be factored over E as f(z) =
ag(z — ) (@ — ag) ... (x — a,). Thus f(z) splits up completely over E as
a product of linear (first degree) factors. Since a finite extension of F exists
with this property, a finite extension of F of minimal degree exists which also
enjoys this property of decomposing f(z) as a product of linear factors. For
such a minimal extension, no proper subfield has the property that f(z)
factors over it into the product of linear factors. This prompts the

DerintrioN. If f(z) € Flz], a finite extension E of F is said to be a
splitting field over F for f(z) if over E (that is, in E[z]), but not over any
proper subfield of E, f(x) can be factored as a product of linear factors.

We reiterate: Theorem §.h guarantees for us the existence of splitting fields.
In fact, it says even more, for it assures us that given a polynomial of degree
n over F there is a splitting field of this polynomial which is an extension of
F of degree at most n! over F. We shall see, later, that this upper bound of
n! is actually taken on; that is, given n, we can find a field F and a poly-
nomial of degree n in F[z] such that the splitting field of f(z) over F has
degree n!.

Equivalent to the definition we gave of a splitting field for f(z) over F is
the statement: E s a splitting field of f(x) over F if E is a minimal extension
of F in which f(x) has n roots, where n = deg f(x).

An immediate question arises: given two splitting fields Ey and E; of the
same polynomial f(z) in F[x], what is their relation to each other? At first
glance, we have no right to assume that they are at all related. Our next
objective is to show that they are indeed intimately related; in fact, that
they are isomorphic by an isomorphism leaving every element of F fixed.
It is in this direction that we now turn.

Let F and F' be two fields and let ~ be an isomorphism of F onto F’. For
convenience let us denote the image of any a € F under r by «’; that is,
ar = of. We shall maintain this notation for the next few pages.

Can we make use of 7 to set up an isomorphism between Flz] and F'[t],
the respective polynomial rings over F and F’? Why not try the obvious?
For an arbitrary polynomial f(z) = agx™ + a2 +-- -+ a, € Flz] we
define 7* by f(@)r* = (apz™ + a1 2"t 4+« -+ ap)r* = o™ + ot +
ekl

It is an easy and straightforward matter, which we leave to the reader,
to verify

Lemma 5.3. v* defines an tsomorphism of Flz] onto F'[t] with the property
that ar™* = o for every a € F.
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If f(z) is in Flz] we shall write f(z)r* as f/(¢). Lemma 5.3 immediately
implies that factorizations of f(z) in F[z] result in like factorizations of
f'@® in F'[{], and vice versa. In particular, f(z) is irreducible in F[z] if and
only if f’(¢) is irreducible in F’[f].

However, at the moment, we are not particularly interested in poly-
nomial rings, but rather, in extensions of F. Let us recall that in the proof
of Theorem 5.b we employed quotient rings of polynomial rings to obtain
suitable extensions of F. In consequence it should be natural for us to study
the relationship between Fx]/(f(x)) and F'[¢]/(f'(£)), where (f(z)) denotes
the ideal generated by f(z) in Flz] and (f'(f)) that generated by f’(f) in
F'[t]. The next lemma, which is relevant to this question, is actually part of
a more general, purely ring-theoretic result but we shall content ourselves
with it as applied in our very special setting.

Lemma 5.4. There is an isomorphism r** of Flz]/(f(x)) onto F'[t]/(f(t))
with the property that for every a € F, ar** = .

Proof. Before starting with the proof proper, we should make clear what
is meant by the last part of the statement of the lemma. As we have already
done several times, we can consider F as imbedded in Flz]/(f(z)) by identi-
fying the element « € F with the coset a + (f(z)) in Flz]/(f(x)). Similarly,
we can consider F’ to be contained in F'[f]/(f(f)). The isomorphism +** ig
then supposed to satisfy [a + (f(2))]7** = o 4+ (f'(?)).

We seek an isomorphism 7** of Flz]/(f(z)) onto F'[t]/(f'(t)). What could
be simpler or more natural than to try the 7** defined by [g(x) + (f(x))]=-**
= g'(t) + (f’(t)) for every g(z) € F[z]? We leave it as an exercise to fill in
the necessary details that the 7** so defined is well-defined and is an iso-
morphism of Flz]/(f(z)) onto F'[t]/(f'(t)) with the properties needed to ful-
fill the statement of Lemma 5.4.

For our purpose—that of proving the uniqueness of splitting fields—
Lemma 5.4 provides us with the entering wedge, for we can now prove

TaEOREM 5.1. If p(x) is trreducible in Flz] and if v is a root of p(x), then
F(v) s isomorphic to F'(w) where w s a root of p’(t); moreover, this tso-
morphism o can so be chosen that

(1) vo = w

€)) oo = o for every o € F.

Proof. Let v be a root of the irreducible polynomial p(z) lying in some ex-
tension K of F. Let M = {f(x) € Flz]|f(v) = 0}. Trivially M is an ideal of
Flz], and M  F[z]. Since p(z) € M and is an irreducible polynomial, we
have that M = (p(z)). Asin the proof of Theorem 5.b map Flz]into F(v) C K
by the mapping ¢ defined by ¢(z)¢ = g(v) for every g(z) € Flz]. We saw
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earlier (in the proof of Theorem 5.b) that ¥ maps F[z] onto F(v). The kernel
of ¥ is precisely M, so must be (p(z)). By the fundamental homomorphism
theorem for rings there is an isomorphism y* of Flz]/(p(z)) onto F(v).
Note further that ay* = a for every « € F. Summing up: ¢* is an iso-
morphism of Flz]/(p(z)) onto F(v) leaving every element of F fixed and
with the property that v = [z + (p(z))¥*.

Since p(x) is irreducible in Flz], p’(¢) is irreducible in F'[t] (by Lemma
5.3), and so there is an isomorphism 6* of F'[{]/(p’(t)) onto F’(w) where w
is a root of p’(¢) such that 6* leaves every element of F’ fixed and such that
[t + (@'())e* = w.

‘We now stitch the pieces together to prove Theorem 5.i. By Lemma 5.4
there is an isomorphism +** of F[z]/(p(x)) onto F'[t]/(p’(t)) which coincides
with 7 on F and which takes x + (p(z)) onto ¢ 4 (p’(?)). Consider the map-
ping ¢ = (¥*)"1r**9* (motivated by

=1 PEE ’ *
Foy 5 T T2 )
(p(z)) ('®)

of F(v) onto F'(w). It is an isomorphism of F(v) onto F’(w) since all the
mapping ¢¥*, 7** and 6* are isomorphisms and onto. Moreover, since
v = [z + @@)W* vo = @EHTHM* = ([z + (p@)**e* =
[t + (0'(1)]6* = w. Also, for @ € F, ac = (a(@®)")r**0* = (ar**)0* =
a'6* = o'. We have shown that ¢ is an isomorphism satisfying all the re-
quirements of the isomorphism in the statement of the theorem. Thus
Theorem 5.1 has been proved.

A special case, but itself of interest, is the

CoroLLARY. If p(x) € Flx] 1s irreducible and if a, b are two roots of p(x),
then F(a) is isomorphic to F(b) by an isomorphism which takes a onto b and
which leaves every element of F fized.

‘We now come to the theorem which is, as we indicated earlier, the founda-
tion stone on which the whole Galois theory rests. For us it is the focal point
of this whole section.

TaEOREM 5.3. Any splitting fields E and E' of the polynomials f(x) €
Flz] and f'(t) € F'[t], respectively, are isomorphic by an isomorphism ¢
with the property that a¢ = o for every a € F. (In particular, any two
splitting fields of the same polynomial over a given field F are isomorphic by
an isomorphism leaving every element of F fixed.)

Proof. We should like to use an argument by induction; in order to do so,
we need an integer-valued indicator of size which we can decrease by some
technique or other. We shall use as our indicator the degree of some splitting
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field over the initial field. It may seem artificial (in fact, it may even be
artificial), but we use it because, as we shall soon see, Theorem 5.i provides
us with the mechanism for decreasing it.

If [E:F] = 1 then E = F, whence f(z) splits into a product of linear
factors over F itself. By Lemma 5.3 f'(f) splits over F’ into a product of
linear factors, whence E’ = F’. But then ¢ = r provides us with an iso-
morphism of E onto E’ coinciding with = on F.

Assume the result to be true for any field Fo and any polynomial f(z) €
Folz] provided the degree of some splitting field E, of f(z) has degree less
than n over Fy, that is, [Eq:Fy] < n.

Suppose that [E:F] = n > 1, where E is a splitting field of f(z) over F.
Since n > 1, f(x) has an irreducible factor p(z) of degree r > 1. Let p’(¢)
be the corresponding irreducible factor of f'(t). Since E splits f(z), a full
complement of roots of f(x), and so, a priors, of roots of p(z), are in E. Thus
there is a v € E such that p(») = 0; by Theorem 5.¢, [F(®):F] = r. Simi-
larly, there is a w € E’ such that p’(w) = 0. By Theorem 5.i there is an
isomorphism ¢ of F(v) onto F/(w) with the property that as = o for every
a € F.

Since [F(v):F] =r > 1,

E:F
[E:F(v)]=[ L _z

FoF r "

We claim that F is a splitting field for f(z) considered as a polynomial over
Fy = F(@), for no subfield of E, containing F, and hence F, can split f(z),
since E is assumed to be a splitting field of f(z) over F. Similarly E’ is a
splitting field for f’(¢) over Fy = F'(w). By our induction hypothesis there
is an isomorphism ¢ of E onto E’ such that a¢ = ac for all a € F,. But
for every a € F, aoc = o whence for every a € F C Fy, ap = ac = /.
This completes the induction and proves the theorem.

To see the truth of the ‘““(in particular ...)” part, let F = F’ and let 7
be the identity map ar = « for every o € F. Suppose that E; and E, are
two splitting fields of f(zx) € F[z]. Considering E; = E D F and E; =
E' D F’ = F, and applying the theorem just proved, yields that E, and E,
are isomorphic by an isomorphism leaving every element of F fixed.

In view of the fact that any two splitting fields of the same polynomial
over F are isomorphic and by an isomorphism leaving every element of F
fixed, we are justified in speaking about the splitting field, rather than a
splitting field, for it is essentially unique.

ExaMPLES
1. Let F be any field and let p(z) = 2°> + ax + 8, o, B € F, be in F[a].
If K is any extension of F in which p(z) has a root, a, then the element
= —a — aalso in K is also a root of p(x). If b = a it is easy to check
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that p(z) must then be p(x) = (z — a)?, and so both roots of p(z) are in
K. If b ¢ o then again both roots of p(z) are in K. Consequently, p(z)
can be split by an extension of degree 2 of F. We could also get this result
directly by invoking Theorem 5.h.

2. Let F be the field of rational numbers and let f(z) = 2% — 2. In the
field of complex numbers the three roots of f(z) are v/2, wv/2, o®v/2,
where w = (—1 + /3 1)/2 and where /2 is a real cube root of 2. Now
F(A/2) cannot split 28 — 2, for, as a subfield of the real field, it cannot
contain the complex, but not real, number w+/2. Without explicitly de-
termining it, what can we say about E, the splitting field of 23 — 2 over
F? By Theorem 5.h, [E: F] < 3! = 6; by the above remark, since z® — 2is
irreducible over F and since [F(~/2) : F] = 3, by the corollary to Theorem
5.8,3 = [F(~/2):F]|[E:F). Finally, [E:F] > [F(v/2):F] = 3. The only
way out is [E: F] = 6. We could, of course, get this result by making two
extensions F; = F(1/2) and E = F;(w) and showing that w satisfies an
irreducible quadratic equation over Fy.

3. Let F be the field of rational numbers and let f(x)_= 4+ 22+1€
Flz]. We claim that E = F(w), = where w = (— 1+ +/3 1) /2, is a splitting
field of f(x). Thus [E: F] = 2, far short of the maximum possible 4! = 24.

PROBLEMS

1. In the proof of Lemma 5.1, prove that the degree of ¢(x) is one less
than that of p(x).
2. In the proof of Theorem 5.g, prove in all detail that the elements
14V, 247V, ...,2"" 4+ V form a basis of E over F.
3. Prove Lemma 5.3 in all detail.
4. Show that ** in Lemma 5.4 is well-defined and is an isomorphism of
Fla]/(f(x)) onto F[t]/(f' ().
5. In Example 3 at the end of this section prove that F(w) is the splitting
field of «* + 2% + 1.
6. Let F be the field of rational numbers. Determine the degrees of the
splitting fields of the following polynomials over F.
(a) 2* + 1.
(b) 28 + 1.
(c) z* — 2.
(d) =5 — 1.
Ce) 2° + 2% + 1.
7. If p is a prime number, prove that the splitting field over F, the field
of rational numbers, of the polynomial 2 — 1 is of degree p — 1.
**8. If n > 1, prove that the splitting field of z® — 1 over the field of
rational numbers is of degree ®(n) where & is the Euler $-function.
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*9, If F is the field of rational numbers, find necessary and sufficient
conditions on a and b so that the splitting field of 2% + az + b has degree
exactly 3 over F.

10. Let p be a prime number and let F = J,, the field of integers mod p.

(a) Prove that there is an irreducible polynomial of degree 2 over 7.
(b) Use this polynomial to construct a field with p? elements.

*(c) Prove that any two irreducible polynomials of degree 2 over F
lead to isomorphic fields with p? elements.

11, If E is an extension of F and if f(x) € F[z] and if ¢ is an automor-
phism of E leaving every element of F fixed, prove that ¢ must take a root
of f(z) lying in E into a root of f(z) in E.

12. Prove that F(+/2), where F is the field of rational numbers, has no
automorphisms other than the identity automorphism.

13. Using the result of Problem 11, prove that if the complex number
ais a root of the polynomial p(z) having real coefficients then &, the complex
conjugate of «, is also a root of p(z).

14. Using the result of Problem 11, prove that if m is an integer which is
not a perfect square and if @ + 84/m (, B8 rational) is the root of a poly-
nomial p(x) having rational coefficients, then & — B/m is also a root of p(x).

*15. If F is the field of real numbers, prove that if ¢ is an automorphism of
F then ¢ leaves every element of F' fixed.
16. (a) Find all real quaternions ¢ = ag + a1% + asj + ask satisfying

#= -1
*(b) For a t as in part (a) prove we can find a real quaternion s such
that sts™ = 4.

4. Construction with Straight-Edge and Compass. We pause in our
general development to examine some implications of the results obtained
so far in some familiar, geometric situations.

A real number « is said to be a constructible number if by the use of
straight-edge and compass alone we can construct a line segment of length
a. We assume that we are given some fundamental unit length. Recall that
from high-school geometry we can construct with a straight-edge and com-
pass a line perpendicular to and a line parallel to a given line through a
given point. From this it is an easy exercise (see Problem 1) to prove that if
o and B are constructible numbers then so are a = 8, o8, and when 8 # 0,
a/B. Therefore, the set of constructible numbers form a subfield, W, of the
field of real numbers.

In particular, since 1 € W, W must contain Fo, the field of rational
numbers. We wish to study the relation of W to the rational field.

Since we shall have many occasions to use the phrase “construct by
straight-edge and compass” (and variants thereof) the words construct,
constructible, construction, will always mean by straight-edge and compass.
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If w € W we can reach w from the rational field by a finite number of
constructions.

Let F be any subfield of the field of real numbers. Consider all the points
(2, y) in the real Euclidean plane both of whose coordinates = and y are in
F; we call the set of these points the plane of F. Any straight line joining two
points in the plane of F has an equation of the form az + by + ¢ = 0 where
a, b, ¢ are all in F (see Problem 1). Moreover, any circle having as center a
point in the plane of F and having as radius an element of F' has an equation
of the form 22 + y? + az + by + ¢ = 0, where all of @, b, ¢ are in F (see
Problem 3). We call such lines and circles lines and circles in F.

Given two lines in F which intersect in the real plane, then their inter-
section point is a point in the plane of F' (see Problem 4). On the other hand,
the intersection of a line in F and a circle in F need not yield a point in the
plane of F. But, using the fact that the equation of a line in F is of the form
az + by -+ ¢ = 0 and that of a circle in F is of the form 2% + y? + dx +
ey + f = 0, where a, b, ¢, d, ¢, f are all in F, we can show that when a line
and circle of F intersect in the real plane, they intersect either in a point in
the plane of F or in the plane of F (/) for some positive v in F (see Prob-
lem 5). Finally, the intersection of two circles in F can be realized as that of
a line in F and a circle in F, for if these two circles are 2° + y* + az +
b1y + ¢y = 0 and 22 + y? + agz + bay + ¢; = 0, then their intersection
is the intersection of either of these with the line (a; — ag)x + (by — bo)y +
(c1 — ¢2) =0, 50 also yields a point either in the plane of F or of F(+/) for
some positive v in F.

Thus lines and circles of F lead us to points either in F or in quadratic
extensions of F. If we now are in F(+/7,) for some quadratic extension of
F, then lines and circles in F(1/7;) intersect in points in the plane of
F(\/v1, \V/vs) where v, is a positive number in F(4/71). A point is con-
structible from F if we can find real numbers )\, ..., \,, such that A, € F,
M2 EFM), A2 EFALA), . oy M2 E F(Ay, - . ., An—y), such that the point
is in the plane of F(Ay, ..., \,). Conversely, if ¥ € F is such that /7 is
real then we can realize v as an intersection of lines and circles in F (see
Problem 6). Thus a point is constructible from F if and only if we can find a
finite number of real numbers Xy, ..., \,, such that

1) [F\):Fl=1lor2,
(2) [F()\ly °'-,)\i):FO\1, "';>\’i—1)] =1lor2forz: = 1, 2} S

and such that our point lies in the plane of F(Ay, ..., Ayn).

We have defined a real number « to be constructible if by use of straight-
edge and compass we can construct a line segment of length «. But this
translates, in terms of the discussion above, into: « is constructible if
starting from the plane of the rational numbers, F, we can imbed « in a
field obtained from Fy by a finite number of quadratic extensions. This is
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TuEorEM 5.K. The real number « is constructible if and only if we can
find a finite number of real numbers Ny, ..., N, such that:

(1) M® € Fy,
(2) )\zz E FOO\I: .. .,7\.5_.1) f07"7: = 1, 2, R (2

b
such that « € Fo(A1, « . ., An).

However, we can compute the degree of Fo(Ay, ..., \,) over Fo, for by
Theorem 5.&, [FO()‘I; ooy )\n) :Fo] = [Fo()\], ceey )\n) :Fo()\l, ceny )\n——-l)] e
[Foiy « ooy M) Fohyy o ooy M) oo [Fo(M) :Fygl. Since each term in the
product is either 1 or 2, we get that [Fo(\y, ..., M) :Fg] = 27, and thus the

CorOLLARY 1. If a is constructible then a lies in some extension of the
rationals of degree a power of 2.

If « is constructible, by Corollary 1 above, there is a subfield K of the real
field such that o € K and such that [K:F,] = 2". However, Fy(a) C K,
whence by the corollary to Theorem 5.a [Fo(a):Fo]|[K:Fo] = 27; thereby
[Fo(a):Fy] is also a power of 2. However, if o satisfies an irreducible
polynomial of degree k& over Fy, we have proved in Theorem 5.c that
[Fo(e): Fo] = k. Thus we get the important criterion for nonconstructibility

CorOLLARY 2. If the real number o satisfies an irreducible polynomial
over the field of rational numbers of degree k, and if k vs not ¢ power of 2, then
a 18 not constructible.

This last corollary enables us to settle the ancient problem of trisecting
an angle by straight-edge and compass, for we prove

TrEOREM 5.L. It s impossible, by straight-edge and compass alone, to
trisect 60°.

Proof. If we could trisect 60° by straight-edge and compass, then the
length « = cos 20° would be constructible. At this point, let us recall the
identity cos 36 = 4 cos® § — 3 cos§. Putting 8 = 20° and remembering
that cos 60° = %, we obtain 40® — 3a = %, whence 8a® — 6a — 1 = 0.
Thus « is a root of the polynomial 82° — 6z — 1 over the rational field.
However, this polynomial is irreducible over the rational field (Problem
7(a)), and since its degree is 3, which certainly is not a power of 2, by Corol-
lary 2 to Theorem 6.k, « is not constructible. Thus 60° cannot be trisected
by straight-edge and compass.

Another ancient problem is that of duplicating the cube, that is, of con-
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structing a cube whose volume is twice that of a given cube. If the original
cube is the unit cube, this entails constructing a length o such that o® = 2.
Since the polynomial z® — 2 is irreducible over the rationals (Problem
7(b)), by Corollary 2 to Theorem 5.k, « is not constructible. Thus

THEOREM 5.M. By straight-edge and compass it is tmpossible to duplicate
the cube.

We wish to exhibit yet another geometric figure which cannot be con-
structed by straight-edge and compass, namely, the regular septagon. To
carry out such a construction would require the constructibility of o =
2 cos (2r/7). However, we claim that « satisfies 2® + 2 — 22 — 1 (Prob-
lem 8) and that this polynomial is irreducible over the field of rational
numbers (Problem 7(c)). Thus again using Corollary 2 to Theorem 5.k we
obtain

TuEOREM 5.N. It is impossible to construct a regular septagon by straight-
edge and compass.

PROBLEMS

1. Prove that if @, 8 are constructible, then so are a == 8, o3, and «/g
(when 8 = 0).

2. Prove that a line in F has an equation of the form az + by +¢ =0
with @, b, cin F.

3. Prove that a circle in F has an equation of the form z? + y* + az +
by +c¢=0, witha, b, cin F.

4. Prove that two lines in F, which intersect in the real plane, intersect
at a point in the plane of F.

5. Prove that a line in F and a circle in F' which intersect in the real
plane do so at a point either in the plane of F or in the plane of F(1/7)
where v is a positive number in F.

6. If ¥ € F is positive, prove that 4/ is realizable as an intersection of
lines and circles in F.

7. Prove that the following polynomials are irreducible over the field of
rational numbers.

(a) 8z° — 6z — 1.
) 2® — 2.
) 2® + 2% — 2r — 1.

2
8. Prove that 2 cos =

. 2
= satisfies 2% + 2% — 2z — 1. (Hint: Use 2 cos-71r =
e21r'i/7 + 6—2‘”:/7.)

9. Prove that the regular pentagon is constructible.
10. Prove that the regular hexagon is constructible.
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11, Prove that the regular 15-gon is constructible.

12. Prove that it is possible to trisect 72°.

13. Prove that a regular 9-gon is not constructible.
*14. Prove a regular 17-gon is constructible.

5. More about Roots. We return to the general exposition. Let F be any
field and, as usual, let F[z] be the ring of polynomials in z over F.

DeriNvitioN. If f(2) = apz” + apa™ - @ P4 a1z an
in Flz], then the derwative of f(x), written as f/(z), is the polynomial
'@ = na@" + (n — Daz® 2 4o+ (0 — Dag” L -+ ey,
in Flz].

To make this definition or to prove the basic formal properties of the
derivative, as applied to polynomials, does not require the concept of a
limit. However, since the field F is arbitrary we might expect some strange
things to happen. For instance, if F is of characteristic p 0, the deriva-
tive of the polynomial 2? is p2?~! = 0. Thus the usual result from the
caleulus that a polynomial whose derivative is 0 must be a constant no
longer need hold true. However, if the characteristic of Fis0and if f'(z) = 0
for f(z) € Flz] it is indeed true that f(z) = « € F (see Problem 1).
Even when the characteristic of F is p # 0 we can still describe the poly-
nomials with zero derivative; if f'(z) = 0 then f(z) is a polynomial in z?
(see Problem 2).

‘We now prove the analogs of the formal rules of differentiation that we
know so well.

LemmaA 5.5. For any f(z), g(x) € Flz] and any o € F

1) (f@ +g9@) = f(2) + ¢'();
(@) (of (@)’ = of'(2);
B) (@)g@)" = f(2)g(x) + f@)g' ().

Proof. The proofs of parts (1) and (2) are extremely easy and are left
as exercises. To prove part (3), note that from parts (1) and (2) it is enough
to prove it in the highly special case f(z) = z* and g(z) = 2’ where both
¢ and j are positive. But then f(z)g(z) = z**/, whence (f(2)g(x))’ =
@+ J)x"""'l however, f'(z)g(x) = iz* 2’ = 't~ and f(z)g'(x) =
i’ = jaiti71; consequently, f'(z)g(x) + fl@)g'(z) = (i + e =
(fx)g(@))".

Recall that in elementary calculus the equivalence is shown between the
existence of a multiple root of a function and the simultaneous vanishing of
the function and its derivative at a given point. Even in our setting, where
F is an arbitrary field, such an interrelation exists.
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LemMa 5.6. The polynomial f(x) € Flz] has a multiple root if and only
if f(x) and f'(z) have a noniriial (that s, of positive degree) common factor.

Proof. Before proving the lemma proper, a related remark is in order,
namely, if f(z) and g(z) in F[z] have a nontrivial common factor in K[z],
for K an extension of F, then they have a nontrivial common factor in Flzx].
For, were they relatively prime as elements in F[z], then we would be able
to find two polynomials a(x) and b(z) in Fz]suchthata(z)f(z) +b(@)g(x) = 1.
Since this relation also holds for those elements viewed as elements of K[z],
in K[z] they would have to be relatively prime.

Now to the lemma itself. From the remark just made, we may assume,
without loss of generality, that the roots of f(z) all lie in F (otherwise ex-
tend F to K, the splitting field of f(z)). If f(x) has a multiple root « then
f@) = (x — &)™q(x) where m > 1. However, as is easily computed,
((x — &)™) = m(z — o)™ ! whence, by Lemma 5.5, '(z) = (x — o)™¢(z) +
m(x — a)™ g(z) = (x — a)r(z), since m > 1. But this says that f(z)
and f’(x) have the common factor z — «, thereby proving the lemma in one
direction.

On the other hand, if f(z) has no multiple root then f(z) =
(z — a1)(x — ag) ... (x — a,) where the o,’s are all distinct (we are supposing

n
PR

f(z) to be monic). Bat then f'(z) = E @—a) ... @— ) ... ( — an)

i=1
where the A denotes the term is omitted. We claim no root of f(z) is a root
of f'(x), for f(e;) = [] (@ — ;) # 0, since the roots are all distinet.

J==1

However, if f(z) and f/(z) have a nontrivial common factor, they have a
common root, namely, any root of this common factor. The net result is
that f(z) and f’(z) have no nontrivial common factor, and so the lemma has
been proved in the other direction.

CoroLLaRrY 1. If f(z) € Flx] is irreducible, then:

(1) If the characteristic of F is 0, f(z) has no multiple roots.
(2) If the characteristic of F 1s p 5 0, f(z) has a multiple root only if it is
of the form f(z) = g(z®).

Proof. Since f(x) is irreducible, its only factors in F[z] are 1 and f(z).
If f(x) has a multiple root, then f(z) and f'(x) have a nontrivial common
factor by the lemma, hence f(z) | f'(z). However, since the degree of f'(z) is
less than that of f(x), the only possible way that this can happen is for f’(x)
to be 0. In characteristic 0 this implies that f(z) is a constant, which has
no roots; in characteristic p = 0, this forces f(z) = g(=?).

We shall return in a moment to discuss the implications of Corollary 1
more fully. But first, for later use in Chapter 7 in our treatment of finite
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fields, we prove the rather special

SJOROLLARY 2. If F is a field of characteristic p = 0, then the polynomial
2P — z € Flz], for n > 1, has distinct roots.

Proof. The derivative of z?" — z is p"zP 7! — 1 = —1, since F is of
characteristic p. Therefore, 27" — 2 and its derivative are certainly rela-
tively prime, which, by the lemma, implies that " — z has no multiple
roots.

Corollary 1 does not rule out the possibility that in characteristic p < 0
an irreducible polynomial might have multiple roots. To clinch matters,
we exhibit an example where this actually happens. Let Fy be a field of
characteristic 2 and let F = Fy(z) be the field of rational functions in z
over Fy. We claim that the polynomial ¢ — z in F[{] is irreducible over F
and that its roots are equal. To prove irreducibility we must show that there
is no rational function in Fy(z) whose square is z; this is the content of
Problem 4. To see that 2 — z has a multiple root, notice that its derivative
(the derivative is with respect to ¢, for z, being in F is considered as a con-
stant) is 2t = 0. Of course, the analogous example works for any prime
characteristic.

Now that the possibility has been seen to be an actuality, it points out
a sharp difference between the case of characteristic 0 and that of charac-
teristic p. The presence of irreducible polynomials with multiple roots in
the latter case leads to many interesting, but at the same time, complicating
subtleties. These require a more elaborate and sophisticated treatment
which we prefer to avoid at this stage of the game. Therefore, we make the
flat assumption for the rest of this chapter that all fields occurring in the text
material proper are fields of characteristic 0.

DeriNiTioN. The extension K of F is a stmple extension of F if K = F(a)
for some « in K.

In characteristic O (or in properly conditioned extensions in characteristic
p # 0; see Problem 14) all finite extensions are realizable as simple exten-
sions. This result is

THaEOREM 5.P. If F is of characteristic 0 and if a, b, are algebraic over F,
then there exists an element ¢ € F(a, b) such that F(a, b) = F(c).

Proof. Let f(z) and g(z), of degrees m and n, be the irreducible poly-
nomials over F satisfied by @ and b respectively. Let K be an extension of F
in which both f(z) and g(z) split completely. Since the characteristic of F
is 0 all the roots of f(x) are distinct, as are all those of g(z). Let the roots of
f(x) be @ = ay, ag, .. ., an and those of g(z), b = by, by, ..., ba.
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If 7 # 1, then b; by = b, hence the equation a; + A\b; = a; + Aby =
a + b has only one solution N in K, namely,

a; — a
A= .
b—b;

Since F is of characteristic 0 it has an infinite number of elements, so we can
find an element v € F such that a; + vb; 5% a + b for all ¢ and for all
j# 1. Let ¢ = a- vb; our contention is that F(c) = F(a, b). Since
¢ € F(a, b), we certainly do have that F(c) < F(a, b). We will now show
that both a and b are in F(c) from which it will follow that F(a, b) < F(c).

Now b satisfies the polynomial g(z) over F, hence satisfies g(z) considered
as a polynomial over K =F(c). Moreover, if h(z) =f(c—vz) then h(z) CK[z]
and k() = f(c — vb) = fla) = 0, since @ = ¢ — vb. Thus in some ex-
tension of K, h(z) and g(z) have z — b as a common factor. We assert
that z — b is in fact their greatest common divisor. For, if b; 5 b is another
root of g(z), then h(b;) = f(c — vb;) 0, since by our choice of v, ¢ — vb;
for j # 1 avoids all roots a; of f(x). Also, since (z — b)? 1 g(z), (x — b)?
cannot divide the greatest common divisor of A(z) and ¢(z). Thus z — b is
the greatest common divisor of h(z) and ¢g(x) over some extension of K. But
then they have a nontrivial greatest common divisor over K, which must
be a divisor of z — b. Since the degree of 2 — b is 1 we see that the greatest
commeon divisor of g(z) and h(z) in K[x] is exactly # — b. Thus z — b €
K[z], whence b € K ;remembering that K = F(c), we obtain that b € F(c).
Since a = ¢ — vb, and since b, ¢ € F(c), v € F C F(c), we get that
a & F(c), whence F(a, b) < F(c). The two opposite containing relations
combine to yield F(a, b) = F(c).

A simple induction argument extends the result from 2 elements to any
finite number, that is, if a4, ..., o, are algebraic over F, then there is an
element ¢ € F(ay, ..., @) such that F(c) = F(ey, ..., ay). Thus the

CoroLLARY. Any finite extension of a field of characteristic 0 is a simple
extension.

PROBLEMS

1. If F is of characteristic 0 and f(x) € F[z] is such that f'(z) = 0,
prove that f(z) = a € F.

2. If F is of characteristic p # 0 and if f(z) € F[x] is such that f'(z) = 0,
prove that f(z) = g(z®) for some polynomial g(z) € Flz].

3. Prove that (f(z) + ¢g(x))’ = f'(z) + ¢’(z) and that (af(@))’ = af(x)
for f(z), g(zx) € Flz] and « € F.

4. Prove that there isno rational function in F(z) such that its square is z.
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5. Complete the induction needed to establish the corollary to Theorem
5.p.

An element a in an extension K of F is called separable over F if it satisfies
a polynomial over F having no multiple roots. An extension K of F is called
separable over F if all its elements are separable over F. A field F is called
perfect if all finite extensions of F are separable.

6. Show that any field of characteristic 0 is perfect.

7. (a) If F is of characteristic p > 0 show that for a,b € F (a + b)?" =
a® 4 b7,

(b) If F is of characl:eristic p # 0 and if K is an extension of F let

T = {a € K|a? € F for some n}. Prove that T is a subfield of
K.

8. If K, T, F are as in Problem 7(b) show that any automorphism of K

leaving every element of F fixed also leaves every element of 7' fixed.

*9. Show that a field F of characteristic p s« 0 is perfect if and only if
for every a € F we can find a b € F such that b? = a.

10. Using the result of Problem 9 prove that any finite field is perfect.
**11. If K is an extension of F prove that the set of elements in K which
are separable over F form a subfield of K.

12. If F is of characteristic p # 0 and if K is a finite extension of F,
prove that given a € K either a?" € F for some n or we can find an integer
m such that o?” ¢ F and is separable over F.

13. If K and F are as in Problem 12, and if no element which is in K but
not in F is separable over F, prove that given a € K we can find an integer
n, depending on a, such that a?" € F.

14. If K is a finite, separable extension of F' prove that K is a simple
extension of F.

15. If one of a or b is separable over F, prove that F(a, b) is a simple ex-
tension of F.

6. The Elements of Galois Theory. Given a polynomial p(z) in Flz],
the polynomial ring in z over F, we shall associate with p(z) a group, called
the Galois group of p(x). There is a very close relationship between the roots
of a polynomial and its Galois group; in fact, the Galois group will turn out
to be a certain permutation group of the roots of the polynomial. We shall
make a study of these ideas in this, and in the next, section.

The means of introducing this group will be through the splitting field
of p(z) over F, the Galois group of p(z) being defined as a certain group of
automorphisms of this splitting field. This accounts for our concern, in so
many of the theorems to come, with the automorphisms of a field. A beauti-
ful duality, expressed in the fundamental theorem of the Galois theory



196 FIELDS CH. 5

(Theorem 5.v), exists between the subgroups of the Galois group and the
subfields of the splitting field. From this we shall eventually derive a condi-
tion for the solvability by means of radicals of the roots of a polynomial in
terms of the algebraic structure of its Galois group. From this will follow the
classical result of Abel that the general polynomial of degree 5 is not solvable
by radicals. Along the way we shall also derive, as side results, theorems of
great interest in their own right. One such will be the fundamental theorem
on symmetric functions. Our approach to the subject is founded on the
treatment given it by Artin.

Recall that we are assuming that all our fields are of characteristic 0,
hence we can (and shall) make free use of Theorem 5.p and its corollary.

By an automorphism of the field K we shall mean, as usual, a mapping o
of K onto itself such that (@ + b) = a(a) + ¢(b) and o(ad) = o(a)s(d)
for all @, b € K. Two automorphisms ¢ and r of K are said to be distinet
if o(a) > 7(a) for some element a in K.

We begin the material with

TaroreM 5.Q. If K s a field and if oy, . . ., oy are distinct automorphisms
of K then it is impossible to find elements ay, . . ., @s, not all 0, n X such that
ay01(u) + agoo(w) +- - -+ anon(w) = 0 for all u € K.

Proof. Suppose we could find a set of elements ay, ..., @, in K, not all 0,
such that ayoy(w) 4+ - -+ anon(u) = 0 for all v € K. Then we could find
such a relation having as few nonzero terms as possible; on renumbering
we can assume that this minimal relation is

oy ayo1(u) 4+ -+ amom(u) = 0

where a4, ..., @, are all different from 0.

If m were equal to 1 then a;o;(u) = 0 for all u € K, leading to a; = 0,
contrary to assumption. Thus we may assume that m > 1. Since the auto-
morphisms are distinet there is an element ¢ € K such that o1(c) 5 om(c).
Since cu € K for all u € K, relation (1) must also hold for cu, that is,
ayor1(cw) + agoa(cu) 4+« ++ amon(cu) = 0 for all w € K. Using the hy-
pothesis that the o’s are automorphisms of K, this relation becomes

@) a101(0)o1(u) + agoa(€)oa(u) + -+ + Amom(C)om(u) = 0.

Multiplying relation (1) by oi1(c) and subtracting the result from (2)
yields

3) as(o2(c) — a1(c))o2(w) +- - -+ am(om(c) — 01(¢))om(u) = 0.

If we put b; = a;(s,(c) — 1(¢)) for 2 = 2, ..., m, then the b; are in K,
b = Amom(c) — o1(c)) # 0, since an, % 0, and on(c) — o1(c) # 0 yetb
baoa(u) 4+« -+ bpom(u) = 0 for all w € K. This produces a shorter rela-
tion, contrary to the choice made; thus the theorem is proved.
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DermiTioN. If G is a group of automorphisms of K, then the fized field
of G is the set of all elements a € K such that ¢(a) = a for all ¢ € G.

Note that this definition makes perfectly good sense even if @ is not a
group but is merely a set of automorphisms of K. However, the fixed field
of a set of automorphisms and that of the group of automorphisms gener-
ated by this set (in the group of all automorphisms of K) are equal (Prob-
lem 1), hence we lose nothing by defining the concept just for groups of
automorphisms. Besides, we shall only be interested in the fixed fields of
groups of automorphisms.

Having called the set, in the definition above, the fixed field of @, it
would be nice if this terminology were accurate. That it is we see in

Lemma 5.7. The fized field of G ©s a subfield of K.

Proof. Let a, b be in the fixed field of G. Thus for all ¢ € G, o(a) = a
and o¢(b) = b. But then o(a £b) = o(a) &= c(d) = a b and o(ab) =
c(a)a(b) = ab;hence a + b and ab are again in the fixed field of G. If b # 0,
then o(d™1) = o(b)™ = b1, hence b~ also falls in the fixed field of G. Thus
we have verified that the fixed field of G is indeed a subfield of K.

‘We shall be concerned with the automorphisms of a field which behave
in a prescribed manner on a given subfield.

DrriniTioN. Let K be a field and let F be a subfield of K. Then the
group of automorphisms of K relative to F, written as G(K, F), is the set of
all automorphisms of K leaving every element of F fixed; that is, the auto-
morphism ¢ of K is in G(K, F) if and only if c(a) = « for every a € F.

It is not surprising, and is quite easy to prove
LemMma 5.8. G(K, F) is a subgroup of the group of all automorphisms of K.

We leave the proof of this lemma to the reader. One remark: K contains
the field of rational numbers F, since K is of characteristic 0, and it is easy
to see that the fixed field of any group of automorphisms of K, being a field,
must contain Fo. Hence, every rational number is left fixed by every auto-
morphism of K.

We pause to examine a few examples of the concepts just introduced.

Examere 1. Let K be the field of complex numbers and let F be the

field of real numbers. We compute G(K, F). If ¢ is any automorphism of K,

since 2= —1, o(5)2 = o(@®) = o(—1) = —1, whence o(2) = xi. If,
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in addition, o leaves every real number fixed, then for any a -+ b where
a, b are real, o(a + bi) = o(a) + o(b)c(?) = a = bi. Each of these possi-
bilities, namely the mapping ¢1(a + b7) = a + biand o9(a + b2) = a — bs
defines an automorphism of K, ¢; being the identity automorphism and o5
complex-conjugation. Thus G(K, F) is a group of order 2.

What is the fixed field of G(K, F)? It certainly must contain F, but does
it contain more? If a + bt is in the fixed field of G(K, F) then a 4 b¢ =
oo(a + b2) = a — bi whence b = 0 and a = a + b2 € F. In this case we
see that the fixed field of G(K, F) is precisely F itself.

ExampLe 2. Let Fy be the field of rational numbers and let K = Fo(+/2)
where /2 is the real cube root of 2. Every element in K is of the form
ap + a1 V2 + a2(~/2)? where ag, @1, oy are rational numbers. If ¢ is an
automorphism of K, then o(/2)? = ¢((/2)%) = ¢(2) = 2, whence ¢(~/?2)
must also be a cube root of 2 lying in K. However, there is only one real
cube root of 2, and since K is a subfield of the real field, we must have that
o(x/2) = /2. But then o(ao + arv/2 + ay(/2)?) = ap + /2 +
ap(~¥/2)?, that is, o is the identity automorphism of K. We thus see that
G(K, Fq) consists only of the identity map, and in this case the fized field of
G(K, Fo) 1s not F but 1s, in fact, larger, being all of K.

ExampLE 3. Let Fy be the field of rational numbers and let w = €?7%/5;
thus w® = 1 and w satisfies the polynomial z* + 23 + 22 4+ = + 1 over F,,.
By the Eisenstein criterion one can show that z* + 2% + 2% + z 4+ 1 is
irreducible over F (see Problem 3). Thus K = Fo(w) is of degree 4 over F,
and every element in K is of the form ag + a0 + agw? + agw® where all of
ag, a1, ag, and ag are in Fo. Now, for any automorphism o of K o(w) 5 1,
since ¢(1) = 1, and ¢(w)’ = ¢(w%) = (1) = 1, whence o(w) is also a 5th
root of unity. In consequence, o(w) can only be one of w, «?, w3, or w?.
We claim that each of these possibilities actually occurs, for let us define
the four mappings o1, 03, o3, and o4 by oi(eg + @ + @w? + agw’) =
o + a1(0?) + ag(@)? + az(@’)?, for ¢ = 1, 2, 3, and 4. Each of these de-
fines an automorphism of K (Problem 4). Therefore, since ¢ € G(K, Fy) is
completely determined by o(w), G(K, Fo) is a group of order 4, with o; as
its unit element. In light of 632 = ¢4, 02° = a3, 05* = 0y, G(K, Fy) is a cyclic
group of order 4. One can easily prove that the fixed field of G(K, Fy) is Fy
itself (Problem 5). The subgroup A = {oy, 04} of G(K, Fo) has as its fixed
field the set of all elements oy + az(ew? + %), which is an extension of Fo
of degree 2.

The exainples, although illustrative, are still too special, for note that in
each of them G(K, F) turned out to be a cyclic group. This is highly atypical
for, in general, G(K, F) need not even be abelian (see Theorem 5.s). How-
ever, despite their speciality, they do bring certain important things to
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light. For one thing they show that we must study the effect of the auto-
morphisms on the roots of polynomials and, for another, they point out that
F need not be equal to all of the fixed field of G(K, F). The cases in which
this does happen are highly desirable ones and are situations with which
we shall soon spend much time and effort.

We now compute an important bound on the size of G(K, F).

THEOREM 5.R. If K is a finite extension of F then G(K, F) is a finite group
and its order, o(G(K, F)) satisfies o(G(K, F)) < [K:F).

Proof. Let [K:F] = n and suppose that uy, ..., u, is a basis of K over F.
Suppose that we can find n + 1 distinet automorphisms oy, 2, ..., onyg
in G(K, F). By the corollary to Theorem 4.f the system of 7 homogeneous
linear equations in the 7 -+ 1 unknowns zy, ..., Tp41:

o1(u)zy + oo(Ur)ze +- - -+ Gap1(U)Tngy = 0
o1y + oo(ug)zs + -+ + o (U)Tnay = 0

o1(Un)Ty + oo (Un)Ta +- -+ 0'n+1(un)xn+1 =0
has a nontrivial solution (not all 0) z; = ay, ..., Tpy1 = @ny1 in K. Thus
€Y) ay01(us) + ag02(us) + * + ¢ + Cny10nt1(Us) = 0

fore=1,2,...,n.

Since every element in F is left fixed by each o; and since an arbitrary
element ¢ in K is of the form ¢ = ayuy + -+ apu, with a4, ..., ¢, in F,
then from the system of equations (1) we get ayo1(f) + -+ - + Gnt10041() =0
for all ¢t € K. But this contradicts the result of Theorem 5.q. Thus
Theorem 5.r has been proved.

Theorem 5.1 is of central importance in the Galois theory. However, aside
from its key role there, it serves us well in proving a classic result concerned
with symmetric rational functions. This result on symmetric functions in its
turn will play an important part in the Galois theory.

First a few remarks on the field of rational functions in n-variables over a
field F. Let us recall that in Section 11 of Chapter 3 we defined the ring of
polynomials in the n-variables zy, ..., z, over F and from this defined the
field of rational functions in y, ..., Tn, F(zy, ..., Z,), over F as the ring
of all quotients of such polynomials.
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Let S, be the symmetric group of degree n considered to be acting on the
set [1,2, ...,n]; for ¢ € S, and 7 an integer with 1 <7 < n, let o(z) be
the image of 7 under 0. We can make S, act on F(zy, ..., ,) in the following
natural way: for ¢ € S, and r(zy, ..., Z,) € F(zy, ..., %,), define the
mapping which takes r(zy, . .., Z,) onto 7(Zsq), - -+, To(my). We shall write
this mapping of F(zy, ..., %,) onto itself also as ¢. It is obvious that these
mappings define automorphisms of F(zy, ..., ,). What is the fixed field of
F(zy, ..., x,) with respect to S,,? It consists merely of all rational functions
r(T1, ..., Tn) such that 7(zy, ..., Zs) = r{Te(1yy « -+, Ta(my) for all o € 8,.
But these are precisely those elements in F(zy, ..., z,) which are known as
the symmetric rational functions. Being the fixed field of 8, they form a sub-
field of F(zy, ..., z,), called the field of symmetric rational functions which
we shall denote by S. We shall be concerned with three questions:

(1) What is [F(zy, ..., 2,):8]?

(2) What is GF(zy, ..., Zu), S)?

(8) Can we describe S in terms of some particularly simple extension of
F?

We shall answer these three questions simultaneously.

We can explicitly produce in S some particularly simple functions con-
structed from zy, ..., z, known as the elementary symmetric functions in
21, ..., L. These are defined as follows:

Go=atzp et T = 2w

i=1
ay = 2z

i<y
ag = Z Li%5%r

i<j<k

dn = 2129 ... Tp.

That these are symmetric functions is left as an exercise. For n = 2, 3, and
4 we write them out explicitly below.

a; = 1 + Za.

Qs = T1To.

a; = Ty + x5 + 3.
ay = X173 + 173 + T2T3.

a3 = Z1T73.
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ay = 2y + 29 + 23 + 24.

Gy = 21Ty + 123 + T1%y + To¥z + ToTy + T34,

a3 = T1Zol3 + T1%2%4 + 212374 + ToT3Zs.

Ay = T1Tol3T4.
Note that when n =2, 2; and =z, are the roots of the polynomial
2 — at + ag, that when n = 3, z;, x5, and z; are roots of 3 — a;82 +
ast — ag and that when n = 4, z;, x5, 23, and z4 are all roots of t* — a,t® +
a2t2 - G;3t -+ ay.

Since ay, ..., a, are all in 8 the field F(ay, ..., a,) obtained by adjoining
a1, . .., G, to F must lie in 8. Our objective is now twofold, namely, to prove

1) [F(xy, ..., 24):8] = nl
2) 8 = Flay, ..., an).

Since the group S, is a group of automorphisms of F(zi, ..., %)

leaving S fixed, S, € GF(xy, ..., %), S). Thus, by Theorem 5.,
[Flxy, ..., za)i8] 2 o(GF@n, ..., 2a), 8)) = 0(Sn) = nl. If
we could show that [F(zy, ..., zn):Flay, ..., a,)] < nl, wel
then, since F(a;, ..., a,) is a subfield of 8, we would have

nl > [F(xy,. . .,20)  Flay,. . .,an)] = [F1,...,2.):8]S:Flay,. . .,an)] > nl
But then we would get that [F (2, ..., z,):8] = nL [S:F(ay, ..., )] =1
andsoS = F(ay, . ..,a,),and, finally, S, = G(F(zy, . . ., Zx),S) (this latter
from the second sentence of this paragraph). These are precisely the
conclusions we seek.

Thus, to settle the whole affair we merely must prove that [F(zy, ..., Zs):
F(ay, ..., an)] < nl. To see this, first note that the polynomial p(¢) =
" — ayt"! + aot" 2 - - -+ (—1)"an, which has coefficients in F(ay, . . ., @),
factors over F(xy, ..., Tn) as p() = (t — 2)( — 22) ... (& — Zn)-
(This is in fact the origin of the elementary symmetric functions.) Thus
p(?), of degree n over F(ay, ..., ay), splits as a product of linear factors over
F(zy, ..., x,). It cannot split over a proper subfield of F(zy, ..., Z,) Which
contains F(ay, . .., a,) for this subfield would then have to contain both F
and each of the roots of p(t), namely, z;, 2, ..., Z»; but then this subfield
would be all of F(xy, ..., ). Thus we see that F(zy, ..., ) is the splitting
field of the polynomial p(t) = t* — ayt* 1+ - -4 (—1)"an over F(ay, - . ., Gn)-
Since p(f) is of degree m, by Theorem 5h we get [F(zy, ..., %a):
F(ay, ...,a,)] < n! Thus all our claims are established. We summarize the
whole discussion in the basic and important result
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TaEOREM 5.5. Let F be a field and let F(z;, .. ., Z,) be the field of rational
functions in xy, . . ., Tn over F. Suppose that S is the field of symmetric rational
functions; then

(1) [F(xy, ..., 2o):8] = nl.

(@) G(F(xy, ..., Zn), S) = S, the symmetric group of degree n.

(3) If ay, ..., an are the elementary symmetric functions in 21, ..., Tn,
then S = F(ay, as, . . ., Gy).

(4) F(zy, ..., x,) 18 the splitting field over F(ay, ..., an) =8 of the
polynomial t" — ayt*™t + agt® 2 - -+ + (—1)"an.

We mentioned earlier that given any integer 7 it is possible to construct
a field and a polynomial of degree n over this field whose splitting field is of
maximal possible degree, n!, over this field. Theorem 5.s explicitly provides
us with such an example for if we put S = F(ay, ..., a,), the rational func-
tion field in n variables aj, ..., @, and consider the splitting field of the
polynomial t* — a;t*™! + agt" 2. .-+ (—1)"a, over S then it is of degree
n! over S.

Part (3) of Theorem 5.s is a very classical theorem. It asserts that a sym-
melric rational function in n variables s a rational function in the elementary
symmetric functions of these variables. This result can even be sharpened to:
A symmetric polynomial in n variables is a polynomial in their elementary
symmetric functions (see Problem 7). This result is known as the theorem
on symmetric polynomasals.

In the examples we discussed of groups of automorphisms of fields and of
fixed fields under such groups, we saw that it might very well happen that F
is actually smaller than the whole fixed field of G(K, F). Certainly F is al-
ways contained in this field but need not fill it out. Thus to impose the con-
dition on an extension K of F that F be precisely the fixed field of G(K, F)
is a genuine limitation on the type of extension of F that we are considering.
It is in this kind of extension that we shall be most interested.

DeriniTioN. K is a normal extension of F if K is a finite extension of F
such that F is the fixed field of G(X, F).

Another way of saying the same thing: If K is a normal extension of F
then every element in K which is outside F' is moved by some element in
G(K, F). In the examples discussed, Examples 1 and 3 were normal ex-
tensions whereas Example 2 was not.

An immedijate consequence of the assumption of normality is that it al-
lows us to calculate with great accuracy the size of the fixed field of any
subgroup of G(K, F) and, in particular, to sharpen Theorem 5.r from an
inequality to an equality.
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TrEOREM 5.1. Let K be a normal extension of F and let H be a subgroup
of GK,F); let Ky = {z € K|o(x) = z for all ¢ € H} be the fized field
of H. Then.:

(1) [K:Kg] = o(H).
(9) H = G(K, Kp).

(In particular when H = G(K, F), [K:F] = o(Q(K, F)).)

Proof. Since every element in H leaves Ky elementwise fixed, certainly
H < G(K, Kg). By Theorem 5.r we know that [K:Ky] > o(G(K, Kg));
and since o(G(K, Kg)) > o(H) we have the inequalities [K:Kgz] >
o(G(K, Kg)) = o(H). If we could show that [K:Kx] = o(H) it would im-
mediately follow that o(H) = o(G(K, K)) and as a subgroup of G(K, Kg)
having order that of G(K, Kg), we would obtain that H = G(K, Kg).
So we must merely show that [K:Kg] = o(H) to prove everything.

By Theorem 5.p there exists an a € K such that K = Kg(a); this
a must therefore satisfy an irreducible polynomial over Ky of degree
m = [K:Kg] and no nontrivial polynomial of lower degree (Theorem 5.¢).
Let the elements of H be oy, 09, ..., o5, where oy is the identity of G(K, F)
and where h = o(H). Consider the elementary symmetric functions of
a = a1(a), a3(a), ..., op(a), namely:

3

o1(a) + o2(@) +- - -+ on(a) = 2 ou(a)
=1
as = 2 05(a)ay(a)

1<)

23]

ap = a1(@)oz(a) ... onla).

Each o, is invariant under every ¢ € H. (Prove!) Thus, by the definition
of Ky, ay, as, ..., a are all elements of Kz. However, a (as well as o3(a),
..., ox(a)) is a root of the polynomial p(z) = (= — ¢1(a))(z — 02(a)) ...
(x — on(@) = z* — g2 + age? 2 4+ -+ (—1) *ay, having coefficients
in K. By the nature of a, this forces » > m = [K:Kpy], whence o(H) >
[K:Kg). Since we already know that o(H) < [K:Kg] we obtain o(H) =
[K:Kx), the desired conclusion.

When H = G(K, F), by the normality of K over F, Ky = F; consequently
for this particular case we read off the result [K:F] = o(G(K, F)).

We are rapidly nearing the central theorem of the Galois theory. What
we still lack is the relationship between splitting fields and normal exten-
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sions. This gap is filled by

TrEOREM 5.U. K is a normal extension of F if and only if K s the splitting
field of some polynomaial over F.

Proof. In one direction the proof will be highly reminiscent of that of
Theorem 5.t.

Suppose that K is a normal extension of F'; by Theorem 5.p, K = F(a).
Consider the polynomial p(z) = (z — ¢y(@))(x — 03(a)) ... (z — o,(a))

over K, where o1, 03, ..., 0, are all the elements of G(K, F). Expanding
p(z) we see that p(z) = 2™ — a2z ' + apz™ 2 +- .-+ (—1)"a, where
ai, ..., a, are the elementary symmetric functionsin ¢ = oy(a), o2(a), .. .,
on(a). But then oy, ..., a, are each invariant with respect to every

o € G(K, F), whence by the normality of K over F, must all be in F'. There-
fore, K splits the polynomial p(z) € Flz] into a product of linear factors.
Since a is a root of p(z) and since a generates K over F, a can be in no proper
subfield of K which contains F. Thus K is the splitting field of p(z) over F.

Now for the other direction; it is a little more complicated. We separate
off one piece of its proof in

Lemuma 5.9. Let K be the splitting field of f(x) in Flz] and let p(x) be an
trreducible factor of f(x) in Flz]. If the roots of p(x) are oy, ..., ar, then for
each 1 there exists an automorphism o; in G(K, F) such that o;(a;) = a;

Proof. Since every root of p(z) is a root of f(z) it must le in K. Let oy, o;
be any two roots of p(z). By Theorem 5.1 there is an isomorphism 7 of Fy =
F(a;) onto F{ = F(a;) taking «; onto o; and leaving every element of F
fixed. Now K is the splitting field of f(z) considered as a polynomial over
Fy; likewise, K is the splitting field of f(z) considered as a polynomial over
F1. By Theorem 5.j there is an isomorphism o; of K onto K (thus an autu-
morphism of K) coinciding with r on Fy. But then o;(a;) = 7(a;) = oz and
o; leaves every element of F fixed. This is, of course, exactly what Lemma
5.9 claims.

We return to the completion of the proof of Theorem 5.u. Assume that
K is the splitting field of the polynomial f(z) in Flz]. We want to show that
K is normal over F. We proceed by induction on [K:F], assuming that for
any pair of fields Ky, F; of degree less than [K:F] that whenever K is the
splitting field over Fy of a polynomial in Fy[z], then K; is normal over Fj.

If f(x) € Flz] splits into linear factors over F, then K = F, which is cer-
tainly a normal extension of F. So, assume that f(z) has an irreducible factor
p(x) € Flz] of degree r > 1. The r distinct roots ay, ag, ..., a of p(z) all
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lie in K and K is the splitting field of f(z) considered as a polynomial over
F(ay). Since

[K:F] n
K:Fla)] = ——"—=—
[K:F(a1)] FaFl - <mn,
by our induction hypothesis K is a normal extension of F(a;).

Let 6 € K be left fixed by every automorphism ¢ € G(K, F); we would
like to show that 6 is in F. Now, any automorphism in G(K, F(ay)) certainly
leaves F fixed, hence leaves 6 fixed; by the normality of K over F(ay),
this implies that 6 is in F(ey). Thus

(1) 0 =N + Moy + )\20512 + e 4 )\T_lalr—l where >\0, ey A1 € F.

By Lemma 5.9 there is an automorphism ¢; of K, ¢; € G(K, F), such that
oi(ey) = oy; since this o; leaves 6 and each \; fixed, applying it to (1) we
obtain

(2) 0 = )\0 + )\1&,; + )\2a¢2 +'+ )\r_lair-——l for ¢ = 1, 2, seey T
Thus the polynomial ¢(z) = Np_12" ™1 4+ A_z" 2+ -+ Az + (\o — 6)
in K[z], of degree at most r — 1, has the r distinct roots ay, as, ..., a-

This can only happen if all its coefficients are 0; in particular, \g — 6 = 0
whence § = A s0 is in F. This completes the induction and proves that K
is a normal extension of F. Theorem 5.u is now completely proved.

DerinrrioN. Let f(z) be a polynomial in F[z] and let K be its splitting
field over F. The Galois group of f(x) is the group G(K, F) of all the auto-
morphisms of K leaving every element of F' fixed.

Note that the Galois group of f(z) can be considered as a group of per-
mutations of its roots, for if « is a root of f(z) and if ¢ € G(K, F) then
o(a) is also a root of f(z).

We now come to the result known as the fundamental theorem of Galois
theory. It sets up a one-to-one correspondence between the subfields of the
splitting field of f(z) and the subgroups of its Galois group. Moreover, it
gives a criterion that a subfield of a normal extension itself be a normal ex-
tension of F. This fundamental theorem will be used in the next section to
derive conditions for the solvability by radicals of the roots of a poly-
nomial.

TrEOREM 5.v. Let f(z) be a polynomial in Flz], K its splitting field over
F and G(K, F) its Galois group. For any subfield T of K which contains F
let GK, T) = {¢ € GK, F)|o(t) =t for every t € T} and for any sub-
group H of G(K, F) let Kg = {z € K|o(z) = « for every o € H}. Then
the association of T with G(K, T) sets up a one-to-one correspondence of
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the set of subfields of K which contain F onto the set of subgroups of G(K, F)
such that

(1) T = Kex.m-

@) H = GK,Kp).

3) [K:T] = o(GK, T)), [T:F] = index of G(K, T) in G(K, F).

(4) T is a normal extension of F if and only if G(K, T) is a normal sub-
group of G(K, F).

(5) When T is a normal extension of F, then G(T, F) is isomorphic to
GK, F)/GK, T).

Proof. Since K is the splitting field of f(z) over F it is also the splitting
field of f(x) over any subfield T which contains F'; therefore, by Theorem
5.4, K is a normal extension of T'. Thus, by the definition of normality, T is
the fixed field of G(K, T), that is, T = K¢«xr,), proving (1).

Since K is a normal extension of F, by Theorem 5.t given a subgroup H
of G(K, F), then H = G(K, Kg) which is the assertion of part (2). More-
over, this shows that any subgroup of G(X, F) arises in the form G(X, T),
whence the association of T with G(K, T') maps the set of all subfields of K
containing F onto the set of all subgroups of G(K, F). That it is one-to-one
is clear, for, if G(K, T1) = G(K, Ts) then, by part (1), Ty = Kex,1) =
Kok ry = Ta.

Since K is normal over T, again using Theorem 5.t, [K:T] = o(G(K, T));
but then o(G(K, F)) = [K:F] = [K:T][T:F] = o(G(K, T))[T:F], whence

_ o(G(K, P))
" o(G(K, T))

in G(K, F). This is part (3).

The only parts which remain to be proved are those which pertain to
normality. We first make the following observation. T is a normal extension
of F if and only if for every ¢ € G(K, F), o(T) € T. Why? We know by
Theorem 5.p that T = F(a); thus if ¢(T) C T then o(a) € T for all
¢ € G(K, F). But, as we saw in the proof of Theorem 5.u, this implies that
T is the splitting field of p(z) = J] (z — o(a)) which has coefficients in F.

«EG(K,F)
As a splitting field, T, by Theorem 5.u, is a normal extension of F.
Conversely, if 7' is a normal extension of F, then T = F(a), where the
minimal polynomial of a, p(z), over F has all its roots in T (Theorem 5.u).
However, for any ¢ € G(K, F), o(a) is also a root of p(x), whence o(a)
must be in T. Since T is generated by a over F we get that o(T) < T, for
every o € G(K, F).

Thus T is a normal extension of F if and only if for any ¢ € G(K, F),
t€ GK,T) and t € T o(f) €T and so 7(¢(t)) = o(t); that is, if and
only if ¢~ 7¢(f) = ¢. But this says that T is normal over F if and only if
e 'G(K, T)e < G(K, T) for every ¢ € G(K, F). This last condition being

[T:F] = index of G(K, T)
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precisely that which defines G(K, T) as a normal subgroup of G(X, F) we
see that part (4) is proved.

Finally, if T is normal over F, given ¢ € G(K, F), since o(T) C T, o
induces an automorphism o, of T’ defined by o, (f) = o(¥) for every t € T.
Because o, leaves every element of F fixed, o, must be in G(T, F). Also, as is
evident, for any o, ¥ € G(K, F), (o¢), = o, whence the mapping of
G(K, F) into G(T, F) defined by ¢ — o, is a homomorphism of G(K, F)
into G(T, F). What is the kernel of this homomorphism? It consists of all
elements ¢ in G(K, F) such that o, is the identity map on 7. That is, the
kernel is the set of all ¢ € G(K, F) such that ¢ = ¢,(f) = ¢(t); by the very
definition, we get that the kernel is exactly G(X, T). The image of G(K, F)
in G(T, F), by Theorem 2.d is isomorphic to (K, F)/G(K, T), whose order
is o(G(K, F))/o(G(K, T)) = [T:F] (by part (3)) = o(G(T, F)) (by The-
orem 5.t). Thus the image of G(X, F) in G(T, F) is all of G(T, F) and so
G(T, F) is isomorphic to G(X, F)/G(K, T). This finishes the proof of part
(5) and thereby completes the proof of Theorem 5.v.

PROBLEMS

1. If Kis a field and S a set of automorphisms of K, prove that the fixed
field of S and that of S, (the subgroup of the group of all automorphisms of
K generated by S) are identical.

2. Prove Lemma 5.8.

3. Using the Eisenstein criterion, prove that z* + 2® + 2% + 2 + 1 is
irreducible over the field of rational numbers.

4. In Example 3 in the text material, prove that each mapping o; de-
fined is an automorphism of Fo(w).

5. In Example 3 prove that the fixed field of Fo(w) under ¢y, og, 03, 04
is precisely F.

6. Prove directly that any automorphism of K must leave every rational
number fixed.

*7, Prove that a symmetric polynomial in z;, ..., %, is a polynomial in
the elementary symmetric functions in 2y, ..., Zx.

8. Express the following as polynomials in the elementary symmetric
functions in z;, %9, 23.

(@) =% + 2% + 25°.
(b) z.® + z° + 5.
() (z1 — 9) 2y — z3)%(z2 — 3)%

9. If oy, ag, a3 are the roots of the cubic polynomial 2%+ 722 — 8z + 3,
find the cubic polynomial whose roots are:

(@ 0‘12: ‘7‘22: “32-

1 1 1
®) = = —

Q] Qg Qg
3 3 3
(C) ap, az, 03,
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*10. Prove Newton’s identities, namely, if aj, o, ..., a, are the roots of
f@) ="+ az*t +a" 2+t aand if s = of + a4+ it
then:

(a) Sk -+ a1Sp—1 + AoSK—2 4. +ak_181 + kak =0ifk = 1, 2, NN (X
(b) sy + a1Sp—1 ++ -+ @uSz—_n = 0for k > n.
(¢) For n = 5, apply part (a) to determine s5, s3, 84, and ss.
11. Prove that the elementary symmetric functions in zy, ..., z, are
indeed symmetric functions in 2y, ..., Z,.
12. If p(z) = 2™ — 1 prove that the Galois group of p(z) over the field of
rational numbers is abelian.

The complex number w is a primative nth root of unity if ™ = 1 but ™ # 1
for 0 < m < n. Fy will denote the field of rational numbers.

13. (a) Prove that there are ¢(n) primitive nth roots of unity where
¢(n) is the BEuler ¢-function.

(b) If w is a primitive nth root of unity prove that Fgo(w) is the split-
ting field of z” — 1 over F (and so is a normal extension of F).

() If wy, ..., ws(ny are the ¢(n) primitive nth roots of unity prove
that any automorphism of Fg(w;) takes w; into some w;.

(d) Prove that [Fo(w;):Fo] < ¢(n).

14. The notation is as in Problem 13.
*(a) Prove that there is an automorphism o; of Fy(w;) which takes w;
into w,.

(b) Prove the polynomial p,(x) = (z — w1)(z — wg) ... (& —wgm))
has rational coefficients. The polynomial p,(z) is called the nth
cyclotomic polynomial.

*(¢c) Prove that, in fact, the coefficients of p,(x) are integers.
15. Use the results of Problems 13 and 14 to prove that p,(z) is irreduci-
ble over F, for all n > 1.
16. For n = 3, 4, 6, and 8, calculate p,(z) explicitly, show that it has
integer coefficients and prove directly that it is irreducible over F,.
17. (a) Prove that the Galois group of 2® — 2 over Fj is isomorphic to
Ss, the symmetric group of degree 3.

(b) Find the splitting field, K, of 2® — 2 over Fj.

(c) For every subgroup H of S3 find Ky and check the correspond-
ence given in Theorem 5.v.

(d) Find a normal extension in K of degree 2 over F,.

18. If the field F contains a primitive nth root of unity, prove that the
Galois group of 2" — a, for a € F, is abelian.

7. Solvability by Radicals. Given the specific polynomial 2% 4 3z + 4
over the field of rational numbers Fy, from the quadratic formula for its
roots we know that its roots are (—3 == 4/ —7)/2; thus the field Fo(+/7 4) is
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the splitting field of 2 + 3z + 4 over F,. Consequently there is an element
4 = —7 in Fg such that the extension field Fo(w) where «? = « is such that
it contains all the roots of 2® + 3z + 4.

From a slightly different point of view, given the general quadratic poly-
nomial p(z) = 2* + a1z + as over F, we can consider it as a particular
polynomial over the field F(a;, as) of rational functions in the two variables
a; and ag over F'; in the extension obtained by adjoining w to F(a,, as) where
w? = ;% — 4ay € F(ay, as), we find all the roots of p(z). There is a formula
which expresses the roots of p(z) in terms of a;, as and square roots of ra-
tional functions of these.

For a cubic equation the situation is very similar; given the general cubic
equation p(z) = 2® + a12® + asz + a3 an explicit formula can be given,
involving combinations of square roots and cube roots of rational functions
in @y, as, ag. While somewhat messy, they are explicitly given by Cardan’s
formulas: Let p = as — (a;%/3) and

and let

and

0- \/--- vz

(with cube roots chosen properly); then the roots of p(r) are P+ @ —
(a1/3), wP + «*Q — (a;/3) and &P + wQ — (a;/3) where w 5 1 is a cube
root of 1. These formulas only serve to illustrate for us that by adjoining a
certain square root and then a cube root to F(a;, as, ag) we reach a field in
which p(z) has its roots.

For fourth degree polynomials, which we shall not give explicitly, by
using rational operations and square roots, we can reduce the problem to
that of solving a certain cubic, so here too a formula can be given expressing
the roots in terms of combinations of radicals (surds) of rational functions
of the coefficients.

For polynomials of degree five and higher, no such universal radical
formula can be given, for we shall prove that it is impossible to express
their roots, in general, in this way.

Given a field F and a polynomial p(z) € F[z] we say that p(x) s solvable
by radicals over F if we can find a finite sequence of fields F'; = F(wy), Fo =
Fi(ws), ..., Fr = Fr_1(wp) such that ;™ € F, we? € Fy, ..., wp™ €Fr
such that the roots of p(z) all lie in Fj.
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If K is the splitting field of p(z) over F, then p(z) is solvable by radicals
over F if we can find a sequence of fields as above such that K < Fy. An
important remark, and one we shall use later, in the proof of Theorem
5.x, is that if such an Fy can be found, we can, without loss of generality,
assume it to be a normal extension of F; we leave its proof as a problem
(Problem 1).

By the general polynomial of degreen over F,p(x) = 2™+ a;2™ " 4 - - +an,
we mean the following: Let F(ay, ..., a,) be the field of rational func-
tions, in the n variables a4, . .., a, over F, and consider the particular poly-
nomial p(x) = 2" + a;z" 1 +---+ a, over the fielld F(ay, ..., an).
We say that it is solvable by radicals if it is solvable by radicals over
F(ay, ..., ay). This really expresses the intuitive idea of ‘“finding a formula”
for the roots of p(z) involving combinations of mth roots, for various m’s,
of rational functions in ay, as, ..., a,. For n = 2, 3, and 4, we pointed out
that this can always be done. For n > 5 Abel proved that this cannot be
done. However, this does not exclude the possibility that a given poly-
nomial over F may be solvable by radicals. In fact, we shall give a criterion
for this in terms of the Galois group of the polynomial. But first we must
develop a few purely group-theoretical results. Some of these occurred as
problems at the end of Chapter 2, but we nevertheless do them now offi-
cially.

DerINITION. A group G is said to be solvable if we can find a finite chain
of subgroups G = Ny D Ny D N D---D Nji = (¢) where each N, is a
normal subgroup of N,_; and such that every factor group N;_;/N; is
abelian.

Every abelian group is solvable, for merely take No = G and Ny = (e)
to satisfy the above definition. The symmetric group of degree 3, Ss, is
solvable for take N; = {¢, (1,2, 3), (1, 3,2)}; N is a normal subgroup of
S3 and S3/N; and N;/(e) are both abelian being of orders 2 and 3, respec-
tively. It can be shown that Sy is solvable (Problem 3). For n > 5 we show
in Theorem 5.w below that S,, is not solvable.

We seek an alternate description for solvability. Given the group @ and
elements a, b in @, then the commutator of a and b is the element a~*bab.
The commutator subgroup, @, of G is the subgroup of G generated by all the
commutators in G. (It is not necessarily true that the set of commutators,
itself, forms a subgroup of G.) It was an exercise before that G is a normal
subgroup of G. Moreover, the group G/G" is abelian, for, given any two
elements in it, a@, b@, with a, b € G, then

(a@)(bG") = ab@ = ba(b'a tab)@ =

(since ab™lab € @) = baG’ = (bG')(a@’). On the other hand, if M is a
normal subgroup of @ such that G/M is abelian, then M D &, for, given
a, b € G, then (aM)(bM) = (bM)(aM) from which we deduce abM = baM
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whence a0 2abM = M and so a~'b~lab & M. Since M contains all
commutators, it contains the group these generate, namely G”.

@' is a group in its own right, so we can speak of its commutator subgroup
G® = (@). This is the subgroup of G generated by all elements
(@) ~H(d") " a't’ where o/,b' € G'. It is easy to prove that not only is G® a
normal subgroup of G’ but it is also a normal subgroup of G (Problem 4).
We continue this way and define the higher commutator subgroups G by
G™ = (V). Each G is a normal subgroup of @ (Problem 4) and
G=1 /G™ is an abelian group.

In terms of these higher commutator subgroups of @, we have a very suc-
cinet criterion for solvability, namely,

Lemma 5.10. G is solvable if and only if G® = (e) for some integer k.

Proof. f G® = (e) let Ng = G,N1 = @, Ny = G®, ..., N = G® = (¢).
Wehave @ = NgD Ny D Ny D---D N = (¢); each N; being normal in
G is certainly normal in N;_;. Finally,

N,;_]_ G(i-—l) G(i-—-l)
N; = G@® = (G(i—n)/

hence is abelian. Thus by the definition of solvability @ is a solvable group.

Conversely, if G is a solvable group, there is a chain G = Ny D N1 D
Ny D---D N = (¢) where each N; is normal in N;_; and where N;_;/N;
is abelian. But then the commutator subgroup N;_; of N;_; must be con-~
tained in N; Thus Ny D Ni =G, Na DN D (() = G?, N3 DNy D
GP)Y = @®, ..., N; D G?, () = Nt D G®. We therefore obtain that
QR = (e).

CoroLLARY. If G is a solvable group and if G is a homomorphic image of G
then @ 1is solvable.

Proof. Since @ is a homomorphic image of G it is immediate that (3)® is
the image of G®. Since G® = (¢) for some k, (G)® = (e) for the same k,
whence by the lemma @ is solvable.

The next lemma is the key step in proving that the infinite family of
groups S,, with 7 > 5, is not solvable; here S, is the symmetric group of
degree n.

Lemua 5.11. Let G = S, where n > 5; then G® for k =1, 2, ..., con-
tains every 3-cycle of Sn.

Proof. We first remark that for an arbitrary group G, if N is a normal sub-
group of G then N’ must also be a normal subgroup of ¢ (Problem 5).
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We claim that if N is a normal subgroup of G = S,, where n > 5, which
contains every 3-cycle in S,, then N’ must also contain every 3-cycle. For
suppose @ = (1,2, 3),b = (1,4, 5) are in N (we are using here that n > 5);
then a™b'ab = (3,2, 1)(5, 4, 1)(1, 2, 3)(1, 4, 5) = (1, 4, 2), as a commu-
tator of elements of N must be in N”. Since N’ is a normal subgroup of G,
for any = € S,,, #2(1, 4, 2)= must also be in N’. Choose a = in S, such that
(1) = 4y, 7(4) = 1, and x(2) = 43 where 4;, 73, 3 are any three distinct
integers in the range from 1 to n; then = (1, 4, 2)7 = (41, %2, %3) is in N'.
Thus N’ contains all 3-cycles.

Letting N = @, which is certainly normal in @ and contains all 3-cycles,
we get that @’ contains all 3-cycles; since @ is normal in G, G® contains
all 3-cycles; since G® is normal in G, G® contains all 3-cycles. Continuing
this way we obtain that G® contains all 3-cycles for arbitrary k.

A direct consequence of this lemma is the interesting group-theoretic
result

THEOREM 5.w. S, is not solvable for n > 5.

Proof. If G = 8,, by Lemma 5.11, G*) contains all 3-cycles in S, for
every k. Therefore, G® s (e) for any k, whence by Lemma 5.10 @ cannot be
solvable.

‘We now interrelate the solvability by radicals of p(x) with the solvability,
as a group, of the Galois group of p(z). The very terminology is highly sug-
gestive that such a relation exists. But first we need a result about the
Galois group of a certain type of polynomial.

Lemma 5.12. Suppose that the field F has all nth roots of unity (for some
particular n) and suppose that a 7% 0 is in F. Let 2" — a € Flz] and let K
be its splitting field over F. Then:

(1) K = F(u) where u is any root of z" — a.
(2) The Galots group of ™ — a over F 1s abelian.

Proof. Since F contains all nth roots of unity, it contains £ = ¢™*/”; note
that £ =1but £ = 1for 0 < m < n.

If u € K is any root of ™ — a, then u, fu, £2u, . . ., £ u are all the roots
of ™ — a. That they are roots is clear; that they are distinct follows from:
gu = £y with 0 <4 < j < n, then since u 5 0, and (&' — &)u = 0, we
must have £ = ¢, which is impossible since &% = 1, with0 < j — % < n.
Since # € F, all of u, &, ..., £ 'u are in F(u), thus F(u) splits 2" — a;
since no proper subfield of F(«) which contains F also contains u, no proper
subfield of F(u) can split " — a. Thus F(u) is the splitting field of z” — a,
and we have proved that K = F(u).
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If o, 7 are any two elements in the Galois group of ™ — @, that is, if
o, 7 are automorphisms of K = F(u) leaving every element of F fixed, then
since both o(w) and r(u) are roots of 2™ — a, s(u) = £u and r(u) = &u
for some ¢ and j. Thus or(u) = o(Fu) = Fo(u) (since & € F) = £y =
gy; similarly, ro(u) = £y, Therefore, or and ro agree on  and on F
hence all of K = F(u). But then or = 70 whence the Galois group in
abelian.

Note that the lemma says that when F has all nth roots of unity then
adjoining one root of 2™ — a to F, where a € F, gives us the whole splitting
field of 2 — a thus this must be a normal extension of F.

We assume for the rest of the section that F is a field which contains all nth
roots of unity for every integer n. We have

TrEOREM 5.%. If p(z) € Flz] is solvable by radicals over F then the Galois
group over F of p(x) is a solvable group.

Proof. Let K be the splitting field of p(x) over F; the Galois group of
p(z) over F is G(K, F). Since p(z) is solvable by radicals, there exists a se-
quence of fields

FCF,=F(w) CFy=Fi(wg) C-+-C Fr = Fr_1(wp),

where ;™ € F, w™ € Fy, ..., wp™® € Fr_; and where K C Fj. As we
pointed out, without loss of generality we may assume that Fy is a normal
extension of F. As a normal extension of F, Fy,is also a normal extension of
any intermediate field, hence F} is a normal extension of each F;.

By Lemma 5.12 each F; is a normal extension of F;_; and since Fy is
normal over F;_;, by Theorem 5.v, G(Fx, F;) is a normal subgroup in
G(Fy, F;_1). Consider the chain:

1) G(Fk,F) - G(Fk, Fl) D GFy, Fy) DD G(Fk,Fk.._l) - (e)

As we just remarked, each subgroup in this chain is a normal subgroup
in the one preceding it. Since F; is a normal extension of F;_;, by the funda-
mental theorem of Galois theory (Theorem 5.v) the group of F; over F;_j,
GQ(F;, F;_y) is isomorphic to G(Fy, F;—1)/G(Fx, F;). However, by Lemma
5.12, G(F; F;_;) is an abelian group. Thus each quotient group
G(Fy, F;_y)/Q(Fy, F;) of the chain (1) is abelian.

Thus the group G(Fy, F) is solvable! Since K C F}, and is a normal ex-
tension of F' (being a splitting field), by Theorem 5.v G(F, K) is a normal
subgroup of G(F, F) and G(K, F) is isomorphic to G(Fx, F)/G(F, K).
Thus G(K, F) is a homomorphic image of G(Fy, F) which is a solvable
group; by the corollary to Lemma 5.10 G(K, F) itself must then be a solva-
ble group. Since G(K, F) is the Galois group of p(x) over F the theorem
has been proved. :
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‘We make two remarks without proof.

(1) The converse of Theorem 5.x is also true, that is, if the Galois group
of p(z) over F is solvable then p(z) is solvable by radicals over F.

(2) Theorem 5.x and its converse are true even if F does not contain
roots of unity.

Recalling what is meant by the general polynomial of degree n over F,
p(x) = 2" + a; 2" +- - -+ a,, and what is meant by solvable by radicals
we close the chapter with the great, classic theorem of Abel

TuEOREM 5.Y. The general polynomial of degree n > 5 is not solvable by
radicals.

Proof. In Theorem 5.s we saw that if F(ay, ..., a,) is the field of rational
functions in the n variables ay, ..., a, then the Galois group of the poly-
nomial p(f) = * + at* ! +-- -+ a, over F(ay, ..., @,) was Sy, the sym-
metric group of degree n. By Theorem 5.w S, is not a solvable group when
n 2> 5, thus by Theorem 5.x p(¢) is not solvable by radicals over F(ay, ..., a,)
when n > 5.

PROBLEMS

*1. If p(z) is solvable by radicals over F, prove that we can find a sequence
of fields

FCF;=F(w) CFy = Fyi(wg) ©---C Fi, = Fr_1(wr)

where ;" € F, ws™? € Fy, ..., wi™® € Fj_1, F} containing all the roots
of p(x) such that Fy is normal over F.

2. Prove that a subgroup of a solvable group is solvable.

3. Prove that S, is a solvable group.

4. If G is a group, prove that all @® are normal subgroups of G.

6. If N is a normal subgroup of @ prove that N’ must also be a normal
subgroup of G.

6. Prove that the alternating group (the group of even permutations in
S,) A, has no nontrivial normal subgroups for n > 5.
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CHAPTER 6

Linear Transformations

In Chapter 4 we defined, for any two vector spaces ¥V and W over the
same field 7, the set Hom(V, W) of all vector space homomorphisms of V'
into W. In fact, we introduced into Hom(V, W) the operations of addi-
tion and of multiplication by scalars (elements of F) in such a way that
Hom/(V, W) itself became a vector space over F.

Of much greater interest is the special case V = W, for here, in addition
to the vector space operations, we can introduce a multiplication for any
two elements under which Hom(V, V) becomes a ring. Blessed with this
twin nature—that of a vector space and of a ring—Hom(V, V) acquires an
extremely rich structure. It is this structure and its consequences that im-
parts so much life and sparkle to the subject and which justifies most fully
the creation of the abstract concept of a vector space.

Our main concern shall be concentrated on Hom(V, V) where V will not
be an arbitrary vector space but rather will be restricted to be a finite-
dimensional vector space over a field F. The finite-dimensionality of V
imposes on Hom(V, V) the consequence that each of its elements satisfies a
polynomial over F. This fact, perhaps more than any other, gives us a ready
entry into Hom(V, V) and allows us to probe both deeply and effectively
into its structure.

The subject matter to be considered often goes under the name of linear
algebra. It encompasses the isomorphic theory of matrices. The statement
that its results are in constant everyday use in every aspect of mathe-
matics (and elsewhere) is not in the least exaggerated.

A popular myth is that mathematicians revel in the inapplicability of
their discipline and are disappointed when one of their results is “soiled”
by use in the outside world. This is sheer nonsense! It is true that a mathe-
matician does not depend for his value judgments on the applicability of a
given result outside of mathematics proper but relies, rather, on some in-
trinsic, and at times intangible, mathematical criteria. However, it is
equally true that the converse is false—the utility of a result has never
lowered its mathematical value. A perfect case in point is the subject of
linear algebra; it is real mathematics, interesting and exciting on its own,
yet it is probably that part of mathematics which finds the widest applica-

216
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tion—in physics, chemistry, economics, in fact in almost every science and
pseudo-science.

1. The Algebra of Linear Transformations. Let ¥ be a vector space
over a fleld F and let Hom(V, V), as before, be the set of all vector-space-
homomorphisms of ¥V into itself. In Section 3 of Chapter 4 we saw that
Hom(V, V) forms a vector space over F where, for Ty, T € Hom(V, V),
T:1 + T is defined by o(T; + T3) = vT; + vTs for all v € V and where,
for « € F, T is defined by v(aT}) = a@T,).

For Ty, Ty € Hom(V, V), since »T; € V for any v € V, vT4) T, makes
sense. As we have done for mappings of any set into itself, we define T, T by
v(T1T2) = WT1)Ts for any v € V. We now claim that 7T, € Hom(V, V).
To prove this, we must show that for all @, 8 € F and all u, v € V,
(au 4 B)(T1T2) = a(u(T1Ts) + Bw(T1Ts). We compute:

(eu + B0) (T1T2) = ((aw + o) T1) T

= (a@Ty) + BOT)T:
a@T1)Ts) + BOT)T2)
a@(T1Ts) + B (T1To).

I

I

We leave as an exercise the following properties of this product in
Hom(V, V):

(1) (T1+ T2)Ts = T1Ts + ToTs
(2) T3(T1 + To) = T3T1 + TsT>
() T1(T2T3) = (ThT2) T3

4) a(T1T3) = (aT1)Ty = T1(aT?)

for all Ty, T, T3 € Hom(V, V) and all & € F.

Note that properties (1), (2), (3), above, are exactly what are required to
make of Hom(V, V) an associative ring. Property (4) intertwines the
character of Hom(V, V), as a vector space over F, with its character as a
ring.

Note further that there is an element, I, in Hom(V, V), defined by I = v
for all v € V, with the property that TI = IT = T for every T &
Hom(V, V). Thereby, Hom(V, V) is a ring with a unit element. Moreover,
if in property (4) above we put Ty = I, we obtain aTy = T(el). Since
(aD)Ty = a(IT,) = aTy, we see that (al)Ty = Tyi(al) for all T &
Hom(V, V), and so ol commutes with every element of Hom(V, V).
We shall always write, in the future, oI merely as a.
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DeriNiTION. An associative ring A is called an algebra over F if A is a
vector space over F such that foralla,b € 4 and a« € F, a(adb) = (aa)b =
a(ab).

Homomorphisms, isomorphisms, ideals, ete., of algebras are defined as
for rings with the additional proviso that these must preserve, or be in-
variant under, the vector space structure.

Our remarks above indicate that Hom(V, V) is an algebra over F. For
convenience of notation we henceforth shall write Hom(V, V) as A(V);
whenever we want to emphasize the role of the field F we shall denote it by
Ap(V).

DerINITION. A linear transformation on V, over F, is an element of 4p(V).

We shall, at times, refer to A(V) as the ring, or algebra, of linear trans-
formations on V.

For arbitrary algebras A, with unit element, over a field F, we can prove
the analog of Cayley’s theorem for groups; namely,

Lemma 6.1. If A is an algebra, with unit element, over F, then A s 7so-
morphic to a subalgebra of A(V) for some vector space V over F.

Proof. Since A is an algebra over F, it must be a vector space over F.
We shall use V = 4 to prove the theorem.

If a € 4, let Tp:A— A be defined by vT, = va for every v € A. We
assert that 7', is a linear transformation on V' (=A4). By the right-distribu-
tive law (v; + v2)To = (v; + vo)a = via + v9a = v, Ty + v,T,. Since A
is an algebra, ()T, = (w)a = a(va) = «©T,) for v € A, a € F. Thus
T, is indeed a linear transformation on A.

Consider the mapping ¢:4 — A(V) defined by ay = T, for every
a € A. We claim that ¢ is an isomorphism of 4 into A (V). To begin with,
if @, b€ A and «, B € F, then for all v € A, vTag4p = v(aa + pb) =
a(va) 4+ B(vd) [by the left-distributive law and the fact that A is an algebra
over F] = a(T,) + BwTy) = v(aT, + BT}) since both T, and T are
linear transformations. In consequence, Twaigs = T4 4 BT, Whence ¥
is a vector-space-homomorphism of A into A(V). Next, we compute, for
a, b€ A, vTap = v(ab) = (a)b = WT,)Ty = v(T,Ty) (we have used
the associative law of 4 in this computation), which implies that T, =
ToT%. In this way, ¢ is also a ring-homomorphism of A. So far we have
proved that ¥ is a homomorphism of 4, as an algebra, into 4 (V). All that
remains is to determine the kernel of ¢. Let a € A be in the kernel of y;
then ay = 0, whence T, = 0 and s0 vT, =0 for allv € V. Now V = 4,
and A has a unit element, ¢, whence ¢T, = 0. However, 0 = T, = ea = a,
proving that a = 0. The kernel of ¥ must therefore merely consist of 0,
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thus implying that  is an isomorphism of A into A (V). This completes the
proof of the lemma.

The lemma points out the universal role played by the particular al-
gebras, A(V), for in these we can find isomorphic copies of any algebra.

Let A be an algebra, with unit element ¢, over F, and let p(z) = ag +
iz +- - -+ a,2" be a polynomial in F[z]. For a € A, by p(a), we shall
mean the element age + a0 +- - -+ 0" in A. If p(a) = 0 we shall say
a satisfies p(x).

LeMMa 6.2. Let A be an algebra, with unit element, over F, and suppose that
A 1is of dimension m over F. Then every element in A satisfies some mon-
trivial polynomial in Fx] of degree at most m.

Proof. Let e be the unit element of 4;if a € A, consider the m -+ 1 ele-
ments ¢, a, a?, ..., @™ in A. Since 4 is m-dimensional over F, by Lemma 4.6,
¢,a, 0%, ...,a™ being m + 1in number, must be linearly dependent over F.
In other words, there are elements ag, oy, ..., oy in F, not all 0, such that
age + a1a + -+ -+ ana™ = 0. But then o satisfies the nontrivial poly-
nomial ¢(z) = ag + ayx + - - - + axz™, of degree at most m, in Flz].

If V is a finite-dimensional vector space over F, of dimension n, by Corol-
lary 1 to Theorem 4.d, A(V) is of dimension n? over F. Since A(V) is an
algebra over F, we can apply Lemma, 6.2 to it to obtain that every element
in A (V) satisfies a polynomial over F of degree at most n%. This fact will be
of central significance in all that follows, so we single it out as

TrEOREM 6.A. If V is an n-dimensional vector space over F, then, given
any element T in A(V), there exists a nontrivial polynomial q(z) € Flz],
of degree at most n?, such that q(T) = 0.

We shall see later that we can assert much more about the degree of ¢(z);
in fact, we shall eventually be able to say that we can choose such a ¢(x)
of degree at most n. This fact is a famous theorem in the subject, and is
known as the Cayley-Hamilton Theorem. For the moment we can get by
without any sharp estimate of the degree of g(x) ; all we need is that a suita-
ble ¢(z) exists.

Since for finite-dimensional V, given T € A(V) some polynomial ¢(z)
exists for which ¢(T) = 0, a nontrivial polynomial of lowest degree with
this property, p(z), exists in Flz]. We call p(z) a minimal polynomial for T
over F. If T satisfies a polynomial h(z), then p(z) |h(z).

DEeFINITION. An element T € A (V) is called right-invertible if there exists
an 8 € A(V) such that T'S = 1. (Here 1 denotes the unit element of 4 (V).)
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Similarly, we can define left-invertible, if there is a U € A(V) such that
UT = 1. If T is both right- and left-invertible and if 'S = UT = 1, it is
an eagy exercise that S = U and that S is unique.

DeriNiTION. An element T in A(V) is ¢nvertible or regular if it is both
right- and left-invertible; that is, if there is an element S € A (V) such that
ST = TS = 1. We write S as T~

An element in A (V) which is not regular is called singular.

It is quite possible that an element in A (V) is right-invertible but is not
invertible. An example of such: Let F be the field of real numbers and let V'
be Flz], the set of all polynomials in = over F. In V let S be defined by

d x
g(@)S = ZQ(x) and T by ¢@)T = f q(z) dz. Then ST = 1, whereas
Zz 1

TS = 1. As we shall see in a moment, if V is finite-dimensional over F then
an element in A(V) which is right-invertible is invertible.

THEOREM 6.B. If V 1s finite-dimensional over F then T € A(V) s in~-
vertible if and only if the constant term of the minimal polynomial for T is
not 0.

Proof. Let p(z) = ag + oy +- - -+ a2, ar # 0 be the minimal poly-
nomial for T over F.

If a0, since 0 = p(T) = g7 + ap_1T* 1+ -+ T + o, We
obtain

1
1= T<— — (TP + p TF2 .- a1))

o

1
= (— = (apTF e al)) T.

Qo

Therefore, § = — - (@xT*™ 4. -+ @) acts as an inverse for T, whence
T isinvertible.

Suppose, on the other hand, that 7 is invertible, yet g = 0. Thus 0 =
T + apT? 4+ T = (g + apT +---+ o T*1)T. Multiplying
this relation from the right by 7! yields oy + agT +-- -+ o T* 1 = 0,
whereby T satisfies the polynomial ¢(z) = oy + a9z +-- -+ azzF~! in
Flz]. Since the degree of ¢(z) is less than that of p(z), this is impossible.
Consequently, ap 7 0 and the other half of the theorem is established.

CoroLrarY 1. If V 48 finite-dimensional over F and if T € A(V) s in-
vertible, then T is a polynomial expression in T over F.
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Proof. Since T is invertible, by the theorem, ag + a1 T + + + + + ;7% = 0
1
with ap % 0. But then 77! = — — (g + 2T + - -+ + oz T*Y).

210]

CoroLLARY 2. If V is finite-dimensional over F and if T € A(V) is
singular, then there exists an S 5 0 in A(V) such that ST = TS = 0.

Proof. Because T is not regular, the constant term of its minimal
polynomial must be 0. That is, p(z) = ez +-- -+ z*, whence 0 =
T +-+ ol It S = o +---+ oxT%!, then S 0 (since
oy +- - -+ apz® T is of lower degree than p(z)) and ST = TS = 0.

CoroLLARY 3. If V is finite-dimensional over F and if T € A(V) is right-
snvertible, then it is invertible.

Proof. Let TU = 1.If T were singular, there would be an S ¢ 0 such that
ST = 0. However, 0 = (ST)U = S(TU) = 81 = § % 0, a contradiction.
Thus T is regular.

We wish to transfer the information contained in Theorem 6.b and its
corollaries from A (V) to the action of 7' on V. A most basic result in this
vein is

TreoREM 6.c. If V 15 fintte-dimensional over F then T & A(V) s singu-
lar if and only if there exists a v 5% 0 @n V such that vT = 0.

Proof. By Corollary 2 to Theorem 6.b, T is singular if and only if there is
an S # 0in A(V) such that ST = TS = 0. Since S 5 0 there is an element
w & V such that wS # 0.

Let v = wS; then vT = (wS)T = w(ST) = w0 = 0. We have produced
a nonzero vector v in V which is annihilated by 7. Conversely, if 7 = 0
with v ¢ 0, we leave as an exercise the fact that 7' is not invertible.

‘We seek still another characterization of the singularity or regularity of a
linear transformation in terms of its over-all action on V.

DerFinirioN. If T € A(V) then the range of T, VT is defined by VT =
{oT|v € V1.

The range of T is easily shown to be a subvector space of V. It merely
consists of all the images by 7 of the elements of V. Note that the range of 7'
is all of V if and only if T is onto.

THEOREM 6.0. If V is finite-dimensional over F then T € A(V) s regular
if and only if T maps V onto V.
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Proof. As happens so often, one-half of this is almost trivial; namely, if 7'
is regular then, givenv € V,v = (wT™")T, whence VT = V and T is onto.

On the other hand, suppose that T is not regular. We must show that T'
is not onto. Since T is singular, by Theorem 6.c, there exists a vector v; £ 0
in V such that ;T = 0. By Lemma 4.7 we can fill out, from »;, to a basis
01, Vg, ..., U, of V. Then every element in VT is a linear combination of the
elements wy; = v T, ws = 0T, ..., w, = v,T. Since w; = 0, VT is spanned
by the n — 1 elements w,, ..., Wy, therefore dim VI <n —~1<n =
dim V. But then VT must be different from V'; that is, T is not onto.

Theorem 6.d points out that we can distinguish regular elements from
singular ones, in the finite-dimensional case, according as their ranges are
or are not all of V. If T € A(V) this can be rephrased as: T is regular if
and only if dim (VT) = dim V. This suggests that we could use dim (VT)
not only as a test for regularity, but even as a measure of the degree of
singularity (or, lack of regularity) for a given T' € A(V).

DeriniTioN. If V is finite-dimensional over F then the rank of T is the
dimension of VT, the range of T, over F.

‘We denote the rank of T by 7(T). At one end of the spectrum, if r(T) =
dim V, T is regular (and so, not at all singular). At the other end, if 7(T) = 0
then 7' = 0 and so T is as singular as it can possibly be. The rank, as a
function on A(V), is an important function and we now investigate some of
its properties.

LemmMa 6.3. If V is finite-dimensional over F then for S, T € A(V).

(1) »(8T) < r(T)
(2) r(TS) < r(T)

(and so, r(ST) < min {r(T), r(S)})
(8) r(ST) = r(TS) = r(T) for S regular in A(V).

Proof. We go through (1), (2), and (3) in order.

(1) Since VS <V, V(ST) = (VS)T < VT, whence, by Lemma 4.8,
dim (V(ST)) < dim VT; that is, 7(ST) < r(T).

(2) Suppose that #(T) = m. Therefore, VT has a basis of m elements,
Wy, Wa, - - ., Wy But then (V)8 is spanned by wiS, wsS, .. ., w,S, hence has
dimension at most m. Since r(T'S) = dim (V(TS)) = dim (VT)S) < m =
dim VT = r(T), (2) is proved.

(3) If 8 is invertible then VS = V, whence V(ST) = (VS)T = VT.
Thereby, r(ST) = dim (V(ST)) = dim (VT) = r(T). On the other hand,
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if VT has wy, ..., wn as a basis, the regularity of S implies that wyS, ...,
wy,S are linearly independent. (Prove!) Since these span V(TS) they form
a basis of V(TS). But then #(T8) = dim (V(T8)) = dim (VT) = »(T).

Cororrary. If T € A(V) and if S € A(V) 4s regular, then r(T) =
r(STS™Y).

Proof. By Part (3) of the lemma, »(STS™) = r(S(TS™) = r(T8™HS) =
r(T).

PROBLEMS

In all the problems, unless stated otherwise, V will denote a finite-dimen-
sional vector space over a field F.

1. Prove that S € A(V) is regular if and only if whenever vy, ...,
v, € V are linearly independent, then »;8, v,8, ..., »,8 are also linearly
independent.

2. Prove that T € A(V) is completely determined by its values on a
basis of V.

3. Prove Lemma 6.1 even when A does not have a unit element.

4. If 4 is the field of complex numbers and F is the field of real numbers,
then 4 is an algebra over F of dimension 2. For @ = « + 8¢ in 4, compute
the action of T, (see Lemma 6.1) on a basis of A over F.

5. If V is two-dimensional over F and 4 = A(V), write down a basis
of A over F and compute T, for each a in this basis.

6. If dimy V > 1 prove that A(V) is not commutative.

7. In A(V) let Z = {T € A(V)|ST = T8 for all S € A(V)}. Prove
that Z merely consists of the multiples of the unit element of A (V) by the
elements of F.

*8. If dimp (V) > 1 prove that A(V) has no two-sided ideals other than
(0) and A(V).

**9, Prove that the conclusion of Problem 8 is false if ¥ is not finite-
dimensional over F.

10. If V is an arbitrary vector space over F' and if T € A(V) is both
right- and left-invertible, prove that the right inverse and left inverse must
be equal. From this, prove that the inverse of T is unique.

11. If V is an arbitrary vector space over F and if T € A(V) is right-in-
vertible with a unique right inverse, prove that T is invertible.

12. Prove that the regular elements in A (V) form a group.

13. If F is the field of integers modulo 2 and if V is two-dimensional over
F, compute the group of regular elements in A (V) and prove that this group
is isomorphic to Ss, the symmetric group of degree 3.

*14. If F is a finite field with ¢ elements, compute the order of the group
of regular elements in A (V) where V' is two-dimensional over F.
*16. Do Problem 14 if V is assumed to be n-dimensional over F.
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*16. If V is finite-dimensional, prove that every element in A (V) can be
written as a sum of regular elements.

17. An element E € A(V) is called an idempotent if B> = E. If E C A(V)
is an idempotent, prove that V = Vo @ V; where »E = 0 for all
vy € Vo and v, E = v for all v; € V.

18. If T € Ap(V), F of characteristic not 2, satisfies T3 = T, prove
that V = Vo @ V1 @ V2 where:

(1) vy € V, implies T = 0.
(2) U1 € V]_ implies 1)1T = .
(3) vo € V, implies v.T = —vs.
*19. If V is finite-dimensional and T # 0 € A(V), prove that there is an
S € A(V) such that E = TS 3 0 is an idempotent.

20. The element T € A(V) is called nilpotent if T™ = 0 for some m. If
T is nilpotent and if vT' = ov for some v # 0 in V, with « € F, prove that
a=0.

21. If T € A(V) is nilpotent, prove that ag + oyT + aT? +-- -+
aT* is regular, provided that gy 5 0.

22. If A is a finite-dimensional algebra over F and if ¢ € A, prove that
for some integer ¥ > 0 and some polynomial p(z) € Flz], a* = a**p(a).

23. Using the result of Problem 22, prove that for ¢ € A there is a poly-
nomial ¢(z) € F[x] such that a* = a®*¢(a).

24. Using the result of Problem 23, prove that given a € A either a is
nilpotent or there is an element b = 0 in 4 of the form b = ah(a), where
h(z) € Flx], such that b*> = b.

2b. If A is an algebra over F (not necessarily finite-dimensional) and if
fora € A, a® — aisnilpotent, prove that either a is nilpotent or there is an
element b of the form b = ah(a) # 0, where h(z) € Flz], such that b* = b.

*26. If T = 0 € A(V) is singular, prove that there is an element S €
A(V) such that TS = 0 but ST = 0.

27. Let V be two-dimensional over F with basis vy, v5. Suppose that T €
A(V) is such that v,T = avy + Bvg, v, = yv; + dv; where @, 8, v, 8§ € F.
Find a nonzero polynomial in F[z] of degree 2 satisfied by 7.

28. If V is three-dimensional over F with basis v, vy, vs and if T € A(V)
is such that »,T = a,v; + auvs + agvs for 4 = 1, 2, 3, with all a,, € F,
find a polynomial of degree 3 in F(x] satisfied by T.

29. Let V be n-dimensional over F with a basis vy, . .., v,. Suppose that
T € A(V) is such that:

VT =09, 0T =03, ..., 01T = vy,
VT = —Qnly — an_yVg —++ — Uy,
where a;, ..., a, € F. Prove that T satisfies the polynomial
p@) = 2" + a1 2" 4+ ax®2 +. .-+ a, over F.

30. If T € A(V) satisfies a polynomial g¢(x) € Flz], prove that for
S € A(V), S regular, STS™ also satisfies q(z).
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31. (a) If F is the field of rational numbers and if V is three-dimensional

over F with a basis vy, v,, v3, compute the rank of T € A(V)
defined by

vIT =V — Vg
1)2T = V1 + V3
v3T = vy + v,

(b) Find a vector v € V, v 5 0, such that o7 = 0.

32. Prove that the range of T and U = {v € V|»T = 0} are subspaces
of V.

3. If TEC A(V), let Vo= {v € V|oT* = 0 for some k}. Prove that
Vo is a subspace and that if vT™ € V, then v € V.

34. Prove that the minimal polynomial of T over F divides all poly-
nomials satisfied by T over F.

*36. If n(T) is the dimension of the U of Problem 32 prove that
r(T) + n(T) = dim V.

2. Characteristic Roots. For the rest of this chapter our interest will be
limited to linear transformations on finite-dimensional vector spaces. Thus,
henceforth, V will always denote a finite-dimensional vector space over a field F.

The algebra A (V) has a unit element; for ease of notation we shall write
this as 1, and by the symbol A — T, for A € F, T € A(V) we shall mean
Al —-T.

Derinrrion. If T € A(V) then N\ € F is called a characteristic root (or
etgenvalue) of T if A — T is singular.

‘We wish to characterize the property of being a characteristic root in the
behavior of T on V. We do this in

THEOREM 6.E. The element X\ € F is a characteristic root of T € A(V) if
and only if for some v = 01 V, vT = Av.

Proof. If \ is a characteristic root of 7' then A — T is singular, whence, by
Theorem 6.c, there is a vector v £ 0 in V such that »(\ — T) = 0. But
then v = vT.

On the other hand, if 7 = v for some v # 0in V, thenvs(\ — T) = 0,
whence, again by Theorem 6.c, A — T must be singular, and so, X is a
characteristic root of 7.

LemMma 6.4. If A € F 1is a characteristic root of T € A(V), then for any
polynomial q(x) € Flx], ¢(\) is a characteristic root of q(T).
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Proof. Suppose that A € F is a characteristic root of 7. By Theorem 6.e,
there is a nonzero vector » in V such that vT = \. What about vT%?

Now vT? = (\)T = AT) = A(w) = A%. Continuing in this way, we
obtain that ¥T% = N for all positive integers k. If ¢(z) = aoz™ + ;2™ +
coidan, o€ F, then ¢(T) = T+ ;7" " +---+ a,, whence
vg(T) = v(aeT™ + oy T™ ™ 4+ ay) = ag@T™) + oy @T™7Y) +---+
amd = (@A™ + ey N 4+ -+ a,)v = ¢(\)v by the remark made above.
Thus v(g\) — ¢(T)) = 0, whence, by Theorem 6.e, ¢(\) is a characteristic
root of ¢(T).

As immediate consequence of Lemma 6.4, in fact as a mere special case
(but an extremely important one), we have

TuEOREM 6.7, If A\ € F 15 a characteristic root of T € A(V) then X is a
root of the minimal polynomial of T. In particular, T only has a finite num-
ber of characteristic roots in F.

Proof. Let p(z) be the minimal polynomial over F of T'; thus p(T") = 0.
If A € F is a characteristic root of T, there is a v £ 0 in V with T = M.
As in the proof of Lemma 6.4, vp(T) = p(\)v; but p(T) = 0, which thus
implies that p(\)v = 0. Since » # 0, by the properties of a vector space, we
must have that p(\) = 0. Therefore, A is a root of p(z). Since p(z) has only
a finite number of roots (in fact, since deg p(z) < n® where n = dimp V,
p(z) has at most n? roots) in F, there can only be a finite number of charac-
teristic roots of 7 in F.

If T € A(V)andif S € A(V) isregular, then (STS™!)? = STSISTS ! =
ST28~, (STS™™)3 = ST38~1, ..., (STS™!)* = ST'S~*. Consequently,
for any q(z) € Flz], ¢(STS™) = Sq(T)S~. In particular, if ¢(T) = 0, then
¢(8TS™) = 0. Thus if p(x) is the minimal polynomial for 7', then it follows
easily that p(z) is also the minimal polynomial for ST'S™.. We have proved

Lemma 6.5. If T, 8 € A(V) and if S is regular, then T and STS™* have
the same minimal polynomzial.

DrrinirioN. The element 0 £ v € V is called aicharacteristic vector of T
belonging to the characteristic root A € F if vT =M.

What relation, if any, must exist between characteristic vectors of 7T
belonging to different characteristic roots? This is answered in

TrEOREM 6.F. If A1, ..., A\; in F are distinct characteristic roots of T €
A(V) and if vy, ..., vg are characteristic vectors of T belonging to \y, ..
Ar, respectively, then vy, . . ., vy are linearly independent over F.

.
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Proof. For the theorem to require any proof, & must be larger than 1, so
we suppose that & > 1.

If vq, ..., v are linearly dependent over F, then there is a relation of the
form ayv; +-- -+ oy = 0, where ay, ..., oy are all in F and not all of
them are 0. In all such relations, there is one having as few nonzero coef-

ficients as possible. By suitably renumbering the vectors, we can assume this
shortest relation to be

1) By +---+ Bw; = 0,6, # 0, ey B # O
We know that »;T = Aw;, so, applying T to Equation (1), we obtain
(2) APy -4 )\j[gﬂ)j = (.

Multiplying Equation (1) by A; and subtracting from Equation (2), we
obtain

(Ag — M)Bove +- - -+ (N — M)Bw; = 0.

Now X; — A % 0 for £ > 1 and B; 5 0 whence (\; — \;)8; & 0. But then
we have produced a shorter relation than that in (1) between vy, vg, . .., Uk
This contradiction proves the theorem.

CoroLLARY 1. If T € A(V) and if dimp V' = n then T can have at most
n distinct characteristic roots in F.

Proof. Any set of linearly independent vectors in V' can have at most n
elements. Since any set of distinet characteristic roots of T, by Theorem
6.f', gives rise to a corresponding set, of linearly independent characteristic
vectors, the corollary follows.

CoroLLaRY 2. If T € A(V) and if dimp V = n and if T has n distinct
characteristic roots in F, then there is a basis of V over F which consists of
characteristic vectors of T.

We leave the proof of this corollary to the reader. Corollary 2 is but the
first of a whole class of theorems to come which will specify for us that a
given linear transformation has a certain desirable basis of the vector space
on which its action is easily describable.

PROBLEMS
In all the problems V is a vector space over F.
1. I T € A(V) and if ¢(z) € F[x] is such that ¢(T') = 0, is it true that

every root of ¢(z) in F is a characteristic root of 7'? Either prove that this is
true or give an example to show that it is false.
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2. If T € A(V) and if p(x) is the minimal polynomial for T' over F,
suppose that p(z) has all its roots in F. Prove that every root of p(z) is a
characteristic root of T'.

8. Let V be two-dimensional over the field F, of real numbers, with a
basis vy, v;. Find the characteristic roots and corresponding characteristic
vectors for T defined by:

(a) l)lT =v; + Vg, ?)2T = U — Va.
(b) vlT = 5v; + 61)2, 1)2T = —702.
() 11T = vy + 2v,, voT = 3v; + 6v,.

4, Let V be as in Problem 3, and suppose that 7' € A (V) is such that
nT = avy + Bvg, vaT = ~vv; + vy where a, 8, v, 8 are in F.

(a) Find necessary and sufficient conditions that 0 be a characteristic
root of T in terms of «, 8, v, 8.

(b) In terms of «, B, v, & find necessary and sufficient conditions that
T have 2 distinct characteristic roots in F.

5. If V is two-dimensional over a field F prove that every element in
A(V) satisfies a polynomial of degree 2 over F.

*6. If V is two-dimensional over F and if S, T € A(V) prove that
(ST — TS)? commutes with all elements of A (V).

7. Prove Corollary 2 to Theorem 6.1.

8. If V is n-dimensional over F and if T € A (V) is nilpotent (i.e., T = 0
for some k), prove that T" = 0. (Hint: if v € V use the fact that v, o7,
oT? ..., vT" must be linearly dependent over F.)

3. Matrices. Although we have been discussing linear transformations
for some time, it has always been in a detached and impersonal way; to
us a linear transformation has been a symbol (very often, T') which acts in a
certain way on a vector space. When one gets right down to it, outside of
the few concrete examples encountered in the problems, we have really
never come face to face with specific linear transformations. At the same
time it is clear that if one were to pursue the subject further there would
often arise the need of making a thorough and detailed study of a given
linear transformation. To mention one precise problem, presented with a
linear transformation (and suppose, for the moment, that we have a means
of recognizing it), how does one go about, in a ‘“‘practical” and computable
way, finding its characteristic roots?

What we seek first is a simple notation, or, perhaps more accurately,
representation, for linear transformations. We shall accomplish this by
use of a particular basis of the vector space and by use of the action of a
linear transformation on this basis. Once this much is achieved, by means
of the operations in 4 (V) we can induce operations for the symbols created,
making of them an algebra. This new object, infused with an algebraic life
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of its own, can be studied as a mathematical entity having an interest by
itself. This study is what comprises the subject of matriz theory.

However, to ignore the source of these matrices, that is, to investigate the
set of symbols independently of what they represent, can be costly, for we
would be throwing away a great deal of useful information. Instead we shall
always use the interplay between the abstract, 4 (V), and the concrete, the
matrix algebra, to obtain information one about the other.

Let V be an n-dimensional vector space over a field F and let vy, ..., v,
be a basis of Vover F. If T € A(V) then T is determined on any vector as
soon as we know its action on a basis of V. Since T maps V into V, v;T,
2T, ..., v,T must all be in V. As elements of V each of these is realizable
in a unique way as a linear combination of vy, ..., v, over F. Thus:

0T = a1 + e +- -+ aiatn
VT = g1V + agoVs ++ -+ Qanty

0T = a1 + apbs + -+ @nba

vnT = apn1V + anols + et + Qpnln,

where each a;; € F. This system of equations can be written more com-
pactly as

n
T = D, apwy, for =12 ...,n

j=1

The ordered set of #n* numbers «;; in F completely describes 7. They will
serve as the means of representing 7.

DrriniTioN. Let V be an n-dimensioned vector space over F and let
v1, ..., ¥y be a basis for V over F. If T € A(V) then the matriz of T in the
basis vy, ..., v, written as m(7), is

a1y Q12 .- 25T

21 a9 RN Aoy
m(T) =

On1  Op2 “ee Cnn

where v, T = Y, a;0;.
)
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A matrix then is an ordered, square array of elements of F, with, as yet,
no further properties, which represents the effect of a linear transformation
on a given basis.

Let us examine an example. Let F be a field and let V be the set of all
polynomials in z of degree n — 1 or less over F. On V let D be defined
by (B0 + Biz 4+ Basg® D = By + 2Bz +- -+ BT - +
(n — 1)Bp_12™ 2. It is trivial that D is a linear transformation on V; in fact,
it is merely the differentiation operator.

‘What is the matrix of D? The question is meaningless unless we specify a
basis of V. Let us first compute the matrix of D in the basisv; = 1, v, = z,
v =2% ..., ;=21 ..., v, = 2" Now,

le= 1D=0=01)1+002+'”+01)n

voD =D =1 = 1vy + Ovg 4+ - -+ Ov,

:D = 271D = (i — 1)zi~2

= (C— 1wy +0v; 4+ -+ 4 Ovis + @ — Dy + Oy
+ oo 4 Ovy

oD = 2*7D = (n — 1)2" 2

=0y + 0z~ 4 Ovpg + (n — Nvpey + Ov,.

Going back to the very definition of the matrix of a linear transformation

in a given basis, we see the matrix of D in the basis vy, . .., v,, m;(D), is in
fact
0 00 0 0
100 0 0
mD)={0 2 0 0 0
0 0 3 0 0
0 00 m—1) 0

However, there is nothing special about the basis we just used, or in how
we numbered its elements. Suppose we merely renumber the elements of
this basis; we then get an equally good basis w; = &, wy = 2”72, ...,
w; = "% ..., w, = 1. What is the matrix of the same linear tra.nsforma-
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tion D in this basis? Now,
wiD = z"7ID = (n — 1)z72

= 0wy + (n — )wy + Owz +- - - + Ow,

wD = 2"~D = (n — g)z*—i1

= Ow, +--+0w,+ (n—i)w.[+1 +0w1‘+2 +-- -+ Ow,

WpD = 1D = 0 = Ow; + Owg +- - -+ Ow,,

whence my(D), the matrix of D in this basis is

0 m—1) 0 0 ... 0
0 0 (n—2) 0 ... 0
0 0 0 m-3) ... 0
0
ma(D) =
0 0 0 e ... 01
0 0 0 ... ... 0O
Before leaving this example, let us compute the matrix of D in still
another basis of V over F. Let uy = 1, up =14z, ug =1+12?% ...,
Uy = 1 + 2"1; it is easy to verify that u;, . .., u, form a basis of V over F.

‘What is the matrix of D in this basis? Since

wD = 1D =0 = Quy + Oug +- - -+ Ou,

uD = 1+ 2)D=1= lug + Oug +- - -+ Ou,

uD = (1 + 29D = 2z = 2(uz — w1) = —2u; + 2up + Oug +- - -+ Oun
UpD = 1+ 2"HD = (n — 1)2" 2 = (n — 1)(un — 1)

—(m — Duy + Oug+---+0up_p + 0 — L)up_y + Oun.

]
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The matrix, mz(D), of D in this basis is

0 00 0 0

1 00 0 0

—2 2 0 0 0

-3 0 3 0 0

ma(D) = 0o 0
0 0

-n—=1) 0 0 ... m—1) O

By the example worked out we see that the matrices of D, for the three
basis used, depended completely on the basis. Although different from each
other, they still represent the same linear transformation, D, and we could
reconstruct D from any of them if we knew the basis used in their determi-
nation. However, although different we might expect that some relationship
must hold between m;(D), mg(D), and mz(D). This exact relationship will
be determined later.

Since the basis used at any time is completely at our disposal, given a
linear transformation T (whose definition, after all, does not depend on any
basis) it is natural for us to seek a basis in which the matrix of T has a
particularly nice form. For instance, if T is a linear transformation on V,
which is n-dimensional over F, and if T has » distinct characteristic roots

M, ---; Ay In F, then by Corollary 2 to Theorem 6.f we can find a basis
V1, ..., Up of ¥V over F such that »,7 = M\p;. In this basis T has as matrix
the especially simple matrix,
N O 0 .. 0
0 N 0 ... 0
m(T) =
0 0 . ... \

We have seen that once a basis of V is picked, to every linear transforma-
tion we can associate a matrix. Conversely, having picked a fixed basis
v1, ..., v of V over F, a given matrix

11 “en Ain
? Qg CF,

[0 4%} e Olnn



SEC. 3 MATRICES 233

gives rise to a linear transformation 7' defined on V by o,T = 3 azp; on

this basis. Notice that the matrix of the linear transformation T,]just con-
structed, in the basis v, ..., v, is exactly the matrix with which we started.
Thus every possible square array serves as the matrix of some linear trans-
formation in the basis v, ..., v,.

It is clear what is intended by the phrase the first row, second row, ...,

of a matrix, and likewise by the first column, second column, .... In the
matrix

11 con qin

Ani e Onn

the element a;; is in the sth row and jth column; we refer to it as the (4, 7)
entry of the matrix.

To write out the whole square array of a matrix is somewhat awkward;
instead we shall always write a matrix as («;;); this indicates that the (3, 7)
entry of the matrix is ay;.

Suppose that V is an n-dimensional vector space over F and vy, ..., v,
is a basis of V over F which will remain fixed in the following discussion.
Suppose that S and T are linear transformations on V over F having
matrices m(S) = (vi7), m(T) = (7;;), respectively, in the given basis. Our
objective is to transfer the algebraic structure of A (V) to the set of mat-
rices having entries in F.

To begin with, 8§ = T if and only if S = vT for any v € V, hence, if and
only if v;8 = v;T for any vy, ..., v, forming a basis of V over F. Equiv-
alently, S = T if and only if ¢;; = 74 for each ¢ and j.

Given that m(S) = (0,;) and m(T) = (r;;), can we explicitly write down
m(S + T)? Because m(S) = (047, v:S = Z o305 likewise, v, T = Z TV,

whence ;S + T) = v,8 + »,T = E az,*v, Z Tifl; = E (o35 + Tif)Vje
M
But then, by what is meant by the maﬁrlx of a hnear transformation in a
given basis, m(S + T) = (\;;) where \;; = oy; + i; for every ¢ and j. A
computation of the same kind shows that for v € F, m(yS) = (ui;) where
usj = oy, for every ¢ and j.
The most interesting, and complicated, computation is that of m(ST).

Now v,(ST) = @S)T = <E cikvk> T = 2 ou@eT). However, 0T =
% 2

>~ 74;; substituting in the above formula yields

] v,(8T) = 2. 0w <Z kavj) = z? <;z: Uz‘k‘fk:‘) vj

k i
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(Prove!) Therefore, m(ST) = (v;;), where for each 7 and j, »;; = > OikThie
2

At first glance the rule for computing the matrix of the product of two
linear transformations in a given basis seems complicated. However, note
that the (¢, j) entry of m(ST) is obtained as follows: Consider the rows of §
as vectors and the columns of 7 as vectors; then the (z, 5) entry of m(ST) is
merely the dot product of the zth row of S with the jth column of T

Let us illustrate this with an example. Suppose that

- )

o (——1 O) )

M\ 2 3/

the dot product of the first row of S with the first column of T'is (1) (—1) +
(2)(2) = 3, whence the (1, 1) entry of m(ST) is 3; the dot product of the
first row of S with the second column of T is (1)(0) 4+ (2)(3) = 6, whence
the (1, 2) entry of m(ST) is 6; the dot product of the second row of S with
the first column of 7' is (3)(—1) 4+ (4)(2) = 5, whence the (2, 1) entry of
m(ST) is 5; and, finally the dot product of the second row of S with the
second column of 7T is (3)(0) + (4)(3) = 12, whence the (2, 2) entry of

M(ST) is 12. Thus
3 6
- 2)
mED =5 12

and

The previous discussion has been intended to serve primarily as a motiva-~
tion for the constructions we are about to make.
Let F be a field; an n X n-matriz over F will be a square array of elements
in F,
a1; a12 “en Ain

[« 7% B 7%} oa Qpn

(which we write as (). Let F, = {(aj)| s € F}; in F, we want to in-
troduce the notion of equality of its elements, an addition, scalar multipli-
cation by elements of F and a multiplication so that it becomes an algebra
over F. We use the properties of m(7T) for T € A (V) as our guide in this.

(1) We declare (a;;) = (Bs;), for two matrices in F,, if and only if a;; =
B:; for each 7 and j.
(2) We define (os;) + (8:7) = (\yj) where \;j = a;; + B;; for every 4, j.
(8) Wedefine, for vy € F, v(a;j) = (u;;) where p;; = yay; for every 7 and 7.
(4) We define (:7)(8:) = (vij), where, for every ¢ and j, v;; = 3 auBi;-
k
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Let V be an n-dimensional vector space over F and let vy, ..., v, be a
basis of V over F; the matrix, m(T), in the basis vy, ..., v, associates with
T € A(V) an element, m(7T), in F,. Without further ado we claim that the
mapping from A (V) into F,, defined by mapping 7' onto m(T) is an algebra
isomorphism of A(V) onto F,. Because of this isomorphism, F, is an as-
sociative algebra over F (as can also be verified directly). We call F, the
algebra of all n X n matrices over F.

Every basis of V provides us with an algebra isomorphism of 4(V) onto
F,. It is a theorem that every algebra isomorphism of A(V) onto F, is so
obtainable.

In light of the very specific nature of the isomorphism between 4 (V) and
F,, we shall often identify a linear transformation with its matrix, in some
basis, and A (V) with F,. In fact, F,, can be considered as A(V) acting on
the vector space V = F™ of all n-tuples over F, where for the basis v; =
1,0,...,0), v = (0,1,0,...,0), ..., v, = (0,0, ...,0,1), (as;) € Fp
acts as v;(a;;) = 7th row of (ay).

We summarize what has been done in

TrEOREM 6.6. The set of all n X n matrices over F form an associative
algebra, Fy, over F. If V is an n-dimensional vector space over F, then A(V)
and F, are isomorphic as algebras over F. Given any basis vy, ..., v, of V
over F, if for T & A(V), m(T) is the matriz of T in the basis vy, ..., vy, the
mapping T — m(T) provides an algebra isomorphism of A(V) onto F,.

The zero under addition in F, is the zero-matriz all of whose entries are 0;
we shall often write it merely as 0. The unst matriz, which is the unit ele-
ment of F, under multiplication, is the matrix whose diagonal entries are 1
and whose entries elsewhere are 0; we shall write it as I, I,, (when we wish
to emphasize the size of the matrices) or merely as 1. For a € F, the mat-
rices

[blank spaces indicate only O enitries] are called scalar matrices. Because of the
isomorphism between A (V) and F,, it is clear that T € A(V) is invertible
if and only if m(T), as a matrix, has an inverse in F,.

Given a linear transformation T € A(V), if we pick two bases, v1, ..., %,
and wy, ..., w, of V over F, each gives rise to a matrix, namely, m;(T) and
mo(T), the matrices of T in the bases vy, ..., v, and wy, ..., Wy, respec-
tively. As matrices, that is, as elements of the matrix algebra F,, what is
the relationship between m;(T) and mqo(T)?

TraeoreM 6.H. If V is n-dimensional over F and if T € A(V) has thf
maitriz my(T) in the basis vy, ..., v and the mairic mo(T) in the basis
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Wi, «.., Wy of V over F, then there is an element C & Fy, such that mo(T) =
Cmy(TYC™2. In fact, if S is the linear transformation of V defined by v:8 = w;
fori=1,2, ...,n, then C can be chosen to be my(S).

Proof. Let my(T) = (ay;) and mo(T) = (Bi;); thus v;T = Z iV, Wil =
Z [35,‘10,‘. !

M

Let S be the linear transformation on V defined by v;,8 = w;. Since
1y ..., Uy and wy, ..., W, are bases of V over F, S maps V onto V, whence,
by Theorem 6.d, S is invertible in A (V).

Now w;T = 3 Bsw;; since w; = 1,5, on substituting this in the expres-

J
sion for w;T we obtain (v:9)T = 2, B:;(»;S). But then »;(ST) = (Z Bi,vv,-)s ;
r -

J
since § is invertible, this further simplifies to »;(STS™) = Y. B:;. By
j

the very definition of the matrix of a linear transformation in a given basis,
my(STS™Y) = (B) = ma(T). However, the mapping T — m;(T) is an
isomorphism of 4 (V) onto F,; therefore, m, (STS™2) = my(S)my(T)my(S™)
= my(S)my(T)m; (S)~*. Putting the pieces together, we obtain my(T) =
my (S)my (T)my (S) ™, which is exactly what is claimed in the theorem.

We illustrate this last theorem with the example of the matrix of D, in
various bases, worked out earlier. To minimize the computation, suppose
that V is the vector space of all polynomials over F of degree 3 or less, and let
D be the differentiation operator defined by (eg + a1z + aoz? + agz®)D =
oy + 2092 + 30322,

As we saw earlier, in the basis v; = 1, v, = z, v3 = 22, v, = 2%, the ma-
trix of D is

0000
1000
mD =159 0 0o
0030

In the basis u; = 1, up = 1 4+ 2, ug = 1 + 2%, ug = 1 + 2°, the matrix of
Dis

0 00O
000
my(D) =
e
-3 0 30
Let S be the linear transformation of V defined by v8 = wy(=1v,),

volS =wp=1+42=0v 40, v3S=wg=1+2%=0v; +v;, and also
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3 0 - - .
vsS = wg = 1 + 2° = v1 + vq. The matrix of S in the basis v, vy, v3, vy is

1000
C = 1100
1010
1001
A simple computation shows that
1000
100
101 0]
0 01
Then
1 0 00 00 00O 1 000
Cmy(D)C" = 1 100 1 000 -1 100
1010 02 00 -1 010
1 001 0030 -1 0 0 1
0 000
1000
= 2.2 0 0 = mgy(D),
-3 0 3 0

as it should be, according to the theorem. (Verify all the computations
used!)

The theorem asserts that, knowing the matrix of a linear transformation
in any one basis allows us to compute it in any other, as long as we know the
linear transformation (or matrix) of the change of basis.

We still have not answered the question: Given a linear transformation,
how does one compute its characteristic roots? This will come later. From
the matrix of a linear transformation we shall show how to construct a
polynomial whose roots are precisely the characteristic roots of the linear
transformation.

PROBLEMS
1. Compute the following matrix products:

@ 4 23,1 0 1
<1 —1 2>< 0 2 3)-
3 4 5 -1 -1 -1
M/ 1 6\/3 —2
(—6 1)(2 3)'
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()

@ (—1 —1)2'

2. Verify all the computations made in the example illustrating The-
orem 6.h.
3. In F, prove directly, using the definitions of sum and product, that
(a) AB+C) = AB+ AC;
(b) (AB)C = A(BC);
for A, B, C € F,,.
4. In F, prove that for any two elements A and B, (AB — BA)?is a
scalar matrix.
5. Let V be the vector space of polynomials of degree 3 or less over F.
In V define T by (ag+ a1z + az® + as2®)T = ag + ey(z + 1) +
az(z + 1)? 4+ ag(x + 1)3. Compute the matrix of T in the basis:
(a) 1, z, 2%, 2°.
() 1,1 +2,1+42% 1425
(¢) If the matrix in part (a) is A and that in part (b) is B, find a
matrix C so that B = CAC™.
6. Let V = F® and suppose that

11 2
(4 : 1>
013

is the matrix of T € A(V) in the basis v; = (1,0,0), v, = (0, 1, 0),
v3 = (0,0, 1). Find the matrix of T in the basis:
(8.) Uy = (1: 1, 1): Ug = (O) 1, 1): Uz =
®) u = (1; 1,0), ugz = (1,2, 0), Ug =
7. Prove that, given the matrix

0 10
A=<O 0 1> € Fs
6 —11 6

(where the characteristic of F is not 2), then:
(a) A% — 647 + 114 — 6 = 0.
(b) There exists a matrix C € F3 such that

100
CAC! = (O 2 0)-
0 0 3

2

coli=t ool col
coj= ol ol
col= col ool

=t
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8. Prove that it is impossible to find a matrix C € F, such that

11
(o )= o)
0 1 0 B
forany o, B € F.

9. A matrix A € F, is said to be a diagonal matrix if all the entries off
the main diagonal of 4 are 0, i.e., if A = (e;;) and a;; = 0fori = 5. If A
is a diagonal matrix all of whose entries on the main diagonal are distinct,
find all the matrices B € F, which commute with 4, that is, all matrices
B such that BA = 4B.

10. Using the result of Problem 9, prove that the only matrices in F,
which commute with all matrices in F,, are the scalar matrices.
11. Let A € F,be the matrix

0100 ... 00
0010 00
0001 00
A= )
000O0O ... 01
000O0 ... 00O

whose entries everywhere, except in the super-diagonal, are 0, and whose
entries on the super-diagonal are 1’s. Prove A™ = 0 but A®™! = 0.

*12. If A is as in Problem 11, find all matrices in F,, which commute with
A and show that they must be of the form oy + ay4 + ad? +---+
an_1 A" where aq, g, ..., an_ € F.

13. Let A € F; and let C(4) = {B € F3|AB = BA}. Let C(C(A)) =
{G € F,|GX = XGfor all X € C(A)}. Prove that if G € C(C(4)) then
G is of the form oy + 14, ag, oy € F.

14. Do Problem 13 for A € F3 proving that every G € C(C(4)) is of
the form ap + ;4 + A2

15. In F, let the matrices E;; be defined as follows: E;; is the matrix
whose only nonzero entry is the (i, 7) entry, which is 1. Prove:

(a) The E;; form a basis of F,, over F.

(b) E;;Ex = Oforj ## k;EyEn = E;.

(c) Given i, j, there exists a matrix C such that CE;;C™" = Ej;.
(d) If 5 5 j there exists a matrix C such that CE;;C™" = Ej,.
(e) Find all B € F, commuting with Ei5.

(f) Find all B € F, commuting with Ej;.

16. Let F be the field of real numbers and let C be the field of complex
numbers. For'g € C let To:C — C by 2T, = za for all z € C. Using the
basis 1, 7 find the matrix of the linear transformation T'; and so get an iso-
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morphic representation of the complex numbers as 2 X 2 matrices over the
real field.

17. Let Q be the division ring of quaternions over the real field. Using
the basis 1, 4, 7, k of Q over F, proceed as in Problem 16 to find an isomorphic
representation of @ by 4 X 4 matrices over the field of real numbers.

*18. Combine the results of Problems 16 and 17 to find an isomorphic
representation of @ as 2 X 2 matrices over the field of complex numbers.

19. Let 91 be the set of all n X n matrices having entries 0 and 1 in such
a way that there is one 1 in each row and column. (Such matrices are called
permutation matrices.)

(a) If M € 9 describe AM in terms of the rows and columns of 4.

(b) If M € 90 describe M A in terms of the rows and columns of 4.
20. Let 97 be as in Problem 19. Prove:

(a) 91 has n! elements.

(b) If M € 91, then it is invertible and its inverse is again in 9.

(c) Give the explicit form of the inverse of M.

(d) Prove that 9 is a group under matrix multiplication.

(e) Prove that 91 is isomorphic, as a group, to S,, the symmetric
group of degree 7.

21. Let A = (av;) be such that for each 5, ) a;; = 1. Prove that 1 is a
J
characteristic root of A (that is, 1 — A is not invertible).
22. Let A = (ay;) be such that for every j, > a,; = 1. Prove that 1 is a
characteristic root of 4. ’ 5
23. Find necessary and sufficient conditionson o, 8, v, 6, so that 4 = (a )
Y

is invertible. When it is invertible, write down 4" explicitly.
24. If E € F, is such that E?> = E 5 0 prove that there is a matrix
C € F, such that

10 ...0 ] 0 ... 0
01 ... 0

cpe-1 |90 110 .0
0 0 ... 0/’
0 0l0 ... 0

where the unit-matrix in the top left corneris» X r, where r is the rank of E.
2b. If F is the real field, prove that it is impossible to find matrices
A, B € F, such that AB — BA = 1.

26. If F is of characteristic 2, prove that in F, it is possible to find mat-
rices A, B such that AB — B4 = 1.
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27. The matrix 4 is called triangular if all the entries above the main
diagonal are 0. (If all the entries below the main diagonal are 0 the matrix
is also called triangular.)

(a) If 4 is triangular and no entry on the main diagonal is 0, prove
that A is invertible.

(b) If A is triangular and an entry on the main diagonal is 0, prove
that A is singular.

28. If A is triangular, prove that its characteristic roots are precisely the
elements on its main diagonal.

29. If N* = 0, N € F,, prove that 1 + N is invertible and find its in-
verse as a polynomial in N,

30. If A € F, is triangular and all the entries on its main diagonal are 0,
prove that A™ = 0.

31. If A € F, is triangular and all the entries on its main diagonal are
equal to @ % 0 € F, find 47,

32. Let S, T be linear transformations on V such that the matrix of S
in one basis is equal to the matrix of T in another. Prove there exists a
linear transformation A on V such that 7 = 4ASA™.

4. Canonical Forms : Triangular Form. Let V be an n-dimensional vector
space over & field F.

DerintrioN. The linear transformations S, T € A(V) are said to be
stmilar if there exists an invertible element C € A(V) such that
T = CSC™L.

In view of the results of Section 3, this definition translates into one
about matrices. In fact, since F, acts as A(V) on F™| the above definition
already defines similarity of matrices. By it, A, B € F, are similar if there
is an invertible C € F, such that B = CAC™L.

The relation on A (V) defined by similarity is an equivalence relation;
the equivalence class of an element will be called its similarity class. Given
two linear transformations, how can we determine whether or not they are
similar? Of course, we could scan the similarity class of one of these to see
if the other is in it, but this procedure is not a feasible one. Instead we try
to establish some kind of landmark in each similarity class and a way of
going from any element in the class to this landmark. We shall prove the
existence of linear transformations in each similarity class whose matrix,
in some basis, is of a particularly nice form. These matrices will be called
the canonical forms. To determine if two linear transformations are similar,
we need but compute a particular canonical form for each and check if these
are the same.

There are many possible canonical forms; we shall only consider three of
these, namely, the triangular form, Jordan form, and the rational canonical
form, in this and the next two sections.



242 LINEAR TRANSFORMATIONS CH. 6

DrrintrioN. The subspace W of V is envariant under T € A(V) if
wWrcw.

Lemma 6.6. If W C V is tnvariant under T then T tnduces a linear
transformation T on VW, defined by @ + W)T = oT + W. If T satisfies
the polynomial q(x) € Flz], then so does T. If pi(z) is the minimal poly-
nomial for T over F and if p(x) is that for T then p;(z)|p(x).

Proof. Let V = V/W; the elements of V are, of course, the cosets v + W
of Win V. Given 5 = v + W € V define 5T = vT + W. To verify that
T has all the formal properties of a linear transformation on ¥ is an easy
matter once st has been established that T 1s well-defined on V. We thus con-
tent ourselves with proving this fact.

Suppose that 5 = vy, + W = v, + W where vy, v2 € V. We must show
that v, T + W = v,T + W. Since v; + W = v, + W, vy — v, must be in
W, and since W is invariant under T, (v; — v2) T must also be in W. Conse-
quently v, T — v,T € W, from which it follows that v; T + W = v, T 4+ W,
as desired. We now know that T defines a linear transformation on
V=v/w. -

Ifo=v+WE Vthend(T?) =oT?+ W= DT+ W = 0T+ W)T=

(0 + DT = o(T)?; thus (T?) = (> Similarly, (T%) = (T)* for
any k > 0. Consequently, for any polynomial ¢(x) € Flz], ¢(T) = ¢(T).
For any g(x) € Flz] with q(T) = 0, since 0 is the zero transformation on
V, 0=q = oD. ~ ~

Let p;(z) be the minimal polynomial over F satisfied by 7. If ¢(T) =0
for q(z) € Flz], then p;(z)|q(z). If p(z) is the minimal polynomial for T
over F, then p(T) = 0, whence p(T) = 0; in consequence, p;(x)|p(x).

As we saw in Theorem 6.f, all the characteristic roots of 7' which lie in
are roots of the minimal polynomisal of T over F. We say that all the charac-
teristic roots of T are in F if all the roots of the minimal polynomial of T over F
liein F.

In Problem 27 at the end of the last section, we defined a matrix as being
triangular if all its entries above the main diagonal were 0. Equivalently, if
T is a linear transformation on V over F, the matrix of T in the basis
V1, .« . ., Up I8 triangular if

' UlT = ay1V;

0T = a0y + aogvs

0T = auv; + apvy +- -+ iy,

that is, if »;T is a linear ¢ombination only of v; and its predecessors in the
basis.
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TaeoreM 6.5. If T € A(V) has all its characteristic roots in F then
there s a basis of V in which the matriz of T is triangular.

Proof. The proof goes by induction on the dimension of V over F.

If dimp V' = 1 then every element in A (V) is a scalar, and so the theorem
is true here.

Suppose that the theorem is true for all vector spaces over F of dimension
n — 1, and let V be of dimension 7 over F.

The linear transformation T on V has all its characteristic roots in F;
let A\; € F be a characteristic root of T. There exists a nonzero vector v,
in V such that v;T = \wy. Let W = {av; | € F}; W is a one-dimensional
subspace of V, and is invariant under 7. Let V = V/W; by Lemma 4.8,
dim V = dim V — dim W = n — 1. By Lemma 6.6, T induces a linear
transformation T on V whose minimal polynomial over F divides the
minimal polynomial of T’ over F. Thus all the roots of the minimal poly-
nomial of T, being roots of the minimal polynomial of T, must lie in F.
The linear transformation T in its action on ¥ satisfies the hypothesis of
the theorem; since V is (n — 1)-dimensional over F, by our induction hy-
pothesis, there is a basis #, 73, ..., 7, of V over F such that:

52'1—’ = aiggly

53T = ool + aalis
5T = gy + ausly + - -+ ail;

'D-nT = apglp + -+ Annln.

Let vg, ..., v, be elements of ¥ mapping into s, .. ., ¥, respectively. Then
vy, Vs, ..., U, form a basis of V (see Problem 3, end of this section). Since
5T = qgobs, oT — agals = 0, whence vT — sty must be in W. Thus
voT — ago is a multiple of vy, say agv;, yielding, after transposing,
0T = agivy + aggvy. Similarly, 0T — auvy — augvs —« - — a0, € W,
whenece ;T = a;01 + agvs + - - -+ o;w;. The basis vy, ..., v, of V over F
provides us with a basis where every v;T is a linear combination of v; and
its predecessors in the basis. Therefore, the matrix of T in this basis is
triangular. This completes the induction and proves the theorem.

We wish to restate Theorem 6.j for matrices. Suppose that the matrix
A € F, has all its characteristic roots in F. A defines a linear transforma-
tion T on F™ whose matrix in the basis

o1 = (1,0, ...,0),v3 = (0,1,0,...,0), ..., vn = (0,0, ...,0,1),
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is precisely A. The characteristic roots of T, being equal to those of A, are
all in F, whence by Theorem 6., there is a basis of F™ in which the matrix
of T is triangular. However, by Theorem 6.h, this change of basis merely
changes the matrix of T, namely 4, in the first basis, into CAC™! for a
suitable C c F,,. Thus

AvterNATE ForM or THEOREM 6.5. If the matric A € F, has all its
characteristic roots in F then there is a matriz C € F, such that CAC™*
18 a triangular matriz.

Theorem 6.] (in either form) is usually described by saying that T (or 4)
can be brought to triangular form over F.

If we glance back at Problem 28, at the end of Section 3, we see that after
T has been brought to triangular form, the elements on the main diagonal
of its matrix play the following significant role: they are precisely the charac-
teristic roots of T.

We conclude the section with

TaEOREM 6.X. If V is n~-dimensional over F and if T € A(V) has all its
characteristic roots in F then T satisfies a polynomaial of degree n over F.

Proof. By Theorem 6.j, we can find a basis vy, ..., v, of V over F such
that:

vlT = )\11)1

0T = 9101 + Agvs

Ol = vy +- o+ 101 + Aw;
fort=1,2,...,n.
Equivalently:

(T —M) =0

(T — Xg) = g1ty

0(T — No) = vy +- -+ g i_10s
fort=1,2,...,n.
What is vo(T — X)(T — A\()? As a result of vo(T — N\g) = asyv; and
v1(T — A1) = 0, we obtain ve(T — A\)(T — ;) = 0. Since

(T =) (T = Ny) = (T = \)(T — N),
vi(T = M) (T = Np) = 01(T — M) (T — N) = 0.
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Continuing this type of computation yields:
(T = N)(T = Nip) ... (T = Ap) =0,
V(T = XN)(T = Nit) .. (T = A) =0,
Uz(T - )\,) (T - )\1,;.1) PP (T ad )\1) = 0.

In particular, for ¢ = n, the matrix S = (T — X\) (T — M—q) ... (T —\y)
satisfies v18 = 098 = - - - = 9,8 = 0. Since S annihilates a basis of ¥, .S must
annihilate all of V. Therefore, S = 0. Consequently, T satisfies the poly-
nomial ( — M)(@ — N) ... ( — \,) in Flz] of degree n, proving the
theorem.

Unfortunately, it is in the nature of things that not every linear trans-
formation on a vector space over every field F has all its characteristic roots
in F. This depends totally on the field . For instance, if F is the field of real
numbers, then the minimal equation of

(1 o)

-1 0

over F is % 4+ 1 which has no roots in F. Thus we have no right to assume
that characteristic roots always lie in the field in question. However, we
may ask, can we slightly enlarge F to a new field K so that everything works
all right over K?

The discussion will be made for matrices; it could be carried out equally
well for linear transformations. What would be needed would be the follow-
ing: given a vector space V over a field F of dimension n, and given an
extension K of F then we can embed V into a vector space Vg over K of
dimension 7 over K. One way of doing this would be to take a basis vy, ...,
v, of V over F and to consider Vx as the set of all ey +- - -+ anw, with
the a; € K, considering the v; linearly independent over K. This heavy use
of a basis is unaesthetic; the whole thing can be done in a basis-free way
by introducing the concept of tensor-product of vector-spaces. We shall not
do it here; instead we argue with matrices (which is effectively the route
outlined above using a fixed basis of V).

Consider the algebra F,. If K is any extension field of F then F, C Ky,
the set of n X n matrices over K. Thus any matrix over F can be considered
as a matrix over K. If T € F, has the minimal polynomial p(z) over F,
considered as an element of K, it might conceivably satisfy a different
polynomial po(x) over K. But then po(z) | p(z), since po(z) divides all poly-
nomials over K (and hence all polynomials over F) which are satisfied by
T. We now specialize K. By Theorem 5.h there is a finite extension, K, of
F in which the minimal polynomial, p(z), for T' over F has all its roots.
As an element of K, for this K, does T have all its characteristic roots in
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K? As an element of K, the minimal polynomial for T over K, po(z) divides
p(x) so all the roots of py(x) are roots of p(z) and therefore lie in K. Conse-
quently, as an element in K,, T has all its characteristic roots in K.

Thus, given T in F,, by going to the splitting field, K, of its minimal poly-
nomial we achieve the situation where the hypotheses of Theorems 6.] and
6.k are satisfied, not over F, but over K. Therefore, for instance, T can be
brought to triangular form over K and satisfies a polynomial of degree n
over K. Sometimes, when luck is with us, knowing that a certain result is
true over K we can “cut back” to F and know that the result is still true
over F. However, going to K is no panacea for there are frequent situations
when the result for K implies nothing for F. This is why we have two types
of “canonical form’’ theorems, those which assume that all the characteristic
roots of T lie in F and those which do not.

A final word; if T € F,, by the phrase “a characteristic root of T”’ we
shall mean an element \ in the splitting field K of the minimal polynomial
p(x) of T over F such that A — T is not invertible in K,,. It is a fact (see
Problem 5) that every root of the minimal polynomial of T over F is a
characteristic root of 7.

PROBLEMS

1. Prove that the relation of similarity is an equivalence relation in
A(V).

2. If TE€ F, and if K D F, prove that as an element of K,, T is in-
vertible if and only if it is already invertible in F,.

3. In the proof of Theorem 6.j prove that vy, ..., v, is a basis of V.

4, Give a proof, using matrix computations, that if A is a triangular
n X n matrix with entries Ay, ..., A\, on the diagonal then

(A-M)A =) ... (4d =N =0.

*6. If T € F, has minimal polynomial p(z) over F, prove that every
root of p(z), in its splitting field K, is a characteristic root of 7.

6. If T € A(V) and if N € F is a characteristic root of T in F, let
Uy = {v € V[oT = w}. If S € A(V) commutes with T, prove that Uy
is invariant under S.

*7. If 9 is a commutative set of elements in A(V) such that every
M € 9 has all its characteristic roots in F, prove that there is a C € A(V)
such that every CMC™!, for M € 9 is in triangular form.

8. Let W be a subspace of V invariant under T € A (V). By restricting
T to W, T induces a linear transformation T (defined by wT = wT for
every w € W). Let $(z) be the minimal polynomial of 7' over F.

(a) Prove that p?;c) | p(z), the minimal polynomial of T over F.
(b) If T induces T on V/W satisfying the minimal polynomial 5(z)
over F, prove that p(x)| 5(z)p(z).
*(c) If p(x) and p(x) are relatively prime, prove that p(zx) = p(z)p(z).
*(d) Give an example of a T for which p(z) # p(z)p(x).
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9. Let 91 be a nonempty set of elements in A(V); the subspace W < V
is said to be tnvariant under 91 if for every M € M WM < W. If W is
invariant under 91 and is of dimension 7 over F, prove that there exists a
basis of V over F such that every M/ € 91 has a matrix, in this basis, of

the form ( M, 0 )
Mo M,

where M| is an 7 X r matrix and M, is an (n — r) X (n — r) matrix.

10. In Problem 9 prove that }/; is the matrix of the Imear transforma-
tion M induced by M on W, and that M, is the matrix of the linear trans-
formation M induced by M on V/W.

*11. The nonempty set, MM, of linear transformations in A (V) is called an
srreductble set if the only subspaces of V invariant under 91 are (0) and V.
If 9% is an irreducible set of linear transformations on V and if

D={TECAWV)|TM = MT for all M € I},

prove that D is a division ring.

*12. Do Problem 11 by using the result (Schur’s lemma) of Problem 14,
end of Chapter 4.
*18. If F is such that all elements in A(V) have all their characteristic
roots in F, prove that the D of Problem 11 consists only of scalars.
14. Let F be the field of real numbers and let

(2 )er
-1 0 *

(a) Prove that the set 9 consisting only of

(1 o)
-1 0
is an irreducible set.
(b) Find the set D of all matrices commuting with

(1 0)
-1 0
and prove that D is isomorphic to the field of complex numbers.

15. Let F be the field of real numbers.
(a) Prove that the set

01 00 0 00 1
-1 0 0 0 010
=1 90 o1l 0o =100
00 —10/ \-1 000

is an irreducible set.
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(b) Find all A € F4 such that AM = MA for all M € .
(c) Prove that the set of all A in part (b) is a division ring isomorphic
to the division ring of quaternions over the real field.

16. A set of linear transformations, 9 < A(V), is called decomposable
if there is a subspace W < V such that V=W@ W, W = (0), W = V,
and each of W and W, is invariant under 9. If 91 is not decomposable, it is
called indecomposabdle.

(a) If M is a decomposable set of linear transformations on V, prove
that there is a basis of ¥ in which every M € 91 has a matrix

where M and M, are square matrices.

(b) If V is an n-dimensional vector space over F and if T € A(V)
satisfies T = 0 but 7"~ # 0, prove that the set {T'} (consisting
of T) is indecomposable.

17. Let T € A(V) and suppose that p(z) is the minimal polynomial for
T over F.

(a) If p(x) is divisible by two distinet irreducible polynomials p,(z)
and ps(x) in Flz], prove that {7} is decomposable.

(b) If {T}, for some T € A(V) is indecomposable, prove that the
minimal polynomial for T' over F is the power of an irreducible
polynomial.

18. If T € A(V) is nilpotent, prove that T can be brought to triangular
form over F, and in that form all the elements on the diagonal are 0.

19. If T € A(V) has only O as a characteristic root, prove that T is
nilpo?ent.

6. Canonical Forms: Nilpotent Transformations. One class of linear
transformations which have all their characteristic roots in F is the class
of nilpotent ones, for their characteristic roots are all 0, hence are in F.
Therefore by the result of the previous section a nilpotent linear transforma-
tion can always be brought to triangular form over F. For some purposes
this is not sharp enough, and as we shall soon see, a great deal more can be
said.

Although the class of nilpotent linear transformations is a rather re-
stricted one, it nevertheless merits study for its own sake. More important
for our purposes, once we have found a good canonical form for these we
can readily find a good canonical form for all linear transformations which
have all their characteristic roots in F.

A word about the line of attack that we shall follow is in order. We could
study these matters from a “ground-up” approach or we could invoke re-
sults about the decomposition of modules which we obtained in Chapter 4.
We have decided on a compromise between the two; we treat the material
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in this section and the next (on Jordan forms) independently of the notion
of a module and the results about modules developed in Chapter 4. How-
ever, in the section dealing with the rational canonical form we shall com-
pletely change point of view, introducing via a given linear transformation
a module structure on the vector spaces under discussion; making use of
Theorem 4.j we shall then get a decomposition of a vector space, and the
resulting canonical form, relative to a given linear transformation.

Even though we do not use a module theoretic approach now, the reader
should note the similarity between the arguments used in proving Theorem
4.j and those used to prove Lemma 6.10.

Before concentrating our efforts on nilpotent linear transformations we
prove a result of interest which holds for arbitrary omes.

LemMa 6.7. If V=V1@ Vo @®:--@® Vi, where each subspace V; is of
dimension n; and s invariant under T, an element of A(V), then a basis of
V can be found so that the matriz of T in this bastis is of the form

4, 0 . . . 0
0 4, . . . 0

0 0 . . . A

where each A; is an n; X n, matriz and is the matriz of the linear transfor-
mation tnduced by T on V,.

Proof. Choose a basis of V as follows: v, ™, ..., v,/ is a basis of V1,
01 ®, 9,®, .., 0,,? is a basis of V5, and so on. Since each V, is invariant
under T, v;?T € V;so is a linear combination of »;?, v,®, ..., v, ¥, and
of only these. Thus the matrix of T in the basis so chosen is of the desired
form. That each A; is the matrix of T, the linear transformation induced on
V: by T, is clear from the very definition of the matrix of a linear transfor-
mation.

We now narrow our attention to nilpotent linear transformations.

LemMa 6.8. If T € A(V) is nilpotent, then ao+ oyT +-- -+ anT™,
where the a, € F, s invertible if ag 7~ 0.

Proof. If 8 is nilpotent and «y 5% 0 € F, a simple computation shows that
1 s & St
(@0 + S) (-——-——2+—§+"'+(—1 ’—1——7)‘—' 1,
)] 2] ap g

if 8" = 0. Nowif 7" = 0,8 = ayT + aT? +- - - + &, ™ also must satisfy
S™ = 0. (Prove!) Thus for oy 0 in F, ap + 8 is invertible.
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NotaTioN. M; will denote the ¢ X ¢ matrix

010 ... 00
001 ... 00
00 ... 01
oo ... 00

all of whose entries are 0 except on the superdiagonal, where they are all 1’s.

DrriniTioN. If T € A(V) is nilpotent, then k& is called the index of nil-
potence of T if T% = 0 but 7%~ 5 0.

The key result about nilpotent linear transformations is

TuroreM 6.L. If T € A(V) is nilpotent, of index of nilpotence ny, then
a basis of V can be found such that the matriz of T in this basis has the form

Mup O ... 0
0 Muy ... 0
0 0 ... M,

where ny > ng > -+ > Ny and where ny + Ny +- -+ n, = dimp V.

Proof. The proof will be a little detailed, so as we proceed we shall sep-
arate parts of it out as lemmas.

Since T™! = 0 but 7™1"! £ 0, we can find a vector » € V such that
o171 22 0. We claim that the vectors v, o7, ..., »T"~! are linearly inde-
pendent over F. For, suppose that a;p + apT +- -+ anpT™ " =0
where the a; € F; let a, be the first nonzero o, hence

UT's-_l(ae ‘|" a3+1T + L + aan”‘_s) = 0.

Since as # 0, by Lemma 6.8, oy + a1 + -+ -+ @, 7™ is invertible,
and therefore vT°~! = 0. However, s < n;, thus this contradicts that
vT™~1 = (0. Thus no such nonzero a, exists and v, »T, .. ., ¥T™ " have been
shown to be linearly independent over F.

Let V; be the subspace of V spanned by v; =v, vy =T, ...,
vn, = vT™71; V; is invariant under T, and, in the basis above, the linear
transformation induced by T' on V; has as matrix M,,.
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So far we have produced the upper left-hand corner of the matrix of the
theorem. We must somehow produce the rest of this matrix.

Lemma 6.9. If u € Vy is such that uT™™* = 0, where 0 < k < ny, then
u = uoT* for some uy € V.

Proof. Since u € Vi, u = ayw + awT + + -+ + awT?* ! + ape0TF +
oot an 0T Thus 0 = wT™7% = @pT™~* 4 ... 4 T~ How-
—k —_ . .
ever, vT™™* ..., »T™7 are linearly independent over F, whence
o =ag =--=op =0, and s0, ¥ = o WT* + -+ + T = 4, TF,
where ug = app1v +- -+ T F 1 € V.

The argument, so far, has been fairly straightforward. Now it becomes a
little sticky.

Lmmma 6.10. There exists o subspace W of V, inwariant under T, such
that V.=V.@W.

Proof. Let W be a subspace of V, of largest possible dimension, such that:

1) Vi N W =(0);
(2) W is invariant under 7.

We want to show that V = V; 4+ W. Suppose not; then there exists an
element, z € V such that 2 & V; 4+ W. Since T™ = 0, there exists an inte-
gerk,0 < k < ny, such that 2% € V; + W and such that 2T° & V; + W
for ¢ < k. Thus 2T% = w + w where « € V; and where w € W. But then
0 =2T™ = (2T*)T™™* = yT™~* 4 »T™*: however, since both V; and W
are invariant under T, uT™ ™ € V; and wT™ % € W. Since V; N W= (0),
this leads to uT™™* = —wI™* C V; N W = (0), resulting in
uT™ % = 0. By Lemma 6.9, u = wT* for some uy € V;; therefore,
2T = u + w = uoT* + w. Let 2; = 2 — ug; then 2, T% = 2T% — 4, T* =
w € W, and since W is invariant under T this yields 2;T™ € W for all
m > k. On the other hand, if ¢ <k, 2T% = 2T* — uoT* € W + W, for
otherwise zT° must fall in V; -+ W, contradicting the choice of k.

Let W, be the subspace of V spanned by W and 2, 2,7, ..., e T,
Since 2z, & W, and since W, D W, the dimension of W must be larger than
that of W. Moreover, since z; 7% € W and since W is invariant under T,
W, must be invariant under T. By the maximal nature of W there must be
an element of the form wy + aizr + azy T + + -+ + a2y T*1 0 in
Wy N Vy, where wy € W. Not all of ay, ..., ax can be 0; otherwise we
would have 0 = wy € W N Vy = (0), a contradiction. Let a, be the first
nonzero «; then wo + 217" (s + aeT + -+ + apT**) € V,. Since
a, # 0, by Lemma 6.8, ap + as1T + -+ + + oxT** is invertible and its
inverse, R, is a polynomial in 7. Thus W and V1 are invariant under E; how-
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ever, from the above, woR + 2, T*"' € V R C Vy, forcing z; T* ' € V; +
WR <V, + W.Sinces — 1 < kthisisimpossible; therefore V, 4+ W = V.
Because V. N W = (0), V = V; ® W, and the lemma is proved.

The hard work, for the moment, is over; we now complete the proof of
the Theorem 6.1

By Lemma 6.10, V = V; @ W where W is invariant under 7. Using the
basis 91, ..., v, of V1 and any basis of W as a basis of V, by Lemma 6.7,
the matrix of 7' in this basis has the form

(Mm 0 >
0 A

where A, is the matrix of T's, the linear transformation induced on W by 7.
Since T™ = 0, T'y" = 0 for some 7, < 7;. Repeating the argument used
for T on V for Ty on W we can decompose W as we did V (or, invoke an
induction on the dimension of the vector space involved). Continuing this
way, we get a basis of V' in which the matrix of T is of the form

Mn, 0 ... 0
0 M.,
0 o .. Mnr

That n; + ng 4+ -+ n, = dim V is clear, since the size of the matrix is
n X n where n = dim V.

DzrintrioN. The integers ny, ng, ..., n, are called the snvariants of T.
Drrinirion. If T € A(V) is nilpotent, the subspace M of V, of dimen-

sion m, which is invariant under 7, is called cyclic with respect to T if:

(1) MT™ = (0), MT™* = (0);
(2) there is an element z € M such that z, 2T, ..., 2T™ ! form a basis
of M.

(Note: Condition 1 is actually implied by Condition 2.)

Lemma 6.11. If M, of dimension m, 18 cyclic with respect to T, then the
dimension of MT* is m — k for all & < m.

Proof. A basis of MT* is provided us by taking the image of any basis of
M under T*. Using the basis z, 2T, ..., 2T of M leads to a basis 27%,
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2Tt ..., 2T™ " of MT*. Since this basis has m — k elements, the lemma
is proved.

Theorem 6.1 tells us that given a nilpotent T in A (V) we can find integers
ny = Mg > -+ = N, and subspaces, V7, ..., V. of V cyclic with respect to 7
and of dimensions ny, ny, ..., n,, respectively suchthat V=V, @ --® V.

Is it possible that we can find other integers m; > mg > ---> m, and
subspaces Ui, ..., U, of V, cyclic with respect to T and of dimensions
my, ..., Mg, respectively, such that V = U; @- - -@ U,? We claim that we
cannot, or in other words that s = r and m; = ny, my = ny, ..., my = n,.
Suppose that this were not the case; then there is a first integer ¢ such that
m; # n;. We may assume that m; < n,.

Consider VT™. On one hand, since V=V, @® - @V, VI™ =
Vi @@ V,I™ @---@ V,.I™. Since dim V;T™ = n; — my
dim VoT™ = ny — my, ..., dim V;T™ = n; — m; (by Lemma 6.11),
dim VI™ > (ny — m;) + (ng — my) +- -+ (n; — m;). On the other hand,
since V =U; @ - @ U, and since U;T™ = (0) forj > ¢, VI™ = U;T™ @D
UsT™ +- - -@ U; ™. Thus

dim VI™ = (my — m;) + (mg — my) +- -+ (mi—y — ma).
By our choice of 2, ny = my, ng = my, ..., n;_; = m;_;, whence
dim VI™ = (ny ~ mg) + (ng — my) +- -+ (1 — ma).

However, this contradicts the fact proved above that dim VT™ >
(ny —my) +- -+ (ng—y — my) + (n; — my), since n; — m; > 0.

Thus there is a unique set of integers n; > ng > - -+ > n, such that V is
the direct sum of subspaces, cyclic with respect to 7' of dimensions n;,
Ng, ..., Ny. Equivalently, we have shown that the invariants of T are unique.

Matricially, the argument just carried out has proved that if n; > ng >
<. > n.and my > mg > - -+ > m,, then the matrices

My, ... 0 My, ... O
0 0
and
0 oo M, 0 e My,
are similar only if r = s and ny = my, g = Mz, ..., Ny = My

So far we have proved the more difficult half of

TurorEM 6.M. Two nilpotent linear transformations are similar if and
only if they have the same invariants.
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Proof. The discussion preceding the theorem has proved that if the two
nilpotent linear transformations have different invariants, then they can-
not be similar, for their respective matrices

Ma ... 0 My, ... 0
and

0 coe M. 0 coo My,

cannot be similar.
In the other direction, if the two nilpotent linear transformations S and T
have the same invariants n; >--- > n,, by Theorem 6.1 there are bases

V1, « .., 0p and Wy, ..., W, of V such that the matrix of Sinvy, ..., v, and
that of T in wy, ..., Wy, is each equal to

M, ... 0

0 e M,

But if 4 is the linear transformation defined on V by v,4 = w;, then § =
ATA™ (Prove! Compare with Problem 32 at the end of Section 3), whence
S and T are similar.

Let us compute an example. Let

011
T-——-(O 0 0>€F3
0 00

act on F® with basis u; = (1,0,0), ug = (0,1,0), us = (0,0,1). Let
vy = Uy, Vg = w11 = uy -+ ug, v3 = ug; in the basis vy, vs, vs the matrix of

T is 1 0
00 0>1
00 0

so that the invariants of 7" are 2, 1. If 4 is the matrix of the change of

basis, namely 10 0
(0 : )
0 01

a simple computation shows that

0 1 0
ATA™ = (0 0 O>
0 00
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One final remark: the invariants of 7' determine a partition of n, the di-
mension of V. Conversely, any partition of n, ny >--->n, n; +
ng + -+ -+ n, = n, determines the invariants of the nilpotent linear

transformation.
My ... 0

0 ... M,

Thus the number of distinct similarity classes of nilpotent n X n matrices is
precisely p(n), the number of partitions of n.

6. Canonical Forms: A Decomposition of V: Jordan Form. Let V be a
finite-dimensional vector space over F and let T be an arbitrary element in
Ap(V). Suppose that V1 is a subspace of V invariant under 7. Therefore T
induces a linear transformation T'; on V; defined by uT; = uT for every
u € Vy. Given any polynomial ¢(x) € F[x], we claim that the linear trans-
formation induced by ¢(T) on V, is precisely g(T'1). (The proof of this is
left as an exercise.) In particular, if ¢(T) = 0 then ¢(74) = 0. Thus T,
satisfies any polynomial satisfied by T over F. What can be said in the op-
posite direction?

Lemma 6.12. Suppose that V = V; @ Vs where V1 and Vo are subspaces
of V invariant under T. Let Ty and Ty be the linear transformattons induced
by T on Vy and V, respectively. If the mintmal polynomial of Ty over F is
p1(x) while that of Ty is ps(x), then the mintmal polynomial for T over F
1s the least common multiple of p1(z) and pe(z).

Proof. If p(x) is the minimal polynomial for T over F, as we have seen
above, both p(Ty) and p(Ts) are zero, whence p;(z) | p(z) and pa(z) |p(x).
But then the least common multiple of p;(z) and ps(z) must also divide
P(@).

On the other hand, if ¢(z) is the least common multiple of p;(z) and
p2(x), consider g(T). For vy € V1, since p1(2)| (@), v19(T) = v1g(T1) = 0;
similarly, for v € V3, v2(T) = 0. Given any v € V, v can be written as
v = v; + vy where v; € Vy and v, € Vs, in consequence of which vg(T) =
Wy + v2)q(T) = 0:¢(T) + vo9(T) = 0. Thus ¢(T) = 0 and T satisfies ¢(z).
Combined with the result of the first paragraph, this yields the lemma.

COROLLARY. I fV =V,@ - @ Vi where each V; is invariant under T
and if ps(x) is the minimal polynomial over F of Tj, the linear transformation
induced by T on V;, then the minimal polynomial of T over F s the least
common multiple of p1(x), p2(@),. .., Pr(x).

We leave the proof of the corollary to the reader.
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Let T € Ap(V) and suppose that p(z) in Flz] is the minimal polynomial
of T over F. By Lemma 3.21, we can factor p(z) in F[z] in a unique way as
p(@) = ¢1(x)"q2(x)2 ... qr(x)%, where the g;(z) are distinct irreducible
polynomials in F[z] and where I}, I, .. , l; are positive integers. Our
objective is to decompose V as a direct sum of subspaces invariant under
T such that on each of these the linear transformation induced by T
has, as minimal polynomial, a power of an irreducible polynomial. If & = 1,
V itself already does this for us. So, suppose that k& > 1.

Let Vi = {v € V]vgu(T)* = 0}, Vo = {v € V|vgo(D® = 0}, ...,
Vi = {v € V]vge(T)* = 0}. It is a triviality that each V;is a subspace of V.
In addition, V; is invariant under 7, for if w € V;, since T and ¢;(T) com-
mute, @T)q(T)% = (ug:(T)*¥)T = 0T = 0. By the definition of V;, this
places T in V. Let T'; be the linear transformation induced by T on V.

THEOREM 6.N. Foreach it = 1,2, ...,k V;#= 0) and V=V, V@
-« +@® V. The minimal polynomial of T; is qs(z)".

Proof. If k = 1 then V = V; and there is nothing that needs proving.
Suppose then that & > 1.

We first want to prove that each V; £ (0). Towards this end, we in-
troduce the k polynomials:

hi(z) = go(z) g3 (@)’ ... gi(z)™,
k(@) = q1(@)hga(@)b ... (@), ...,
h’l-(x) = H Qj(x)lj; ey

j==t

hi(@) = q1(@)hga(2)" . . . gr—y (@)1
Since k > 1, h;(x) % p(z), whence h;(T) > 0. Thus, given 7, there is a
v € V such that w = vhy(T) % 0. But wg;(T)%* = v(hy(T)q:(T)%) = vp(T)
= 0. In consequence, w = 0 is in V; and so V; = (0). In fact, we have
shown a little moré, namely, that Vh(T) ¢ (0) is in V;. Another remark
about the h,(z) is in order now if v; € V; for j 5 4, since g,(x)"|h;(),

Ujhi(T) = 0.
The polynomials hy(z), ha(z), ..., hx(x) are relatively prime. (Prove!)
Hence by Lemma 3.20 we can find polynomials a;(z), . . ., ax(x) in F2] such

that a; (@) (z) + - - - + ax(@)hx(z) = 1. From this we get a; (T)hy(T) +- - -+
ar(T)he(T) = 1, whence, given v € V, v = vl = v(a,(TVh(T) +---+
a(Th(T)) = var (T (T) + - - - + vau(T)h(T). Now, each va;(T)hs(T)
is in Vhy(T), and since we have shown above that Vh;(T) < V,, we have
now exhibited » as v = v; -+ - - - 4+ vz, where each v = vay(TYh(T) is in V.
Thus V=V, 4+ Vy+---+ Vg

We must now verify that this sum is a direct sum. To show this, it is
enough to prove that if u; + us +-- -+ ux = 0 with each u; € V;, then
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each w; = 0. So, suppose that u; + us +- -+ u; = 0 and that some u;,
say 1, is not 0. Multiply this relation by k; (T ; we obtain uhi(T) +- - -+
uphy(T) = Ohy(T) = 0. However, u;hy(T) = 0 for j = 1 since u; € Vj;
the equation thus reduces to uihy(T) = 0. But uyq;(7)* = 0 and since
hi(z) and ¢;(z) are relatively prime, we are led to u; = 0 (Prove!) which is,
of course, inconsistent with the assumption that w; s 0. So far we have
succeeded in proving that V=V, @V, ®---@® V5.

To complete the proof of the theorem, we must still prove that the
minimal polynomial of T; on V; is ¢(x)%. By the definition of V; since
Vigi(T)% = 0, ¢:(T:)" = 0, whence the minimal equation of T'; must be a
divisor of ¢,(2)%, thus of the form g¢;(z)’* with f; < I;. By the corollary to
Lemma 6.12 the minimal polynomial of T over F is the least common mul-
tiple of ¢1(z)™,, ..., gr(x)’™* and so must be ¢;(z)™ ... gu(z)’. Since this
minimal polynomial is in fact ¢;(z) ... gx(x)% we must have that f; > I,
fo = 1la, ..., fr 2 . Combined with the opposite inequality above, this
yields the desired result I; = f; for ¢ = 1, 2, ..., k and so completes the
proof of the theorem.

If all the characteristic roots of 7' should happen to lie in F then
the minimal polynomial of 7' takes on the especially nice form ¢(z) =
( —M)™ ... (@ — M) where \;, ..., A\ are the distinct characteristic
roots of T. The irreducible factors g;(x) above are merely ¢;(x) = z — \;.
Note that on V;, T; only has \; as a characteristic root.

CororLLARY. If all the distinct characteristic roots g ..., Mg of T
lie in F then V can be written as V=V, @ --@ Vi where V; =
{v € V(T — \)Y = 0} and where T; has only one characteristic root, \;,
on V,;.

Let us go back to the theorem for a moment; we use the same notation
T, V; as in the theorem. Since V =V, @®--- @ V, if dim V; = n;, by
Lemma 6.7 we can find a basis of V such that in this basis the matrix of T
is of the form

4y

y: P

Ay

where each A4; is an n; X n; matrix and is in fact the matrix of T.

What exactly are we looking for? We want an element in the similarity
class of T which we can distinguish in some way. In light of Theorem 6.h this
can be rephrased as follows: We seek a basis of V' in which the matrix of T
has an especially simple (and recognizable) form.



258 LINEAR TRANSFORMATIONS CH. 6

By the discussion above, this search can be limited to the linear trans-
formations 7';, thus the general problem can be reduced from the discussion
of general linear transformations to that of the special linear transforma-
tions whose minimal polynomials are powers of irreducible polynomials.
For the special situation in which all the characteristic roots of T lie in F
we do it below. The general case in which we put no restrictions on the
characteristic roots of 7' will be done in the next section.

We are now in the happy position where all the pieces have been con-
structed and all we have to do is to put them together. This results in the
highly important and useful theorem in which is exhibited what is usually
called the Jordan canonical form. But first a definition.

DerintTioN. The matrix

1
0 ... A

with N's on the 1’s on the super diagonal, and Q’s elsewhere is a basic Jordan
block belonging to A.

TuroreEM 6.p. Let T € Ap(V) have all its distinct characteristic roots,
N, «.ey Ax, 0 F. Then a basis of V can be found in which the matriz T is
of the form

J1
Jo

Jr
where each

B’Ll"l

and where By, ..., By, are basic Jordan blocks belonging to \;.
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Proof. Before starting, note that an m X m basic Jordan block belonging
to \ is merely N + M,,, where M, is as defined at the end of Lemma 6.8,

By the combinations of Lemma 6.7 and the corollary to Theorem 6.n,
we can reduce to the case when T' has only one characteristic root A, that is,
T — X is nilpotent. Thus 7' = A 4 (T — )\), and since T — \ is nilpotent,
by Theorem 6.1 there is a basis in which its matrix is of the form

M,
My,
But then the matrix of 7 is of the form
A
\ My, B,
+ = ,
M nr B nr

A

using the first remark made in this proof about the relation of a basic Jordan
block and the M,,’s. This completes the theorem.

Using Theorem 6.1 we could arrange things so that in each J; the size of
B > size of Bjs > - -. When this has been done, then the matrix

J1

Jx

is called the Jordan form of T. Note that Theorem 6.p, for nilpotent mat-
rices, reduces to Theorem 6.1.

We leave as an exercise the following: Two linear transformations in
Ap(V) which have all their characteristic roots in F are simalar if and only if
they can be brought to the same Jordan form.

Thus the Jordan form acts as a ‘‘determiner’’ for similarity classes of this
type of linear transformation.

In matrix terms Theorem 6.p can be stated as follows: Let A € F,
and suppose that K 1s the splitting field of the minimal polynomial of A over F;
then an invertible matriz C € K, can be found so that CAC™! is in Jordan
form.
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We leave the few small points needed to make the transition from The-
orem 6.p to its matrix form, just given, to the reader.
One final remark: If A € F,, and if in K,,, where K is the splitting field
of the minimal polynomial of A over F,
J1
Ja
CAC™! =

J

where each J; corresponds to a different characteristic root, A;, of A, then the
multeplicity of \; as a characteristic root of A is defined to be n;, where J; is
an n; X n; matrix. Note that the sum of the multiplicities is exactly n.

Clearly we can similarly define the multiplicity of a characteristic root
of a linear transformation.

PROBLEMS

1. If S and T are nilpotent linear transformations which commute,
prove that ST and S + T are nilpotent linear transformations.
2. By a direct matrix computation, show that

0100 0

and

o O O =
S O = O
O = O O

0010
0 000
0000

o o O

are not similar.
3. If ny > mny and my = my by a direet matrix computation prove that

and
M n2 M. ma

are similar if and ounly if n; = my, ne = ma.
*4. If ny > ny > ng and m; > my > ma by a direct matrix computation,

prove that
ny Mm 1
< My, > and ( Moy, )
M M

ng m3

are similar if and only if ny = my, ny = my, ng = m.
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5. (a) Prove that the matrix

1 1 1
<— 1 -1 - 1)
1 1 0
is nilpotent, and find its invariants and Jordan form.
(b) Prove that the matrix in part (a) is not similar to

1 1 1
(-1 ~1 —1)-
1 0 0

261

6. Prove Lemma 6.12 and its corollary even if the sums involved are not

direct sums.

7. Prove the statement made to the effect that two linear transforma-
tions in A (V) all of whose characteristic roots lie in F are similar if and only
if their Jordan forms are the same (except for a permutation in the ordering

of the characteristic roots).

8. Complete the proof of the matrix version of Theorem 6.p, given in

the text.
9. Prove that the n X n matrix
000 00
100 00
010 00
0 0 1 00 1
000 10

having entries 1’s on the subdiagonal and 0’s elsewhere, is similar to M,.

l « .
10. If F has characteristic p > 0 prove that 4 = (0 1) satisfies

47 = 1.

1l «
11, If F has characteristic 0 prove that 4 = (0 1) satisfies A™ = 1,

for m > 0, only if & = 0.
12. Find all possible Jordan forms for

(a) all8 X 8 matrices having ?(z — 1)® as minimal polynomial;

(b) all 10 X 10 matrices, over a field of characteristic different from

2, having z%(z — 1)%(z + 1)® as minimal polynomial.
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13. Prove that the n X n matrix

1 1 1 1
1 11 1
A=
1 11 1
is similar to

0 ... 0
0 0

0 00 ... 0

if the characteristic of F is 0 or if it is p and p { ». What is the multiplicity
of 0 as a characteristic root of A?

A matrix A = (;;) is said to be a diagonal matrix if «;; = 0 for 7 # j,
that is, if all the entries off the main diagonal are 0. A matrix (or linear
transformation) is said to be diagonalizable if it is similar to a diagonal
matrix (has a basis in which its matrix is diagonal).

*14. If T is in A(V) then T is diagonalizable (if all its characteristic roots
are in F) if and only if whenever o(T — )" =0,forv € V and A € F,
then (T — \) = 0.

16. Using the result of Problem 14, prove that if E? = E then E is
diagonalizable.

16. If E*> = E and F? = F prove that they are similar if and only if they
have the same rank.

17. If the multiplicity of each characteristic root of T is 1, and if all the
characteristic roots of 7' are in F, prove that T' is diagonalizable over F.

*18. If the characteristic of F is 0 and if T € Ap(V) satisfies T™ = 1,
prove that if the characteristic roots of T’ are in F then T is diagonalizable.
(Hint: Use the Jordan form of 7'.)

*19. If 4, B € F are diagonalizable and if they commute, prove that
there is an element C € F, such that both CAC~* and CBC~ are diagonal.

20. Prove that the result of Problem 19 is false if A and B do not com-
mute.

7. Canonical Forms : Rational Canonical Form. The Jordan form is the
one most generally used to prove theorems about linear transformations
and matrices. Unfortunately, it has one distinct, serious drawback in that it
puts requirements on the location of the characteristic roots. True, if
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T € Ar(V) (or A € F,) does not have its characteristic roots in F we need
but go to a finite extension, K, of F in which all the characteristic roots of
T lie and then to bring T to Jordan form over K. In fact, this is a standard
operating procedure; however, it proves the result in K, and not in F,.
Very often the result in F,, can be inferred from that in K, but there are
many occasions when, after a result has been established for 4 € F,,
considered as an element in K,, we cannot go back from K, to get the de-
sired information in F,.

Thus we need some canonical form for elements in Az(V) (or in F,)
which presumes nothing about the location of the characteristic roots of its
elements, a canonical form and a set of invariants created in Az(V) itself
using only its elements and operations. Such a canonical form is provided
us by the rational canonical form which is described below in Theorem 6.q
and its corollary.

Let T € Ap(V); by means of T we propose to make V into a module over
Flz], the ring of polynomials in z over F. We do so by defining, for any
polynomial f(z) in F[z], and any v € V, f(x)v = uf(T). We leave the verifica-
tion to the reader that, under this definition of multiplication of elements
of V by elements of F[z], V becomes an F[x] module.

Since V is finite-dimensional over F, it is finitely generated over F, hence,
all the more so over F[z] which contains F. Moreover, F[z] is a Euclidean
ring; thus as a finitely generated module over F[z], by Theorem 4.j, V is
the direct sum of a finite number of cyclic submodules. From the very way
in which we have introduced the module structure on V, each of these
cyclic submodules is invariant under T'; moreover there is an element my,
in such a submodule M, such that every element m, in M, is of the form
m = mof(T) for some f(z) € Flz].

To determine the nature of T on V it will be, therefore, enough for us to
know what 7T looks like on a cyclic submodule. This is precisely what we
intend, shortly, to determine.

But first to carry out a preliminary decomposition of V, as we did in
Theorem 6.n, according to the decomposition of the minimal polynomial of
T as a product of irreducible polynomials.

Let the minimal polynomial, p(z), of T over F be p(z)=g1(2)* . . . qk(x)**
where the ¢;(z) are distinct irreducible polynomials in F[z] and where
each e; > 0; then, as we saw in Theorem 6.n, V=V, @ Vo ® @ Vs
where each V; is invariant under 7' and where the minimal polynomial of T
on V; is ¢i(z)*. To solve the nature of a cyclic submodule for an arbitrary
T we see, from this discussion, that it suffices to settle it for a 7' whose
minimal polynomial is a power of an irreducible one.

We prove the

Lemma 6.13. Suppose that T, in Ap(V), has as minimal polynomial over
F the polynomial p(x) = vo + viz +-- -+ vraZ "t + 2. Suppose, fu.r-
ther, that V, as a module (as described above), is a cyclic module (that 1s,



264 LINEAR TRANSFORMATIONS CcH. 6

1s cyclic relative to T'). Then there is basis of V over F such that, in this basis,
the matrix of T s

0 1 0 0

0 0 1 0

0 0o 0 ... 1
Yo TY1 .« .. TYr-l

Proof. Since V is cyclic relative to 7T, there exists a vector » in V such
that every element w, in V, is of the form w = yf(T) for some f(z) in Flz].
Now if for some polynomial s(z) in Flz], vs(T) = 0 then for any win V,
ws(T) = (f(T))s(T) = vs(T)f(T) = 0; thus s(T") annihilates all of V" and
so 8(T) = 0. But then p(z)|s(z) since p(x) is the minimal polynomial of T.

This remark immediately implies that v, »T, vT?, ..., vT" " are linearly
independent over F, for if not, then ag + ayvT +-- -+ a,_wT™ 1 =0
with QQy eovy OQpy in F. But then 1)(0!0 + a1T +-- + Olr_lTT_l) = 0,
hence by the above discussion p(z)|(eo + ayx +- -+ e,_32""), which
is impossible since p(z) is of degree r unless ap = @y =+ = a,_y = 0.
Since T" = —vg — 71T —+++— v,1T"!, we immediately have that
T7+% for k > 0, is a linear combination of 1, T, ..., 7", and so f(T"), for
any f(z) € Flz], is a linear combination of 1, T, ..., 77! over F. Since

any w in V is of the form w = vf(T) we get that w is a linear combination of
v, T, ..., vT™ L,

‘We have proved, in the above two paragraphs, that the elements v, v7,
.+, vT" ! form a basis of V over F. In this basis, as is immediately verified,
the matrix of T' is exactly as claimed

DeriNtTiON. If f() = 70 + v12 + -+ vpy2” —I— 2" is in F[z] then
the » X r matrix

0 0 0 ... 1

-0 TY1 .+ ... TYr—1

is called the companion matriz of f(x). We write it as C(f(z)).
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Note that Lemma 6.13 says that if V is cyclic relative to T and if the mini-
7gzzl (p(;l)ynomz'al of T in Flz] is p(x) then for some basis of V the matriz of T is

p(x)).

Note further that the matric C(f(2)), for any monic f(z) in Flz], satisfies
f(x) and has f(z) as its minimal polynomial. (See Problem 4, at the end of
this section; also Problem 29 at the end of Section 1.)

‘We now prove the very important

TueoreM 6.q. If T in Ap(V) has as minimal polynomial p(z) = q(z)°
where () is a monic, irreducible polynomial in Flz), then a basis of V over
F can be found in which the matriz of T is of the form

C(g(2)*n)
Clg(=)*»

Clg(@)n

where e = €1 > €9 >+ -+ 2> e,

Proof. Since V, as a module over Flz], is finitely generated, and since
Fiz] is Buclidean, we can decompose Vas V = V; @---@ V, where the
V; are cyclic modules. The V; are thus invariant under T'; if T'; is the linear
transformation induced by T on V;, its minimal polynomial must be a di-
visor of p(z) = q(z)° so is of the form ¢(z)%. We can renumber the spaces
sothat e, > e >---> e,

Now ¢(T)* annihilates each V;, hence annihilates V, whence ¢(T)®* = 0.
Thus e; > ¢; since ¢; is clearly at most e we get that e; = e.

By Lemma 6.13, since each V; is eyelic relative to 7', we can find a basis
such that the matrix of the linear transformation of T'; on V; is C(g(z)*).
Thus by Theorem 6.n a basis of V can be found so that the matrix of T in
this basis is

Clg(@)*)
C(g(x)*)

Clg(=)*™)

CororLraRY. If T in Ap(V) has the minimal polynomial p(z) =
a@M ... qr@)* over F, where q1(z), ..., qp(®) are irreducible distinct
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polynomials in Flz] then a basts of V can be found in which the matriz
of T is of the form

R,
Ry

Ry
where each

Clgs(=)»)

Clgs(x)®ers)

where e; = €1 2 € > 2 €iny.

Proof. By Theorem 6.1, V can be decomposed into the direct sum V =
Vi@®: - -@ Vi, where each V;is invariant under 7 and where the minimal
polynomial of T, the linear transformation induced by T on V,, has as
minimal polynomial ¢;(x)%. Using Lemma 6.7 and the theorem just proved,
we obtain the corollary. If the degree of ¢;(z) is d;, note that the sum of all
the dqe;; is m, the dimension of V over F.

DrerinrrioN. The matrix of 7' in the statement of the above corollary
is called the ratzonal canonical form of T.

DerinirioN. The polynomials q;(z)°Y, ¢1(2)%, ..., 1 (x)®n, .. ., gu(®),
v+, (@)% in Flz] are called the elementary divisors of T.

One more definition!

Derinrrion. If dimp (V) = n then the characteristic polynomial of T,
pr(z), is the product of its elementary divisors.

We shall be able to identify the characteristic polynomial, just defined,
with another polynomial which we shall explicitly construct in Section 9.
The characteristic polynomial of 7' is a polynomial of degree n lying in F[z].
It has many important properties, one of which is contained in the

ReMARK. Every linear transformation T € Ap(V) satisfies its charac-
teristic polynomial. Every characteristic root of T is a root of pr(x).
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Note 1. The first sentence of this remark is the statement of a very famous
theorem, the Cayley-Hamilton theorem. However, to call it that in the form
we have given is a little unfair. The meat of the Cayley-Hamilton theorem
is the fact that T satisfies pr(z) when pr(z) is given in a very specific, con-
crete form, easily constructible from 7. However, even as it stands the re-
mark does have some meat in it, for since the characteristic polynomial is a
polynomial of degree n, we have shown that every element in A7(V) does
satisfy a polynomial of degree n lying in F[z]. Until now, we had only proved
this (in Theorem 6.k) for linear transformations having all their characteris-
tic roots in F.

Note 2. As stated the second sentence really says nothing, for whenever 7'
satisfies a polynomial then every characteristic root of T satisfies this same
polynomial; thus pr(z) would be nothing special if what were stated in the
theorem were all that held true for it. However, the actual story is the fol-
lowing: Every characteristic root of T is a root of pr(z), and conversely,
every root of pr(x) is a characteristic root of T'; moreover, the multiplicity of
any root of pr(x), as @ root of the polynomial, equals its multiplicity as a
characteristic root of T. We could prove this now, but defer the proof until
later when we shall be able to do it in a more natural fashion.

Proof of the Remark. We only have to show that T satisfies pr(x), but this
becomes almost trivial. Since pr(z) is the product of ¢;(z)®Y, ¢ ()%, ...,
gr(x), ..., and since e;; = e, €a1 = €y, ..., ep1 = €k, pr(z) is divisible by
p(z) = q: (@) ... qr(z)®, the minimal polynomial of 7. Since p(T) = 0
it follows that pr(T) = 0.

We have called the set of polynomials arising in the rational canonical
form of T the elementary divisors of 7'. It would be highly desirable if these
determined similarity in Az(V) for then the similarity classes in Ap(V)
would be in one-to-one correspondence with sets of polynomials in Flz].
We propose to do this, but first we establish a result which implies that two
linear transformations have the same elementary divisors.

TrrorEM 6.R. Let V and W be two vector spaces over F and suppose
that s a vector space isomorphism of V onto W. Suppose that S € Ap(V)
and T € Ap(W) are such that for any v €V, wS)y = (w)T. Then § and
T have the same elementary divisors.

Proof. We begin with a simple computation. If v € V, then (S%)y¢ =
(@S)S)y = (WS T = (W)T)T = () T2 Clearly, if we continue in this
pattern we get (1S™)y = (w)T™ for any integer m > 0 whence for any
polynomial f(z) € Flz] and for any v € V, @f(S)¥ = ¥)f(T).

If £(S) = O then (w)f(T) = O for any v € V and since ¥ maps V onto W
we would have that Wf(T) = (0), in consequence of which f(T) = 0. Con-



268 LINEAR TRANSFORMATIONS CH. 6

versely, if g(z) € F[z] is such that g(T) =0 then for any vV, (vg(S))y = 0
and since ¢ is an isomorphism, this results in vg(S) = 0. This, of course,
implies that g(S) = 0. Thus S and 7 satisfy the same set of polynomials in
Flz], hence must have the same minimal polynomial

p(@) = q1(@)ga(2)* ... qu(2)®*

where ¢;(z), ..., qp(z) are distinct irreducible polynomials in Flz].

If U is a subspace of V invariant under S, then Uy is a subspace of W
invariant under T, for (UY)T = (US)¢ < Uy. Since U and Uy are iso-
morphic, the minimal polynomial of S;, the linear transformation induced
by S on U is the same, by the remarks above, as the minimal polynomial of
T, the linear transformation induced on Uy by 7.

Now, since the minimal polynomial for Son Visp(z) = ¢1(x)* ... qr(z)%,
as we have seen in Theorem 6.q and its corollary, we can take as the
first elementary divisor of S the polynomial ¢; (z)** and we can find a sub-
space of V; of V which is invariant under S such that:

(1) V =V, ® M where M is invariant under S;

(2) the only elementary divisor of Sy, the linear transformation induced
on V; by 8§, is ¢;(x)%;

(3) the other elementary divisors of S are those of the linear transforma-
tion 8, induced by S on M.

We now combine the remarks made above and assert:

(1) W =W, ®N where W; = Vi and N = My are invariant under 7.

(2) The only elementary divisor of 7', the linear transformation induced
by T on Wy, is q;(z)®* (which is an elementary divisor of T since the
minimal polynomial of T is p(z) = q1(@)** ... qu(x)%).

(3) The other elementary divisors of T' are those of the linear transforma-
tion T, induced by T on N.

Since N = My, M and N are isomorphic vector spaces over F under the
isomorphism ¢, induced by y. Moreover, if 4 € M then (uSz)ys = WS)y =
(wp)T = (uys)Ts, hence Sy and T, are in the same relation vis-3-vis Yo
as S and T were vis-4-vis ¥. By induction on dimension (or repeating
the argument) S, and T, have the same elementary divisors. But since
the elementary divisors of S are merely ¢; () and those of S; while those
of T are merely ¢;(z)® and those of Ts, 8, and T must have the same ele-
mentary divisors, thereby proving the theorem.

Theorem 6.q and its corollary gave us the rational canonical form and
gave rise to the elementary divisors. We should like to push this further
and to be able to assert some uniqueness property. This we do in

TraeorEM 6.8. The elements S and T in Ap(V) are similar (in Ap(V) if
and only if they have the same elementary divisors.
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Proof. In one direction this is easy, for suppose that S and 7 have the
same elementary divisors. Then there are two bases of V over F such that
the matrix of S in the first basis equals the matrix of 7' in the second (and
each equals the matrix of the rational canonical form). But as we have seen
several times earlier, this implies that S and T are similar.

We now wish to go in the other direction. Here, too, the argument re-
sembles closely that used in Section 5 in the proof of Theorem 6.m. Having
been careful with details, there, we can afford to be a little sketchier here.

We first remark that in view of Theorem 6.n we may reduce from the
general case to that of a linear transformation whose minimal polynomial
is a power of an irreducible one. Thus without loss of generality we may sup-
pose that the minimal polynomial of 7' is ¢(z)® where ¢(z) is irreducible in
Flz] of degree d.

The rational canonical form tells us that we can decompose V as V =
Vi@ - -@® V, where the subspaces V; are invariant under T and where the
linear transformation induced by 7' on V; has as matrix C(g(x)%), the com-
panion matrix of g(x)*. We assume that what we are really trying to prove
is the following: If V = U; @ Uy @- - -@® U, where the U; are invariant
under 7' and where the linear transformation induced by T on U; has as
matrix Cg(@)), fi > fa>--->fothenr =sand e; =fi, e =fo, ...,
e, = fr. (Prove that the proof of this is equivalent to proving the theorem!)

Suppose then that we do have the two decompositions described above,
V=Vi® ®V,and V="U;D---® U, and that some e; > f;. Then
there is a first integer m such that e,, # fy, while ey = fi, ..., ém—1 = fm—1.
We may suppose that e, > fm.

Now g¢(T)'™ annihilates Uy, Umay, ..., Us, Whence
Vo(TY™ = Ug(T)™ @ - @ Up—1g(T)'™.

However, it can be shown that the dimension of U,g(T)™™ for i < m is
d(f; — fm) (Prove!) whence

dim (VQ(T)fm) = d(fl —fm) + o+ Ad(fm— — Jm)-
On the other hand, V()2 Vig(T)» ®---@®---® Vaug(T)'™ and
since V;q(T)’™ has dimension d(e; — fu), for ¢ < m, we obtain that
dim (Vq(T)™) > d(ey — fm) +- -+ dlem — fm)-

Since e; =f1, ..., em—1 = fm_1 a0d €, > fn, this contradicts the equality
proved above. We have thus proved the theorem.

CoRrOLLARY 1. Suppose the two matrices A, B in Fy, are similar in K,
where K is an extension of F. Then A and B are already similar tn Fp.

Proof. Suppose that 4, B € F,, are such that B = C™*AC with C € K.
We consider K, as acting on K™, the vector space of n-tuples over K.
Thus F™ is contained in K™ and although 1t is a vector space over ¥ # is
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not a vector space over K. The image of F™, in K™ under C need not fall
back in F™ but at any rate F™ ( is a subset of K™ which s a vector space
over F. (Prove!) Let V be the vector space F™ over F, W the vector space
F™( over F and forv € Vet = vC. Now A € Ap(V) and B € Ap(W)
and for any v € V, wA)Y = vAC = vCB = (w))B whence the conditions
of Theorem 6.r are satisfied. Thus A and B have the same elementary
divisors; by Theorem 6.5, A and B must be similar in F,.

A word of caution: The corollary does not state that if A, B € F, are such
that B = C4C with C € K, then C must of necessity be in F,; this is
false. It merely states that if 4, B € F, are such that B = C7'AC with
C € K, then there exists a (possibly different) D € F,, such that B =
DTAD.

PROBLEMS

1. Verify that V becomes an F[z] module under the definition given.

2. In the proof of Theorem 6.s provide complete proof at all points

marked “(Prove).”

*3. (a) Prove that every root of the characteristic polynomial of T is a

characteristic root of 7.
(b) Prove that the multiplicity of any root of pr(z) is equal to its
multiplicity as a characteristic root of 7.

4. Prove that for f(z) € Flz], C(f(z)) satisfies f(z) and has f(z) as its

minimal polynomial. What is its characteristic polynomial?

5. If F is the field of rational numbers, find all possible rational canonical

forms and elementary divisors for:
(a) The 6 X 6 matrices in Fg having (z — 1)(2? + 1)? as minimal
polynomial,
(b) The 15 X 15 matrices in Fy5 having (2% + z + 1)%(2® + 2)2
as minimal polynomial.
(¢c) The 10 X 10 matrices in Fyo having (22 + 1)?(z® + 1) as mini-
mal polynomial.

6. (a) If K is an extension of F and if A is in K,, prove that A can be
written as A = N4y +- -+ M\gdy where Ay, ..., Ay are in F,
and where Ay, ..., A\; are in K and are linearly independent over
F.

(b) With the notation as in part (a), prove that if B € F, is such
that AB =0 then A;B = A,B =---= A;B = 0.

(¢) If C in F, commutes with A prove that C commutes with each
of Al, Az, feey Ag.

*7. If Ay, ..., Ay are in F,, and are such that for some Ay, ..., \z in K,
an extension of F, \j4; - - -+ M4y is invertible in K, prove that if F
has an infinite number of elements we can find @, ..., ax 9n F such that
oAy +- - -+ ardy is invertible in F,,.

*8. If F is a finite field prove the result of Problem 7 is false.

*9. Using the results of Problems 6(a) and 7 prove that if F has an in-
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finite number of elements then whenever A, B € F,, are similar in K,,
where K is an extension of F, then they are sunllar in Fp. (This provides us
with a proof, independent of canonical forms of Corollary 1 to Theorem 6.s
in the special case when F is an infinite field.)

10. Using matrix computations (but following the lines laid out in Prob-
lem 9), prove that if ¥ is the field of real numbers and K that of complex

numbers, then two elements in F, which are similar with K, are already
similar in Fs.

8. Trace and Transpose. After the rather heavy going of the previous
few sections, the uncomplicated nature of the material to be treated now
should come as a welcome respite.

Let F be a field and let 4 be a matrix in F,,.

DerinitioN. The frace of A is the sum of the elements on the main diag-
onal of 4.

We shall write the trace of 4 as tr 4;if 4 = (a), thentr 4 = D ay.
=1

The fundamental formal properties of the trace function are contained in
Levmma 6.14. For A, B€ F, and A € F,

(1) tr (\A) =M tr 4;
(@) tr (4 +B) =tr A + tr B;
(8) tr (AB) = tr (BA).

Proof. To establish (1) and (2) (which assert that the trace is a linear
functional an F,) is straightforward and is left to the reader. We only
present the proof of part (3) of the lemma.

n

If A = (a;;) and B = (B;;) then AB = (v;;) where v;; = Z a;xBr; and

k=1

BA = (u;;) where ui = Z Bixceg;.
k==l

Thus tr (4B) = 2 vi; = > <Z aikﬁki); if we interchange the order of
i i \k&
summation in this last sum, we get

tr (AB) = Z Z airbri = D <Z ﬂkzaik) = D uww = tr (BA).
k=1 i=1 k=1 =1 k=1
COROLLARY. If A s tnvertible then tr (ACA™) = tr C.
Proof. Let B = CA™'; then tr (ACA™") =tr (4B) = tr (B4) =
tr (CA—'4) = tr C.

This corollary has a twofold importance; first, it will allow us to define
the trace of an arbitrary linear transformation; secondly, it will enable us
to find an alternate expression for the trace of A.
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DeriNtrion. If T € A(V) then tr T, the trace of T, is the trace of my(T")
where m;(T) is the matrix of T in some basis of V.

We claim that the definition is meaningful and depends only on T and
not on any particular basis of V. For if m;(T) and mq(T) are the matrices
of T in two different bases of V by Theorem 6.h, m;(T) and ms(T) are
similar matrices, so by the corollary to Lemma 6.14 they have the same
trace.

Levmma 6.15. If T € A(V) then tr T s the sum of the characteristic roots
of T (using each characteristic root as often as its multiplicity).

Proof. We can assume that 7' is a matrix in F,; if K is the splitting field
for the minimal polynomial of T over F, then in K,, by Theorem 6.p, T can
be brought to its Jordan form, J. J is a matrix on whose diagonal appear the
characteristic roots of T, each root appearing as often as its multiplicity.
Thus trJ = sum of the characteristic roots of T'; however, since J is of the
form ATA™, tr J = tr T, and this proves the lemma.

If T is nilpotent then all its characteristic roots are 0, whence by Lemma
6.15, tr T = 0. But if T is nilpotent, then so are T2, T3, - - -, thus tr 7% = 0
for all 7 > 1.

What about other direction, namely, if tr 7° = 0 fors = 1, 2, - - -. Does
it follow that T is nilpotent? In this generality the answer is no, for if F is a
field of characteristic 2 then the unit matrix

G 3)

in Fy has trace 0 (for 1 4 1 = 0) as do all its powers, yet clearly the unit
matrix is not nilpotent. However, if we restrict the characteristic of F to
be 0, the result is indeed true.

Lemma 6.16. If F is a field of characteristic 0, and if T € Ap(V) is such
that tr T* = 0 for all © > 1 then T s nilpotent.

Proof. Since T € Ap(V), T satisfies some minimal polynomial p(z) =
" 4+ o™t 4 ay; from T+ T o+ @y T+ a = 0,
taking traces of both sides yields

tr ™ 4oy tr T - 4 @y tr T + tra, = 0.

However, by assumption, tr T% = 0 for i > 1, thus we get tr oy, = 0; if
dim V = n, tr o = nom, whence na,, = 0. But the characteristic of F is 0;
therefore, n ¢ 0, whence it follows that a,, = 0. Since the constant term
of the minimal polynomial of 7' is 0, by Theorem 6.b 7 is singular and so 0
is a characteristic root of 7.
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We can consider T as a matrix in F,, and therefore also as a matrix in K s
where K is an extension of F' which in turn contains all the characteristic
roots of T. In Ky, by Theorem 6.j, we can bring T to triangular form, and
since 0 is a characteristic root of T, we can actually bring it to the form

0 0 ... 0
,32 a20.0

Br ay
where

T,

CGn

isan (n — 1) X (n — 1) matrix (the *’s indicate parts in which we are not
interested in the explicit entries). Now

)

ToF

T’°=(?——
*

hence 0 = tr T* = tr T,*. Thus T, is an (n — 1) X (n — 1) matrix with
the property that tr To* = 0 for all & > 1. Either using induction on 7, or
repeating the argument on T, used for T, we get, since a, ..., a, are the
characteristic roots of T's, that ap = - -+ = a, = 0. Thus when T is brought
to triangular form, all its entries on the main diagonal are 0, forcing T to
be nilpotent. (Prove!)

This lemma, though it might seem to be special, will serve us in good
stead often. We make immediate use of it to prove a result usually known
as the Jacobson lemma.

Lemma 6.17. If F is of characteristic 0 and if S and T, in Ap(V), are
such that ST — TS commutes with S, then ST — TS s nilpotent.

Proof. For any k > 1 we compute (ST — TS)®. Now (ST — TS)* =
(ST — TS)*Y(ST — TS) = (ST — TS)* 8T — (ST — TS)*'T8. Since
ST — TS commutes with S, the term (ST — TS8)*~'ST can be written in
the form S((ST — TS)*'T). If we let B = (ST — TS)*'T, we see that
(ST — TS)* = SB — BS; hence tr ((ST — TS)*) = tr (§B — BS) =
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tr (SB) — tr (BS) = 0 by Lemma 6.14. The previous lemma now tells us
that ST — TS must be nilpotent.

The trace provides us with an extremely useful linear functional on F,
(and so, on Ar(V)) into F. We now introduce an important mapping of
F, into itself.

DerintTioN. If A = («;;) € F, then the transpose of A, written as 4’,
is the matrix A’ = (v;;) where v;; = aj; for each 7 and j.

The transpose of A is the matrix obtained by interchanging the rows and
columns of A. The basic formal properties of the transpose are contained
in

LemMma 6.18. Forall A, B € F,,

(1) (4)" = 4;
(8) (A+B) = A"+ B';
(3) (AB)' = B'A/.

Proof. The proofs of parts (1) and (2) are straightforward and are left
to the reader; we content ourselves with proving part (3).
Suppose that 4 = (a;;) and B = (B;;); then AB = (\;;) where

n
Nij = D auBri.

k=1

Therefore, by definition, (AB)" = (u;), Where w,; = A\jy = D ajkBe. On
k=1

the other hand, A" = (y;) where v;; = a;; and B’ = (&;) where &; = Bj,

whence the (7,j) element of B’A’ is Z Einve; = Z Briajrx = Z akBri =
k=1 k=1 k=1
uij. That is, (AB)’ = B’A’ and we have verified part (3) of the lemma.

In part (3), if we specialize A = B we obtain (4%)’ = (4’)2. Continuing,
we obtain (4%)" = (4")* for all positive integers k. When A is invertible,
then (A71)" = (4")~L

There is a further property enjoyed by the transpose, namely, if A € F
then (\A)" = M4’ for all A € F,. Now, if A € F, satisfies a polynomial
opA™ + a; AT - .+ @, = 0, we obtain (agpd™ + -+ an)’ = 0" = 0.
Computing out (agd™ +-- -+ o)’ using the properties of the transpose,
we obtain ag(4")™ + a(A)™ ' + - -+ a, = 0, that is to say, A’ satisfies
any polynomial over F which is satisfied by 4. Since 4 = (4')’, by the
same token, A satisfies any polynomial over F which is satisfied by A4’.
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In particular, 4 and A" have the same minimal polynomial over 7 and so
they have the same characteristic roots. One can show each root oceurs with
the same multiplicity in 4 and A’. This is evident once it is established that
A and A’ are actually similar (see Problem 14).

DrrinrrioN. The matrix A is said to be a symmetric matriz if A’ = A.

DerFiNiTIoN. The matrix A is said to be a skew-symmetric mairiz if
A= —A.

When the characteristic of F is 2, since 1 = —1, we would not be able to
distinguish between symmetric and skew-symmetric matrices. We make the
flat assumption for the remainder of this section that the characteristic of F is
different from 2.

Ready ways for producing symmetric and skew-symmetric matrices are
available to us. For instance, if 4 is an arbitrary matrix, then 4 + A’ is
symmetric and 4 — A’ is skew-symmetric. Noting that 4 = 3(4 + 4) +
1(4 — A'), every matrix is a sum of a symmetric one and a skew-symmetric
one. This decomposition is unique (see Problem 19). Another method of
producing symmetric matrices is as follows; if A is an arbitrary matrix,
then both A4’ and 4'A are symmetric. (Note that these need not be equal.)

It is in the nature of a mathematician, once given an interesting concept
arising from a particular situation, to try to strip this concept away from
the particularity of its origins and to employ the key properties of the con-
cept as & means of abstracting it. We proceed to do this with the transpose.
We take, as the formal properties of greatest interest, those properties of
the transpose contained in the statement of Lemma 6.18 which asserts that
on F, the transpose defines an anti-automorphism of period 2. This leads us
to make the

DEerINITION. A mapping « from F,, into F, is called an adjoint on F, if

1) (4%* = 4;
(2) (A + B)* = A* + B¥;
(3) (AB)* = B*4*;

forall A, B&€ F,.

Note that we do not insist that (\A)* = AA* for A € F. In fact, in some
of the most interesting adjoints used, this is not the case. We discuss one
such now. Let F be the field of complex numbers; for 4 = (a;;) € Fa, let
A* = (y;;) where v;; = @;; the complex conjugate of aj;. In this case * is
usually called the Hermitian adjoint on F,. A few sections from now, we
shall make a fairly extensive study of matrices under the Hermitian ad] oiI}t.

Everything we said about transpose, e.g., symmetric, skew-symmetric,
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can be carried over to general adjoints, and we speak about elements sym-
metric under * (i.e., A* = A), skew-symmetric under *, etc. In the exercises
at the end, there are many examples and problems referring to general ad-
joints.

However, now as a diversion let us play a little with the Hermitian ad-
joint. We do not call anything we obtain a theorem, not because they are
not worthy of the title, but rather because we shall re-do them later (and
properly label them) from one central point of view.

So, let us suppose that F is the field of complex numbers and that the
adjoint, *, on F,, is the Hermitian adjoint. The matrix A is called Hermitian
if A* = A.

First remark: If A ¢ 0 € F,, then tr (AA4*) > 0. Second remark: As a
consequence of the first remark, if A;, ..., As€C Fyand if 4;4;*+44*+
coo4 ApAr* =0, then A; = Ay =---= A = 0. Third remark: If A
is a scalar matrix then A* = X, the complex conjugate of \.

Suppose that A € F, is Hermitian and that the complex number o« -+ 8z,
where o and 8 are real and 12 = —1, is a characteristic root of 4. Thus
A — (a + Bi) is not invertible; but then (4 — (e + B2))(4 — (a — B7)) =
(A — @)? + 6? is not invertible. However, if a matrix is singular, it must
annihilate a nonzero matrix (Theorem 6.b, Corollary 2). There must there-
fore be a matrix €' # 0 such that C((4 — @)% + %) = 0. We multiply this
from the right by C* and so obtain

1) C(4 — a)®C* + p2CC* = 0.

Let D=C(4d —a) and E =pBC. Since A*=A and o« is real,
C(A — a)?C* = DD*; since B is real, g°CC* = EE*. Thus equation (1)
becomes DD* + EE* = 0; by the remarks made above, this forces D = 0
and E = 0. We only exploit the relation £ = 0. Since 0 = E = BC and
since C #£ 0 we must have 8 = 0. What exactly have we proved? In fact,
we have proved the pretty (and important) result that if a complex number X
18 a characteristic root of a Hermatian matriz, then \ must be real. Exploiting
properties of the field of complex numbers, one can actually restate this as
follows: The characteristic roots of a Hermaitian matriz are all real.

We continue a little farther in this vein. For A € F,, let B = AA*; B
is a Hermitian matrix. If the real number « is a characteristic root of B,
can « be an arbitrary real number or must it be restricted in some way?
Indeed, we claim that « must be nonnegative. For if & were negative then
o = —p% where 8is areal number. But then B — a = B+ 2 = A4 *+ B2
is not invertible, whence there is a C # 0 such that C(44* + %) = 0.
Multiplying by C* from the right and arguing as before, we obtain 8 = 0, a
contradiction. We have shown that any real characteristic root of A4 * must
be nonnegative. In actuality, the “real” in this statement is superfluous and
we could state: For any A € F, all the characteristic roots of A4 * are non-
negative.
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PROBLEMS

1;4Prove that tr (A + B) = tr A + tr B and that for A € F,tr ZA) =
AMr A,
2. (a) Using a trace argument, prove that if the characteristic of F is 0
then it is impossible to find 4, B € F, such that AB — BA = 1.
(b) In part (a), prove, in fact, that 1 — (AB — BA) cannot be nil-
potent.
8. (a) Let fbe a function defined on F, having its values in 7 such that:
(1) f(4 + B) = f(4) + f(B),
2) f(A4) = M(4),
(3) f(AB) = f(BA),
forall A, B € F, and all \ € F. Prove that there is an element
ag € F such that f(4) = a; tr A for every 4 in F,.
(b) If the characteristic of # is 0 and if the f in part (a) satisfies the
additional property that f(1) = n, prove that f(4) = tr 4 for
allA € F,.
Note that Problem 3 characterizes the trace function.
*4. (a) If the field F has an infinite number of elements, prove that every
element in 7, can be written as the sum of regular matrices.
(b) If F has an infinite number of elements and if f, defined on F, and
having its values in F, satisfies
(1) f(4 + B) = f(4) + f(B),
(@) f(A4) = N(4),
(3) f(BAB™) = f(4),
for every A € F,, A\ € F and invertible element B in F,, prove
that f(4) = ap tr A for a particular oy € F and all A € F,.
6. Prove the Jacobson lemma for elements A, B in F,, if n is less than
the characteristic of F.

6. (a) If C € F,, define the mapping d¢ on F, by de(X) = XC — CX
for X € F,. Prove that do(XY) = (do(X))Y + X(de(Y)).
(Does this remind you of the derivative?)

(b) Using part (a), prove that if AB — BA commutes with 4,
then for any polynomial ¢(z) € Flz], ¢(4)B — Bg(4) =
¢ (A)(AB — BA), where ¢’ (z) is the derivative of g(z).

*7. Use part (b) of Problem 6 to give a proof of the Jacobson lemma.
(Hint: Let p(x) be the minimal polynomial for A and consider 0 =
p(4)B — Bp(4).)

8. (a) If A is a triangular matrix, prove that the entries on the diagonal
of A are exactly all the characteristic roots of A.

(b) If A is triangular and the elements on its main diagonal are 0,
prove that A is nilpotent.

9. For any A, BE F, and \ € F prove that (4") = 4, (A + B)' =

A"+ B"and (\4)" = 24",
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10. If A is invertible, prove that (A7)’ = (4"~

11. If A is skew-symmetric, prove that the elements on its main diagonal
are all 0.

12. If A and B are symmetric matrices, prove that AB is symmetric if
and only if AB = BA.

13. Give an example of an A4 such that A4’ = A’A.

*14. Show that A and A’ are similar.

15. The symmetric elements in F,, form a vector space; find its dimension
and exhibit a basis for it.

*16. In F, let S denote the set of symmetric elements; prove that the sub-
ring of F, generated by S is all of F,.

*17, If the characteristic of F is 0 and 4 € F, has trace 0 (tr 4 = 0)
prove that there is a C € F, such that CAC™ has only 0’s on its main
diagonal.

*18. If F is of characteristic 0 and A € F,, has trace 0, prove that there
exist B, C € F, such that 4 = BC — CB. (Hint: First step, assume, by
result of Problem 17, that all the diagonal elements of 4 are 0.)

19. (a) If * is any adjoint on F,, let S = {4 € F,|A* = A} and let

K={A€F,|A* = —A}. Prove that S+ K = F,.
(M) If A € Foand A = B + C where B € Sand C € K, prove that
B and C are unique and determine them.
20. (a) If A, B € S prove that AB 4+ BA € S.
(b) If A, B &€ K prove that AB — B4 € K.
(¢c) If A € Sand B € K prove that AB — BA € S and that AB 4+
BA € K.

21. If ¢ is an automorphism of the field F we define the mapping &
on F, by: If A = (a;;) then ®(4) = (¢(a;;)). Prove that (4 + B) =
®(4) + ®(B) and that #(4B) = $(4)®(B) forall 4, B € F,.

22. If * and ® define two adjoints on F,, prove that the mapping
YA — (A% ® for every A € F, satisfies ¢(4 + B) = ¢(4) + ¢(B) and
Y(AB) = Y(A)Y(B) for every A, B € F,.

23. If  is any adjoint on F,, and X is a scalar matrix in F,,, prove that \*
must also be a scalar matrix.

*24. Suppose we know the following theorem: If ¢ is an automorphism
of F,, (i.e., ¥ maps F, onto itself in such a way that y(4 + B) = ¢(4) +
¥(B) and ¢(4B) = ¢(A4)y(B)) such that ¥(\) = A for every scalar matrix A,
then there is an element P € F, such that y(4) = PAP™* for every
A € F,. On the basis of this theorem, prove: If = is an adjoint of F,, such
that A* = A for every scalar matrix \ then there exists a matrix P € F,
such that A* = PA’P~ for every A € F,. Moreover, P~*P’ must be a
scalar.

25. If P € F, issuch that P~1P’ 5 0 is a scalar, prove that the mapping
defined by 4* = PA’P™! is an adjoint on F,.

*26. Assuming the theorem about automorphisms stated in Problem 24,
prove the following: If * is an adjoint on F,, there is an automorphism ¢ of
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F of period 2 and an element P € F, such that 4* = P(3(4))’P~" for all
A € Fy, (for notation, see Problem 21). Moreover, P must satisfy P-ly(p)’
is a scalar.

Problems 24 and 26 indicate that a general adjoint on F, is not so far
removed from the transpose as one would have guessed at first glance.

**97. If  is an automorphism of F,, such that ¢(\) = A for all scalars, prove
that there is & P € F, such that ¥(4) = PAP™ for every 4 € F,,.

In the remainder of the problems, F will be the field of complex numbers and
* the Hermitian adjoint on F,.

28. If A € F, prove that there are unique Hermitian matrices B and C
such that A = B +1C (2 = —1).

29. Prove that tr AA* > 0if 4 0.

30. By directly computing the matrix entries, prove that if A;4,* +---
+ Apdr* =0,then 4; = 4, =---= 4; = 0.

31. If Aisin F, and if BAA* = 0, prove that B4 = 0.

32. If A in F,, is Hermitian and BA* = 0, prove that BA = 0.

*33. If A € F, is Hermitian and if A, p are two distinct (real) characteris-
tic roots of A and if C(4 — A) = 0 and D(A — x) = 0, prove that CD =
DC = 0. (Hint: First consider the case when C and D are Hermitian and
then invoke the result of Problem 31.)

*34. (a) Assuming that all the characteristic roots of the Hermitian
matrix 4 are in the field of complex numbers, combining the
results of Problems 32, 33, and the fact that the roots, then, must
all be real and the result of the corollary to Theorem 6.n, prove
that 4 can be brought to diagonal form; that is, there is a matrix
P such that PAP™" is diagonal.

(b) In part (a) prove that P could be chosen so that PP* = 1.
35. Let V, = {A € F,|AA* = 1}. Prove that V, is a group under
matrix multiplication.
36. If A commutes with A4* — A*4 prove that AA* = A*A.

9. Determinants. The trace defines an important and useful function
from the matrix ring F, (and from Ar(V)) into F; its properties concern
themselves, for the most part, with additive properties of matrices. We
now shall introduce the even more important function, known as the de-
terminant, which maps F, into F. Its properties are closely tied to the
multiplicative properties of matrices.

Aside from its effectiveness as a tool in proving theorems, the determinant
is valuable in “practical” ways. Given a matrix 7', in terms of explicit de-
terminants we can construct a concrete polynomial whose roots are the
characteristic roots of 7': even more, the multiplicity of a root of this poly-
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nomial corresponds to its multiplicity as a characteristic root of 7. In fact,
the characteristic polynomial of 7, defined earlier, can be exhibited as this
explicit, determinantal polynomial.

Determinants also play a key role in the solution of systems of linear
equations. It is from this direction that we shall motivate their definition.

There are many ways to develop the theory of determinants, some very
elegant and some deadly and ugly. We have chosen a way that is at neither
of these extremes, but which for us has the advantage that we can reach the
results needed for our discussion of linear transformations as quickly as
possible.

In what follows F will be an arbitrary field, F, the ring of n X n matrices
over F, and F™ the vector space of n-tuples over F. By a matrix we shall
tacitly understand an element in F,. As usual, Greek letters will indicate
elements of F' (unless otherwise defined).

Consider the system of equations:

a11%; + @192 = By
a91%; + oy = PBa.

We ask: Under what conditions on the a,; can we solve for z;, zs given
arbitrary 81, B2? Equivalently, given the matrix

A= <0411 O£12)’
Qg1 Qg
when does this map F® onto itself?
Proceeding as in high school, we eliminate z; between the two equations;

the eriterion for solvability then turns out to be a1y — ajzan; # 0.
We now try the system of three linear equations

1% + aia®s + 1373 = By
ag1®1 -+ agey + pzr3 = B
ag1®1 + aze®s + azarz = fs,

and again ask for conditions for solvability given arbitrary Bi, B2, Bs.
Eliminating z; between these two-at-a-time, and then z; from the resulting
two equations leads us to the criterion for solvability that

0100033 + ooz + uzpiags — Qiacig1aig3
— ayiongage — apgageas; # 0.

Using these two as models (and with the hindsight that all this will work)
we shall make the broad jump to the general case and shall define the de-
terminant of an arbitrary n X n matrix over F. But first a little notation!

Let S, be the symmetric group of degree n; we consider elements in S,
to be acting on the set {1, 2, ..., n}. For ¢ € 8, ¢(¢) will denote the image
of 7 under o. (We switch notation, writing the permutation as acting from
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the left rather than, as previously, from the right. We do so to facilitate
writing subscripts.) The symbol (—1) for ¢ € 8, will mean +1if risan
even permutation and —1 if o is an odd permutation.

DeriNiTioN. If 4 = (a;;) then the determinant of A, written det 4, is the

element D (—1)°a10(1)220(2) - - - Gnocny in F.
oSy

We shall at times use the notation

(23 N S )

Qnl eee  Oppy

for the determinant of the matrix

a1 ces O1p

[ 7% cee [0 2707%

Note that the determinant of a matrix 4 is the sum (neglecting, for the
moment, signs) of all possible products of entries of 4, one entry taken
from each row and column of A. In general, it is a messy job to expand the
determinant of a matrix—after all there are n! terms in the expansion—but
for at least one type of matrix we can do this expansion visually, namely,

Lemma 6.19. The determinant of a triangular matriz is the product of tts
entries on the main diagonal.

Proof. Being triangular implies two possibilities, namely, either all the
elements above the main diagonal are 0 or all the elements below the main
diagonal are 0. We prove the result for 4 of the form

a1l 0 ... 0

22

Unn

and indicate the slight change in argument for the other kind of triangular
matrices.

Since a;; = 0 unless ¢ = 1, in the expansion of det A the only nonzero
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contribution comes in those terms where ¢(1) = 1. Thus, since ¢ is a permu-
tation, ¢(2) = 1; however, if ¢(2) > 2, ags2) = 0, thus to get a nonzero
contribution to det 4, ¢(2) = 2. Continuing in this way, we must have
o(i) = 4 for all 4, which is to say, in the expansion of det A the only nonzero
term arises when ¢ is the identity element of S,. Hence the sum of the n!
terms reduces to just one term, namely, ooz ... s, Which is the con-
tention of the lemma.

If A is lower triangular we start at the opposite end, proving that for a
nonzero contribution ¢(n) = n, then o(n — 1) = n — 1, ete.

Some special cases are of interest:

1) If
(1 \
A =
An
is diagonal, det 4 = M2 ... A
2) If
@ )
1
A = ’
1
the identity matrix, then det 4 = 1.
3) If
@) \
A
A= )
A

the scalar matrix, then det A = A™.

Note also that if @ row (or column) of a matriz consists of 0’s then the de-
terminant s 0 for each term of the expansion of the determinant would be a
product in which one element, at least, is 0, hence each term is 0.

Given the matrix 4 = (a;;) in F, we can consider its first row v; =
(@11, @19, - - -, @12) 88 & Vector in F™ ; similarly, for its second row, v, and the
others. We then can consider det A as a function of the n vectors vy, ..., V.
Many results are most succinctly stated in these terms so we shall often
consider det 4 = d(vy, ..., v,); in this the notation is always meant to imply
that v; is the first row, v, the second, and so on, of A.
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One further remark: Although we are working over a field, we could just
as easily assume that we are working over a commutative ring, except in
the obvious places where we divide by elements. This remark will only
enter when we discuss determinants of matrices having polynomial entries,
a little later in the section.

Lemma 6.20. If ACF, and v F then d(vy, ..., Vi1, Y0i, Vsp1y « vy V) =
YA@1, « oy Vie1y Vs Vipdy -« -y Un)e

Note that the lemma says that if all the elements in one row of 4 are

multiplied by a fixed element v in F then the determinant of 4 is itself
multiplied by .

Proof. Since only the entries in the 7th row are changed, the expansion of
A1y « -« vy Valy YVss Viply « « oy Up) 18

Z (—1)0‘116(1) e ai—l,a’(’i—l)('yazo'(i))ai+1,a'(z‘+1) <« Qng(n);
a& Sy

since this equals vy Z (=1)%a15(n1) -+ Co@) - - - o), it does indeed
o€ Sy

equal yd(vy, . . ., vn).

Lemma 6.21. d(vy, ..., iy, Vs Vsgny ooy Un) + A1, oy Ve, Ui, Vot
cey Un) =AWy o e, Vg, Uy Uy Uiy, -, ).

Before proving the result, let us see what it says and what it does not say.
It does not say that det A + det B = det (4 + B); this is false as is mani-

fest in the example
(1 0 00
(D ()
00 0 1

where det A = det B = 0 while det (4 + B) = 1. It does say that if A and
B are matrices equal everywhere but in the sth row then the new matrix
obtained from 4 and B by using all the rows of A except the ith, and using
as 7th row the sum of the ith row of 4 and the ¢th row of B, has a deter-
minant equal to det 4 4 det B. If

1 2
=G )
3 4
11
()
3 4
then

2 3
det A = —2, detB =1, det(3 4:)=—-1=de1JA~}-de1sB.

and
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Proof. If vV = (an, ...,aln), veey U= (aﬂ, ...,Ol.in), ceey Uy =
(Qn1, + - -y onn) and if u; = (Bs, ..., Bin), then

d(vl, ceay Upy, Ug + Uiy Vi1y « o vy ‘I)n)

= > (=1%o « - @i1,06—1)(@ir) T+ Bic())®id1,0(i41) + -+ Ono(n)
o€ Sp,

= > (=1)a101) -+ Fimi,0(im1)ic(i) -+ + Cno(n)
a&_8Sp,

+ 2 (=D 10q) « -+ Hit,o—DBic(@) + -+ Fnaln)
o€.Sy

=AW, e ey Vi V) F AW1y <oy Usy ooty V)

The properties embodied in Lemmas 6.19, 6.20, and 6.21, along with that
in the next lemma, can be shown to characterize the determinant function
(see Problem 13, end of this section). Thus, the formal property exhibited
in the next lemma is basic in the theory of determinants.

Lemma 6.22. If two rows of A are equal (that is, v, = v, for r 5% s), then
det 4 = 0.

Proof. Let A = (a;;) and suppose that for some r, s where r 5 s, oy =
as; for all 5. Consider the expansion

detA = Z (—1)"051‘1(1) oo Opg(r) o+ Qsa(s) »»+ Ang(n).
aCsn

In the expansion we pair the terms as follows: For ¢ € S,, we pair the term
(-—1)“0&17(1) oo Opg(n) with the term (-——l)walwu) « oo Qprg(n) where 7 is
the transposition (¢(r), o(s)). Since  is a transposition and 72 = 1, this indeed
gives us a pairing. However, since a,.(-) = ass(r), by assumption, and
Qge(ry = Olgrg(s)y W€ have that Qrg(r) = Olgrg(s)- Similarly, Qsor(s) = Oprg(r)-
On the other hand, for ¢ = r and 7 s, since re(4) = ¢(2), @) = ira(s)-
Thus the terms ayo(1) - .. Gno(n) 0d Q1re(1) + -« Xnre(ny are equal. The first
occurs with the sign (—1)” and the second with the sign (—1)™ in the ex-
pansion of det A. Since 7 is a transposition and so an odd permutation,
(—1)™ = —(—1)°. Therefore in the pairing, the paired terms cancel each
other out in the sum, whence det A = 0. (The proof does not depend on the

characteristic of F' and holds equally well even in the case of characteristic
2.)

From the results so far obtained we can determine the effect, on a de-
terminant of a given matrix, of a given permutation of its rows.
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Lemma 6.23. Interchanging two rows of A changes the sign of its deter-
minant.

Proof. Since two rows are equal, by Lemma 6.22, d(vy, ..., Vi1, U7 + vj,
Vigly ++oy Vj—1,0i + V), V41, ..., vy) = 0. Using Lemma 6.21 several
times, we can expand this to obtain d(vy, ..., 0,4, v ..., 051,05, ..., 0,) +
d(vly ceny Uiy Vjy ooy U1y U4y ovuy vn) + d(ula vy Uity Ugy wony Vi,
Viy v Vn) + @01, ooy 051, oo, 050, 0, ..., v,) = 0. However, each
of the last two terms hasin it two equal rows, whence, by Lemma 6.22, each is
0. The above relation then reduces to d(vy, . .., v;_1, %4 « .., Vj_1,0j, - ., %)
+d(vy, ..., Vi1, Y5, oou, Y1, Ui ..., v,) = O, which is precisely the
assertion of the lemma.

CoroLLARY. If the matriz B is obtained from A by a permutation of the
rows of A then det A = det B, the sign being +1 if the permutation is
even, — 1 if the permutation s odd.

We are now in a position to collect pieces to prove the basic algebraic
property of the determinant function, namely, that it preserves products.
As a homomorphism of the multiplicative structure of F, into F the de-
minant will acquire certain important charateristics.

TrEEOREM 6.1. For A, B € F,, det (4B) = (det 4) (det B).

Proof. Let A = (a;;) and B = (B;5); let the rows of B be the vectors
Uy, Ug, - - ., Upn. We introduce the n vectors wy, ..., w, as follows:

Wy = Uy + eglg -t Qrnlia,
Wo = ag1Uq -+ ooUg 4.4 Qonlln, « oy W = Qp1lUy 4o appln.

Consider d(wy, ..., w,); expanding this out and making many uses of
Lemmas 6.20 and 6.21, we obtain

d(wiy ..oy W) = Z N UL UREE Ctnin@ (Ugyy Uigy « + 5 Ui)
Uy Wy e s or In
In this multiple sum 4y, ..., 4, run independently from 1 to n. However, if
any two 4, = 1, then w, = u;, Whence d(Uy, .. ., Uiy « oy Uiy - o vy Usy) =0
by Lemma 6.22. In other words, the only terms in the sum that may give a
nonzero contribution are those for which all of 4y, 23, ..., % are distinet,
that is for which the mapping

1 2 ... n
L
2 29 «.. 1Un

is a permutation of 1, 2, ..., 7. Also any such permutation is possible.
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Finally note that by the corollary to Lemma 6.23, when

(1 2 ... n)

U = . .

21 g ... Ty

is a permutation, then d(u,, Uy, ..., %,) = (—1)7d(us, ..., %) =

(—1)° det B. Thus we get
d(wl, eeny wn) = E Qlo(l) « - - ana(n)(-— l)d det B

O'CSn
= (det .B) Z (—l)aalg(l) . oo Qno(n)
o Sp
= (det B) (det A4).
We now wish to identify d(wy, ..., w,) as det (4.B). However, since w; =
a0+ dnle,
We = og1Uy + -+ @onlUn, «+ vy Wa = Op1ly + -+t onaln

we get that d(ws, ..., w,) is det C where the first row of C is wy, the second
is ws, ete.
However if we write out w;, in terms of coordinates we obtain
wy = U + -+ e = a11(B11, P12, - - -5 Bin)
+t aln(Bnl; ey Bnn)
= (a11f11 + @12B821 + -+ 1br1, 11812 +- - -
+ a1nBng, - -+ @11B1n T - - F @1nBan)

which is the first row of AB. Similarly ws is the second row of 4B, and so
for the other rows. Thus C = AB. Since det (AB) =det C =d(wy, ..., w,) =
(det 4)(det B), we have proved the theorem.

CoroLLARY 1. If A is invertible then det A 0 and det (A7) =
(det A)~1.

Proof. Since AA™! =1, det (A4™") = det 1 = 1. Thus by the theorem,
1=det (AA™) = (det A)(det A™?). This relation then states that

det A > 0 and det 47! =

det 4~

CoroLLARY 2. If A is wnvertible then for all B, det (ABA™) = det B.

Proof. Using the theorem, as applied to (AB)A ™!, we get det ((AB)A™") =
det (AB) det (4" = det A det B det (4™). Invoking Corollary 1, we
reduce this further to det B. Thus det (ABA™") = det B.

Corollary 2 allows us to define the determinant of a linear transformation.
For, let T &€ A(V) and let m;(T) be the matrix of T in some basis of V.
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Given another basis, if my(T) is the matrix of T in this second basis, then
by Theorem 6.h, m»(T) = Cmy(T)C!, whence det (mo(T)) = det (my(T))
by Corollary 2 above. That is, the matrix of T in any basis has the same
determinant. Thus the definition: det T = det m;(T) s in fact independent
of the basis and provides A (V) with a determinant function.

In one of the earlier problems, it was the aim of the problem to prove that
A’, the transpose of 4, is similar to A. Were this so (and it is), then A’ and
A by Corollary 2 above would have the same determinant. Thus we should
not be surprised that we can give a direct proof of this fact.

Lemma 6.24. det A = det (4).

Proof. Let A = (a,;) and A’ = (B,,); of course, 8,, = a,,. Now

det 4 = é (—-l)”ala(l) «os Opg(n)
while "
det 4= Z (_1)dﬂlo'(1) .o ﬂno-(n) = Z (——l)aad(l)l e oo Co(n)n.
o€ 8n o8
However, the term (—1)%ap(1)1 - - . tg(mynisequalto (—1)%ayo=1(1) - - « Ang=1(n)-
(Prove!) But ¢ and ¢~ are of the same parity, that is, if ¢ is odd, then so
is 0!, whereas if ¢ is even then ¢ is even. Thus

=1
(—l)calo-—l(l) cee Qpe—lin) = (—1)” Q1g-1(1) - - - Cno~l(n).
Finally as ¢ runs over S, then ¢~ runs over S,. Thus
-1
det A = Z (—l)a ®Lg=1(1) + « « Ong=1(n)
U_‘Csn

= E (_l)dala(l) s oo Qug(n)
o Sy

= det 4.

In light of Lemma 6.24, interchanging the rows and columns of a matrix
does not change its determinant. But then Lemma 6.20, 6.21, 6.22, and 6.23,
which held for operations with rows of the matriz, hold equally for the columns
of the same matriz.

We make immediate use of the remark to derive Cramer’s rule for solving
a system of linear equations.

Given the system of linear equations

o121+ o+ a®n = B1

an1®y + -t dnnn = Bn,

wecall A = (a,,) the matrix of the system and A = det A the determinant of
the system.
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Suppose that A 7 0; that is,

[35] cee 55073

Opl ... Onn
By Lemma 6.20 (as modified for columns instead of rows),

11 ce. QI ... Oip
xiA=

(s 7% 1 cee QpiZi; ... COpg

However, as a consequence of Lemmas 6.21, 6.22, we can add any multiple
of a column to another without changing the determinant (see Problem 5).
Add to the 7th column of z;A, z; times the first column, z, times the second,
..., z; times the jth column (for j # ¢). Thus

o1 ... a1,i1 (1% + ares o @) 1,041 ... Qn
x:A =

Qnl -« Onyie1 (@n1ZT1 FangZat o + onnls) an, i1 oo Qnn

and using az;z; + -« -+ ognn = Br, We finally see that

@y ... @i Bro@r il ... Qe
A = = A;, say.
Qln  vev Qni—1 Pn Qn, i+l +.. Onn
Hence, z; = % . This is

TuaeorEM 6.0 (CraMER'S RULE). If the determinant, A, of the system
of linear equations

o1y + 0 oy = B1

11 + -t Ay, = Bn

18 different from 0, then the solution of the system is given by x; = éAf , Where

A; vs the determinant obtained from A by replacing in A the ith column by

Bl: 62: sy B’n
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Example. The system
Ty + 2x2 + 323 = —5

20 + 2o+ 33 = =7
21+ x4+ 23=0
has determinant
1 2 38
A=12 1 1|=1%0,
1 11
hence
-5 2 3 1 -5 3 1 2 -5
xl—'—7111x22—71'$3=21-7
01 1 1 01 11 0
A A A

We can interrelate invertibility of a matrix (or linear transformation)
with the value of its determinant. Thus the determinant provides us with a
criterion for invertibility.

THEOREM 6.v. A s tnvertible if and only if det 4 = 0.

Proof. If A is invertible, we have seen, in Corollary 1 to Theorem 6.t, that
det A = 0.

Suppose, on the other hand, that det 4 » 0 where 4 = (a;;). By Cramer’s
rule we can solve the system

1%y + - anta = B4

a1+t Wun®n = B

for z,, ..., z, given arbitrary By, ..., B Thus, as a linear transformation
on F™ A’ is onto; in fact the vector (8y, ..., B») is the image under A’ of

A A .. . .
<-Z1 s ey f) . Being onto, by Theorem 6.d, A’ is invertible, hence A is

invertible (Prove!).

We can see Theorem 6.v from an alternate, and possibly more interesting,
point of view. Given A € F, we can embed it in K, where K is an extension
of F chosen so that in K,, 4 can be brought to triangular form. Thus there
is a B € K, such that

N0 ... 0
A

BAB™! = . N

A
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here A4, ..., M, are all the characteristic roots of 4, each occurring as often
as its multiplicity as a characteristic root of A. Thus det A = det(BAB™) =
M A2 ... A, by Lemma 6.19. However, A is invertible if and only if none
of its characteristic roots is 0; but det A # 0if and only if My Ay ... Ap 520,
that is to say, if no characteristic root of A is 0. Thus A is invertible if and
only if det 4 = 0.

This alternate argument has some advantages, for in carrying it out we
actually proved a subresult interesting in its own right, namely,

Lemma 6.25. det A is the product, counting multiplicities, of the charac-
teristic roots of A.

DerintrioN. Given A € F,, the secular equation of A is the polynomial
det (x — A) in F[z].

Usually what we have called the secular equation of A is called the
characteristic polynomial of 4. However, we have already defined the
characteristic polynomial of A to be the product of its elementary divisors.
It is a fact (see Problem 8) that the characteristic polynomial of A equals its
secular equation, but since we did not want to develop this explicitly in the
text, we have introduced the term secular equation.

Let us compute an example. If

1= o)
=a-()-G o) -G )

bhence det (z — 4) = (x — 1)z ~ (—2)(—3) = 2 — x — 6. Thus the
secular equation of
G o)
30
isa? —x — 6.

A few remarks about the secular equation: If \ is a root of det (x — 4),
then det (\ — 4) = 0; hence by Theorem 6.v, A — 4 is not invertible.
Thus X is a characteristic root of A. Conversely, if ) is a characteristic root
of A, A — A is not invertible, whence det (\ — A) = 0 and so X is a root
of det (z — A). Thus the explicit, computable polynomial, the secular
equation of 4, provides us with a polynomial whose roots are exactly the charac-
teristic roots of A. We want to go one step further and to argue that a given

root enters as a root of the secular equation precisely as often as it has multi-
plicity as a characteristic root of A. For if \; is the characteristic root of A

then
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with multiplicity m;, we can bring 4 to triangular form so that

M 0 - 0
A
A2
BAB™! =
Ao

*

Ak 0
N

where each X\; appears on the diagonal m; times. But
Bz — A)B™' =2z — BAB™! =
r — )\1 0 e 0

x——)\1

x->\2

x—)\z

x—)\k

x—kk

sodet (z — 4) = det (B(zx — A)B™Y) = (z — M)™(x — N)™.. .(:c_ - )\k?""‘,
and so each \;, whose multiplicity as a characteristic root of Aism;isa
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root of the polynomial det (x — A) of multiplicity exactly m;. We have
proved

TueoreMm 6.w. The characteristic roots of A are the roots, with the correct
multiplicity, of the secular equation, det (x — 4), of A.

‘We finish the section with the significant and historic Cayley-Hamilton
Theorem.

TusorEM 6.x. Every A € F, satisfies its secular equation.

Proof. Given any invertible B € K, for any extension K of F, A € F and
BAB™! satisfy the same polynomials. Also, since det (zx — BAB™') =
det (B(x — A)B™) = det (r — A), BAB™! and A have the same secular
equation. If we can show that some BAB™ satisfies its secular equation,
then it will follow that A does. But we can pick K D F and B € K, s0
that BAB™! is triangular; in that case we have seen long ago (Theorem 6.k)
that a triangular matrix satisfies its secular equation. Thus the theorem is
proved.

PROBLEMS

1. If F is the field of complex numbers, evaluate the following deter-
minants:

5 6 8 -1
1 ) L 23 4 3 0 0
(2
a - (b)(4 5 6 c .
@ 2—-1 3 ®) © 10 12 16 -2
7 89
1 2 3 4.
2. For what characteristics of F' are the following determinants 0:
1 230
3 4 5
(a.)321 ?®m |4 5 3|7
111 '
5 3 4
2 4 5 6

3. If A is a matrix with integer entries such that A~ is also a matrix
with integer entries, what can the values of det A possibly be?
4. Prove that if you add the multiple of one row to another you do not
change the value of the determinant.
*B. Given the matrix 4 = (ay;) let A;; be the matrix obtained from A by
removing the 7th row and jth column. Let M;; = ( —1)** det 4;;. M is
called the cofactor of ay;. Prove that det A = oM, + -+ - + a;,M,,.
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6. (a) If 4 and B are square submatrices, prove that

A C
det <0 B) = (det 4A)(det B).

(b) Generalize part (a) to

Ay
4z
det " )

0 Ar
where each 4, is a square submatrix.

7. If C(f) is the companion matrix of the polynomial f(z), prove that
the secular equation of C(f) is f(z).

8. Using Problems 6 and 7, prove that the secular equation of 4 is its
characteristic polynomial. (See Section 7; this proves the remark made
earlier that the roots of pr(z) oceur with multiplicities equal to their multi-
plicities as characteristic roots of T.)

9. Using Problem &, give an alternate proof of the Cayley-Hamilton
Theorem.

10. If F is the field of rational numbers, compute the secular equation,
characteristic roots, and their multiplicities, of

0100 4 111
123
()0001 (b)224()1411
a - (C
1000 11 41
3 47
0010 1114

11. For each matrix in Problem 10 verify by direct matrix computation
that it satisfies its secular equation.

*12. If the rank of A4 is r prove that there is a square » X r submatrix of
A of determinant different from 0, and if » < =, that there isno (r + 1) X
(r + 1) submatrix of A with this property.

*13. Let f be a function on 7 variables from F™ to F such that:

@) fvy, ...,vn) =0 for v; =v; € F™ for 7 5 j.

®) F1, ...y QWi ooy Un) = af V1, ..., vn) for each ¢ and a € F.

©) flvg, « vy V5 Uiy Vigty oo vy V) = FO1, ooy Vi1, Viy Vi oo oy Vn)
+ f(vli coey Uiy Uy Vigly o oy Un).

(d) fey, . ..,en) =1, where ¢; = (1,0, ...,0), e = (0,1,0,...,0),
e, en=(0,0,...,0,1).



294 LINEAR TRANSFORMATIONS CH. 6

Prove that f(vy, ..., v,) = det A for any A € F,, where v, is the first row
of A, v, the second, ete.
14. Use Problem 13 to prove that det A’ = det 4.
15. (a) Prove that AB and BA have the same secular (characteristic)
equation.
(b) Give an example where AB and BA do not have the same minimal
polynomial.
16. If A is triangular prove by a direct computation that A satisfies its
secular equation.
17. Use Cramer’s rule to compute the solutions, in the real field, of the

systems:
@z+ytez=1 M) z+y+etw=1
22+ 3y +4=1 z2+2y+3+4w=0
z—y—z=0. z+y+4e+Sw=1

z+y+ 52+ 6w=0.

18. (a) Let GL(n, F) be the set of all elements in F,, whose determinant
is different from 0. Prove GL(n, F) is a group under matrix
multiplication.

) Let D(n, F) = {A € GL(n, F)|det A = 1}. Prove that D(n, F)
is a normal subgroup of GL(n, F).

(¢) Prove that GL(n, F)/D(n, F) is isomorphic to the group of non-
zero elements of F under multiplication.

19. If K be an extension field of F, let E(n, K, F) = {A € GL(n, K)|

det A € F}.
(a) Prove that E(n, K, F) is a normal subgroup of GL(n, K).
*(b) Determine GL(n, K)/E(n, K, F).
*20. If F is the field of rational numbers, prove that when N is a normal
subgroup of D(2, F) then either N = D(2, F) or N consists only of scalar
matrices.

10. Hermitian, Unitary, and Normal Transformations. In our previous
considerations about linear transformations, the specific nature of the field
F has played a relatively insignificant role. When it did make itself felt it
was usually in regard to the presence or absence of characteristic roots.
Now, for the first time, we shall restrict the field F—generally it will be the
field of complex numbers but at times it may be the field of real numbers—
and we shall make heavy use of the properties of real and complex numbers.
Unless explicitly stated otherwise, in all of this section F will denote the field of
complex numbers.

We shall also be making extensive and constant use of the notions and
results of Section 4, Chapter 4, about inner product spaces. The reader
would be well-advised to review and to thoroughly digest that material
before proceeding.
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One further remark about the complex numbers: Until now we have
managed to avoid using results that were not proved in the book. Now,
however, we are forced to deviate from this policy and to call on a basic
fact about the field of complex numbers, often known as “the fundamental
theorem of algebra,” without establishing it ourselves. It displeases us to
pull such a basic result out of the air, to state it as a fact, and then to make
use of it. Unfortunately, it is essential for what follows and to digress to
prove it here would take us too far afield. We hope that the majority of
readers will have seen it proved in a course on complex variable theory.

Facr 1. A polynomial with coefficients which are compler numbers has all
1ts roots in the complex field.

Equivalently, Fact 1 can be stated in the form that the only nonconstant
irreducible polynomials over the field of complex numbers are those of
degree 1.

Fact 2. The only irreducible, nonconstant, polynomials over the field of
real numbers are either of degree 1 or of degree 2.

The formula for the roots of a quadratic equation allows us to prove easily
the equivalence of Facts 1 and 2.

The immediate implication, for us, of Fact 1 will be that every linear
transformation which we shall consider will have all its characteristic roots in
the field of complex numbers.

In what follows, V will be a finite-dimensional inner-product space over
F, the field of complex numbers; the inner product of two elements of V'
will be written, as it was before, as (v, w).

Lemma 6.26. If T € A(V) 1s such that (WT,v) = 0 for all v € V then
T =0.

Proof. Since (0T, v) = 0for v € V, givenw, w € V, ((u +w)T, u + w) = 0.
Expanding this out and making use of (uT, u) = (wT, w) = 0, we obtain
1) T, w) + WwT,u) = 0forallu, w V.

Since equation (1) holds for arbitrary w in V, it still must hold if we re-
place in it w by 7w where 12 = —1; but (uT, @w) = —i(uT, w) Whereas
((Gw)T, w) = i(wT, u). Substituting these values in (1) and canceling out ¢
leads us to

(2) — T, w) + wT,u) =0.
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Adding (1) and (2) we get (wT,u) = 0 for all u, w € V, whence, in
particular, (wT, wT) = 0. By the defining properties of an inner-product
space, this forces wT = 0 for all w € V, hence T' = 0. (Note: if V is an
inner-product space over the real field, the lemma may be false. For ex-
ample, let V = {(e, B) |, B real}, where the inner-product is the dot prod-
uct. Let T be the linear transformation sending (o, 8) into (—8, «). A simple
check shows that (WT,v) = 0 forallv € V, yet T £ 0.)

DzeriniTioN. The linear transformation T' € A(V) is said to be unitary
if (uT,vT) = (u,v) forall u, v € V.

A unitary transformation is one which preserves all the structure of V,
its addition, its multiplication by scalars and ¢ts inner product. Note that a
unitary transformation preserves length for

ol = V@)=Vl = |T]

Is the converse true? The answer is provided us in
Lemma 6.27. If 0T, vT) = (v,v) for all v € V then T is unitary.

Proof. The proof is in the spirit of that of Lemma 6.26. Let , v € V; by
assumption ((u + )T, (u +v)T) = (u + v, w + v). Expanding this out
and simplifying, we obtain

1) @T,oT) + T, uT) = (u,v) + (@, w),
for u,v € V. In (1) replace v by %; computing the necessary parts, this yields
@) —@T,oT) + T, uT) = —(u,v) + v, w).

Adding (1) and (2) results in (uT", vT) = (u, v) for allu, v € V, whence T
is unitary.

We characterize the property of being unitary in terms of action on a
basis of V.

TrEOREM 6.Y. The linear transformation T on V is unitary +f and only if
it takes an orthonormal basis of V into an orthonormal basts of V.

Proof. Suppose that {vq, ...,v,} is an orthonormal basis of V; thus
(v v;) = Ofor s 5= j while (v;, v;) = 1. We wish to show that if 7' is unitary,
then {v;T, ...,v,T'} is also an orthonormal basis of V. But (v;T, v;T) =
(v, ;) = 0 for ¢ # 7 and (T, v,T) = (v;,v;) = 1, thus indeed {»,T, ...,
v,T'} is an orthonormal basis of V.

On the other hand, if T € A(V) is such that both {vy,...,v,} and



sec. 10 HERMITIAN, UNITARY, AND NORMAL TRANSFORMATIONS 297

{iT, ...,v,T} are orthonormal bases of V, if u, w € V then

n n
u=Yav, w= po

=1 T=1
n

whence by the orthonormality of the vs, (u,w) = > x8:; However,
n n 7=1
uT = Z aw;T and wT = Z BT whence by the orthonormality of the

n

v;T’s, WT, wT) = > a;B; = (u, w), proving that 7 is unitary.

=1

Theorem 6.y states that a change of basis from one orthonormal basis
to another is accomplished by a unitary linear transformation.

Lemma 6.28. If T € A(V) then given any v € V there exists an element
w € V, depending on v and T, such that\(uT, v) = (u, w) for all u € V.
This element w is uniquely determined by v and T.

Proof. To prove the lemma, it is sufficient to exhibit a w € V which works
for all the elements of a basis of V. Let {uy, ..., u,} be an orthonormal

basis of V; we define w = ., (u;T, v)u;. An easy computation shows that
i=1

(s, w) = (u;T, v) whence the element w has the desired property. That w

is unique can be seen as follows: Suppose that (uT, v) = (u, w;) = (u, ws);

then (u, w; — ws) = 0forallu € V which forces, on putting v = w; — wa,

wy = Wa.

Lemma 6.28 allows us to make the

Dyurinition. If T € A (V) then the Hermitian adjoint of T, written as T,
is defined by (uT,v) = (u, vT*) for all u, v € V.

Given v € V we have obtained above an explicit expression for vT* (as
w) and we could use this expression to prove the various desired properties
of T*. However, we prefer to do it in a “basisfree” way.

Lemma 6.29. If T € A(V) then T* € A(V).
Moreover:

@ (TH*=T,

@ S+D*=8*4+T*

&) (AS)* = X8%,

4) 8T)* = T™*S*,

forall 8, T € A(V) and all \.
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Proof. We must first prove that T* is a linear transformation on V. If
u, v, warein V, then (u, 0 + w)T* = wT,v +w) = WT,v) + T, w) =
(u, vT*) + (u, wT* = (u, vT* + wT*), in consequence of which
(v + w)T* = vT* + wT*. Similarly, for A € F (u, ()T*) = T, ) =
XuT,v) = Xu, vT*) = (u, \(0T*)), whence (\)T* = A@T*). We have
thus proved that T* is a linear transformation on V.

To see that (T'*)* = T notice that (u, v(T*)*) = WT*v) = (v, uT*) =
T, w) = (u,vT) for all u, v € V whence v(T*)* = vT which implies that
(T** = T. We leave the proofs of (S + T)* = 8* + T* and of (\T)* =
XT* to the reader. Finally, (u, v(ST)*) = WST, v) = @S, vT* =
(u, vT*S*) for all, u, v € V; this forces v(ST)* = vT*S* for every v € V
which results in (ST)* = T*S*.

As a consequence of the lemma the Hermitian adjoint defines an adjoint,
in the sense of Section 8, on A (V).

The Hermitian adjoint allows us to give an alternative description for
unitary transformations in terms of the relation of 7' and T'*.

Lemma 6.30. T € A(V) s unttary +f and only if TT* = 1.

Proof. If T is unitary, then for all w, v € V (u, vTT*) = (uT,vT) =
(w,v) whence TT* = 1. On the other hand, if TT* = 1, then (u,v) =
(u, vTT*) = (uT,vT), which implies that T is unitary.

Note that a unitary transformation is nonsingular and its inverse is just
its Hermitian adjoint. Note, too, that from T7* = 1 we must have that
T*T = 1. We shall soon give an explicit matrix criterion that a linear
transformation be unitary.

THEOREM 6.2. If {v1, ...,vs} 18 an orthonormal basis of V and if the
matriz of T € A(V) in this basis ts (az;) then the matriz of T* in this basts
18 (Bij) , Where By = aj;.

Proof. Since the matrices of 7 and T'* in this basis are, respectively, (a;;)

and (8;7), then v;T = 3, a;v; and v,T* = > Bivi. Now Bs; = (0:T*,v;) =

1=l =1
n
(vsy v;T) = (vi, > ajkvl,;> = @;; by the orthonormality of the »;s. This
7=1

proves the theorem.

This theorem is very interesting to us in light of what we did earlier in
Section 8. For the abstract Hermitian adjoint defined on the inner-product
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space V, when translated into matrices in an orthonormal basis of V, be-
comes nothing more than the explicit, concrete Hermitian adjoint we de-
fined there for matrices.
Using the matrix representation in an orthonormal basis, we claim that
T € A(V) is unitary if and only if, whenever (a;) is the matrix of T in this
n n
orthonormal basis, then - a;as = 0 for j  k while Y. |ay[?= 1. In
i=1 =l
terms of dot products on complex vector spaces, it says that the rows of
the matrix of T form an orthonormal set of vectors in F™ under the dot
product.

Dermvition. T € A(V) is called self-adjoint or Hermitian if T* = T.

If T* = —T we call T skew-Hermitian. Given any S € A(V),

S+ 8* S — S*
()
2 2¢

S

. S+8* 8-8* s
and since 2 and 57 are Hermitian, S = A + ¢B where both 4
7

and B are Hermitian.

In Section 8, using matrix calculations, we proved that any complex
characteristic root of a Hermitian matrix is real; in light of Fact 1, this can
be changed to read: Every characteristic root of a Hermitian matrix is real.
We now reprove this from the more uniform point of view of an inner-
product space.

TaeoreEM 6.z If T € A(V) is Hermitian, then all its characteristic roots
are real.

Proof. Let \ be a characteristic root of T'; thus there is a v £ 0 in V such
that 7 = M. We compute: A@,v) = (w, v) = @T,v) = (v, vT*) =
(v, vT) = (v, ) = X(v,v); since (v,v) 3 0 we are left with A = X whence
\ is real.

We want to describe canonical forms for unitary, Hermitian and even
more general types of linear transformations which will be even simpler
than the Jordan form. This accounts for the next few lemmas which, al-
though of independent interest, are for the most part somewhat technical
in nature.

Lemma 6.31. If S € A(V) and i v8S* = 0, then vS = 0.
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Proof. Consider (uSS*,v) ; since v8S* = 0,0 = ©SS*,0) = (8, v(8¥)*) =
(S, S) by Lemma 6.29. In an inner-product space, this implies that S = 0.

CororrARY. If T s Hermitian and vT* = 0 for k > 1 then vT = 0.

Proof. We show that if 72" = 0 then T = 0; for if S = 72"~ then
S* = S and 8S* = 72", whence (SS* v) = 0 implies that 0 = vS =
»T?"™, Continuing down in this way, we obtain »T = 0. If vT* = 0, then
vT?" = 0 for 2™ > k, whence »T = 0.

We introduce a class of linear transformations which contains, as special
cases, the unitary, Hermitian and skew-Hermitian transformations.

Dermvirion. T € A(V) is said to be normal if TT* = T*T.

Instead of proving the theorems to follow for unitary and Hermitian
transformations separately, we shall, instead, prove them for normal linear
transformations and derive, as corollaries, the desired results for the unitary
and Hermitian ones.

LemMma 6.32. If N is a normal linear transformation and of vN = 0 for
v € V then yN* = 0.

Proof. Consider (vN*, vN*); by definition, (WN*, oN*) = (WN*N,v) =
(WNN*,v), since NN* = N*N. However, vN = 0, whence, certainly,
vNN* = 0. In this way we obtain that (WN'*, oN*) = 0, forcing vN* = 0.

CoroLLARY 1. If A is a characteristic root of the mormal transformation
N and if vN = \v then yN* = .

Proof. Since N is normal, NN* = N*N, therefore, (N — N)(N — M)* =
(N —NWN*—=1X) = NN* — A\N* — XN + A = N*N — \N* — AN +
M= N*=XN =N =@ —N*N —\), that is to say, N — \ is
normal. Since v(N — \) = 0 by the normality of N — A, from the lemma,
»(N — \)* = 0, whence vN* = Xv.

The corollary states the interesting fact that if N is a characteristic root of
the normal transformation N not only is X a characteristic root of N* but
any characteristic vector of N belonging to A is a characteristic vector of N'*
belonging to X and vice-versa.

Cororrary 2. If T ¢s unitary and if \ is a characteristic root of T, then
IAl= 1.
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Proof. Since T is unitary it is normal. Let X be a characteristic root of T
and suppose that vT = \v with v ¢ 0 in V. By Corollary 1, »T* = v, thus

v =oTT* = wT* = )\)\v since TT* = 1. Thus we get )\)\ =1, Whlch of
course, says that |\| =

We pause to see where we are going. Our immediate goal is to prove that a
normal transformation N can be brought to diagonal form by a unitary
one. If Ay, ..., M are the distinet characteristic roots of V, using Theorem
6.n we can decompose VaV =7V, @ @ Vi where for v; € 7,
vi(N — A)™ = 0. Accordingly, we want to study two things, namely, the
relation of vectors lying in different V,/s and the very nature of each V.
When these have been determined, we will be able to assemble them to
prove the desired theorem.

Lemma 6.33. If N is normal and if vN* = 0, then vN = 0.

Proof. Let S = NN*; S is Hermitian, and by the normality of N, »S* =
o(NN** = pN¥(N*)¥ = 0. By the corollary to Lemma 6.31, we deduce
that S = 0, that is to say, vNN* = 0. Invoking Lemma 6.31 itself yields
oN = 0.

CoroLrArY. If N 4s normal and if for N € F, o(N — N\)* = 0, then
vN = .

Proof. From the normality of N it follows that N — X is normal, whence,
by applying the lemma just proved to N — X\ we obtain the corollary.

In line with the discussion just preceding the last lemma, this corollary
shows that every vector in V; is a characterisiic vector of N belonging to the
characteristic root \;. We have determined the nature of V;; now we proceed
to investigate the interrelation between two distinet V/'s.

LemMa 6.34. Let N be a normal transformation and suppose that N and
u are two distinct characteristic roots of N. If v, w are in V and are such
that vN = W, wN = uw, then (v, w) = 0.

Proof. We compute (vN, w) in two different ways. As a consequence of
oN =M, (N,w) = (Qw,w) = Av,w). From wN = uw, using Lemma
6.32 we obtain that wN* = gw, whence (N, w) = (v, wN*) = (v, fw) =
u(v, w). Comparing the two computations gives us A\(v, w) = u(v, w) and
since N £ u, this results in (v, w) = 0.

All the background work has been done to enable us to prove that basic
and lovely
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TaEOREM 6.25. If N is a normal linear transformation on V, then there
exists an orthomormal basis, consisting of characteristic vectors of N, in
which the mairiz of N is diagonal. Equivalently, if N is a normal matriz
there exists a unstary matriz U such that UNU ™ (= UNU*) 4s diagonal.

Proof. We fill in the informal sketch we have made of the proof prior
to proving Lemma 6.33.

Let N be normal and let Ay, ..., A; be the distinet characteristic roots of
N. By the corollary to Theorem 6.n we can decompose V=V, @---@ V;,
where every v; € V;is annihilated by (N — \;)”. By the corollary to Lemma
6.33, V; consists only of characteristic vectors of N belonging to the charac-
teristic root A\;. The inner-product of V induces an inner-product on V;;
by Theorem 4.h we can find a basis of V; orthonormal relative to this inner-
product.

By Lemma 6.34 elements lying in distinet V/s are orthogonal. Thus
putting together the orthonormal bases of the Vs provides us with an
orthonormal basis of V. This basis consists of characteristic vectors of NV,
hence in this basis the matrix of N is diagonal.

We do not prove the matrix equivalent, leaving it as a problem; we only
point out that two facts are needed:

(1) A change of basis from one orthonormal basis to another is accom-
plished by a unitary transformation (Theorem 6.y).

(2) In a change of basis the matrix of a linear transformation is changed
by conjugating by the matrix of the change of basis (Theorem 6.h).

Both corollaries to follow are very special cases of Theorem 6.z, but since
each is so important in its own right we list them as corollaries in order to
emphagsize them.

CororraArY 1. If T s a unitary transformation, then there is an ortho-
normal basis in which the matriz of T 1s diagonal; equivalently, if T is a
unitary matriz, then there is a unitary matriz U such that UTU ™! (= UTU*)
18 diagonal.

CoroLraRY 2. If T is a Hermitian linear transformation, then theére
exists an orthonormal basts tn which the matriz of T 7s diagonal; equiva-
lently, if T is a Hermitian matriz, then there exists a unitary matriz U such
that UTU™! (= UTU™) is diagonal.

The theorem proved is the basic result for normal transformations, for it
sharply characterizes them as precisely those transformations which can
be brought to diagonal form by unitary ones. It also shows that the distinc-
tion between normal, Hermitian, and unitary transformations is merely a
distinction caused by the nature of their characteristic roots. This is made
precise in
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LemMa 6.35. The normal transformation N 4s:

(1) Hermatian if and only if ils characteristic roots are real;

(2) Unitary if and only 4f its characteristic roots are all of absolute value 1.

Proof. We argue using matrices. If N is Hermitian, then it is normal and
all its characteristic roots are real. If NV is normal and has only real charac-
teristic roots, then for some unitary matrix U, UNU™! = UNU* = D
where D is a diagonal matrix with real entries on the diagonal. Thus D* =

D; since D* = (UNU*)* = UN*U*, the relation D* = D implies UN*U* =
UNU*, and since U is invertible we obtain N* = N. Thus N is Hermitian.

We leave the proof of the part about unitary transformations to the
reader.

If A is any linear transformation on V, then tr (A4*) can be computed
by using the matrix representation of A in any basis of V. We pick an ortho-
normal basis of V; in this basis, if the matrix of A is (a;;) then that of 4*is
(B:;) where B;; = @&j;. A simple computation then shows that tr (44*) =
> |a;|? and this is 0 if and only if each ay; = 0, that is, if and only if 4 = 0.
i g
In a word, tr (AA*) = 0 if and only if A = 0. This is a useful criterion
for showing that a given linear transformation is 0. This is illustrated in

Lemma 6.36. If N is normal and AN = NA, then AN* = N*4.

Proof. We want, to show that X = AN* — N*4 is 0; what we shall do
is prove that tr XX* = 0, and deduce from this that X = 0.

Since N commutes with A and with N*, it must commute with AN* —
N*4,thus XX* = (AN* — N*4)(NA* — A*N) = (AN* — N*4A)NA* —
(AN* — N*A)A*N = N{(AN* — N*4)A*} — {(AN* — N*A)A*}N.
Being of the form NB — BN, the trace of XX* is 0. Thus X = 0, and
AN* = N*4.

We have just seen that N* commutes with all the linear transformations
that commute with N, when N is normal; this is enough to force N* to be a
polynomial expression in N. However, this can be shown directly as a con-
sequence of Theorem 6.z5 (see Problem 14).

The linear transformation T is Hermitian if and only if (T, v) is real
for every v € V. (See Problem 19.) Of special interest are those Hermitian
linear transformations for which (»7T,v) > 0 for all v € V. We call these
nonmegative linear transformations and denote the fact that a linear trans-
formation is nonnegative by writing 7> 0. If T >0 and in addition
(T, v) > 0 for v # 0 then we call T’ positive (or positive definite) and write
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T > 0. We wish to distinguish these linear transformations by their charac-
teristic roots.

Lemma 6.37. The Hermittan linear transformation T <¢s monnegative
(positive) if and only if all of its characteristic roots are nonnegative (positive).

Proof. Suppose that T' > 0; if \ is a characteristic root of T, then vT =
W for some v 5 0. Thus 0 < WT,v) = (\w,v) = A, v); since (v,v) >0
we deduce that A > 0.

Conversely, if T’ is Hermitian with nonnegative characteristic roots, then
we can find an orthonormal basis {vq, ..., ,} consisting of characteristic
vectors of T. For each vy, v;T = A\w;, where \; > 0. Givenv € V,v = Zaw;
whence T = Zap;T = Z\aw;, But then OT,v) = ENoaw; Zaw;) =
Z\a@; by the orthonormality of the v/s. Since \; > 0 and @ > 0, we
get that (T, v) > 0 whence T > 0.

The corresponding “positive” results are left as an exercise.

Lemma 6.38. T > 0 +f and only of T = AA* for some A.
Proof. We first show that AA* > 0. Given v &V, (wAA* ) =

(v4,v4) > 0, hence AA* > 0.
On the other hand, if 7 > 0 we can find a unitary matrix U such that

M
UTU* =
An
where each \; is a characteristic root of T, hence each \; > 0. Let
Vn
S =

Vi

since each \; > 0, each V/; is real, whence S is Hermitian. Therefore,
U*SU is Hermitian; but

A

I
3

(U*SU)? = U*SPU = U* B U

A
We have represented T in the form AA* where 4 = U*SU.
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Notice that we have actually proved a little more; namely, if in construct-
ing 8 above, we had chosen the nonnegative 1/; for each \;, then S, and
U*SU, would have been nonnegative. Thus 7' > 0 is the square of a non-
negative linear transformation; that is, every 7 > 0 has a nonnegative
square root. This nonnegative square root can be shown to be unique (see
Problem 24).

We close this section with a discussion of unitary and Hermitian matrices
over the real field. In this case, the unitary matrices are called orthogonal, and
satisfy QQ' = 1. The Hermitian ones are just symmetric, in this case.

We claim that a real symmetric matriz can be brought to diagonal form by an
orthogonal matriz. Let A be a real symmetric matrix. We can consider 4 as
acting on a real inner-product space V. Considered as a complex matrix, 4
is Hermitian and thus all its characteristic roots are real. If these are
Niy «+-, Ay then V' can be decomposed as V = V; @ --@® Vi where
v;(A — N\)™ = 0 for v; € V. As in the proof of Lemma 6.33 this forces
v;A = A\w; Using exactly the same proof as was used in Lemma 6.34, we
show that for v; € V;, v; € V;with ¢ ## 7, (v;, v;) = 0. Thus we can find an
orthonormal basis of V consisting of characteristic vectors of 4. The change
of basis, from the orthonormal basis {(1,0, ...,0), (0,1,0,...,0), ...,
©, ...,0,1)} to this new basis is accomplished by a real, unitary matrix,
that is, by an orthogonal one. Thus A can be brought to diagonal form by an
orthogonal matrix, proving our contention.

To determine canonical forms for the real orthogonal matrices over the
real field is a little more complicated, both in its answer and its execution.
We proceed to this now; but first we make a general remark about all uni-
tary transformations.

If W is a subspace of V invariant under the unitary transformation T,
is it true that W', the orthogonal complement of W, is also invariant under
T? Let w € W and 2 € W’; thus (wT, 2T) = (w, z) = 0; since W is in-
variant under T and T is regular, WT = W, whence 2T, for ¢ € W', is
orthogonal to all of W. Thus indeed (W')T < W'. Recall that V = W @
w'.

Let Q be a real orthogonal matrix; thus 7 =Q + Q™' =Q + Q' is
symmetric, hence has real characteristic roots. If these are Ay, ..., A, then
V can be decomposed as V = V; @- - -@ Vi, where v; € V implies ;T =
Avs. The Vs are mutually orthogonal. We claim each V' is invariant under
Q. (Prove!) Thus to discuss the action of @ on V, it is enough to describe it
on each V.

On V,; since A\p; = v,T =v,(Q + Q™"), multiplying by @ yields
v:(Q%> — \Q + 1) = 0. Two special cases present themselves, namely,
\: = 2and \; = —2 (which may, of course, not occur), for thenv;(Q = 12 =
0 leading to v;(Q %= 1) = 0. On these spaces @ acts as 1 or as —1.

If A; # 2, —2, then @ has no characteristic vectors on V3 hence for
v 0 € V; v, vQ are linearly independent. The subspace they generate,
W, is invariant under @, since vQ? = \0Q — v. Now V; = W@ W' with
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W’ invariant under Q. Thus we can get V, as a direct sum of two-dimen-
sional mutually orthogonal subspaces invariant under Q. To find canonical
forms of Q on V, (hence on V), we must merely settle the question for
2 X 2 real orthogonal matrices.

Let Q be a real 2 X 2 orthogonal matrix satisfying @* — \Q + 1 = 0;

suppose that @ = (a [;) . The orthogonality of @ implies:
Y

Q2+ =1,
(2) ')’2 +52 = 17
(3) ay + B3 = 0;

since Q%> — \Q + 1 = 0, the determinant of Q is 1, hence
4) ab — By = 1.

We claim that equations (1), ..., (4) imply that & = §, 8 = —v. Since
o + 8% = 1, || < 1, whence we can write & = cos § for some real angle 6;
in these terms 8 = sin 4. Therefore, the matrix @ looks like

( cos 6 sin 0)
—sin § cos f
All the spaces used in all our decompositions were mutually orthogonal,

thus by picking orthogonal bases of each of these we obtain an orthonormal
basis of V. In this basis the matrix of @ is

1

cos f; sin 6,

—sin 6; cos 8

cos 6, sin 6,

—sin 6, cosé,
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Since we have gone from one orthonormal basis to another, and since
this is accomplished by an orthogonal matrix, given a real orthogonal
matrix Q we can find an orthogonal matriz T such that TQT™* (= TQT *) s
of the form just described.

PROBLEMS

1. Determine which of the following matrices are unitary, Hermitian,
normal.

L1 1 . 1000
(a)<101>- (b)(, é) (© 0010
011 i 0100
0 001

3 0 0

1 2—7q 0—1— !

(d)(z' >(e) V2 V2

-7 17
o L L
V2 V2

2. For those matrices in Problem 1 which are normal, find their charac-
teristic roots and bring them to diagonal form by a unitary matrix.
3. If T is unitary, just using the definition (T, uT) = (v, u), prove
that T is nonsingular.
4. If Q is a real orthogonal matrix, prove that det @ = =1.
5. If Q is a real symmetric matrix satisfying Q* = 1 for k > 1, prove
that Q% = 1.
6. Complete the proof of Lemma 6.29 by showing that (§ 4+ T)* =
S* 4+ T* and (\T)* = XT*.
7. Prove the properties of * in Lemma 6.29 by making use of the ex-
plicit form of w = vT* given in the proof of Lemma 6.28.
8. If T is skew-Hermitian, prove that all of its characteristic roots are
pure imaginaries.
9. If T is a real, skew-symmetric n X n matrix, prove that if n is odd,
then det T = 0.
10. By a direct matrix calculation, prove that a real, 2 X 2 symmetric
matrix can be brought to diagonal form by an orthogonal one.
11. Complete the proof outlined for the matrix-equivalent part of
Theorem 6.z,.
12. Prove that a normal transformation is unitary if and only if the
characteristic roots are all of absolute value 1.
13. If Ny, ..., Ny is a finite number of commuting normal transforma-
tions, prove that there exists a unitary transformation T such that all of
TN,T~! are diagonal.
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14. If N is normal, prove that N* = p(N) for some polynomial p(z).

16. If NV is normal and if AN = 0, prove that AN* = 0.

16. Prove that A is normal if and only if A commutes with 4A4*.

17. If N is normal prove that N = I\E; where E? = E;, E;* = E;,
and the \/s are the characteristic roots of N. (This is called the spectral
resolution of N.)

18. If N is a normal transformation on V and if f(z) and g(z) are two rel-
atively prime polynomials with real coefficients, prove that if 9f(N) = 0
and wg(N) = 0, for », w in V, then (v, w) = 0.

19. Prove that a linear transformation 7 on V is Hermitian if and only
if T, v) isreal forallv € V.

20. Prove that 7' > 0 if and only if 7' is Hermitian and has all its charac-
teristic roots positive.

21, If A > 0 and (v4,v) = 0, prove that v4 = 0.

22. (a) If A > 0 and A% commutes with the Hermitian transformation

B then A commutes with B.
(b) Prove part (a) even if B is not Hermitian.

23. If A >0 and B > 0 and AB = BA, prove that AB > 0.

24. Prove that if A > 0 then A has a unique nonnegative square root.

25. Let A = (ay) be a real, symmetric n X n matrix.

Let a1 Q1s
As:(. . >
[23

Qg1 P S8

(@) If A > 0, prove that A, > 0fors=1,2, ..., n.
() If A > 0 prove that det A, > Ofors =1,2, ..., n.
() If det 4, >0fors=1,2 ..., n, prove that 4 > 0.
(@) If A > Oprovethat A, > 0fors=1,2,...,n.
(e) If A > O prove that det A, > 0fors=1,2, ..., n.
(f) Give an example of an A such that det A; > 0foralls =1, 2,
..., nyet A is not nonnegative.
26. Prove that any complex matrix can be brought to triangular form
by a unitary matrix.

11. Real Quadratic Forms. We close the chapter with a brief discussion
of quadratic forms over the field of real numbers.

Let V be a real, inner-product space and suppose that A is a (real) sym-
metric linear transformation on V. The real-valued function Q(v) defined
on V by Q@) = (v4, v) is called the quadratic form associated with A.

If we consider, as we may without loss of generality, that A is a real,
n X n symmetric matrix (a;;) acting on F™ and that the inner-product for
(81, « .., 8,) and (v, ..., vn) in F™ is the real number 8;y; + vz +- - -
+ 8n7vn, for an arbitrary vector v = (xy, ..., z,) in F™ a simple calcula-
tion shows that Q@) = (4, v) = a1121® ++ -+ ana®a® + 2 2 aijTa;. \

i<j
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On the other hand, given any quadratic function in n-variables v, 122 +

st YpntnZ + 2 ; V3i%%j, with real coefficients v,;, we clearly can realize it
<

as the quadratic form associated with the real symmetric matrix ¢ = (y;).

In real n-dimensional Euclidean space such quadratic function serve to
define the quadric surfaces. For instance, in the real plane, the form ax? +
Bzy + vy gives rise to a conic section (possibly with its major axis tilted).
It is not too unnatural to expect that the geometric properties of this conic
section should be intimately related with the symmetric matrix

( a B/ 2)
B/2 v
with which its quadratic form is associated.
Let us recall that in elementary analytic geometry one proves that by a
suitable rotation of axes the equation ax? + Bzy + vy? can, in the new co-

ordinate system, assume the form «; (/)2 + v;(y')%. Recall that oy + y; =
a+ v and ay — 82/4 = ayv;. Thus a;, v; are the characteristic roots of

the matrix
(s %)
B/2 ~/°

the rotation of axes is just a change of basis by an orthogonal transforma-
tion, and what we did in the geometry was merely to bring the symmetric
matrix to its diagonal form by an orthogonal matrix. The nature of ax? +
Bxy + vy as a conic was basically determined by the size and sign of its
characteristic roots ay, v;1.

A similar discussion can be carried out to classify quadric surfaces in
3-space, and, indeed quadric surfaces in n-space. What essentially deter-
mines the geometric nature of the quadric surface associated with a;;z,2 +
co o Qpaa® + 2 2 azjzsx; is the size and sign of the characteristic roots

i<j
of the matrix (a;;). If we were not interested in the relative flatness
of the quadric surface (e.g., if we consider an ellipse as a flattened circle),
then we could ignore the size of the nonzero characteristic roots and the
determining factor for the shape of the quadric surface would be the num-
ber of 0 characteristic roots and the number of positive (and negative) ones.

These things motivate, and at the same time will be clarified in, the dis-
cussion that follows, which culminates in Sylvester’s law of inertia.

Let A be a real symmetric matrix and let us consider its associated
quadratic form Q) = (v4,v). If T is any nonsingular real linear trans-
formation, given v € F™, v = wT for some w € F™, whence (v4,v) =
(wTA, wT) = wTAT’, w). Thus A and TAT’ effectively define the same
quadratic form. This prompts the

DerintrioN. Two real symmetric matrices A and B are congruent if
there is a nonsingular real matrix 7' such that B = TAT".
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Lemma 6.39. Congruence is an equivalence relation.

Proof. Let us write, when A is congruent to B, A = B.

(1) A== A4 for A =141

(2) If A= B then B = TAT' where T is nonsingular, hence 4 = SBS’
where S = T~. Thus B =< A.

(3) If A=~ B and B=2(C then B = TAT’ while C = RBR’, hence C =
RTAT'R' = (RT)A(RT)',andso 4 == C.

Since the relation satisfies the defining conditions for an equivalence
relation, the lemma is proved.

The principal theorem concerning congruence is its characterization,
contained in Sylvester’s law.

THEOREM 6.23. Given the real symmetric matriz A there is an tnvertible
matriz T such that

I,
TAT' =< -1
0

where I, and I, are respectively the r X r and s X s unit matrices and where
0; s the t X t O-matriz. The integers r + s, which s the rank of A, and
7 — 8, which is the signature of A, characterize the congruence class of A.
That s, two real symmetric matrices are congruent if and only if they have
the same rank and signature.

Proof. Since A is real symmetric its characteristic roots are all real; let
A1, ..., A\ be its positive characteristic roots, —\,y1, ..., —Arys its nega-
tive ones. By the discussion at the end of Section 10 we can find a real
orthogonal matrix C such that

A

CAC! = CAC' = ~Arp1

- )\r+s
0,
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where { = n — r — 5. Let D be the real diagonal matrix
1

3

a simple computation shows that

I,
DCAC'D' = < —I >
0

t

Thus there is a matrix of the required form in the congruence class of 4.
Our task is now to show that this is the only matrix in the congruence
class of A of this form, or, equivalently, that

Ir IT/
L=< —~1I > and M:’( -I )
0 0,

12
are congruent only if r = v/, s = &', and ¢ = ¢'.

Suppose that M = TLT’ where T is invertible. By Lemma 6.3 the rank
of M equals that of L; since the rank of 3 isn — t’ while that of Lisn — ¢
we get ¢ = 1/,

Suppose that r < 7';sincen =r 4+ s+t =1 + s + t,andsincet = ¢/,
we must have s > ¢'. Let U be the subspace of F™ of all vectors having
the first » and last ¢ coordinates 0; U is s-dimensional and for » % 0 in U,
(uL, uw) <O.

Let W be the subspace of F™ for which the ~ + 1, ..., " 4+ & compo-
ponents are all 0; on W, (wM, w) > 0 for any w € W. Since T is invertible,
and since W is (n — §')-dimensional, WT is (n — s’)-dimensional. For
w &€ W, wM,w) > 0; hence (wI'LT',w) > 0; that is, (wTL,wT) > 0.

1
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Therefore, on WT, (wTL, wT) > 0 for all elements. Now dim (WT) +
dim U = (n —§) +r=n-+s — s > n;thus by the corollary to Lemma
4.8, WT N U s 0. This, however, is nonsense, for if z 20 € WT N U,
on one hand, being in U, (zL, x) < 0, while on the other, being in WT,
(xL,z) > 0. Thus » = 7 and s0 s = &', ’

The rank, r + s, and signature, » — s, of course, determine 7, s and so
t = (n —r —s), whence they determine the congruence class.

PROBLEMS

1. Determine the rank and signature of the following real quadratic
forms:
@) =% + 22175 + 2%
() 2,2 + 2135 + 23123 + 222 + 4wazs + 275
2. If A is a symmetric matrix with complex entries, prove we can find a

0 ) and that r, the

1
rank of A, determines the congruence class of 4 relative to complex con-
gruence.

3. If F is a field of characteristic different from 2, given A € F,, prove
that there exists a B € F, such that BAB’ is diagonal.

4. Prove the result of Problem 3 is false if the characteristic of F is 2.

I,
complex invertible matrix B such that BAB’ = <

Supplementary Reading

Harmos, Pavr R. Finite-Dimensional Vector Spaces, second edition. D.
Van Nostrand Company, Inc., Princeton, New Jersey, 1958.



CHAPTER 7

Selected Topics

In this final chapter we have set ourselves two objectives. Our first is to
present some mathematical results which cut deeper than most of the ma-
terial up to now, results which are more sophisticated, and are a little apart
from the general development which we have followed. Qur second goal is
to pick results of this kind whose discussion, in addition, makes vital use
of a large cross section of the ideas and theorems expounded earlier in the
book. To this end we have decided on three items to serve as the focal
points of this chapter.

The first of these is a celebrated theorem proved by Wedderburn in 1905
(““A Theorem on Finite Algebras,” Transactions of the American M athemat-
ical Society, Vol. 6 (1905), pages 349-352) which asserts that a division
ring which has only a finite number of elements must be a commutative
field. We shall give two proofs of this theorem, differing totally from each
other. The first one will closely follow Wedderburn’s original proof and will
use a counting argument; it will lean heavily on results we developed in the
chapter on group-theory. The second one will use a mixture of group-
theoretic and field-theoretic arguments, and will draw incisively on the
material we developed in both these directions. The second proof has the
distinet advantage that in the course of executing the proof certain side-
results will fall out which will enable us to proceed to the proof, in the
division ring case, of a beautiful theorem due to Jacobson (‘“Structure
Theory for Algebraic Algebras of Bounded Degree,” Annals of Mathe-
matics, Vol. 46 (1945), pages 695-707) which is a far-reaching generaliza-
tion of Wedderburn’s theorem.

Our second high-spot is & theorem due to Frobenius (“Uber lineare Sub-
stitutionen und bilineare Formen,” Journal fur die Reine und Angewandte
Mathematik, Vol. 84 (1877), especially pages 59-63) which states that the
only division rings algebraic over the field of all real numbers are the field
of real numbers, the field of complex numbers, and the division ring of real
quaternions. The theorem points out a unique role for the quaternions, and
makes it somewhat amazing that Hamilton should have discovered them
in his somewhat ad hoec manner. Our proof of the Frobenius theorem, now
quite elementary, is a variation of an approach laid out by Dickson and
Albert; it will involve the theory of polynomials and fields.

313
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Our third goal is the theorem that every positive integer can be repre-
sented as the sum of four squares. This famous result apparently was first
conjectured by the early Greek mathematician Diophantos. Fermat grap-
pled unsuccessfully with it and sadly announced his failure to solve it (in a
paper where he did, however, solve the two-square theorem which we
proved in Section 8 of Chapter 3). Euler made substantial inroads on the
problem; basing his work on that of Euler, Lagrange in 1770 finally gave
the first complete proof. Qur approach will be entirely different from that
of Lagrange. It is rooted in the work of Adolf Hurwitz and will involve a
generalization of Euclidean rings. Using our ring theoretic techniques on a
certain ring of quaternions, the Lagrange theorem will drop out as a conse-
quence.

En route to establishing these theorems many ideas and results, interest-
ing in their own right, will crop up. This is characteristic of a good the-
orem—its proof invariably leads to side-results of almost equal interest.

1. Finite Fields. Before we can enter into a discussion of Wedderburn’s
theorem and finite division rings it is essential that we investigate the na-
ture of fields having only a finite number of elements. Such fields are called
finite fields. Finite fields do exist, for the ring J, of integers modulo any
prime p, provides us with an example of such. In this section we shall de-
termine all possible finite fields and many of the important properties which
they possess.

We begin with

LemMa 7.1. Let F be a finite field with q elements and suppose that F < K
where K 1s also a finite field. Then K has ¢ elements where n = [K:F].

Proof. K is a vector space over F and since K is finite it is certainly finite-~
dimensional as a vector space over F. Suppose that [K:F] = n; then K has
a basis of » elements over F. Let such a basis be vy, v, ..., v,. Then every
element in K has a unique representation in the form oyv; + agvy +-- -+
¥y, Where ay, a3, ..., ay are all in F. Thus the number of elements in K is
the number of a9 + agvy + - - -+ auv, as the ay, ay, ..., o, range over F.
Since each coefficient can have ¢ values K must clearly have ¢" elements.

CoroLLARY 1. Let F be a finite field; then F has p™ elements where the
prime number p is the characteristic of F.

Proof. Since F has a finite number of elements, by Corollary 2 to Theorem
2.a, f1 = 0 where f is the number of elements in F. Thus F has characteris-
tic p for some prime number p. Therefore F contains a field F isomorphic
to Jp. Since Fy has p elements, F has p™ elements where m = [F:Fy], by
Lemma, 7.1.
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COROLLARY 2. If the finite field F has p™ elements then every a € F
satisfies " = a.

Proof. If a = 0 the assertion of the corollary is trivially true.

On the other hand, the nonzero elements of F form a group under multi-
plication of order p™ — 1 thus by Corollary 2 to Theorem 2.a, a?" —* = 1 for
all @ # 0 in F. Multiplying this relation by & we obtain that a?” = a.

From this last corollary we can easily pass to

Lemma 7.2. If the finite ﬁeld F has p™ elements then the polynomial P
in Flz] factors in Flz] as 2*" — z = [[ @ — \).
AEF

Proof. By Lemma, 5.2 the polynomial 27" — z has at most p™ roots in F.
However, by Corollary 2 to Lemma 7.1 we know p™ such roots, namely all
the elements of F. By the corollary to Lemma 5.1 we can conclude that

2" —z= ] @ —N.

\CF

CoOROLLARY. I fmthe field F has p™ elements then F is the splitting field of
the polynomial 2 — z.

Proof. By Lemma, 7.2, "~z certainly splits in F. However, it cannot
split in any smaller field for that field would have to have all the roots of
this polynomial and so Would have to have at least p™ elements. Thus F is
the splitting field of 2" — z.

As we have seen in Chapter 5 (Theorem 5.j) any two splitting fields
over a given field of a given polynomial are isomorphic. In light of the
corollary to Lemma 7.2 we can state

LemMma 7.3. Any two finite fields having the same number of elements
are tsomorphic.

Proof. If these fields have p™ elements, by the above corollary they are
both splitting fields of the polynomial z?" — z, over J, whence they are
isomorphie.

Thus for any integer m and any prime number p there is, up to iso-
morphism, at most one field having p™ elements. The purpose of the next
lemma is to demonstrate that for any prime number p and any integer m
there is a field having ™ elements. When this is done we shall know that
there is exactly one field having p™ elements where p is an arbitrary prime
and m an arbitrary integer.
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Lemuma 7.4. For every prime number p and every positive integer m there
exists a field having p™ elements.

Proof. Consider the polynomial 27" — z in J,[z], the ring of polynomials
in z over J,, the field of mtegers mod P Let K be the splitting field of this
polynomial. In K let F = {a € K |a?" = a}. The elements of F are thus
the roots of 27" — z, which by Corollary 2 to Lemma 5.6 are distinct Whence
F has p™ elements. We now clalm that Fis a field. If ¢, b € F then a?" = a,
b?" = b and so (ab)?" = ao? bp = gb; thus ab € F. Also since the charac-
teristic is p, (a = b)?" = a?" £ b?" = a + b, whence a == b € F. Conse-
quently F is a subfield of K and so is a field. Having exhibited the field £
having p™ elements we have proved Lemma 7.4.

Combining Lemmas 7.3 and 7.4 we have

THEOREM 7.A. For every prime number p and every positive integer m there
18 o unique field having p™ elements.

We now return to group theory for a moment. The group-theoretic result
we seek will determine the structure of any finite multiplicative subgroup
of the group of nonzero elements of any field, and, in particular, it will de-
termine the multiplicative structure of any finite field.

LeMMA 7.5. Let G be a finite abelian group enjoying the property that the
relation 2™ = e is satisfied by at most n elements of G, for every integer n.
Then G s a cyclic group.

Proof. If the order of @ is a power of some prime number ¢ then the result
is very easy. For suppose that o € @ is an element whose order is a,s large
as poselble its order must be ¢" for some integer 7. The elements e,a,d% ...,
a? ! give us ¢" distinct solutions of the equation 22 = e, Whlch by our
hypothesis, implies that these are all the solutlons of this equation. Now if
b € Gitsorder is ¢° where s < 7, hence b? = (b2)7 ‘= By the observa-
tion made above this forces b = a’ for some , and so G is cyclic.

The general finite abelian group G can be realized as G = 84,8, ..., S,
where the g; are the distinct prime divisors of o(@) and where the S, are
the Sylow subgroups of G. Moreover, every element g € G can be written
in a unique way as g = si8s, ..., S where s; € S, (see Section 7, Chapter
2). Any solution of 2" = e in S,, is one of " = e in G so that each S, in-
herits the hypothesis we have imposed on G. By the remarks of the first
paragraph of the proof each S, is a cyclic group; let a; be a generator of
Sq,- We claim that ¢ = aya,, ..., ar is a cyclic generator of G. To verify this
all we must do is prove that o(G) divides m, the order of c. Since c™ = ¢, we
have that a;™as™ ... a;™ = e. By the uniqueness of representation of an
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element of G' as a product of elements in the Sg,, we conclude that each
a," = e. Thus 0(S,,) |m for every 4. Thus o(@) = 0(S¢1)0(8g,) ... 0(8y,) | m.
However, m|o(G) and so o(F) = m. This proves that @ is cyclic.

Lemma 7.5 has as an important consequence

LemmMa 7.6. Let K be a field and let G be a finite subgroup of the multi-
plicative group of nonzero elements of K. Then G is a cyclic group.

Proof. Since K is a field, any polynomial of degree 7 in K[z] has at most
n roots in K. Thus in particular, for any integer n, the polynomial z* — 1
has at most 7 roots in K, and all the more so, at most n roots in G. The
hypothesis of Lemma 7.5 is satisfied, so G is cyclic.

Even though the situation of a finite field is merely a special case of
Lemma, 7.6, it is of such wide-spread interest that we single it out as

TurorEM 7.8B. The multiplicative group of monzero elements of a finite
field is cyclic.

Proof. Let F be a finite field. By merely applying Lemma 7.6 with F = K
and G = the group of nonzero elements of F, the result drops out.

We conclude this section by using a counting argument to prove the
existence of solutions of certain equations in a finite field. We shall need the
result in one proof of the Wedderburn theorem.

Lemma 7.7. If F is a finite field and « 5 0, B # 0 are two elements of F
then we can find elements a and b in F such that 1 + aa® + gb% = 0.

Proof. If the characteristic of F is 2, F has 2" elements and every element
¢ in F satisfies 22" = z. Thus every element in F is a square. In particular
a~! = a2 for some a € F. Using thisa andb = 0 we have 1 + aa® + gb* =
14+ aa™t4+0=1+41=0, the last equality being a consequence of
the fact that the characteristic of F is 2.

If the characteristic of F is an odd prime p, F has p” elements. Let W, =
{1 4+ az?®|z € F}. How many elements are there in W,? We must check
how often 1 + az? = 1 + ay?. But this relation forces az? = ay® and so,
since a 5 0, 22 = 2. Finally this leads to 2 = =y. Thus for z 5 0 we get
from each pair  and —z one element in W, and forz = 0 we get 1 € Wa.

no_ 1 n4 1
Thus W,has1 +p _P

2
pr 1 elements. Since each of W, and Wy has more than half the

elements. Similarly Wg = {—g2?|z € F}

has
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elements of F they must have a nonempty intersection. Let ¢ € W, N Wo.
Since ¢ € Wg, ¢ = 1 + aa? for some a € F; since ¢ € Wg, ¢ = —pb* for
some b € F. Therefore 1 + aa®> = —pb%, which, on transposing yields the
desired result 1 + aa® + 8b% = 0.

PROBLEMS

1. By Theorem 7.b the nonzero elements of .J, form a cyclic group under

multiplication. Any generator of this group is called a primitive root of p.
(a) Find primitive roots of: 17, 23, 31.
(b) How many primitive roots does a prime p have?

2. Using Theorem 7.b prove that 2> = —1 mod p is solvable if and only
if the odd prime p is of the form 4n -+ 1.

3. If a is an integer not divisible by the odd prime p, prove that z* = o
mod p is solvable for some integer z if and only if a®~/2 =1 mod p.
(This is called the Euler criterion that a be a quadratic residue mod p.)

4. Using the result of Problem 3 determine if:

(a) 3 is a square mod 17.
(b) 10 is a square mod 13.

5. If the field F has p" elements prove that the automorphisms of F
form a cyelic group of order n.

6. If F is a finite field, by the quaternions over F we shall mean the set
of all ay + ;7 + oy + agk where ag, oy, as, ag € F and where addition
and multiplication are carried out as in the real quaternions (ie., 2> = j2 =
k? = 4jk = —1, ete.). Prove that the quaternions over a finite field do not
form a division ring.

2. Wedderburn’s Theorem on Finite Division Rings. In 1905 Wedder-
burn proved the theorem, now considered a classic, that a finite division
ring must be a commutative field. This result has caught the imagination
of most mathematicians because it is so unexpected, interrelating two seem-
ingly unrelated things, namely the number of elements in a certain algebraic
system and the multiplication of that system. Aside from its intrinsic beauty
the result has been very important and useful since it arises in so many con-
texts. To cite just one instance, the only known proof of the purely ge-
ometric fact that in a finite geometry the Desargues configuration implies
that of Pappus (for the definition of these terms look in any good book on
projective geometry) is to reduce the geometric problem to an algebraic
one, and this algebraic question is then answered by invoking the Wedder-
burn theorem. For algebraists the Wedderburn theorem has served as a
jumping-off point for a large area of research, in the 1940’s and 1950’s,
concerned with the commutativity of rings.
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THEOREM 7.c (WEDDERBURN). 4 finite dwision ring is necessarily a com-
mutative field.

First Proof. Let K be a finite division ring and let Z = {2 € K|z = 22
for all z € K} be its center. If Z has ¢ elements then, as in the proof of
Lemma 7.1, it follows that K has ¢" elements. Our aim is to prove that
Z = K, or, equivalently, that n = 1.

If a € K let N(a) = {z € K|za = az}. N(a) clearly contains Z, and,
as a simple check reveals, N(a) is a subdivision ring of K. Thus N (a) con-
tains ¢"® elements for some integer n(a). We claim that n(a)|n. For, the
nonzero elements of N(a) form a subgroup of order ¢"® — 1 of the group
of nonzero elements, under multiplication, of K which has g™ — 1 elements.
By Lagrange’s theorem (Theorem 2.2) ¢"® — 1 is a divisor of ¢" — 1; but
this forces n(a) to be a divisor of n (see Problem 1 at the end of this section).

In the group of nonzero elements of K we have the conjugacy relation
used in Chapter 2, namely a is a conjugate of b if a = £~ bx for some z = 0
in K.

By Theorem 2.h the number of elements in K conjugate to @ is the index

of the normalizer of a in the group of nonzero elements of K. Therefore the
n

number of conjugates of ¢ in K is I Now a € Z if and only if

qn(a> —
n(a) = n, thus by the class equation (see the corollary to Theorem 2.h)

-1

1 "—l=qg—-1+ -

@ q q n(aZ)]n qn(a)__l
n(a)#n

where the sum is carried out over one a in each conjugate class for a’s not
in the center.

The problem has been reduced to proving that no equation such as (1)
can hold in the integers. Up to this point we have followed the proof in
Wedderburn’s original paper quite closely. He went on to rule out the possi-
bility of equation (1) by making use of the following number-theoretic
result due to Birkhoff and Vandiver: for n > 1 there exists a prime number
which is a divisor of ¢" — 1 but is not a divisor of any ¢™ — 1 where m is a
proper divisor of n, with the exceptions of 26 — 1 = 63 whose prime factors
already occur as divisors of 22 — 1 and 22 — 1, and n = 2, and ¢ a prime
of the form 2% — 1. If we grant this result, how would we finish the proof?
This prime number would be a divisor of the left-hand side of (1) and also a
divisor of each term in the sum occurring on the right-hand side since it
divides ¢* — 1 but not ¢*® — 1; thus this prime would then divide ¢ — 1
giving us a contradiction. The case 28 — 1 still would need ruling out but
that is simple. In case n = 2, the other possibility not covered by the above
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argument, there can be no subfield between Z and K and this forces Z = K.
(Prove!—See Problem 2.)

However, we do not want to invoke the result of Birkhoff and Vandiver
without proving it, and its proof would be too large a digression here. So
we look for another artifice. Qur aim is to find an integer which divides

" —1
" (@ _ 1

g — 1. Once this is done, Equation (1) will be impossible unless » = 1 and,
therefore, Wedderburn’s theoremi will have been proved. The means to
this end is the theory of cyclotomic polynomials. (These have been men-
tioned in the problems at the end of Section 6, Chapter 5.)

Consider the polynomial z* — 1 considered as an element of C[z] where C
is the field of complex numbers. In C[z]

, for all divisors n(a) of n except n(a) = n, but does not divide

2) " — 1 =1 — \),

where this product is taken over all X satisfying A" = 1.

A complex number 6 is said to be a primitive nth root of unity if 6" = 1
but §™ = 1 for any positive integer m < n. The complex numbers satisfy-
ing " = 1 form a finite subgroup, under multiplication, of the complex
numbers, so by Theorem 7.b this group is cyclic. Any cyclic generator of
this group must then be a primitive nth root of unity, so we know that such
primitive roots exist. (Alternately, § = 2™/ yields us a primitive nth root
of unity.)

Let ®,(z) = I(z — 6) where this product is taken over all the primitive
nth roots of unity. This polynomial is called a cyélotomic polynomial. We
list the first few cyclotomic polynomials: &;(z) =z — 1, $(x) =z + 1,
By(z) =2 +x+1, Bu(x) =2 + 1, Bs(x) =a* + 2 + 22+ 2 + 1,
&s(z) = 2 — x + 1. Notice that these are all monic polynomials with
integer coefficients.

Our first aim is to prove that in general &, (») is a monic polynomial with

integer coefficients. We regroup the factored form of z” — 1 as given in (2),
and obtain

(3) " — 1 =[] ®i).

dln

By induction we assume that ®4(z) is a monic polynomial with integer co-
efficients for d|n, d ¢ n. Thus 2" — 1 = &,(z)g(zr) where g(z) is a monic
polynomial with integer coefficients. Therefore,

2" —1

&,(z) = ,
® g(x)

which, on actual division (or by comparing coefficients), tells us that ®,(z)
is a monic polynomial with integer coefficients.



SEC. 2 WEDDERBURN’S THEOREM ON FINITE DIVISION RINGS 321

We now claim that for any divisor d of n, where d = n,

2~ 1

¢ —1

@n(2)

in the sense that the quotient is a polynomial with integer coefficients. To

see this first note that 2* — 1 = JT #,(z), and since every divisor of d
kid

is also a divisor of n, by regrouping terms on the right-hand side of (3) we

obtain 2¢ — 1 on the right-hand side; also since d < n, % —1 does

not involve ®,(xz). Therefore, 2" — 1 = &,(z)(z? — 1)f(z) where f(z) =

II #i(x) has integer coefficients, and so

k|n

ktd

2* -1

®n ()

% —1

in the sense that the quotient is a polynomial with integer coefficients.
This establishes our claim.

For any integer ¢, ®,(t) is an integer and from the above as an integer
divides (t* — 1)/(t* — 1). In particular, returning to equation (1),

" —1
@ —1

and &,()| (¢" — 1); thus by (1), ®,(¢)| (¢ — 1). We claim, however, that if
n > 1 then |®,(¢)| > ¢ — 1. For ®,(¢q) = (g — 6) where 6 runs over all
primitive nth roots of unity and |¢ — 6| > ¢ — 1 for all § % 1 a root of
unity (Prove!) whence |®,(g)|= II|g — 6| > q¢ — 1. Clearly, then ®,(q)
cannot divide ¢ — 1, leading us to a contradiction. We must, therefore,
assume that n = 1, forcing the truth of the Wedderburn theorem.

®a(q)

Second Proof. Before explicitly examining finite division rings again, we
prove some preliminary lemmas.

Lemma 7.8. Let R be a ring and let a € R. Let T, be the mapping of R
wnto itself defined by T, = xa — ax. Then
mm—1) ,

zT," = za™ — maza™* + — a*xa

mm — 1)(m — 2) 3
- 31 ¢

Proof. What is 27,22 2T,2 = #T)T, = (va — az)Te = (za — az)a —
a(za — az) = za® — 2aza + a’c. What about zT.%? 2T,° = (¢T.%)Ts =
(za® — 2aza + a’x)a — a(za® — 2aza + a’x) = za® — 3aza® + 3a’za —
a3z. Continuing in this way, or by the use of induction, we get the result of
Lemma 7.8.

g™ 4
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CoroLLARY. If R s amm‘ng in which px = 0 for oll z € R, where p is a
prime number, then T, = za® — a® z.

Proof. By the formula of Lemma, 7.8, if p = 2, zT,2 = za®? — a’z, since
2aza = 0. Thus, zT,* = (2a® — a®r)a® — a®(za® — a*z) = za* — a*z, and
so on for zT,2".

If p is an odd prime, again by the formula of Lemma 7.8,

pp—1)

2T P = za® — paxap_l + a2 .. — oz,

and since

pp—1)...(p—7+1)
P il

for 7 < p, all the middle terms drop out and we are left with 2T =
za? — aPx = zT . Now 2T »* = 2(T4r)? = xT 42, and so on for the higher
powers of p.

Lemma 7.9. Let D be a division ring of characteristic p > 0 with center
Z,and let P = {0,1,2, ..., (p — 1)} be the subfield of Z isomorphic to J .
Suppose that a € D, a € Z is such that a?” = a for some n > 1. Then there
exists an x € D such that

1) zaz™! 5 a.
(2) zax™' € P(a) the field obtained by adjoining a to P.

Proof. Define the mapping T, of D into itself by yT, = ya — ay for every
y € D.

P(a) is a finite field, smce a is algebraic over P and has, say, p™ elements
These all satlsfy w?" = u. By the corollary to Lemma 7.8, yT
ya?" — a? y-—ya—ay—yTa, and so T>" = T,.

Now, if N € P(a), A\2)Ts = (\x)a — a(\z) = Axa — \ar = \(xa — ax)
= X(xTa), since A commutes with a. Thus the mapping A\ of D into itself
defined by AI: 1y — Ay commutes with T, for every A € P(a). Now the

polynomial u?" — u = H (w — \) by Lemma 7.2. Since T, commutes
M P(a)

mth M for every N € P(a), and since T,”" = T, we have that 0 =
T — T, = II (1. — D).
AEP(a)

If for every A % 0 in P(a), T, — M annihilates no nonzero element in D
(f y(Te — NI) = 0 implies y = 0), since To(Ty — MI) ... (To — NI) = 0,
where A;, ..., A\ are the nonzero elements of P(a), we would get 7, = 0.
That is, 0 = yT, = ya — ay for every y € D forcing a € Z contrary to
hypothesis. Thus there is a A £ 0 in P(a) and an z % 0 in D such that
x(Tq — M) = 0. Writing this out explicitly, za — az — Az = 0; hence,
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zaz~' = a + Misin P(a) and is not equal to a since A > 0. This proves the

lemma.
CoroLLARY. In Lemma 7.9, zaz™ = a’ 5 a for some integer i.

Proof. Let a be of order s; then in the field P(a) all the roots of the poly-
nomial w* — 1 are 1, a, a2, ..., a*~! since these are all distinct roots
and they are s in number. Since (zaz™!)* = za’z™! =1, and since
zaz ™' € P(a), zaz™' is a root in P(a) of u* — 1, whence zaz™! = a'.

We now have all the pieces that we need to carry out our second proof of
Wedderburn’s theorem.

Let D be a finite division ring and let Z be its center. By induction we may
assume that any division ring having fewer elements than D is a commuta-
tive field.

We first remark that if a, b € D are such that b'a = ab® but ba = ab
then b* € Z. For, consider N(b%) = {x € D|b%x = zb?}. N(b?) is a subdivi-
sion ring of D; if it were not D, by our induction hypothesis, it would be
commutative. However, both a and b are in N(b%) and these do not com-
mute; consequently, N (b%) is not commutative so must be all of D. Thus
b€ Z.

Every nonzero element in D has finite order, so some positive power of it
falls in Z. Given w € D let the order of w relative to Z be the smallest posi-
tive integer m(w) such that w™™ € Z. Pick an element @ in D but not in Z
having minimal possible order relative to Z, and let this order be r. We
claim that r 1s a prime number for if r = r;ry with 1 < r; < r then o™ is not
in Z. Yet (a™)™ = a" € Z, implying that a™ has an order relative to Z
smaller than that of a.

By the corollary to Lemma 7.9 there is an z € D such that zaz™! =
ot £ a; thus z?az™? = z(@ar ™2™ = za's™ = (zaz™!)’ = (0 = @
Similarly, we get 2" taz =D = @’ However,  is a prime number thus by
the little Fermat theorem (corollary to Theorem 2.a), i"~! = 1 + uqr, hence
@il = gltuor = g¥0" = \g where A = ¢“0" € Z. Thus 2" 'a = Aaz"".
Since z & Z, by the minimal nature of 7, ™! cannot be in Z. By the re-
mark of the earlier paragraph since za  azr, z" ‘o # ax" and so A # 1.
Letb = 27~; thus bab—* = Aa; consequently, \"a” = (bab™")" = ba"d™" = a”
since a” € Z. This relation forces A" = 1. .

We claim that if ¥ € D then whenever y" = 1, then y = A" for some ¢,
for in the field Z(y) there are at most r roots of the polynomial »" — 1; the

elements 1, \, 2, ..., \" "' in Z are all distinct since X is of the prime order r
and they already account for » roots of ™ — 1 in Z(y), in consequence of
which y = \%.

Since A" =1, b" = Nb" = (A\b)" = (a""ba)" = ¢"'b’a from which we
get ab” = ba. Since a commutes with b” but does not commute with b, by
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the remark made earlier, b” must be in Z. By Theorem 7.b the multiplicative
group of nonzero elements of Z is cyclic; let v € Z by a generator. Thus
a” =y, b" = *; if j = sr then " = 4*", whence (a/v*)"” = 1; this would
imply that a/v° = A%, leading to a € Z, contrary to a & Z. Hence, r 1 j;
similarly 7 1 k. Let a; = a* and b; = b’; a direct computation from ba =
Nab leads to a;b; = ubia; where p = \7* € Z. Since the prime number
7 which is the order of X does not divide 7 or k&, N* » 1 whence u # 1. Note
that 4" = 1.

Let us see where we are. We have produced two elements a;, b; such that:

(1) alr = b]_r = & Z.
(2) a1b1 = ,ub1a1 with uw#El in Z.
@) u =1

We compute (al—lbl)’; (al"lbl)z = a1—1b101_1b1 = al'"l(blal“l)bl =
a1y (e Ti0y)by = pay 2,2 If we compute (a;'by)® we find it equal to
u! 120, 7%b,3. Continuing we obtain (a;7'by)" = plT2++—Dg =y, =
ptt2 =1 = rr=1/2 1f » is an odd prime, since u" =1, we get
w12 = 1 whence (a; 7*b;)" = 1. Being a solution of 4™ = 1, a; by = A*
so that b; = Ma;; but then wbia; = a;b; = bya;, contradicting u 5 1.
Thus if  is an odd prime number, the theorem is proved.

We must now rule out the case » = 2. In that special situation we have
two elements a;, b; € D such that a;%> = b;? = « € Z, a;b; = ubya; where
v =1 and p# 1. Thus u = —1 and a;b; = —bya; # byay; in conse-
quence, the characteristic of D is not 2. By Lemma 7.7 we can find elements
¢, 1 € Z such that 1+ ¢ — an? = 0. Consider (a; + ¢b; + nady)?; on
computing this out we find that (a; + by + na1b1)? = a(l + ¢ — an?) = 0.
Being in a division ring this yields that a; 4+ by + na;db; = 0; thus 0
2(112 = al(al -+ fbl + nalbl) -+ (a1 + g'bl -+ nalbl)al = 0. This contradic-
tion finishes the proof and Wedderburn’s theorem is established.

This second proof has some advantages in that we can use parts of it to
proceed to a remarkable result due to Jacobson, namely,

TaEOREM 7.0 (JACOBsON). Let D be a division ring such that for every
a € D there exists a positive integer n(a) > 1, depending on a, such that
a™® = q. Then D is a commutative field.

Proof. If a 5% 0 is in D then o™ = a and (2a)™ = 2a for some integers
n,m>1 Let s=m—1)(m—1)4+1; s> 1 and a simple calculation
shows that a* = @ and (2a)° = 2a. But (2a)* = 2%® = 2*a, whence 2°a = 2a
from which we get (2° — 2)a = 0. Thus D has characteristic p > 0.
If P C Z is the field having p elements (isomorphic to J,), since a is alge-
braic over P, P(a) has a finite number of helements, in fact, p” elements for
some integer . Thus, since a € P(a), a® = a. Therefore, if ¢ & Z all the
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conditions of Lemma, 7.9 are satisfied, hence there exists a b € D such that

) bab™! = a* + q.
By the same argument, 5" = b for some integer k£ > 1. Let W =
P .
€Dz = 21 21 pi;a'b’ where p;; € P}. W is finite and is closed under
i=] J=

addition. By virtue of (1) it is also closed under multiplication. (Verify!)
Thus W is a finite ring, and being a subring of the division ring D, it itself
must be a division ring (Problem 3). Thus W is a finite division ring; by
Wedderburn’s theorem it is commutative. But @ and b are both in W;
therefore, ab = ba contrary to ¢*b = ba. This proves the theorem.

Jacobson’s theorem actually holds for any ring R satisfying a™® = ¢ for
every a € R, not just for division rings. The transition from the division
ring case to the general case while not difficult involves the axiom of choice,
and to discuss it would take us too far afield.

PROBLEMS

1. If ¢ > 1 is an integer and (™ — 1)|(t* — 1), prove that m|n.

2. If D is a division ring, prove that its dimension (as a vector space)
over its center cannot be 2.

3. Show that any finite subring of a division ring is a division ring.

4, (a) Let D be a division ring of characteristic p > 0 and let G be a
finite subgroup of the group of nonzero elements of D under
multiplication. Prove that G is abelian. (Hint: consider the sub-
set {x € D|z = ZNgi;, ME P, g; € G}

(b) In part (a) prove that G is actually cyclic.
*5. (a) If R is a finite ring in which 2" = z, for all z € R wheren > 1
prove that R is commutative.
(b) If R is a finite ring in which 2 = 0 implies that z = 0, prove
that R is commutative.

*6. Let D be a division ring and suppose that a € D only has a finite
number of conjugates (i.e., only a finite number of distinct ztaz). Prove
that o has only one conjugate and must be in the center of D.

7. Use the result of Problem 6 to prove that if a polynomial of degree n
having coefficients in the center of a division ring has n + 1 roots in the
division ring then it has an infinite number of roots in that division ring.

*8, Let D be a division ring and K a subdivision ring of D such that
zKx~! C K for every z 0 in D. Prove that either K C Z, the center of
D or K = D. (This result is known as the Brauer-Cartan-Hua theorem.)
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*9, Let D be a division ring and K a subdivision ring of D. Suppose that
the group of nonzero elements of K is a subgroup of finite index in the group
(under multiplication) of nonzero elements of D. Prove that either D is
finite or K = D.

10. If 6 # 1 is a root of unity and if ¢ is a positive integer, prove that
lg —6]>¢— 1L

3. A Theorem of Frobenius. In 1877 Frobenius classified all division rings
having the field of real numbers in their center and satisfying, in addition,
one other condition to be described below. The aim of this section is to
present this result of Frobenius.

In Chapter 6 we brought attention to two important facts about the
field of complex numbers. We recall them here:

Facr 1. Every polynomial of degree n over the field of complex numbers
has all its » roots in the field of complex numbers.

Fact 2. The only irreducible polynomials over the field of real numbers
are of degree 1 or 2.

DerintTIoN. A division algebra D is said to be algebraic over o field F if :

(1) Fiscontained in the center of D;
(2) every a € D satisfies a nontrivial polynomial with coefficients in F.

If D, as a vector space, is finite-dimensional over the field F which is con-
tained in its center, it can easily be shown that D is algebraic over F (see
Problem 1, end of this section). However, it can happen that D is algebraic
over F yet is not finite-dimensional over F.

We start our investigation of division rings algebraic over the real field
by first finding those algebraic over the complex field.

Lemma 7.10. Let C be the field of complex numbers and suppose that the
diwision ring D s algebraic over C. Then D = C.

Proof. Suppose that a € D. Since D is algebraic over C, a® + a;a™™! +
<o+ apga + a, = 0 for some oy, @y, ..., @, in C.

Now the polynomial p(z) = 2" 4+ eyz" +- -+ ap_1 + a, in Clz],
by Fact 1, can be factored, in C[z], into a product of linear factors; that is,
p®) = (@ — A)(@ — Ng) ... (x — \y), where A\;, Ay, ..., A, are all in C.
Since C is in the center of D, every element of C' commutes with a, hence
p(@) = (@ — M)(@ —Ng) ... (@ —\,). But, by assumption, p(a) =0,
thus (@ — M\)(@ — N2) ... (@ — \,) = 0. Since a product in a division ring
is zero only if one of the terms of the product is zero, we conclude that
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a — N\ = 0 for some k, hence a = A\, from which we get that a € C.
Therefore, every element of D is in C; since C © D, we obtain D = C.

We are now in a position to prove the classic result of Frobenius, namely,

TreeoREM 7.8 (FROBENIUS). Let D- be a division ring algebraic over F,
the field of real numbers. Then D is isomorphic to one of: the field of real
numbers, the field of complex numbers, or the division ring of real quaternions.

Proof. The proof consists of three parts. In the first, and easiest, we dis-
pose of the commutative case; in the second, assuming that D is not com-
mutative, we construct a replica of the real quaternions in D; in the third
part we show that this replica of the quaternions fills out all of D.

Suppose that D # F and that a is in D but not in F. By our assumptions,
a satisfies some polynomial over F, hence some irreducible polynomial over
F. In consequence of Fact 2, a satisfies either a linear or quadratic equation
over F. If this equation is linear, @ must be in F contrary to assumption. So
we may suppose that a> — 2aa + 8 = 0 where o, 8 € F. Thus (¢ — a)? =
a? — B; we claim that o — 8 < 0 for, otherwise, it would have a real
square root 6 and we would have ¢ — @ = =6 and so & would be in F.
Since o® — B < 0 it can be written as —+? where v € F. Consequently

N2
(@ — )2 = —~2, whence (a a) = ~1. Thus if a € D, a € F we can
Y

2
a —
find real a, v such that ( a) = —1.
Y

. a —
If D is commutative, pick a € D, a € Fandlet ¢ = ———;ﬁ where «, v

in F are chosen so as to make 42 = —1. Therefore D contains F(7), a field
isomorphic to the field of complex numbers. Since D is commutative and
algebraic over F it is, all the more so, algebraic over F(7). By Lemma 7.10
we conclude that D = F(3). Thus if D is commutative it is either F or F(3).

Assume, then, that D is not commutative. We claim that the center of D
must be exactly F. If not there is an a in the center, a not in . But then for

2
a - . .
some o, vy € F, < a> = —1 so that the center contains a field isomor-
Y

phic to the complex numbers. However, by Lemma 7.10 if the complex num-
bers (or an isomorph of them) were in the center of D then D = C forcing
D to be commutative. Hence F is the center of D.

a—oa ;
satisfies 2 = —1.

Let a € D, a € F; for some o, y € F, 1 = "
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Since ¢ € F, 7 is not in the center of F. Therefore there is an element b € D
such that ¢ = bi — 1b £ 0. We compute ic + ¢i; ic + ¢ = 2(bz — ib) +
(bt — 9b)i = b5 — 4°b + bs? — b5 = 0 since 2 = —1. Thus ic = —ci;
from this we get ic> = —c(ic) = —c(—cf) = ¢%, and so ¢ commutes with
i. Now c satisfies some quadratic equation over F, ¢ 4+ A¢ + p = 0. Since
¢ and p commute with 4, A\c must commute with ¢; that is, At = i\¢c =
Me = —M\ci, hence 2\et = 0, and since 2¢7 # 0 we have that A = 0. Thus

¢? = —u; since ¢ € F (for ¢i = —ic # ic) we can say, as we have before,
¢
that uis positive and so u = »® where » € F. Therefore ¢ = —»%;letj = -
Then j satisfies: v
2
VfEA===-1
14
c ¢ ct+dc
@ p+yg=-1+i-= =0
v 14 4

Let k& = ¢j. The 1, 7, k£ we have constructed behave like those for the qua-
ternions, whence T = {ag + ;7 + asj + ask|ag, o, ag, ag € F} forms a
subdivision ring of D isomorphic to the real quaternions. We have produced
a replica, T, of the division ring of real quaternions in D!

Our last objective is to demonstrate that T = D.

If » € D satisfies 7> = —1 let N(r) = {z € D|ar = rz}. N(r) is a sub-
division ring of D; moreover r, and so all ag + ay7, ag, a3 € F, are in the
center of N (r). By Lemma 7.10 it follows that N (r) = {aq + oy | ap, 1 € F}.
Thus if zr = rz then z = ay + o7 for some ap, @ in F.

a .
satisfies

Suppose that v € D, w € F. For some o, 8 € F, w = ¢

w® = —1. We claim that wi + iw commutes with both ¢ and w; for

t(wi + w) = wi + w = wi + wi® = (Gw + wi)s since ¥ = —1.
Similarly w(wt 4 w) = (w¢ 4+ @w)w. By the remark of the preceding para-~
graph, wi + 1w = oy + 17 = ap + ayw. If w & T this last relation forces
a; = 0 (for otherwise we could solve for w in terms of 7). Thus wi + tw =
@y € F. Similarly wj + jw = 8o € F and wk + kw = vo € F. Let

z=w+——z+@ +—y—qk.

2
Then

zi+¢z=wi+m+%(i2 2)+—(gz+zj)+ > (ki + i)

=ay— oy = 0;

similarly 27 4+ jz = 0 and 2k + k2 = 0. We claim these relations force z to
be 0. For 0 = 2k + kz = 2ij + ijz = (2t + 12)j + ¢(jz — 2j) = i(jz — 2))
since #¢ + 72 = 0. However ¢ ¢ 0, and since we are in a division ring, it
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follows that jz — 2j = 0. But jz + 2j = 0. Thus 2j2z = 0, and since 25 % 0
we have that z = 0. Going back to the expression for z we get

Bo .

+ 24+
w4 —17+ —
2 2'7

+ 2=y,
2

whence w € T, contradicting w € T. Thus, indeed, w € 7. Since w =
U — a
LA
isin T Since T C D we conclude that D = T'; because T is isomorphic to
the real quaternions we now get that D is isomorphic to the division ring
of real quaternions. This, however, is just the statement of the theorem.

, = Bw + aand so u € T. We have proved that any element in D

PROBLEMS

1. If the division ring D is finite-dimensional, as a vector space, over the
field F' contained in the center of D, prove that D is algebraic over F.

2. Given an example of a field K algebraic over another field F but not
finite-dimensional over F.

3. If A is a ring algebraic over a field F and A has no zero divisors prove
that A is a division ring.

4. Integral Quaternions and the Four-Square Theorem. In Chapter 3 we
considered a certain special class of integral domains called Euclidean rings.
When the results about this class of rings were applied to the ring of Gaus-
sian integers we obtained, as a consequence, the famous result of Fermat
that every prime number of the form 4n 4 1 is the sum of two squares.

We shall now consider a particular subring of the quaternions which, in
all ways except for its lack of commutativity, will look like a Euclidean ring.
Because of this it will be possible to explicitly characterize all its left-ideals.
This characterization of the left-ideals will lead us quickly to a proof of the
classic theorem of Lagrange that every positive integer is a sum of four
squares.

Let Q be the division ring of real quaternions. In @ we now proceed to
introduce an adjoint operation, *, by making the

DerFiNiTioN. For z = ag + a1 + agj + agk in Q the adjoint of z, de-
noted by z*, is defined by z* = ag — eyt — agj — ask.

LemMma 7.11. The adjoint in Q satisfies

1) 2** ==z
(2) (8x + yy)* = &z* + yy*
8) (zy)* = y*z*

for all z, y in Q and all real & and vy.
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PTOOf. If 2= 2} + 01.11. + azj + agk then z* = oy — 0117: - Olzj - 0(3’0,
whence z** = (£*)* = ap + a1? + asj + ask, proving (1).

Let 2 = ap + oy? + apjf + ask and y = By + B¢ + B2j + Bk be in Q
and let 6 and v be arbitrary real numbers. Thus éx + vy = (8ap + vB0) +
(81 + vB1)% + (das + vBs)j + (8az + vB3)k, therefore by the definition
of the %, (82 4 vy)* = (dap + vBo) — (8 + ¥B1)% — (daa + ¥B2)j —
(das + ¥B3)k = 8(ap — aut — apj — agk) + v(Bo — Bit — B2j — Bsk) =
dz* + yy*. This, of course, proves (2).

In light of (2), to prove (3) it is enough to do so for a basis of @ over the
reals. We prove it for the particular basis 1, 7, 7, k. Now ¢ = k hence (#))* =
k* = —Fk = ji = (—j)(—1) = j%* Similarly (k)* = k**, (jk)* = k*j*.
Also (3)* = (—=1)* = —1 = (5*)?, and similarly for j and k. Since (3) is
true for the basis elements and (2) holds, (3) is true for all linear combina~-
tions of the basis elements with real coefficients, hence (3) holds for arbi-
tary z and y in Q.

Derinrrion. If z € Q then the norm of z, denoted by N (z), is defined by
N(z) = zz*

Note thatif z = ag + 1% + apj + ask then N(z) = 2z* = (g + 17 +
agj + ask)(ag — ayi — o] — agk) = ap? + a2 + @ + as?; therefore
N(0) = 0 and N(z) is a positive real number for £ % 0 in Q. In particular,

*

for any real number a, N(a) = o?. If £ ¢ 0 note that 2™ = NG z*,
z

Lemma 7.12. Forall 2, y € Q, N(zy) = N(z)N (y).

Proof. By the very definition of norm, N(zy) = (zy)(zy)*; by part (3)
of Lemma 7.11, (zy)* = y*z* and so N(zy) = zyy*z*. However, yy* =
N (y) is a real number, and thereby it is in the center of Q; in particular it
must commute with z*. Consequently N(zy) = z(yy*)z* = (22*)(yy*) =
N@)N(y).

As an immediate consequence of Lemma 7.12 we obtain

Levma 7.13 (LacraNGE IDENTITY). If ag, ay, as, a3 and Bo, B1, B, Bs are
real numbers then (ao® + o + as? + as?)(Bo? + B2 + B2 + B2 =
(Bo — 1By — asBe — asBs)® + (o1 + aifo + @aBs — asfa)® +
(@B — @183 + asBo + a381)® + (@oBs + 1By — By + asfo)’.

Proof. Of course there is one obvious proof of this result, namely, multiply
everything out and compare terms.
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However, an easier way both to reconstruct the result at will and, at the
same time, to prove it is to notice that the left-hand side is NV (z)N (y) while
the right-hand side is N(zy) where ¢ = ay + 0% + apj + ok and y =
Bo + B1% + B2j + Bsk. By Lemma 7.12 N(z)N(y) = N(zy), ergo the La-
grange identity!

The Lagrange identity says that the sum of four squares times the sum
of four squares is again, in a very specific way, the sum of four squares. A
very striking result of Adolf Hurwitz says that if the sum of n squares times
the sum of n squares is again a sum of n squares, where this last sum has
terms computed bilinearly from the other two sums, then n = 1, 2, 4, or 8.
There is, in fact, an identity for the product of sums of eight squares but
it is too long and cumbersome to write down here.

Now is the appropriate time to introduce the Hurwitz ring of integral
quaternions. Let ¢ = 3(1 +¢+ 7+ %) and let

H = {mo} + myi 4 maj + mgk|mg, my, mg, ms integers}.

Lemma 7.14. H is a subring of Q. If x € H then z* € H and N(z) is a
positive integer for every nonzero x in H.

We leave the proof of Lemma 7.14 to the reader. It should offer no diffi-
culties.

In some ways H might appear to be a rather contrived ring. Why use the
quaternions {? Why not merely consider the more natural ring Qo =
{mgo + mit + moj + mak|mo, my, mg, mz are integers}? The answer is that
Qo is not large enough, whereas H is, for the key lemma which follows to
hold in it. But we want this next lemma to be true in the ring at our disposal
for it allows us to characterize its left-ideals. This, perhaps, indicates why
we (or rather Hurwitz) chose to work in H rather than in Q,.

LemMMa 7.15 (Lerr-DivisioN ALcorITEM). Let a and b be wn H with
b 5% 0. Then there exist two elements ¢ and d in H such that @ = c¢b + d
and N(d) < N(b).

Proof. Before proving the lemma, let’s see what it tells us. If we look back
in the section in Chapter 3 which deals with Euclidean rings, we can see
that Lemma 7.15 assures us that except for its lack of commutativity H
has all the properties of a Euclidean ring. The fact that elements in H may
fail to commute will not bother us. True, we must be a little careful not to
jump to erroneous conclusions; for instance a = ¢b + d but we have no
right to assume that a is also equal to bc + d for b and ¢ might not commute.
But this will not influence any argument that we shall use.
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In order to prove the lemma we first do so for a very special case, namely,
that one in which ¢ is an arbitrary element of H but b is a positive integer
n. Suppose that a = to¢ + 412 + o7 + {3k where to, 8y, s, t3 are integers and
that b = n where n is a positive integer. Let ¢ = zof + 212 + 22J + 23k
where g, %1, 79, T3 are integers yet to be determined. We want to choose
them in such a manner as to force N(a — cn) < N(n) = n® But

1  + 74k 14+7i+7+F%
— nx T — nxyj — nrsk
= 3(ty — nxo) + S0 + 2t — n(Eo + 221))0
+ 3t + 261 — nty + 222))j + 3o + 2tz — n(to + 223))k.

If we could choose the integers zo, =1, %2, z3 in such a way as to make
lto — nzo| < 3m, |to+ 26 —nlo+22) [ S n, [t + 2t — nlto + 225) | <
and |y + 2¢3 — n(ty + 2x3) | < n then we would have

(to — mo)? + (to + 2t — n(to + 221))° e
1 4
< Fon’ + In” + §n” + §n® <n’ = N(w),

which is the desired result. But now we claim this can always be done:

N — ¢n) =

’

n n
(1) There is an integer z, such that {y = zon + r where — > <r< 5 ;
n
for this zg, |ty — zon| = |r| < r

(2) There is an integer k such that to + 2t = kn +rand 0 <r < n. If
k — to is even, put 2z; = k — ty; then ) + 2¢; = (2zy + to)n + r
and |t + 2t — (221 + tg)n| = r < n. If, on the other hand, & — ¢y is
odd, put 2z; =k — g+ 1;thus ity +2f, = Qz; + o — I)n + 7 =
(2zy + to)n + r — n, whence |t + 2¢; — (221 + to)n|=|r—n|<n
since 0 < r < n. Therefore we can find an integer z; satisfying
lto + 2t — (221 + to)n| < .

(3) Asin (2) we can find integers z; and z3 which satisfy |fy + 2t —
(222 4 to)n| < m and |ty + 2t3 — (223 + to)n| < n respectively.

In the special case in which a is an arbitrary element of H and b is a posi-
tive integer we have now shown the lemma, to be true.

We go to the general case wherein a and b are arbitrary elements of H
and b > 0. By Lemma 7.14 n = bb* is a positive integer thus there exists a
¢ € H such that ab* = ¢n 4 d; where N(d;) < N(n). Thus N(ab* — cn) <
N(n); but n = bb* whence we get N(ab* — cbb*) < N(n), and so
N((@ — cb)b*) < N(n) = N(b*). By Lemma 7.12 this reduces to
N(a — d)N(b*) < N(Ob)N(®*); since N(b*) > 0 we get N(a — ¢b) < N(b).
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Putting d = @ — ¢b we have a = ¢b + d where N(d) < N(b). This com-
pletely proves the lemma.

As in the commutative case we are able to deduce from Lemma 7.15

Lemma 7.16. Let L be a left-ideal of H. Then there exists an element w € L
such that every element in L is a left-multiple of w; in other words, there exists
a v € L such that every x € L s of the form & = ru where r € H.

Proof. If L = (0) there is nothing to prove, merely put » = 0.

Therefore we may assume that L has nonzero elements. The norms of the
nonzero elements are positive integers (Lemma 7.14) whence there is an
element % # 0 in L whose norm is minimal over the nonzero elements of L.
If 2 € L, by Lemma 7.15, 2 = cu + d where N(d) < N(u). However d
is in L because both z and u, and so cu, are in L which is a left-ideal. Thus
N(d) = Oand sod = 0. From this z = cu is a consequence.

Before we can prove the four-square theorem, which is the goal of this
section, we need one more lemma, namely

Lemma 7.17. If a € H then o™ € H if and only if N(a) = 1.

Proof. If both ¢ and ¢~ are in H, then by Lemma 7.14 both N(a) and
N(a™Y) are positive integers. However, aa™ = 1, whence, by Lemma 7.12,
N(@N(@™) = N(aa™) = N{(1) = 1. This forces N(a) = 1.

On the other hand, if o € H and N(a) = 1, then ae* = N(a) = 1 and
so a~! = a* But, by Lemma 7.14, since a € H we have that * € H, and
so a~! = a* is also in H.

We now have determined enough of the structure of H to use it effectively
to study properties of the integers. We prove the famous, classical theorem
of Lagrange,

THEOREM 7.F. Every positive integer can be expressed as the sum of squares
of four integers.

Proof. Given a positive integer n we claim in the theorem that n = o2 +
212 + 2,2 + 52 for four integers zo, 21, %3, 23. Since every integer factors
into a product of prime numbers, if every prime number were realizable as
a sum of four squares, in view of Lagrange’s identity (Lemma 7.13) every
integer would be expressible as a sum of four squares. We have reduced the
problem to consider only prime numbers n. Certainly the prime number 2
can be written as 12 + 12 + 0% + 0% as a sum of four squares. _

Thus, without loss of generality, we may assume that n is an odd prime
number. As is customary we denote it by p.
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Consider the quaternions W, over J,, the integers mod p; W, =
{ag + ot + agf + aghl|ag, a1, as, az € J,}. Wy is a finite ring; moreover,
since p % 2 it is not commutative for 4 = —ji = ji. Thus, by Wedder-
burn’s theorem it cannot be a division ring, whence by Problem 1 at the
end of Section 5 in Chapter 3, it must have a left-ideal which is neither (0)
nor W,.

But then the two-sided ideal V in H defined by V = {zof + 212 + 227 +
x3k|p divides all of xg, x1, z2, 3} cannot be a maximal left-ideal of H, since
H/V is isomorphic to W,. (Prove!) (If V were a maximal left-ideal in H,
H/V, and so W,, would have no left-ideals other than (0) and H/V).

Thus there is a left-ideal L of H satisfying: L ¢ H, L &£ V,and LD V.
By Lemma 7.16, there is an element € L such that every element in Lis a
left-multiple of . Since p € V, p € L, whence p = cu for some ¢ € H.
Since u & V, ¢ cannot have an inverse in H, otherwise u = ¢™'p would be
in V. Thus N(c) > 1 by Lemma 7.17. Since L # H, « cannot have an in-
verse in H, whence N(u) > 1. Since p = cu, p?> = N(p) = N(cu) =
N(c)N(w). But N(c) and N(u) are integers, since both ¢ and v are in H,
both are larger than 1 and both divide p?. The only way this is possible is
that N(¢) = N(u) = p.

Since u € H,u = mo{ + mit -+ maoj + mgk where mg, my, mg, mg are in-
tegers; thus 2u = 2mo{ + 2myt + 2mgj + 2msk = (mo + mot + moj + mok) +
2myt + 2mgef + 2mzk = mo + @my + mg)i + @my + mg)j +
(2mg + mo)k. Therefore N(2u) = mo> + (2my + mg)® + (2mg + mg)? +
(2m3 + mg). But N(Qu) = N(2)N(u) = 4p since N(2) = 4 and N(u) = p.
We have shown that 4p = mg? + (2my + mg)® + (Qme + me)? +
(2mg + mo)?. We are almost done.

To finish the proof we introduce an old trick of Euler’s: If 2a = 24 +
z12 + 2,7 + x32 where a, 2, 21, %5 and z3 are integers, then a = yo? + y,2
+ y2® + y3? for some integers yo, ¥1, Y2, ¥3. To see this note that, since 2a
is even, the 2’s are all even, all odd or two are even and two are odd. At any
rate in all three cases we can renumber the 2’s and pair them in such a way
that
Zo + 21 Zo — &1 Te + 3 Ty — 3

g BT Ty = » and y3 = 5

Yo =

are all integers. But

Yoo + y1® + yo® + ys?

() (2 (2 (22
$(ro? + 217 + 2% + 25?)

3(2a)

a.

]

I

]
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. Since 4p is a sum of four squares, by the remark just made 2p also is;
since 2p is a sum of four squares, p also must be such a sum. Thus p = a2 +

2 2 2 : ;
a:” + a” + a3® for some integers ao, a1, as, az and Lagrange’s theorem is
established.

This theorem itself is the starting point of a large research area in number
theory, the so-called Waring problem. This asks if every integer can be
written as a sum of a fixed number of kth powers. For instance it can be
shown that every integer is a sum of nine cubes, nineteen fourth powers,
etc. The Waring problem was shown to have an affirmative answer, in this
century, by the great mathematician Hilbert.

PROBLEMS

1. Prove Lemma 7.14.

2. Find all the elements a in Qq such that a;™! is also in Q.

3. Prove that there are exactly 24 elements a in H such that a™! is also in
H. Determine all of them.

4. Give an example of an ¢ and b, b # 0, in Qo such that it is impossible
to find ¢ and d in Q, satisfying a = ¢b + d where N(d) < N (D).

5. Prove that if @ € H then there exist integers «, 8 such that a® + aa +
8 =0.

6. Prove that there is a positive integer which cannot be written as the
sum of three squares.

*7. Exhibit an infinite number of positive integers which cannot be writ-

ten as the sum of three squares.

Supplementary Reading

For a deeper discussion of finite fields: ALBERT, A. A., Fundamental Concepts
of Higher Algebra. University of Chicago Press, Chicago, 1956.

For many proofs of the four-square theorem and a discussion of the Waring
problem: Harpy, G. H., and WrieaT, E. M., An Infroduction to the
Theory of Numbers, second edition. Clarendon Press, Oxford, England,
1945.

For another proof of the Wedderburn theorem: Arrivn, E., “Uber einen
Satz von Herrn J. H. M. Wedderburn,” Abhandlungen, Hamburg
Mathematisches Seminar, Vol. 5 (1928), pages 245-50.
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direct sum of, 161
finitely-generated, 161
fundamental theorem on
finitely-generated, 162
homomorphism(s) of, 161,
165
irreducible, 165
isomorphism of, 165
order of element in, 166
over R, 160
quotient, 161, 165
rank of, 162
Modulus, 21
Monic polynomial, 121
Morgan rules, De, 8
Morzxin, 105, 129
Multiple, least common, 22
Multiple root, 192
Multiplicative system, 104
Multiplicity :
of aroot, 179
of characteristic root, 260
Mutually disjoint, 4

171,

n X n matrix(ces) over F,
234

algebra of all, 235
n-variables:
field of rational functions
in, 123
polynomials in, 199
ring of polynom1als in, 123
Newton’s identities, 208
Nilpotence, index of 250
Nilpotent, 224
Nilpotent linear transforma-
tion(s), 248, 249
invariants of, 252 253, 255
Nivew, 176, 215
Non-abehan 27
Nonassociative rings, 84
Nonnegative linear transfor-
mations, 303, 304
Nontrivial subgroups 33
Norm, 153

Norm of quaternions, 330

Normal extension, 202, 204,
206

Normal linear transforma-
tion, 294, 300, 302, 303

Normal subgroup(s) 41, 42

nth root of unity, pmmmve

208
Null set, 2
Number(s) :
algebraic, 173-175
constructxble, 187
prime, 18
transcendental 173, 175

0Odd permutation, 68
One-to-one correspondence,
14
One-to-one mapping(s), 12
set of all, 15, 26
Onto mappings, 12
Operation, closure under, 26
Orbit of S under theta, 65
Order:
of an element, 37
of an element in a module,
166
of G, 27
Orthogonal 154, 306, 307
complement, 154
matrices, 305
Orthogonalization  process,
Gram-Schmidt, 155
Orthonormal basis, 296
Orthonormal set, 155
Outer automorphisms of G,
group of, 59

p-Sylow subgroup, 79
Pappus theorem, 318
Partition(s), 164 255
of an mteger 75
Pentagon, regular, 190
Perfect field, 195
Period of an element, 37
Permutation:
even, 67
groups, 64
matrices, 240
odd, 68
Perpendlculanty, 151, 154
phl-functlon Euler, 37 60,
186, 2
Plgeon-hole principle, 90
PoLvarp, 214
Polynomla.l(s) :
characteristic, 266
content of, 120
cyclotomlc 208, 320
degree of, 115
division algomthm for, 116
in the n-variables, 199



Polynomial(s) cont.
irreducible, 117
minimal, 171, 219
monie, 121
over ring, 123
over the rational field, 120
primitive, 120
ring(s) (of), 113, 114
rings over commutative
rings, 122
roots of, 179
symmetric, 202
value of, 169
Positive, linear transforma-
tion, 303, 304
definite, 303
Prime:
primitive root of, 318
relatively, 108
Prime element, 107, 123
Prime ideal, 128
Prime number, 18
Primitive, 124
nth root of unity, 208, 320
polynomial, 120
root of a prime, 318
Principal ideal ring, 105
Principle, pigeon-hole, 90
Product:
Cartesian, 5
dot, 151
inner, 151, 152
of mapping, 13
Product space(s), inner, 150,
152, 294
Projection, 11
Proper subset, 2

Quadratic forms, real, 308
Quadratic residue, 80, 318
Quaternions, 97, 180, 187, 248,
318, 327

adjoint, 329

integral, 329

norm of, 330
Quotient group(s), 41, 44
Quotient module, 161, 165
Quotient ring(s), 94, 96, 98
Quotient space, 134
Quotient structure, 43
Quotients, field of, 101, 103

R-module, 160
unital, 160
Radical of ideal, 128
Radicals:
solvable by, 208, 209, 212—
214
Range of linear transforma-
tion, 221

Rank, 312
of linear transformation,
222
of module, 162
of system of linear equa-
tions, 149
Rational canonical
262, 263, 266
Rational field, polynomials
over, 120
Rational functions, 116, 199
field of, 202
symmetrie, 199, 200
Real quadratic forms, 308
Real quaternions, 87
Real symmetric matrix, 305
Real-valued, continuous
functions, ring of all, 100
Real vector space, 151
Reflexivity of relations, 6
Regular, hexagon, 190
Regular linear transforma-
tion, 220
Regular pentagon, 190
Regular septagon, 190
Regular 15-gon, 191
Regular 17-gon, 191
Regular 9-gon, 191
Relation(s) :
binary, 11
equivalence, 6
reflexivity of, 6
symmetry of, 6
transitivity of, 6
Relatively prime, 108
Relatively prime integers, 18
Remainder theorem, 179
Residue, quadratic, 80, 318
Resolution, spectral, 308
Restriction of mapping to a
subset, 16
Rigl'g‘;4 coset of a subgroup,

Right ideal, 97
Right-invertible, 219
Ring(s), 83, 218
associative, 83
Boolean, 91
commutative, 84
division, 88
Euclidean, 104, 329
homomorphisms of, 92
isomorphism of, 94
nonassociative, 84
of all the real-valued, con-
tinuous functions, 100
of linear transformations,
133
of polynomials, 114
of polynomials in the n-
variables, 123
of 2 X 2 rational matrices,

form,

polynomial, 113

INDEX 341

Ring(s) cont.
polynomial over, 123
quotient, 96, 98
unit in, 106
with unit element, 84

Root(s), 179, 191
characteristic, 225, 242-244,

246
multiple, 192
multiplicity of, 179
of polynomials, 179

Row of matrix, 233

Rule, Cramer’s, 287, 288

Rules, De Morgan, 8

SamuEL, 129

Scalar(s), 131, 151

Scalar matrices, 235

SCHNEIDER, 176

Schur’s lemma, 165

Scha,rg’ inequality, 153, 154,
1

Second dual, 147
Secular equation, 290
SEGAL, 82
Self-adjoint, 299
Separable element, 195
Separable extension, 195
Septagon, regular, 190
Set(s) :

difference, 5

disjoint, 4

empty, 2

index, 4

infinite, 16

intersection of, 3

null, 2

of all one-to-one map-

pings, 15, 26

of integers mod n, 22

of subsets, 11

orthonormal, 155

theory, 2

under mapping, image of,

12

union of, 2, 4
S1EGEL, 176, 215
Signature, 310, 312
Similar, 241
Similarity class, 241
Simple extension, 193, 194
Simple group, 51
Singular, 221
Singular linear transforma-
tion, 220
Skew-field, 88
Skew-Hermitian, 299
Skew-symmetric matrix, 275
Solvable by radicals, 208,
209, 212-214
Solvable group, 80, 210
Space(s):
complex vector, 151



342 INDEX

Space(s) cont.
dual, 144, 146
inner product, 150, 152
quotient, 134
real vector, 151
vector, 130
Span, linear, 137
Spectral resolution, 308
Splitting field(s), 182, 184
187, 202, 204
Straight-edge and compass,
construction with, 187
Subgroup(s), 32
commutator, 210
conjugate, 81
generated by e, cyclie, 33
generated by G, 55
higher commutator, 211
nontrivial, 33
normal, 41, 42
p-Sylow, 79
right coset of, 34
trivial, 33
Subgroup of G:
characteristic, 59
commutator, 55
generated by W, 34
Submodule, 161
Subset(s), 2
diagonal, 5
proper, 2
restriction of mapping to,
16
set of, 11
Subspace, 132
annihilator of, 148
cyclic, 252
invariant, 242, 247
Sum:
external direct, 134
internal direct, 134
Syrow, 74, 78
Sylow’s theorem, 52, 78, 79,
81, 82

Sylvester’s law, 310
Sylvester’s law of inertia, 309
Symmetric difference of two
sets, 8
Symmetric functions,
mentary, 200, 202
Symmetric group(s), 75, 280
of degree n, 27, 64, 200, 211,
214, 240
Symmetric matrix, 275
real, 305
Symmetric polynomial(s),
202

ele-

theorem on, 202
Symmetric rational func-
tions, 199, 200
field of, 202
Symmetry of relations, 6
System, multiplicative, 104

System of linear equations:
rank of, 149
determinant of, 287

Theorem:
Brauer-Cartan—Hua, 325
Cauchy’s, 51, 7
Cayley-Hamxlton 219, 267,
292, 293

Cayley’s, 60

Desargues’, 318

four-square, 329

Jacobson’s, 325

Lagrange’s, 36, 37, 335

little Fermat, 323

of algebra, fundamental,
295

of Frobenius, 326

of Lagrange, 333

on symmetric polynomials,
202

Pappus’, 318

remainder, 179

Sylow’s, 52, 78, 79, 81, 82

unique factorization, 19,
108

Wedderburn’s,
320, 334

Wilson’s, 80, 113

314, 318,

eory:
Galoiy’, 184, 195, 203
matrix, 229
of matrices, 216
set, 2
TrOoMPSON, 51
Trace, 271, 278
of a matrix, 271
of linear transformation,
272
Transcendental number(s),
173,175
Transformation(s) :
algebra of linear, 217
Hermitian, 299
Hermitian linear, 302
invariants of nilpotent,
252, 253
invariants of nilpotent lin-
ear, 255
invertible linear, 220
linear, 218
nilpotent, 248
nilpotent linear, 249
nonnegative linear, 303
normal, 300
normal linear, 302
range of linear, 221
rank of linear, 222
regular linear, 220
ring of linear, 133
singular lmear 220
unitary, 296, 302

Transitivity of relations, 6
Transpose, 271

of a matrix, 274
Transpositions, 67
Triangle inequality, 159
Triangular, 241

form, 241, 244

matrix, 241-244
Trisecting an angle, 189
Trivial subgroups, 33
Two sets:

equality of, 2

symmetric difference of, 8

Union of sets, 2, 4

Unique factorization domain,
124

Unique factorization theo-

rem, 19, 108

Unit in ring, 106

Unit in matrix algebra, 235

Unital B-module, 160

Unitary transformation, 294,
296, 298, 300, 302, 303

Unity, primitive nth root of,
208, 320

Value of polynomial, 169

Van pEr WAERDBN, 214

VANDIVER, 319

Vector(s), 131
characteristic, 226
linearly dependent, 137

Vector space(s), 130
complex, 151
real, 151
homomorphism of, 132
isomorphism of, 133

‘WAERDEN, VAN DER, 214

Waring problem, 335

‘WEDDERBURN, 313, 319

Wedderburn’s theorem, 314,
318, 320, 334

‘WEISNER, 214

WiELANDT, 78

Wilson’s theorem, 80, 113

WricHT, 335

ZARr1SKI, 129
Zero-divisor, 88
Zero-matrix, 235

15-gon, regular, 191

17-gon, regular, 191

2 X 2 rational matrices, ring
of, 86

9-gon, regular, 191
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