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Introduction

Homological algebra is a tool used to prove nonconstructive existence theo-
rems in algebra (and in algebraic topology). It also provides obstructions to
carrying out various kinds of constructions; when the obstructions are zero,
the construction is possible. Finally, it is detailed enough so that actual cal-
culations may be performed in important cases. The following simple ques-
tion (taken from Chapter 3) illustrates these points: Given a subgroup A of an
abelian group B and an integer n, when is nA the intersection of A and nBl
Since the cyclic group Z/n is not flat, this is not always the case. The obstruc-
tion is the group Tor(#/A, 2/n), which explicitly is [x € B/A : nx = 0}.

This book intends to paint a portrait of the landscape of homological alge-
bra in broad brushstrokes. In addition to the "canons" of the subject (Ext, Tor,
cohomology of groups, and spectral sequences), the reader will find introduc-
tions to several other subjects: sheaves, lim1, local cohomology, hypercoho-
mology, profinite groups, the classifying space of a group, Affine Lie alge-
bras, the Dold-Kan correspondence with simplicial modules, triple cohomol-
ogy, Hochschild and cyclic homology, and the derived category. The historical
connections with topology, regular local rings, and semisimple Lie algebras
are also described.

After a lengthy gestation period (1890-1940), the birth of homological al-
gebra might be said to have taken place at the beginning of World War II with
the crystallization of the notions of homology and cohomology of a topolog-
ical space. As people (primarily Eilenberg) realized that the same formalism
could be applied to algebraic systems, the subject exploded outward, touching
almost every area of algebra. This phase of development reached maturity in
1956 with the publication of Cartan and Eilenberg's book [CE] and with the
emergence of the central notions of derived functors, projective modules, and
injective modules.

XI
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xii Introduction

Until 1970, almost every mathematician learned the subject from Cartan-
Eilenberg [CE]. The canonical list of subjects (Ext, Tor, etc.) came from this
book. As the subject gained in popularity, other books gradually appeared on
the subject: MacLane's 1963 book [MacH], Hilton and Stammbach's 1971
book [HS], Rotman's 1970 notes, later expanded into the book [Rot], and
Bourbaki's 1980 monograph [BX] come to mind. All these books covered the
canonical list of subjects, but each had its own special emphasis.

In the meantime, homological algebra continued to evolve. In the period
1955-1975, the subject received another major impetus, borrowing topolog-
ical ideas. The Dold-Kan correspondence allowed the introduction of simpli-
cial methods, lim1 appeared in the cohomology of classifying spaces, spec-
tral sequences assumed a central role in calculations, sheaf cohomology be-
came part of the foundations of algebraic geometry, and the derived category
emerged as the formal analogue of the topologists' homotopy category.

Largely due to the influence of Grothendieck, homological algebra became
increasingly dependent on the central notions of abelian category and derived
functor. The cohomology of sheaves, the Grothendieck spectral sequence, lo-
cal cohomology, and the derived category all owe their existence to these no-
tions. Other topics, such as Galois cohomology, were profoundly influenced.

Unfortunately, many of these later developments are not easily found by
students needing homological algebra as a tool. The effect is a technological
barrier between casual users and experts at homological algebra. This book is
an attempt to break down that barrier by providing an introduction to homo-
logical algebra as it exists today.

This book is aimed at a second- or third-year graduate student. Based on the
notes from a course I taught at Rutgers University in 1985, parts of it were
used in 1990-92 in courses taught at Rutgers and Queens' University (the
latter by L. Roberts). After Chapter 2, the teacher may pick and choose topics
according to interest and time constraints (as was done in the above courses).

As prerequisites, I have assumed only an introductory graduate algebra
course, based on a text such as Jacobson's Basic Algebra I [BAI]. This means
some familiarity with the basic notions of category theory (category, functor,
natural transformation), a working knowledge of the category Ab of abelian
groups, and some familiarity with the category 7?-mod (resp. mod-/?) of left
(resp. right) modules over an associative ring R. The notions of abelian cat-
egory (section 1.2), adjoint functor (section 2.3) and limits (section 2.6) are
introduced in the text as they arise, and all the category theory introduced in
this book is summarized in the Appendix. Several of the motivating exam-
ples assume an introductory graduate course in algebraic topology but may
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Introduction xiii

be skipped over by the reader willing to accept that such a motivation exists.
An exception is the last section (section 10.9), which requires some familiarity
with point-set topology.

Many of the modern applications of homological algebra are to algebraic
geometry. Inasmuch as I have not assumed any familiarity with schemes or
algebraic geometry, the reader will find a discussion of sheaves of abelian
groups, but no mention of sheaves of Ox-modules. To include it would have
destroyed the flow of the subject; the interested reader may find this material
in [Hart].

Chapter 1 introduces chain complexes and the basic operations one can
make on them. We follow the indexing and sign conventions of Bourbaki
[BX], except that we introduce two total complexes for a double complex: the
algebraists' direct sum total complex and the topologists' product total com-
plex. We also generalize complexes to abelian categories in order to facilitate
the presentation of Chapter 2, and also in order to accommodate chain com-
plexes of sheaves.

Chapter 2 introduces derived functors via projective modules, injective
modules, and ^-functors, following [Tohoku]. In addition to Tor and Ext, this
allows us to define sheaf cohomology (section 2.5). Our use of the acyclic
assembly lemma in section 2.7 to balance Tor and Ext is new.

Chapter 3 covers the canonical material on Tor and Ext. In addition, we dis-
cuss the derived functor lim1 of the inverse limit of modules (section 3.5), the
Kiinneth Formulas (section 3.6), and their applications to algebraic topology.

Chapter 4 covers the basic homological developments in ring theory. Our
discussion of global dimension (leading to commutative regular local rings)
follows [KapCR] and [Rot]. Our material on Koszul complexes follows [BX],
and of course the material on local cohomology is distilled from [GLC].

Spectral sequences are introduced in Chapter 5, early enough to be able to
utilize this fundamental tool in the rest of the book. (A common problem with
learning homological algebra from other textbooks is that spectral sequences
are often ignored until the last chapter and so are not used in the textbook
itself.) Our basic construction follows [CE]. The motivational section 5.3 on
the Leray-Serre spectral sequence in topology follows [MacH] very closely.
(I first learned about spectral sequences from discussions with MacLane and
this section of his book.) Our discussion of convergence covers several results
not in the standard literature but widely used by topologists, and is based on
unpublished notes of M. Boardman.

In Chapter 6 we finally get around to the homology and cohomology of
groups. The material in this chapter is taken from [Brown], [MacH], and [Rot].
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xiv Introduction

We use the Lyndon/Hochschild-Serre spectral sequence to do calculations in
section 6.8, and introduce the classifying space BG in section 6.10. The ma-
terial on universal central extensions (section 6.9) is based on [Milnor] and
[Suz]. The material on Galois cohomology (and the Brauer group) comes from
[BAII], [Sene], and [Shatz].

Chapter 7 concerns the homology and cohomology of Lie algebras. As
Lie algebras aren't part of our prerequisites, the first few sections review the
subject, following [JLA] and [Humph]. Most of our material comes from the
1948 Chevalley-Eilenberg paper [ChE] and from [CE], although the emphasis,
and our discussion of universal central extensions and Affine Lie algebras,
comes from discussions with R. Wilson and [Wil].

Chapter 8 introduces simplicial methods, which have long been a vital part
of the homology toolkit of algebraic topologists. The key result is the Dold-
Kan theorem, which identifies simplicial modules and positive chain com-
plexes of modules. Applied to adjoint functors, simplicial methods give rise
to a host of canonical resolutions (section 8.6), such as the bar resolution, the
Godement resolution of a sheaf [Gode], and the triple cohomology resolutions
[BB]. Our discussion in section 8.7 of relative Tor and Ext groups parallels
that of [MacH], and our short foray into Andre-Quillen homology comes from
[Q] and [Barr].

Chapter 9 discusses Hochschild and cyclic homology of fc-algebras. Al-
though part of the discussion is ancient and is taken from [MacH], most is new.
The material on differentials and smooth algebras comes from [EGA, IV] and
[Mat]. The development of cyclic homology is rather new, and textbooks on it
([Loday],[HK]) are just now appearing. Much of this material is based on the
articles [LQ], [Connes], and [Gw].

Chapter 10 is devoted to the derived category of an abelian category. The
development here is based upon [Verd] and [HartRD]. The material on the
topologists' stable homotopy in section 10.9 is based on [A] and [LMS].

Paris, February 1993
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1
Chain Complexes

1.1 Complexes of R -Modules

Homological algebra is a tool used in several branches of mathematics: alge-
braic topology, group theory, commutative ring theory, and algebraic geometry
come to mind. It arose in the late 1800s in the following manner. Let / and g
be matrices whose product is zero. If g • v = 0 for some column vector v, say,
of length n, we cannot always write v = f • u. This failure is measured by the
defect

d = n — rank(/) — rank(g).

In modern language, / and g represent linear maps

U -^> V - ^ * W

with gf = 0, and d is the dimension of the homology module

H = ker(g)/f(U).

In the first part of this century, Poincare and other algebraic topologists
utilized these concepts in their attempts to describe "n -dimensional holes" in
simplicial complexes. Gradually people noticed that "vector space" could be
replaced by "/^-module" for any ring R.

This being said, we fix an associative ring R and begin again in the category
mod-/? of right /^-modules. Given an /^-module homomorphism / : A —> B,
one is immediately led to study the kernel ker(/), cokernel coker(/), and
image im(/) of / . Given another map g: B —• C, we can form the sequence

(*) A -L B —> C.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.002
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:14:59, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.002
https:/www.cambridge.org/core


2 Chain Complexes

We say that such a sequence is exact (at B) if ker(g) = im(/) . This implies
in particular that the composite gf: A -> C is zero, and finally brings our
attention to sequences (*) such that gf = 0.

Definition 1.1.1 A chain complex C. of /^-modules is a family {Cn}nez of
/^-modules, together with jR-module maps d — dn\Cn^^ Cn-\ such that each
composite d o d: Cn -> Cn-2 is zero. The maps dn are called the differentials
of C.. The kernel of dn is the module of n-cycles of C, denoted Zn — Zn(C).
The image of dn+\\ Cn+i ->• Cn is the module of n-boundaries of C, denoted
#„ = Bn(C). Because d o d = 0, we have

for all n. The nth homology module of C. is the subquotient Hn(C) = Zn/Bn

of Cn. Because the dot in C is annoying, we will often write C for C .

Exercise 1.1.1 Set Cn = Z/8 for n > 0 and Cn = 0 for n < 0; for n > 0
let <4 send jc(mod8) to 4jc(mod8). Show that C. is a chain complex of
Z/8—modules and compute its homology modules.

There is a category Ch(mod-/?) of chain complexes of (right) /^-modules.
The objects are, of course, chain complexes. A morphism u.C. -> D is a
chain complex map, that is, a family of R-module homomorphisms un\Cn^>
Dn commuting with d in the sense that un-\dn = dn-\un. That is, such that
the following diagram commutes

[u

Exercise 1.1.2 Show that a morphism u: C ->• D. of chain complexes sends
boundaries to boundaries and cycles to cycles, hence maps Hn(C) -> Hn(D).
Prove that each Hn is a functor from Ch(mod-/?) to mod-^.

Exercise 1.1.3 (Split exact sequences of vector spaces) Choose vector spaces
[Bn, Hn}nej over a field, and set Cn = Bn 0 Hn 0 Bn-\. Show that the
projection-inclusions Cn —> #n_i C Cn-\ make {Cn} into a chain complex,
and that every chain complex of vector spaces is isomorphic to a complex of
this form.
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1.1 Complexes of R-Modules 3

Exercise 1.1.4 Show that {Hom#(A, Cn)} forms a chain complex of abelian
groups for every /^-module A and every R-module chain complex C. Taking
A = Zn, show that if Hn(HomR(Zn, C)) = 0, then Hn(C) = 0. Is the converse
true?

Definition 1.1.2 A morphism C. -» D. of chain complexes is called a quasi-
isomorphism (Bourbaki uses homologism) if the maps Hn{C) - • Hn{D) are
all isomorphisms.

Exercise 1.1.5 Show that the following are equivalent for every C.:

1. C is ejracf, that is, exact at every Cn.
2. C is acyclic, that is, Hn(C.) = 0 for all n.
3. The map 0 -» C. is a quasi-isomorphism, where "0" is the complex of

zero modules and zero maps.

The following variant notation is obtained by reindexing with superscripts:
Cn = C-n. A cochain complex C of /^-modules is a family {Cn} of R-
modules, together with maps dn\ Cn -> Cn+l such that dod = 0. Zn(C-) =
ker(dn) is the module of n-cocycles, Bn(C) = im^"" 1 ) c Cn is the mod-
ule of n-coboundaries, and the subquotient Hn(C) = Zn/Bn of Cn is the nth

cohomology module of C . Morphisms and quasi-isomorphisms of cochain
complexes are defined exactly as for chain complexes.

A chain complex C. is called bounded if almost all the Cn are zero; if
Cn = 0 unless a <n < &, we say that the complex has amplitude in [a, b]. A
complex C. is bounded above (resp. bounded below) if there is a bound b (resp.
a) such that Cn = 0 for all n > £ (resp. n < a). The bounded (resp. bounded
above, resp. bounded below) chain complexes form full subcategories of Ch
= Ch(/?-mod) that are denoted Ch^, Ch_ and Ch+ , respectively. The sub-
category Ch>o of non-negative complexes C. (Cn = 0 for all n < 0) will be
important in Chapter 8.

Similarly, a cochain complex C is called bounded above if the chain com-
plex C. {Cn = C~n) is bounded below, that is, if Cn = 0 for all large n\ C
is bounded below if C. is bounded above, and bounded if C. is bounded.
The categories of bounded (resp. bounded above, resp. bounded below, resp.
non-negative) cochain complexes are denoted Ch^, Ch~, Ch+ , and Ch-°,
respectively.

Exercise 1.1.6 (Homology of a graph) Let T be a finite graph with V vertices
(v\, • • •, vy) and E edges (e\, • • •, es)- If we orient the edges, we can form the
incidence matrix of the graph. This is a V x E matrix whose (ij) entry is +1
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4 Chain Complexes

if the edge ej starts at Vj, —1 if ej ends at vt, and 0 otherwise. Let Co be the
free R—module on the vertices, C\ the free R—module on the edges, Cn = 0
if n ^ 0, 1, and d: C\ —> Co be the incidence matrix. If T is connected (i.e.,
we can get from VQ to every other vertex by tracing a path with edges), show
that Ho(C) and H\(C) are free R—modules of dimensions 1 and V — E — 1
respectively. (The number V — E — 1 is the number of circuits of the graph.)
Hint: Choose basis {i>o, v\ — i>o, • • •, vy — VQ} for Co, and use a path from vo
to Vi to find an element of C\ mapping to V( — VQ.

Application 1.1.3 (Simplicial homology) Here is a topological application
we shall discuss more in Chapter 8. Let K be a geometric simplicial complex,
such as a triangulated polyhedron, and let Kk (0 < k < n) denote the set of
A:-dimensional simplices of K. Each ^-simplex has k + 1 faces, which are
ordered if the set KQ of vertices is ordered (do so!), so we obtain k + 1 set
maps 9/: Kk —> Kk-\(0 < i < k). The simplicial chain complex of K with
coefficients in R is the chain complex C., formed as follows. Let Ck be the free
/^-module on the set Kk\ set Ck = 0 unless 0 < k < n. The set maps 3, yield
k + 1 module maps Ck -> Ck-u which we also call 9/; their alternating sum
d = 5^(—1)'9; is the map Ck —> Ck-\ in the chain complex C.. To see that C.
is a chain complex, we need to prove the algebraic assertion that d o d = 0.
This translates into the geometric fact that each (k — 2)-dimensional simplex
contained in a fixed /:-simplex a of K lies on exactly two faces of a. The
homology of the chain complex C. is called the simplicial homology of K with
coefficients in R. This simplicial approach to homology was used in the first
part of this century, before the advent of singular homology.

Exercise 1.1.7 (Tetrahedron) The tetrahedron T is a surface with 4 ver-
tices, 6 edges, and 4 2-dimensional faces. Thus its homology is the homol-
ogy of a chain complex 0 -> R4 -> R6 -+ R4 -> 0. Write down the matrices
in this complex and verify computationally that H2(T) = HQ(T) = R and

Application 1.1.4 (Singular homology) Let X be a topological space, and
let Sk = Sk(X) be the free /^-module on the set of continuous maps from
the standard A:-simplex A* to X. Restriction to the ith face of A* (0 < i < k)
transforms a map A& —> X into a map A#-i —> X, and induces an /^-module
homomorphism 9/ from Sk to Sk-\. The alternating sums d = 2^(—1)^3/ (from
Sk to Sk-\) assemble to form a chain complex

d d d

-" —> S2 —> Si — • 50 —> 0,
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1.2 Operations on Chain Complexes 5

called the singular chain complex of X. The nth homology module of S.(X) is
called the nth singular homology of X (with coefficients in R) and is written
Hn(X; R). If X is a geometric simplicial complex, then the obvious inclusion
C.(X) —> Sm(X) is a quasi-isomorphism, so the simplicial and singular homol-
ogy modules of X are isomorphic. The interested reader may find details in
any standard book on algebraic topology.

1.2 Operations on Chain Complexes

The main point of this section will be that chain complexes form an abelian
category. First we need to recall what an abelian category is. A reference for
these definitions is [MacCW].

A category A is called an Ab-category if every hom-set Hom^(A, B) in
A is given the structure of an abelian group in such a way that composition
distributes over addition. In particular, given a diagram in A of the form

D

we have h{g + g')f = hgf + hg' f in Hom(A, D). The category Ch is an Ab-
category because we can add chain maps degreewise; if {fn} and {gn} are chain
maps from C. to D , their sum is the family of maps {fn + gn}.

An additive functor F.B-+A between Ab-categories B and A is a functor
such that each Homig(i5/, B) —> Hom^(FJB

/, FB) is a group homomorphism.
An additive category is an Ab-category A with a zero object (i.e., an ob-

ject that is initial and terminal) and a product A x B for every pair A, B of
objects in A. This structure is enough to make finite products the same as fi-
nite coproducts. The zero object in Ch is the complex "0" of zero modules
and maps. Given a family {Aa} of complexes of /^-modules, the product T\Aa

and coproduct (direct sum) 0 A a exist in Ch and are defined degreewise: the
differentials are the maps

FT - i and 0 4 : 0 aAa , n -* ©aAa,n_i,

respectively. These suffice to make Ch into an additive category.

Exercise 1.2.1 Show that direct sum and direct product commute with ho-
mology, that is, that ©Hn(Aa) = Hn(®Aa) and UHn(Aa) ^ Hn(YlAa) for
alln.
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6 Chain Complexes

Here are some important constructions on chain complexes. A chain com-
plex B is called a subcomplex of C if each Bn is a submodule of Cn and the
differential on B is the restriction of the differential on C, that is, when the
inclusions in : Bn^Cn constitute a chain map B —• C. In this case we can
assemble the quotient modules Cn/Bn into a chain complex

d d d
> Cn+\/Bn+\ —> Cn/Bn —> Cn-\/Bn-\ —> -"

denoted C/B and called the quotient complex. If / : B -> C is a chain map, the
kernels {ker(/n)} assemble to form a subcomplex of B denoted ker(/), and
the cokernels {coker(/n)} assemble to form a quotient complex of C denoted
coker(/).

Definition 1.2.1 In any additive category A, a kernel of a morphism f\B->
C is defined to be a map /: A -> B such that / / = 0 and that is universal with
respect to this property. Dually, a cokernel of / is a map e:C -+ D, which
is universal with respect to having ef = 0. In A, a map /: A -> B is monic
if ig = 0 implies g = 0 for every map g: A! —• A, and a map e: C - • D is
an <?/?/ if he = 0 implies /* = 0 for every map h:D -+ Df. (The definition of
monic and epi in a non-abelian category is slightly different; see A. 1 in the
Appendix.) It is easy to see that every kernel is monic and that every cokernel
is an epi (exercise!).

Exercise 1.2.2 In the additive category A = R-mod, show that:

1. The notions of kernels, monies, and monomorphisms are the same.
2. The notions of cokernels, epis, and epimorphisms are also the same.

Exercise 1.2.3 Suppose that A = Ch and / is a chain map. Show that the
complex ker(/) is a kernel of / and that coker(/) is a cokernel of / .

Definition 1.2.2 An abelian category is an additive category A such that

1. every map in A has a kernel and cokernel.
2. every monic in A is the kernel of its cokernel.
3. every epi in A is the cokernel of its kernel.

The prototype abelian category is the category mod-/? of /^-modules. In
any abelian category the image im(/) of a map / : B - • C is the subobject
ker(coker / ) of C; in the category of /^-modules, im(/) = {f(b) : b e B}.
Every map / factors as
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1.2 Operations on Chain Complexes 7

e m

B —> im(/) —> C

with e an epimorphism and m a monomorphism. A sequence

A -±+ B A C

of maps in A is called exact (at B) if ker(g) = im(/) .
A subcategory B of A is called an abelian subcategory if it is abelian, and

an exact sequence in B is also exact in A.
If A is any abelian category, we can repeat the discussion of section 1.1

to define chain complexes and chain maps in A—just replace mod-/? by A\
These form an additive category Ch(A), and homology becomes a functor
from this category to A. In the sequel we will merely write Ch for Ch(A)
when A is understood.

Theorem 1.2.3 The category Ch = Ch(A) of chain complexes is an abelian
category.

Proof Condition 1 was exercise 1.2.3 above. If / : B —> C is a chain map, I
claim that / is monic iff each Bn -> Cn is monic, that is, B is isomorphic to a
subcomplex of C. This follows from the fact that the composite ker(/) -> C
is zero, so if / is monic, then ker(/) = 0. So if / is monic, it is isomorphic to
the kernel of C —> C/B. Similarly, / is an epi iff each Bn -> Cn is an epi, that
is, C is isomorphic to the cokernel of the chain map ker(/) -> B,. <>

E x e r c i s e 1.2.4 Show that a sequence 0 —• A .-> B —• C -> 0 of chain c o m -
plexes is exact in C h jus t in case each sequence 0 ->• A n - > B n -> Cn —• 0 is
exact in A.

Clearly we can iterate this construction and talk about chain complexes of
chain complexes; these are usually called double complexes.

Example 1.2.4 A double complex (or bicomplex) in A is a family {Cp,q} of
objects of A, together with maps

dh: CPA —• Cp-i^q and dv: Cp,q -+ Cp,q-\

such that dh odh =dv odv = dvdh + dhdv = 0. It is useful to picture the
bicomplex C. as a lattice
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Chain Complexes

i I I
dh dh

C

dvi dv[

dh dh

' ' ' * Lp—\q < ^p,q *

dv[ dv[ dv[

dh dh

' ' ' < Cp-\,q-\ < Cp^q-l < Cp+\,q-\ < • • •

I i i

in which the maps dh go horizontally, the maps dv go vertically, and each
square anticommutes. Each row C*q and each column Cp* is a chain complex.

We say that a double complex C is bounded if C has only finitely many
nonzero terms along each diagonal line p + q = n, for example, if C is con-
centrated in the first quadrant of the plane (a first quadrant double complex).

Sign Trick 1.2.5 Because of the anticommutivity, the maps dv are not maps
in Ch, but chain maps f*q from C*q to C*^_i can be defined by introducing
± signs:

Using this sign trick, we can identify the category of double complexes with
the category Ch(Ch) of chain complexes in the abelian category Ch.

Total Complexes 1.2.6 To see why the anticommutative condition dvdh +
dhdv = 0 is useful, define the total complexes Tot(C) = Totn(C) and Tote(C)
by

Totn(C)rt= Y\ CP« and Tote(C)n= 0 CPiq.

p-\-q=n p-\-q=n

The formula d = dh + dv defines maps (check this!)

J : T o t n ( C ) n ^ T o t n ( C ) n _ i and d : Tot®(C)n - • Tote(C)n_i

such that d o d = 0, making Totn(C) and Tote(C) into chain complexes. Note
that Tote(C) = Totn(C) if C is bounded, and especially if C is a first quadrant
double complex. The difference between Totn(C) and Tote(C) will become
apparent in Chapter 5 when we discuss spectral sequences.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.002
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:14:59, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.002
https:/www.cambridge.org/core


1.2 Operations on Chain Complexes 9

Remark Totn(C) and Tote(C) do not exist in all abelian categories; they
don't exist when A is the category of all finite abelian groups. We say that
an abelian category is complete if all infinite direct products exist (and so
Totn exists) and that it is cocomplete if all infinite direct sums exist (and so
Tot® exists). Both these axioms hold in /?-mod and in the category of chain
complexes of /^-modules.

Exercise 1.2.5 Give an elementary proof that Tot(C) is acyclic whenever C
is a bounded double complex with exact rows (or exact columns). We will see
later that this result follows from the Acyclic Assembly Lemma 2.7.3. It also
follows from a spectral sequence argument (see Definition 5.6.2 and exercise
5.6.4).

Exercise 1.2.6 Give examples of (1) a second quadrant double complex C
with exact columns such that Totn(C) is acyclic but Tote(C) is not; (2) a
second quadrant double complex C with exact rows such that Tote(C) is
acyclic but Totn(C) is not; and (3) a double complex (in the entire plane) for
which every row and every column is exact, yet neither Totn(C) nor Tot®(C)
is acyclic.

Truncations 1.2.7 If C is a chain complex and n is an integer, we let r>nC
denote the subcomplex of C defined by

1 0 if i < n
Zn ifi=n

t if i>n.

Clearly Hi(r>nC) = 0 for i < n and Hi(r>nC) = Ht(C) for i > n. The com-
plex r>nC is called the (good) truncation of C below n, and the quotient
complex T<nC = C/(r>nC) is called the (good) truncation of C above n\
Hi(r<nC) is Ht(C) for i < n and 0 for i > n.

Some less useful variants are the brutal truncations o<nC and a>nC =
C/(cr<nC). By definition, (cr<nC)i is C[ if i < n and 0 if i > n. These have
the advantage of being easier to describe but the disadvantage of introducing
the homology group Hn(cr>nC) = Cn/Bn.

Translation 1.2.8 Shifting indices, or translation, is another useful operation
we can perform on chain and cochain complexes. If C is a complex and p an
integer, we form a new complex C[p] as follows:

C[p]n = Cn+P (resp. C[p]n = Cn~P)
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10 Chain Complexes

with differential {-\)pd. We call C[p] the pth translate of C. The way to
remember the shift is that the degree 0 part of C[p] is Cp. The sign convention
is designed to simplify notation later on. Note that translation shifts homology:

Hn(C[p]) = Hn+p(C) (resp. Hn(C[p]) = Hn~P(C)).

We make translation into a functor by shifting indices on chain maps. That is,
if / : C —• D is a chain map, then f[p] is the chain map given by the formula

f[p]n = fn+p (resp. f[pf = / " "* ) .

Exercise 1.2.7 If C is a complex, show that there are exact sequences of
complexes:

0 —> Z(C) —> C —> B(C)[-l] —> 0;

0 —• H(C) —> C/B(C) —> Z(C)[-1] —> H(C)[-l] —> 0.

Exercise 1.2.8 (Mapping cone) Let / : B —• C be a morphism of chain com-
plexes. Form a double chain complex D out of / by thinking of / as a chain
complex in Ch and using the sign trick, putting B[— 1] in the row q = 1 and
C in the row q = 0. Thinking of C and B[— 1] as double complexes in the
obvious way, show that there is a short exact sequence of double complexes

0 —> C — • D -^> B[-l] —> 0.

The total complex of D is cone(/0, the mapping cone (see section 1.5) of
a map / ' , which differs from / only by some ± signs and is isomorphic
to/.

1.3 Long Exact Sequences

It is time to unveil the feature that makes chain complexes so special from a
computational viewpoint: the existence of long exact sequences.

/ g

Theorem 1.3.1 Let 0 -> A. —> B. —> C.->0be a short exact sequence of
chain complexes. Then there are natural maps d: Hn(C) -> Hn-\(A), called
connecting homomorphisms, such that

. . . -£» Hn+i(C) - ^ Hn(A) - 4 Hn(B) ^ > Hn(C) ^ > Hn-X(A) - 4 • • •

is an exact sequence.
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1.3 Long Exact Sequences 11

/ g

Similarly, if 0 —> A —> B —• C —> 0 w a s/zo/t exacf sequence of
cochain complexes, there are natural maps 3: Hn(C) -> / /n + 1(A) <znd a /ong
exact sequence

>̂ //""^C) - ^ Hn(A) -U Hn(B) -^> //n(C) -^> #n+1(A) -^> • • •.

Exercise 1.3.1 Let 0 — • A - > £ - > C ^ 0 b e a short exact sequence of com-
plexes. Show that if two of the three complexes A, B, C are exact, then so is
the third.

Exercise 1.3.2 ( 3 x 3 lemma) Suppose given a commutative diagram

0 0 0

1 t i
0 —> A' —> B' —> C' —> 0

0 —

0 —

i
-*• A —

i
- • A" -

i
0

i
-> B —

1

1
0

1
-> c -

1
-• c" -

i
0

-* 0

-^ 0

in an abelian category, such that every column is exact. Show the following:

1. If the bottom two rows are exact, so is the top row.
2. If the top two rows are exact, so is the bottom row.
3. If the top and bottom rows are exact, and the composite A -» C is zero,

the middle row is also exact.

Hint: Show the remaining row is a complex, and apply exercise 1.3.1.

The key tool in constructing the connecting homomorphism 3 is our next
result, the Snake Lemma. We will not print the proof in these notes, because
it is best done visually. In fact, a clear proof is given by Jill Clayburgh at the
beginning of the movie Its My Turn (Rastar-Martin Elfand Studios, 1980). As
an exercise in "diagram chasing" of elements, the student should find a proof
(but privately—keep the proof to yourself!).

Snake Lemma 1.3.2 Consider a commutative diagram of R-modules of the
form
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12 Chain Complexes

Af —> B' —> C' —> 0

ft *l hi

0 —> A - U B —> C.

If the rows are exact, there is an exact sequence

ker(/) -> ker(g) -* ker(ft) -^» coker(/) - • coker(g) -> coker(/z)

with d defined by the formula

d{cf) = rxgp-\cf), cf e ker(/i).

Moreover, if A! -+ Bf is monic, then so is ker(/) —• ker(g), and if B —• C
w coker(/) ->• coker(g).

Etymology The term n̂aA:e comes from the following visual mnemonic:

ker(/) > ker(^) ^ ker(n) . s

coker(/) coker(n).

Remark The Snake Lemma also holds in an arbitrary abelian category C. To
see this, let A be the smallest abelian subcategory of C containing the ob-
jects and morphisms of the diagram. Since A has a set of objects, the Freyd-
Mitchell Embedding Theorem (see 1.6.1) gives an exact, fully faithful embed-
ding of A into /?-mod for some ring R. Since 3 exists in /?-mod, it exists in
A and hence in C. Similarly, exactness in R-mod implies exactness in A and
hence in C.
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1.3 Long Exact Sequences 13

Exercise 1.3.3 (5-Lemma) In any commutative diagram

A' —

4-=
A —

> B' -

> | =

•» B —

-* C -
4

-» c -

- • D'

4-

with exact rows in any abelian category, show that if a, b, d, and e are isomor-
phisms, then c is also an isomorphism. More precisely, show that if b and d
are monic and a is an epi, then c is monic. Dually, show that if b and d are
epis and e is monic, then c is an epi.

We now proceed to the construction of the connecting homomorphism 3 of
Theorem 1.3.1 associated to a short exact sequence

0-» A^ B^C-^0

of chain complexes. From the Snake Lemma and the diagram

0 0 0

1 I i
0 —+ ZnA — • ZnB —> ZnC

i i i
An -

4

i
An-\

-> Bn -

4
~> Bn-l -

i
Bn-x

4
- • Cn-l

i
Cn-\

i i i
0 0 0

we see that the rows are exact in the commutative diagram

An Bn Cn

dAn+\ dBn+\ dCn+\

d[ 4 4
0 —> Zn-X{A) -U Zn-i(b) ^-> Zn- i(C).
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14 Chain Complexes

The kernel of the left vertical is Hn(A), and its cokernel is Hn-\ (A). Therefore
the Snake Lemma yields an exact sequence

HniA) -^ HniB) - ^ HniC) —• Hn-l(A) -* «,_!(/?) - • Hr

The long exact sequence 1.3.1 is obtained by pasting these sequences together.

Addendum 1.3.3 When one computes with modules, it is useful to be able to
push elements around. By decoding the above proof, we obtain the following
formula for the connecting homomorphism: Let z e Hn(C), and represent it by
a cycle c e Cn. Lift the cycle to b e Bn and apply d. The element db of Bn-\
actually belongs to the submodule Zn-\(A) and represents d(z) e Hn-\(A).

We shall now explain what we mean by the naturality of 3. There is a
category S whose objects are short exact sequences of chain complexes (say,
in an abelian category C). Commutative diagrams

0 —> A —> B —> C —> 0

(*) I I I
0 —> Af —> Bf —> C' —> 0

give the morphisms in <S (from the top row to the bottom row). Similarly, there
is a category C of long exact sequences in C.

Proposition 1.3.4 The long exact sequence is a functor from S to C. That is,
for every short exact sequence there is a long exact sequence, and for every
map (*) of short exact sequences there is a commutative ladder diagram

a a
77 / A \ JT / D \ v "If ('(~*\ TT ( A \

I I I I
. . . - ^ Hn(A

f) — • Hn(B') — • Hn{C) ^ Hn-X{Af)—> . . . .

Proof All we have to do is establish the ladder diagram. Since each Hn is a
functor, the left two squares commute. Using the Embedding Theorem 1.6.1,
we may assume C = mod-/? in order to prove that the right square commutes.
Given z e Hn(C), represented by c e Cn, its image z! e Hn(C

f) is represented
by the image of c. If b e Bn lifts c, its image in B'n lifts d'. Therefore by 1.3.3
d(z') G Hn-\(A

r) is represented by the image of db, that is, by the image of a
representative of 3(z), so d(zf) is the image of 3(z). O

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.002
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:14:59, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.002
https:/www.cambridge.org/core


1.4 Chain Homotopies 15

Remark 1.3.5 The data of the long exact sequence is sometimes organized
into the mnemonic shape

s\

This is called an exact triangle for obvious reasons. This mnemonic shape
is responsible for the term "triangulated category," which we will discuss in
Chapter 10. The category K of chain equivalence classes of complexes and
maps (see exercise 1.4.5 in the next section) is an example of a triangulated
category.

Exercise 1.3.4 Consider the boundaries-cycles exact sequence 0 —>• Z ->
C -> B(— 1) -» 0 associated to a chain complex C (exercise 1.2.7). Show that
the corresponding long exact sequence of homology breaks up into short exact
sequences.

Exercise 1.3.5 Let / be a morphism of chain complexes. Show that if ker(/)
and coker(/) are acyclic, then / is a quasi-isomorphism. Is the converse true?

Exercise 1.3.6 Let 0 - > A — • / ? - > C - > 0 b e a short exact sequence of dou-
ble complexes of modules. Show that there is a short exact sequence of total
complexes, and conclude that if Tot(C) is acyclic, then Tot(A) —• Tot(Z?) is a
quasi-isomorphism.

1.4 Chain Homotopies

The ideas in this section and the next are motivated by homotopy theory in
topology. We begin with a discussion of a special case of historical impor-
tance. If C is any chain complex of vector spaces over a field, we can always
choose vector space decompositions:

Cn = Zn@ B'n, B'n £ Cn/Zn = d(Cn) = fln_i;

Zn = Bn® H'n, H'n ̂  Zn/Bn = Hn{C).

Therefore we can form the compositions

Cn —• Zn —> Bn = Bn+Y c Cn+i
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16 Chain Complexes

to get splitting maps sn: Cn - • Cn+i, such that d = dsd. The compositions ds
and sd are projections from Cn onto Bn and Z?̂ , respectively, so the sum ds +
sd is an endomorphism of Cn whose kernel H'n is isomorphic to the homology
Hn(C). The kernel (and cokernel!) of ds -f sd is the trivial homology complex
//*(C). Evidently both chain maps //*(C) —• C and C —• //*(C) are quasi-
isomorphisms. Moreover, C is an exact sequence if and only if ds + sd is the
identity map.

Over an arbitrary ring R, it is not always possible to split chain complexes
like this, so we give a name to this notion.

Definition 1.4.1 A complex C is called split if there are maps sn\ Cn -> Cn+i
such that d = dsd. The maps sn are called the splitting maps. If in addition C
is acyclic (exact as a sequence), we say that C is split exact

Example 1.4.2 Let R = Z or Z/4, and let C be the complex

2-> Z/4 -h Z/4 - i * Z/4 -^> • • •.

This complex is acyclic but not split exact. There is no map s such that ds + sd
is the identity map, nor is there any direct sum decomposition Cn = Zn® B'n.

Exercise 1.4.1 The previous example shows that even an acyclic chain com-
plex of free R -modules need not be split exact.

1. Show that acyclic bounded below chain complexes of free R -modules
are always split exact.

2. Show that an acyclic chain complex of finitely generated free abelian
groups is always split exact, even when it is not bounded below.

Exercise 1.4.2 Let C be a chain complex, with boundaries Bn and cycles Zn

in Cn. Show that C is split if and only if there are /^-module decompositions
Cn = Zn® B'n and Zn = Bn®H'n. Show that C is split exact iff H'n = 0.

Now suppose that we are given two chain complexes C and D, together
with randomly chosen maps sn: Cn -> Dn+\. Let fn be the map from Cn to Dn

defined by the formula fn = dn+\sn + sn-\dn .

Dn
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1.4 Chain Homotopies 17

Dropping the subscripts for clarity, we compute

df = d(ds + sd) = dsd = (ds + sd)d = fd.

Thus / = ds -h sd is a chain map from C to D.

Definition 1.4.3 We say that a chain map / : C —> D is null homotopic if
there are maps sn: Cn -> Dn+\ such that / = ds + sd. The maps {$„} are
called a c/iam contraction of / .

Exercise 1.4.3 Show that C is a split exact chain complex if and only if the
identity map on C is null homotopic.

The chain contraction construction gives us an easy way to proliferate chain
maps: if g: C -> D is any chain map, so is g + (sd -f ds) for any choice of
maps sn. However, g + (sd + ds) is not very different from g, in a sense that
we shall now explain.

Definition 1.4.4 We say that two chain maps / and g from C to D are chain
homotopic if their difference / — g is null homotopic, that is, if

The maps {sn} are called a c/zam homotopy from f to g. Finally, we say that
/ : C -> £> is a chain homotopy equivalence (Bourbaki uses homotopism) if
there is a map g: D -> C such that g / and / g are chain homotopic to the
respective identity maps of C and D.

Remark This terminology comes from topology via the following observa-
tion. A map / between two topological spaces X and Y induces a map
/*: S(X) -> S(Y) between the corresponding singular chain complexes. It
turns out that if / is topologically null homotopic (resp. a homotopy equiv-
alence), then the chain map /* is null homotopic (resp. a chain homotopy
equivalence), and if two maps / and g are topologically homotopic, then /*
and g* are chain homotopic.

Lemma 1.4.5 If f:C -> D is null homotopic, then every map /*: Hn(C) —•

Hn(D) is zero. If f and g are chain homotopicy then they induce the same

maps Hn(C) - • Hn(D).

Proof It is enough to prove the first assertion, so suppose that / = ds + sd.
Every element of Hn(C) is represented by an n-cycle x. But then f(x) —
d(sx). That is, f(x) is an n-boundary in D. As such, f(x) represents 0 in
Hn(D). O
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18 Chain Complexes

Exercise 1.4.4 Consider the homology //*(C) of C as a chain complex with
zero differentials. Show that if the complex C is split, then there is a chain
homotopy equivalence between C and //*(C). Give an example in which the
converse fails.

Exercise 1.4.5 In this exercise we shall show that the chain homotopy classes
of maps form a quotient category K of the category Ch of all chain complexes.
The homology functors Hn on Ch will factor through the quotient functor
Ch->K.

1. Show that chain homotopy equivalence is an equivalence relation on
the set of all chain maps from C to D. Let HomK(C, D) denote the
equivalence classes of such maps. Show that HomK(C, D) is an abelian
group.

2. Let / and g be chain homotopic maps from C to D. If u: B —> C and
v: D - • E are chain maps, show that vfu and vgu are chain homotopic.
Deduce that there is a category K whose objects are chain complexes and
whose morphisms are given in (1).

3. Let /o, / i , go, and g\ be chain maps from C to D such that ft is chain
homotopic to g; (i = 1,2). Show that /o + f\ is chain homotopic to
go + g\. Deduce that K is an additive category, and that Ch -> K is an
additive functor.

4. Is K an abelian category? Explain.

1.5 Mapping Cones and Cylinders

1.5.1 Let / : /?. -» C. be a map of chain complexes. The mapping cone of
/ is the chain complex cone(/) whose degree n part is Bn-\ 0 Cn. In order
to match other sign conventions, the differential in cone(/) is given by the
formula

d(b, c) = (-d(b), d{c) - /(*>)), (b e Bn_,, c e Cn).

That is, the differential is given by the matrix

fin_i — • Bn-2
\-dB

l - f
Cn > Cn-\
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7.5 Mapping Cones and Cylinders 19

Here is the dual notion for a map / : B —• C of cochain complexes. The
mapping cone, cone(/), is a cochain complex whose degree n part is Bn+X ©
Cn. The differential is given by the same formula as above with the same signs.

Exercise 1.5.1 Let cone(C) denote the mapping cone of the identity map idc
of C; it has Cn-\ © Cn in degree n. Show that cone(C) is split exact, with
s(b, c) = (—c, 0) defining the splitting map.

Exercise 1.5.2 Let / : C ->• D be a map of complexes. Show that / is null
homotopic if and only if / extends to a map (—s, / ) : cone(C) —• D.

1.5.2 Any map /*: H*(B) -> //*(C) can be fit into a long exact sequence
of homology groups by use of the following device. There is a short exact
sequence

0 -* C -> cone(/) -^> B[-l] -> 0

of chain complexes, where the left map sends c to (0, c), and the right map
sends (b, c) to -b. Recalling (1.2.8) that Hn+\(B[-l]) ^ Hn(B), the homol-
ogy long exact sequence (with connecting homomorphism 9) becomes

> //n+1(cone(/)) - ^ Hn(B) - ^ Hn(C) -+ //n(cone(/)) -^ Hn-X(B) -^> • • •.

The following lemma shows that 3 = /*, fitting /* into a long exact sequence.

Lemma 1.5.3 The map d in the above sequence is /*.

Proof If b e Bn is a cycle, the element (—&, 0) in the cone complex lifts b via
8. Applying the differential we get (db, fb) = (0, fb). This shows that

fdbl O

Corollary 1.5.4 A map f:B->Cisa quasi-isomorphism if and only if the
mapping cone complex cone(f) is exact. This device reduces questions about
quasi-isomorphisms to the study of split complexes.

Topological Remark Let K be a simplicial complex (or more generally a cell
complex). The topological cone CK of K is obtained by adding a new vertex
s to K and "coning off" the simplices (cells) to get a new (n + 1)-simplex
for every old ^-simplex of K. (See Figure 1.1.) The simplicial (cellular) chain
complex C.(s) of the one-point space {s} is R in degree 0 and zero elsewhere.
C.(s) is a subcomplex of the simplicial (cellular) chain complex C.(CK) of
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20 Chain Complexes

CK

cone Cf

Figure 1.1. The topological cone CK and mapping cone Cf.

the topological cone CK. The quotient CXCK)/CXs) is the chain complex
cone(C # ) of the identity map of CXK). The algebraic fact that cone(C K) is
split exact (null homotopic) reflects the fact that the topological cone CK is
contractible.

More generally, if / : K —• L is a simplicial map (or a cellular map), the
topological mapping cone Cf of / is obtained by glueing CK and L together,
identifying the subcomplex K of CK with its image in L (Figure 1.1). This is
a cellular complex, which is simplicial if / is an inclusion of simplicial com-
plexes. Write CXCf) for the cellular chain complex of the topological map-
ping cone Cf. The quotient chain complex CXCf)/CXs) may be identified
with cone(/*), the mapping cone of the chain map /*: C(K) -> CXL).

1.5.5 A related construction is that of the mapping cylinder cyl(/) of a chain
complex map / : #. —• C. The degree n part of cyl(/) is Bn 0 Bn-\ © Cn, and
the differential is

d(b, b', c) = (d(b) + b', -d(b'), d{c) -

That is, the differential is given by the matrix

Bt

dB idB 0

0 -dB 0

0 - / dc

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.002
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:14:59, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.002
https:/www.cambridge.org/core


-4
0

. 0

dB

fdB
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7.5 Mapping Cones and Cylinders 21

The cylinder is a chain complex because

= 0.

Exercise 1.5.3 Let cyl(C) denote the mapping cylinder of the identity map
idc of C; it has Cn © Cn_i © Cn in degree n. Show that two chain maps
/ , g\C —• D are chain homotopic if and only if they extend to a map (/, s, g):
cyl(C) -> D.

Lemma 1.5.6 The subcomplex of elements (0, 0, c) is isomorphic to C, and
the corresponding inclusion a: C —>> cyl(/) is a quasi-isomorphism.

Proof The quotient cyl(/)/a(C) is the mapping cone of — id#, so it is null-
homotopic (exercise 1.5.1). The lemma now follows from the long exact ho-
mology sequence for

0 —> C -^> cyl(/) —> cone(-id5) —> 0. O

Exercise 1.5.4 Show that fi(b, bf, c) = f(b) + c defines a chain map from
cyl(/) to C such that /3a = idc- Then show that the formula s(b, b', c) =
(0, b, 0) defines a chain homotopy from the identity of cyl(/) to a/3. Conclude
that a is in fact a chain homotopy equivalence between C and cyl(/).

Topological Remark Let X be a cellular complex and let / denote the interval
[0,1]. The space / x X is the topological cylinder of X. It is also a cell com-
plex; every rc-cell en in X gives rise to three cells in / x X: the two n-cells,
0 x en and 1 x en, and the (n + l)-cell (0, 1) x en. If C.(X) is the cellular
chain complex of X, then the cellular chain complex C ( / x X ) o f / x I may
be identified with cyl(idc x), the mapping cylinder chain complex of the iden-
tity map on C.(X).

More generally, if / : X - • Y is a cellular map, then the topological map-
ping cylinder cyl(/) is obtained by glueing I x X and Y together, identifying
0 x X with the image of X under / (see Figure 1.2). This is also a cellular
complex, whose cellular chain complex C(cyl(/)) may be identified with the
mapping cylinder of the chain map C.(X) -> C.{Y).

The constructions in this section are the algebraic analogues of the usual
topological constructions I x X ~ X, cyl(/) ~ F, and so forth which were
used by Dold and Puppe to get long exact sequences for any generalized ho-
mology theory on topological spaces.
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22 Chain Complexes

IxX

IxX

Figure 1.2. The topological cylinder of X and mapping cylinder cyl(/).

Here is how to use mapping cylinders to fit /* into a long exact sequence
of homology groups. The subcomplex of elements (b, 0, 0) in cyl(/) is iso-
morphic to B, and the quotient cy\(f)/B is the mapping cone of / . The

composite B —> cyl(/) —> C is the map / , where ft is the equivalence of
exercise 1.5.4, so on homology /*: H(B) - • H(C) factors through H(B) ->
//(cyl(/)). Therefore we may construct a commutative diagram of chain com-
plexes with exact rows:

B cone(/) —>0

0 —> C —> cone(/) —> B[-l] —> 0.

The homology long exact sequences fit into the following diagram:

... ^ > Hn(B) -> //n(cyl(/)) -* Hn(cone(f)) - ^ Hn-i(B) -)

I1 /N Ih I
L]) - • //n(C) - • //n(cone(/)) - 4 Hn

Lemma 1.5.7 r/z/,s diagram is commutative, with exact rows.

Proof It suffices to show that the right square (with —3 and 8) commutes.
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7.5 Mapping Cones and Cylinders 23

Let (b, c) be an «-cycle in cone(/), so d{b) = 0 and f(b) = d(c). Lift it to
(0, b, c) in cyl(/) and apply the differential:

</(0, b, c) = (0 + fc, -rffe, Jc - /ft) = (b, 0, 0).

Therefore 9 maps the class of (b, c) to the class of b = —S(b, c) in Hn-\(B).
O

1.5.8 The cone and cylinder constructions provide a natural way to fit the
homology of every chain map f:B-^C into some long exact sequence (see
1.5.2 and 1.5.7). To show that the long exact sequence is well defined, we need
to show that the usual long exact homology sequence attached to any short
exact sequence of complexes

0 -> B -U C -£> D -> 0

agrees both with the long exact sequence attached to / and with the long exact
sequence attached to g.

We first consider the map / . There is a chain map cp: cone(/) -> D defined
by the formula <p(b,c) = g(c). It fits into a commutative diagram with exact
rows:

0 —> C —> cone(/) - ^ B[-l] —> 0

0 —> B —> cyl(/) —> cone(/) —> 0

II l> I*
0 —> B -U C -^-> D — • 0.

Since ft is a quasi-isomorphism, it follows from the 5-lemma and 1.3.4 that <p
is a quasi-isomorphism as well. The following exercise shows that cp need not
be a chain homotopy equivalence.

Exercise 1.5.5 Suppose that the B and C of 1.5.8 are modules, considered
as chain complexes concentrated in degree zero. Then cone(/) is the complex

0 ^ Z? —> C —• 0. Show that <p is a chain homotopy equivalence iff / : B c
C is a split injection.

To continue, the naturality of the connecting homomorphism 3 provides us
with a natural isomorphism of long exact sequences:
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24 Chain Complexes

Hn(B) —• #«(cyl(/)) —• Hn(cone(/»

I- I*

Exercise 1.5.6 Show that the composite

Hn{D) ^ Hn(com(f)) ^h Hn(B[-l]) ^ Hn

is the connecting homomorphism 3 in the homology long exact sequence for

Exercise 1.5.7 Show that there is a quasi-isomorphism B[— 1] -> cone(g)
dual to <p. Then dualize the preceding exercise, by showing that the com-
posite

Hn(D) -^ Hn-X{B) -^> Hn{cont(g))

is the usual map induced by the inclusion of D in cone(g).

Exercise 1.5.8 Given a map f.B^C of complexes, let v denote the in-
clusion of C into cone(/). Show that there is a chain homotopy equivalence
cone(i>) -> B[— 1]. This equivalence is the algebraic analogue of the topolog-
ical fact that for any map f:K->Lof (topological) cell complexes the cone
of the inclusion L c Cf is homotopy equivalent to the suspension of K.

Exercise 1.5.9 Let / : B -> C be a morphism of chain complexes. Show that

the natural map
exact sequence:
the natural maps ker(/)[—1] —> cone(/) —• coker(/) give rise to a long

//n(cone(/)) -^ Hn(coker(f))

Exercise 1.5.10 Let C and Cf be split complexes, with splitting maps s, s'.
If / : C - • C is a morphism, show that a(c, c') = ( - J ( C ) , S'{C') - s' fs{c))
defines a splitting of cone(/) if and only if the map /*: //*(C) -> //*(C7) is
zero.
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1.6 More on Abelian Categories 25

1.6 More on Abelian Categories

We have already seen that 7?-mod is an abelian category for every associative
ring R. In this section we expand our repertoire of abelian categories to include
functor categories and sheaves. We also introduce the notions of left exact and
right exact functors, which will form the heart of the next chapter. We give the
Yoneda embedding of an additive category, which is exact and fully faithful,
and use it to sketch a proof of the following result, which has already been
used. Recall that a category is called small if its class of objects is in fact a set.

Freyd-Mitchell Embedding Theorem 1.6.1 (1964) If A is a small abelian
category, then there is a ring R and an exact, fully faithful functor from
A into /?-mod, which embeds A as a full subcategory in the sense that
Honu(M, N) ^ Hom*(M, N).

We begin to prepare for this result by introducing some examples of abelian
categories. The following criterion, whose proof we leave to the reader, is
frequently useful:

Lemma 1.6.2 Let C c Abe a full subcategory of an abelian category A

1. C is additive oOeC, and C is closed under 0 .
2. C is abelian and C C A is exact <& C is additive, and C is closed under

ker and coker.

Examples 1.6.3

1. Inside /?-mod, the finitely generated /^-modules form an additive cate-
gory, which is abelian if and only if R is noetherian.

2. Inside Ab, the torsionfree groups form an additive category, while the
p-groups form an abelian category. (A is a p-group if (Va € A) some
pna = 0.) Finite p-groups also form an abelian category. The category
(Z//?)-mod of vector spaces over the field Z/'p is also a full subcategory
of Ab.

Functor Categories 1.6.4 Let C be any category, A an abelian category.
The functor category Ac is the abelian category whose objects are functors
F: C —> A. The maps in Ac are natural transformations. Here are some rele-
vant examples:

1. If C is the discrete category of integers, Ab c contains the abelian cate-
gory of graded abelian groups as a full subcategory.
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26 Chain Complexes

2. If C is the poset category of integers (•••—> n —> (n + 1) -> • • •) then
the abelian category Ch(*4) of cochain complexes is a full subcategory

3. If R is a ring considered as a one-object category, then /?-mod is the full
subcategory of all additive functors in Ab^.

4. Let X be a topological space, and U the poset of open subsets of X. A
contravariant functor F from U to A such that F(0) = {0} is called a
presheaf on X with values in A, and the presheaves are the objects of
the abelian category AU°P = Presheaves(X).

A typical example of a presheaf with values in K-mod is given by C°(U) =
{continuous functions / : U -> R}. If U C V the maps C°(V) -> C°(U) are
given by restricting the domain of a function from V to U. In fact, C° is a
sheaf:

Definition 1.6.5 (Sheaves) A sheaf on X (with values in A) is a presheaf F
satisfying the

Sheaf Axiom. Let {£//} be an open covering of an open subset U of X.
If {// G F(£/j)} are such that each /; and / ) agree in F(t// n Uj), then
there is a unique / G F(f/) that maps to every // under F(JJ) -+ F(Ui).

Note that the uniqueness of / is equivalent to the assertion that if / G F(U)
vanishes in every F(f//), then / = 0. In fancy (element-free) language, the
sheaf axiom states that for every covering {£/,-} of every open U the following
sequence is exact:

o_>F(t/) — n m - ) - ^

Exercise 1.6.1 Let M be a smooth manifold. For each open [/ in M, let
C°°(M) be the set of smooth functions from U to IR. Show that C°°(M) is
a sheaf on M.

Exercise 1.6.2 (Constant sheaves) Let A be any abelian group. For every
open subset U of X, let A(U) denote the set of continuous maps from U to
the discrete topological space A. Show that A is a sheaf on X.

The category Sheaves(X) of sheaves forms an abelian category contained in
Presheaves(X), but it is not an abelian subcategory; cokernels in Sheaves(X)
are different from cokernels in Presheaves(X). This difference gives rise to
sheaf cohomology (Chapter 2, section 2.6). The following example lies at the
heart of the subject. For any space X, let O (resp. O*) be the sheaf such that
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L6 More on Abelian Categories 27

O(U) (resp. O*(U)) is the group of continuous maps from U into C (resp.
C*). Then there is a short exact sequence of sheaves:

When X is the space C*, this sequence is not exact in Presheaves(X) because
the exponential map from C = O{X) to O*(X) is not onto; the cokernel is
Z = HX(X, Z), generated by the global unit 1/z. In effect, there is no global
logarithm function on X, and the contour integral ^j § f(z)dz gives the
image of f(z) in the cokernel.

Definition 1.6.6 Let F: A -> B be an additive functor between abelian cat-
egories. F is called left exact (resp. right exact) if for every short exact se-
quence 0 -» A -> B -> C -> 0 in A, the sequence 0 -> F(A) -> F(£) ->
F(C) (resp. F(A) -» F(B)^ F(C) -> 0) is exact in B. F is called exacf if
it is both left and right exact, that is, if it preserves exact sequences. A con-
travariant functor F is called left exact (resp. right exact, resp. exact) if the
corresponding covariant functor Fr\ Aop —• B is left exact (resp. . . . ).

Example 1.6.7 The inclusion of Sheaves(X) into Presheaves(X) is a left
exact functor. There is also an exact functor Presheaves(X) -» Sheaves(X),
called "sheafification." (See 2.6.5; the sheafification functor is left adjoint to
the inclusion.)

Exercise 1.6.3 Show that the above definitions are equivalent to the follow-
ing, which are often given as the definitions. (See [Rot], for example.) A (co-
variant) functor F is left exact (resp. right exact) if exactness of the sequence

0 -> A -> B -+ C (resp. A -+ B -> C -> 0)

implies exactness of the sequence

0 -* FA -> FB -+ FC (resp. FA^ FB-^ FC -> 0).

Proposition 1.6.8 Let A be an abelian category. Then Hom^(M, —) is a left
exact functor from A to Abfor every M in A. That is, given an exact sequence

f 8
0 —> A —> B —> C —»> 0 in A the following sequence of abelian groups is
also exact:

0 -> Hom(M, A) -£+ Hom(M, B) -^> Hom(M, C).
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28 Chain Complexes

Proof If a e Hom(M, A) then /*a = / o a; if this is zero, then a must be
zero since / is monic. Hence /* is monic. Since g o / = 0, we have #*/*(«) =
g o / o a = 0,so g*/* = 0. It remains to show that if P e Hom(M, B) is such
that g*p = g o p is zero, then P = f o a for some a. But if g o /3 = 0, then
P(M) c / (A) , so 0 factors through A. <0>

Corollary 1.6.9 Hom^(—, M) is a left exact contravariant functor.

Proof Honu(A, M) = Hom^M, A). <0>

Yoneda Embedding 1.6.10 Every additive category A can be embedded in
the abelian category Ab^°P by the functor h sending A to hA = Hom^(—, A).
Since each Hom^(M, —) is left exact, h is a left exact functor. Since the
functors hA are left exact, the Yoneda embedding actually lands in the abelian
subcategory C of all left exact contravariant functors from A to Ab whenever
A is an abelian category.

Yoneda Lemma 1.6.11 The Yoneda embedding h reflects exactness. That is,

a sequence A —> B —• C in A is exact, provided that for every M in A the
following sequence is exact:

Honu(M, A) -^> Honu(M, B) -^> Hom^(M, C).

Proof Taking M = A, we see that Pa = p*a*(idA) — 0. Taking M = ker(^),
we see that the inclusion t: ker(^) -> B satisfies P*(L) = Pi = 0. Hence there
is a a G Hom(M, A) with i = a*(a) = acr, so that ker(P) = im(t) c im(a).

O

We now sketch a proof of the Freyd-Mitchell Embedding Theorem 1.6.1;
details may be found in [Freyd] or [Swan, pp. 14-22]. Consider the failure of
the Yoneda embedding h:A-+ A b ^ to be exact: if0-+A->B^C-+0
is exact in A and M e A, then define the abelian group W(M) by exactness of

0 -> Honu(M, A) - • Honu(M, B) -+ Hom^(M, C) -> W(M) -» 0.

In general W(M) ^ 0, and there is a short exact sequence of functors:

(*) 0 -> hA -+ hB - • hc -> W -> 0.

W is an example of a weakly effaceable functor, that is, a functor such that
for all M e A and x e W(M) there is a surjection P -» M in A so that the
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1.6 More onAbelian Categories 29

map W(M) -> W(P) sends x to zero. (To see this, take P to be the pullback
M xc B, where M - • C represents JC, and note that P -> C factors through
B.) Next (see loc. cit.), one proves:

Proposition 1.6.12 If A is small, the subcategory W of weakly effaceable
functors is a localizing subcategory of Ab^°P whose quotient category is C.
That is, there is an exact "reflection" functor R from Ab^°P to C such that
R(L) = Lfor every left exact L and R(W) = 0ijfW is weakly effaceable.

Remark Cokernels in C are different from cokernels in Ab^o/\ so the inclu-
sion C c PibA°P is not exact, merely left exact. To see this, apply the reflection
R to (*). Since R(hA) = hA and R(W) = 0, we see that

0 - • hA -» hB -+ hc -+ 0

is an exact sequence in C, but not in

Corollary 1.6.13 The Yoneda embedding h\A^>Cis exact and fully faith-
ful.

Finally, one observes that the category C has arbitrary coproducts and has
a faithfully projective object P. By a result of Gabriel and Mitchell [Freyd,
p. 106], C is equivalent to the category /?-mod of modules over the ring
R = Homc(P, P). This finishes the proof of the Embedding Theorem.

Example 1.6.14 The abelian category of graded R -modules may be thought
of as the full subcategory of (]~[/GZ /?)-modules of the form 0/e2M/. The
abelian category of chain complexes of R-modules may be embedded in
S-mod, where

S = (Y\ R)[d]/(d2 = 0, [dr = rd}reR, {de; = ei-id}iez).
iel

Here e[\ \\ R -> R ->• \\ R is the ith coordinate projection.
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2
Derived Functors

2.1 (5-Functors

The right context in which to view derived functors, according to Groth-
endieck [Tohoku], is that of 8 -functors between two abelian categories A

Definition 2.1.1 A (covariant) homological (resp. cohomological) 8-functor
between A and B is a collection of additive functors Tn\A^ B (resp.
Tn\ A - • B) for n > 0, together with morphisms

(resp. 8n:Tn(C)->Tn+l(A))

defined for each short exact sequence 0 — > - A — • Z ? ^ C - > 0 i n A Here we

make the convention that Tn = Tn = 0 for n < 0. These two conditions are

imposed:

1. For each short exact sequence as above, there is a long exact sequence

Tn(A) -+ Tn(B) - • Tn(C) - 4 Tn-i(A)

(resp.

Tn~\C) - > Tn(A) - + Tn(B) - • r r t ( C ) —• r w + 1 ( A ) • • • ) .

In particular, TQ is right exact, and T° is left exact.

30
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2.1 5 -Functors 31

2. For each morphism of short exact sequences from 0 -> A! —• B' ->

C" —• 0 to 0 -> A -> # ->• C —• 0, the 5's give a commutative diagram

Tn(C) — •

i
Tn(C) - ^ >

rB_i(A')

1
r«-l(A)

resp.

r"(c') — •

1
Tn(C) - ^

r"+1(A')

1
r"+1(A).

Example 2.1.2 Homology gives a homological 5-functor H* from Ch>o(^4)
to A; cohomology gives a cohomological 5-functor H* from Ch-°CA) to
A.

Exercise 2.1.1 Let S be the category of short exact sequences

in A. Show that 5/ is a natural transformation from the functor sending (*) to
Ti(C) to the functor sending (*) to 7}_i(A).

Example 2.1.3 (/7-torsion) If p is an integer, the functors TQ(A) = A/pA and

T\(A) = pA = {aeA: pa=0}

fit together to form a homological 5-functor, or a cohomological 5-functor
(with T° = T\ and Tx = To) from Ab to Ab. To see this, apply the Snake
Lemma to

0 —> A —> B —> C — ^ 0

pi pi pi

0 —> A —> B —> C — ^ 0

to get the exact sequence

0 -+ pA -> PB -+ pC -?-> A/p A -+ B/pB -* C/pC -> 0.

Generalization The same proof shows that if r is any element in a ring R,
then To(M) — M/rM and T\(M) = rM fit together to form a homological 5-
functor (or cohomological 5-functor, if that is one's taste) from /?-mod to Ab.
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32 Derived Functors

Vista We will see in 2.6.3 that Tn(M) = Tor*(R/r, M) is also a homolog-
ical <5-functor with 7b(M) = M/rM. If r is a left nonzerodivisor (meaning
that rR = {s e R : rs = 0} is zero), then in fact Torf (R/r, M) = rM and
Tor*(R/r, M) = 0 for n> 2; see 3.1.7. However, in general rR / 0, while
Torf (R/r, R) = 0, so they aren't the same; Torf (M, R/r) is the quotient of

rM by the submodule (rR)M generated by [sm :rs = 0, s e R,m e M}. The
Torn will be universal <5-functors in a sense that we shall now make precise.

Definition 2.1.4 A morphism S —> T of <5-functors is a system of natural
transformations Sn —> Tn (resp. Sn —• Tn) that commute with 8. This is fancy
language for the assertion that there is a commutative ladder diagram con-
necting the long exact sequences for S and T associated to any short exact
sequence in A.

A homological 5-functor T is universal if, given any other 5-functor S and a
natural transformation fy. SQ —• 7b, there exists a unique morphism {/„: Sn ->
Tn} of 5-functors that extends /o.

A cohomological 5-functor T is universal if, given S and f°: T° -> 5°,
there exists a unique morphism T —• 5 of 5-functors extending / ° .

Example 2.1.5 We will see in section 2.4 that homology //*: Ch>o(*4) -> 4̂.
and cohomology //*: Ch-°(^4) -> ^l are universal 5-functors.

Exercise 2.1.2 If F: A —> B is an exact functor, show that 7b = F and Tn = 0
for n / 0 defines a universal 5-functor (of both homological and cohomologi-
cal type).

Remark If F: A —• B is an additive functor, then we can ask if there is any 8-
functor T (universal or not) such that To = F (resp. T° = F). One obvious
obstruction is that To must be right exact (resp. T° must be left exact). By
definition, however, we see that there is at most one (up to isomorphism)
universal 6-functor T with To = F (resp. T° — F). If a universal T exists, the
Tn are sometimes called the left satellite functors of F (resp. the Tn are called
the right satellite functors of F). This terminology is due to the pervasive
influence of the book [CE].

We will see that derived functors, when they exist, are indeed universal 5-
functors. For this we need the concept of projective and injective resolutions.
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2.2 Projective Resolutions 33

2.2 Projective Resolutions

An object P in an abelian category A is projective if it satisfies the following
universal lifting property: Given a surjection g.B^C and a map y: P —> C,
there is at least one map /?: P —> B such that y = g o /3.

5 — • C —> 0

We shall be mostly concerned with the special case of projective modules
(.4 being the category mod-/?). The notion of projective module first appeared
in the book [CE]. It is easy to see that free R-modules are projective (lift a
basis). Clearly, direct summands of free modules are also projective modules.

Proposition 2.2.1 An R-module is projective iff it is a direct summand of a
free R-module.

Proof Letting F(A) be the free R-module on the set underlying an /^-module
A, we see that for every R-module A there is a surjection n\ F(A) —• A. If
A is a projective /?-module, the universal lifting property yields a map i: A —>
F(A) so that 7i i — I A, that is, A is a direct summand of the free module F(A).

O

Example 2.2.2 Over many nice rings (Z, fields, division rings, • • •) every
projective module is in fact a free module. Here are two examples to show
that this is not always the case:

1. If R = R\ x R2, then P = R\ x 0 and 0 x Ri are projective because their
sum is R. P is not free because (0, 1)P = 0. This is true, for example,
when R is the ring Z/6 = 1/2 x 1/3.

2. Consider the ring R = Mn(F) of n x n matrices over a field F, acting
on the left on the column vector space V = Fn. As a left P-module, R
is the direct sum of its columns, each of which is the left /?-module V.
Hence R = V 0 • • • 0 V, and V is a projective /^-module. Since any free
R-module would have dimension dn2 over F for some cardinal number
d, and dim/KV) =n,V cannot possibly be free over R.

Remark The category A of finite abelian groups is an example of an abelian
category that has no projective objects. We say that A has enough projectives
if for every object A of A there is a surjection P ^> A with P projective.
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34 Derived Functors

Here is another characterization of projective objects in A:

Lemma 2.2.3 M is projective iff Hom^CM, —) is an exact functor. That is,
iff the sequence of groups

0 -> Hom(M, A) -> Hom(M, B) -^> Hom(M, C) -> 0

is exact for every exact sequence 0->A^>B->C^>0inA.

Proof Suppose that Hom(M, —) is exact and that we are given a surjec-
tion g:B -> C and a map y:M -> C. We can lift y e Hom(M, C) to p e
Hom(M, B) such that y = g*p = g o p because g* is onto. Thus M has the
universal lifting property, that is, it is projective. Conversely, suppose M is
projective. In order to show that Hom(M, —) is exact, it suffices to show that
g* is onto for every short exact sequence as above. Given y e Hom(M, C),
the universal lifting property of M gives p e Hom(M, B) so that y = g o p =
g*(P), that is, g* is onto. <>

A chain complex P in which each Pn is projective in A is called a chain
complex ofprojectives. It need not be a projective object in Ch.

Exercise 2.2.1 Show that a chain complex P is a projective object in Ch
if and only if it is a split exact complex of projectives. Hint: To see that P
must be split exact, consider the surjection from cone(idp) to P[— 1]. To see
that split exact complexes are projective objects, consider the special case
0 -> Px ^ P0 -* 0.

Exercise 2.2.2 Use the previous exercise 2.2.1 to show that if A has enough
projectives, then so does the category Ch(*4) of chain complexes over A.

Definition 2.2.4 Let M be an object of A. A left resolution of M is a com-
plex P with Pi = 0 for i < 0, together with a map e: Po -> M so that the
augmented complex

is exact. It is a projective resolution if each P,- is projective.

Lemma 2.2.5 Every R-module M has a projective resolution. More gener-
ally, if an abelian category A has enough projectives, then every object M in
A has a projective resolution.
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2.2 Projective Resolutions 35

0 0

0 0 0 0

Figure 2.1. Forming a resolution by splicing.

Proof Choose a projective Po and a surjection €o: Po -> Af, and set Mo =
ker(^o). Inductively, given a module Mn-\, we choose a projective Pn and
a surjection en: Pn -» Afn_i. Set Mn = ker(en), and let dn be the composite
Pw ->• Mn_i -> Pw_i. Since dn(Pn) = Mn-\ = ker(dw_i), the chain complex
P. is a resolution of Af. (See Figure 2.1.) O

Exercise 2.2.3 Show that if P. is a complex of projectives with P; = 0 for
/ < 0, then a map e: Po - • M giving a resolution for M is the same thing as
a chain map €: P. —>• M, where M is considered as a complex concentrated in
degree zero.

Comparison Theorem 2.2.6 Let P —> M be a projective resolution of M
and f: M —> N a map in A. Then for every resolution Q. —> N of N there
is a chain map f:P.—> Qm lifting f in the sense that rj o /o = f o e. The
chain map f is unique up to chain homotopy equivalence.

••• —> P2 —> P\ —> Po - ^ M —> 0

Si 3i 3 | if

Porism 2.2.7 The proof will make it clear that the hypothesis that P —• M be
a projective resolution is too strong. It suffices to be given a chain complex

with the Pi projective. Then for every resolution Q -> N of TV, every map
M -* N lifts to a map P -> Q, which is unique up to chain homotopy. This
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36 Derived Functors

stronger version of the Comparison Theorem will be used in section 2.7 to
construct the external product for Tor.

Proof We will construct the fn and show their uniqueness by induction on n,
thinking of f-\ as / ' . Inductively, suppose ft has been constructed for / < n
so that fi-\d~ df. In order to construct / n + i we consider the n -cycles of
P and Q. If n = - 1 , we set Z_i(P) = M and Z_i(g) = N\ if n > 0, the
fact that fn-\d = dfn means that fn induces a map f'n from Zn(P) to Zn(Q).
Therefore we have two diagrams with exact rows

d
"> Pn+\

i
"* Qn+\

d

d

ZniP)

ZniQ)

— • 0

— • 0

0 — •

and

0 — •

ZniP) - >

I/;
z.(fi) - •

Pn

: I/.-,
- ^ Gn-1

The universal lifting property of the projective Pw+i yields a map /w+i from
Pn+\ to Gn+i, so that d/rc+i = /^d = fnd. This finishes the inductive step and
proves that the chain map f\P ^ Q exists.

To see uniqueness of / up to chain homotopy, suppose that g: P -> Q is
another lift of f and set h = f — g; we will construct a chain contraction
{sn: Pn -> <2n+i} of /z by induction on n. If « < 0, then Pn = 0, so we set
sn = 0. If n = 0, note that since 77/10 = €(f — ff) = 0, the map ho sends flo to
Zo(G) = d(2 i ) . We use the lifting property of Po to get a map so: ̂ 0 -^ Gi
so that /zo = ^^0 = ^^0 + s-\d. Inductively, we suppose given maps S((i < n)
so that dsn-\ = hn-\ — sn-2d and consider the map hn — sn-\d from Pn to
Qn. We compute that

d(hn - sn-id) = dhn - (hn-l ~ Sn-2d)d = (dh - hd) + Sn-ldd = 0.

Therefore hn — sn-\d lands in Zn(Q), a quotient of Qn+i- The lifting property
of Pn yields the desired map sn\ Pn ~> Q^+i such that ds^ = hn — sn-\d. O

Pn
3i/ i^-sd and

Gn+i - ^ Zn(Q) — • 0

Here is another way to construct projective resolutions. It is called the Horse-
shoe Lemma because we are required to fill in the horseshoe-shaped diagram.

/»» -

Gn -

•+ Pn-X

'* ^

->• fin-1

>• Pn-2
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2.2 Projective Resolutions 37

Horseshoe Lemma 2.2.8 Suppose given a commutative diagram

0

i
. . P'2 —> P[ —> PQ —^ A' — > °

••• P2 —> Px —> Po —> A —> 0

i
0

where the column is exact and the rows are projective resolutions. Set Pn =
P'n 0 P^. Then the Pn assemble to form a projective resolution P of A, and
the right-hand column lifts to an exact sequence of complexes

0 - • P' - U P ^ P" - • 0,

where in: P'n -+ Pn and nn\Pn^ P^ are the natural inclusion and projection,
respectively.

Proof Lift e" to a map PQ —> A; the direct sum of this with the map
i/^'\ PQ-^ A gives a map e: PQ -> A. The diagram (*) below commutes.

(*)

0

1
ker(e') —

1
ker(e) —

1
ker(e") -

1
0

0

1

-> Po J

i
-+ Po —

i

i
0

0

i
'-+ A'

i
U A

i
"-+ A"

i
0
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38 Derived Functors

The right two columns of (*) are short exact sequences. The Snake Lemma
1.3.2 shows that the left column is exact and that coker(e) = 0, so that PQ maps
onto A. This finishes the initial step and brings us to the situation

0

— • p[

• p>;

d!
—> ker(e')

1
ker(e)

1
-U ker(e")

1
0.

The filling in of the "horseshoe" now proceeds by

— • 0

—> 0

induction.

Exercise 2.2.4 Show that there are maps kn: P^ -> P'n_x so that

2.3 Injective Resolutions

An object / in an abelian category A is injective if it satisfies the following
universal lifting property: Given an injection f:A-+B and a map a: A —• / ,
there exists at least one map /3: B —• / such that a = /3 o / .

0 —> A -^> B

We say that A has enough injectives if for every object A in A there is an
injection A —> I with / injective. Note that if {Ia} is a family of injectives,
then the product f] Ia is also injective. The notion of injective module was
invented by R. Baer in 1940, long before projective modules were thought of.
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2.3 Injective Resolutions 39

Baer's Criterion 2.3.1 A right R-module E is injective if and only if for
every right ideal J of R, every map J —> E can be extended to a map R -> E.

Proof The "only if" direction is a special case of the definition of injective.
Conversely, suppose given an /^-module B, a submodule A and a map a: A ->•
E. Let E be the poset of all extensions a'\ A! -> E of a to an intermediate
submodule A c A ' c f i ; the partial order is that a' < a" if a" extends af.
By Zorn's lemma there is a maximal extension a'\ Af -» E in E\ we have to
show that A! = B. Suppose there is some b e B not in A!. The set J = {r e

R :br e Af) is a right ideal of R. By assumption, the map J —> A! - % E
extends to a map f:R->E. Let A!' be the submodule Af + bR of B and
define a"\ A!1 -> E by

a"(a + br) = a'(a) + /(r), a e A! and r e R.

This is well defined because af(br) = f(r) for br in Ar Pi bR, and ofr/ extends
a/, contradicting the existence of b. Hence Af = B. O

Exercise 2.3.1 Let R = Z/m. Use Baer's criterion to show that R is an in-
jective /^-module. Then show that Z/d is not an injective /^-module when
d\m and some prime p divides both d and m/d. (The hypothesis ensures that
Z/m ^ T/d 0 1/e.)

Corollary 2.3.2 Suppose that R = Z, or more generally that R is a principal
ideal domain. An R-module A is injective iff it is divisible, that is, for every
r ^ 0 in R and every a e A, a = br for some b 6 A.

Example 2.3.3 The divisible abelian groups Q and 1poo = Z[-] /Z are in-

jective (Z[-M is the group of rational numbers of the form a/pn, n > 1). Every

injective abelian group is a direct sum of these [KapIAB,section 5]. In partic-

ular, the injective abelian group Q/Z is isomorphic to SZ^oo.

We will now show that Ab has enough injectives. If A is an abelian group,
let I (A) be the product of copies of the injective group Q/Z, indexed by the
set HornAb(^. Q/Z). Then I (A) is injective, being a product of injectives, and
there is a canonical map e\'- A -> I (A). This is our desired injection of A into
an injective by the following exercise.

Exercise 2.3.2 Show that e& is an injection. Hint: If a e A, find a map
/ : ai -> Q/Z with f(a) / 0 and extend / to a map / ' : A -> Q/Z.
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40 Derived Functors

Exercise 2.3.3 Show that an abelian group A is zero iff HomAb(^, Q/2) =
0.

Now it is a fact, easily verified, that if A is an abelian category, then the
opposite category Aop is also abelian. The definition of injective is dual to
that of projective, so we immediately can deduce the following results (2.3.4-
2.3.7) by arguing in Aop.

Lemma 2.3.4 The following are equivalent for an object I in an abelian
category A:

1. I is injective in A.
2. I is projective in Aop.
3. The contravariant functor Hom^(—, /) is exact, that is, it takes short

exact sequences in A to short exact sequences in Ab.

Definition 2.3.5 Let M be an object of A. A right resolution of M is a
cochain complex /• with V = 0 for i < 0 and a map M ->• 7° such that the
augmented complex

is exact. This is the same as a cochain map M -* / , where M is considered as
a complex concentrated in degree 0. It is called an injective resolution if each
/ ' i s injective.

Lemma 2.3.6 If the abelian category A has enough injectives, then every
object in A has an injective resolution.

Comparison Theorem 2.3.7 Let N - • /• be an injective resolution ofN and
f'\ M —• N a map in A Then for every resolution M —> E there is a cochain
map F.E —> I lifting f. The map f is unique up to cochain homotopy
equivalence.

0 —> M —> E° —> El —> E2 —> ..

Exercise 2.3.4 Show that / is an injective object in the category of chain
complexes iff / is a split exact complex of injectives. Then show that if A
has enough injectives, so does the category Ch(^l) of chain complexes over
A. Hint: Ch(A)op ^ C h ( ^ ) .
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2.3 Injective Resolutions 41

We now show that there are enough injective /^-modules for every ring
R. Recall that if A is an abelian group and B is a left /^-module, then

> A) is a right /^-module via the rule fr: b H> f(rb).

Lemma 2.3.8 For every right R-module M, the natural map

r: HomAb(^, A) -> Hommofi_R(M, HomAb(/?, A))

is an isomorphism, where (r/)(m) is the map r H> f(mr).

Proof We define a map /x backwards as follows: If g: M ->• Hom(/?, A) is
an jR-module map, /xg is the abelian group map sending m to g(m){\). Since
T(/ig) = g and /xr(/) = / (check this!), r is an isomorphism. O

Definition 2.3.9 A pair of functors L: A - • B and /?: ^ ->• A are adjoint if
there is a natural bijection for all A in .4 and B in #:

r = TAB : Hom£(L(A), 5) -=> Honu(A, /?(5)).

Here "natural" means that for all / : A —• A' in .4 and g: B —• 5 ' in B the
following diagram commutes:

Hom#(L(y

HomA(A',

0, B)

R(B))

HomB(L(A),fi) —

HornA(A, R(B)) —

->• Home(L(

1
- ^ Horn A (A,

:A), B')

r

R(B')).

We call L the /^r adjoint and /? the r/^/ir adjoint of this pair. The above lemma
states that the forgetful functor from mod-/? to Ab has HomAb(^> —) as its
right adjoint.

Proposition 2.3.10 If an additive functor R: B -+ A is right adjoint to an
exact functor L.A^B and I is an injective object of B, then R(I) is an
injective object of A. (We say that R preserves injectives.)

Dually, if an additive functor L.A-^Bis left adjoint to an exact functor
R.B —> A and P is a projective object of A then L(P) is a projective object
ofB. (We say that L preserves projectives.j

Proof We must show that Hom^(—, R(I)) is exact. Given an injection
/ : A -> A! in A the diagram
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42 Derived Functors

/ ) ^

/*
HomA(A\R(I)) —• HomA(A,

commutes by naturality of r. Since L is exact and / is injective, the top
map Lf* is onto. Hence the bottom map / * is onto, proving that R(I) is an
injective object in A. O

Corollary 2.3.11 If I is an injective abelian group, then HomAb(/?, / ) is an
injective R-module.

Exercise 2.3.5 If M is an /^-module, let I(M) be the product of copies of
/o = HomAb(^, Q/2) , indexed by the set Hom/?(M, /Q). There is a canonical
map eM> M -> /(M); show that eu is an injection. Being a product of injec-
tives, / (Af) is injective, so this will prove that /?-mod has enough injectives.
An important consequence of this is that every /^-module has an injective res-
olution.

Example 2.3.12 The category Sheaves(X) of abelian group sheaves (1.6.5)
on a topological space X has enough injectives. To see this, we need two
constructions. The stalk of a sheaf T at a point x e X is the abelian group
Tx = lim{JF(£/): x e U}. "Stalk at x" is an exact functor from Sheaves(X) to

Ab. If A is any abelian group, the skyscraper sheaf x*A at the point i G l i s
defined to be the presheaf

(x*A)(U) = \ .
[ 0 otherwise.

Exercise 2.3.6 Show that JC* A is a sheaf and that

HomAbCT7*, A) ^ HomsheavesCX)^, **A)

for every sheaf ^7. Use 2.3.10 to conclude that if Ax is an injective abelian
group, then x*(Ax) is an injective object in Sheaves(X) for each JC, and that

x*(Ax) is also injective.

Given a fixed sheaf T, choose an injection Tx -> Ix with Ix injective in Ab
for each x e X. Combining the natural maps T —• x*Tx with x*Tx ->- x*Ix

yields a map from T to the injective sheaf X = Yixex x * (^) - The map T -> X
is an injection (see [Gode], for example) showing that Sheaves(X) has enough
injectives.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.003
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:22:01, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.003
https:/www.cambridge.org/core


2.4 Left Derived Functors 43

Example 2.3.13 Let / be a small category and A an abelian category. If the
product of any set of objects exists in A {A is complete) and A has enough
injectives, we will show that the functor category A1 has enough injectives.
For each k in /, the kth coordinate A H> A(k) is an exact functor from A1 to
A. Given A in A, define the functor k*A: I —> A by sending / e / to

= n A

If rj: i -* j is a map in / , the map k*A(i) -> k*A(j) is determined by the
index map rj*: Hom(y, k) - • Hom(/, k). That is, the coordinate k*A(i) -> A
of this map corresponding to cp e Hom(y, k) is the projection of k*A(i) onto
the factor corresponding to rj*(p = cpr] e Hom(7, k). If / : A -> 5 is a map in
*4, there is a corresponding map k*A -> A:*.6 defined slotwise. In this way,
k* becomes an additive functor from A to A1, assuming that A has enough
products for k*A to be defined.

Exercise 2.3.7 Assume that A is complete and has enough injectives. Show
that k* is right adjoint to the kth coordinate functor, so that k* preserves injec-
tives by 2.3.10. Given F e A1, embed each F(k) in an injective object Ak of
A, and let F —• k*Ak be the corresponding adjoint map. Show that the product
E = Ylkei *̂A& exists in A1', that E is an injective object, and that F —> E is
an injection. Conclude that A1 has enough injectives.

Exercise 2.3.8 Use the isomorphism ( A!)°P = A^1^ to dualize the previous
exercise. That is, assuming that A is cocomplete and has enough projectives,
show that A1 has enough projectives.

2.4 Left Derived Functors

Let F: A -> B be a right exact functor between two abelian categories. If A
has enough projectives, we can construct the left derived functors L[F(i > 0)
of F as follows. If A is an object of A, choose (once and for all) a projective
resolution P -+ A and define

Note that since F(P\) - • F(Po) —>• F(A) ->• 0 is exact, we always have
LoF(A) = F(A). The aim of this section is to show that the L*F form a
universal homological 8 -functor.
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44 Derived Functors

Lemma 2.4.1 The objects L(F(A) of B are well defined up to natural iso-
morphism. That is, if Q —> A is a second projective resolution, then there is a
canonical isomorphism:

LiF(A) = Ht(F(P)) ^ > Hi(F(Q)).

In particular, a different choice of the projective resolutions would yield new
functors L[F, which are naturally isomorphic to the functors L[F.

Proof By the Comparison Theorem (2.2.6), there is a chain map f:P—>Q
lifting the identity map id^, yielding a map /* from HiF(P) to H(F(Q).
Any other such chain map / ' : P —• Q is a chain homotopic to / , so /* = /£.
Therefore, the map /* is canonical. Similarly, there is a chain map g: Q -» P
lifting id A and a map g*. Since gf and idp are both chain maps P —• P lifting
id A, we have

£*/* = (gf)* = (idp)* = identity map on HtF(P).

Similarly, fg and idg both lift id^, so /*g* is the identity. This proves that /*
and g* are isomorphisms. O

Corollary 2.4.2 If A is projective, then LiF(A) = Ofor i ^ 0.

F-Acyclic Objects 2.4.3 An object Q is called F-acyclic if LtF(Q) = 0 for
all / ^ 0, that is, if the higher derived functors of F vanish on Q. Clearly,
projectives are F-acyclic for every right exact functor F, but there are oth-
ers; flat modules are acyclic for tensor products, for example. An F-acyclic
resolution of A is a left resolution Q —> A for which each Qi is F-acyclic.
We will see later (using dimension shifting, exercise 2.4.3 and 3.2.8) that we
can also compute left derived functors from F-acyclic resolutions, that is, that
L((A) = Hi(F(Q)) for any F-acyclic resolution Q of A.

Lemma 2.4.4 Iff: A! -> A is any map in A, there is a natural map LiF(f):
LiF(Ar) -> LiF(A) for each i.

Proof Let P' -> A! and P -> A be the chosen projective resolutions. The
comparison theorem yields a lift of / to a chain map / from P' to P, hence a
map / * from H[F(P') to HiF(P). Any other lift is chain homotopic to / , so
the map / * is independent of the choice of / . The map LiF(f) is /* . <>

Exercise 2.4.1 Show that L0F(f) = F(f) under the identification L0F(A) =
F(A).
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2.4 Left Derived Functors 45

Theorem 2.4.5 Each L[F is an additive functor from A to B.

Proof The identity map on P lifts the identity on A, so L[F(idA) is the
f g

identity map. Given maps A! —> A —> A!' and chain maps / , g lifting /
and g, the composite gf lifts gf. Therefore g*/* = (g/)*, proving that L[F
is a functor. If f: A! —• A are two maps with lifts /,-, the sum f\ + f2 lifts
/ l + h- Therefore / i* + /2* = (/i + /i)*, proving that L[F is additive. O

Exercise 2.4.2 (Preserving derived functors) If U: B —• C is an exact functor,
show that

Forgetful functors such as mod-/? ->• Ab are often exact, and it is often eas-
ier to compute the derived functors of UF due to the absence of cluttering
restrictions.

Theorem 2.4.6 The derived functors L*F form a homological 8-functor.

Proof Given a short exact sequence

0 - • A! -> A -> A" -> 0,

choose projective resolutions P' -> A! and Pn —> A". By the Horseshoe
Lemma 2.2.8, there is a projective resolution P —> A fitting into a short ex-
act sequence 0 —• Pf -> P -+ P" ->• 0 of projective complexes in A Since
the P^ are projective, each sequence 0 ->• /^ -* Pn - • P^ -> 0 is split exact.
As F is additive, each sequence

0 ^ F ( ^ ) - • F(Pn) ^ F(P%) -> 0

is split exact in R Therefore

0 -> F(P r) -> F(P) -> F(P r /) -> 0

is a short exact sequence of chain complexes. Writing out the corresponding
long exact homology sequence, we get

>̂ LiF(A') -+ LtF(A) -> LtF{A") -!* L ^
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46 Derived Functors

To see the naturality of the 3,-, assume we are given a commutative diagram

0 —> A' —> A —> A!' —>0A' -

f'i
B' -

—• A —

f[

- • B —

-» A"

if

in A, and projective resolutions of the corners: e': P' -> A\ e"\ P" —• A",
ri': Q! -> B' and rj": Q" -> fl". Use the Horseshoe Lemma 2.2.8 to get projec-
tive resolutions e: P -> A and rj: Q ^ B. Use the Comparison Theorem 2.2.6
to obtain chain maps F': Pf -» (2r and F r /: F r / -> Q/r lifting the maps f and
/ / r , respectively. We shall show that there is also a chain map F: P -+ Q lift-
ing / , and giving a commutative diagram of chain complexes with exact rows:

0 —> P' p —

Q -

-* P"

I?"

-> Q"0 —> Q —> Q —> Q —> 0.

The naturality of the connecting homomorphism in the long exact homology
sequence now translates into the naturality of the 3/. In order to produce F, we
will construct maps (not chain maps) yn\ P% -> Qf

n such that Fn is

Fn

Fn(p',

= [
P")

K Yn].

o F;J-

= (F'{p') •

P'n

e —:
P'n'

+ Y(P"),

Q'n

> ®

Q"n

F"(p

Assuming that F is a chain map over / , this choice of F will yield our
commutative diagram of chain complexes. In order for F to be a lifting of / ,
the map (rjFo — fe) from Po = P$ ® PQ to B must vanish. On PQ this is no
problem, so this just requires that

as maps from PQ to B, where kp and XQ are the restrictions of e and 77 to PQ
and <2Q, and is is the inclusion of B' in B. There is some map ft: PQ -> # ' so
that /^^ = /A - AFQ' because in £" we have

= f"nAkP - nBXF^ = f"e" - ^F^ = 0.
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2.4 Left Derived Functors 41

We may therefore define yo to be any lift of /3 to Q'o.

p"

Q'o ^U B' —-> 0

In order for F to be a chain map, we must have

' F ' - F'rf' {d'y - yd" + AF" - F'A.')
0 d"F"-F"d"

vanishing. That is, the map d'yn\ P^ - • Q!n_\ must equal

Inductively, we may suppose yt defined for / < n, so that gn exists. A short cal-
culation, using the inductive formula for d'yn-\, shows that dfgn = 0. As the
complex Q' is exact, the map gn factors through a map ft: P^ —• d{Qf

n). We
may therefore define yn to be any lift of p to Qf

n. This finishes the construction
of the chain map F and the proof. O

Exercise 2.4.3 (Dimension shifting) IfO->M—>-P->A—•Ois exact with
P projective (or F-acyclic 2.4.3), show that LjF(A) = L/_iF(M) for i > 2
and that L\F(A) is the kernel of F(M) -> F(P). More generally, show that if

0 -> Mm -* Pm -> Pm_i -> • Po -> A -* 0

is exact with the Pj projective (or F-acyclic), then LiF(A) = L/_m_iF(Mm)
for i > w+2andLw +iF(^)isthekernelof F(Mm) -> F(PW). Conclude that
if P -> A is an F-acyclic resolution of A, then L/F(A) = // /(F(P)).

The object Mm, which obviously depends on the choices made, is called
the mth syzgy of A. The word "syzygy" comes from astronomy, where it was
originally used to describe the alignment of the Sun, Earth, and Moon.

Theorem 2.4.7 Assume that A has enough projectives. Then for any right
exact functor F : A-> B, the derived functors LnF form a universal 8-functor.

Remark This result was first proven in [CE, III.5], but is commonly attributed
to [Tohoku], where the term "universal <5-functor" first appeared.
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48 Derived Functors

Proof Suppose that 71* is a homological 5-functor and that cpo: 7b —• F is
given. We need to show that cpo admits a unique extension to a morphism
cp:T*-> L*F of 5-functors. Suppose inductively that <pim. 7} —> L[F are al-
ready defined for 0 < / < n, and that they commute with all the appropriate
Si's. Given A in A, select an exact sequence 0 — • A r ^ f > - > A - > 0 with P
projective. Since LnF(P) = 0, this yields a commutative diagram with exact
rows:

Tn(A) - "

0 LnF(A)

Tn-\(K) -

\,<Pn-\

Ln-tF(K) -

- • Tn-i(P)

\,<Pn-\

- • Ln-iF(P).

A diagram chase reveals that there exists a unique map cpn(A) from Tn(A) to
LnF(A) commuting with the given 5w's. We need to show that cpn is a natural
transformation commuting with all 8n's for all short exact sequences.

To see that yn is a natural transformation, suppose given f\Af^>A and an
exact sequence 0 —• ̂ ' —• P r -^ Ar -> 0 with P7 projective. As P' is projec-
tive we can lift / to g: P' -+ P, which induces a map h: K' -+ K.

0

0

K'

I* I.
A' 0

0

To see that cpn commutes with / , we note that in the following diagram that
each small quadrilateral commutes.

Tn(A)

» LnF(A)

A chase reveals that
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2.5 Right Derived Functors 49

8 o Ln(f) o <pn(A') = 8 o cpn(A) o Tn(f).

Because 8: LnF(A) —• Ln-\F(K) is monic, we can cancel it from the equa-
tion to see that the outer square commutes, that is, that <pn is a natural trans-
formation. Incidentally, this argument (with A = A! and f = idA) also shows
that cpn(A) doesn't depend on the choice of P.

Finally, we need to verify that (pn commutes with 8n. Given a short exact
sequence 0 —• A! —• A —• A!' -> 0 and a chosen exact sequence 0 - • K" ->
P" -> A" - • 0 with P" projective, we can construct maps / and g making the
diagram

0 -

0 -

commute. This yields

Tn(A")

(Pni.

- * K"

u
- • A '

— • P" —

if
—y A —:

a commutative diagram

s
Tn-l(K") -

\rVn-l

> A "

||

> A "

T(g)
>

—+ 0

— • 0

rn_i(A')

LnF(A") ^U Ln-XF(K") - ^ > Ln-\F(Ar).

Since the horizontal composites are the 8n maps of the bottom row, this implies
the desired commutativity relation. O

Exercise 2.4.4 Show that homology H*:Ch>o(A) -* A and cohomology
i/*: Ch-°(^l) -> ^l are universal 5-functors. Hint: Copy the proof above, re-
placing P by the mapping cone cone(A) of exercise 1.5.1.

Exercise 2.4.5 ([Tohoku]) An additive functor F: A -+ B is called effaceable
if for each object A of A there is a monomorphism u: A —• / such that F(u) =
0. We call F coeffaceable if for every A there is a surjection M: P -> A such
that F(w) = 0. Modify the above proof to show that if 71* is a homological
5-functor such that each Tn is coeffaceable (except To), then T* is universal.
Dually, show that if T* is a cohomological 5-functor such that each Tn is
effaceable (except T°), then T* is universal.

2.5 Right Derived Functors

2.5.1 Let F.A^B be a left exact functor between two abelian cate-
gories. If A has enough injectives, we can construct the right derived functors
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50 Derived Functors

Rl F(i > 0) of F as follows. If A is an object of A, choose an injective resolu-
tion A —• / and define

Note that since 0 -> F(A) ->• F(I°) -^ F(Il) is exact, we always have
R°F(A) ^ F(A).

Since F also defines a right exact functor Fop: Aop -> Bop, and . 4 ^ has
enough projectives, we can construct the left derived functors L[Fop as well.
Since /• becomes a projective resolution of A in Aop, we see that

RiF(A) = (LiF
op)op(A).

Therefore all the results about right exact functors apply to left exact functors.
In particular, the objects RlF(A) are independent of the choice of injective
resolutions, R*F is a universal cohomological 5-functor, and RlF(I) = 0 for
/ ^ 0 whenever / is injective. Calling an object Q F-acyclic if RlF(Q) =
0 (i / 0), as in 2.4.3, we see that the right derived functors of F can also be
computed from F-acyclic resolutions.

Definition 2.5.2 (Ext functors) For each R-module A, the functor F{B) =
Horn/?(A, B) is left exact. Its right derived functors are called the Ext groups:

Ex4(A, B) = Rl Horn/?(A, - ) ( £ ) .

In particular, Ext°(A, B) is Hom(A, B), and injectives are characterized by
Ext via the following exercise.

Exercise 2.5.1 Show that the following are equivalent.

1. B is an injective /?-module.
2. Hom#(—, B) is an exact functor.
3. Ext^(A, B) vanishes for all i ^ 0 and all A (B is Hom#(—, 5)-acyclic

for all A).
4. Extj^(A, B) vanishes for all A.

The behavior of Ext with respect to the variable A characterizes projectives.

Exercise 2.5.2 Show that the following are equivalent.

1. A is a projective /^-module.
2. Horn/?(A, —) is an exact functor.
3. Ext^(A, B) vanishes for all i / 0 and all B (A is Hom#(-, #)-acyclic

for all B).
4. ExtJj(A, B) vanishes for all B.
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2.6 Adjoint Functors and Left/Right Exactness 51

The notion of derived functor has obvious variations for contravariant func-
tors. For example, let F be a contravariant left exact functor from A to B. This
is the same as a covariant left exact functor from Aop to B, so if A has enough
projectives (i.e., Aop has enough injectives), we can define the right derived
functors R*F(A) to be the cohomology of F(P) , P—> A being a projective
resolution in A. This too is a universal <5-functor with R°F(A) = F(A), and

i = 0 for i ^ 0 whenever P is projective.

Example 2.5.3 For each /^-module B, the functor G(A) = Hom#(A, #)
is contravariant and left exact. It is therefore entitled to right derived func-
tors R*G(A). However, we will see in 2.7.6 that these are just the functors
Ext*(A, 5). That is,

R* Hom(-, B)(A) ^ #* Hom(A, -)(B) = Ext*(A, B).

Application 2.5.4 Let X be a topological space. The global sections functor
T from Sheaves(Z) to Ab is the functor r(JF) = F(X). It turns out (see 2.6.1
and exercise 2.6.3 below) that T is right adjoint to the constant sheaves functor,
so F is left exact. The right derived functors of T are the cohomology functors
onX:

The cohomology of a sheaf is arguably the central notion in modern algebraic
geometry. For more details about sheaf cohomology, we refer the reader to
[Hart].

Exercise 2.5.3 Let X be a topological space and {Ax} any family of abelian
groups, parametrized by the points x e X. Show that the skyscraper sheaves
x*(Ax) of 2.3.12 as well as their product T = Ylx*(Ax) are F-acyclic, that is,
that Hl(X, T) = 0 for i ^ 0. This shows that sheaf cohomology can also be
computed from resolutions by products of skyscraper sheaves.

2.6 Adjoint Functors and Left/Right Exactness

We begin with a useful trick for constructing left and right exact functors.

Theorem 2.6.1 Let L.A^B and R:B —• Abe an adjoint pair of additive
functors. That is, there is a natural isomorphism

z:HomB(L(A),B) —
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52 Derived Functors

Then L is right exact, and R is left exact.

Proof Suppose that 0 -> B' ->• B -> B" -> 0 is exact in B. By naturality of r
there is a commutative diagram for every A in A.

0 Hom#(L(A), Bf) —

1 =
HomA(A, R(B')) —

-» Homn(L(A), B) -

i-
-> HomA(A,R(B)) -

->• H o m # ( L (

i
-> Hom^(A,

A), B")

i?(B"))0

The top row is exact because Hom(LA, —) is left exact, so the bottom row is
exact for all A. By the Yoneda Lemma 1.6.11,

0 -> R(Bf) -> R(B) -> R{B")

must be exact. This proves that every right adjoint R is left exact. In particular
Lop: Aop -> Bop (which is a right adjoint) is left exact, that is, L is right exact.

O

Remark Left adjoints have left derived functors, and right adjoints have right
derived functors. This of course assumes that A has enough projectives, and
that B has enough injectives for the derived functors to be defined.

Application 2.6.2 Let R be a ring and B a left /^-module. The follow-
ing standard proposition shows that <g)RB:mod-R —> Ab is left adjoint to
HoniAb(#> — )> s o QRB is right exact. More generally, if S is another ring,
and B is an R-S bimodule, then <S>RB takes mod-/? to mod-S and is a left
adjoint, so it is right exact.

Proposition 2.6.3 If B is an R-S bimodule and C a right S-module, then
Homs(£, C) is naturally a right R-module by the rule (fr)(b) = f(rb) for
f e Hom(£, C), r e R and be B. The functor Homs(B, -) from mod-S to
mod-/? is right adjoint to ®RB. That is, for every R-module A and S-module
C there is a natural isomorphism

T: Homs(A ®* B, C) -=> Hom/KA, Hom5(5, C)).

Proof Given / : A (8)/? B —> C, we define (rf)(a) as the map b \-> f(a (8) b)
for each a e A. Given g: A —> Horns(B, C), we define r~l(g) to be the map
defined by the bilinear form a 0 b \-+ g(a)(b). We leave the verification that
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2.6 Adjoint Functors and Left/Right Exactness 53

^ (/)(«) is an S-module map, that r ( / ) is an /^-module map, r " 1 ^ ) is an R-
module map, r is an isomorphism with inverse r"1 , and that r is natural as an
exercise for the reader. O

Definition 2.6.4 Let B be a left /^-module, so that T(A) = A ®/? B is a right
exact functor from mod-/? to Ab. We define the abelian groups

In particular, Tor^(A, B) = A <S)R B. Recall that these groups are computed by
finding a projective resolution P —> A and taking the homology of P <8)R B. In
particular, if A is a projective /^-module, then Torn(A, B) = 0 for n / 0.

More generally, if B is an R-S bimodule, we can think of T(A) = A ®R B
as a right exact functor landing in mod-S, so we can think of the Tor^(A, B)
as ^-modules. Since the forgetful functor U from mod-S to Ab is exact, this
generalization does not change the underlying abelian groups, it merely adds
an S-module structure, because U(L* ® B) = L*U(<g>B) as derived functors.

The reader may notice that the functor A®/? is also right exact, so we could
also form the derived functors L*(A(g)/?). We will see in section 2.7 that this
yields nothing new in the sense that L*(A<8>R)(B) = L*(®RB)(A).

Application 2.6.5 Now we see why the inclusion "incl" of Sheaves(X) into
Presheaves(X) is a left exact functor, as claimed in 1.6.7; it is the right ad-
joint to the sheafification functor. The fact that sheafification is right exact is
automatic; it is a theorem that sheafification is exact.

Exercise 2.6.1 Show that the derived functor Rl (incl) sends a sheaf T to the
presheaf U i-+ Hl(U, F\U), where T\U is the restriction of T to U and H[ is
the sheaf cohomology of 2.5.4. Hint: Compose /?*(incl) with the exact functors
Presheaves(X) -> Ab sending T to T(U).

Application 2.6.6 Let / : X —»• Y be a continuous map of topological spaces.
For any sheaf T on X, we define the direct image sheaf f*T on Y by
(f^)(V) = Tif^V) for every open V in Y. (Exercise: Show that f*T is
a sheaf!) For any sheaf 5 on F, we define the inverse image sheaf f~xQ to be
the sheafification of the presheaf sending an open set U in X to the direct limit
lim Q( V) over the poset of all open sets V in Y containing f(U). The follow-
ing exercise shows that f~l is right exact and that /* is left exact because they
are adjoint. The derived functors Rl /* are called the higher direct image sheaf
functors and also play a key role in algebraic geometry. (See [Hart] for more
details.)

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.003
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:22:01, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.003
https:/www.cambridge.org/core


54 Derived Functors

Exercise 2.6.2 Show that for any sheaf T on X there is a natural map
f~xf*T - • T, and that for any sheaf Q on Y there is a natural map Q —•
f*f~xQ . Conclude that f~l and /* are adjoint to each other, that is, that
there is a natural isomorphism

, T) = Homr(£, f+T).

Exercise 2.6.3 Let * denote the one-point space, so that Sheaves(*) = Ab.

1. If / : X - • * is the collapse map, show that /* and f~x are the global
sections functor F and the constant sheaves functor, respectively. This
proves that F is right adjoint to the constant sheaves functor. By 2.6.1, F
is left exact, as asserted in 2.5.4.

2. If x: * -> X is the inclusion of a point in X, show that JC* and x~l are the
skyscraper sheaf and stalk functors of 2.3.12.

Application 2.6.7 (Colimits) Let / be a fixed category. There is a diagonal
functor A from every category A to the functor category A1; if A e A, then
A A is the constant functor: (A A)/ = A for all i. Recall that the colimit of a
functor F: I -+ A is an object of A, written colim/6/ F/, together with a nat-
ural transformation from F to A (colim F;), which is universal among natural
transformations F -> AA with A e A. (See the appendix or [MacCW, III.3].)
This universal property implies that colim is a functor from A1 to A, at least
when the colimit exists for all F: I -> A.

Exercise 2.6.4 Show that colim is left adjoint to A. Conclude that colim is a
right exact functor when A is abelian (and colim exists). Show that pushout
(the colimit when / i s • < > •) is not an exact functor in Ab.

Proposition 2.6.8 The following are equivalent for an abelian category A:

1. The direct sum 0A/ exists in A for every set {A/} of objects in A.
2. A is cocomplete, that is, colim/ ej A/ exists in Afar each functor A\I —>

A whose indexing category I has only a set of objects.

Proof As (1) is a special case of (2), we assume (1) and prove (2). Given
A: / —• A the cokernel C of

(p:i-*j iel

<*i[<P\ •-• <P(fli) - ai

solves the universal problem defining the colimit, so C = colim A/. <>
iel
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2.6 Adjoint Functors and Left/Right Exactness 55

Remark Ab, mod-/?, Presheaves(X), and Sheaves(X) are cocomplete be-
cause (1) holds. (If / is infinite, the direct sum in Sheaves(X) is the sheafifica-
tion of the direct sum in Presheaves(Z)). The category of finite abelian groups
has only finite direct sums, so it is not cocomplete.

Variation 2.6.9 (Limits) The limit of a functor A: I -> A is the colimit of
the corresponding functor Aop: Iop —• Aop, so all the above remarks apply in
dual form to limits. In particular, lim: A1 —> A is right adjoint to the diagonal
functor A, so lim is a left exact functor when it exists. If the product YlAi of
every set {A;} of objects exists in A, then A is complete, that is, lim/e/ A,-
exists for every A: / —• A with / having only a set of objects. Ab, mod-7?,
Presheaves(X), and Sheaves(X) are complete because such products exist.

One of the most useful properties of adjoint functors is the following result,
which we quote without proof from [MacCW, V.5].

Adjoints and Limits Theorem 2.6.10 Let L.A^B be left adjoint to a
functor R.B -> A, where A and B are arbitrary categories. Then

1. L preserves all colimits (coproducts, direct limits, cokernels, etc.). That
is, if A: I -> A has a colimit, then so does LA: I -+ B, and

L(colim A/) = colim L(At).
iel iel

2. R preserves all limits (products, inverse limits, kernels, etc.). That is, if
B: I —> B has a limit, then so does RB: I -> A, and

R(lim Bt) = lim R(Bt).
iel iel

Here are two consequences that use the fact that homology commutes
with arbitrary direct sums of chain complexes. (Homology does not commute
with arbitrary colimits; the derived functors of colim intervene via a spectral
sequence.)

Corollary 2.6.11 If a cocomplete abelian category A has enough projectives,
and F:A—> B is a left adjoint, then for every set {A/} of objects in A:

Proof If Pi -»• Ai are projective resolutions, then so is ©/",- ->• ©A,. Hence

,). O
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56 Derived Functors

Corollary 2.6.12 Tor*(A, 0;G/#;) = 0 ; € / Tor*(A, Bt).

Proof If P -> A is a projective resolution, then

Tor*(A, 0fl/) = #*(P ® (05/)) ^ / /*(0(P (8) Bt)) ^ 0//*(P

Definition 2.6.13 A nonempty category / is called filtered if

1. For every /, j e I there are arrows \k to some k e I.

2. For every two parallel arrows w, i>: / = £ j ' there is an arrow w: j —• k

such that wu = wv.

A filtered colimit in A is just the colimit of a functor A: / —• .4 in which /
is a filtered category. We shall use the notation colim(A;) for such a filtered

colimit.
If / is a partially ordered set (poset), considered as a category, then condi-

tion (1) always holds, and (2) just requires that every pair of elements has an
upper bound in /. A filtered poset is often called directed; filtered colimits over
directed posets are often called direct limits and are often written lim A/.

We are going to show that direct limits and filtered colimits of modules
are exact. First we obtain a more concrete description of the elements of
colim(Ar).

Lemma 2.6.14 Let I be a filtered category and A: / ->• mod-/? a functor.
Then

1. Every element a e colim(A/) is the image of some element at e A; (for

some i e / ) under the canonical map A/ —> colim(A/).

2. For every i, the kernel of the canonical map A/ —>> colim(A/) is the union

of the kernels of the maps <p: A/ —> Aj (where cp:i —> j is a map in I).

Proof We shall use the explicit construction of colim(A/). Let A/: A/ —•

0;G/A; be the canonical maps. Every element a of colim A/ is the image of

for some finite set J = {/i, • • •, in}. There is an upper bound i in / for
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2.6 Adjoint Functors and Left/Right Exactness 57

{/l, • • •, i'n}; using the maps Aj -> A; we can represent each aj as an ele-
ment in A; and take at to be their sum. Evidently, a is the image of at, so (1)
holds.

Now suppose that at e A; vanishes in colim(A;). Then there are cpjk'. j -^ k

in / and ajk e Aj so that A./(a/) = Yl^k(<Pjk{aj)) — ^j(aj) m ©A/. Choose
an upper bound t in I for all the /, y, £ in this expression. Adding kt((pitai) —
Xi(ai) to both sides we may assume that i =t. Adding zero terms of the form

[kt(pjt{aj) - kk(pjk(aj)] + frt<Pjt(-aj) ~ *-k<Pjk(-aj)],

we can assume that all the fc's are t. If any <pjt are parallel arrows in /, then by
changing t we can equalize them. Therefore we have

kt(at) = kt(^2<pjt(aj))

with all the y's distinct and none equal to t. Since the kj are injections, all the
aj must be zero. Hence (pit(at) = at = 0, that is, at e ker(<^/f). <C>

Theorem 2.6.15 Filtered colimits (and direct limits) of R-modules are exact,
considered as functors from (mod-/?)7 to mod-/?.

Proof Set A = mod-/?. We have to show that if / is a filtered category (e.g.,
a directed poset), then colim: ̂ l7 —̂  4̂. is exact. Exercise 2.6.4 showed that

colim is right exact, so we need only prove that if t: A —• B is monic in

A1 (i.e., each t{ is monic), then colim (A/) -> colim (B/) is monic in A. Let

a e colim(A/) be an element that vanishes in colim(/?;). By the lemma above,

a is the image of some at e A/. Therefore U(at) e B[ vanishes in corim(/?;), so

there is some cp\ i -> j so that

0 = (p(ti(ai)) = tj((p(at)) in Bj.

Since tj is monic, <p(ai) = 0 in Aj. Hence a = 0 in colim(A/). O

Exercise 2.6.5 (AB5) The above theorem does not hold for every cocomplete
abelian category A. Show that if A is the opposite category Abo/? of abelian
groups, then the functor colim: A1 —>* A need not be exact when / is filtered.

An abelian category A is said to satisfy axiom (AB5) if it is cocomplete
and filtered colimits are exact. Thus the above theorem states that mod-/? and
/?-mod satisfy axiom (AB5), and this exercise shows that Abo/7 does not.
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58 Derived Functors

Exercise 2.6.6 Let / : X -> Y be a continuous map. Show that the inverse
image sheaf functor f~l: Sheaves(F) -* Sheaves(X) is exact. (See 2.6.6.)

The following consequences are proven in the same manner as their coun-
terparts for direct sum. Note that in categories like /?-mod for which filtered
colimits are exact, homology commutes with filtered colimits.

Corollary 2.6.16 If A = R-mod (or A is any abelian category with enough
projectives, satisfying axiom (AB5)), and F: A-> B is a left adjoint, then for
every A: I —> A with I filtered

L*F(colim(A/)) = colim L*F(A).

Corollary 2.6.17 For every filtered B: I -> /?-mod and every A e mod-/?,

Tor*(A, colim(£/)) ^ colimTor*(A, Bt).

2.7 Balancing Tor and Ext

In earlier sections we promised to show that the two left derived functors
of A <S>R B gave the same result and that the two right derived functors of
Hom(A, B) gave the same result. It is time to deliver on these promises.

Tensor Product of Complexes 2.7.1 Suppose that P and Q are chain com-
plexes of right and left /^-modules, respectively. Form the double complex
P ®R Q = {Pp®R Qq) using the sign trick, that is, with horizontal differen-
tials d <S> 1 and vertical differentials (— \)p ® d. P <S>R Q is called the tensor
product double complex, and Tote(P ®R Q) is called the (total) tensor prod-
uct chain complex of P and Q.

Theorem 2.7.2 Ln(A®R)(B) ^ Ln(®RB)(A) = Tor£(A, B) for all n.

Proof Choose a projective resolution P —> A in mod-/? and a projective
resolution Q —> B in /?-mod. Thinking of A and B as complexes concen-
trated in degree zero, we can form the three tensor product double complexes
P 0 g, A <S> Q, and P <g> B. The augmentations € and rj induce maps from
P 0 Q to A (8) Q and P ® B.
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i
A®Q2

A®Q0

P0®Q2

i
PX®Q2

P0®Qi

d

P2®Q0

Using the Acyclic Assembly Lemma 2.7.3, we will show that the maps

A 0 Q = Tot(A ® Q) ^ Tot(P (8) Q) ^ > Tot(P ® B) = P ® B

are quasi-isomorphisms, inducing the promised isomorphisms on homology:

L*(A®R)(B) <=- //*(Tot(P (8) 2)) ^ > L^^/^^CA).

Consider the double complex C obtained from P <g> Q by adding A (g)
<2[— 1] in the column p = —1. The translate Tot(C)[l] is the mapping cone
of the map € ® Q from Tot(P ® Q) to A (8) £ (see 1.2.8 and 1.5.1), so in or-
der to show that e <g> Q is a quasi-isomorphism, it suffices to show that Tot(C)
is acyclic. Since each <8>Qq is an exact functor, every row of C is exact, so
Tot(C) is exact by the Acyclic Assembly Lemma.

Similarly, the mapping cone of P (8) rj: Tot(P 0 Q) —• P (8) B is the trans-
late Tot(D)[l], where D is the double complex obtained from P 0 Q by
adding P 0 2?[— 1] in the row g = — 1. Since each Pp0 is an exact functor, ev-
ery column of D is exact, so Tot(D) is exact by the Acyclic Assembly Lemma
2.7.3. Hence cone(P 0 rj) is acyclic, and P 0 rj is also a quasi-isomorphism.

Acyclic Assembly Lemma 2.7.3 Let C be a double complex in mod-/?.
Then
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60 Derived Functors

• Totn(C) is an acyclic chain complex, assuming either of the following:
1. C is an upper half-plane complex with exact columns.
2. C is a right half-plane complex with exact rows.

• Tote(C) is an acyclic chain complex, assuming either of the following:
3. C is an upper half-plane complex with exact rows.
4. C is a right half-plane complex with exact columns.

Remark The proof will show that in (1) and (3) it suffices to have every di-
agonal bounded on the lower right, and in (2) and (4) it suffices to have every
diagonal bounded on the upper left. See 5.5.1 and 5.5.10.

Proof We first show that it suffices to establish case (1). Interchanging rows
and columns also interchanges (1) and (2), and (3) and (4), so (1) implies (2)
and (4) implies (3). Suppose we are in case (4), and let xnC be the double
subcomplex of C obtained by truncating each column at level n:

I Cpq if q>n

kzr(dv:Cpn^Cp,n-i) ifq=n .
0 if q < n

Each xnC is, up to vertical translation, a first quadrant double complex with
exact columns, so (1) implies that Tote(rwC) = Totn(rnC) is acyclic. This
implies that Tote(C) is acyclic, because every cycle of Tote(C) is a cycle
(hence a boundary) in some subcomplex Tote(rnC). Therefore (1) implies (4)
as well.

In case (1), translating C left and right, suffices to prove that #o(Tot(C)) is
zero. Let

c = ( • • • , c-PiP, • • •, c_2,2, c_i,i, co.o) e H C-P,P = T o t ( O o

be a 0-cycle; we will find elements b-p,p+\ by induction on p so that

dv(b-p,p+i) + dh(b-p+Up) = c-PtP.

Assembling the b's will yield an element b of J~[ C-p,p+\ such that d(b) = c,
proving that Ho(Tot(C)) = 0. The following schematic should help give the
idea.
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2.7 Balancing Tor and Ext 61

fi

i
-P,P

 < ' b-k

i
•P+UP

b- p+2,p-l

C-2,2

I
coo <—i O(=b\o)

i
0

We begin the induction by choosing b\o = 0 for p = — 1. Since Co,-i = 0,
dv(coo) = 0; since the 0th column is exact, there is a &oi € Coi so that
dv(bo\) = coo- Inductively, we compute that

J"(c_p,p - dh(b-p+hp)) = dv(c-pp) + dhdv(b-p+hp)

= dv(c-pp) + dh{c-p+hp-x) - dhdh(b-.p+2,p-n

= 0.

Since the — pth column is exact, there is a b-p,p+i so that

d\b-p,p+l) = C-p,p - dh(b-p+hp)

as desired. O

Exercise 2.7.1 Let C be the periodic upper half-plane complex with Cpq =
ILjA for all p and q > 0, all differentials being multiplication by 2.
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1* I2 U
••• <— I/A <— I/A <— I/A <— •••

| 2 I* | 2
2 2 2 2

. . . <— 1/4 <— 1/4 <— 1/4 <— . . .

1. Show that #0(Totn(C)) ^ 1/2 on the cycle ( . . . , 1, 1, 1) e UC-P,P

even though the rows of C are exact. Hint: First show that the 0-
boundaries are \\ 21/4.

2. Show that Tote(C) is acyclic.
3. Now extend C downward to form a doubly periodic plane double com-

plex D with Dpq = 1/4 for all /?, q el. Show that #o(Totn(D)) maps
onto //o(Totn C) = 1/2. Hence Totn(D) is not acyclic, even though ev-
ery row and column of D is exact. Finally, show that Tote(D) is acyclic.

Exercise 2.7.2

1. Give an example of a 2nd quadrant double chain complex C with exact
columns for which Tot®(C) is not an acyclic chain complex.

2. Give an example of a 4th quadrant double complex C with exact columns
for which Totn(C) is not acyclic.

Hom Cochain Complex 2.7.4 Given a chain complex P and a cochain com-
plex / , form the double cochain complex Hom(P, / ) = {Hom(Pp, 7^)} using
a variant of the sign trick. That is, if / : Pp - • Iq, then dhf: Pp+\ -> Iq by
(dhf)(p) = f(dp), while we define dvf:Pp-> 7«+1 by

(dvf)(p) = (-l)P^+ld(fp) for p e Pp.

Hom(P, /) is called the Hom double complex, and Totn(Hom(P, /)) is called
the (total) Hom cochain complex. Warning: Different conventions abound in
the literature. Bourbaki [BX] converts Hom(P, 7) into a double chain complex
and obtains a total Hom chain complex. Others convert / into a chain complex
Q with Qq = I~q and form Hom(P, Q) as a chain complex, and so on.

Morphisms and Hom 2.7.5 To explain our sign convention, suppose that C
and D are two chain complexes. If we reindex D as a cochain complex, then
an fi-cycle / of Hom(C, D) is a sequence of maps fp: Cp -> Dn~p = Dp-n

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.003
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:22:01, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.003
https:/www.cambridge.org/core


2.7 Balancing Tor and Ext 63

such that fpd = (—l)ndfp+\, that is, a morphism of chain complexes from
C to the translate D[—n] of D. An ^-boundary is a morphism / that is null
homotopic. Thus Hn Hom(C, D) is the group of chain homotopy equivalence
classes of morphisms C —• D[—n], the morphisms in the quotient category K
of the category of chain complexes discussed in exercise 1.4.5.

Similarly, if X and Y are cochain complexes, we may form Hom(X, Y) by
reindexing X. Our conventions about reindexing and translation ensure that
once again an rc-cycle of Hom(X, Y) is a morphism X -»• Y[—n] and that
Hn Hom(X, Y) is the group of chain homotopy equivalence classes of such
morphisms. We will return to this point in Chapter 10 when we discuss RHom
in the derived category D(A).

Exercise 2.7.3 To see why Tot0 is used for the tensor product P ®R Q of
right and left /^-module complexes, while Totn is used for Horn, let / be a
cochain complex of abelian groups. Show that there is a natural isomorphism
of double complexes:

HomAb(Tote(P <g>R Q), / ) = Hom*(P, Totn(HomAb(2, /)) .

Theorem 2.7.6 For every pair of R-modules A and B, and all n,

Extn
R(A, B) = Rn HomR(A, -)(B) ^ Rn Hom/?(-,

Proof Choose a projective resolution P of A and an injective resolution /
of B. Form the first quadrant double cochain complex Hom(P, / ) . The aug-
mentations induce maps from Hom(A, /) and Hom(P, B) to Hom(P, / ) . As
in the proof of 2.7.2, the mapping cones of Hom(A, / ) —> Tot(Hom(P, /))
and Hom(P, B) —> Tot (Horn (P, /)) are translates of the total complexes ob-
tained from Hom(P, / ) by adding Hom(A, / ) [ - l ] and Hom(P, # ) [ - l ] , re-
spectively. By the Acyclic Assembly Lemma 2.7.3 (or rather its dual), both
mapping cones are exact. Therefore the maps

Hom(A, /) - • Tot(Hom(P, /)) <- Hom(P, B)

are quasi-isomorphisms. Taking cohomology yields the result:

#* Hom(A, - ) ( £ ) = H*Hom(A, /)

^ H* Hom(P, B) = P* Hom(-, B)(A). O
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64 Derived Functors

t
Hom(A,f)

HomCA,/1)

Hom(A,/°)

t
Hom(P0,P) I,/2)

Hom(P0,7°) —-> Hom(/'1J Hom(/>2,/°)

Hom(P0,#) Hom(/>2,#)

Definition 2.7.7 ([CE]) In view of the two above theorems, the following
definition seems natural. Let T be a left exact functor of p "variable" modules,
some covariant and some contravariant. T will be called right balanced under
the following conditions:

1. When any one of the covariant variables of T is replaced by an injective
module, T becomes an exact functor in each of the remaining variables.

2. When any one of the contravariant variables of T is replaced by a pro-
jective module, T becomes an exact functor in each of the remaining
variables. The functor Horn is an example of a right balanced functor,
as i sHom(A®£,C) .

Exercise 2.7.4 Show that all p of the right derived functors R*T(A\,--,
A/, • • •, Ap)(Ai) of T are naturally isomorphic.

A similar discussion applies to right exact functors T which are left bal-
anced. The prototype left balanced functor is A 0 B. In particular, all of the
left derived functors associated to a left balanced functor are isomorphic.

Application 2.7.8 (External product for Tor) Suppose that R is a commuta-
tive ring and that A, A', B, Bf are R -modules. The external product is the map

Tor/(A, B) ®R Tory (A7, Bf) -+ Tor/+;(A 0/? A', B 0/? Bf)
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2.7 Balancing Tor and Ext 65

constructed for every i and j in the following manner. Choose projective reso-
lutions P -> A, P' -> A', and Pr / -> A (8) A'. The Comparison Theorem 2.2.6
gives a chain map Tot(P 0 Pr) -> P" which is unique up to chain homotopy
equivalence. (We saw above that Ht Tot(P 0 P') = Tor,(A, A'), so we actu-
ally need the version of the Comparison Theorem contained in the porism
2.2.7.) This yields a natural map

Hn(P 0 B 0 P' 0 B') ^ /Jn(P (8) P ' (8) B (8) #r) - • //n(Pr / ® B ® Bf)

= Torn(A®A',B®Bf).

On the other hand, there are natural maps #/(C) 0 / ( / (C) -> ///+7 Tot(C ®
Cr) for every pair of complexes C, Cr; one maps the tensor product c <g> c'
of cycles c e Q and c' e C- to c ® cf e Q 0 Cj. (Check this!) The external
product is obtained by composing the special case C = P <S> B, C = P' 0 B'\

Tor/(A, B) (g) Tor,-(A', B') = Ht(P 0 B ) 0 Hj(P' (8) Bf) -+ Hi+j(P ® B ® Pf ® Bf)

with the above map.

Exercise 2.7.5

1. Show that the external product is independent of the choices of P, P r, P"
and that it is natural in all four modules A, Ar, B, B'.

2. Show that the product is associative as a map to Tor*(A 0 A! 0 A", B 0
B' 0 B").

3. Show that the external product commutes with the connecting homomor-
phism 8 in the long exact Tor sequences associated to 0 -> BQ -> B —•

4. (Internal product) Suppose that A and 5 are /^-algebras. Use (1) and (2)
to show that Tor^(A, B) is a graded /^-algebra.
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3
Tor and Ext

3.1 Tor for Abelian Groups

The first question many people ask about Tor*(A, B) is "Why the name
'Tor'?" The results of this section should answer that question. Historically,
the first Tor groups to arise were the groups Tori(Z//?, B) associated to
abelian groups. The following simple calculation describes these groups.

Calculation 3.1.1 Tor^(Z/p, B) = B/pB, Torf (l/p, B) = pB = [b e B :
pB = 0} and Tor^(l/p, B) = 0forn> 2. To see this, use the resolution

to see that Tor*(Z/p, B) is the homology of the complex 0 -> B -^> B -> 0.

Proposition 3.1.2 For all abelian groups A and B:

(a) Torf (A, B) is a torsion abelian group,

(b)

Proof A is the direct limit of its finitely generated subgroups Aa, so by 2.6.17
Torn(A, B) is the direct limit of the Tor^(Aa, B). As the direct limit of torsion
groups is a torsion group, we may assume that A is finitely generated, that is,
A = Tm 0 Z/p\ 0 Z//?2 0 • • • 0 Z//?r for appropriate integers m, p\,..., pr.
As Zm is projective, Torn(Zm, —) vanishes for n ^ O , and so we have

Torn(A, B) 2* Torn(Z/pu B) 0 • • • 0 Torn(Z/pr, B).

The proposition holds in this case by calculation 3.1.1 above. O

66
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3.1 Tor for Abelian Groups 67

Proposition 3.1.3 Torf (Q/Z, B) is the torsion subgroup of B for every
abelian group B.

Proof As Q/Z is the direct limit of its finite subgroups, each of which is
isomorphic to 1/p for some integer /?, and Tor commutes with direct limits,

T o r ^ Q / Z , B ) 9* l i m T o r f ( Z / / ? , B ) ̂  \ \ m ( p B ) = Up{b e B : p b = 0],

which is the torsion subgroup of B. O

Proposition 3.1.4 If A is a torsionfree abelian group, then Tor^(A, B) = 0
for n ^ 0 and all abelian groups B.

Proof A is the direct limit of its finitely generated subgroups, each of which is
isomorphic to Zm for some m. Therefore, Torn(A, B) ^ limTorn(Zm, B) = 0.

Remark (Balancing Tor) If R is any commutative ring, then Torf (A, B) =
Torf (B, A). In particular, this is true for R = Z, that is, for abelian groups.
This is because for fixed B, both are universal 5-functors over F(A) = A <g>
B = B®A. Therefore Torf (A, Q/Z) is the torsion subgroup of A. From this
we obtain the following.

Corollary 3.1.5 For every abelian group A,

Torf (A, -) = 0oAis torsionfree & Torf ( - , A) = 0.

Calculation 3.1.6 All this fails if we replace Z by another ring. For example,
if we take R = T/m and A = Z/d with d\m, then we can use the periodic free
resolution

to see that for all Z/m-modules B we have

I B/dB ifn = 0

{beB:db = 0}/(m/d)B ifn is odd, n > 0
{be B: (m/d)b = 0}/dB ifn is even, n > 0.
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68 Tor and Ext

Example 3.1.7 Suppose that r e R is a left nonzerodivisor on R, that is,

rR = {s e R : rs = 0} is zero. For every /^-module B, set rB = {b e B :rb =
0}. We can repeat the above calculation with R/rR in place of Z/p to see that
Tor0(R/rR, B) = B/rB, Torf (R/rR, B) = rB and Tor*(R/rR, B) = 0 for
all B when n > 2.

Exercise 3.1.1 If r/? ^ 0, all we have is the non-projective resolution

0 -> rR-+ R ^ R-+ R/rR -> 0.

Show that there is a short exact sequence

and that Tor*(R/rR, B) ^ Tor*_2(r/?, B) for n > 3.

Exercise 3.1.2 Suppose that R is a commutative domain with field of frac-
tions F. Show that Torf (F/R, B) is the torsion submodule {b e B : (3r /
0) rZ? = 0} of 5 for every ^-module 5 .

Exercise 3.1.3 Show that Torf ( # / / , /? / / ) ^ ^ for every right ideal / and
left ideal J of R. In particular, Tori (/?//, /?//) ^ / / / 2 for every 2-sided ideal
/ . Hint: Apply the Snake Lemma to

i I I

3.2 Tor and Flatness

In the last chapter, we saw that if A is a right /^-module and B is a left R-
module, then Torf (A, B) may be computed either as the left derived functors
of A®# evaluated at B or as the left derived functors of <8>RB evaluated at A.
It follows that if either A or B is projective, then Torn(A, B) = 0 for n

Definition 3.2.1 A left ^-module B is flat if the functor ®RB is exact. Sim-
ilarly, a right /^-module A is flat if the functor A<8>R is exact. The above
remarks show that projective modules are flat. The example R = Z, B = Q
shows that flat modules need not be projective.
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3.2 Tor and Flatness 69

Theorem 3.2.2 If S is a central multiplicatively closed set in a ring R, then
S~lR is aflat R-module.

Proof Form the filtered category / whose objects are the elements of S and
whose morphisms are Horn/(51, S2) = {s e S : s\s = S2}. Then colim F(s) =

S~lR for the functor F: I -> R-mod defined by F(s) = R, F(s\ - % s2) be-
ing multiplication by s. (Exercise: Show that the maps F(s) —• S~lR sending
1 to l/s induce an isomorphism colim F(s) = S~lR.) Since S~lR is the fil-
tered colimit of the free /^-modules F(s), it is flat by 2.6.17. O

Exercise 3.2.1 Show that the following are equivalent for every left R-
module B.

1. Bis flat.
2. Tor*(A, B) = 0 for all n ^ 0 and all A.
3. Torf(A,£)=Oforal lA.

Exercise 3.2.2 Show that i f 0 ^ A ^ # - > C - > 0 i s exact and both B and
C are flat, then A is also flat.

Exercise 3.2.3 We saw in the last section that if R = 1L (or more generally,
if R is a principal ideal domain), a module B is flat iff B is torsionfree. Here
is an example of a torsionfree ideal / that is not a flat /^-module. Let k be a
field and set R = k[x, y], I = (JC, >>)/?. Show that k = R/I has the projective
resolution

Then compute that Torf (/, k) = Torf (ifc, jfc) ^ k, showing that / is not flat.

Definition 3.2.3 The Pontrjagin dual B* of a left ^-module B is the right
^-module HomAb(#> Q/2) ; an element r of R acts via (fr)(b) = f(rb).

Proposition 3.2.4 The following are equivalent for every left R-module B :

1. B is aflat R-module.
2. B* is an injective right R-module.
3. I ®R B = IB = {x\b\ H h xnbn e B : xt e /, bt e B} C B for every

right ideal I of R.
4. Torf (R/I, B) = Ofor every right ideal I of R.
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70 Tor and Ext

Proof The equivalence of (3) and (4) follows from the exact sequence

0 -* Tori(/?//, B)-> I ®B-> B-^ B/IB -* 0.

Now for every inclusion A ' c A of right modules, the adjoint functors 0 # and
Hom(—, B) give a commutative diagram

Hom(A,£*) —> Hom(A', B*)

1= =1
(A 0 B)* = Hom(A 0 5, Q/Z) — • Hom(A' 0 5, Q/Z) = (A' 0 5)*.

Using the lemma below and Baer's criterion 2.3.1, we see that

B* is injective <& (A 0 5)* -> (A' 0 B)* is surjective for all A 'cA.

^ A / 0 # - + A 0 # i s injective for all Af c A <£• B is flat.

5* is injective <& (R 0 £)* -> (/ 0 5)* is surjective for all / c R

O I ® B ^ R® B is injective for all /

Lemma 3.2.5 A map f.B^Cis injective iff the dual map /*: C* ->• 5* w

Proof If A is the kernel of / , then A* is the cokernel of /*, because
Hom(—, Q/Z) is contravariant exact. But we saw in exercise 2.3.3 that A = 0
iffA* = 0. •

Exercise 3.2.4 Show that a sequence A - • 5 —• C is exact iff its dual C* - •
5* —• A* is exact.

An /^-module M is called finitely presented if it can be presented us-
ing finitely many generators (e\,..., en) and relations (J2aijej — 0> 7 —
1, . . . , m). That is, there is an m x « matrix a and an exact sequence Rm —•
Rn -> M -> 0. If M is finitely generated, the following exercise shows that the
property of being finitely presented is independent of the choice of generators.

Exercise 3.2.5 Suppose that cp\ F -» M is any surjection, where F is finitely
generated and M is finitely presented. Use the Snake Lemma to show that
ker(<p) is finitely generated.

Still letting A* denote the Pontrjagin dual 3.2.3 of A, there is a natural
map o\ A* ®R M —• Hom#(M, A)* defined by a(f 0 ra): h i-> f(h(m)) for
/ e A*, m G M and h e Hom(M, A). (Exercise: If M = 0 ° ^ / ? , show that a
is not an isomorphism.)
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3.2 Tor and Flatness 71

Lemma 3.2.6 The map a is an isomorphism for every finitely presented M
and all A.

Proof A simple calculation shows that a is an isomorphism if M = R. By
additivity, a is an isomorphism if M = Rm or Rn. Now consider the diagram

A*0 7T —> A*0/?" —> A*®M —> 0

Hom(/?m,A)* —> Hom(Rn,A)* —> Hom(M, A)* — • 0.

The rows are exact because 0 is right exact, Horn is left exact, and Pontrjagin
dual is exact by 2.3.3. The 5-lemma shows that a is an isomorphism. <>

T h e o r e m 3.2.7 Every finitely presented flat R-module M is projective.

Proof In order to show that M is project ive, w e shall show that H o m / ? ( M , —)
is exact. To this end, suppose that we are given a surjection B -> C. Then
C* ->• B* is an injection, so if M is flat, the top arrow of the square

(C*) 0/? M —> (B*) <S>R M

Hom(M, C)* —> Hom(M, B)*

is an injection. Hence the bottom arrow is an injection. As we have seen, this
implies that Hom(M, B) —> Hom(M, C) is a surjection, as required. <>

Flat Resolut ion L e m m a 3.2.8 The groups Tor*(A, B) may be computed us-
ing resolutions by flat modules. That is, if F —> A is a resolution of A with the
Fn being flat modules, then Tor*(A, B) = H*(F 0 B). Similarly, if F' - > B is
a resolution of B by flat modules, then Tor* (A, B) = //*(A 0 Ff).

Proof We use induction and dimension shifting (exercise 2.4.3) to prove that
Torn(A, B) = Hn(F 0 B) for all n\ the second part follows by arguing over
Rop. The assertion is true for n = 0 because 0Z? is right exact. Let K be such
that 0 ^ # - + f b - ^ A ^ 0 i s exact; if E = ( > F2 -> F\ - • 0), then
E ->• K is a resolution of K by flat modules. For n = lwe simply compute

Tori (A, B) = ker(# 0 B -+ Fo 0 B)

= k e r

im(F2 0
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72 Tor and Ext

For n > 2 we use induction to see that

Torn(A, B) ^ Torn_i(£, B) ^ Hn-\(E ® B) = Hn(F 0 B).

Proposition 3.2.9 (Flat base change for Tor) Suppose R -> T is a ring map
such that T is flat as an R-module. Then for all R-modules A, all T-modules
C and all n

Proof Choose an /^-module projective resolution P - • A. Then Torf (A, C)
is the homology of P 0 # C. Since T is Z?-flat, and each Pn 0 # T is a pro-
jective T-module, P 0 7 1 — • A 0 7 1 i s a r-module projective resolution. Thus
Tor£(A ®fl 7\ C) is the homology of the complex (P ®RT)®TC = P ®RC
as well. <>

Corollary 3.2.10 If R is commutative and T is aflat R-algebra, then for all
R-modules A and B, and for all n

T ®R Tor*(A, B) ^ Tor^(A ®R T, T ®R B).

Proof Setting C = T ®R B, it is enough to show that Torf (A, T 0 B) =
T 0 Torf (A, B). As T®R is an exact functor, T 0 Torf (A, B) is the homol-
ogy of T 0/? (P 0/? B) = P 0T? (T 0/? B), the complex whose homology is
Torf (A, T 0 B). O

Now we shall suppose that R is a commutative ring, so that the Torf (A, B)
are actually R-modules in order to show how Tor* localizes.

Lemma 3.2.11 If /x: A —> A is multiplication by a central element r e R, so
are the induced maps /z*: Tor^(A, B) —> Tor^(A, B) for all n and B.

Proof Pick a projective resolution P —• A. Multiplication by r is an R-
module chain map \x\ P —> P over /x (this uses the fact that r is central), and
/x 0 Z? is multiplication by r on P 0 B. The induced map /z* on the subquo-
tient To^(A, B) of Pn 0 5 is therefore also multiplication by r. <C>

Corollary 3.2.12 If A is an R/r-module, then for every R-module B the R-
modules Torf (A, B) are actually R/r-modules, that is, annihilated by the
ideal rR.
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3.3 Ext for Nice Rings 73

Corollary 3.2.13 (Localization for Tor) If R is commutative and A and B are
R-modules, then the following are equivalent for each n:

7. Tor*(A,£) = 0.

2. For every prime ideal p of R Torn
p(Ap, Bp) = 0.

JO

3. For every maximal ideal m of R Torn
m(Am, Bm) = 0.

Proof For any R-module M, M = 0 O Mp = 0 for every prime p O Mm = 0
for every maximal ideal m. In the case M = Tor^(A, B) we have

Mp = Rp®RM = Tor*p(Ap, Bp). O

3.3 Ext for Nice Rings

We first turn to a calculation of Ext | groups to get a calculational feel for what
these derived functors do to abelian groups.

Lemma 3.3.1 Ex t | (A, B) = Ofor n>2 and all abelian groups A, B.

Proof Embed B in an injective abelian group 7°; the quotient 71 is divisible,
hence injective. Therefore, Ext*(A, B) is the cohomology of

0 -> Hom(A, 7°) - • Hom(A, 71) -+ 0. O

Calculation 3.3.2 (A = I/p) Ext°_(Z/p, B) = pB, Extl
z(Z/p, B) = B/pB

and Extj(Z/p, B) = 0 for n > 2. To see this, use the resolution

0 - • I - A I -+ Tip -> 0 and the fact that Hom(Z, B) ^ B

to see that Ext*(I/p, B) is the cohomology of 0 <- B J-— B <-0.
Since 1 is projective, Ext1 (Z, B) = 0. Hence we can calculate Ext*(A, B)

for every finitely generated abelian group A = Zm 0 I/p\ 0 • • • 0 I/pn by
taking a finite direct sum of Ext*(I/p, B) groups. For infinitely generated
groups, the calculation is much more complicated than it was for Tor.

Example 3.3.3 (B = 1) Let A be a torsion group, and write A* for its Pon-
trjagin dual Hom(A, Q/2) as in 3.2.3. Using the injective resolution 0 - •
Z -> Q - • Q/Z -> 0 to compute Ext*(A, Z), we see that ExtS(A, Z) = 0 and
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74 Tor and Ext

Ext^CA, Z) = A*. To get a feel for this, note that because Ẑ oo is the union
(colimit) of its subgroups Z/pn, the group

Ext^ZpOC, Z) = (Zpoo)*

is the torsionfree group of /7-adic integers, Zp = lim(Z//?n). We will calculate

Ext̂ CZpoo, B) more generally in section 3.5, using lim1.

Exercise 3.3.1 Show that Ext^(Z[|], Z) = Zp/Z = 1poo. This shows that

Ext!(—, Z) does not vanish on flat abelian groups.

Exercise 3.3.2 When R = Z/m and B = Z/p with p\m, show that

A Z/m ^ Z/m A Z/m

is an infinite periodic injective resolution of B. Then compute the groups
Ext| , (A, Z/p) in terms of A* = Hom(A, Z/m). In particular, show that if

/?2|m, then Exr | / m(Z/p, 1/p) ^ Z//? for all n.

Proposition 3.3.4 For all n and all rings R

L Ext^(0aAa, B) ^ Y\a Ext^(Aa, B).
2. ExtJ(A, n ^ Bfj) ^ ^ ExtJ(A, ^ ) .

Proof If Pa —> Aa are projective resolutions, so is 0 P a —>- 0A a . If 5^ —•
/^ are injective resolutions, so is f] B^ -> f] /^ . Since Hom(0Pa, B) =
n Hom(Pa, 5) and Hom(A, f[ ^ ) = U Hom(A, 7^), the result follows from
the fact that for any family Cy of cochain complexes,

Y\*(Cy). O

Examples 3.3.5

1. If p2\m and A is a Z//?-vector space of countably infinite dimension,

then Ext | / m (A,Z/p) ^ Fl/^i Z / P i s a Z/p-vector space of dimen-

sion 2K°.
2. If B is the product Z/2 x Z/3 x Z/4 x Z/5 x • • • then 5 is not a torsion

group, and

oo

Ext1 (A, B) = Y\
p=2

vanishes if and only if A is divisible.
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3.3 Ext for Nice Rings 75

Lemma 3,3.6 Suppose that R is a commutative ring, so that HornR(A, B)
and the Ext^(A, B) are actually R-modules. If \i\ A —> A and v. B -> B are
multiplication by r e R, so are the induced endomorphisms /x* and v* of
Extn

R(A,B)foralln.

Proof Pick a projective resolution P -> A. Multiplication by r is an R-
module chain map /x: P —• P over /x (as r is central); the map Hom(/x, B)
on Hom(P, B) is multiplication by r, because it sends / e Hom(Pn, B) to
//x, which takes p e Pnto f(rp) = rf(p). Hence the map /x* on the subquo-
tient Extn(A, B) of Hom(Pn, B) is also multiplication by r. The argument for
v* is similar, using an injective resolution B —> I. <>

Corollary 3.3.7 If R is commutative and A is actually an R/r-module, then
for every R-module B the R-modules Ext^(A, B) are actually R/r-modules.

We would like to conclude, as we did for Tor, that Ext commutes with local-
ization in some sense. Indeed, there is a natural map 4> from S~l Horn/?(A, B)
to Hom5-i^(5~1A, S~lB), but it need not be an isomorphism. A sufficient
condition is that A be finitely presented, that is, some Rm —> Rn -* A -> 0
is exact.

Lemma 3.3.8 If A is a finitely presented R-module, then for every central
multiplicative set S in R, O is an isomorphism:

l , B) ̂  U l

Proof O is trivially an isomorphism when A = R\ as Horn is additive, <J> is
also an isomorphism when A = Rm. The result now follows from the 5-lemma
and the following diagram:

0 —• S-lHomR(A,B) —• S

•1 4 -I
0 —• Hom(S~lA,S~lB) —>

Definition 3.3.9 A ring /? is (right) noetherian if every (right) ideal is finitely
generated, that is, if every module R/I is finitely presented. It is well known
that if R is noetherian, then every finitely generated (right) /^-module is
finitely presented. (See [BAII,§3.2].) It follows that every finitely generated
module A has a resolution F -» A in which each Fn is a finitely generated
free R-module.
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76 Tor and Ext

Proposition 3.3.10 Let A be a finitely generated module over a commutative
noetherian ring R. Then for every multiplicative set S, all modules B, and
alln

<t>: S~l Ext^(A, B) =- Extn
s_lR(S~lA, S~lB).

Proof Choose a resolution F —> A by finitely generated free R-modules.
Then 5 - 1 F -> S~lA is a resolution by finitely generated free S~^-modules.
Because S~l is an exact functor from /^-modules to 5""^-modules,

t^(A, B) = S~l(H* HomR(F, B)) =- H*(S~l HomR(F, B))

^ H* Hom5-iR(S~lF, S~lB) = Ext* , ,^^" 1 A, S

Corollary 3.3.11 (Localization for Ext) If R is commutative noetherian and
A is a finitely generated R-module, then the following are equivalent for all
modules B and all n:

1. Ext^(A, B) = 0.
2. For every prime ideal p of R, Ext^ (Ap, Bp) = 0.

3. For every maximal ideal m of R, Ext# (Am, Bm) = 0.

3.4 Ext and Extensions

An extension £ of A by B is an exact sequence 0-+B-^X-+A^0. Two
extensions £ and £' are equivalent if there is a commutative diagram

§: 0 —> B —> X —> A —> 0

An extension is split if it is equivalent to 0 -> 5 —^ A 0 5 - • A -> 0.

Exercise 3.4.1 Show that if p is prime, there are exactly p equivalence
classes of extensions of 7L/p by Z//? in Ab: the split extension and the ex-
tensions

0 -» 1/p -£» Z//?2 - U Z//7 -> 0 (i = 1, 2, • . . , / > - 1).
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3.4 Ext and Extensions 11

Lemma 3.4.1 If Ext1 (A, B) = 0, then every extension of A by B is split.

Proof Given an extension £, applying Ext*(A, —) yields the exact sequence

Hom(A, X) -> Hom(A, A) -^> Ext1 (A, B)

so the identity map idA lifts to a map a: A ->• X when Ext1 (A, B) = 0. As a
is a section of X -* A, evidently X = A © 5 and § is split. O

Porism 3.4.2 Taking the construction of this lemma to heart, we see that
the class 0(§) = 9 (idA) in Ext1 (A, B) is an obstruction to § being split: £
is split iff idA lifts to Hom(A, X) iff the class ®(£) e Ext1 (A, B) vanishes.
Equivalent extensions have the same obstruction by naturality of the map 9, so
the obstruction 0(£) only depends on the equivalence class of §.

Theorem 3.4.3 Given two R-modules A and B, the mapping 0 : £ I-* 9(idA)
establishes a 1-1 correspondence

f equivalence classes of] i-i i4 ^-V Ext1 (A, 5)
I extensions of A by B \

in which the split extension corresponds to the element 0 e Ext1 (A, B).

Proof Fix an exact sequence 0 -> M —> P —> A -> 0 with P projective.
Applying Hom(—, B) yields an exact sequence

Hom(/>, B) -+ Hom(M, B) -^> Ext1 (A, B) -+ 0.

Given x e Ext1 (A, B), choose ft e Hom(M, B) with d(P) = x. Let X be the
pushout of j and j3, i.e., the cokernel of M —> P © 5 (w H- (j^(m), —P(m))).
There is a diagram

0 —> M -U P — > A — ^ 0

4 4- II
£: 0 —> B -U X —> A — • 0,

where the map X —> A is induced by the maps # —• A and P —> A. (Exer-
cise: Show that the bottom sequence § is exact.) By naturality of the connect-
ing map 9, we see that 0(£) = JC, that is, that 0 is a surjection.
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78 Tor and Ext

In fact, this construction gives a set map *I> from Ext1 (A, B) to the set of
equivalence classes of extensions. For if ft e Hom(M, B) is another lift of x,
then there is an / e Hom(P, B) so that ft = fi + fj. If X' is the pushout of j
and ft, then the maps /: B ->• X and o +if:P -> X induce an isomorphism
X' = X and an equivalence between £' and £. (Check this!)

Conversely, given an extension £ of A by B, the lifting property of P gives
a map r: P -> X and hence a commutative diagram

0 —> M -U P —> A —^ 0

(*)
M —>

U
B - U

P

i
X§: 0 —> B —> X —> A — • 0.

Now X is the pushout of j and y. {Exercise: Check this!) Hence
$, showing that 0 is injective. O

Definition 3.4.4 (Baer sum) Let £: 0 -> B -> X -> A -> 0 and §r: 0 -^ 5 ^
X; -> A ->• 0 be two extensions of A by B. Let X" be the pullback {(JC, jcr) G
X x X / :Jc=Jc / inA}.

X" —> X7

X —^ A

X" contains three copies o f f i : 5 x 0 , 0 x 5 , and the skew diagonal {(—b, b) :
b e B}. The copies B x 0 and 0 x 5 are identified in the quotient Y of X" by
the skew diagonal. Since X"/0 x B = X and X/B = A, it is immediate that
the sequence

is also an extension of A by B. The class of (p is called the Baer sum of the
extensions £ and §\ since this construction was introduced by R. Baer in 1934.

Corollary 3.4.5 The set of (equiv. classes of) extensions is an abelian group
under Baer sum, with zero being the class of the split extension. The map 0 is
an isomorphism of abelian groups.

Proof We will show that 0(<p) = 0(£) + ©(£') in Ext1 (A, B). This will
prove that Baer sum is well defined up to equivalence, and the corollary will
then follow. We shall adopt the notation used in (*) in the proof of the above
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3.4 Ext and Extensions 79

theorem. Let r": P ->• X" be the map induced by r: P -> X and z'\ P -> X\
and let r: P -> 7 be the induced map. The restriction of r to M is induced by
the map y + y'\ M -> B, so

0 —> M —> P —> A —> 0

Y+Y'I *l 1

(p: 0 —> B —> Y —> A —> 0

commutes. Hence, 0(<p) = 3(y + }/)> where 9 is the map from Hom(M, B)
to Ext^A, B). But 3(y + y;) = d(y) + aCyO = O(§) + 0(§'). O

Vista 3.4.6 (Yoneda Ext groups) We can define Ext1 (A, B) in any abelian
category A, even if it has no projectives and no injectives, to be the set of
equivalence classes of extensions under Baer sum (if indeed this is a set).
The Freyd-Mitchell Embedding Theorem 1.6.1 shows that Ext1 (A, B) is an
abelian group—but one could also prove this fact directly. Similarly, we can
recapture the groups Extn(A, B) without mentioning projectives or injectives.
This approach is due to Yoneda. An element of the Yoneda Ext"(A, B) is an
equivalence class of exact sequences of the form

£: 0 - • B -> Xn -> > X\ -+ A -> 0.

The equivalence relation is generated by the relation that §' ~ f" if there is a
diagram

^ : 0 —> B —> X'n —> ••• —> X[ —> A —> 0

f\ 0 —> B —> Xl —> . . . —> X'{ —> A —> 0.

To "add" § and £' when n > 2, let Z'/ be the pullback of X\ and X\ over A, let
X'n be the pushout of Xn and X^ under 5 , and let Yn be the quotient of X% by
the skew diagonal copy of B. Then § + £r is the class of the extension

o -> ^ -> yn -> x^_i e x'n_x -+ — > x2 e x'2 -> xr/ -^ A -• o.

Now suppose that ^l has enough projectives. If P ->• A is a projective res-
olution, the Comparison Theorem 2.2.6 yields a map from P to £, hence a
diagram
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80 Tor and Ext

0 —> M —> Pn-\ — • . . . —> Po —> A —^0

By dimension shifting, there is an exact sequence

Hom(Pn_i, B) -> Hom(M, B) -^> Extn(A, B) -> 0.

The association ®(§) = d(fi) gives the 1-1 correspondence between the
Yoneda Ext" and the derived functor Ext". For more details we refer the reader
to [BX, §7.5] or [MacH, pp. 82-87].

3.5 Derived Functors of the Inverse Limit

Let / be a small category and A an abelian category. We saw in Chapter 2 that
the functor category A1 has enough injectives, at least when A is complete and
has enough injectives. (For example, A could be Ab, /?-mod, or Sheaves(X).)
Therefore we can define the right derived functors Rn lim,-e/ from A1 to A.

We are most interested in the case in which A is Ab and / is the poset
> 2 - • 1 —• 0 of whole numbers in reverse order. We shall call the objects

of Ab7 (countable) towers of abelian groups; they have the form

{A/}: > A2-+ A\ -» Ao.

In this section we shall give the alternative construction lim1 of Rx\\m for

countable towers due to Eilenberg and prove that Rn lim = 0 for n ^ 0, 1. This

construction generalizes from Ab to other abelian categories that satisfy the
following axiom, introduced by Grothendieck in [Tohoku]:

(A#4*) A is complete, and the product of any set of surjections is a surjection.

Explanation If / is a discrete set, A1 is the product category UiEiA of in-
dexed families of objects {A/} in A. For {A/} in A1, lim;e/ A/ is the product
f| A/. Axiom (AJ94*) states that the left exact functor [~[ from A1 to A is exact
for all discrete / . Axiom (AB4*) fails ( f lS i ^s no* e x a c 0 f°r some impor-
tant abelian categories, such as Sheaves(X). On the other hand, axiom (AB4*)
is satisfied by many abelian categories in which objects have underlying sets,
such as Ab, mod-/?, and Ch(mod-/?).
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3.5 Derived Functors of the Inverse Limit 81

Definition 3.5.1 Given a tower {A;} in Ab, define the map

i=0 i=0

by the element-theoretic formula

A(- • •, 0,-, • • •, ao) = (• • • ,at — ai+i, • • •, a\ — <22,ao — a\),

where at+\ denotes the image of <2;+i e Aj+i in A/. The kernel of A is lim A/

(check this!). We define lim1 A/ to be the cokernel of A, so that lim1 is a

functor from Ab7 to Ab. We also set lim0 A,- = lim A; and lim" A/ = 0 for

n#0, 1.

Lemma 3.5.2 The functors {\imn} form a cohomological 8-functor.

Proof If 0 -> {A/} —• {5/} -> {C/} - • 0 is a short exact sequence of towers,
apply the Snake Lemma to

o —• i\Ai —+ Y\Bt —• Y\Q —• o

to get the requisite natural long exact sequence. <>

L e m m a 3.5.3 If all the maps A,-+i - > A/ «r^ onto, then l im 1 A/ = 0. More-

over lim A/ ^ 0 (unless every A/ = 0), because each of the natural projections

lim Ai —>• Ay are onto.

Proof Given elements b[ e At (i = 0, 1, • • •), and any ao e Ao, inductively
choose 0/+i € A/+i to be a lift of at — £; G A/. The map A sends (• • •, a\, ao)
to (• • •, b\, bo), so A is onto and coker(A) = 0 . If all the b{ = 0 , then
(--,a\,ao) e lim A/. O

Corollary 3.5.4 Inn1 A/ ^ (Rx Urn)(A/) «nJ /?n Hm = Ofor n ^ 0, 1.

In order to show that the limn forms a universal 8 -functor, we only need

to see that lim1 vanishes on enough injectives. In Chapter 2 we constructed
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82 Tor and Ext

enough injectives by taking products of towers

k*E: . . . = £ = £ - > 0 ^ 0 ^ 0

with E injective. All the maps in k*E (and hence in the product towers) are
onto, so lim1 vanishes on these injective towers. O

Remark If we replace Ab by A = mod-/?, Ch(mod-/?) or any abelian cat-
egory A satisfying Grothendieck's axiom (A54*), the above proof goes
through to show that lim1 = Rl(\im) and Rn(\im) = 0 for n / 0, 1 as func-
tors on the category of towers in A. However, the proof breaks down for other
abelian categories.

Example 3.5.5 Set Ao = 1 and let A/ = pl1 be the subgroup generated by
pl. Applying lim to the short exact sequence of towers

with p prime yields the uncountable group

Here Zp = lim Z/pl2 is the group of p-adic integers.

Exercise 3.5.1 Let {A/} be a tower in which the maps A/+i -> A/ are in-
clusions. We may regard A = Ao as a topological group in which the sets
a + Ai(a e A,i >0) are the open sets. Show that lim A; = Pi A/ is zero iff A

is Hausdorff. Then show that lim1 A/ = 0 iff A is complete in the sense that

every Cauchy sequence has a limit, not necessarily unique. Hint: Show that A
is complete iff A = lim(A/A/).

Definition 3.5.6 A tower {A/} of abelian groups satisfies the Mittag-Leffler
condition if for each k there exists a j >k such that the image of A/ -> A*
equals the image of A7 -> A^ for all / > j . (The images of the A/ in A& satisfy
the descending chain condition.) For example, the Mittag-Leffler condition is
satisfied if all the maps A/+i -> A/ in the tower {A/} are onto. We say that {A/}
satisfies the trivial Mittag-Leffler condition if for each k there exists a j > k
such that the map A7 -> A& is zero.
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3.5 Derived Functors of the Inverse Limit 83

Proposition 3.5.7 If {At} satisfies the Mittag-Leffler condition, then

Proof If {A/} satisfies the trivial Mittag-Leffler condition, and b[ e A; are
given, set ak = bk + ^ + i H + bj-\, where hi denotes the image of b[ in
Ak. (Note that hi = 0 for / > j.) Then A maps (• • •, a\,ao) to (• • •, b\, bo).
Thus A is onto and lim1 A/ = 0 when {A/} satisfies the trivial Mittag-Leffler

condition. In the general case, let Bk c Ak be the image of A/ —>• Ak for large

i. The maps Bk+\ -> ^ are all onto, so lim1 Bk = 0. The tower {Ak/Bk} sat-

isfies the trivial Mittag-Leffler condition, so lim1 Ak/Bk = 0. From the short

exact sequence

of towers, we see that lim1 A/ = 0 as claimed. O

Exercise 3.5.2 Show that lim1 A/ = 0 if {A/} is a tower of finite abelian

groups, or a tower of finite-dimensional vector spaces over a field.

The following formula presages the Universal Coefficient theorems of the
next section, as well as the spectral sequences of Chapter 5.

Theorem 3.5.8 Let > C\ —• Co be a tower of chain complexes of abelian
groups satisfying the Mittag-Leffler condition, and set C = lim C[. Then there

is an exact sequence for each q:

0 - • Urn xHq+\(Ci) - • Hq(C) - • Inn Hq(Q) -* 0.

Proof Let B[ c Z; c Q be the subcomplexes of boundaries and cycles in the
complex Ci, so that Zi/Bi is the chain complex H*(Ci) with zero differentials.

Applying the left exact functor lim to 0 -> {Z/} - • {Cf} —> {C/[— 1]} shows

that in fact lim Z/ is the subcomplex Z of cycles in C. (The [—1] refers to the

surpressed subscript on the chain complexes.) Let B denote the subcomplex
d(C)[l] = (C/Z)[l] of boundaries in C, so that Z/B is the chain complex
H*(C) with zero differentials. From the exact sequence of towers
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84 Tor and Ext

we see that lim1 Bt = (lim 1^I-[—1])[+1] = 0 and that

0 -> B[-l] -> lim Bt[-l] -> lim lZt -> 0

is exact. From the exact sequence of towers

0^{Bi}^{Zi}^H*(Ci)^0

we see that lim1 Z,- = lim1 H*(Q) and that

0 -> lim £,- - • Z - • lim #*(C;) -> 0

is exact. Hence C has the filtration by subcomplexes

0 c B c lim £; c Z c C

whose filtration quotients are B, lim1 //*(Q)[1], lim H*(Ct), and C/Z respec-

tively. The theorem follows, since Z/B = H*(C). O

Variant If • • • -> C\ -> Co is a tower of cochain complexes satisfying the
Mittag-Leffler condition, the sequences become

0 - • lim xHq~\Ci) -> //^(C) - • lim / /^(Q) -^ 0.

Application 3.5.9 Let H*(X) denote the integral cohomology of a topolog-
ical CW complex X. If {Xi} is an increasing sequence of subcomplexes with
X = UXt, there is an exact sequence

(*) 0 - • lim lHq-\Xi) -> Hq(X) -> lim Hq{X{) -+ 0

for each q. This use of lim1 to perform calculations in algebraic topology was

discovered by Milnor in 1960 [Milnor] and thrust lim1 into the limelight.

To derive this formula, let C; denote the chain complex Hom(5(X/), Z)
used to compute H*(X(). Since the inclusion S(Xi) c S(X/+i) splits (because
each Sn(Xi+\)/Sn(Xi) is a free abelian group), the maps C,-+i -> Q are onto,
and the tower satisfies the Mittag-Leffler condition. Since X has the weak
topology, S(X) is the union of the 5(X/), and therefore H*(X) is the coho-
mology of the cochain complex

Hom(U5(X/), Z) = limHom(5(X/), Z) = lim Q.
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3.5 Derived Functors of the Inverse Limit 85

A historical remark: Milnor proved that the sequence (*) is also valid if
H* is replaced by any generalized cohomology theory, such as topological
K— theory.

Application 3.5.10 Let A be an /^-module that is the union of submodules
• • • c Ai c A/+i c • • •. Then for every /^-module B and every q the sequence

0 -> lim x Exiq
R

X(Ai, B) -> Ext^(A, B) -* lim ExtJ(A/, £) -> 0

is exact. For Tpoo = UZ//?1, this gives a short exact sequence for every B:

0 -> lim * Hom(Z///, B) -> Ext^Z^oo, B)-> Bp^ 0,

where the group Z?p = \\m(B/plB) is the /7-adic completion of B. This gener-

alizes the calculation Ext^(lpoo, I) ^ Ip of 3.3.3. To see this, let E be a fixed

injective resolution of B, and consider the tower of cochain complexes

Hom(A;+i, E) -+ Hom(A/, E) -+ > Hom(A0, E).

Each Hom(—, En) is contravariant exact, so each map in the tower is a surjec-
tion. The cohomology of Hom(A/, E) is Ext*(A/, B), and Ext*(A, B) is the
cohomology of

Hom(UA/, E) = limHom(A/, E).

Exercise 3.5.3 Show that Ext^(Z[^], Z) = 1p/Z using Z[£] = U/?~'Z; cf.

exercise 3.3.1. Then show that Ext^(Q, 5) = {\\p Bp)/B for torsionfree B.

Application 3.5.11 Let C = C** be a double chain complex, viewed as a
lattice in the plane, and let TnC be the quotient double complex obtained by
brutally truncating C at the vertical line p = —n:

(TnC)pq=\nM if
f
P-~n.

^ I 0 it p < —n

Then Tot(C) is the inverse limit of the tower of surjections

• Tot(7/+iC) -> Tot(7}C) -^ • Tot(7bC).

Therefore there is a short exact sequence for each q:

0 -> lim lHq+i(Tot(TiC)) -+ Hq(Tot(C)) -> lim ^(Tot(7)C)) -^ 0.
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86 Tor and Ext

This is especially useful when C is a second quadrant double complex, be-
cause the truncated complexes have only a finite number of nonzero rows.

Exercise 3.5.4 Let C be a second quadrant double complex with exact rows,
and let Bh

pq be the image of dh\ Cpq -> Cp-i,q. Show that Hp+q Tot(T-pC) =
Hq{Bh

p^ dv). Then let b = dh(a) be an element of Bh
pq representing a cycle

£ in Hp+q Tot(T-pC) and show that the image of £ in Hp+qTot(T-p-\C)
is represented by dv(a) e Bh

+X v This provides an effective method for
calculating #*Tot(C).

Vista 3.5.12 Let / be any poset and A any abelian category satisfying
(AB4*). The following construction of the right derived functors of lim is
taken from [Roos] and generalizes the construction of lim1 in this section.

Given A: / —> A, we define Ck to be the product over the set of all chains
ik < " • < *o m / of the objects A/o. Letting prik • • -̂  denote the projection of
Ck onto the (/&<•••< i\)st factor and /o denote the map A(l —> A,o associ-
ated to i\ < IQ, we define d°: Ck-i - • Ck to be the map whose (*£<•••< io)th

factor is fo(pnk • • -/i)- For 1 < p < k, we define dp: Ck-\ -+ Ck to be the
map whose (4 < • • • < I'O)^ factor is the projection onto the ( /*<• • •< ip <
••- < h)th factor. This data defines a cochain complex C*A whose differential
Ck-\ -+ Ck is the alternating sum J2k

p=o(~l)pdp, and we define lim"G/ A to
be Hn(C*A). (The data actually forms a cosimplicial object of .4; see Chap-
ter 8.)

It is easy to see that lim|)e/ A is the limit lim/e/ A. An exact sequence 0 ->
A-^B-^C^OinA1 gives rise to a short exact sequence 0 - • C*A ->•
C*B - • C*C ->• 0 in A whence an exact sequence

0 ->

Therefore the functors {lim"e/} form a cohomological <5-functor. It turns out
that they are universal when A has enough injectives, so in fact Rn lim/e/ =

Remark Let #d denote the dth infinite cardinal number, Ko being the cardinal-
ity of {1, 2, •••}. If / is a directed poset of cardinality Kj, or a filtered cate-
gory with #d morphisms, Mitchell proved in [Mitch] that Rn lim vanishes for

n > d + 2.

Exercise 3.5.5 (Pullback) Let -> <- denote the poset {JC, v, z}, x < z and y <
z, so that lim A; is the pullback of Ax and Ay over Az. Show that lim 1 A/

lim A
iel

- • l im
iel

B —> lim C —>
1 6 /

lim A
iel

—> lim 5
I G /

-> lim
iel

lC - • l i m 2 A
iel
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3.6 Universal Coefficient Theorems 87

is the cokernel of the difference map Ax x Ay ->• Az and that lim n = 0 for

/i/0, 1. ~**~

3.6 Universal Coefficient Theorems

There is a very useful formula for using the homology of a chain complex P to
compute the homology of the complex P 0 Af. Here is the most useful general
formulation we can give:

Theorem 3.6.1 (Kunneth formula) Let P be a chain complex of flat right R-
modules such that each submodule d(Pn) ofPn-\ is also flat. Then for every n
and every left R-module M, there is an exact sequence

0 -> Hn{P) ®R M -> Hn(P ®R M) -> Torf (#n_i(P), M) -> 0.

Proof The long exact Tor sequence associated to 0 -> Zn -> Pn -> d(Pn) ->
0 shows that each Zn is also flat (exercise 3.2.2). Since Torf (d(Pn), M) = 0,

O ^ Z n 0 M ^ P n 0 M - > d(Pn) 0 M -^ 0

is exact for every n. These assemble to give a short exact sequence of chain
complexes O ^ Z 0 M - ^ P 0 M - > d(P) 0 M -> 0. Since the differentials
in the Z and d(P) complexes are zero, the homology sequence is

Hn+\(dP®M) -X Hn(Z®M) -+ Hn(P®M) -+ Hn(dP®M) -X Hn-X{Z ® M)

d(Pn+l)®M Zn®M d(Pn)®M Zn-i®M.

Using the definition of 3, it is immediate that 9 = i 0 M, where i is the
inclusion of d(Pn+\) in Zn. On the other hand,

0 -* d(Pn+i) -U Zn -> Hn(P) -> 0

is a flat resolution of Hn(P), so Tor*(/4(P), Af) is the homology of

0 -+ d(Pn+i) 0 M -^-> Zn 0 M -> 0.

Universal Coefficient Theorem for Homology 3.6.2 L<?£ P be a chain com-
plex of free abelian groups. Then for every n and every abelian group M the
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88 Tor and Ext

Kunneth formula 3.6.1 splits noncanonically, yielding a direct sum decom-
position

Hn(P 0 M) ^ Hn{P) 0 M 0 Toif (#„_!(/>), M).

Proof We shall use the well-known fact that every subgroup of a free abelian
group is free abelian [KapIAB, section 15]. Since d{Pn) is a subgroup of
Pn+i, it is free abelian. Hence the surjection Pn - • d(Pn) splits, giving a
noncanonical decomposition

Applying 0M, we see that Zn 0 M is a direct summand of Pn 0 M; a fortiori,
Zn 0 M is a direct summand of the intermediate group

ker(Jn 0 1: Pw 0 M -> Pn-\ 0 M).

Modding out Zn 0 M and ker(dn 0 1) by the common image of dn+\ 0
1, we see that Hn{P) 0 M is a direct summand of //«(P 0 Af). Since P
and J (P) are flat, the Kunneth formula tells us that the other summand is

M). O

Theorem 3.6.3 (Kunneth formula for complexes) Let P and Q be right and
left R-module complexes, respectively. Recall from 2.7.1 that the tensor prod-
uct complex P 0/? Q is the complex whose degree n part is ®p+q=n Pp 0 Qq

and whose differential is given by d(a 0 b) = (da) 0 b + (—\)pa 0 (db) for
a e Pp, be Qq. If Pn and d(Pn) are flat for each n, then there is an exact
sequence

° ^ 0 HP(n®Hq(Q)^Hn(P®RQ)-± ($)ToT?(Hp(P),Hq(Q))-+0
p+q=n p+q=

for each n. If R = Z and P is a complex of free abelian groups, this sequence
is noncanonically split.

Proof Modify the proof given in 3.6.1 for Q = M. <>

Application 3.6.4 (Universal Coefficient Theorem in topology) Let S(X) de-
note the singular chain complex of a topological space X; each Sn(X) is a free
abelian group. If M is any abelian group, the homology of X with "coeffi-
cients" in M is

M).

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.004
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:22:01, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.004
https:/www.cambridge.org/core


3.6 Universal Coefficient Theorems 89

Writing //*(X) for H*(X; Z), the formula in this case becomes

Hn{X\ M) ^ Hn(X) ®M ® Torf (//n_i(X), M).

This formula is often called the Universal Coefficient Theorem in topology.
If Y is another topological space, the Eilenberg-Zilber theorem 8.5.1 (see

[MacH, VIII.8]) states that H*(X x Y) is the homology of the tensor product
complex S(X) ® S(Y). Therefore the Kunneth formula yields the "Kunneth
formula for cohomology:"

Hn(X x Y) S \ 0 Hp(X) ® Hn-p(Y) | ® j ©Torf (Hp.x{X), Hn-p{Y)) \ .
[P=O J IP=I J

We now turn to the analogue of the Kunneth formula for Horn in place
of (8).

Universal Coefficient Theorem for Cohomology 3.6.5 Let P be a chain
complex of projective R-modules such that each d{Pn) is also protective. Then
for every n and every R-module M, there is a (noncanonically) split exact
sequence

0 -> Exlx
R(Hn-\(P), M) -> //"(Hom/KP, M)) - • YiomR(Hn(P), M) -> 0.

Proof Since d(Pn) is projective, there is a (noncanonical) isomorphism Pn =
Zn®d(Pn) for each n. Therefore each sequence

0 - • Wom(d(Pn), M) -+ Hom(Pn, M) - • HomCZ,,, M) -^ 0

is exact. We may now copy the proof of the Kunneth formula 3.6.1 for (8),
using Hom(—, M) instead of (g)M, to see that the sequence is indeed exact.
We may copy the proof of the Universal Coefficient Theorem 3.6.2 for (8) in
the same way to see that the sequence is split. •

Application 3.6.6 (Universal Coefficient theorem in topology) The cohomol-
ogy of a topological space X with "coefficients" in M is defined to be

//*(X; M) = //*(Hom(S(X), M)).

In this case, the Universal Coefficient theorem becomes

Hn(X\ M) = Hom(Hn(X), M) ®Ex\^(Hn-i(X), M).
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90 Tor and Ext

Example 3.6.7 If X is path-connected, then H0(X) = I and HX{X\ Z) ^
Hom(H\(X), Z), which is a torsionfree abelian group.

Exercise 3.6.1 Let P be a chain complex and Q a cochain complex of R-
modules. As in 2.7.4, form the Horn double cochain complex Hom(P, Q) =
{HomR(Pp, Q*)}, and then write /J*Hom(/>, Q) for the cohomology of
Tot(Hom(P, Q)). Show that if each Pn and d(Pn) is projective, there is an
exact sequence

f ] ExtJj(^(P), HHQ)) -+ Hn Hom(P, Q) -> \ \ HomR(Hp(P), H«(Q)) -+ 0.
p+q
n-\

Exercise 3.6.2 A ring R is called right hereditary if every submodule of
every (right) free module is a projective module. (See 4.2.10 and exercise
4.2.6 below.) Any principal ideal domain (for example, R = T) is hereditary,
as is any commutative Dedekind domain. Show that the universal coefficient
theorems of this section remain valid if Z is replaced by an arbitrary right
hereditary ring R.
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4
Homological Dimension

4.1 Dimensions

Definitions 4.1.1 Let A be a right ^-module.

1. The projective dimension pd(A) is the minimum integer n (if it exists)
such that there is a resolution of A by projective modules

0 -> Pn -> > Pi -> Po -> A -> 0.

2. The injective dimension id(A) is the minimum integer n (if it exists)
such that there is a resolution of A by injective modules

0 -> A -> E° -> F 1 -> • £ n -> 0.

3. The flat dimension fd{A) is the minimum integer n (if it exists) such
that there is a resolution of A by flat modules

0 -> Fn -> • Fi -> Fo -> A -> 0.

If no finite resolution exists, we set pd(A), id(A), or fd(A) equal to oo.
We are going to prove the following theorems in this section, which allow

us to define the global and Tor dimensions of a ring R.

Global Dimension Theorem 4.1.2 The following numbers are the same for
any ring R:

1. sup{id(B) : B e mod-/?}
2. sup{pd(A): A e mod-/?}
3. sup{pd(R/I) : / is a right ideal of R]
4. sup{d : Ext^(A, B) / 0 for some right modules A, B}

91

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.005
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:25:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.005
https:/www.cambridge.org/core


92 Homological Dimension

This common number (possibly oo ) is called the (right) global dimension of
R, r.gl. dim(R). Bourbaki [BX] calls it the homological dimension of R.

Remark One may define the left global dimension l.gl.dim(R) similarly. If
R is commutative, we clearly have t.gl. d\m(R) = r.gl. d\m(R). Equality also
holds if R is left and right noetherian. Osofsky [Osof] proved that if every one-
sided ideal can be generated by at most #n elements, then \l.gl.dim(R) —
r.gl.dim(R)\ < n + 1. The continuum hypothesis of set theory lurks at the
fringe of this subject whenever we encounter non-constructible ideals over
uncountable rings.

Tor-dimension Theorem 4.1.3 The following numbers are the same for any
ring R:

1. sup{ fd(A) : A is a right R-module]
2. sup{ fd(R/J) :J is a right ideal of R}
3. sup{ fd(B) .Bis a left R-module}
4. sup{fd(R/I) :I is a left ideal of R}
5. swp{d : TorJ(A, B) ^ Ofor some R-modules A, B}

This common number (possibly oo) is called the Tor-dimension of R. Due to
the influence of [CE], the less descriptive name weak dimension of R is often
used.

Example 4.1.4 Obviously every field has both global and Tor-dimension
zero. The Tor and Ext calculations for abelian groups show that R = 7L has
global dimension 1 and Tor-dimension 1. The calculations for R = Z/m show
that if some p2\m (so R isn't a product of fields), then T/m has global dimen-
sion oo and Tor-dimension oo.

As projective modules are flat, fd(A) < pd(A) for every /^-module A. We
need not have equality: over 2, fd(Q) = 0, but pd(Q) = 1. Taking the supre-
mum over all A shows that Tor-dim(/?) < r.gl.dim(R). We will see exam-
ples in the next section where Tor-dim(/?) ^ r.gl.dim(R). These examples
are perforce non-noetherian, as we now prove, assuming the global and Tor-
dimension theorems.

Proposition 4.1.5 IfR is right noetherian, then

1. fd(A) = pd(A) for every finitely generated R-module A.
2. Tor-dim(fl) = r.gl. dim(R).

Proof Since we can compute Tor-dim(/?) and r.gl.dim(R) using the mod-
ules R/I, it suffices to prove (1). Since fd(A) < pd(A), it suffices to suppose
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4.1 Dimensions 93

that fd(A) —n < oo and prove that pd(A) < n. As R is noetherian, there is a
resolution

0 -> M - • />„_! -> • • • -* Pi - • Po -> A -> 0

in which the P; are finitely generated free modules and M is finitely presented.
The fd lemma 4.1.10 below implies that the syzygy M is a flat P-module, so
M must also be projective (3.2.7). This proves that pd(A) < n, as required. <C>

Exercise 4.1.1 Use the Tor-dimension theorem to prove that if R is both left
and right noetherian, then r.gl. dim(R) =l.gl. dim(R).

The pattern of proof for both theorems will be the same, so we begin with
the characterization of projective dimension.

pd Lemma 4.1.6 The following are equivalent for a right R-module A:

1. pd(A)<d.
2. Extn

R(A, B) = 0foralln>d and all R-module s B.

3. Ex4+1(A, B) = Ofor all R-modules B.
4. IfO - • Md -> Pd-X -+ Pd-2 -+ > P\ -+ Po -> A -+ 0 is any reso-

lution with the P 's projective, then the syzygy Md is also projective.

Proof Since Ext*(A, B) may be computed using a projective resolution of A,
it is clear that (4) =>• (1) =>• (2) => (3). If we are given a resolution of A as
in (4), then Ext^+1(A, B) ^ Ext1 (Md, B) by dimension shifting. Now Md is
projective iff Ext1 (Md, B)=0 for all B (exercise 2.5.2), so (3) implies (4). <C>

Example 4.1.7 In 3.1.6 we produced an infinite projective resolution of A =
Z/p over the ring R = Z//?2. Each syzygy was Z/p, which is not a projective
Z//?2-module. Therefore by (4) we see that Z/p has pd = oo over R = Z/p2.
On the other hand, Z/p has pd = 0 over R = Z/p and pd = 1 over R = Z.

The following two lemmas have the same proof as the preceding lemma.

id Lemma 4.1.8 The following are equivalent for a right R-module B:

1. id(B)<d.
2. Ext^(A, B) = 0foralln>d and all R-modules A.

3. Ex4+1(A, B) = Ofor all R-modules B.

4. IfO^ B-+ E°-+ > Ed~l -+ Md ^Oisa resolution with the El

injective, then Md is also injective.
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94 Homological Dimension

Example 4.1.9 In 3.1.6 we gave an infinite injective resolution of B = Z/p
over R = Z/p2 and showed that Extn

R(Z/p, Z/p) = Z/p for all n. Therefore
Z/p has id = oo over R = Z/p2. On the other hand, it has id = 0 over R =
Z/p and id = 1 over Z.

fd Lemma 4.1.10 The following are equivalent for a right R-module A:

1. fd(A)<d.
2. Tor*(A, B) = Ofor alln>d and all left R-modules B.
3. Tor^+1(A, B) = Ofor all left R-modules B.
4. IfO —> Md -> Fd-\ —> Fd-2 -^•-•^Fo^A^Oisa resolution with

the F( all flat, then Mj is also aflat R-module.

Lemma 4.1.11 A left R-module B is injective ijfExlx{R/I, B) = Ofor all left
ideals I.

Proof Applying Hom(-, B) to 0 - • / -+ R -> R/I -> 0, we see that

Hom(#, B) - • Hom(/, B) -> Extl(R/I, B) -+ 0

is exact. By Baer's criterion 2.3.1, B is injective iff the first map is surjective,
that is, iff Ext1 (R/I, B) = 0. O

Proof of Global Dimension Theorem The lemmas characterizing pd(A) and
id(A) show that sup(2) = sup(4) = sup(l). As sup(2) > sup(3), we may
assume that d = sup{pd(R/I)} is finite and that id(B) > d for some R-
module B. For this B, choose a resolution

0 ^ B-^ £° -> El -> > Ed~l -> M -+ 0

with the £'s injective. But then for all ideals / we have

0 = Ex4+1(#//, B) ^ Extl
R(R/I, M).

By the preceding lemma 4.1.11, M is injective, a contradiction to id(B) > d.
O

Proof of Tor-dimension theorem The lemma 4.1.10 characterizing fd(A) over
R shows that sup(5) = sup(l) > sup(2). The same lemma over Rop shows that
sup(5) = sup(3) > sup(4). We may assume that sup(2) < sup(4), that is, that
d = s\xp{fd(R/J) : J is a right ideal} is at most the supremum over left ideals.
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4.2 Rings of Small Dimension 95

We are done unless d is finite and fd(B) > d for some left /^-module B. For
this B, choose a resolution 0 —• M -> Fd-\ -> > Fo —>• B - • 0 with the

F's flat. But then for all ideals J we have

0 = Tor^+1 (R/J, B) = Torf {R/J, M).

We saw in 3.2.4 that this implies that M is flat, contradicting fd(B) > d. O

Exercise 4.1.2 IfO—>A-^2?^C->0isan exact sequence, show that

1. pd(B) < max{/?d(A), pd(C)} with equality except when pd(C) =
pd(A) + l.

2. id(B) < max{/J(A), id(C)} with equality except when id(A) =

3. /rf(B) < max{/J(A), fd(C)} with equality except when fd(C) =

Exercise 4.1.3

1. Given a (possibly infinite) family {A/} of modules, show that

= sup{pd(A/)}.

2. Conclude that if S is an /^-algebra and P is a projective S-module con-
sidered as an /^-module, the pdR(P) < pdR(S).

3. Show that if r.gl.dim(R) = oo, there actually is an /^-module A with
pd(A) = oo.

4.2 Rings of Small Dimension

Definition 4.2.1 A ring R is called (right) semisimple if every right ideal is a
direct summand of R or, equivalently, if R is the direct sum of its minimal ide-
als. Wedderburn's theorem (see [Lang]) classifies semisimple rings: they are
finite products R = fl[=i Ri of matrix rings Ri = Mni{Di) — End£>.(V/) (tit =
dim(V/)) over division rings D,-. It follows that right semisimple is the same as
left semisimple, and that every semisimple ring is (both left and right) noethe-
rian. By Maschke's theorem, the group ring k[G] of a finite group G over a
field k is semisimple if char(£) doesn't divide the order of G.

Theorem 4.2.2 The following are equivalent for every ring R, where by "R-
module" we mean either left R-module or right R-module.
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96 Homological Dimension

1. R is semisimple.
2. R has (left and/or right) global dimension 0.
3. Every R-module is projective.
4. Every R-module is injective.
5. R is noetherian, and every R-module is flat.
6. R is noetherian and has Tor-dimension 0.

Proof We showed in the last section that (2) o (3) <& (4) for left /^-modules
and also for right /^-modules. R is semisimple iff every short exact sequence
0 -> / -> R -> R/I -> 0 splits, that is, iff pd(R/I) = 0 for every (right
and/or left) ideal / . This proves that (1)4» (2). As (1) and (3) imply (5), and
(5)4^ (6) by definition, we only have to show that (5) implies (1). If / is an
ideal of R, then (5) implies that R/I is finitely presented and flat, hence pro-
jective by 3.2.7. Since R/I is projective, R ->• R/I splits, and / is a direct
summand of R, that is, (1) holds. O

Definition 4.2.3 A ring R is quasi-Frobenius if it is (left and right) noetherian
and R is an injective (left and right) /^-module. Our interest in quasi-Frobenius
rings stems from the following result of Faith and Faith-Walker, which we
quote from [Faith].

Theorem 4.2.4 The following are equivalent for every ring R:

1. R is quasi-Frobenius.
2. Every projective right R-module is injective.
3. Every injective right R-module is projective.
4. Every projective left R-module is injective.
5. Every injective left R-module is projective.

Exercise 4.2.1 Show that Z/m is a quasi-Frobenius ring for every integer m.

Exercise 4.2.2 Show that if R is quasi-Frobenius, then either R is semisimple
or R has global dimension oo. Hint: Every finite projective resolution is split.

Definition 4.2.5 A Frobenius algebra over a field A: is a finite-dimensional al-
gebra R such that R = Hom/:(/?, k) as (right) R-modules. Frobenius algebras
are quasi-Frobenius; more generally, Hom^(R,k) is an injective /^-module
for any algebra R over any field k, since k is an injective ^-module and
Hoiri£(/?, —) preserves injectives (being right adjoint to the forgetful functor
mod-/? —• mod-A:). Frobenius algebras were introduced in 1937 by Brauer
and Nesbitt in order to generalize group algebras k[G] of a finite group, espe-
cially when char(k) = p divides the order of G so that k[G] is not semisimple.
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4.2 Rings of Small Dimension 97

Proposition 4.2.6 IfG is a finite group, then k[G] is a Frobenius algebra.

Proof Set R = k[G] and define / : R -> k by letting f(r) be the coefficient
of g = 1 in the unique expression r = 5ZgeG rg£ °^ e v e r v element r e k[G].
Let a: R —• Homfc(/?, &) be the map a(r): x M* f(rx). Since a(r) = / r , a is
a right /^-module map; we claim that a is an isomorphism. If a(r) = 0 for
r = X! rg£> then r = 0 as each rg = f(rg~l) = a(r)(g~l) = 0. Hence a is an
injection. As R and Homk(R, k) have the same finite dimension over k, a must
be an isomorphism. O

Vista 4.2.7 Let R be a commutative noetherian ring. R is called a Goren-
stein ring if id(R) is finite; in this case id(R) is the Krull dimension of R,
defined in 4.4.1. Therefore a quasi-Frobenius ring is just a Gorenstein ring of
Krull dimension zero, and in particular a finite product of 0-dimensional local
rings. If R is a 0-dimensional local ring with maximal ideal m, then R is quasi-
Frobenius <& ann/?(m) = {r e R : rm = 0} = R/xn. This recognition criterion
is at the heart of current research into the Gorenstein rings that arise in alge-
braic geometry.

Now we shall characterize rings of Tor-dimension zero. A ring R is called
von Neumann regular if for every a e R there is an x e R for which ax a = a.
These rings were introduced by J. von Neumann in 1936 in order to study
continuous geometries such as the lattices of projections in "von Neumann
algebras" of bounded operators on a Hilbert space. For more information about
von Neumann regular rings, see [Good].

Remark A commutative ring R is von Neumann regular iff R has no nilpotent
elements and has Krull dimension zero. On the other hand, a commutative ring
R is semisimple iff it is a finite product of fields.

Exercise 4.2.3 Show that an infinite product of fields is von Neumann regu-
lar. This shows that not every von Neumann regular ring is semisimple.

Exercise 4.2.4 If V is a vector space over a field k (or a division ring k\
show that R = Endk(V) is von Neumann regular. Show that R is semisimple
iff dim^V) < oo.

Lemma 4.2.8 If R is von Neumann regular and I is a finitely generated right
ideal of R, then there is an idempotent e (an element with e2 = e) such that
I = eR. In particular, I is a projective R-module, because /? = / 0 ( l — e)R.

Proof Suppose first that I =aR and that ax a = a. It follows that e = ax is
idempotent and that I = eR. By induction on the number of generators of
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98 Homological Dimension

/ , we may suppose that / = aR + bR with a e I idempotent. Since bR =
abR + (1 - a)bR, we have / = aR + cR for c = (1 - a)&. If eye = c, then
/ = cy is idempotent and af — a(\ — a)by = 0. As / a may not vanish, we
consider e — / ( I — a). Then £ e / , ae = 0 = ea, and e is idempotent:

e2 = / ( I - a)f(\ - a) = / ( / - fl/)(l - fl) = /2(1 - a) = / ( I - fl) = e.

Moreover, e/? = cR because c = fc = ffc = / ( I — a)fc = efc. Finally, we
claim that / equals J = (a + e)R. Since a + e e I, we have J c / ; the reverse
inclusion follows from the observation that a = (a -f e)a e J and e = (a +
e)e e 7 . •

Exercise 4.2.5 Show that the converse holds: If every fin. gen. right ideal / of
R is generated by an idempotent (i.e., R~ I © R/I), then R is von Neumann
regular.

Theorem 4.2.9 The following are equivalent for every ring R:

1. R is von Neumann regular.
2. R has Tor-dimension 0.
3. Every R-module is flat.
4. R/I is protective for every finitely generated ideal I.

Proof By definition, (2) <£• (3). If / is a fin. generated ideal, then R/I is
finitely presented. Thus R/I is flat iff it is projective, hence iff R = I © R/I
as a module. Therefore (3) =>> (4) <& (1). Finally, any ideal / is the union of
its finitely generated subideals 7a, and we have R/I = lim(R/Ia). Hence (4)

implies that each R/I is flat, that is, that (2) holds. <C>

Remark Since the Tor-dimension of a ring is at most the global dimen-
sion, noetherian von Neumann regular rings must be semisimple (4.1.5). Von
Neumann regular rings that are not semisimple show that we can have Tor-
dim(R) < gl. dim(/?). For example, the global dimension of f l ^ i C is > 2,
with equality iff the Continuum Hypothesis holds.

Definition 4.2.10 A ring R is called (right) hereditary if every right ideal is
projective. A commutative integral domain R is hereditary iff it is a Dedekind
domain (noetherian, Krull dimension 0 or 1 and every local ring Rm is a
discrete valuation ring). Principal ideal domains (e.g, Z or k[t]) are Dedekind,
and of course every semisimple ring is hereditary.

Theorem 4.2.11 A ring R is right hereditary iffr.gl. dim(R) < 1.
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4.3 Change of Rings Theorems 99

I -> R-> R/I -> 0 show that R is heredi-Proof The exact sequences 0
taryiffr.g/.dim(/?) < 1.

Exercise 4.2.6 Show that R is right hereditary iff every submodule of every
free module is projective. This was used in exercise 3.6.2.

4.3 Change of Rings Theorems

General Change of Rings Theorem 4.3.1 Let f'.R^Sbea ring map, and
let A be an S-module. Then as an R-module

pdR(A)<pds(A)

Proof There is nothing to prove if pds(A) = oo or pdR(S) = oo, so assume
that pds(A) = n and pdR(S) = d are finite. Choose an S-module projective
resolution Q —> A of length n. Starting with /^-module projective resolutions
of A and of each syzygy in Q, the Horseshoe Lemma 2.2.8 gives us /^-module
projective resolutions P*q —> Qq such that P*q —> P*,q-2 is zero. We saw in
section 4.1 that pdR(Qq) < d for each q. The truncated resolutions P*q -+ Qq

of length d (Ptq = 0 for i > d and Pdq = Pdq/im(Pd+i,q), as in 1.2.7) have
the same property. By the sign trick, we have a double complex P** and an
augmentation PQ* -> G*-

0

i
Qn

Q\

Go

0

0

I
POn

0

i
Pin

0

i
Pdn

Poi

Poo

0

1
Pn <-

1
Put <-

1

- P21 <— ••• *-

i
- P20 ̂ — ••• «-

i

i
- Pd\

1
- PdO

i
0 0 0

The argument used in 2.7.2 to balance Tor shows that Tot(P) -> Q is a quasi-
isomorphism, because the rows of the augmented double complex (add Q[— 1]
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100 Homological Dimension

in column -1) are exact. Hence Tot(P) -> A is an /^-module projective reso-
lution of A. But then pdR(A) is at most the length of Tot(P), that is, d + n.

O

Example 4.3.2 If R is a field and pds(A) ^ 0, we have strict inequality.

Remark The above argument presages the use of spectral sequences in get-
ting more explicit information about Ext^(A, B). An important case in which
we have equality is the case S = R/xR when x is a nonzerodivisor, so
pdR(R/xR) = l.

First Change of Rings Theorem 4.3.3 Let x be a central nonzerodivisor in
a ring R. If A ^ 0 is a R/x-module with pdR/x(A) finite, then

= \+pdR/x(A).

Proof As xA = 0, A cannot be a projective /^-module, so pdR(A) > 1. On
the other hand, if A is a projective R/x-modu\t, then evidently pdR(A) =
pdR(R/x) = 1. If pdR/x(A) > 1, find an exact sequence

with P a projective /?/x-module, so that pdR/x(A) = pdR/x(M) + 1. By in-
duction, pdR(M) = 1 + pdR/x(M) = pdR/x(A) > 1. Either pdR(A) equals
pdR(M) + 1 or 1 = pdR(P) = swp{pdR(M), pdR(A)}. We shall conclude the
proof by eliminating the possibility that pdR{A) = 1 = pdR/x(A).

Map a free /^-module F onto A with kernel A'. If pdR(A) = 1, then ^ is
a projective /^-module. Tensoring with R/xR yields the sequence of R/x-
modules:

0 -> Torf (A, R/x) -> K/xK -> F/xF -+ A -+ 0.

If pdR/x(A) < 2, then Torf (A, /?/*) is a projective R/x -module. But

Torf (A, R/x) = {a e A : xa = 0} = A, so pdR/x(A) = 0. O

Example 4.3.4 The conclusion of this theorem fails if pdR/x(A) = oo but
pdR(A) < oo. For example, pdj/4(Z/2) = oo but pdj(Z/2) = 1.

Exercise 4.3.1 Let /? be the power series ring &[[JCI, • • •, xn]] over a field
&. R is a noetherian local ring with residue field k. Show that gl.dim(R) =
pdR(k) = n.
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4.3 Change of Rings Theorems 101

Second Change of Rings Theorem 4.3.5 Let x be a central nonzerodivisor
in a ring R. If A is an R-module and x is a nonzerodivisor on A (i.e., a ^ 0 =>>
xa ^ 0), then

pdR(A) > pdR/x(A/xA).

Proof If pdR(A) = oo, there is nothing to prove, so we assume pdR(A) =
n < oo and proceed by induction on n. If A is a projective /^-module, then
A/xA is a projective /?/jc-module, so the result is true if pdR(A) = 0. If
pdR(A) ^ 0, map a free /^-module F onto A with kernel K. As pdR(K) =
« — 1, pdR/x(K/xK) < n — 1 by induction. Tensoring with /?/x yields the
sequence

0 -> Torf (A, /?/*) -> # / .*£ -* F / x F -> A/;cA - • 0.

As JC is a nonzerodivisor on A, Tori (A, ^ A ) = (^ € A : jca = 0} = 0. Hence
either A/xA is projective or pdR/x(A/xA) = 1 + pdR/x(K/xK) < 1 + (n —

Exercise 4.3.2 Use the first Change of Rings Theorem 4.3.3 to find another
proof when pdR/x(A/xA) is finite.

Now let R[x] be a polynomial ring in one variable over R. If A is an R-
module, write A[x] for the /?[;t]-module R[x] 0/? A.

Corollary 4.3.6 pdR[x](A[x]) = pdR(A) for every R-module A.

Proof Writing T = R[x], we note that x is a nonzerodivisor on A[JC] =
T <8>R A. Hence /?J7(A[x]) > pdR(A) by the second Change of Rings theo-
rem 4.3.5. On the other hand, if P -+ A is an /^-module projective resolution,
then T <S)R P —• T ®R A is a T-module projective resolution (T is flat over
R), so pdR(A) > pdT(T (8) A). <C>

Theorem 4.3.7 If R[x\, • • •, xn] denotes a polynomial ring in n variables,
then gl. dim(/?[xi, • • •, xn]) =n-\- gl. dim(R).

Proof It suffices to treat the case T = R[x]. If gl. dim(R) = oo, then by the
above corollary gl. dim(7) = oo, so we may assume gl. dim(R) = n < oo. By
the first Change of Rings theorem 4.3.3, gl. dim(T) > 1 + gl. dim(R). Given
a r-module M, write U(M) for the underlying /^-module and consider the
sequence of T -modules

(*) 0 - • T ®R U(M) -^T ®R U(M) -^> M -> 0,
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102 Homological Dimension

where /JL is multiplication and f$ is defined by the bilinear map fi(t (g>m) =

t[x 0 m — 1 0 (xm)] (t eT,m e M). We claim that (*) is exact, which yields

the inequality pdT(M) < 1 + pdT(T ®R U(M)) = 1 + pdR(U(M)) <l+n.
The supremum over all M gives the final inequality gl. dim(T) < 1 -+- n.

To finish the proof, we must establish the claim that (*) is exact. We first
observe that, since T is a free /^-module on basis {1, JC, JC2, • • •}, we can write
every nonzero element / of T 0 U(M) as a polynomial with coefficients
mt e M:

f = x
k 0 mk H \- x2 ® m2 + x ® m\ + I <g> mo (m* ^ 0).

Since the leading term of /?(/) is JC^+1 0 m&, we see that /3 is injective. Clearly
lift = 0. Finally, we prove by induction on k (the degree of / ) that if / e
ker(/z), then / e im(fi). Since /x(l 0 m) = m, the case £ = 0 is trivial (if
//,(/) = 0, then / = 0). If k / 0, then /*(/) = /x(g) for the polynomial g =
/ — fi(xk~l 0 m^) of lower degree. By induction, if / e ker(/x), then g =
P(h) for some h, and hence / = fi(h + xk~l 0 m^). <>

Corollary 4.3.8 (Hilbert 's theorem on syzygies) If k is afield, then the poly-
nomial ring k[x\, • • •, xn] has global dimension n. Thus the (n — l ) s t syzygy
of every module is a projective module. O

We now turn to the third Change of Rings theorem. For simplicity we deal
with commutative local rings, that is, commutative rings with a unique maxi-
mal ideal. Here is the fundamental tool used to study local rings.

Nakayama's L e m m a 4.3.9 Let R be a commutative local ring with unique
maximal ideal m and let B be a nonzero finitely generated R -module. Then

1. B^mB.
2. If A c B is a submodule such that B = A + mB, then A = B.

Proof If we consider B/A then (2) is a special case of (1). Let m be the
smallest integer such that B is generated b\, • • •, bm; as B ^ 0, we have m ^ 0.
If B = mB, then there are r; e m such that bm = ^2 ri^i- This yields

(1 - rm)bm = r\b\ H h rm-\bm-\.

Since 1 — rm ^m, it is a unit of R. Multiplying by its inverse writes bm as
a linear combination of [b\, • • •, bm-\}, so this set also generates B. This
contradicts the choice of m. O
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4.3 Change of Rings Theorems 103

Remark If /? is any ring, the set

J = {r e R : (is e R) 1 - rs is a unit of R)

is a 2-sided ideal of R, called the Jacobson radical of R (see [BAII, 4.2]). The
above proof actually proves the following:

General Version of Nakayama's Lemma 4.3.10 Let B be a nonzero finitely
generated module over R and J the Jacobson radical of R. Then B ^ JB.

Proposition 4.3.11 A finitely generated projective module P over a commu-
tative local ring R is a free module.

Proof Choose u\,-- ,un e P whose images form a basis of the ^-vector
space P/xnP. By Nakayama's lemma the M'S generate P, so the map e\Rn -^
P sending (n, • • •, rn) to J2riui *s o n t o - As ? *s projective, € is split, that
is, Rn^ P 0 ker(e). As jfcn = Rn/mRn ^ P /mP, we have ker(e) c mRn.
But then considering P as a submodule of Rn we have Rn = P + mRn, so
Nakayama's lemma yields Rn = P. O

Third Change of Rings Theorem 4.3.12 Let R be a commutative noethe-
rian local ring with unique maximal ideal m, and let A be a finitely generated
R-module. If x em is a nonzerodivisor on both A and R, then

pdR(A) = pdR/x(A/xA).

Proof We know > holds by the second Change of Rings theorem 4.3.5, and
we shall prove equality by induction on n = pdR/x(A/xA). If n = 0, then
A/xA is projective, hence a free R/x-module because R/x is local.

Lemma 4.3.13 IfA/xA is a free R/x-module, A is a free R-module.

Proof Pick elements u\9 • • •, un mapping onto a basis of A/xA; we claim
they form a basis of A. Since (MI, • • •, un)R + xA = A, Nakayama's lemma
states that (MI, • • •, un)R = A, that is, the M'S span A. To show the M'S are lin-
early independent, suppose ]jn r/M/ = 0 for r,- e R. In A/x A, the images of the
M'S are linearly independent, so r; e xR for all /. As x is a nonzerodivisor on
/? and A, we can divide to get n/x e /? such that ]T(r;/x)M; = 0. Continuing
this process, we get a sequence of elements r/, r//x, r//jc2, • • • which generates
a strictly ascending chain of ideals of R, unless r; = 0. As R is noetherian, all
the ri must vanish. <0>
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104 Homological Dimension

Resuming the proof of the theorem, we establish the inductive step n / 0 .
Map a free /^-module F onto A with kernel K. As Torf(A, R/x) = {a e A :
xa = 0} = 0, tensoring with R/x yields the exact sequence

0 -> K/xK -> F/xF -> A/xA -> 0.

As F / x F is free, pdR/x{K/xK) — n — 1 when n / 0. As /? is noetherian,
K is finitely generated, so by induction, pdR(K) = n — 1. This implies that

= n, finishing the proof of the third Change of Rings theorem. O

Remark The third Change of Rings theorem holds in the generality that R is
right noetherian, and x e R is a central element lying in the Jacobson radical of
R. To prove this, reread the above proof, using the generalized version 4.3.10
of Nakayama's lemma.

Corollary 4.3.14 Let R be a commutative noetherian local ring, and let A be
a finitely generated R-module with pdR(A) < oo. If x em is a nonzerodivisor
on both A and R, then

pdR(A/xA) = l+pdR(A).

Proof Combine the first and third Change of Rings theorems. O

Exercise 4.3.3 (Injective Change of Rings Theorems) Let x be a central
nonzerodivisor in a ring R and let A be an /^-module. Prove the following.

First Theorem. If A ^ 0 is an R/xR-modulc with idR/XR(A) finite, then

idR(A) = l + idR/xR(A).

Second Theorem. If x is a nonzerodivisor on both R and A, then either A is
injective (in which case A/x A = 0) or else

idR(A)>l + idR/xR(A/xA).

Third Theorem. Suppose that R is a commutative noetherian local ring, A is
finitely generated, and that x e m is a nonzerodivisor on both R and A.
Then

idR(A) = idR(A/xA) = 1 + idR/xR(A/xA).

4.4 Local Rings

In this section a local ring R will mean a commutative noetherian local ring
R with a unique maximal ideal m. The residue field of R will be denoted
k = R/m.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.005
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:25:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.005
https:/www.cambridge.org/core


4.4 Local Rings 105

Definitions 4.4.1 The Krull dimension of a ring R, dim(R), is the length d
of the longest chain po C pi C • • • C pd of prime ideals in R; dim(R) < oo for
every local ring R. The embedding dimension of a local ring R is the finite
number

emb. dim(R) — dim£(m/m2).

For any local ring we have d\m(R) < emb. d\m(R); R is called a regular local
ring if we have equality, that is, if dim(R) = dimfc(m/m2). Regular local rings
have been long studied in algebraic geometry because the local coordinate
rings of smooth algebraic varieties are regular local rings.

Examples 4.4.2 A regular local ring of dimension 0 must be a field. Every
1-dimensional regular local ring is a discrete valuation ring. The power series
ring k[[x\, • • •, xn]] over a field k is regular local of dimension n, as is the local
ring k[x\,• • •, xn]m, m = Ui, • • •, xn).

Let R be the local ring of a complex algebraic variety X at a point P. The
embedding dimension of R is the smallest integer n such that some analytic
neighborhood of P in X embeds in Cn. If the variety X is smooth as a mani-
fold, R is a regular local ring and dim(R) = dim(X).

More Definitions 4.4.3 If A is a finitely generated /^-module, a regular se-
quence on A, or A-sequence, is a sequence (x\, • • •, xn) of elements in m such
that x\ is a nonzerodivisor on A (i.e., if a / 0, then x\a ^ 0) and such that
each X[ (i > 1) is a nonzerodivisor on A/(x\, • • •, JC;_I)A. The grade of A,
G(A), is the length of the longest regular sequence on A. For any local ring
R we have G(R) < dim(R).

R is called Cohen-Macaulay if G(R) = dim(R). We will see below that
regular local rings are Cohen-Macaulay; in fact, any x\, • • •, Xd e m mapping
to a basis of m/tn2 will be an /^-sequence; by Nakayama's lemma they will
also generate m as an ideal. For more details, see [KapCR].

Examples 4.4.4 Every 0-dimensional local ring R is Cohen-Macaulay (since
G(R) = 0), but cannot be a regular local ring unless R is a field. The 1-
dimensional local ring k[[x, e]]/(xe = e2 = 0) is not Cohen-Macaulay; every
element of m = (x, e)R kills e e R. Unless the maximal ideal consists entirely
of zerodivisors, a 1-dimensional local ring R is always Cohen-Macaulay; R
is regular only when it is a discrete valuation ring. For example, the local
ring k[[x]] is a discrete valuation ring, and the subring k[[x2, x3]] is Cohen-
Macaulay of dimension 1 but is not a regular local ring.
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106 Homological Dimension

Exercise 4.4.1 If R is a regular local ring and JCI, • • •, Xd e m map to a basis
of m/m2, show that each quotient ring R/(x\, • • •, xt)R is regular local of
dimension d — i.

Proposition 4.4.5 A regular local ring is an integral domain.

Proof We use induction on dim(R). Pick x e m — m2; by the above exercise,
R/xR is regular local of dimension dim(R) — 1. Inductively, R/xR is a do-
main, so xR is a prime ideal. If there is a prime ideal Q properly contained in
xR, then Q C xnR for all n (inductively, if q = rjtn e 2 , then r e QcxR,so
q e xn+lR). In this case Q c r V f l = 0, whence 2 = 0 and R is a domain.
If R were not a domain, this would imply that xR is a minimal prime ideal
of /? for all x e m — m2. Hence m would be contained in the union of m2 and
the finitely many minimal prime ideals Pi, • • •, Pt of R. This would imply that
tn Q Pi for some /. But then dim(R) = 0, a contradiction. O

Corollary 4.4.6 If R is a regular local ring, then G(R) = dim(R), and any
JCI, • • •, Xd £ tn mapping to a basis of m/m2 is an R—sequence.

Proof As G(/?) < dim(/?), and JCI e /? is a nonzerodivisor on 7?, it suffices
to prove that X2, • • •, Xd form a regular sequence on R/x\R. This follows by
induction on d. O

Exercise 4.4.2 Let R be a regular local ring and / an ideal such that R/I
is also regular local. Prove that / = (jq, • • •, X()R, where (JCI, •••,*,•) form a
regular sequence in R.

Standard Facts 4.4.7 Part of the standard theory of associated prime ideals
in commutative noetherian rings implies that if every element of m is a zerodi-
visor on a finitely generated /^-module A, then m equals {r e R : ra = 0} for
some nonzero a e A and therefore aR = R/m = k. Hence if G(A) = 0, then
HornR(k, A) ^ 0 .

If G(A) ^ 0 and G(R) ^ 0, then some element of m — tn2 must also be
a nonzerodivisor on both R and A. Again, this follows from the standard
theory of associated prime ideals. Another standard fact is that if JC e m is a
nonzerodivisor on R, then the Krull dimension of R/xR is dim(R) — 1.

Theorem 4.4.8 If R is a local ring and A ^ 0 is a finitely generated R-
module, then every maximal A-sequence has the same length, G(A). More-
over, G(A) is characterized as the smallest n such that Ext^(&, A) ^ 0.
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4.4 Local Rings 107

Proof We saw above that if G(A) = 0, then HomR(k, A) ^ 0. Conversely, if
Horn R(k, A) / 0, then some nonzero a e A has aR = k, that is, ax = 0 for all
JC e m. In this case G(A) = 0 is clear. We now proceed by induction on the
length n of a maximal regular A-sequence ;ti, • • •, xn on A. If n > 1, x = x\ is
a nonzerodivisor on A, so the sequence 0 —>• A —> A —> A/JCA —• 0 is exact,
and X2, • • •, xn is a maximal regular sequence on A/JCA. This yields the exact
sequence

Ext1""1^, A) - ^ Ext1'"1^, A) -> Ext1'"1^, A/JCA) -> Ext1'(A;, A) - ^ Ext'(fc, A).

Now ;t& = 0, so Extl(k, A) is an R/xR-module. Hence the maps "JC" in this
sequence are zero. By induction, this proves that Ext* (k, A) = 0 for 0 <i < n
and that Ext"(A:, A) / 0. This finishes the inductive step, proving the theorem.

•

Remark The injective dimension id(A) is the largest integer n such that
Ext^(&, A) 7̂  0. This follows from the next result, which we cite without proof
from [KapCR, section 4.5] because the proof involves more ring theory than
we want to use.

Theorem 4.4.9 If R is a local ring and A is a finitely generated R-module,
then

id(A) <do Extn
R(k, A) = 0 for all n > d.

Corollary 4.4.10 If R is a Gorenstein local ring (i.e., idR(R) < oo), then R
is also Cohen-Macaulay. In this case G(R) = idR(R) = dim(R) and

Extq
R(k, R)^0&q= dim(R).

Proof The last two theorems imply that G(R) < id(R). Now suppose that
G(R) = 0 but that id(R) / 0. For each s e R and « > 0 w e have an exact
sequence

Extn
R(R, R) -+ Extn

R(sR, R) -> Extn
R+l(R/sR, R).

For n = id(R) > 0, the outside terms vanish, so Extn
R(sR, R) = 0 as well.

Choosing s e R so that sR = k contradicts the previous theorem so if G(R) =
0 then id(R) = 0. If G(R) = d > 0, choose a nonzerodivisor x e m and
set S = R/xR. By the third Injective Change of Rings theorem (exercise
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108 Homological Dimension

4.3.3), ids(S) = idR(R) — 1, so S is also a Gorenstein ring. Inductively,
S is Cohen-Macaulay, and G(S) = ids(S) = dim(S) = dim(R) - 1. Hence
idR(R) = dim(R). If JC2, • • •, Xd are elements of m mapping onto a maximal
^-sequence in mS, then x\9 X2, • • •, Xd forms a maximal /^-sequence, that is,
G(R) = 1 + G(S) = dim(R). O

Proposition 4.4.11 If R is a local ring with residue field k, then for every
finitely generated R-module A and every integer d

pd(A) <d& Tor£+1(A, k) = 0.

In particular, pd(A) is the largest d such that Tor^ (A, k) ^ 0.

Proof As fd{A) < pd(A), the => direction is clear. We prove the converse by
induction on d. Nakayama's lemma 4.3.9 states that the finitely generated R-
module A can be generated by m = dimfc(A/mA) elements. Let {u\, • • •, um]
be a minimal set of generators for A, and let K be the kernel of the surjection
e\Rm -+ A defined by e(n, • • •, rm) = £V/M|. The inductive step is clear,
since if d ^ 0, then

Tor^+i(A, k) = Tord(K, k) and pd(A) < 1 + pd(K).

If d = 0, then the assumption that Tori (A, k) = 0 gives exactness of

0 —> K®k —> Rm®k —> A®k — ^ 0

€<g>ifc
0 —> K/mK —> km > A/mA —> 0.

By construction, the map € ® k is an isomorphism. Hence K/mK = 0, so
the finitely generated /^-module K must be zero by Nakayama's lemma. This
forces Rm = A, so pd(A) = 0 as asserted. <>

Corollary 4.4.12 IfR is a local ring, then gl. dim(R) = pdR(R/m).

Proof pd(R/m) < gl. dim(R) = sup{pd(R/I)} < fd(R/m) < pd(R/m). O

Corollary 4.4.13 If R is local and x e m is a nonzerodivisor on R, then
either gl. dim(R/xR) = oo or gl. dim(R) = l+gl. dim(R/xR).

Proof Set 5 = R/xR and suppose that gl. dim(S) = d is finite. By the First
Change of Rings Theorem, the residue field k = R/xn = S/mS has

O
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4.4 Local Rings 109

Grade 0 Lemma 4.4.14 If R is local and G(R) = 0 (i.e., every element of
the maximal ideal m is a zerodivisor on R), then for any finitely generated
R-module A,

either pd(A) = 0 or pd(A) = oo.

Proof If 0 < pd(A) < oo for some A then an appropriate syzygy M of A is
finitely generated and has pd(M) = 1. Nakayama's lemma states that M can
be generated by m = dim^(M/mM) elements. If MI, • • •, um generate M, there
is a projective resolution 0 —• P —> Rm —> M —> 0 with e ( n , . . . , rm) =
J^nur, visibly Rm/mRm ^km^ M/mM. But then P c m/?m, so s/> = 0,
where s e R is any element such that m = {r e 7?: ,?r = 0}. On the other hand,
P is projective, hence a free /^-module (4.3.11), so sP = 0 implies that s = 0,
a contradiction. O

Theorem 4.4.15 (Auslander-Buchsbaum Equality) Let R be a local ring,
and A a finitely generated R-module. If pd(A) < oo, then G(R) = G(A) +
pd(A).

Proof If G(R) = 0 and pd(A) < oo, then A is projective (hence free) by
the Grade 0 lemma 4.4.14. In this case G(R) = G(A), and pd(A) = 0. If
G(R) / 0, we shall perform a double induction on G(R) and on G(A).

Suppose first that G(R)^0 and G(A) = 0. Choose xemzmdO^aeA
so that x is a nonzerodivisor on R and ma = 0. Resolve A:

and choose u e Rm with e(u) = a. Now mw c K so JCM e K and m(xw) c xK,
yetxu gxK asu g K and JC is a nonzerodivisor on Rm. Hence G(K/xK) — 0.
Since ^ is a submodule of a free module, x is a nonzerodivisor on K. By the
third Change of Rings theorem, and the fact that A is not free (as G(R) ^

pdR/xR(K/xK) = pdR(K) = pdR(A) - 1.

Since G(R/xR) = G(R) — 1, induction gives us the required identity:

G(R) = 1 + G(R/xR) = 1 + G(K/xK) + pdR/xR(K/xK) = pdR(A).

Finally, we consider the case G(R) / 0, G(A) ^ 0. We can pick x e m,
which is a nonzerodivisor on both R and A (see the Standard Facts 4.4.7
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110 Homological Dimension

cited above). Since we may begin a maximal A-sequence with x, G(A/xA) =
G(A) — 1. Induction and the corollary 4.3.14 to the third Change of Rings
theorem now give us the required identity:

G(R) = G(A/xA) + pdR(A/xA)

= (G(A) - I) + (\ + pdR(A))

O

Main Theorem 4.4.16 A local ring R is regular iff gl. dim(R) < oo. In this
case

G(R) = dim(jR) = emb. dim(R) = gl. dim(R) = pdR(k).

Proof First, suppose R is regular. If dim(/?) = 0, R is a field, and the result
is clear. If d = dim(R) > 0, choose an /^-sequence JCI, • • •, xj generating m
and set S = R/x\R. Then JC2, • • •, Xd is an 5-sequence generating the maximal
ideal of S, so S is regular of dimension d — 1. By induction on d, we have

gl. dim(R) = 1+ gl. dim(S) = 1 + (d - 1) = d.

If gl. dim(R) = 0, R must be semisimple and local (a field). If gl. dim(R) /
0,oo then m contains a nonzerodivisor x by the Grade 0 lemma 4.4.14;
we may even find an x = x\ not in m2 (see the Standard Facts 4.4.7 cited
above). To prove that R is regular, we will prove that S = R/xR is regu-
lar; as dimCS) = dim(/?) — 1, this will prove that the maximal ideal mS of
S is generated by an 5-sequence j2, • • •, yd- Lift the y; e mS to elements
xi e m (/ = 2, • • •, d). By definition x\, • • •, Xd is an /^-sequence generating
m, so this will prove that R is regular.

By the third Change of Rings theorem 4.3.12 with A = m,

pds(m/xm) = pdR(m) = pdR(k) - 1 = gl. dim(R) - 1.

Now the image of m/jcm in S = R/xR is m/xR = mS, so we get exact se-
quences

0-^ xR/xm-+ m/jtm-> mS-> 0 and 0 -> mS -> S -+ k -> 0.

Moreover, jc/?/;cm = Torf (R/xR, k) = {a e k : xa = 0} = k, and the image
of x in x/?/jcm is nonzero. We claim that m/xm = mS ® A: as 5-modules. This
will imply that

gZ. dim(5) = pds(k) < /7^(m/jcm) = gl. dim(R) - 1.
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4.5 Koszul Complexes 111

By induction on global dimension, this will prove that S is regular.
To see the claim, set r = emb. &\m(R) and find elements *2, • • •, Jcr in

m such that the image of {x\, • • •, xr} in m/m2 forms a basis. Set / =
(x2, • • •, xr)R + xm and observe that I/xm c m/jcm maps onto mS. As the
kernel xR/xm of m/ im -> mS is isomorphic to k and contains x g / , it fol-
lows that (jc/?/xm) Pi {I/xm) — 0. Hence I/xm = mS and £ 0 mS = m/xm,
as claimed. O

Corollary 4.4.17 A regular ring is both Gorenstein and Cohen-Macaulay.

Corollary 4.4.18 If R is a regular local ring and p is any prime ideal of R,
then the localization Rp is also a regular local ring.

Proof We shall show that if S is any multiplicative set in R, then the local-
ization S~lR has finite global dimension. As Rp = S~lR for S = R — p, this
will suffice. Considering an S~^-module A as an /^-module, there is a pro-
jective resolution P -> A of length at most gl. dim(R). Since S~XR is a flat
/^-module and S~lA = A, S~lP ->• A is aprojective S^/^-module resolution
of length at most gl. dim(R). <>

Remark The only non-homological proof of this result, due to Nagata, is very
long and hard. This ability of homological algebra to give easy proofs of re-
sults outside the scope of homological algebra justifies its importance. Here is
another result, quoted without proof from [KapCR], which uses homological
algebra (projective resolutions) in the proof but not in the statement.

Theorem 4.4.19 Every regular local ring is a Unique Factorization Domain.

4.5 Koszul Complexes

An efficient way to perform calculations is to use Koszul complexes. If x e R
is central, we let K(x) denote the chain complex

concentrated in degrees 1 and 0. It is convenient to identify the generator of the
degree 1 part of K(x) as the element ex, so that d(ex) = x. If x — (JCI, • • •, xn)
is a finite sequence of central elements in R, we define the Koszul complex
K(x) to be the total tensor product complex (see 2.7.1):

K(xi) ®R K(x2) (8)/? • • • 0/? K(xn).
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112 Homological Dimension

Notation 4.5.1 If A is an /^-module, we define

Hq(x, A) = Hq(K(x) ®R A);

Hq(x, A) = Hq(Hom(K(x), A)).

The degree p part of K(x) is a free /^-module generated by the symbols

In particular, Kp(x) is isomorphic to the pth exterior product ApRn of Rn

and has rank ( p , so K(x) is often called the exterior algebra complex. The
derivative Kp(x) —> Kp-\(x) sends e[x A • • • A eip to ^l(—\)k^xtketx A • • • A
e(k A • • - A eip. As an example, ^ (x , v) is the complex

0 —> R (X'~y\ R2 ^ R —> 0.

basis: [ex A ey] {ey,ex} {1}

DG-Algebras 4.5.2 A graded R-algebra K* is a family {Kp, p > 0} of /?-
modules, equipped with a bilinear product Kp ®R Kq -> Kp+q and an ele-
ment 1 e Ko making Ko and (&KP into associative /^-algebras with unit. K*
is graded-commutative if for every a € AT̂ , b e Kq we have <z-& = {—\)pqb-a.
A differential graded algebra, or DG-algebra, is a graded /^-algebra #*
equipped with a map d: ^ -> ^ p _ i , satisfying ^/2 = 0 and satisfying the
Leibnitz rule:

d(a • b) = d{a) • b + (-l)pa • </(£) for a e KL p .

Exercise 4.5.1

1. Let /sTbea DG-algebra. Show that the homology H*{K) = [Hp{K)}
forms a graded /^-algebra, and that H*{K) is graded-commutative when-
ever K* is.

2. Show that the Koszul complex K(x) = A*(Rn) is a graded-commutative
DG-algebra. If R is commutative, use this to obtain an external product
Hp(x, A) (8)/? Hq(x, B) -> Hp+q{x, A®RB). Conclude that if A is a
commutative /^-algebra then the Koszul homology //*(JC, A) is a graded-
commutative /^-algebra.

3. If JCI, • • • G / and A = R/I, show that //*(JC, A) is the exterior algebra
A*(An).
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4.5 Koszul Complexes 113

Exercise 4.5.2 Show that {Hq(x, —)} is a homological 5-functor, and that
{Hq(x, —)} is a cohomological 5-functor with

H°(x, A) = Hom(R/xR, A) = {aeA: x(a = 0 for all /}.

Then show that there are isomorphisms Hp(x, A) = Hn~p(x, A) for all p.

Lemma 4.5.3 (Kunneth formula for Koszul complexes) ifC — C^isa chain
complex of R-modules and x e R, there are exact sequences

0 -> H0(x, Hq(C)) -> Hq(K(x) ®R C) -> Hx(x, Hq-X{C)) -> 0.

Proof Considering R as a complex concentrated in degree zero, there is a
short exact sequence of complexes 0 -> /? -> ^T(x) -> R[— 1] -> 0. Tensoring
with C yields a short exact sequence of complexes whose homology long exact
sequence is

Hq+l(C[-l]) ^ Hq(C) - • Hq(K(x) 0 C) - • / ^ ( C [ - l ] ) ^ > //^(C).

Identifying //^+i(C[—1]) with Hq(C), the map 3 is multiplication by x (check
this!), whence the result. <0>

Exercise 4.5.3 If x is a nonzerodivisor on R, that is, # I ( ^ ( A ; ) ) = 0, use the
Kunneth formula for complexes 3.6.3 to give another proof of this result.

Exercise 4.5.4 Show that if one of the X[ is a unit of R, then the complex
K{x) is split exact. Deduce that in this case //*(JC, A) = H*(x, A) = 0 for all
modules A.

Corollary 4.5.4 (Acyclicity) If x is a regular sequence on an R-module
A, then Hq(x, A) = Ofor q ^ 0 and H${x, A) = A/xA, where xA = (x\, • • •,
xn)A.

Proof Since x is a nonzerodivisor on A, the result is true for n = 1. Induc-
tively, letting JC = jcn, j = (JCI, • • •, xn-\), and C = ^(y) (8) A, Hq(C) = 0 for
# / 0 and K(x) 0 / /o(Q is the complex

0 -> A/yA ^ > A/yA -> 0.

The result follows from 4.5.3, since x is a nonzerodivisor on A/yA. O
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114 Homological Dimension

Corollary 4.5.5 (Koszul resolution) If x is a regular sequence in R, then
K{x) is a free resolution of R/Iy I = (x\, • • •, xn)R. That is, the following
sequence is exact:

0 -> An(Rn) -> > A2(Rn) -> Rn -^> R-+ R/I -> 0.

In this case we have

Extp
R(R/I,A) =

Exercise 4.5.5 If x is a regular sequence in R, show that the external and
internal products for Tor (2.7.8 and exercise 2.7.5(4)) agree with the external
and internal products for //*(*, A) constructed in this section.

Exercise 4.5.6 Let R be a regular local ring with residue field k. Show that

Tor*(fc, k) ^ Ext£(fc, k) ^ Apkn ^ kO, where n = dim(R).

Conclude that idR(k) = dim(R) and that as rings Torf (jfc, k) = A*(kn).

Application 4.5.6 (Scheja-Storch) Here is a computational proof of Hilbert's
Syzygy Theorem 4.3.8. Let F be a field, and set R = F[x\, • • •, xn], S =
R[y\i • • •» yn\- Let t be the sequence (t\, • • •, tn) of elements t[ = yt — X{ of
S. Since S = R[t\, • • •, tn], t is a regular sequence, and //o(f, S) = R, so the
augmented Koszul complex of K (t) is exact:

0 -> AnSn -+ An~lSn -+ > A2Sn -+ Sn -U S -+ R -> 0.

Since each A .̂S'" is a free /^-module, this is in fact a split exact sequence
of /^-modules. Hence applying <g)#A yields an exact sequence for every R-
module A. That is, each K(i) 0/? A is an S-module resolution of A. Set Rf =
F\yu '' •»yn]> a subring of S. Since f/ = 0 on A, we may identify the R-
module structure on A with the /^-module structure on A. But S <8)R A =
R' 0 F A is a free /^-module because F is a field. Therefore each ApSn (8>/? A
is a free /^'-module, and K(t) ®R A is a canonical, natural resolution of A by
free /^'-modules. Since K(f) <8>R A has length n, this proves that

pdR(A) = pdR'{A) <n

for every /^-module A. On the other hand, since Torf (F, F) = F, we see that
= n. Hence the ring R = F[x\, • • •, xn] has global dimension n.
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4.6 Local Cohomology 115

4.6 Local Cohomology

Definition 4.6.1 If / is a finitely generated ideal in a commutative ring R and
A is an /^-module, we define

H?(A) = {aeA: {3i)Va = 0} = lim H o m ^ / / ' , A).

Since each Hom(/?//', —) is left exact and lim is exact, we see that H® is an

additive left exact functor from /?-mod to itself. We set

Since the direct limit is exact, we also have

Exercise 4.6.1 Show that if J c / are finitely generated ideals such that V c
J for some i, then HJ(A) = Hq(A) for all /^-modules A and all q.

Exercise 4.6.2 (Mayer-Vietoris sequence) Let / and J be ideals in a noethe-
rian ring R. Show that there is a long exact sequence for every /^-module A:

. . . _ £ * H^j(A) -» // /(A) 0 //«(A) - • / / /n 7(A) -> tf/+j(A) -^> • • •.

Hint: Apply Ext*(—, A) to the family of sequences

0 -+ R/Il H J{ -+ R/Il 0 R/J1 -> R/(V + 71') -> 0.

Then pass to the limit, observing that (/ + J)2i c (/' + / ' ) c (/ + /)* and
that, by the Artin-Rees lemma ([BA II, 7.13]), for every / there is an TV > / so
that iN njN <^(i n jy c v n j \

Generalization 4.6.2 (Cohomology with supports; See [GLC]) Let Z be a
closed subspace of a topological space X. If F is a sheaf on X, let H^(X, F)
be the kernel of H°(X, F) -> H°(X - Z, F), that is, all global sections of
F with support in Z. H^ is a left exact functor on Sheaves(X), and we write
H^(X, F) for its right derived functors.

If / is any ideal of R, then Hf(A) is defined to be H%(X, A), where X =
Spec(/?) is the topological space of prime ideals of R, Z = {p :/ c p}, and A
is the sheaf on Spec(/?) associated to A. If / is a finitely generated ideal, this
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116 Homological Dimension

agrees with our earlier definition. For more details see [GLC], including the
construction of the long exact sequence

0 -> H%(X, F) -> H°(X, F) -> H°(X -Z,F)-> HX
Z(X, F) -> • • •.

A standard result in algebraic geometry states that Hn(Spec(R), A) = 0 for
n ^ 0, so for the punctured spectrum U = Sptc(R) — Z the sequence

0 -> H?(A) -> A -> H°(U, A) -> HJ(A) -> 0

is exact, and for n / O w e can calculate the cohomology of A on U via

Exercise 4.6.3 Let A be the full subcategory of /?-mod consisting of the
modules with Hf(A) = A.

1. Show that A is an abelian category, that H®: R-mod ->• A is right ad-
joint to the inclusion i\ A ° ^ /?-mod, and that t is an exact functor.

2. Conclude that H® preserves injectives (2.3.10), and that A has enough
injectives.

3. Conclude that each H"(A) belongs to the subcategory A of /?-mod.

Theorem 4.6.3 Let R be a commutative noetherian local ring with maximal
ideal m. Then the grade G(A) of any finitely generated R-module A is the
smallest integer n such that H^(A) ^ 0.

Proof For each / we have the exact sequence

E x t ^ - W 4 - 1 , A) -• Extn(R/m\ A) - • Extn(R/mi+l, A) - • Ext"(m7m/+1, A).

We saw in 4.4.8 that Extn(R/m, A) is zero if n < G(A) and nonzero if n =
G{A)\ as m7tn'+ 1 is a finite direct sum of copies of R/m, the same is true
for Ext"(m7m /+1, A). By induction on i, this proves that Ext"(/?/m /+1, A) is
zero if n < G(A) and that it contains the nonzero module Extn(R/m\ A) if
n = G(A). Now take the direct limit as / -> oo. •

Application 4.6.4 Let R be a 2-dimensional local domain. Since G(R) ^ 0,
H^(R) — 0. From the exact sequence

0 -> m1" -^ R -> /e/m1" -^ 0
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4.6 Local Cohomology 117

we obtain the exact sequence

0 -> R -* Hom^m1", R) -* Extl
R(R/m\ R) -> 0.

As R is a domain, there is a natural inclusion of Hom/?(m', R) in the field F
of fractions of R as the submodule

m~( = {x e F -.xm* c R).

Set C = Urn"'. {Exercise: Show that C is a subring of F.) Evidently

H^(R) = limExt1(/?/m/, /?) £

If /? is Cohen-Macaulay, that is, G(fl) = 2, then #™(/?) = 0 , so R = C
and HomflOn1', R) = R for all i. Otherwise # / C and G(#) = 1. When
the integral closure of R is finitely generated as an R-module, C is actu-
ally a Cohen-Macaulay ring—the smallest Cohen-Macaulay ring containing
7?[EGA,IV.5.10.17].

Here is an alternative construction of local cohomology due to Serre [EGA,
III.l.l]. If x e R there is a natural map from K(xi+l) to K(xl):

xi+l

0 —> R > R —> 0

4 II
0 —> R ^ U R —> 0.

By tensoring these maps together, and writing xl for (x\, • • •, xl
n), this gives

a map from #( JC / + 1 ) to ^(JC1'), hence a tower {HqiKix')} of /^-modules. Ap-
plying Hom/?(—, A) and taking cohomology yields a map from Hq(xl, A) to

Definition 4.6.5 //^(A) = lim /^(JC*, A).

For our next result, recall from 3.5.6 that a tower {A/} satisfies the trivial
Mittag-Leffler condition if for every / there is a j > i so that Aj - • A, is zero.

Exercise 4.6.4 If {A/} ->• {#;} -^ {C/} is an exact sequence of towers of R-
modules and both {A/} and {C/} satisfy the trivial Mittag-Leffler condition,
then {#;} also satisfies the trivial Mittag-Leffler condition (3.5.6).

Proposition 4.6.6 Let R be a commutative noetherian ring and A a finitely
generated R-module. Then the tower {Hq(x

l, A)} satisfies the trivial Mittag-
Leffler condition for every q ^ 0.
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118 Homological Dimension

Proof We proceed by induction on the length n of JC. If n = 1, one sees im-
mediately that H\(x\ A) is the submodule At — {aeA: xla = 0}. The sub-
modules At of A form an ascending chain, which must be stationary since
R is noetherian and A is finitely generated. This means that there is an inte-
ger k such that Ak = Ak+\ = • • • , that is, xkA[ = 0 for all i. Since the map
A/+7- -^ A/ is multiplication by x-7, it is zero whenever j > fc. Thus the lemma
holds if n — 1.

Inductively, set y = (JCI, . . . , xn-\) and write x for xn. Since /ST(JC?) 0
^f(y') = K(xl), the Kiinneth formula for Koszul complexes 4.5.3 (and its
proof) yields the following exact sequences of towers:

{Hq(y\ A)} - • {Hq(x\ A)} -> {//^(y1", A)};

'", A)} -> [Hx(x\ A)} -> {//i(x\ A//A)} - • 0.

If g > 2, the outside towers satisfy the trivial Mittag-Leffler condition by in-
duction, so [Hq(x

l, A)} does too. If q = 1 and we set A/;- = {a e A/yl A :
xJa = 0} = H\(x-i, A/y1 A), it is enough to show that the diagonal tower {A//}
satisfies the trivial Mittag-Leffler condition. For fixed /, we saw above that
there is a k such that every map A// —> A/J+* is zero. Hence the map A// —>•
A/,/+^ ^ Ai+kj+k is zero, as desired. O

Corollary 4.6.7 Let R be commutative noetherian, and let E be an injective
R-module. Then H%(E) = Ofor all q^O.

Proof Because E is injective, Hom/?(—, E) is exact. Therefore

Hq(x\ E) - Hq HomR(K(x\ R),E)^ Hom/Kfl^*1', R), E).

Because the tower [Hq(x
l, R)} satisfies the trivial Mittag-Leffler condition,

//•?(£) ^ limHomRiHqix1, R),E) = 0. O

Theorem 4.6.8 If R is commutative noetherian, x = (x\, • • •, xn) is any se-
quence of elements of R, and I = (JCI, • • •, xn)R, then for every R-module A

Proof Both HJ and H% are universal 8-functors, and

//7°(A) = limHomC^/x^, A) = lim H°(x\ A) = H°(A). O
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4.6 Local Cohomology 119

Corollary 4.6.9 If R is a noetherian local ring, then H^(A) ^ 0 only when
G(A) <q< dim(R). In particular, if R is a Cohen-Macauley local ring, then

Proof Set d = dim(R). By standard commutative ring theory ([KapCR,
Thm.153]), there is a sequence x = (x\, • • •, xj) of elements of m such
that nv7 c / c m for some j9 where / = (jq, • • •, Xd)R. But then H^(A) =
H*!(A) = H%(A), and this vanishes for q > d because the Koszul complexes
K(x{) have length d. Now use (4.6.3). <C>

Exercise 4.6.5 If / is a finitely generated ideal of R and R —• S is a ring
map, show that ///(A) = HjS(A) for every S-module A. This result is rather
surprising, because there isn't any nice relationship between the groups
Ext^iR/P, A) and Ext*s(S/I\ A). Consequently, if ann#(A) denotes {r e
R:rA = 0}, then ///(A) = 0 for q > dim(R/axmR(A)).

Application 4.6.10 (Hartshorne) Let R = C[JCI,X2, y\, 3̂ 2], P = (x\,X2)R,
Q = (yu y2)R, and / = P n Q. As P, 2, and m = P + Q = (xux2, yu yi)R
are generated by regular sequences, the outside terms in the Mayer-Vietoris
sequence (exercise 4.6.2)

H3
P(R) 0 H3

Q(R) -> Hf(R) -> H^(R) -> ^ ( / ? ) 0 H4
Q(R)

vanish, yielding Hf(R) = H^(R) ^ 0. This implies that the union of two
planes in C4 that meet in a point cannot be described as the solutions of only
two equations f\ = fi = 0. Indeed, if this were the case, then we would have
/'" ^ (/1, f2)R c / for some 1, so that Hf(R) would equal H3(R), which is
zero.
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Spectral Sequences

5.1 Introduction

Spectral sequences were invented by Jean Leray, as a prisoner of war during
World War II, in order to compute the homology (or cohomology) of a chain
complex [Leray]. They were made algebraic by Koszul in 1945.

In order to motivate their construction, consider the problem of computing
the homology of the total chain complex 7* of a first quadrant double complex
£**. As a first step, it is convenient to forget the horizontal differentials and
add a superscript zero, retaining only the vertical differentials dv along the
columns E^.

If we write El
p for the vertical homology Hq(E^) at the (/?, q) spot, we

may once again arrange the data in a lattice, this time using the horizontal
diffentials dh.

120
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5.1 Introduction 121

Now we write £^ for the horizontal homology Hp{E\q) at the (/?, g) spot.

In a sense made clearer by the following exercises, the elements of E2
pq are a

second-order approximation of the homology of T* = Tot (£**).

Exercise 5.1.1 Suppose that the double complex E consists solely of the two
columns p and p — 1. Fix n and sctq=n — p, so that an element of Hn(T)
is represented by an element {a, b) e Ep-i,q+\ x Epq. Show that we have
calculated the homology of T = Tot(E) up to extension in the sense that there
is a short exact sequence

0 - * E2
p_lq+l - * Hp+q{T) - • E2

pq - 0.

Exercise 5.1.2 (Differentials at the E2 stage)

1. Show that E2
pq can be presented as the group of all pairs (a,b) in

Ep-\,4+1 x Epq such that 0 = dvb = dva + dhb, modulo the rela-
tion that these pairs are trivial: (a, 0); (dhx, dvx) for JC e Ep,q+\\ and
(0, dhc) for all c e EP+\A with dvc = 0.

2. If J^(a) = 0, show that such a pair (a, &) determines an element of
Hp+q(T).

3. Show that the formula d(a, b) = (0, dh{a)) determines a well-defined
map

d: Elq ^> E2p-2q + V

Exercise 5.1.3 (Exact sequence of low degree terms) Recall that we have

assumed that E® vanishes unless both p > 0 and q > 0. By diagram chasing,

show that EQQ = Ho(T) and that there is an exact sequence

H2(T) -> E2
0 -U E2

X -+ Hi(T) -+ Ejo - • 0.
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122 Spectral Sequences

E3

Figure 5.1. The steps E2 and E3 of the spectral sequence.

There is an algorithm for computing H*(T) up to extension, called a spec-
tral sequence, and we have just performed the first two steps of this algorithm.
The next two steps are illustrated in Figure 5.1.

5.2 Terminology

Definition 5.2.1 A homology spectral sequence (starting with Ea) in an
abelian category A consists of the following data:

1. A family {Er
pq} of objects of A defined for all integers p, q, and r > a

2. Maps dpq: Er
pq ->• Er

 +r_x that are differentials in the sense that
drdr = 0, so that the "lines of slope — (r + l ) / r " in the lattice E^ form
chain complexes (we say the differentials go "to the left")

3. Isomorphisms between Er
p+

l and the homology of E^ at the spot Er
q:

Er
pf ^ ker(d^)/image (dr

p+rq_r+l)

Note that Ep+
l is a subquotient of Zs£ . The total degree of the term Er

pq

is n = p + q; the terms of total degree n lie on a line of slope —1, and each
differential dpq decreases the total degree by one.

There is a category of homology spectral sequences; a morphism /:£ '—>

E is a family of maps fpq: Zs^ -> £ ^ in ^l (for r suitably large) with dr fr =

frdr such that each fr+l is the map induced by fr on homology.

Example 5.2.2 A first quadrant (homology) spectral sequence is one with
Er

pq = 0 unless p > 0 and q > 0, that is, the point (/?,#) belongs to the first
quadrant of the plane. (If this condition holds for r = a, it clearly holds for all
r.) If we fix p and q, then Zs^ = E ^ 1 for all large r (r > max{/?, q + 1} will
do), because the dr landing in the (/?, <?) spot come from the fourth quadrant,
while the dr leaving Er

pq land in the second quadrant. We write E^q for this
stable value of Epq.
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5.2 Terminology 123

Dual Definition 5.2.3 A cohomology spectral sequence {starting with Ea) in
A is a family {E?q} of objects (r > a), together with maps dpq going "to the
right":

. Fp+r,q-r+l

which are differentials in the sense that drdr = 0, and isomorphisms between
Er+\ and the homology of Er. In other words, it is the same thing as a homol-
ogy spectral sequence, reindexed via Epq = Er_p_q, so that dr increases the
total degree p + q of Er

pq by one.

There is a category of cohomology spectral sequences; a morphism f\Ef->

E is a family of maps fr
pq: Zi/^ -> Zs/^ in A (for r suitably large) with

drfr = frdr such that each fpq
x is the map induced by fr

pq.

Mapping Lemma 5.2.4 Let f: {Er
pq} —• {Epq} be a morphism of spectral

sequences such that for some fixed r, fr : Er
pq = Epq is an isomorphism for

all p and q. The 5-lemma implies that fs\ Es
pq = Epqfor all s >r as well.

Bounded Convergence 5.2.5 A homology spectral sequence is said to be
bounded if for each n there are only finitely many nonzero terms of total
degree n in E^. If so, then for each p and q there is an ro such that Er

pq =
Er+q

l for all r > r0. We write E™q for this stable value of Er
pq.

We say that a bounded spectral sequence converges to //* if we are given a
family of objects Hn of A, each having a finite filtration

0 = FsHn c • •. c Fp-iHn c FpHn c Fp+iHn c •.. c F,//n = #„,

and we are given isomorphisms E^q = FpHp+q/Fp-\Hp+q. The traditional
symbolic way of describing such a bounded convergence is like this:

^pq ^ np+q-

Similarly, a cohomology spectral sequence is called bounded if there are
only finitely many nonzero terms in each total degree in £**. In a bounded
cohomology spectral sequence, we write Ef£j for the stable value of the terms
E?q and say the (bounded) spectral sequence converges to H* if there is a
finite filtration

0 = FfHn c • • • Fp+lHn c FpHn - •• c F 5 / / " = Hn so that

Eg = FpHp+«/Fp+lHp+q.
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124 Spectral Sequences

Example 5.2.6 If a first quadrant homology spectral sequence converges to
//*, then each Hn has a finite filtration of length n + 1:

0 = F-{Hn c FQHn c • • • c F ^ i f t , c Fw//n = //„.

The bottom piece FoHn = E^ of Hn is located on the y-axis, and the top quo-
tient Hn/Fn-\Hn = E^ is located on the x-axis. Note that each arrow landing
on the jc-axis is zero, and each arrow leaving the j-axis is zero. Therefore each
E^ is a subobject of ZSQW, and each E^ is a quotient of E%0. The terms EQH on
the y-axis are called the fiber terms, and the terms Er

nQ on the jc-axis are called
the base terms for reasons that will become apparent in the next section. The
resulting maps E^n -^ E^ c Hn and Hn - • E^ c E%0 are known as the edge
homomorphisms of the spectral sequence for the obvious visual reason. Simi-
larly, if a first quadrant cohomology spectral sequence converges to H*, then
Hn has a finite filtration:

0 = FnJrlHn c FnHn c . . . c FlHn c F°Hn = Hn.

In this case, the bottom piece FnHn = E^ is located on the x-axis, and the
top quotient Hn/FlHn = E®£ is located on the j-axis. In this case, the edge
homomorphisms are the maps E%° -> E^ c Hn and Hn -> E®£ c E%n.

Definition 5.2.7 A (homology) spectral sequence collapses at Er(r > 2) if
there is exactly one nonzero row or column in the lattice {Er }. If a collapsing
spectral sequence converges to //*, we can read the Hn off: Hn is the unique
nonzero Er

pq with p + q =n. The overwhelming majority of all applications
of spectral sequences involve spectral sequences that collapse at El or E2.

Exercise 5.2.1 (2 columns) Suppose that a spectral sequence converging to
//* has E2

pq = 0 unless p = 0, 1. Show that there are exact sequences

0 . 172 . Tj . rr2 . r\

Exercise 5.2.2 (2 rows) Suppose that a spectral sequence converging to //*
has E2

q = 0 unless q = 0, 1. Show that there is a long exact sequence

P>* p~\~\,0 p—1,1 P pO p—2,1 P ^

If a spectral sequence is not bounded, everything is more complicated, and
there is no uniform terminology in the literature. For example, a filtration in
[CE] is "regular" if for each n there is an TV such that Hn(FpC) = 0fovp<N,
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5.2 Terminology 125

and all filtrations are exhaustive. In [MacH] exhaustive filtrations are called
"convergent above." In [EGA, 0ni(11.2)] even the definition of spectral se-
quence is different, and "regular" spectral sequences are not only convergent
but also bounded below. In what follows, we shall mostly follow the terminol-
ogy of Bourbaki [BX, p. 175].

E°° Terms 5.2.8 Given a homology spectral sequence, we see that each ££+1

is a subquotient of the previous term Er
pq. By induction on r, we see that there

is a nested family of subobjects of Ea
pq\

such that Er
p = Zr

pq/Bpq. We introduce the intermediate objects

and Z S

p = Zpq/Bpq.

oo

r=a

and define E™q = Z™q/B™. In a bounded spectral sequence both the union
and intersection are finite, so B^q = Br

pq and Z™q = Zr
pq for large r. Thus we

recover our earlier definition: E^q = Er
pq for large r.

Warning: In an unbounded spectral sequence, we will tacitly assume that B™,
Z ^ , and E^q exist! The reader who is willing to only work in the category of
modules may ignore this difficulty. The queasy reader should assume that the
abelian category A satisfies axioms {ABA) and (AB4*).

Exercise 5.2.3 (Mapping Lemma for E°°) Let / : {Er
pq} -> {E^q} be a mor-

phism of spectral sequences such that for some r (hence for all large r

by 5.2.4) fr : Er
pq = Epq is an isomorphism for all p and q. Show that

/ ° ° : Efq = E™ as well.

Definition 5.2.9 (Bounded below) Bounded below spectral sequences have
good convergence properties. A homology spectral sequence is said to be
bounded below if for each n there is an integer s = s(n) such that the terms
Ea

pq of total degree n vanish for all p < s. Bounded spectral sequences are
bounded below. Right half-plane homology spectral sequences are bounded
below but not bounded.

Dually, a cohomology spectral sequence is said to be bounded below if
for each n the terms of total degree n vanish for large p. A left half-plane
cohomology spectral sequence is bounded below but not bounded.

Definition 5.2.10 (Regular) Regularity is the most useful general condition
for convergence used in practice; bounded below spectral sequences are also
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126 Spectral Sequences

regular. We say that a spectral sequence is regular if for each p and q the
differentials dpq (or d?q) leaving Er (or E?q) are zero for all large r. Note
that a spectral sequence is regular iff for each p and q: Z™q = Zr

pq for all
large r.

Convergence 5.2.11 We say the spectral sequence weakly converges to //* if
we are given objects Hn of A, each having a filtration

• • • c Fp-iHn c FpHn c Fp+iHn £'-QHn,

together with isomorphisms /3pq:E™q = FpHp+q/Fp-\Hp+q for all p and q.
Note that a weakly convergent spectral sequence cannot detect elements of
C)FpHn, nor can it detect elements in Hn that are not in UFpHn.

We say that the spectral sequence {Er
pq} approaches //* (or abuts to //*)

if it weakly converges to H* and we also have Hn = UFpHn and nFpHn =0
for all n. Every weakly convergent spectral sequence approaches UFpH*/ D

We say that the spectral sequence converges to H* if it approaches //*, it
is regular, and Hn = \im(Hn/FpHn) for each n. A bounded below spectral

sequence converges to //* whenever it approaches //*, because the inverse
limit condition is always satisfied in a bounded below spectral sequence.

To show that our notion of convergence is a good one, we offer the fol-
lowing Comparison Theorem. If {Er

pq} and {Epq} weakly converge to //*
and H#, respectively, we say that a map h: //* - • H^ is compatible with a
morphism f\E-^E'\fh maps Fpi/W to FpH'n and the associated maps
FpHn/Fp-xHn - • FpH'JFp-iH'n correspond under 0 and ^ to / ~ : E™q - •

Comparison Theorem 5.2.12 Ler {̂ E1 }̂ «n^ {Epq} converge to //*
respectively. Suppose given a map h: //* —> H^ compatible with a morphism
f\E-> E' of spectral sequences. If fr : Er

pq = Epq is an isomorphism for
all p and q and some r (hence for r = oo by the Mapping Lemma), then
h: //* —• H# is an isomorphism.

Proof Weak convergence gives exact sequences

0 —* Fp-iHn/FsHn —y FpHn/FsHn —+ E™n_p —> 0

I i I*
0 - ^ Fp^H'n/FsH'n —> FpH'jFsH'n — • 4 ~ _ p — • 0.
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5.3 The Leray-Serre Spectral Sequence 127

Fixing s, induction on p shows that FpHn/FsHn = FpH'nIFsH'n for all p.
Since Hn = UFpHn, this yields Hn/FsHn ^ Hr

n/FsH'n for all s. Taking inverse
limits yields the desired isomorphism Hn = Hn. O

Remark The same spectral sequence may converge to two different graded
groups //*, and it can be very difficult to reconstruct a picture of //* from
this data. For example, knowing that a first quadrant spectral sequence has
E°^q = Z/2 for all p and q does not allow us to determine whether 7/3 is Z/16
or Z/2 0 Z/8, or even the group (Z/2)4. The Comparison Theorem 5.2.12
helps us reconstruct //* without the need for convergence.

Multiplicative Structures 5.2.13 Suppose that for r = a we are given a bi-
graded product

(*) Epiq]
 X Ep2q2 ~*

such that the differential dr satisfies the Leibnitz relation

(**) dr(xlx2)=dr(xl)x2 + (-l)pixidr(x2), xt € Er
p.qr

Then the product of two cycles (boundaries) is again a cycle (boundary), and
by induction we have (*) and (**) for every r > a. We shall call this a multi-
plicative structure on the spectral sequence. Clearly this can be a useful tool in
explicit calculations.

5.3 The Leray-Serre Spectral Sequence

Before studying the algebraic aspects of spectral sequences, we shall illustrate
their computational power by citing the topological applications that led to
their creation by Leray. The material in this section is taken from [MacH,
XI.2].

Definition 5.3.1 A sequence F —> E —> B of based topological spaces is
called a Serre fibration if F is the inverse image TT~1(*B) of the basepoint
of B and if n has the following "homotopy lifting property": if P is any
finite polyhedron and / is the unit interval [0, 1], g: P —> E is a map, and
H: P x / —> B is a homotopy between ng — H(—, 0) and h\ — H(—, 1),

P x I —> B
H
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128 Spectral Sequences

there is a homotopy G: P x / —• E between g and a map g\ = G(—, 1) which
lifts H in the sense that TTG = H. The spaces F, £, and B are called the
F/frer, total space {Espace totale for Leray), and Base space, respectively. The
importance of Serre fibrations lies in the fact (proven in Serre's thesis) that
associated to each fibration is a long exact sequence of homotopy groups

• • • nn+x{B) - ^ nn(F) -> jtn(E) -> nn(B) - ^ .. •.

In order to simplify the presentation below, we shall assume that B is sim-
ply connected, that is, that no(B) = TT\(B) = 0. Without this assumption, we
would have to introduce the action of n\(B) on the homology of F and talk
about the homology of B with "local coefficients" in the twisted bundles
Hq(F).

Theorem 5.3.2 (Leray-Serre spectral sequence) Let F —U- E -^> B be a
Serre fibration such that B is simply connected. Then there is a first quadrant
homology spectral sequence starting with E2 and converging to H*(E):

E2
pq = Hp(B; Hq(F)) => Hp+q(E).

Addendum 1 HQ(B) = Z, so along the y-axis we have El = Hq(F). Because

E2
pq = 0 for p < 0, the groups El, • • •, E^1 = E^° are successive quotients

of EQ . The theorem states that E^ = FoHq(E), so there is an "edge map"

This edge map is the map /*: Hq(F) -> Hq(E).

Addendum 2 Suppose that TTO(F) = 0, so that HQ(F) = Z. Along the x-
axis we then have E2

G = Hp(B). Because E2
pq = 0 for q < 0, the groups

E3
0, • • •, Entx = E^Q are successive subgroups of E2

0. The theorem states

that £°Q = Hp(E)/Fp-\Hp{E), so there is an "edge map"

This edge map is the map 7r*: Hp(E) ->• Hp(B).

Remark The Universal Coefficient Theorem 3.6.4 tells us that

HP(B\ Hq(F)) ^ Hp(B) (8) Hq(F) 0 Torf (HP-X(B), Hq{F)).
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5.3 The Leray-Serve Spectral Sequence 129

Therefore the terms E2
q are not hard to calculate. In particular, since 7t\{B) —

0 we have H\(B) = H\(B; Hq(F)) = 0 for all q. By the Hurewicz homomor-
phism, TT2(B) ^ H2(B) and therefore H2(B; Hq(F)) ^ H2(B) <g> Hq(F) for
all q as well.

Application 5.3.3 (Exact sequence of low degree terms) In the lower left
corner of this spectral sequence we find

17

z

0

0

0

•

^H2(B)

•

H3(B) H4(B)

The kernel of the map d2 = j | 0 is the quotient E^ of H2(E), because the
maps ^ 0 a r e z e r o for r > 3. Similarly, the cokernel of d2 is the subgroup E^
of H\(E). From this we obtain the exact homology sequence in the following
diagram:

JT3(B) 7T2(F)

I I
H2(F)

7T2(E)

H2(E)

1T2{B) JZ\{F) 7TX(E)

1- I
0.

Here the group labeled X contains the image in H2{F) of E\x = H2(B) 0
H\{F) and elements related to E\o = H3(B). Thus H2(B) ® // i(F) is the first
obstruction involved in finding a long exact sequence for the homology of a
fibration.

Application 5.3.4 (Loop spaces) Let PB denote the space of based paths in
B, that is, maps [0, 1] —• B sending 0 to *#. The subspace of based loops
in B (maps [0, 1] - • B sending 0 and 1 to *#) is written QB. There is a
fibration Q.B ̂  PB —* B, where 7r is evaluation at 1 e [0, 1]. The space
PB is contractible, because paths may be pulled back along themselves to the
basepoint, so Hn(PB) = 0 for n ^ 0. Therefore, except for E^ = Z, we have
a spectral sequence converging to zero. From the low degree terms (assuming
that TT\{B) = 0!), we see that H\(QB) ^ H2(B) and that

H4(B) -^> H2(B) ® //2(£) -^> H2(QB) -> //3(£) -> 0

is exact. We can use induction on n to estimate the size of Hn(QB).
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130 Spectral Sequences

Exercise 5.3.1 Show that if n > 2 the loop space QSn has

Hp{llb ) =
Z if (n - 1) divides /?, /? > 0
0 otherwise.

l-+ E - % 5" is a fibration whoseApplication 5.3.5 (Wang sequence) If F
base space is an n-sphere (n / 0, 1), there is a long exact sequence

dn

Hq-i(F)

In particular, / ^ ( F ) = Hq(E) if 0 < q < n - 2.

Hq-x(E)

Proof Hp(S
n) = 0 for /? ^ 0, n and J W 1 ) = //b(5n) = Z. Therefore the

nonzero terms F^ all lie on the two vertical lines p = 0, n and F ^ = Hq(F)
for /? = 0 or n. All the differentials dr

pq must therefore vanish for r ^ n, so
F ^ = F ^ and En

p+
X = E™. The description of En+l as the homology of En

amounts to the exactness of the sequences

0 HAF)
dn

Hq+n-l(F) 0.

On the other hand, the filtration of Hq(E) is given by the F ^ , so it is deter-
mined by the short exact sequence

0 Hn(E) 0.

The Wang sequence is now obtained by splicing together these two families of
short exact sequences. <0>
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5.4 Spectral Sequence of a Filtration 131

Example 5.3.6 The special orthogonal group SO(3) is a 3-dimensional Lie
group acting on 52 c U3. This action gives rise to the Serre fibration

SO(l) -> 50(3) - > 5 2 .

Because SO(l) = 51, we get Hi(SO(3)) = 1 and the exact sequence

0 -> H2(5O(3)) -> Z - % Z -> Hi(50(3)) -> 0.

Classically, we know that TTI5O(3) = Z/2, so that Hi (50 (3)) = Z/2. There-
fore H2(5O(3)) = Z, although H2(5O(3)) -> H2(52) is not an isomorphism.

Application 5.3.7 (Gysin sequence) If Sn -^ E —> B is a fibration with 5
simply connected and n ^ 0, there is an exact sequence

•••—>• Hp-n(B) —> Hp£ —>> Hp(B) —• Hp-n-i(B) —> Hp-\(E) —>•

In particular, Hp(E) = Hp(B) for 0 < p < n.

Proof This is similar to the Wang sequence 5.3.5, except that now the nonzero
terms E2

pq all lie on the two rows q =0,n. The only nontrivial differentials are

dn
p+

l from HP(B) = En+l to En+_l_Un = ^ - « - i ( B ) . •

Exercise 5.3.2 If rc 7̂  0, the complex projective rc-space CPn is a simply con-
nected manifold of dimension In. As such Hp(CPn) = 0 for p > 2n. Given
that there is a fibration 51 - • 52 r t + 1 -> C(Pn, show that for 0 < p < In

0 /? odd J

5.4 Spectral Sequence of a Filtration

A filtration F on a chain complex C is an ordered family of chain subcom-
plexes • • • c FP-\C c FpC c . . . of C. In this section, we construct a spectral
sequence associated to every such filtration; we will discuss convergence of
the spectral sequence in the next section.

We say that a filtration is exhaustive if C — UFpC. It will be clear from the
construction that both UFPC and C give rise to the same spectral sequence. In
practice, therefore, we always insist that filtrations be exhaustive.
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132 Spectral Sequences

Construction Theorem 5.4.1 A filtration F of a chain complex C naturally

determines a spectral sequence starting with E®pq = FpC p+q / Fp-\C p+q and

E\q = Hp+q(E%).

Before constructing the spectral sequence, let us make some elementary
remarks about the "shape" of the spectral sequence.

Definition 5.4.2 A filtration on a chain complex C is called bounded if for
each n there are integers s < t such that FsCn = 0 and FtCn = Cn. In this case,
there are only finitely many nonzero terms of total degree n in E^, so the
spectral sequence is bounded. We will see in 5.5.1 that the spectral sequence
always converges to //*(C).

A filtration on a chain complex C is called bounded below if for each n there
is an integer s so that FsCn = 0, and it is called bounded above if for each
n there is a t so that FtCn = Cn. Bounded filtrations are bounded above and
below. Being bounded above is merely an easy way to ensure that a filtration
is exhaustive. Bounded below filtrations give rise to bounded below spectral
sequences. The Classical Convergence Theorem 5.5.1 of the next section says
that the spectral sequence always converges to //*(C) when the filtration is
bounded below and exhaustive.

Example 5.4.3 (First quadrant spectral sequences) We call the filtration
canonically bounded if F-\C = 0 and FnCn = Cn for each n. As E®pq =
FpCp+qIFp-\Cp+q, every canonically bounded filtration gives rise to a first
quadrant spectral sequence (converging to //*(C)). For example, the Leray-
Serre spectral sequence 5.3.2 arises from a canonically bounded filtration of
the singular chain complex S*(E).

Here are some related notions, which we introduce now in order to give a
better perspective on the construction of the spectral sequence.

Definition 5.4.4 A filtration on a chain complex C is called Hausdorff if
PiFpC = 0. It will be clear from the construction that both C and its Hausdorff
quotient Ch = C/ n FpC give rise to the same spectral sequence.

A filtration on C is called complete if C = lim C/FpC. Complete filtra-

tions are Hausdorff because HFpC is the kernel of the map from C to

its completion C = lim C/FpC (which is also a filtered complex: FnC =

lim FnC/FpC). Bounded below filtrations are complete, and hence Hausdorff,

because FsHn(C) = 0 for each n. The following addendum to the Construc-
tion Theorem 5.4.1 explains why the most interesting applications of spectral
sequences arise from complete filtrations. It will follow from exercise 5.4.1.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.006
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:25:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.006
https:/www.cambridge.org/core


5.4 Spectral Sequence of a Filtration 133

Addendum 5.4.5 The two spectral sequences arising from C and C are the
same.

The Construction 5.4.6 For legibility, we drop the bookkeeping subscript q
and write r\p for the surjection FpC —> FpC/Fp-\C = E®p. Next we introduce

Ar
p = {ce FPC : d(c) e / > _ r C } ,

the elements of FpC that are cycles modulo Fp-rC ("approximately cycles")

and their images Zr
p = r]p(A

r
p) in E°p and Br

p±
l
r = rjp^r(d(Ar

p)) in E°p_r. The

indexing is chosen so that Zr
p and Bp = r)p(d(Ar~^r_l)) are subobjects of E^.

Set Z£° = tf?LlZ
r
p and B™ = V%xB

r
p. Assembling the above definitions,

we see that we have defined a tower of subobjects of each E^:

Note that Ar
p D Fp-\C = Ar~_\, so that Zr

p S Ar
p/A

r~_\. Hence

Let d£: ££ -» ££_r be the map induced by the differential of C. To define the

spectral sequence, we only need to give the isomorphism between £ r + 1 and

Lemma 5.4.7 The map d determines isomorphisms

"7? I rjr-\-\ = fjT+1 / T%Y
LplLp > Bp-r/Vp-r'

Proof This is largely an exercise in decoding notation. First, note that d(Ar
p)n

Fp-r-iC = d(Ar+l), so that Br
p±

l
r ̂  d(Ar

p)/d(Ar+l) and hence Br
pt\/B

r
p_r

is isomorphic to d(Ar
p)/d(Ar

p
+l + Ar~}x). The other term Zr

p/Z
r^1 is isomor-

phic to Ar
p/{Ar+x + Ar~_\). As the kernel of d: Ar

p -> Fp_rC is contained in

, the two sides are isomorphic. O

Resuming the construction of the spectral sequence, the kernel of dp is

[z € Ap:d(z) e d(Ar-_\) + Ar
pZ\_x\ _ A'~_\ + A?1 Zp+

l

= u^A^r Bp-
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134 Spectral Sequences

By lemma 5.4.7, the map dp factors as

EP = ZP'BP Zp'Zp > Bp-r/Bp-r ^ Lp-rlBp-r ~ Ep-r'

From this we see that the image of dp is Bpt
l
r/B

r
p_r; replacing p with p + r,

the image of d£+ r is #£+ 1/#p- This provides the isomorphism

needed to complete the construction of the spectral sequence. <>

Observation Fix p and k > 1, and set C" = C/Fp-kC, C" = Fp+kC/Fp-kC.
The complex Cr is bounded below, C" is bounded, and there are maps C - •
Cr <- C/;. For 0 < r < k these maps induce isomorphisms on the associated
groups Ar

p/Fp_kC and {d(Ar~^r_{) -f Fp-kC}/Fp-kC. (Check this!) Hence
the associated groups Z£, 5^ and Er

p are isomorphic. That is, the associated
spectral sequences for C, C\ and C/r agree in the (/?, ^) spots through the £*
terms.

Exercise 5.4.1 Recall that the completion C is also a filtered complex. Show
that C/Fp-kC and C/Fp-kC are naturally isomorphic.

We can now establish the addendum 5.4.5. For each p, q, and k, we
have shown that the maps C ^> C ^> C induce isomorphisms between the
corresponding Ek

pq terms. Letting k go to infinity, we see that the map

{fpq- Er
pq(C) -^ Er

pq(C)} °f spectral sequences is an isomorphism, because
each fr is an isomorphism.

Exercise 5.4.2 Show that the spectral sequences for C, UFpC, and C/fl FPC
are all isomorphic.
Multiplicative Structure 5.4.8 Suppose that C is a differential graded alge-
bra (4.5.2) and that the filtration is multiplicative in the sense that for every s
and t, (FsC)(FtC) c F5+rC. Since E°pn_p is FpCn/Fp-XCn, it is clear that
we have a product

F° x F° -+ F°
p\q\ piqi p\+P2,q\+qi

satisfying the Leibnitz relation. Hence the spectral sequence has a multiplica-
tive structure in the sense of 5.2.13. Moreover, we saw in exercise 4.5.1 that
/ /* (C) is an algebra and that the images FpH*(C) of the H*{FpC) form a
multiplicative system of ideals in / / * ( C ) . Therefore whenever the spectral
sequence (weakly) converges to / / * (C) it follows that £ ° ° is the associated
graded algebra of / / * ( C ) . This convergence is the topic of the next section.
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5.5 Convergence 135

Exercise 5.4.3 (Shifting or Decalage) Given a filtration F on a chain complex
C, define two new filiations F and DecF on C by FpCn = Fp-nCn and
(DecF)pCn = {x e Fp+nCn : dx e Fp+n-iCn-i}. Show that the spectral
sequences for these three filtrations are isomorphic after reindexing: Epq (F) =
Er

pHq_n(F) for r > 0, and Er
pq{F) £ Er

pz}n,q+n(J*cF) for r > 2.
Exercise 5.4.4 (Eilenberg-Moore) Let / : B -» C be a map of filtered chain
complexes. For each r > 0, define a filtration on the mapping cone cone(/)

1.5.1 by
Fpcone(f)n = Fp-rBn-{ 0 FpCn.

Show that Er
p(conef) is the mapping cone of f : ££(5) - • Er

p(C). By 1.5.2
this gives a long exact sequence

• • • £ ; + r (cone / ) -* Er
p(B) -> ^ ( C ) -* ^ ( c o n e / )

5.5 Convergence
A filtration on a chain complex C induces a filtration on the homology of
C : FpHn(C) is the image of the map Hn(FpC) - • Hn{C). If the filtration on
C is exhaustive, then the filtration on Hn is also exhaustive (Hn = UFpHn),
because every element of Hn is represented by an element c of some FpCn

such that d(c) = 0. If the filtration on C is bounded below then the filtration on
each Hn{C) is also bounded below, since FpC = 0 implies that FpHn(C) = 0.
Exercise 5.5.1 Give an example of a complete Hausdorff filtered complex
C such that the filtration on Ho(C) is not Hausdorff, that is, such that

Here are the two classical criteria used to establish convergence; we will
discuss convergence for complete filtrations later on.
Classical Convergence Theorem 5.5.1

7. Suppose that the filtration on C is bounded. Then the spectral sequence

is bounded and converges to H*(C):

El
pq = Hp+qiFpC/Fp-xC) => Hp+q(C).

2. Suppose that the filtration on C is bounded below and exhaustive. Then
the spectral sequence is bounded below and also converges to //*(C).

Moreover, the convergence is natural in the sense that if f:C —> C

is a map of filtered complexes, then the map /*: //*(C) —>• //*(Cr) is

compatible with the corresponding map of spectral sequences.

Example 5.5.2 (First quadrant spectral sequences) Suppose that the filtration

is canonically bounded (F-\C = 0 and FnCn = Cn for each «), so that the

spectral sequence lies in the first quadrant. Then it converges to //*(C). Along

the j-axis of Ex we have E\ = Hq(FoC), and EQ° is a quotient of this (see

5.2.6). Along the x-axis, £"L is the homology Hp(C) of C's top quotient chain

complex C,Cn = Cn/Fn-\Cn\ E™0 is therefore a subobject of Hp(C).

Corollary 5.5.3 If the filtration is canonically bounded, then £^° is the image

ofHq(F0C) in Hq(C) and E™ is the image ofHp(C) in Hp(C).available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.006
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136 Spectral Sequences

Proof By definition, E™ = F0Hq(C) is the image of Hq(F0C) in Hq(C).
Now consider the exact sequence of chain complexes 0 —> FP-\C —> Cp —>
Cp -> 0. From the associated homology exact sequence we see that the image
of HP(C) in HP(C) is the cokernel of the map from Hp(Fp-\C) to HP(C),
which by definition is E™0 = Hp{C)/Fp-\Hp(C). O

Proof of Classical Convergence Theorem Suppose that the filtration is exhaus-
tive and bounded below (resp. bounded). Then the filtration on //* is exhaus-
tive and bounded below (resp. bounded), and the spectral sequence is bounded
below (resp. bounded). By Definition 5.2.11, the spectral sequence will con-
verge to //* whenever it weakly converges. For this, we observe that since the
filtration is bounded below and p and n are fixed, the groups Ar

p = {c e FpCn :
d(c) e Fp-rCn-\} stabilize for large r; write A^ for this stable value, and ob-
serve that since Zr

p = r]p(A
r
p) we have Z£° = rjp(A^). Now A™ is the kernel

of d: FpCn -> FpCn-u (dC) n FpC is the union of the d(Ar
p+r), and A™_{ is

the kernel of the map r]p: A™ -> E°pq. Thus

FpHn(C)/Fp-iHn(C) = A p

) / npd(UAr
p+r)

= Z?/Bf = E™. O

When the filtration is not bounded below, convergence is more delicate. Of
course we have to work within an abelian category such as R-mod, because
we need axiom (AB4*) in order to even talk about E°° (see 5.2.8). But there
are more basic problems. For example, the filtration on H*(C) need not be
Hausdorff. This is not surprising, since by 5.4.5 the completion C has the same
spectral sequence but different homology. (And see exercise 5.5.1.)

Example 5.5.4 Let C be the chain complex 0 - • Z -^> 1 -> 0, and let FpC
be 2?C. Then the Hausdorff quotient of #*(C) is zero, because FpH*{C) =

H*(C) for all p, even though H0(C) = 1/3. Each row of E° is 1/2 ^ - 1/2
and the spectral sequence collapses to zero at /s1, so the spectral sequence is
weakly converging (but not converging) to //*(C). It converges to //*(C) = 0.

Theorem 5.5.5 (Eilenberg-Moore Filtration Sequence for complete com-
plexes) Suppose that C is complete with respect to a filtration by subcom-
plexes. Associated to the tower {C/FpC] is the sequence of 3.5.8:

0 - • lim lHn+l(C/FpC) -» Hn(C) - % lim Hn(C/FpC) - • 0.
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5.5 Convergence 137

This sequence is associated to the filtration on H*(C) as follows. The left-
hand term lim1 Hn+\(C/FpC) is r\FpHn(C), and the right-hand term is the

Hausdorjf quotient of //*(C):

H FpHn(C) = lim Hn(C)/FpHn(C) ^ lim Hn(C/FpC).

Proof Taking the inverse limit of the exact sequences of towers

0 -> {FpH^C)} -> //*(C) - • {H*(C)/FPH*(C)} -> 0;

0 -> {

shows that #*(C)/ n FpH*(C) is a subobject of lim H*(C)/FpH*(C), which

is in turn a subobject of lim//w(C/FpC). Now combine this with the lim1

sequence of 3.5.8. <0>

Corollary 5.5.6 If the spectral sequence weakly converges, then //*(C) =

A careful reading of the proof of the Classical Convergence Theorem
5.5.1 yields the following lemma for all Hausdorff, exhaustive filtrations. To
avoid confusion, we reintroduce the fixed subscripts q and n = p + q. Write
A™q = C\™=lA

r
pq, recalling that in our notation Ar

pq = {c e FpCn : d(c) e
Fp-rCn-x}. In E°pq = FpCn/Fp-xCn, r]p(A^q) is contained in Z ^ and con-
tains B™q = r)p{FpC H d(C)). (Check this!) Hence e~ = r]p(A™)/B™ is
contained in E^q.

Lemma 5.5.7 Assume that the filtration on C is Hausdorff and exhaustive.
Then

1. A™q is the kernel of d: FpCn -> FpCn-\;
2. FpHn{C)^A™q/U%xd(Arp+rq_r+l),

3. The subgroup efq of E™q is related to H*(C) by

Proof Recall that FpHn(C) is the image of the map Hn(FpC) -> Hn(C).
Since DFpC = 0, the kernel of d: FpCn -> FpCn-\ is A~ , so Hn(FpC) =

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.006
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:25:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.006
https:/www.cambridge.org/core


138 Spectral Sequences

A™q/d{FpCn+\). As UFpC = C, the kernel of A™q -> //«(C) is the union

Vd(Ar
p+rq_r+l). For part (3) observe that Afq n F p - i C = A ~ _ u + 1 by def-

inition, so that rjpA™q = A^q/A^_^ + 1 . Hence we may calculate in E®pq

FpHn(C)/Fp-XHn(C) ^ A~ /A~_ u + 1 + \Jd(Ar
p+rq_r+x)

= *%> O

Corollary 5.5.8 (Boardman's Criterion) Let Qp denote lim1 {Ar } for fixed

p and q. The inclusions Ar~x + 1 C Ar
pq induce a map a: Qp-\ -> Qp, and

there is an exact sequence

0 ^ epq~~* Epq ~^ Qp-l ^ Qp ~^ |™ {Zpq} ~^ °*

In particular, if the filtration is Hausdorff and exhaustive, then the spectral
sequence weakly converges to H*(C) if and only if the maps a: Qp-\ —> Qp

are all injections.

Proof The short exact sequence of towers from 5.4.6

yields

Now mod out by B™, recalling that e™q is t](A™q)/B™. O

Exercise 5.5.2 Set Rp = nr image{H(FrC) -+ H(FpC)}. Show that the
spectral sequence is weakly convergent iff the maps Rp-\ ->• Rp are injections
for all p. Hint: Rp C Qp.

Exercise 5.5.3 Suppose that the filtration on C is Hausdorff and exhaustive.
If for any/? + ^ = n w e have Er

pq = 0, show that FpHn(C) = Fp-\Hn(C).
Conclude that Hn{C) = nFpHn(C), provided that every Er

pq with p + q
equalling n vanishes.

Proposition 5.5.9 (Boardman) Suppose that the filtration on Cn is complete,
and form the tower of groups Qp = lim^A^ n_p] as in 5.5.8 along the maps

a:Qp-\-+ Qp.ThenlimQp = 0. O
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5.5 Convergence 139

Proof Let / denote the poset of negative numbers - — < p — l<p<p + l<
• • • < 0. For each negative p and t, the subgroups A(p, t) = At

p~
p = [c e

FpCn : d(c) G FtCn-\} of Cn form a functor A: / x / -> Ab, that is, a
"double tower" of subgroups. If we fix t and vary /?, then for p < t we
have A(/7, t) = F^CV Hence we have lim A(/?, r) = lim FpCn = 0 and

< — P <—p

lim1 A(p, t) = lim1 FpCn = 0 (see 3.5.7). We assert that the derived func-

tor Rl lim/x/ from double towers to abelian groups fits into two short exact

sequences:

0 -> lim1 (lim A(/?, 0) -> Rl lim A(/?, 0 -» lim (lim1 A(/?, 0) -* 0,
^— *— Ixl <— <—

t p t p

0 - • lim1 (lim A(p, 0) -^ ^ 1 lim A(p, r) -> lim (lim1 A(p, t)) -> 0.
^ — <— /x/ ^ — <—

p t p t

We will postpone the proof of this assertion until 5.8.7 below, even though it
follows from the Classical Convergence Theorem 5.5.1, as it is an easy appli-
cation of the Grothendieck spectral sequence 5.8.3. The first of the sequences
in (f) implies that Rl lim/x/ A(p, t) = 0, so from the second sequence in (t)
we deduce that lim (lim1 A(p, t)) = 0.

To finish, it suffices to prove that lim1 A(p, t) is isomorphic to Qp for each

p < 0. Fix /?, so that there is a short exact sequence of towers in t:

(*) 0 -> {A(/?, /? + *)}-> {Mp, 0} -+ {A(/7, 0M(/7, /? + t)} -+ 0.

If r7 < p + f the map A(p, t')/A(p, p + t') -^ A(p, t)/A(p, p H- t) is obvi-
ously zero. Therefore the third tower of (*) satisfies the trivial Mittag-Leffler
condition (3.5.6), which means that

lim A(/?, t)/A(p, p + t) = lim1 A(p, t)/A(p, p + t)=0.
t t

From the lim exact sequence of (*) we obtain the described isomorphism

Qp = lim A1 = lim A(p, p + t) = lim A(/?, f)• O

Complete Convergence Theorem 5.5.10 Suppose that the filtration on C is
complete and exhaustive and the spectral sequence is regular (5.2.10). Then

1. The spectral sequence weakly converges to H*(C).
2. If the spectral sequence is bounded above, it converges to H*(C).
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Zero
differentials

into here

Cannot affect
Epq f or p > t Nonzero

differentials
in this range

Region describing the image
of Hn(Q in Hn(C/FtQ

0 0 • •

0

p-M p = t

Figure 5.2. Complete convergence for regular, bounded above spectral sequences.

Proof When the spectral sequence is regular, Z ^ equals Zr
pq = t]pA

r
pq for

large r. By Boardman's criterion 5.5.8, all the maps Qp-\ —• Qp are onto,
and the spectral sequence weakly converges if and only if Qp = 0 for all p.
This is indeed the case since the group lim Qp maps onto each Qp (3.5.3),

and we have just seen in 5.5.9 that lim Qp = 0. This proves (1).

To see that the spectral sequence converges to //*(C), it suffices to show
that the filtration on //*(C) is Hausdorff. By the Eilenberg-Moore Filtration
Sequence 5.5.5, it suffices to show that the tower {Hn(C/FtC)} is Mittag-
Leffler for every n, since then its lim1 groups vanish by 3.5.7. Each C/FtC
has a bounded below filtration, so it has a convergent spectral sequence whose
associated graded groups E^q{C/FtC) are subquotients of E®pq(C) for p > t.
For m < t, the images of the maps E™q(C/FmC) E™{C/FtC) are the
associated graded groups of the image of H*{C/FmC) —> H*(C/FtC), so it
suffices to show that these images are independent o f m a s m - ^ - o o .

Now assume that the spectral sequence for C is regular and bounded above.
Then for each n and t there is an M such that the differentials Er

pq{C) ->
Er +x_r(C) are zero whenever p + q = n, p > t, and p — r < M. By
inspection, this implies that E™q(C) — E™q(C/FmC) for every p + q =n with
p > t and every m<M. Thus the image of E™(C/FmC) -> E™(C/FtC) is
independent of m < M for p + q =n and p > t, as was to be shown. <0>

Exercise 5.5.4 (Complete nonconverging spectral sequences) Let Z < x >
denote an infinite cyclic group with generator x, and let C be the chain com-
plex with

oo 1=0
Ci = 0 Z < xi >, Co = f~[ Z < v/ >, Cn = 0 for n ^ 0, 1

1 = 1 l = - 0 0

and d: C\ -> Co defined by d(x[) = vi_, - y_/. For p < 0 define FpC\ = 0
and FpCo = Y\i<p ~D-<yi>\ this is a complete filtration on C.
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5.6 Spectral Sequences of a Double Complex 141

1. Show that FpHo(C) = HQ(C) for every p < 0, so that the filtration on
Ho(C) is not Hausdorff. (Since C\ is countable and Co is not, we have
HQ{C) / 0.) Hence no spectral sequence constructed with this filtration
can approach //*(C), let alone converge to it; such a spectral sequence
will weakly converge to //*(C) if and only if it converges to zero.

2. Here is an example of an (essentially) second quadrant spectral sequence
that weakly converges but does not converge to //*(C). For p > 1 define
FpC\ — C\ and FpCo = Co- The resulting spectral sequence has E®0 =
C\, E°p_p = 1 <yp> for p < 0 and E°pq = 0 otherwise. Show that
dr(xr) is [vi_r] and dr(xt) = 0 for i ^ r, and conclude that Efq = 0 for
every p and q.

3. Here is a regular spectral sequence that does not converge to //*(C). For
p > 1 let FPC\ be the subgroup of C\ spanned by x\, • • •, xp and set
FpCo = Co. The resulting spectral sequence has E°p {_ = Z < xp > for
p>l,E°p_p = Z<yp>forp<0 and E°pq = 0 otherwise. Show that
this spectral sequence is regular and converges to zero.

The following result generalizes the Comparison Theorem 5.2.12 to non-
convergent spectral sequences.
Eilenberg-Moore Comparison Theorem 5.5.11 Let f : B —• C be a map of
filtered complexes of modules, where both B and C are complete and exhaustive.
Fix r > 0. Suppose that fr : Er

pq{B) = Er
pq{C) is an isomorphism for all p

and q. Then f : H*(B) -> //*(C) is an isomorphism.

Proof Consider the filtration on the mapping cone complex given by the formula
Fpcone(/) = Fp-rB[—1] 0 FpC. This filtration is complete and exhaustive.
Since fr is an isomorphism, the long exact sequence of Exercise 5.4.4 shows
that £^ ( cone / ) = 0 for all p and q. By 5.5.10, this spectral sequence con-
verges to //*cone(/). Hence cone(/) is an exact complex, and 1.5.4 applies.

O
5.6 Spectral Sequences of a Double Complex

There are two filtrations associated to every double complex C, resulting in
two spectral sequences related to the homology of Tot(C). Playing these spec-
tral sequences off against each other is an easy way to calculate homology.

Definition 5.6.1 (Filtration by columns) If C = C** is a double complex, we
may filter the (product or direct sum) total complex Tot(C) by the columns of
C, letting lFn Tot(C) be the total complex of the double subcomplex

pq if P < n
if p > n

*
*
*
*

*
*
*
*

0
0
0
0

0
0
0
0
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142 Spectral Sequences

of C. This gives rise to a spectral sequence {!Er
pq}, starting with !E®pq = Cpq.

The maps d° are just the vertical differentials d° of C, so

Epq ~

The maps dl: Hq(Cp*) —• Hq(Cp-\^) are induced on homology from the

horizontal differentials dh of C, so we may use the suggestive notation:

'E2
pq = Hh

pH^C).

If C is a first quadrant double complex, the filtration is canonically bounded,
and we have the convergent spectral sequence discussed in section 5.1:

!E2
pq = Hh

pH
v
q{C) => Hp+q(Jot(C)).

If C is a fourth quadrant double complex (or more generally if Cpq = 0
in the second quadrant), the filtration on Totn(C) is bounded below but is
not exhaustive. The filtration on the direct sum total complex Tote(C) is
both bounded below and exhaustive, so by the Classical Convergence The-
orem 5.5.1 the spectral sequence 'E^ converges to //*(ToteC) and not to
//*(TotnC).

If C is a second quadrant double complex (or more generally if Cpq = 0
in the fourth quadrant), the filtration on the product total complex Totn(C)
is complete and exhaustive. By the Complete Convergence Theorem 5.5.10,
the spectral sequence !E^ weakly converges to //*(Totn C), and we have the
Eilenberg-Moore filtration sequence (5.5.5)

0 -> \imlHn+i(C/T<nC) -> Hn(Totn C) -> lim Hn(C/r<nC) -> 0.

We will encounter a spectral sequence of this type in Chapter 9, 9.6.17.

Definition 5.6.2 (Filtration by rows) If C is a double complex, we may also
filter Tot(C) by the rows of C, letting n Fn Tot(C) be the total complex of

if q>n

0 0 0 0 0 0
0 0 0 0 0 0

* * * * * *
* * * * * *

Since FpTol(C)/Fp-i Tot(C) is the row C*p,
 nE°pq = Cqp and uEx

pq =

Hq(C*p). (Beware the interchange of p and q in the notation!) The maps

d] are induced from the vertical differentials dv of C, so we may use the

suggestive notation
uEpq -
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5.6 Spectral Sequences of a Double Complex 143

Of course, this should not be surprising, since interchanging the roles of p
and q converts the filtration by rows into the filtration by columns, and inter-
changes the spectral sequences lE and nE.

As before, if C is a first quadrant double complex, this filtration is canon-
ically bounded, and the spectral sequence converges to //*Tot(C). If C is a
second quadrant double complex (or more generally if Cpq = 0 in the fourth
quadrant), the spectral sequence nE^ converges to //*Tote(C). If C is a
fourth quadrant double complex (or if Cpq = 0 in the second quadrant), then
the spectral sequence nEr^ weakly converges to //* Totn(C). O

Application 5.6.3 (Balancing Tor) In Chapter 2, 2.7.1, we used a disguised
spectral sequence argument to prove that Ln(A<g>)(B) = Ln(<g>B)(A), that is,
that Tor*(A, B) could be computed by taking either a projective resolution
P —> A or a projective resolution Q —• B. In our new vocabulary, there are
two spectral sequences converging to the homology of Tot(P ® Q). Since
Hq(Pp ®Q) = PP® Hq(A), the first has

iE2 =\H*(P®B) = Lp(®B)(A) if 0 = 0 j
pq 1 0 otherwise J

This spectral sequence collapses to yield Hp(P <g) Q) = Lp(®B)(A). There-
fore the second spectral sequence converges to Lp((g)B)(A). Since H^(P

Qn) = Hq(P) ® Qn,

nE2 =[Hv
p(A®Q) = Lq(A®)(B) if q = 0 ]

pq JO otherwise}'

This spectral sequence collapses to yield Hp{P (8) Q) = Lp(A<g))(B), whence
the result.

Theorem 5.6.4 (Kunneth spectral sequence) Let P be a bounded below com-
plex of flat R-modules and M an R-module. Then there is a boundedly con-
verging right half-plane spectral sequence

E2
pq = 7orR

p(Hq{P), M) => Hp+q(P ®R M).

Proof Let Q —> M be a projective resolution and consider the upper half-
plane double complex P (8) Q. Since Pp is flat, H"(P <g) g) = Pp <g) Hq{Q),
so the first spectral sequence has

iE2 =\Hp(P®M) ifq=O )
pq I 0 otherwise I'
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144 Spectral Sequences

This spectral sequence collapses to yield HP(P (8>© = Hp(P (8) M). Since
Qq is flat, Hq(P (8) Qn) = Hq(P) (8) Qn, so the second spectral sequence has
the desired E2 term

E2
pq = Hp(Hq(P) ) , M). O

Kiinneth Formula 5.6.5 In Chapter 3, 3.6.1, we could have given the follow-
ing spectral sequence argument to compute H*(P (8) Af), assuming that d(P)
(and hence Z) is flat. The flat dimension of Hq(P) is at most 1, since

is a flat resolution. In this case only the columns p = 0, 1 are nonzero, so all
the differentials vanish and E2

pq = Efq. The 2-stage filtration of HP(P 0 Q)
yields the Kiinneth formula.

0 0
0 0
0 0
0 0

Hq(P)®M Tovx(Hq(P),M)
0 0
0 0
0 0
0 0

Exercise 5.6.1 Give a spectral sequence proof of the Universal Coefficient

Theorem 3.6.5 for cohomology.

Theorem 5.6.6 (Base-change for Tor) Let f.R-^Sbea ring map. Then

there is a first quadrant homology spectral sequence

E2
pq = Tor£(Tor£(A, S), B)

for every A e mod-/? and B e S-mod.

, B)

Proof Let P -> A be an /^-module projective resolution, and Q —• B an S-
module projective resolution. As in 2.7.1, form the first quadrant double com-
plex P 0 Q and write H*(P (8) Q) for #*(Tot(P ®R Q)). Since Pp®R is an
exact functor, the pth column of P (8) Q is a resolution of Pp 0 B. There-
fore the first spectral sequence 5.6.1 collapses at lEl = Hq{P ® Q) to yield
//*(/" ® Q) = /f*(P ® 5) = Torf (A, 5) . Therefore the second spectral se-
quence 5.6.2 converges to Torf (A, B) and has

llE\q = Hq(P Qp) =

S) 05 , S) 05

and hence the prescribed E term: Hp(
JIEl

pq) = Tor£(Tor^(A, 5), <0>

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.006
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:25:25, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.006
https:/www.cambridge.org/core


5.7 Hyperhomology 145

Exercise 5.6.2 (Bourbaki) Given rings R and 5, let L be a right /^-module,
M an R-S bimodule, and TV a left S-module, so that the tensor product L 0 #
M 0 s N makes sense.

1. Show that there are two spectral sequences, such that

lE\q = Tor£(L, Tor*(M, AO) nE2
pq = Tor£(Tor*(L, M), N)

converging to the same graded abelian group //*. Hint: Consider a dou-
ble complex P 0 M 0 Q, where P -* L and Q^ N.

2. If M is a flat S-module, show that the spectral sequence lIE converges
to Torf (L, M 05 N). If M is a flat /^-module, show that the spectral
sequence lE converges to Torf (L 0/? M, iV).

Exercise 5.6.3 (Base-change for Ext) Let f:R-+ S be a ring map. Show that
there is a first quadrant cohomology spectral sequence

E{q = Extf (A, Ext^(S, B)) ^ E x t ^ ( A , B)

for every S-module A and every /^-module B.

Exercise 5.6.4 Use spectral sequences to prove the Acyclic Assembly Lem-
ma 2.7.3.

5.7 Hyperhomology

Definition 5.7.1 Let A be an abelian category that has enough projectives. A
(left) Cartan-Eilenberg resolution P** of a chain complex A* in A is an upper
half-plane double complex (Ppq = 0 if q < 0), consisting of projective objects

of A, together with a chain map ("augmentation") P*o —> A* such that for
every p

1. If Ap — 0, the column Pp* is zero.
2. The maps on boundaries and homology

Hp(e):Hp(P,dh)^Hp(A)

are projective resolutions in A. Here Bp{P,dh) denotes the horizon-
tal boundaries in the (/?, q) spot, that is, the chain complex whose qth

term is dh(Pp+\,q). The chain complexes Zp(P, dh) and Hp(P, dh) =
Zp(P', dh)/Bp(P', dh) are defined similarly.
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Exercise 5.7.1 In a Cartan-Eilenberg resolution show that the induced maps

fzP- p > A

are projective resolutions in A. Then show that the augmentation Tote(P) —•
A is a quasi-isomorphism in A; when A isn't bounded below, you will need to
assume axiom (AB4) holds.
Lemma 5.7.2 Every chain complex A* has a Cartan-Eilenberg resolution
P** -> A.

Proof For each p select projective resolutions Pp^ of Bp(A) and P ^ of
Hp(A). By the Horseshoe Lemma 2.2.8 there is a projective resolution P^

of Zp(A) so that

n -> pB _> p z -> p ^ _• 0

is an exact sequence of chain complexes lying over

0 -> Bp(A) -> ZP(A) - • Hp(A) -> 0.

Applying the Horseshoe Lemma again, we find a projective resolution P ^ of
Ap fitting into an exact sequence

We now define P** to be the double complex whose pth column is P^ ex-
cept that (using the Sign Trick 1.2.5) the vertical differential is multiplied by
(— \)p; the horizontal differential of P** is the composite

p A r>B r ^ pZ r_^ r>A

V+i,* ~^ rp* ^ v * ^ rp*-

The construction guarantees that the maps ep\ Ppo -> Ap assemble to give a
chain map €, and that each Bp(€) and Hp(e) give projective resolutions (check
this!). O

Exercise 5.7.2 If / : A —• B is a chain map and P -> A, g -> B are Cartan-
Eilenberg resolutions, show that there is a double complex map / : P —> g
over / . //mr: Modify the proof of 2.4.6 that L*/ is a homological <5-functor.

Definition 5.7.3 Let f,g\D^E be two maps of double complexes. A
chain homotopy from f to g consists of maps sh \ Dpq —• Ep+\,q and sv

pq\

Dpq -» £p,^+i so that

hsh + shdh)- / = (dhsh + shdh) + (dvs
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5.7 Hyperhomology 147

sv dh + dhsv = s hdv + dvsh = 0.

This definition is set up so that {sh +sv:Tot(D)n -> Tot(£)n+i} forms an
ordinary chain homotopy between the maps Tot(/) and Tot(g) from Tote(D)
toTot e(£).

Exercise 5.7.3

1. If / , g: A —• B are homotopic maps of chain complexes, and f,g\P^>
Q are maps of Cartan-Eilenberg resolutions lying over them, show that
/ is chain homotopic to g.

2. Show that any two Cartan-Eilenberg resolutions P, Q of A are chain ho-
motopy equivalent. Conclude that for any additive functor F the chain
complexes Tot® (F(P)) and Tot®(F(<2)) are chain homotopy equiva-
lent.

Definition 5.7.4 (D_*F) Let F: A —• B be a right exact functor, and assume
that A has enough projectives. If A is a chain complex in A and P -> A is
a Cartan-Eilenberg resolution, define L,-F(A) to be //; Tote(F(P)). Exercise
5.7.3 shows that L/F(A) is independent of the choice of P.

If / : A ->• ^ is a chain map and / : P -> Q is a map of Cartan-Eilenberg
resolutions over / , define L,-F(/) to be the map i//(Tot(/)) from L,-F(A) to
L/F(5). The exercise above implies that 0_/F is a functor from Ch(*4) to B, at
least when B is cocomplete. The D_/F are called the /^/r hyper-derived functors
of F.

Warning: If £ is not cocomplete, Tot®(F(P)) and L/F(A) may not exist for
all chain complexes A. In this case we restrict to the category Ch+(*4) of all
chain complexes A which are bounded below in the sense that there is a po
such that Ap = 0 for p < p0. Since Ppq = 0 if p < po or q < 0, Tote(F(P))
exists in Ch(B) and we may consider L,-F to be a functor from Ch+(,4) to B.

O

Exercises 5.7.4

1. If A is an object of A, considered as a chain complex concentrated in
degree zero, show that Q_;F(A) is the ordinary derived functor L(F(A).

2. Let Ch>o(^4) be the subcategory of complexes A with Ap = 0 for p < 0.
Show that the functors L/F restricted to Ch>o(.4) are the left derived
functors of the right exact functor H$F.

3. (Dimension shifting) Show that fl_/F(A[n]) = Ln+/F(A) for all n. Here
A[n] is the translate of A with A[n]( = Aw+/.
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Lemma 5.7.5 IfO-+A^B-+C^O is a short exact sequence of bound-
ed below complexes, there is a long exact sequence

• • • L/+iF(C) - ^ hF(A) -> liF(B) -> L/F(C) - ^ • • •.

Proof By dimension shifting, we may assume that A, #, and C belong to
Ch>o(*4). The sequence in question is just the long exact sequence for the
derived functors of the right exact functor HQF. O

Proposition 5.7.6 There is always a convergent spectral sequence

uE2
pq = (LpF)(Hq(A)) => Lp+qF(A).

If A is bounded below, there is a convergent spectral sequence

!E2
pq = Hp(LqF(A)) =» Lp+qF(A).

Proof We have merely written out the two spectral sequences arising from the
upper half-plane double chain complex F(P). <>

Corollary 5.7.7

1. If A is exact, LtF(A) = Ofor all i.
2. Any quasi-isomorphism f: A -> B induces isomorphisms

3. If each Ap is F-acyclic (2.4.3), that is, LqF(Ap) = Ofor q^O, and A
is bounded below, then

1PF(A) = HP(F(A)) for all p.

Application 5.7.8 (Hypertor) Let R be a ring and B a. left /^-module. The
hypertor groups Torf (A*, B) of a chain complex A* of right /^-modules are
defined to be the hyper-derived functors 0_;F(A*) for F = ®RB. This extends
the usual Tor to chain complexes, and if A is a bounded below complex of
flat modules, then Torf (A*, B) = ///(A* ® B) for all i. The hypertor spectral
sequences coming from 5.7.6 are

uE2
pq = Tovp(Hq(A), B) => Tor^(A*, B)
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5.7 Hyperhomology 149

and (when A is bounded below)

lE\q = Torq(Ap, B), l'E2
pq = HpTorq(A*, B) => Tor^(A*, B).

Even more generally, if B* is also a chain complex, we can define the hypertor
of the bifunctor A <S>R B to be

Torf (A*, £*) = Hi Tote(/> 0 * g) ,

where P —• A and <2 -* # are Cartan-Eilenberg resolutions. Since Tot(P (8)
2) is unique up to chain homotopy equivalence, the hypertor is independent
of the choice of P and Q. If B is a module, considered as a chain complex,
this agrees with the above definition (exercise!); by symmetry the same is true
for A. By definition, hypertor is a balanced functor in the sense of 2.7.7. A
lengthy discussion of hypertor may be found in [EGA, III.6].

Exercise 5.7.5 Show that there is a convergent spectral sequence

IIE2PI= 0 ToT$(Hq>(A*)9Hq»(B*))^Tor*+q(A*,B*).
q>+q"=q

If A* and B* are bounded below, show that there is a spectral sequence

lE\q = HpToteTorq(A*, £*) => Tor^(A*, £*).

Exercise 5.7.6 Let A be the mapping cone complex 0 —> A\ —> AQ
with only two nonzero rows. Show that there is a long exact sequence:

Cohomology Variant 5.7.9 Let ^l be an abelian category that has enough in-
jectives. A (right) Cartan-Eilenberg resolution of a cochain complex A* in A
is an upper half-plane complex /** of injective objects of A, together with an
augmentation A* -> 7*° such that the maps on coboundaries and cohomology
are injective resolutions of BP(A) and HP(A). Every cochain complex has a
Cartan-Eilenberg resolution A -> I. If F.A-+B is a left exact functor, we
define WE {A) to be W Totn(F(/)) , at least when Totn(F(/)) exists in B. By
appealing to the functor Fop: Aop -> Bop, we see that WF is a functor from

+ (the complexes A* with Ap = 0 for p << 0) to S, and even from
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150 Spectral Sequences

Ch(*4.) to B when B is complete. The W F are called the right hyper-derived
functors of F.

If A is in Ch(,4), the two spectral sequences arising from the upper half-
plane double cochain complex F(I) become

llEp
2
q = (RpF)(Hq(A)) => Rp+qF(A), weakly convergent; and

lEp
2
q = Hp(RqF(A)) => Rp+qF(A), if A is bounded below.

Hence [R*F vanishes on exact complexes and sends quasi-isomorphisms of
(bounded below) complexes to isomorphisms.

Application 5.7.10 (Hypercohomology) Let X be a topological space and
T* a cochain complex of sheaves on X. The hypercohomology Hl(X, J7*) is
(RT(JF*), where F is the global sections functor 2.5.4. This generalizes sheaf
cohomology to complexes of sheaves, and if T* is a bounded below complex
of injective sheaves, then D-D'CX, T*) = //'(TCT7*)). The hypercohomology
spectral sequence is uEpq = HP(X, Hq(F*)) => Hp+q(X,

5.8 Grothendieck Spectral Sequences

In his classic paper [Tohoku], Grothendieck introduced a spectral sequence
associated to the composition of two functors. Today it is one of the organi-
zational principles of Homological Algebra.

Cohomological Setup 5.8.1 Let A, B, and C be abelian categories such that
both A and B have enough injectives. We are given left exact functors G: A -^
B and F:B^C.

G

A — • B

FG\ / F

C

Definition 5.8.2 Let F: B -> C be a left exact functor. An object B of B is
called F-acyclic if the derived functors of F vanish on B, that is, if RlF{B) =
0 for i ^ 0. (Compare with 2.4.3.)

Grothendieck Spectral Sequence Theorem 5.8.3 Given the above cohomo-
logical setup, suppose that G sends injective objects of A to F-acyclic objects
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5.8 Grothendieck Spectral Sequences 151

ofB. Then there exists a convergent first quadrant cohomological spectral se-
quence for each A in A:

JEpq = (RpF)(RqG)(A) => Rp+q(FG)(A).

The edge maps in this spectral sequence are the natural maps

(RpF)(GA) -> RP(FG)(A) and Rq(FG)(A) -> F(RqG(A)).

The exact sequence of low degree terms is

0 -> (RlF)(GA) -> Rl(FG)A -> F(RlG(A)) -> (R2F)(GA) -> R2(FG)A.

Proof Choose an injective resolution A ->• / of A in A, and apply G to get a
cochain complex G(I) in #. Using a first quadrant Cartan-Eilenberg resolution
of G(/), form the hyper-derived functors RnF(G(I)) as in 5.7.9. There are
two spectral sequences converging to these hyper-derived functors. The first
spectral sequence is

lEp
2
q = Hp((RqF)(GI)) => (Rp+qF)(GI).

By hypothesis, each G{I?) is F-acyclic, so (R?F)(G(/^)) = 0 for q^O.
Therefore this spectral sequence collapses to yield

(RpF)(GI) ^ Hp(FG(I)) = Rp(FG)(A).

The second spectral sequences is therefore

nEpq = (RpF)Hq(G(I)) => RP(FG)(A).

Since Hq(G(I)) = RPG(A), it is Grothendieck's spectral sequence. O

Corollary 5.8.4 (Homology spectral sequence) Let A, B, and C be abelian
categories such that both A and B have enough projectives. Suppose given
right exact functors G: A—> B and F:B-+C such that G sends projective ob-
jects of A to F-acyclic objects ofB. Then there is a convergent first quadrant
homology spectral sequence for each A in A:

E2
pq = (LpF)(LqG)(A) =• Lp+q(FG)(A).

The exact sequence of low degree terms is

L2(FG)A - • (L2F)(GA) -+ F(L\G(A)) - • L\(FG)A -+ (L\F)(GA) -> 0.
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152 Spectral Sequences

Proof Dualizing allows us to consider Gop: Aop -* Bop and Fop: Bop -> Cop,
and the corollary is just translation of Grothendieck's spectral sequence using
the dictionary LpF = RpFop, and so on. <0>

Applications 5.8.5 The base-change spectral sequences for Tor and Ext of
section 5.7 are actually special instances of the Grothendieck spectral se-
quence: Given a ring map R -» S and an S-module B, one considers the
composites

fl-mod ^ > S-mod ^ > Ab

and

/?-mod > S-mod > Ab.

Leray Spectral Sequence 5.8.6 Let / : X —• Y be a continuous map of topo-
logical spaces. The direct image sheaf functor /* (2.6.6) has the exact functor
f~l as its left adjoint (exercise 2.6.2), so /* is left exact and preserves injec-
tives by 2.3.10. If T is a sheaf of abelian groups on X, the global sections of
f*T is the group (f+FW) = T(f~xY) = T{X). Thus we are in the situation

/•
Sheaves(X) — • Sheaves(F)

r\ /r

Ab

The Grothendieck spectral sequence in this case is called the Leray spectral
sequence: Since RPT is sheaf cohomology (2.5.4), it is usually written as

Epq = Hp(Y; RqUf) => Hp+q(X\ T).

This spectral sequence is a central tool to much of modern algebraic geometry.

We will see other applications of the Grothendieck spectral sequence in
6.8.2 and 7.5.2. Here is one we needed in section 5.5.9.

Recall from Chapter 3, section 5 that a tower • • • A\ -> AQ of abelian groups
is a functor / —> Ab, where / is the poset of whole numbers in reverse order.
A double tower is a functor A: I x I —> Ab; it may be helpful to think of the
groups A(j as forming a lattice in the first quadrant of the plane.
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5.9 Exact Couples 153

Proposition 5.8.7 (lim1 of a double tower) For each double tower A: I x
/ - • Ab we have lim A;;- = lim lim A;y, a short exact sequence

7x7

0 -> lim /(lim jAn) -> ( Rl lim J An -> lim /(lim !• An) -> 0,
—̂ —̂ V 7x7/ +— ^—^

(/?2 lim ) A/,- = lim /(lim ! A/7), and I /?" lim | A// = 0 for rc > 3.7x77 ^ ^ ' ^ - 7 ^ ^ IxIJ

We may form the inverse limit as lim A/y = lim lim A/y, that is, as the

composition of lim : (Ab7)7 -> Ab7 and lim : Ab7 —• Ab. From 2.3.10 and
< j 4 i

2.6.9 we see that lim preserves injectives; it is right adjoint to the "constant

tower" functor. Therefore we have a Grothendieck spectral sequence

E{q = lim f lim q. Atj => (Rp+q lim) Atj.

Since both Ab and Ab7 satisfy (A£4*), lim^ = lim* = 0 for p, q ^ 0, 1.

Thus the spectral sequence degenerates as described. O

5.9 Exact Couples

An alternative construction of spectral sequences can be given via "exact cou-
ples" and is due to Massey [Massey]. It is often encountered in algebraic topol-
ogy but rarely in commutative algebra.

It is convenient to forget all subscripts for a while and to work in the cat-
egory of modules over some ring (or more generally in any abelian category
satisfying axiom AB5). An exact couple 8 is a pair (Z), E) of modules, to-
gether with three morphisms i, j , k

D - U D

E

which form an exact triangle in the sense that kernel = image at each vertex.

Definition 5.9.1 (Derived couple) The composition jk from E to itself satis-
fies (jk)(jk) = j(kj)k = 0, so we may form the homology module H(E) =
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ker(jk)/image(jk). Construct the triangle

H(E)

where i' is the restriction of i to i(D), while j ' and k' are given by

L k'([e])=k(e).

The map j ' is well defined since i(d) = 0 implies that for some e e E d =
k(e) and j(d) = jk(e) is a boundary. Similarly, k(jk(e)) = 0 implies that the
map k' is well defined. We call £' the derived couple of £. A diagram chase
(left to the reader) shows that £f is also an exact couple.

If we iterate the process of taking exact couples r times, the result is called
the rth derived couple £r of 8.

Dr - U Dr

Er

Here Dr = ir(D) is a submodule of D, and Er = H(Er~l) is a subquotient
of E. The maps i and A: are induced from the / and k of 8, while y ^ sends

rd to

Exercise 5.9.1 Show that H(E) = k~l(iD)/j(ker(i)) and more generally,
that Er = Zr/Br, with Zr = k~x{irD) and Br = j(ker(ir)).

With this generic background established, we now introduce subscripts (for
Dpq and Epq) in such a way that / has bidegree (1 , -1) , k has bidegree
(-1,0) , and

bidegree (j) — {—a, a).

Thus / and j preserve total degree (p -h q), while k drops the total degree by
1. Setting D'pq = i(Dp-\^q+\) c Dpq and letting E'pq be the corresponding
subquotient of Epq, it is easy to see that in 81 the maps / and k still have bide-
grees (1, —1) and (—1, 0), while / now has bidegree (—1 — a, 1 + a). It is
convenient to reindex so that 8 = 8a and 8r denotes the (r — a)th derived cou-
ple of £, so that j ^ has bidegree (—r, r) and the Er-differential has bidegree
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5.9 Exact Couples 155

k i i{r)

^pq P~\,q P,<7~1 ^ p

In summary, we have established the following result.

Proposition 5.9.2 An exact couple £ in which i, /:, a/tJ y /rave bidegrees
(1, —1), (—1,0), am/ (—a, a) determines a homology spectral sequence {Er

pq}
starting with Ea. A morphism of exact couples induces a morphism of the
corresponding spectral sequences.

Example 5.9.3 (Exact couple of a filtration) Let C* be a filtered chain com-
plex of modules, and consider the bigraded homology modules

Dx
pq = Hn(FpC), El

pq = Hn(FpC/Fp-iQ, n = p + q.

Then the short exact sequences 0 -> Fp_\ -> Fp - • Fp/Fp-\ -> 0 may be
rolled up into an exact triangle of complexes (see Chapter 10 or 1.3.6)

®FpC
 l- > ®FpC

0\ i/@rip

®FpC/Fp-XC

whose homology forms an exact couple

®Hp+q(FpC) • ®Hp+q{FpC)

®Hp+q{FpC/Fp-XC)

Theorem 5.9.4 Let C* be a filtered chain complex. The spectral sequence
arising from the exact couple £} (which starts at El) is naturally isomorphic
to the spectral sequence constructed in section 5.4 (which starts at E°).

Proof In both spectral sequences, the groups Er
p are subquotients of E®p =

FpCp+q/Fp-\Cp+q\ we shall show they are the same subquotients. Since the
differentials in both are induced from d:C -> C, this will establish the result.

In the exact couple spectral sequence, we see from exercise 5.9.1 that the
numerator of Er in El is k~l(ir~lDl) and the denominator is 7*(ker i*""1).
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If c e FpCn represents [c] e Hn(FpC/Fp-\C), then d(c) e FP-\C and k([c])
is the class of d(c). Therefore the numerator in Fp/Fp-\ for Er is Zr

p = {c e
FPC : d(c) =a+ d(b) for some a e Fp-rC, b e FpC}/Fp-\C. Similarly, the
kernel of ir~l: Hn{FpC) -> Hn(Fp+r-\C) is represented by those cycles c e
FpC with c = d(b) for some b e Fp+r-\C. That is, ker(/ r - 1) is the image of
A!r~_l in Hn(FpC). Since j is induced on homology by r\p, we see that the

denominator is Bp = r]pd(Ar~^r_l). Since the spectral sequence of section 5.4
had Er

p = Zr
p/B

r
p, we have finished the proof. <>

Convergence 5.9.5 Let 8 be an exact couple in which i, j , and k have bide-
grees (—1,1), (—a, a) and, (—1,0), respectively. The associated spectral
sequence is related to the direct limits Hn = lim Dp,n-p of the Dpq along

the maps /: Dpq - • Dp+\^q-\. Let FpHn denote the image of Dp+a,q-a in
Hn (p + q = n); the system . . . Fp-\Hn c FpHn c . . . forms an exhaustive
filtration of Hn.

Proposition 5.9.6 There is a natural inclusion of FpHn/Fp-\Hn in E^D
n_p.

The spectral sequence Er
pq weakly converges to H* if and only if:

Z°° = nrk~l(irD) equals k~l(0) = j(D).

Proof Fix p, q, and n = p + q. The kernel Kp+a,q-a of Dp+a,q-a -> Hn is
the union of the ker(/r), so j(Kp+a,q-a) = Uj(ker(/r)) = UBr

pq = B™. (This
is where axiom A B5 is used.) Applying the Snake Lemma to the diagram

0 —> Kp-\+a —> Dp+a-\ —> Fp-\Hn —>0

i I' i
0 —> Kp+a —> Dp+a —> FpHn —> 0

yields the exact sequence

O^B™^ j(Dp+aiq-a) -+ FpHn/Fp-xHn -> 0.

But j(Dp+a,q-a) = ^ - 1 (0) , so it is contained in Zr
pq = k~l(irDp-r-\,q+r)

for all r. The result now follows. O

We say that an exact couple is bounded below if for each n there is an inte-
ger f{n) such that Dpq = 0 whenever p < f(p + q). In this case, for each p
and q there is an r such that ir(Dp-r-\,q+r) = ir(0) = 0, i.e., Zr

pq = k~l(0).
As an immediate corollary, we obtain the following convergence result.
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5.9 Exact Couples 157

Classical Convergence Theorem 5.9.7 If an exact couple is bounded below,
then the spectral sequence is bounded below and converges to //* = lim D.

Epq => HP+q

The spectral sequence is bounded and converges to H* if for each n there is a

p such that Dp,n-p —^ Hn.

Exercise 5.9.2 (Complete convergence) Let £ be an exact couple that is
bounded above (DPiq = 0 whenever p > f(p + q)). Suppose that the spec-
tral sequence is regular (5.2.10). Show that the spectral sequence converges to
Dn = lim Dp^n-p.

Application 5.9.8 Here is an exact couple that does not arise from a filtered
chain complex. Let C* be an exact sequence of left /^-modules and M a right
/^-module. Let Zp c Cp be the kernel of d: Cp -> Cp\ associated to the short
exact sequences 0 -> Zp ->• Cp - • Zp-\ -> 0 are the long exact sequences

• • -Tor^M, Zp) -U Torq(M, Cp) - ^ Torq(M, Zp-i) - U Tor^_i(M, Zp)--

which we can assemble into an exact couple S = £° with

D°pq = Tor^(M, Zp) and E°pq = Tor^(M, Cp).

By inspection, the map d = jk:Torq(M, Cp) -> Tor^(M, Cp-\) is induced
via Tor^(M, —) by the differential d: Cp -> Cp-\, so we may write

El
pq = Hp(Jorq(M,C*)).

More generally, if we replace Tor*(M, —) by the derived functors L*F of any
right exact functor, the exact couple yields a spectral sequence with EQ

pq =
LqF(Cp) and El

pq = Hp(LqF(C)). These are essentially the hyperhomol-
ogy sequences of section 5.7 related to the hyperhomology modules D_*F(C),
which are zero. Therefore this spectral sequence converges to zero whenever
C* is bounded below.

Bockstein Spectral Sequence 5.9.9 Fix a prime £ and let //* be a (graded)
abelian group. Suppose that multiplication by I fits into a long exact sequence

ln-\
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158 Spectral Sequences

If we roll this up into the exact couple

then we obtain a spectral sequence with E® = E*, called the Bockstein spectral
sequence associated to //*. This spectral sequence was first studied by W.
Browder in [Br], who noted the following applications:

1. H* = H*(X;Z) and £* = //*(X; l/l) for a topological space X
2. H* = 7r*(X) and £* = 7r*(X; Z/l) for a topological space X
3. //* = //*(G; Z) and £* = #*(G; Z/£) for a group G
4. //* = //*(C) for a torsionfree chain complex C, and £* = H*(C/£C)

We note that the differential d = jd sends £"£ to Er
n_v so that the bigrading

subscripts we formally require for a spectral sequence are completely artificial.
The next result completely describes the convergence of the Bockstein spectral
sequence. To state it, it is convenient to adapt the notation that for q e 1

qH* = {x e //* :qx = 0}.

Proposition 5.9.10 For every r > 0, there is an exact sequence

H H

In particular, if Tn denotes the l-primary torsion subgroup of Hn and Qn

denotes the infinitely I-divisible part ofiHn, then there is an exact sequence

ln

Proof For r = 0we are given an extension

0 -> Hn/iHn ^E°n^+ tHn-i -> 0.

Now Er is the subquotient of E° with numerator d~l(lrH) and denominator
j(irH) by the above exercise, so from the extension

0 -• H/IH -U d~\lrH) -^ {fH O iH)-* 0

the result is immediate. <>
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5.9 Exact Couples 159

Corollary 5.9.11 If each Hn is finitely generated and dim(//n <8> Q) = dn,
then the Bockstein spectral sequence converges to E%° = (Z/p)dn and is
bounded in the sense that E^° = Er

n for large r.

Actually, it turns out that the Bockstein spectral sequence can be used to
completely describe //* when each Hn is finitely generated. For example, if X
is a simply connected //-space whose homology is finitely generated (such as
a Lie group), Browder used the Bockstein spectral sequence in [Br] to prove

For this, note that j induces a map Hn -> Er
n for each r. If X e Er

n has
a(x) = pry, then d(x) = j^a(x) = j(y) in the notation of the proposition.
In particular, x is a cycle if and only if a(x) is divisible by pr+x. We can
summarize these observations as follows.

Corollary 5.9.12 In the Bockstein spectral sequence

1. Elements of En that survive to Er but not to £ r + 1 (because they are
not cycles) correspond to elements of exponent p in Hn-\, which are
divisible by pr but not by / / + 1 .

2. An element y G Hn yields an element j(y) of Er for all r; if j (y) ^ 0
in Er~l, but j(y) = 0 in Er, then y generates a direct summand of Hn

isomorphic toZ/pr.

Exercise 5.9.3 Study the exact couple for H = Z//?3, and show directly that
E2 # 0 but E3 = 0.
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6
Group Homology and Cohomology

6.1 Definitions and First Properties

Let G be a group. A (left) G-module is an abelian group A on which G acts
by additive maps on the left; if g e G and a e A, we write ga for the action of
^ o n a . Letting Home (A, B) denote the G-set maps from A to B, we obtain a
category G-mod of left G-modules. The category G-mod may be identified
with the category 1 G-mod of left modules over the integral group ring ILG.
It may also be identified with the functor category AbG of functors from the
category "G" (one object, G being its endomorphisms) to the category Ab of
abelian groups.

A trivial G-module is an abelian group A on which G acts "trivially," that is,
ga = a for all g e G and a e A. Considering an abelian group as a trivial G-
module provides an exact functor from Ab to G-mod. Consider the following
two functors from G-mod to Ab:

1. The invariant subgroup AG of a G-module A,

AG = {a e A : ga = a for all g e G and a e A}.

2. The coinvariants Ac of a G-module A,

Ac = A/submodule generated by {(ga — a): g e G,a e A}.

Exercise 6.1.1

1. Show that AG is the maximal trivial submodule of A, and conclude that
the invariant subgroup functor —G is right adjoint to the trivial module
functor. Conclude that —G is a left exact functor.

160
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6.1 Definitions and First Properties 161

2. Show that Ac is the largest quotient module of A that is trivial, and
conclude that the coinvariants functor — G is left adjoint to the trivial
module functor. Conclude that — G is a right exact functor.

Lemma 6.1.1 Let A be any G-module, and let Z be the trivial G-module.

Then AG = ~l ®ZG A and A° = HoniG(Z, A).

Proof Considering Z as a Z—ZG bimodule, the "trivial module functor"
from Z—mod to ZG-mod is the functor Hom^Z, —). We saw in 2.6.3 that
Z ®ZG ~~ is its left adjoint; this functor must agree with its other left adjoint
(-)G- For the second equation, we use adjointness: AG = HomAb(Z, AG) =
HomG(Z, A). <>

Definition 6.1.2 Let A be a G-module. We write //*(G; A) for the left de-
rived functors L*(—G)(A) and call them the homology groups of G with co-
efficients in A; by the lemma above, H*{G\ A) ^ Torp(Z, A). By defini-
tion, Ho(G; A) = Ac. Similarly, we write //*(G; A) for the right derived
functors /?*(—G)(A) and call them the cohomology groups of G with coef-
ficients in A; by the lemma above, H*(G; A) = Ext|G(Z, A). By definition,
H°(G;A) = AG.

Example 6.1.3 If G = 1 is the trivial group, Ac = AG = A. Since the higher
derived functors of an exact functor vanish, if*(l; A) = / /*(1 ; A) = 0 for

Example 6.1.4 Let G be the infinite cyclic group T with generator t. We may
identify IT with the Laurent polynomial ring Z[t,t~1]. Since the sequence

is exact,

Hn{T\ A) = Hn(T; A) = 0 forn ^ 0, 1, and

Hi(T; A) ^ H°(T; A) = AT, Hl(T\ A) = H0(T; A) = AT.

In particular, H\(T; Z) = Hl(T; Z) = Z. We will see in the next section that
all free groups display similar behavior, because pdcQ-) — 1.

Exercise 6.1.2 (kG-modules) As a variation, we can replace Z by any com-
mutative ring k and consider the category kG-mod of ^-modules on which
G acts ^-linearly. The functors Ac and AG from kG-mod to &-mod are left
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162 Group Homology and Cohomology

(resp. right) exact and may be used to form the derived functors Tor£G and
Ext£G. Prove that if A is a &G-module, then we have isomorphisms of abelian
groups

//*(G; A) ^ Tor*G(£, A) and #*(G; A) ^ Ext|G(fc, A).

This proves that //*(G; A) and //*(G; A) are ^-modules whenever A is a kG-
module. Hint: If P -> Z is a projective ZG-resolution, consider P <S>jk -» A:.

We now return our attention to Ho and / / ° .

Definition 6.1.5 The augmentation ideal of ZG is the kernel 3 of the ring
map ZG —% Z which sends X!wg£ t 0 Z!ng- Because {1} U [g — 1 : g e G,
g 7̂  1} is a basis for ZG as a free Z-module, it follows that 3 is a free Z-
module with basis {g — I : g e G, g ^ 1}.

Example 6.1.6 Since the trivial G-module Z is ZG/3, //o(G; A) = AG is
isomorphic to Z <8)ZG A = ZG/3 <S>ZG A = A/3 A for every G-module A. For
example, //0(G; Z) = Z/3Z = Z, //0(G; ZG) = ZG/3 ^ Z, and H0(G\ 3) =
3/32.

Example 6.1.7 (A = ZG) Because ZG is a projective object in ZG-mod,
H*(G; ZG) = 0 for * ^ 0 and H0(G; ZG) = Z. When G is a finite group,
Shapiro's Lemma (6.3.2 below) implies that H*(G\ ZG) = 0 for * / 0. This
fails when G is infinite; for example, we saw in 6.1.4 that Hl(T; IT) = Z for
the infinite cyclic group T.

The following discussion clarifies the situation for H°(G; ZG) : If G is
finite, then //°(G; ZG) ^ Z, but H°(G; ZG) = 0 if G is infinite.

The Norm Element 6.1.8 Let G be a finite group. The norm element N of
the group ring ZG is the sum N = ^2gec g- The norm is a central element of

ZG and belongs to (ZG)G, because for every h e G hN = J2g
 n8 = J2g' 8

f =

N, and Nh = N similarly.

Lemma 6.1.9 The subgroup H°(G;ZG) = (ZG)G of ZG is the 2-sided ideal
Z-NofZG (isomorphic to Z) generated by N.

Proof If a = J2ng§ *s m {ZG)G, then a — ga for all g e G. Comparing
coefficients of g shows that all the ng are the same. Hence a = nN for some
neZ. O
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6.1 Definitions and First Properties 163

Exercise 6.1.3

1. Show that if G is an infinite group, then H°(G; TG) = (IG)G = 0.
2. When G is a finite group, show that the natural map Z • N = (ZG)G —>

( Z G ) G = Z sends the norm TV to the order #G of G. In particular, it is an
injection.

3. Conclude that 3 is ker(ZG -^> ZG) = {a e IG : Na = 0} when G is
finite.

Proposition 6.1.10 Let G be a finite group of order m, and N the norm. Then
e = N/m is a central idempotent element o/QG and ofZG[—].IfAisaQ_G-
module, or any G-module on which multiplication by m is an isomorphism,

H0(G; A) = #°(G; A) = eA and #*(G; A) = //*(G; A) = 0 for * / 0.

Proof N2 = (J2g) - N = m- N, so e2 = e in R = ZG[^]. Note that R =

eR x (1 — e)R as a ring, that eR = Z[^] , and that the projection e from
/?-mod to (£/?)-mod c Ab is an exact functor. Let A be an /^-module; we
first show that eA = AG = AG. Clearly N • A c AG, and if a e AG, then
N - a = m • a, that is, a = e • a. Therefore eA = AG. By exercise 6.1.3 (3),
3[1] = ker(# - i> fl) = (l - e)R. Hence (1 - e)A = (1 - e)R ®R A equals
3[1] ®^ A = ^A; therefore AG = A/3A = A/(l - e)A = eA.

Because e/^ is projective over R, Tor*(eR, A) = Extn
R(eR, A) = 0 if n ^ 0.

Since /? is flat over ZG, flat base change for Tor (3.2.29) yields

Hn(G\ A) = Torf G(Z, A) = Tor^(Z <g> R, A) = Tor*(eR, A) = 0 if n ^ 0.

For cohomology, we modify the argument used in 3.3.11 for localization of

Ext. If P —>• Z is a resolution of Z by projective ZG-modules, then P [ ^ ] —>

Z[^] is a resolution of Z[^] — eR by projective /^-modules. Because A is

an /^-module, adjointness yields HomaCP, A) = Hom/?(P[^], A). Thus for
n^Owe have

Hn(G', A) = HnHomG(P, A) ^ HnHom^(P[-], A) = Ext"(eR, A) = 0. O
m

We now turn our attention to the first homology group H\.

Exercise 6.1.4

1. Define 6: G -+ 3/32 by 0(g) = g - 1. Show that 0 is a group homomor-
phism and that the commutator subgroup [G, G] of G maps to zero.
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164 Group Homology and Cohomology

2. Define a: 3 -> G/[G, G] by a(g - 1) = g, the (left) coset of g. Show
that a(32) = 1, and deduce that 0 and a induce an isomorphism 3/32 =
G/[G, G].

Theorem 6.1.11 For any group G, H\(G; Z) ^ 3/32 ^ G/[G, G].

The sequence 0 -> 3 -> ZG —• 2 —• 0 induces an exact sequence

; ZG) -> #i(G; Z) -> 3 G -> (ZG)G -^ Z -> 0.

Since ZG is projective, H\(G; ZG) = 0. The right-hand map is the isomor-
phism ( Z G ) G = IG/3 = Z, so evidently H\(G\ T) is isomorphic to 3Q =
3/32. By the previous exercise, this is isomorphic to G/[G, G]. O

Theorem 6.1.12 If A is any trivial G-module, H0(G; A) = A, H\{G; A) ^
G/[G, G] 0j A, and for n > 2 there are (noncanonical) isomorphisms:

Hn(G; A) ^ Hn(G; Z)®ZA® Torf (#n_i(G; Z), A).

Proof If P -> Z is a free right ZG-module resolution, //*(G; A) is the ho-
mology of P <S>ZG A = (P (8>ZG 2) % A. Now use the Universal Coefficient
Theorem. <C>

Exercises 6.1.5 Let A be a trivial G-module.

1. Show that Hl(G', A) is isomorphic to the group HomGroups(G, A) =
HoniAb(G/[G, G], A) of all group homomorphisms from G to A.

2. Conclude that Hl(G; Z) = 0 for every finite group.
3. Show that in general there is a split exact sequence

0 - • Extl
z(Hn-i(G; Z), A) - • Hn{G\ A) -> HomAb(#n(G; Z), A) - • 0.

Exercise 6.1.6 If G is finite, show that Hl(G; C) = 0 and that / /2(G; Z) is
isomorphic to the group Hl(G, C*) = HomGroups(G, C*) of all 1-dimension-
al representations of G. Here G acts trivially on Z, C, and on the group C* of
complex units.

We now turn to the product G x H of two groups G and H. First note that
Z[G x H] ^ ZG (8) Z/f. Indeed, the ring maps from ZG and Z/ / to Z[G x H]
induce a ring map from ZG 0 1H to Z[G x H], Both rings have the set
G x / / as a Z-basis, so this map is an isomorphism. The Kunneth formula
gives the homology of G x H:
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6.1 Definitions and First Properties 165

Proposition 6.1.13 (Products) For every G and H there is a split exact se-
quence:

0 " • W HP(G> Z> ® Hq(H; T) -»• Hn(G x / / ; Z)

i Torf (#p(G; I), Hq(H; /)) — 0.

P+g

=n-\

Proof Let P ->• 2 be a free ZG-resolution and Q —• 2 a free Z//-resolution,
and write P 0j Q for the total tensor product chain complex (2.7.1), which
is a complex of ZG ® Z//-modules. By the Kunneth formula for complexes
(3.6.3), the homology of P 0 ^ Q is z e r o except for //o(P ®z (2) = 2. Hence
P ®z Q -> 2 is a free ZG ® Z//-module resolution of Z, and H*(G x 7/; Z)
is the homology of

(P <8>z G) 0ZG0Z// Z ^ (P ®ZG Z) 0 Z ( 2 0 M Z).

Moreover, //*(G; Z) = 7/*(P ®IG Z) and 7/*(//; Z) = (Q ®IH Z). As each
Pn ®TG Z is a free Z-module, the proposition follows from the Kunneth for-
mula for complexes. O

Exercise 6.1.7 (kG-modules) Let A; be a field, considered as a trivial mod-
ule. Modify the above proof to show that Hn(G x H;k) = @ HP(G\ k) <8>k

Hn-p(H\k) for attn.

Cohomology Cross Product 6.1.14 Keeping the notation of the preceding
proposition, there is a natural homomorphism of tensor product double com-
plexes:

At: HomG(P, Z) ® HomH(Q, Z) -> HomGxH(P 0 Z Q, Z),

/ ' ) U ® 30 = f(x)f'(y), xePp,ye Qq.

The cra55 proJwcr x: //^(G; Z) ® / /^(H; Z) -> HP^(G X H;I) is the
composite obtained by taking the cohomology of the total complexes.

Hp(G\ Z) ® H^(//; Z) —-• / /^ [Hom G (P , Z) 0

x //; Z) = Hp+q[HomGxH(P 0 2, Z)]
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166 Group Homology and Cohomology

Exercise 6.1.8 Suppose that each Pp is a finitely generated ZG-module. (For
example, this can be done when G is finite; see section 6.5 below.) Show in
this case that \JL is an isomorphism. Then deduce from the Kiinneth formula
3.6.3 that the cross product fits into a split short exact sequence:

0 -* (±) Hp(G\ Z) <g> //*(//; Z) -^> //"(G x H; Z)

-> 0 Torf (//^(G; Z), #<?(//; Z)) -> 0.

=n+l

Exercises 6.1.9

1. Show that the cross product is independent of the choice of P and Q.
2. If H = 1, show that cross product with 1 e / /°(1; Z) is the identity map.

3. Show that the cross product is associative in the sense that the two maps

HP(G; Z) <g> Hq(H\ Z) <8> Hr(I; Z) -> HpJrq+r(G x H x / ; Z)

given by the formulas (x x y) x z and x x (y x z) agree.

Exercise 6.1.10 Let k be a commutative ring.

1. Modify the above construction to obtain cross products HP(G; k) <g>k

Hq(H; k) - • Hp+q(G x H;k). Then verify that this cross product is
independent of the choice of P and Q, that it is associative, and that the
cross product with le / /°( l ; k) = k is the identity.

2. If k is a field, show that Hn(G x H;k)^@ HP(G\ k) ®k H
n~p{H\ k)

for all n.
We will return to the cross product in section 6.7, when we introduce the

restriction map H*(G x G) -> //*(G) and show that the cross product makes
//*(G;Z)intoaring.

Hyperhomology 6.1.15 If A* is a chain complex of G-modules, the hyper-
derived functors L/(—G)(A*) of 5.7.4 are written as H/(G; A*) and called
the hyperhomology groups of G. Similarly, if A* is a cochain complex of G-
modules, the hypercohomology groups HP(G; A*) are just the hyper-derived
functors Kl(—G)(A*). The generalities of Chapter 5, section 7 become the
following facts in this case. The hyperhomology spectral sequences are

nE2
pq = HP(G; Hq(A*)) => Mp+q(G; A*); and

lE2
pq = Hp(Hq(G; A*)) =*• Up+q(G\ A*) when A* is bounded below,
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6.2 Cyclic and Free Groups 167

and the hypercohomology spectral sequences are

llElq = Hp(G; Hq(A*)) =» Mp+q(G\ A*), weakly convergent; and

lEp
2
q = Hp(Hq(G; A*)) => Hp+q(G; A*) if A is bounded below.

In particular, suppose that A is bounded below. If each A/ is a flat ZG-module,
then H;(G; A*) = / / ; ( ( A * ) G ) ; if each A' is a projective ZG-module, then
Ui(G;A*) = Hi((A*)G).

Exercise 6.1.11 Let T be the infinite cyclic group. Show that there are short
exact sequences

0 -> Hq{A*)T -> Uq{T\ A*) -* Hq-X{A*)T -> 0;

0 -» H ^ - ^ A ^ r -> IHI^(r; A*) -> Hq(A*)T -> 0.

Exercise 6.1.12 Let fc be a commutative ring and G a group such that all
the ^-modules //*(G; fc) are flat. (For example, this is true for G = T.)
Use the hypertor spectral sequence (5.7.8) to show that Hn(G x H; k) =
0 HP(G\ k) <S>k Hn-P(H; k) for all n and H.

6.2 Cyclic and Free Groups

Cyclic and free groups are two classes of groups for which explicit calcula-
tions are easy to make. We first consider cyclic groups.

Calculation 6.2.1 (Cyclic groups) Let Cm denote the cyclic group of order
m on generator a. The norm in iCm is the element N=\+G+G2 + h
am~\ so 0 = om - 1 = (a - \)N in ZCm. I claim that the trivial Cm-module
Z has the periodic free resolution

Indeed, since I-N = (IG)G and 3 = {a e IG : Na = 0} by exercise 6.1.3,

there are exact sequences

O^I-N<^1G^3^O and 0^3 <^- iCm <- Z • TV <- 0.

The periodic free resolution is obtained by splicing these sequences to-
gether. Applying <8>ZGA and HOIIIG(- , A) and taking homology, we find the
following result:
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168 Group Homology and Cohomology

Theorem 6.2.2 If A is a module for the cyclic group G = Cm, then

A/(o-\)A ifn = O
Hn(Cm; A) = \ AG/NA if n = 1, 3, 5, 7,.

{a e A : Na = 0}/(a - 1)A if n = 2, 4, 6, 8,.

/"(Cm; A) = = l ,3 ,5 ,7 ,
= 2,4,6,8,

Exercise 6.2.1 Show for G = Cm that when / / ^ G ; A) = 0 there is an exact
sequence

; A) -^ 0.

Example 6.2.3 Taking A = Z we find that

Z ifn = 0
//«(Cm; Z) = { T/m if n = 1, 3, 5, 7 , . . . [ ;

0 if n = 2, 4, 6, 8,. .

Hn(Cm;I) =
I ifn = 0
0 ifn = l ,3 ,5 ,7 ,
I/m ifn = 2 ,4 ,6 ,8 , . . .

Exercise 6.2.2 Calculate #*(Cm xC n ;Z) and 7^*(Cm x Cn\ I).

Definition 6.2.4 (Tate cohomology) Taking full advantage of this periodicity,
we set

. A ) =
= f AG/NA if n € Z is even |

1 {a e A : NA = 0}/(a - I)A if rc e Z is odd J'

More generally, if G is a finite group and A is a G-module, we define the Tate
cohomology groups of G to be the groups

Hn(G;A) =

Hn(G;A) ifn>\
AG/NA ifn = 0
{aeA:Na = 0}/JA if n = - 1
Hi-n(G;A) ifn<-2
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6.2 Cyclic and Free Groups 169

Exercise 6.2.3 If G is a finite group and 0 - > A — • t f ^ C ^ - O i s a n exact
sequence of G-modules, show that there is a long exact sequence

• • • Hn~l(G; C) -> Hn{G\ A) -> Hn(G; B) -> Hn(G; C) -> Hn+X(G; A) • • •.

Application 6.2.5 (Dimension-shifting) Given a G-module A, choose a short
exact sequence 0->K-+P^A^0 with P projective. Shapiro's Lemma
(6.3.2 below) implies that #*(G, P) = 0 for all * e Z. Therefore Hn{G\ A) ^
/ / n + 1 (G; A'). This shows that every Tate cohomology group Hn(G; A) deter-
mines the entire theory.

Proposition 6.2.6 Let G be the free group on the set X, and consider the
augmentation ideal 3 ofiG. Then 3 is a free TG-module with basis the set
X-l = {x-l:xeX}.

Proof We have seen that 3 is a free abelian group with Z-basis {g — 1 : g e G,
g zfz 1}. We claim that another Z-basis is {g(x — 1) : g e G, x e X}. Every g e
G may be written uniquely as a reduced word in the symbols {x,x~l :x e X};
write G(JC) (resp. G(x~1)) for the subset of all g e G ending in the symbol x
(resp. in x~l) so that G — {1} is the disjoint union (over all x e X) of the sets
G(x) and G(x~l). The formulas

(gx - 1) = g(x - 1) + (g - 1) if gx e G(x)

(gx~l - 1) = -(gx-l)(x - 1) + (g - 1) if s*-1 e 1

and induction on word length allow us to uniquely rewrite the basis {g — 1 :
g ^ 1} in terms of the set {g(x — 1)}, and vice versa. Therefore {g(x — 1) :
g € G, x G X} is a Z-basis of 3, and X - 1 = {JC - 1 : x e X} is a ZG-basis. O

Corollary 6.2.7 If G is a free group on X, then Z has the free resolution

0 ^3^ZG->Z^0.

Consequently, pdG(l) = 1, that is, Hn(G; A) = Hn(G; A) = 0 for n # 0, 1.
Moreover, //0(G; Z) ^ #°(G; Z) ^ Z, while

and #!(G; Z) ̂  ]~| Z.

Proof //*(G; A) is the homology of 0 -> 3 ®ZG A -> A -> 0, and #*(G; A)
is the cohomology of 0 - • A -> Home (3, A) -> 0. For A = Z, the differen-
tials are zero. O
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170 Group Homology and Cohomology

Remark Conversely, Stallings [St] and Swan [SwCdl] proved that if Hn(G,A)
vanishes for all n ^ 0, 1 and all G-modules A, then G is a free group.

Exercise 6.2.4 Let G be the free group on {s, t], and let T c G be the free
group on {t}. Let 1! denote the abelian group Z, made into a G-module (and a
7-module) by the formulas s • a = t • a = — a.

1. Show that H0(G, I!) = H0(T, I!) = 1/2.
2. Show that HX(T, I!) = 0 but H{(G, I!) ^ Z.

Free Products 6.2.8 Let G*// denote the free product (or coproduct) of the
groups G and H. By [BAII, 2.9], every element of G*// except 1 has a unique
expression as a "reduced" word, either of the form g\h\g2h2g3 • • • or of the
form h\g\h2g2h3 • • • with all gi e G and all hi e H (and all g;, hi ^ 1).

Proposition 6.2.9 Let 3G> ^H, and 3G*H denote the augmentation ideals of
1G, 1H, and A = Z(G*#), respectively. Then

?G*H = OG ®IG A) 0 OH ®ZH A).

Proof As a left ZG-module, A = Z(G*//) has a basis consisting of {1}
and the set of all reduced words beginning with an element of H. Therefore
3G ®IG A has a Z-basis B\ consisting of the basis [g — \\g e G, g / 1} of
3G and the set of all terms

(g - l ) ( h i g i h 2 -••) = ( g h \ g \ h 2 • ' • ) - ( h \ g \ h 2 • • • ) •

Similarly, 3H ®IH A has a Z-basis B2 consisting of {h — 1} and the set of
all terms

(h - l)(g\h\g2 -") = (hg\h\g2 • • •) - (g\h\g2 • • •)•

By induction on the length of a reduced word w in G*//, we see that w — 1
can be written as a sum of terms in B\ and B2. This proves that B = B\ U B2

generates 3G*H- In any nontrivial sum of elements of B, the coefficients of the
longest words must be nonzero, so B is linearly independent. This proves that
B forms a Z-basis for 3G*H, and hence that 3G*H has the decomposition we
described. O

Corollary 6.2.10 For every left (G*H)-module A, andn > 2:

Hn(G*H; A) ^ Hn(G; A) 0 Hn(H; A);

Hn(G*H; A) ^ Hn(G; A) 0 Hn(H; A).
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6.3 Shapiro's Lemma 171

Remark When n = 0, the conclusion fails even for A = Z. We gave an exam-
ple above of a (r*r)-module 1! for which the conclusion fails when n = 1.

Proof We give the proof of the homology assertion, the cohomology part
being entirely analogous. Write A for Z(G*//). Because Tor^(A, A) = 0 for
n > 1, we see that Tor^(Z, A) = TOT^_XOG*H, A) for n > 2. Hence in this
range

Hn(G*H; A) = Tor£(Z, A) ^ T o r ^ C ^ , A)

^ T o r ^ C J c ®ZG A, A) 0 TOT^OH ®ZH A, A).

Since A is free over 1G and ZH, base-change for Tor (3.2.9 or 5.6.6) implies
that

T o r ^ C t e ®1G A, A) ^ T o r ^ C ^ , A) ^ TorfG(Z, A) = Hn(G; A).

By symmetry, TOT^PH ®ZH A, A) ^ Hn(H; A). O

Exercise 6.2.5 Show that if A is a trivial G*//-module, then for n = 1 we
also have

; A) ^ //i(G; A) 0 # i ( / / ; A);

Hl(G*H; A) = /^(G; A) 0 H^/ / ; A).

6.3 Shapiro's Lemma

For actually performing calculations, Shapiro's Lemma is a fundamental tool.
Suppose that H is a subgroup of G and A is a left ^//-module. We know
(2.6.2) that IG ®jH A and Hom#(ZG, A) are left ZG-modules. Here are
their names:

Definition 6.3.1 ZG <g>2# A is called the induced G-module and is written
Ind^(A). Similarly, Hom//(ZG, A) is called the coinduced G-module and is
written Coind^(A).

Shapiro's Lemma 6.3.2 Let H be a subgroup of G and A an //-module.
Then

//*(G; Indg(A)) ^ / /*(/ / ; A); and //*(G; Coindg(A)) ^ / /* (# ; A).
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172 Group Homology and Cohomology

Proof Note that ZG is a free ///-module (any set of coset representatives
will form a basis). Hence any projective right ZG-module resolution P —• Z is
also a projective ///-module resolution. Therefore the homology of the chain
complex

(ZG

is both

TorJG(Z, ZG ®ZH A) ^ //*(G; Indg(A))

and Tor^(Z, A) ^ #*(//; A). Similarly, if P -+ Z is a projective left ZG-
module resolution, then there is an adjunction isomorphism of cochain com-
plexes:

HomG(/>, Hom//(ZG, A)) ^ Hom//(P, A).

The cohomology of this complex is both

Ext|G(Z, Hom//(ZG, A)) ^ #*(G; Coindg(A))

and Ext^(Z, A) ^ / /*(/ / ; A). <>

Corollary 6.3.3 (Shapiro's Lemma for H = 1) If A is an abelian group, then

A if * = 0 j
; ZG (g)2 A) = //*(G; HomAb(ZG, A)) = , Q .f +

Lemma 6.3.4 / / r ^ index [G : //] w^nite, Indg(A) = Coindg(A).

Proof Let X be a set of left coset representatives for G// / , so that X forms a
basis for the right //-module ZG. Ind^(A) is the sum over X of copies x (8) A
of A, with g(jc ® a) = y <g> ha if gx = yh in G. Now X"1 = {x~l : x e X]
is a basis of ZG as a left //-module, so Coind^(A) is the product over X of
copies TTXA of A, where nxa represents the //-map from ZG to A sending
x"1 to a € A and z~l to 0 for all z ^ x in X. Therefore if gx = yh, that is,
y~lg = hx~l, the map g(7ixa) sends j " 1 to

(7Txa)(y-lg) = (nxa)(hx~l) = h • ( T T ^ U " 1 ) = *a

and z~l to 0 if z ^ y in X. That is, g{nxa) = ny(ha). Since X = [G : / /] is
finite, the map Ind^(A) -> Coind^(A) sending x <g> a to 7rxa is an //-module
isomorphism. <C>
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6.3 Shapiro's Lemma 173

Corollary 6.3.5 If G is a finite group, then #*(G; 1G <g>z A) = Ofor * ^ 0
and all A.

Corollary 6.3.6 (Tate cohomology) If G is finite and P is a projective G-
module,

H*(G;P) = 0 for all * .

Proof It is enough to prove the result for free G-modules, that is, for mod-
ules of the form P = TG ®z F, where F is free abelian. Shapiro's Lemma
gives vanishing for * ^ 0, - 1 . Since PG = (IG)G <g> F = N • P, we get
//°(G; P) = 0. Finally, H~\G; P) = 0 follows from the fact that N = #G
on the free abelian group PG = P/3P = F. O

Hilbert's Theorem 90 6.3.7 (Additive version) Let K c L be a finite Galois
extension of fields, with Galois group G. Then L is a G-module, LG = LG =

//*(G; L) = #*(G; L) = 0 for * / 0.

Proof The Normal Basis Theorem [BAI, p. 283] asserts that there is an x e L
such that the set {g(x): g e G} of its conjugates forms a basis of the /T-vector
space L. Hence L = ZG ®zK asa G-module. We now cite Shapiro's Lemma.

O

Example 6.3.8 (Cyclic Galois extensions) Suppose that G is cyclic of order
m, generated by a. The trace tr(x) of an element x e L is the element x +
ax H h am~xx of # . In this case, Hilbert's Theorem 90 states that there is
an exact sequence

Indeed, we saw in the last section that for * / 0 every group #*(G; L) and
//*(G; L) is either K/tr(L) or ker(tr)/(a - 1)K.

As an application, suppose that char(^) = p and that [L : K] = p. Since
^r(l) = p • 1 = 0, there is an x e L such that (cr — l)x = 1, that is, ax =
x + 1. Hence L = K(x) and xp — x e K because

o(xp - x) = (JC + l ) p - (JC + 1) = xp - x.
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174 Group Homology and Cohomology

Remark If G is not cyclic, we will see in the next section that the vanishing of
Hl(G; L) is equivalent to Noether's Theorem [BAI, p. 287] that if D: G -> L
is a map satisfying D(gh) — D(g) + g • D(h), then there is an x e L such that

Application 6.3.9 (Transfer) Let H be a subgroup of finite index in G. Con-
sidering a G-module A as an //-module, we obtain a canonical map from A to
Hom//(2G, A) = Coindg(A) ^ Indg(A) and from Coindg(A) ^ ZG <g>z//

A to A. Applying Shapiro's Lemma, we obtain transfer maps //*(G; A) —•
//*(/ / ; A) and / /* ( / / ; A) -> #*(G; A). We will return to these maps in exer-
cise 6.7.7 when we discuss restriction.

6.4 Crossed Homomorphisms and H1

If A is a bimodule over any ring R, a derivation of R in A is an abelian group
homomorphism D: R —> A satisfying the Leibnitz rule: D(rs) = rD(s) +
D(r)s. When R = HG and A is a left ZG-module, made into a bimodule
by giving it a trivial right G-module structure, this definition simplifies as
follows:

Definition 6.4.1 A derivation (or crossed homomorphism) of G in a left G-
module A is a set map D:G -> A satisfying D(gh) = gD(h) + D(g). The
family Der(G, A) of all derivations is an abelian group in an obvious way:

Example 6.4.2 (Principal derivations) If a e A, define Da(g) = ga — a; Da

is a derivation because

Da(gh) = (gha - go) + (ga - a) = gDa(h) + Dfl($).

The A* are called the principal derivations of G in A. Since Da + Dt, =
D(a+b), the set PDer(G, A) of principal derivations forms a subgroup of
Der(G, A).

Exercise 6.4.1 Show that PDer(G, A) ^ A/AG.

Example 6.4.3 If <p:3 -> A is a G-map, let D^.G -> A be defined by
D<p(g) = (p(g — 1). This is a derivation, since

= <p(gh - 1) =
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6.4 Crossed Homomorphisms and Hx 175

Lemma 6.4.4 The map cp \-^ Dy is a natural isomorphism ofabelian groups

HomGQ, A)^Der(G, A).

Proof The formula defines a natural homomorphism from Home (3, A) to
Der(G, A), so it suffices to show that this map is an isomorphism. Since {g —
1 : g zfz 1} forms a basis for the abelian group 3, if D<p(g) = 0 for all g, then
(p = 0. Therefore the map in question is an injection. If D is a derivation,
define cp{g — 1) = D(g) e A. Since {g — 1 : g / 1} forms a basis of 3, <p
extends to an abelian group map cp: 3 -> A. Since

- 1)) = cp(gh - 1) -

= D(gh)-D(g) =

(p is a G — m a p . A s Z)^ = D , the m a p in ques t ion is a lso a surject ion. <>

Theorem 6.4.5 Hl{G\ A) ^ Der(G, A)/PDer(G, A).

Proof The sequence 0 ^ 3 - > Z G - > Z - > 0 induces an exact sequence

0 —• HomG(Z, A) - > HomG(2G, A) —• HomG(a, A) —• Ext^G(2, A) —> 0.

AG ^ A - ^ Der(G, A) —• / / ' ( G ; A )

Now A - • Home(3, A) sends a e A to the map <p sending (g — 1) to (g — \)a.
Under the identification of Home(3, A) with Der(G, A), (p corresponds to
the principal derivation D^ = Da. Hence the image of A in Der(G, A) is
PDer(G, A), as claimed. O

Corollary 6.4.6 If A is a trivial G -module,

~~~ GroupsHl{G- A) ^ Der(G, A) ^HomGrouPs(G, A).

Proof PDer(G, A) = A/AG = 0 and a derivation is a group homomorphism.
•

Hilbert's Theorem 90 6.4.7 (Multiplicative version) Let K c L be a finite
Galois extension of fields, with Galois group G. Let L* denote the group of
units in L. Then L* is a G-module, and Hl(G\ L*) = 0.
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176 Group Homology and Cohomology

Proof Using multiplicative notation, a derivation is a map #: G —> L* such
that 0(gh)/0(g) = g - 0(h). These are "Noether's equations"; the usual Theo-
rem 90 [BAI, p. 286] states that if 0 satisfies Noether's equations then 0(g) =
(g • x)/x for some x e L*, that is, 0 is a principal derivation. <C>

Example 6.4.8 (Cyclic Galois extensions) Hilbert originally proved his The-
orem 90 for cyclic field extensions in his 1897 report, Theorie der Alge-
braische Zahlkorper. Let K C L be a cyclic Galois extension of fields, with
Galois group Cm. The norm Nx of an element x e L is the product Ug(x);
as Hl(Cm; L*) = {x : Nx = l}/(a - 1)L* (see 6.2.2), we may rephrase
Hilbert's Theorem 90 as stating that whenever Nx = 1, there is a y e L such
that x = (ay)/y. Since H2(Cm\ L*) = L*G/{Nx : x e L*} = K*/NL*,

is exact. (See exercise 6.2.1.) For the cyclic extension R c C it is easy to cal-
culate that H2(C2\ C*) = Z/2, so the higher analogue of the additive version
of Theorem 90 fails for #*(G; L*).

Remark The group H2(G; L*) is usually nonzero. We will return to this topic
in 6.6.11, identifying H2(G\ L*) with the relative Brauer group Br(L/K)
of all simple algebras A with center K and dim^ A=n2,n = [L: K], such
that A 0 K L is the matrix ring Mn(L). The nonzero element of Br(C/R) =
H2(C2', C*) = Z/2 corresponds to the 4-dimensional quaternion algebra H,
which has center R and H ®R C = M2(C).

In order to indicate the historical origins of the terminology "crossed homo-
morphism," we introduce the semidirect product A xi G of a group G with a
G-module A. A xi G is a group whose underlying set is the product A x G,
and whose multiplication is given by the formula

(a, g) • (&, h) = (a + gb, gh).

The semidirect product contains A = A x 1 as a normal subgroup. It also
contains the subgroup 0 x G, which maps isomorphically onto the quotient
G = (Ax G)/A.

Definition 6.4.9 If a is an automorphism of A xi G, we say that a stabilizes
A and G if a (a) = a for a e A and the induced automorphism on G = (A XJ
G)/A is the identity.
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6.5 The Bar Resolution 111

Exercise 6.4.2 If D is a derivation of G in A, show that &D, defined by

eD(a, g) = {a + D(g), g),

is an automorphism of A x G stabilizing A and G, and that Der(G, A) is iso-
morphic to the subgroup of Aut(A x G) consisting of automorphisms stabiliz-
ing A and G. Show that PDer(G, A) corresponds to the inner automorphisms
of A x G obtained by conjugating by elements of A, with the principal deriva-
tion Da given by Da(g) = a~lga. Conclude that Hl(G; A) is the group of
outer automorphisms stabilizing A and G.

Example 6.4.10 (Dihedral groups) Let C2 act on the cyclic group Z/ra = Cm

by a {a) = —a. The semidirect product Cm xi C2 is the dihedral group Dm

of symmetries of the regular ra-gon. Our calculations in section 6.2 show
that Hx(Cr, Cm) = Cm/2Cm. If m is even, Dm has an outer (= not inner)
automorphism with <p(0, a) = (1, a). If m is odd, every automorphism of Dm

is inner.

6.5 The Bar Resolution

There are two canonical resolutions B* and B" of the trivial G-module 1 by
free left ZG-modules, called the normalized and unnormalized bar resolu-
tions, respectively. We shall now describe these resolutions.

(**) 0 4- Z <4- B% <?- B\ <?- B^ 4 .

Bo and B£ are ZG. Letting the symbol [ ] denote 1 e ZG, the map e: Bo —• Z
sends [ ] to 1. For « > 1, #" is the free ZG-module on the set of all symbols
[gi ® • • • ® gn] with g; G G, while Bn is the free ZG-module on the (smaller)
set of all symbols [gi| • • • \gn] with the gt e G — {1}. We shall frequently iden-
tify Bn with the quotient of B% by the submodule Sn generated by the set of all
symbols [gi ® • • • ® gn] with some g/ equal to 1.

Definition 6.5.1 For n > 1, define the differential J: #" -> £" , to be d =
'* At — 1

E?=o(-1)''*. where:

do([g\ 0 • • • 0 gn]) = g\[g2 0 • • • (8) g«];

di([g\ ® • • • ® gn]) = [gi ® • • • ® g/g/+i 0 • • • 0 gn] for 1 = 1 , . . . , n - 1;

) • • • 0 gn]) = [gl <8> • • • ® gn-l].
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178 Group Homology and Cohomology

The differential for B* is given by formulas similar for those on #", except
that for / = 1 , . . . , n — 1

[gi I • • • l#g/+i I • • • Ign] when gigf+i ^ 1
0

To avoid the clumsy case when gigi+i = 1, we make the convention that
[gil • ' ' \8n] = 0 if any g{• = 1. Warning: With this convention, the above for-
mula for di([g\\ • • •]) does not hold when gi or gi+\ = 1; the formula for the
alternating sum d does hold because the d{ and d;_i terms cancel.

Examples 6.5.2

1. The image of the map d: B\ —• BQ is the augmentation ideal 3 because
d([g]) = g[ ] - [ ] = (g - 1)[ ]. Therefore (*) and (**) are exact at Bo.

2. d([g\h]) = g[h]-[gh] + [g].
3. d([f\g\h]) = f[g\h] - [fg\h] + [f\gh] - [f\g].
4. If G = C2, then Bn = 7LG for all n on [a \ • • • \o] and (*) is familiar from

6.2.1:

0 <_ z <^- 1G <^- TG ?±1 ZG £ ± • • •.

Exercises 6.5.1

1. Show that d o J = 0, so that 5" is a chain complex, //mr: If / < j — 1,
show that d(dj = dj-\d(.

2. Show that d(Sn) lies in Sn-\9 so that iS* is a subcomplex of #".
3. Conclude that B* is a quotient chain complex of #".

Theorem 6.5.3 77ie sequences (*) (2nJ f**J «re ^xac .̂ Thus both B* and B"
are resolutions oft by free left ZG-modules.

Proof It is enough to prove that (*) and (**) are split exact as chain com-
plexes of abelian groups. As the proofs are the same, we give the proof in the
B* case. Consider the abelian group maps sn determined by

sn:Bn-> Bn+u sn(go[g\\'- \gn]) = [go\g\\'" \gnl

Visibly, es-\ — 1 and dsQ + s-\e is the identity map on BQ. If n > 1, the
first term of dsn(go[g\ I • • • \gn]) is gofgiI • • • \gnl and the remaining terms are
exactly the terms of sn-\d(go[g\\ • • • \gn]) with a sign change. This yields
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6.5 The Bar Resolution 179

the final identity dsn + sn-\d = 1 needed to show that {sn} forms a chain
contraction of (*). <0>

Application 6.5.4 (Homology) For every right G-module A, //*(G; A) is the
homology of the chain complex A ® B*. (If A is a left G-module, we must
take the homology of Br^ <g> A, where #* is the mirror image bar resolution.)
In particular, we see that H\{G; 7L) is the quotient of the free abelian group on
the symbols [g], g e G, by the relations that [1] = 0 and [/] + [g] = [fg] for
all / , g e G. This recovers the calculation in 6.1.11 that

Application 6.5.5 (Cohomology) If A is a left G-module, H*(G; A) is the
cohomology of either HomdB", A) or HomoC^*, A). An n-cochain is a set
map cp from Gn = G x • • • x G to A; elements of Home(/?", A) are just n-
cochains. A cochain <p is normalized if <p(gi, • • •) vanishes whenever some
g; = 1; these are the elements of Homc(5n , A). The differential dep of an n-
cochain is the (n + l)-cochain

" ,gn-\)-

The rc-cochains such that dep = 0 are n-cocycles, and the n-cochains dip are
called n-coboundaries. We write Zn(G; A) and Bn(G; A) for the groups of all
ft-cocycles and n-coboundaries, respectively. Thus Hn(G\ A) = Zn(G; A)/
£"(G; A).

Example 6.5.6 A 0-cochain is a map 1 —> A, that is, an element of A. If
a G A, then da is the map G —> A sending g to ga —a. Thus a is a 0-cocycle
iff a e AG, and the set Bl(G\ A) of 1-coboundaries is the set PDer(G, A) of
principal derivations.

The set ZX(G\A) of 1-cocyles is Der(G, A), because a 1-cocyle is a
function D with D(l) = 0 and gD(h) - D(gh) + D(g) = D(d[g\h]) = 0.
Therefore, the bar resolution provides a direct proof of the isomorphism
Hl(G\ A) ^Der(G, A)/PDer(G, A) of 6.4.5.

Example 6.5.7 B2(G; A) is the set of all \j/\ G x G -> A such that ^ ( 1 , g) =
1) and

= / • fi(g) - P(fg) + 0(f) for some f5:G-+A.
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180 Group Homology and Cohomology

Z2(G; A) is the set of all 2-cochains \fr\ G x G -> A such that ^r(l, g) =
1r(g9 1) and

/ • V(S, h) - Mfg, h) + VK/, gh) - T/K/, g) = 0 for every f,g,he G.

Theorem 6.5.8 Let G be a finite group with m elements. Then for n^O and
every G-module A, both Hn(G; A) and Hn(G; A) are annihilated by m, that
is, they are Z/m-modules.

Proof Let r\ denote the endomorphism of #*, which is multiplication by (m —
N) on Bo and multiplication by m on Bn, n ^ 0. We claim that rj is null
homotopic. Applying A® or Hom(—, A), will then yield a null homotopic
map, which must become zero upon taking homology, proving the theorem.

Define vn: Bn -> Bn+\ by the formula

Vn([g\\ • ' • \gn]) = ( - l ) n + 1 ] £ t e l I ' ' ' \gn\gl

geG

Setting co = [g\ | • • • \gn] and e = (— l)w + 1 , we compute for n ^ 0

dvn(co) = € £ { £ ! [ . • • | g ] + ^ ( - D ' [ - • • \gigi + l\' " \ g ] ~ €[• • • \gn-l\gng] + € « }

As the sums over all g e G of [• • • |grtg] and [• • • \g] agree, we see that
(dv + vd)(co) is 62XI(o = mco. Now dvo([]) = d{- Y^lgD = (m - N)[],
where Â  = ^ g is the norm. Thus {vn} provides the chain contraction needed
to make rj null homotopic. <0>

Corollary 6.5.9 Let G be a finite group of order m> and A a G-module. If A
is a vector space over Q, or a Z[^]-module, then Hn(G; A) = Hn(G; A) = 0
for n ^ 0. (We had already proven this result in 6.1.10 using a more abstract
approach.)

Corollary 6.5.10 If G is a finite group and A is a finitely generated G-
module, then Hn(G; A) and Hn(G; A) are finite abelian groups for all n^O.

Proof Each A <g)/G Bn and HomG(Bn, A) is a finitely generated abelian
group. Hence Hn(G; A) and Hn(G\ A) are finitely generated Z/m-modules
when n ^ O . <>

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.007
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:29:31, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.007
https:/www.cambridge.org/core


6.5 The Bar Resolution 181

Shuffle Product 6.5.11 When G is an abelian group, the normalized bar
complex B* is actually a graded-commutative differential graded algebra (or
DG-algebra; see 4.5.2) under a product called the shuffle product. If p > 0 and
q > 0 are integers, a (/?, q)-shuffle is a permutation a of the set {1, — •, p + q]
of integers in such a way that cr(l) < a(2) < • • • < cr(p) and cr(/? -f 1) <
• • • <o{p + q). The name comes from the fact that the (/?, g)-shuffles de-
scribe all possible ways of shuffling a deck of p + q cards, after first cutting
the deck between the p and (p + l)st cards.

If G is any group, we define the shuffle product *: Bp<g)j Bq -> Bp+q by

a[gl\ • • • \gp\ * £[#/H-ll • ' • \gp+q] = ^(-l^flfct&T-ill&r-^l ' ' ' l&r-Up+f)]'
cr

where the summation is over all (p, g)-shuffles cr. The shuffle product is
clearly bilinear, and [ ] *[g\ | • • • \gq] = [g\ | • • • |g^], so B* is a graded ring with
unit [ ], and the inclusion of ZG = BQ in B* is a ring map.

Examples 6.5.12 [g] * [ft] = [g|ft] - [h\g], and

[/] * [*|ft] = [/Isl*] - [g|/|ft] + [g\h\fl

Exercise 6.5.2

1. Show that the shuffle product is associative. Conclude that B* and Z 0 ^ G
5* are associative rings with unit.

2. Recall (from 4.5.2) that a graded ring R* is called graded-commutative if
x * y = (—l)pqy * JC for all x e Rp and y e Rq. Show that 5* is graded-
commutative if G is an abelian group.

Theorem 6.5.13 If G is an abelian group, then B* is a differential graded
algebra.

Proof We have already seen in exercise 6.5.2 that B* is an associative graded-
commutative algebra, so all that remains is to verify that the Leibnitz identity
4.5.2 holds, that is, that

d(x * y) = (dx) * y + (-l)px * dy,

where x and y denote a[gi\--\gp] and b[gp+\\ • • • \gp+q], respectively.
Contained in the expansion of x*y, we find the expansions for (dx)*y and
(—l)px*dy. The remaining terms are paired for each i < p < j9 and each
(/?, g)-shuffle a which puts i immediately just before j , as

{-Yfabl • • \gigj\ • • •] a n d (-lf+lab[- • • \g]gi\ • • •].
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182 Group Homology and Cohomology

(The terms with j just before / arise from the composition of a with a trans-
position.) As G is abelian, these terms cancel. O

Corollary 6.5.14 For every abelian group G and commutative 1LG-algebra
R, //*(G; R) is a graded-commutative ring.

Proof B* <8)JG ^ is a graded-commutative DG-algebra (check this!); we
saw in exercise 4.5.1 that the homology of such a DG-algebra is a graded-
commutative ring. <C>

6.6 Factor Sets and H2

The origins of the theory of group cohomology go back—at least in nascent
form—to the landmark 1904 paper [Schur]. For any field k, the projective
linear group PGLn(k) is the quotient of the general linear group GLn(k)
by the diagonal copy of the units k* of k. If G is any group, a group map
p\G —> PGLn(k) is called a projective representation of G. The pullback

E = {(a, g) e GLn(k) xG:a = p(g)}

is a group, containing k* = k* x 1, and there is a diagram

1 —> k* —> E —> G —> 1

II U | p
1 —> k* —> GLn(k) — • PGLn(k) —> 1.

Schur's observation was that the projective representation p of G may be
replaced by an ordinary representation p' if we are willing to replace G by the
larger group E, and it raises the issue of when E is a semidirect product, so
that there is a representation G c-> E —> GLn(k) lifting the projective repre-
sentation. (See exercise 6.6.5.)

Definition 6.6.1 A group extension (of G by A) is a short exact sequence

of groups in which A is an abelian group; it is convenient to write the group
law in A as addition, whence the term "0" on the left. The extension splits if
n\ E -> G has a section a: G —> E.
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6.6 Factor Sets and H2 183

Given a group extension of G by A, the group G acts on A by conjugation
in E\ to avoid notational confusion, we shall write ga for the conjugate gag~x

of a in E. This induced action makes A into a G-module.

Exercise 6.6.1 Show that an extension O ^ A ^ £ ^ G ^ 1 splits if and
only if E is isomorphic to the semidirect product A xi G (6.4.9).

Exercise 6.6.2 Let G = Z/2 and A = Z/3. Show that there are two exten-
sions of G by A, the (split) product Z/6 = A x G and the dihedral group D3.
These extensions correspond to the two possible G-module structures on A.

Exercise 6.6.3 (Semidirect product) Let A be a G-module and form the split
extension

0 -> A-> A xi G-> G ^ 1.

Show that the induced action of G on A agrees with the G-module structure.

Extension Problem 6.6.2 Given a G-module A, we would like to determine
how many extensions of G by A exist in which the induced action of G on A
agrees with the given G-module structure, that is, in which 8a = g • a.

In order to avoid duplication and set-theoretic difficulties, we say that two
extensions 0—>>A—»£/—»G->1 are equivalent if there is an isomorphism
<p : E\ = £2 so

0 —> A —> E\ —> G —> 0

0 —> A —> E2 —> G —^ 0

commutes, and we ask for the set of equivalence classes of extensions. Here is
the main result of this section:

Classification Theorem 6.6.3 The equivalence classes of extensions are in
1-1 correspondence with the cohomology group H2(G; A).

Here is the canonical approach to classifying extensions. Suppose given an
extension 0 -> A -> E —> G -+ 1; choose a set map a\G -+ E such that
tr(1) is the identity element of E and na(g) = g for all g e G. Both cr(gh)
and cr(g)cr(h) are elements of E mapping to gh e G, so their difference lies in
A. We define

[g,h]=cr(g)cr(h)a(ghrl.
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184 Group Homology and Cohomology

Note that [g, h] is an element of A that depends on our choice of E and a.

Definition 6.6.4 The set function [ ]: G x G —> A defined above is called the
factor set determined by E and o.

Lemma 6.6.5 If two extensions 0 - > A - » E j - » G - > - l with maps oi'.G ->
E[ yield the same factor set, then the extensions are equivalent.

Proof The maps O[ give a concrete set-theoretic identification E\ = A x G =
£2; we claim that it is a group homomorphism. Transporting the group struc-
ture from E\ to A x G, we see that the products (a, 1) • (b, 1) = (a + b, 1),
(a, 1) • (0, g) = (a, g), and (0, g) • (0, 1) = (ga, g) are fixed. Therefore the
group structure on A x G is completely determined by the products (1, g) •
(l,/i), which by construction is ([g, h], gh). By symmetry, this is also the
group structure induced from E2, whence the claim. <>

Corollary 6.6.6 If E were a semidirect product and a were a group homo-
morphism, then the factor set would have [g, h] = Ofor all g,h e G. Hence if
an extension has [ ] = 0 as a factor set, the extension must be split.

Recall (6.5.7) that a (normalized) 2-cocycle is a function [ ] : G x G -> A
such that

1. [g,l] = [hg] = 0 forallgeG.
2. f[g, h] - [fg, h] + [/, gh] - [f g] = 0 for all f,g,he G.

Theorem 6.6.7 Let A be a G -module. A set function [ ] :G x G —> A is a
factor set iff it is a normalized 2-cocycle, that is, an element of Z2(G, A).

Remark Equations (1) and (2) are often given as the definition of factor set.

Proof If [ ] is a factor set, formulas (1) and (2) hold because cr(l) = 1 and
multiplication in E is associative (check this!).

Conversely, suppose given a normalized 2-cocycle, that is, a function [ ]
satisfying (1) and (2). Let E be the set A x G with composition defined by

(fl, g) • (ft, h) = (a + (g-b) + [g, hi gh).

This product has (0,1) as identity element, and is associative by (2). Since

(0, g) - (-g~l -a-g-1- [g, g~ll g~l) = (0, 1),
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6.6 Factor Sets and H2 185

E is a group. Evidently A x 1 is a subgroup isomorphic to A and E/A x 1
is G. Thus 0 — • A ^ £ - > G — > - l i s a n extension, and the factor set arising
from G = 0 x G c - > £ i s our original function [ ]. (Check this!) <0>

Change of Based Section 6.6.8 Fix an extension 0 -> A -> E - % G -> 1.
A fowed section of 7r is a map a:G -> E such that a ( l ) = 1 and 7rcr(g) = g
for all g. Let of be another based section of n. Since o'(g) is in the same coset
of A as a(g), there is an element fi(g) e A so that a'{g) = /3(g)cr(g). The
factor set corresponding to or is

[g, h]' = P(g)a(g)l3(h)(j(h)G(ghrlp(ghrl

= Pig) + l 1

The difference [g, h\ - [g, h] is the coboundary d0(g, h) = )8(g) - j8(g/i) H-
g • f}(h). Therefore, although the 2-cocyle [] is not unique, its class in
H2(G; A) = Z2(G, A)/B2(G, A) is independent of the choice of based sec-
tion. Therefore the factor set of an extension yields a well-defined set map ^
from the set of equivalence classes of extensions to the set H2{G\ A).

Proof of Classification Theorem Analyzing the above construction, we see
that the formula a'(g) = P(g)cr(g) gives a 1-1 correspondence between the
set of all possible based sections o' and the set of all maps ft: G -> A with
)S(1). If two extensions have the same cohomology class, then an appropriate
choice of based sections will yield the same factor sets, and we have seen that
in this case the extensions are equivalent. Therefore ^ is an injection. We have
also seen that every 2-cocycle [ ] is a factor set; therefore *I> is onto. O

Exercise 6.6.4 Let p:G -> H be a group homomorphism and A an H-
module. Show that there is a natural map Z2p on 2-cocycles from Z2(// , A)
to Z2(G, A) and that Z2p induces a map p*: H2(H\ A) -+ H2(G; A). Now
let 0 - • A - • E -^-> H -+ 1 be an extension and let E' denote the pullback
E xH G = {(*?, g) G E x G : n(e) = p(g)}. Show that p* takes the class of
the extension E to the class of the extension Ef.

0 —> A —> E' —> G — • 1E' -

1
E -

-> G

u
-* H
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186 Group Homology and Cohomology

Exercise 6.6.5 (Schur) For any field k and any n, let y denote the class
in H2(PGLn(k); k*) corresponding to the extension 1 —• k* —• GLn(k) ->
PGLn(k) —> 1. If p: G -> PGLn(k) is a projective representation, show that
p lifts to a linear representation G -> GLn(k) if and only if p*(y) = 0 in

Exercise 6.6.6 If & is an algebraically closed field, and /xm denotes the sub-
group of k* consisting of all mth roots of unity in k, show that H2(G\ /xm) =
H2(G; k*) for every finite group G of automorphisms ofk order m. Hint: Con-
sider the "Kummer" sequence 0 ->• fim —• k* —• A:* - • 1.

Theorem 6.6.9 (Schur-Zassenhaus) 7f m aw J /i are relatively prime, any ex-
tension 0—>A—^£->G—>> I of a group G of order m by a group A of order

n is split.

Proof If A is abelian, the extensions are classified by the groups H2(G; A),
one group for every G-module structure on A. These are zero as A is a Z[^]-
module (6.1.10).

In the general case, we induct on n. It suffices to prove that E contains
a subgroup of order m, as such a subgroup must be isomorphic to G under
E —>• G. Choose a prime p dividing n and let S be a /7-Sylow subgroup of A,
hence of E. Let Z be the center of S; Z ^ 1 [BAI, p. 75]. A counting argument
shows that m divides the order of the normalizer N of Z in E. Hence there is
an extension 0 — > ( A D N ) - + N ^ G ^ 1. If N ^ E, this extension splits
by induction, so there is a subgroup of TV (hence of E) isomorphic to G. If
N = E, then Z < E and the extension 0 -> A/Z ->• £ / Z - • G -> 1 is split by
induction. Let E' denote the set of all x e E mapping onto the subgroup G/

of E/Z isomorphic to G. Then E' is a subgroup of E, and 0 -> Z - • £ / - •
Gr —• 1 is an extension. As Z is abelian, there is a subgroup of Z ,̂ hence of E,
isomorphic to Gr. O

Application 6.6.10 (Crossed product algebras) Let L/K be a finite Galois
field extension with G = Gal(L/K). Given a factor set [ ] of G in L*, we
can form a new associative ^-algebra A on the left L-module L[G] using the
"crossed" product:

J^ £ > *]a*(s • bh)(gh), (ag, bh e L).

It is a straightforward matter to verify that the factor set condition is equivalent
to the associativity of the product x on A. A is called the crossed product
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6.6 Factor Sets and H2 187

algebra of L and G over K with respect to [ ]. Note that L is a subring of
A and that dim^ A = n2, where n = [L : K]. As we choose to not become
sidetracked, we refer the reader to [BAII, 8.4] for the following facts:

1. A is a simple ring with center K and A ®K L = Mn(L). By Wedder-
burn's Theorem there is a division algebra A with center K such that

2. Every simple ring A with center K and A ®K L = Mn(L) is isomorphic
to a crossed product algebra of L and G over K for some factor set [ ].

3. Two factor sets yield isomorphic crossed product algebras if and only if
they differ by a coboundary.

4. The factor set [ ] = 1 yields the matrix ring Mn(K), where n = [L : K].
5. If A and A' correspond to factor sets [ ] and []', then A (S>K Ar =

Mn(A"), where A" corresponds to the factor set [ ] + [ ]'.

Definition 6.6.11 The relative Brauer group Br(L/K) is the set of all sim-
ple algebras A with center K such that A <S>K L = Mn(L), n = [L : K]. By
Wedderburn's Theorem it is also the set of division algebras A with center K
and A <8>A: L = Mr(L), r2 = dim# A. By (l)-(3), the crossed product algebra
construction induces an isomorphism

H2(Gal(L/K); L*) ^ > Br(L/K).

The induced group structure [A][Ar] = [A"] on Br(L/K) is given by (4)
and (5).

Crossed Modules and H3 6.6.12 Here is an elementary interpretation of
the cohomology group //3(G; A). Consider a 4-term exact sequence with A
central in TV

(*) O - » A - » W - ^ E - ^ » G - > 1 ,

and choose a based section o: G —• E of n; as in the theory of factor sets,
the map []: G x G -* ker(7r) defined by [g, h] — cr(g)a(h)a(gh)~l satisfies
a nonabelian cocycle condition

U,g\Ug,h\ = a{f)\g,h\ [f,ghl

where ff^[g,h] denotes the conjugate <j(f)[g, h]a(f)~l. Since ker(7r) =
a(N), we can lift each [/, g] to an element [[/, g]] of N and ask if an analogue
of the cocycle condition holds—for some interpretation of a^\[g, h]]. This
leads to the notion of crossed module.
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188 Group Homology and Cohomology

A crossed module is a group homomorphism a: N -> E together with an
action of E on N (written (e, n) *->> eri) satisfying the following two condi-
tions:

1. For all m,n e N, a (m)n = mnm~l.
2. For all e e E, n e N, a(en) = ea(n)e~K

For example, the canonical map TV —• Aut(N) is a crossed module for any
group N. Crossed modules also arise naturally in topology: given a Serre
fibration F —• E -> B, the map TC\{F) —> TT\(E) is a crossed module. (This
was the first application of crossed modules and was discovered in 1949 by
J. H. C. Whitehead.)

Given a crossed module TV —> E, we set A — ker(a) and G = coker(of); G
is a group because a(N) is normal in E by (2). Note that A is in the center of
TV and G acts on A, so that A is a G-module, and we have a sequence (*).

Returning to our original situation, but now assuming that N -> E is a
crossed module, the failure of [[/, g]] to satisfy the cocycle condition is given
by the function c:G3 -* A defined by the equation

c(/ , g, h)[[f g]] [[fg, h]] = ^[[g, h]] [[/, gh]].

The reader may check that c is a 3-cocyle, whose class in H3(G; A) is inde-
pendent of the choices of a and [[/, g]]. As with Yoneda extensions (3.4.6),
we say that (*) is elementarily equivalent to the crossed module

if there is a morphism of crossed modules between them, that is, a commuta-
tive diagram compatible with the actions of E and E' on N and N'

0 —> A —> N -^> E —> G —> 1N —

i
N' -

-> E

i
- • E'0 —> A —> N' —> E —> G —> 1.

Since our choices of a and [[/, g]] for (*) dictate choices for Nf -> E\ these
choices clearly determine the same 3-cocycle c. This proves half of the fol-
lowing theorem; the other half may be proven by modifying the proof of the
corresponding Yoneda Ext Theorem in [BX, section 7.5].

Crossed Module Classification Theorem 6.6.13 Two crossed modules with
kernel A and cokernel G determine the same class in H3(G; A) if and only if
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6.7 Restriction, Corestriction, Inflation, and Transfer 189

they are equivalent (under the equivalence relation generated by elementary
equivalence). In fact, there is a 1-1 correspondence for each G and A:

f equivalence classes of crossed modules ] ~
\ a \ <—> elements of / /3(G; A).

6.7 Restriction, Corestriction, Inflation, and Transfer

If G is fixed, //*(G; A) and //*(G; A) are covariant functors of the G-module
A. We now consider them as functors of the group G.

Definition 6.7.1 If p: H ->• G is a group map, the forgetful functor p# from
G-mod to //-mod is exact. For every G-module A, there is a natural surjec-
tion (p#A)n -> Ac and a natural injection AG -> (p#A)H. These two maps
extend uniquely to the two morphisms p* = cor^ (called corestriction) and
p* = res^ (called restriction) of 5-functors:

corg: / /*(/ / ; p*A) -> //*(G; A) and resg: //*(G; A) -* / /* ( / / ; p#A)

from the category G-mod to Ab (2.1.4). This is an immediate consequence of
the theorem that //*(G; A) and //*(G; A) are universal 6-functors, once we
notice that r*(A) = / /*(/ / ; p#A) and T*(A) = H*(H\ p#A) are 5-functors.

Subgroups 6.7.2 The terms restriction and corestriction are normally used
only when H is a subgroup of G. In this case 7LG is actually a free ZH-
module, a basis being given by any set of coset representatives. Therefore
every projective G-module is also a projective //-module, and we may use
any projective G-module resolution P —>> Z to compute the homology and co-
homology of H. If A is a G-module, we may calculate cor^ as the homology
//*((*) of the chain map a: P (8)// A -> P ®G A; similarly, we may calculate
res^ as the cohomology H*(fi) of the map ft: Homc(P, A) ->• Hom//(P, A).

Exercise 6.7.1 Let H be the cyclic subgroup Cm of the cyclic group Cmn.
Show that the map cor^: //*(Cm; 2) -+ H*(Cmn; Z) is the natural inclusion
Z/m <-* Z/mrc for * odd, while resg: H*(Cmn; Z) -> H*(Cm; Z) is the natu-
ral projection Z/mn ->• Z/m for * even. (See 6.2.3.)

Inflation 6.7.3 Let H be a normal subgroup of G and A a G-module. The
composites

inf: H*(G/H; AH) ^ //*(G; AH) - • //*(G; A) and
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190 Group Homology and Cohomology

coinf: //*(G; A) -> //*(G; AH) -^> //*(G///; AH)

are called the inflation and coinflation maps, respectively. Note that on H° we
have inf: (AH)G/H = AG and on Ho we have coinf: Ac = (AH)G/H-

Example 6.7.4 If A is trivial as an //-module, inflation = restriction and
coinflation = corestriction. Thus by the last exercise we see that (for * odd) the
map coinf: //*(Cm; Z) -> H*(Cmn', Z) is the natural inclusion Z/m ^ Z/mn,
while (for * even) inf: H*(Cmn; Z) —> H*(Cm; Z) is the natural projection

Z/mn -> Z/m.

Exercise 6.7.2 Show that the following compositions are zero for / ^ 0:

//*(G///; AH) - ^ #*(G; A) -^> / /*(/ / ; A);

//*(//; A) ^ > //*(G; A) c - ^ //*(G///; AH).
In general, these sequences are not exact, but rather they fit into a spectral
sequence, which is the topic of the next section. (See 6.8.3.)

Functoriality of //* and Corestriction 6.7.5 Let C be the category of pairs
(G, A), where G is a group and A is a G-module. A morphism in C from
(//, B) to (G, A) is a pair (p: H —• G,cp: B -^ p#A), where p is a group
homomorphism and <p is an //-module map. Such a pair (p, cp) induces a map
cor^ o (p: H*(H; B) -> //*(G; A). It follows (and we leave the verification as
an exercise for the reader) that //* is a covariant functor from C to Ab.

We have already seen some examples of the naturality of //*. Corestriction
is //* for (p, B = p#A) and coinflation is //* for (G - • G/H, A - • A//).

Functoriality of //* and Restriction 6.7.6 Let P be the category with the
same objects as C, except that a morphism in V from (//, /?) to (G, A) is a
pair {p.H^G cp: p#A —• B). (Note the reverse direction of cpl) Such a pair
(p, <p) induces a map <p o res^: //*(G; A) —> / /*( / / ; 5) . It follows (again as
an exercise) that //* is a contravariant functor from V to Ab.

We have already seen some examples of the naturality of //*. Restriction is
H* for (p, p#A = B) and inflation is //* for (G - • G/// , AH -» A). Conju-
gation provides another example:

Example 6.7.7 (Conjugation) Suppose that H is a subgroup of G, so that
each g e G induces an isomorphism p between H and its conjugate gHg~l.
If A is a G-module, the abelian group map jig\ A -> A {a M» ga) is actually
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6.7 Restriction, Corestriction, Inflation, and Transfer 191

an //-module map from A to p#A because jJLg{ha) = gha = (ghg~l)ga =
p(h)/jiga for all h e H and a e A. In the category C of 6.7.5, (p, //g) is
an isomorphism (//, A) = (gHg~l, A). Similarly, (p,/x"1) is an isomor-
phism (//, A) ^ (gHg~\ A) in P . Therefore we have maps / /*(/ / ; A) -+
H*(gHg-1-, A) and H*(gHg~l\ A) -> / /* ( / / ; A).

One way to compute these maps on the chain level is to choose a projec-
tive ZG-module resolution P —> Z. Since the P/ are also projective as Z//-
modules and as Z[gHg~^-modules, we may compute our homology and
cohomology groups using P. The maps iig\ Pi -> P; (p h-> gp) form an //-
module chain map from P to p#P over the identity map on Z. Hence the map
//*(// ; A) -> H*(gHg~l; A) is induced from

P ®H A^P <8>gHg-\ A, x <S>a\-^ gx <S> ga.

Similarly, the map H*(gHg~l; A) - • #*( / / ; A) is induced from

Hom//(P, A) -> Homg / / g-i(P, A), (̂  h-> (/? H 1

T h e o r e m 6 .7 .8 Conjugation by an element g e G induces the identity auto-
morphism on //*(G; Z) and //*(G; Z).

Proof The maps P ® Z -> P <g> Z and HomG(P, Z) -> HomG(P, Z) are the
identity. <>

Corollary 6.7.9 If H is a normal subgroup of G, then the conjugation action
ofG on Z induces an action ofG/H on //*(G; Z) and 7/*(G; Z).

Example 6.7.10 (Dihedral groups) The cyclic group Cm is a normal sub-
group of the dihedral group Dm (6.4.10), and Dm/Cm = C2. To determine the
action of C2 on the homology of Cm, note that there is an element g of Dm

such that gcrg~l
 =<T~1. Let p: Cm -> Cm be conjugation by g. If P denotes

the (a — 1, N) complexof 6.2.1, consider the following map from P to p # P :

0 <— Z <— ZG +^- ZG ^- ZG ^ - ZG ^— ZG +^- ZG • • •

I I " 4 ~°[ °2[ °2[ ("a)3l
l - C T - 1 N 1 - C T " 1 A ^ l - C T - 1

0 <— Z <— ZG < ZG <— ZG < ZG <— ZG < ZG • • •

An easy calculation (exercise!) shows that the map induced from conjugation
by g is multiplication by (-I)'" on H2i-\(Cm; Z) and H2i(Cm; I).
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192 Group Homology and Cohomology

6.7.1 Cup Product

As another application of the naturality of //*, we show that H*(G; Z) is an
associative graded-commutative ring, a fact that is familiar to topologists.

In 6.1.14 we constructed a cross product map x from//*(G; Z)(g)//*(//; Z)
to H*(G x H; Z). When G = / / , composition with the restriction A* =
res^ x G along the diagonal map A : G - > G x G gives a graded bilinear prod-
uct on //*(G; Z), called the cup product. If JC, j e H*(G; Z), the cup product
JC U j is just A*(JC x j ) .

Exercise 6.7.3 (Naturality of the cross and cup product) Show that the
cross product is natural in G and H in the sense that (P*JC) x (a*y) =
(p x CT)*(JC x y) in #^+* (G' x # ' ; Z) for every p:G' ^ G and a: if' -> if,
JC e / /P(G; Z), and y e Hq(H; Z). Conclude that the cup product is natural in
G, that is, that (p*x\) U (p*x2) = p*(x\ U JC2).

Theorem 6.7.11 (Cohomology ring) 77ze cup product makes //*(G; Z)
an associative, graded-commutative ring with unit. The ring structure is natu-
ral in the group G.

Proof Since the composites of A with the maps A x l , l x A : G x G - >

G x G x G are the same, and the cross product is associative (by exercise

6.1.9),

x U (y U z) = x U A*(y x z) = A*(JC x A*(v x z))

= A*(l x A)*(JC xy xz) = A*(A x 1)*(JC x y x z)

= A*(A*(JC xy) xz) = A*(x x y) U z = (x U y) U z.

If 7r: G —>* 1 is the projection, the compositions (1 x 7t)A and (n x 1)A are
the identity on //*(G; Z), and the restriction 7r* sends 1 e / /°(1; Z) to 1 e
//°(G; Z) = Z. Since we saw in exercise 6.1.9 that the cross product with
1 G //°(G; Z) is the identity map,

X U 1 = A*(X X 7T*(1)) = A * ( l X 7T)*(JC X 1) = JC X 1 = JC,

and 1 U I = I similarly. Hence the cup product is associative with unit 1.
To see that the cup product is graded-commutative, it suffices to show that

the cross product (with G = H) is graded-commutative, that is, that y x x =
(-l)ijx x y for JC e Hl{G\ T) and y e Hj(G; I). This is a consequence of
the following lemma, since if r is the involution r(g, h) = (/i, g) on G x G,
we have ;y U JC = A*(j x JC) = A*T*(JC x y). O
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6.7 Restriction, Corestriction, Inflation, and Transfer 193

Lemma 6.7.12 Let r: G x H -> H x G be the isomorphism z(g, h) = (h, g)
and write r* for the associated restriction map / / * ( / / x G, Z) —> H*(G x
//, Z). Then for xeHP(G;I) and yeHq(H;T), we have r*(y x x) =

Proof Let P -» Z be a free ZG-resolution and (2 —• Z a free Z//-resolution.
Because of the sign trick 1.2.5 used in taking total complexes, the maps a <g>
b i-> {—\)pqb (8) a from Pp ® Q^ to Qq ® Pp assemble to give a chain map
T': Tot(P ® g) -> Tot(G <8> P) over r. (Check this!) This gives the required
factor of (—l)pq, because r* is obtained by applying Hom(—, Z) and taking
cohomology. O

Exercise 6.7.4 Let fi e H2(Cm; Z) = Z/ra be a generator. Show that the ring
H*(Cm\ Z) is the polynomial ring Z[/J], modulo the obvious relation that

Exercise 6.7.5 This exercise uses exercise 6.1.10.

1. Show that there is a cup product on H*(Gm, k) for any commutative ring
k, making H* into an associative, graded-commutative ^-algebra, natural
inG.

2. Suppose that k = Z/ra and G = Cm, with m odd. Show that the graded
algebra H*(Cm; Z/m) is isomorphic to the ring Z/m[cr, /3]/(<J2 = /3cr =
0), with ere//1 and£e/ / 2 .

Coalgebra Structure 6.7.13 Dual to the notion of a ^-algebra is the notion
of a coalgebra over a commutative ring &. We call a ^-module / / a coalge-
bra if there are module homomorphisms A: / / —>• H <g>k H (the coproduct)
and e: / / -> A: (the counit) such that both composites (e ® 1) A and ( l 0 e ) A
(mapping H -> H ® H -> H) are the identity on / / . We say that the coal-
gebra is coassociative if in addition (A(g)l)A = ( l ® A ) A as maps / / -»
H(g>H^H<g)H<g)H. For example, / / = kG is a cocommutative coalge-
bra; the coproduct is the diagonal map from kG to k(G x G) = kG <g> kG and
satisfies A(g) = g <g> g, while the counit is the usual augmentation e(g) = l.
More examples are given below in (9.10.8).

Lemma 6.7.14 Suppose that k is afield, or more generally that //*(G; k) is
flat as a k-module. Then //*(G; k) is a cocommutative coalgebra.

Proof Recall from exercises 6.1.7 and 6.1.12 that //*(G x G; k) is isomor-
phic to H*(G; k) <g)jc //*(G; k), so the diagonal map A : G - > G x G induces
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194 Group Homology and Cohomology

a map A*: //*(G; k) -> #*(G; k) ®k #*(G; k). The projection e: G -> 1 in-
duces a map 6:* from //*(G; k) to //*(1; A:) = k. Since (e x 1) A = (1 x e)A as
maps G -> G x G -> G and (A x 1) A = (1 x A) A as maps G-+ G x G-*
G x G x G, we have the required identities (e* ® 1) A* = (1 (g) £*)A* and

= (1® A*)A*. O

Definition 6.7.15 (Hopf algebras) A bialgebra is an algebra H, together with
algebra homomorphisms A and s making H into a cocommutative coalgebra.
We call H a Hopf algebra if in addition there is a A;-module homomorphism
s:H -+ H (called the antipode) such that both maps x(s <S> 1)A and x( l ®
s)A (from H->H®H-^H®H^H) equal the the projection H -^
k^ H.

For example, the involution s(g) = g~l makes kG into a Hopf algebra,
because (s <S> l)A(g) = g~l <g> g and (1 (8) s)A(g) = ^ (E) g"1. We will see
another example in exercise 7.3.7.

Exercise 6.7.6 Suppose that G is an abelian group, so that the product
/i: G x G ^ G is a group homomorphism and that A: is a field. Show that
#*(G; k) and H*(G\ k) are both Hopf algebras.

Transfer Maps 6.7.16 Let H be a normal subgroup of finite index in G, and
let A be a G-module. The sum Yl 8a o v e r m e right cosets [Hg] of H yields
a well-defined map from A to A//. This map sends (ga — a) to zero, so it
induces a well-defined map Jr: Ac -> A//. Since //*(G; A) is a universal <5-
functor, tr extends to a unique map of 5-functors, called the transfer map:

tr:H*(G',A)-> H*(H;A).

Similarly, the sum J^8a o v e r t n e teft cosets {gH} of / / yields a well-
defined map from AH to A. The image is G-invariant, so it induces a well-
defined map tr: AH -> AG. This induces a map of 5-functors, also called the
transfer map:

tr :H*(H\A)-> H*(G; A).

Lemma 6.7.17 The composite cor^ o tr is multiplication by the index [G :
H] on //*(G; A). Similarly, the composite tr o res^ is multiplication by [G :
H]onH*(G;A).

Proof In Ac and AG, the sums over the cosets are just ^ga = ( ^ g) - a =
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6.8 The Spectral Sequence 195

[G : H]a. The corresponding maps between the 5-functors are determined by
their behavior on AQ and AH, so they must also be multiplication by [G : / / ] .

Exercise 6.7.7 Show that the transfer map defined here agrees with the trans-
fer map defined in 6.3.9 using Shapiro's Lemma. Hint: By universality, it suf-
fices to check what happens on HQ and H°.

Exercise 6.7.8 Use the transfer maps to give another proof of 6.5.8, that
when G is a finite group of order m = [G : 1] multiplication by m is the zero
map on Hn(G; A) and Hn{G; A) for n ± 0.

6.8 The Spectral Sequence

The inflation and restriction maps fit into a filtration of //*(G; A) first studied
in 1946 by Lyndon. The spectral sequence codifying this relationship was
found in 1953 by Hochschild and Serre. We shall derive it as a special case
of the Grothendieck spectral sequence 5.8.3, using the following lemma.

Lemma 6.8.1 If H is a normal subgroup of G, and A is a G-module, then
both AH and AH are G/H-modules. Moreover, the forgetful functor p # from
G/H-mod to G-mod has —H as left adjoint and —H as right adjoint.

Proof A G///-module is the same thing as a G-module on which H acts triv-
ially. Therefore AH and AH are G///-modules by construction. The universal
properties of AH —> A and A -> AH translate into the natural isomorphisms

HomG(A, p*B) = HomG///(A//, B) and

HomG(p##, A) ^ HomG///(#, AH),

which provide the required adjunctions. O

Lyndon/Hochschild-Serre Spectral Sequence 6.8.2 For every normal sub-
group H of a group G, there are two convergent first quadrant spectral se-
quences:

E2
pq = Hp(G/H; Hq(H; A)) => Hp+q{G\ A);

E{q = Hp(G/H; Hq(H; A)) => Hp+q(G; A).
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196 Group Homology and Cohomology

The edge maps #*(G; A) -+ / /*(G/#; AH) and H*(H; A)G/H -> #*(G; A)
in the first spectral sequence are induced from the coinfiation and corestric-
tion maps. The edge maps H*(G/H; AH) -> #*(G; A) and //*(G; A) ->
/ /* ( / / ; A)G/H in the second spectral sequence are induced from the inflation
and restriction maps.

Proof We claim that the functors — Q and —G factor through G/H-mod as
follows:

~H -H

G-mod > G/H-mod G-mod > G/H-mod
G ^^ f̂ G/H —G \^ }£

Ab Ab

To see this, let A be a G-module; we saw in the last lemma that A// and
AH are G///-modules. The abelian group (AH)G/H is obtained from A by
first modding out by the relations ha — a with h e H, and then modding
out by the relations ga — a for g e G/H. If g is the image of g e G then
ga — a = ga — a, so we see that (AH)G/H is A/3A = Ac-

Similarly, (AH)G/H is obtained from A by first restricting to the subgroup
of all a e A with ha =a, and then further restricting to the subgroup of all
a with ga = a for g e G/H. If g is the image of g e G, ga = ga. Thus
(AH)G/H = AG

Finally, we proved in Lemma 6.8.1 that —# is left adjoint to an exact func-
tor, and that —H is right adjoint to an exact functor. We saw in 2.3.10 that this
implies that — # preserves projectives and that —H preserves injectives, so that
the Grothendieck spectral sequence exists. The description of the edge maps is
just a translation of the description given in 5.8.3. O

Low Degree Terms 6.8.3 The exact sequences of low degree terms in the
Lyndon-Hochschild-Serre spectral sequence are

H2(G; A) ^ > H2(G/H; AH) -^ HX(H; A)G/H ^ > HX{G; A) ^ f HX(G/H; AH) -> 0;

0 -* H\G/H; AH) -^> H\G\ A) - ^ Hl{H\ A)G/H -^ H2(G/H; AH) -^> H2(G; A).

Example 6.8.4 If H is in the center of G, G/H acts trivially on / /*(/ / ; A)
and / /* ( / / ; A), so we may compute the E2 terms from H*(H\ Z) and Uni-
versal Coefficient theorems. For example, let G be the cyclic group Cim and
H = Cm for m odd. Then Hp(C2\ Hq(Cm; Z)) vanishes unless p = 0 or q = 0.
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6.8 The Spectral Sequence 197

The groups Z/2 lie along the Jt-axis, and the groups 1/m lie along the y-axis.
The spectral sequence collapses at E2 to yield the formula for H*(C2m; 2) that
we derived in 6.2.3.

0

Z/m

0

Z/m

Z

0

0

0

Z/2

0

0

0

G =

0

Z/2

c2m

0

0

Z/m

0

0

z

0

0

0

Z/2

0

0

0

G

0

zi:

= D2m

I 0

Example 6.8.5 (Dihedral groups) Let G be the dihedral group D2m = Cm x
C2 and set H = Cm. If m is odd, then once again Hp(C2\ Hq(Cm)) vanishes
unless p = 0 or q = 0. As before, the groups Z/2 lie along the jc-axis, but
along the y-axis we now have Hq(Cm)c2- From our calculation 6.7.10 of the
action of C2 on H*(Cm) we see that Hq(Cm)c2 is z e r o unless q = 0, when it is
Z, or q = 3 (mod 4), when it is Z/m. Summarizing, we have computed that

Hn(D2m;I) =
Z/2 ifn = 1 (mod 4)
Z/2m ifn = 3 (mod 4)
0 otherwise

Example 6.8.6 (Gysin sequence) A central element t of infinite order in G
generates an infinite cyclic subgroup T. As in 5.3.7 the spectral sequence
collapses to the long exact "Gysin" sequence for every trivial G-module k :

Hn-2(G/T;k)->Hn-i(G;k)-

Exercise 6.8.1 The infinite dihedral group DOQ is the semidirect product T x
C2, where o e C2 acts as multiplication by —1 on the infinite cyclic group
T (crtcr~l = t~l). Show that a acts as multiplication by —1 on H\(T; Z), and
deduce that

Hn(Doo; Z) ^
ifn = 0
if n = 1,3,5,7,
if n = 2, 4, 6, 8,
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198 Group Homology and Cohomology

Hint: By naturality, //*(C2) is a summand of //*(Doo)-

Presentations 6.8.7 A presentation of a group by generators and relations
amounts to the same thing as a short exact sequence of groups 1 -> R -> F —>
G —> 1, where F is the free group on the generators of G and R is the normal
subgroup of F generated by the relations of G. Note that R is also a free
group, being a subgroup of the free group F. The spectral sequence of this
extension has E2

pq = 0 for q / 0, 1 and Hn(F\ 1) = 0 for n ^ 0, 1. Therefore
the differentials Hn+2(G; T) -> Hn(G; H\(R)) must be isomorphisms for n >
1, and we have the low degree sequence

[—1
The action of G on R/[R/R] is given by g • r = frf~l, where f e F lifts g e
G and r e /?. The following calculation shows that (R/[R/R])G = R/[F, R]:

(g - 1) • r = frf~l - r EE / r / ~ V"1 = [/, r] .

By inspection of the low degree sequence, we see that we have proven the
following result, which was first established in [Hopf].

Hopf's Theorem 6.8.8 IfG = F/R with F free, then H2{G\ 1) ^ R?lF{^].

6.9 Universal Central Extensions

A central extension of G is an extension 0 -> A —• X —> G —> 1 such that
A is in the center of X. (If n and A are clear from the context, we will just
say that X is a central extension of G.) A homomorphism over G from X
to another central extension 0 -> # -> F —• G - • 1 of G is a map / : X ->
y such that JT = rf. X is called a universal central extension of G if for
every central extension 0 ->• 5 - • y —̂ > G -^ 1 of G there exists a unique
homomorphism / from X to y over G.

^ G —> I0 -

0 -

-> A —

i
-> B -

-» X

rri

-> Y

Clearly, a universal central extension is unique up to isomorphism over G,
provided that it exists. We will show that a necessary and sufficient condition
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6.9 Universal Central Extensions 199

for a universal central extension to exist is that G is perfect; recall that a group
G is perfect if it equals its commutator subgroup [G, G].

Example 6.9.1 The smallest perfect group is A5. The universal central ex-
tension of As describes A 5 as the quotient PSL2(¥s) of the binary icosahedral
group X = SL2(F5) by the center of order 2, A = zb(^) [Suz, 2.9].

(~o -1)

0 —> 1/2 — ^ - U SL2(F5) —> PSL2(F5) —> 1.

Lemma 6.9.2 If G has a universal central extension X, then both G and X
are perfect.

Proof If X is perfect, then so is G. If X is not perfect, then B = X/[X, X] is
a nonzero abelian group, 0 ^ 5 ^ - 5 x G - > G - ^ l i s a central extension,
and there are two homomorphisms X —>• B x G over G : (0, n) and (/?r, 7r).

O

Exercises 6.9.1

1. I f O ^ A ^ X - > G ^ l i s any central extension in which G and X
are perfect groups, show that H\{X\ Z) = 0 and that there is an exact
sequence

H2(X; Z) -^> H2(G; I) -> A -> 0.

2. Show that if G is perfect then central extensions 0-^A-+X^G^» 1
are classified by Hom(//2(G; Z), A). (Use exercise 6.1.5.)

Remark The above exercises suggest that //2(G; Z) has something to do with
universal central extensions. Indeed, we shall see that the universal central
extension 0 - > A ^ X ^ G - + l h a s A = H2(G; I). The group H2(G; Z) is
called the Schur multiplier of G in honor of Schur, who first investigated the
notion of a universal central extension of a finite group G in [Schur].

As indicated in section 6.6, Schur was concerned with central exten-
sions with A = C*, and these are classified by the group //2(G; C*) =
Hom(//2(G; Z), O ) . Since G is finite, #2(G; O ) is the Pontrjagin dual
(3.2.3) of the finite group H2(G; I). Hence the groups //2(G; C*) and
H2(G\ Z) are noncanonically isomorphic.

Construction of a Universal Central Extension 6.9.3 Choose a free group
F mapping onto G and let R c F denote the kernel. Then [/?, F] is a normal
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200 Group Homology and Cohomology

subgroup of F, and the short exact sequence l - * / ? - > - F - * G - * l induces
a central extension

0 -> R/[R, F] -> F/[R, F] -> G -> 1.

Now suppose that G is perfect. Since [F, F] maps onto G, there is a surjection
from [F, F]/[#, F] to G; its kernel is the subgroup (R n [F, F])/[#, F],
which Hopf's Theorem 6.8.8 states is the Schur multiplier H2(G; I). We shall
prove that

0 -> (R H [F, F])/[tf, F] -> [F, F]/[R, F] -> G -> 1

is a universal central extension of G.

Lemma 6.9.4 [F, F]/[R, F] is a perfect group.

Proof Since [F, F ] and F both map onto G, any x e F may be written as

x = x'r with x1 e [F, F ] and r e R. Writing y e F as / s with / e [F, F ] and

s e R,we find that in F/[R, F]

Thus every generator [JC, y] of [F, F]/[R, F] is a commutator of elements x'
a n d / o f [F,F]/[/?,F]. <0>

Theorem 6.9.5 A group G has a universal central extension if and only if G
is perfect. In this case, the universal central extension is

[F, F] n
(*) 0->//2(G, ) - • _ — — • G - M .

Here l^R^F^G-^ I is any presentation of G.

Proof If G has a universal central extension, then G must be perfect by 6.9.2.
Now suppose that G is perfect; we have just seen that (*) is a central extension
and that [F, F]/[R, F] is perfect. In order to show that (*) is universal, let
0 -» B —• Y —> G —• 1 be another central extension. Since F is a free group,
the map F -^ G lifts to a map h: F —• Y. Since xh{R) = 1, h{R) is in the
central subgroup B of Y. This implies that h([R, F]) = 1. Therefore h induces
a map
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6.9 Universal Central Extensions 201

such that XX) = iz, that is, such that r\ is a homomorphism over G. The follow-
ing lemma shows that rj is unique and finishes the proof that (*) is universal.

Lemma 6.9.6
central extensions, and X is perfect, there is at most one homomorphism f
from X to Y over G.

Proof If f\ and f2 are two such homomorphisms, define a set map <p: X —>• B
by the formula f\(x) = f2(x)(p(x). Since B is central,

f\(xxr) = f2(x)cp(x)f2(x
f)(p(xf) = f2(xx')(p(x)cp(x').

Hence cp(xx') = (p(x)(p(xf), that is, <p is a group homomorphism. Since B is an
abelian group, cp must factor through X/[X, X] = l. Hence cp(x) = 1 for all JC,
that is, / = / ' . O

Exercise 6.9.2 (Composition) I f O - + £ ^ 7 - ^ > X - > l and 0 ^ A ->

X —> G - • 1 are central extensions, show that the "composition" 0 ->

ker(7rp) —> y —> G -> 1 is a central extension of G. If X is a universal cen-

tral extension of G, conclude that every central extension 0 -> B —> Y —>>
X —>• 1 splits.

Recognition Criterion 6.9.7 A central extension 0 - • A ->• X ^ > G -^ 1
is universal if and only if X is perfect and every central extension of X splits
as a direct product of X with an abelian group.

Proof The 'only if direction follows from the preceding exercise. Now sup-
pose that X is perfect and that every central extension of X splits. Given
a central extension 0 -> B —• Y —> G -> 1 of G, we can construct a ho-
momorphism from X to y over G as follows. Let P be the pullback group
{(JC, y) e X x y : 7T(JC) = r(y)}. Then in the diagram

B —> P > X

0 —> B —> Y - ^ G —> I

the top row is a central extension of X, so it is split by a map o\ X ->- P.
The composite / : X —• P -» 7 is the homomorphism over G we wanted to
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202 Group Homology and Cohomology

construct. Since X is perfect, / is unique (6.9.6); this proves that X is a
universal central extension of G. <>

Corollary 6.9.8 IfO^A-^X->G^ 1 is a universal central extension,
then

Corollary 6.9.9 IfG is a perfect group and #2(G; Z) = 0, then every central
extension ofG is a direct product of G with an abelian group.

0 - ^ A - > A x G ^ G ^ l

Proof Evidently 0 -> 0 -> G = G -» 1 is the universal central extension of
G. <>

Example 6.9.10 (Alternating groups) It is well known that the alternating
groups A n are perfect if n > 5. From [Suz, 3.2] we see that

1 1/6 if n = 6 , 7
1/2 i f n = 4 , 5 o r r c > 8
0 ifn = l ,2 ,3

We have already mentioned (6.9.1) the universal central extension of A5.
In general, the regular representation An -> SOn-\ gives rise to a central
extension

0 -> Z/2 -* An -> An -> 1

by restricting the central extension

0 -> Z/2 -> Spin^.^lR) -> 5On_i ^ 1.

If « 7̂  6, 7, An must be the universal central extension of An.

Example 6.9.11 It is known [Suz, 1.9] that if F is a field, then the spe-
cial linear group SLn(F) is perfect, with the exception of SL2($2) = D$ and
5L2(F3), which is a group of order 24. The center of SLn(F) is the group
/jLn(F) of nth roots of unity in F (times the identity matrix / ) , and the quo-
tient of SLn(F) by IJLH{F) is the projective special linear group PSLn(F).
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6.10 Covering Spaces in Topology 203

When F = F^ is a finite field, we know that H2(SLn(¥q)\ Z) = 0 [Suz, 2.9]. It
follows, again with two exceptions, that

0 -» fining) —> 5LW(F^) -> P S L , , ^ ) -> 1

is the universal central extension of the finite group PSLn(\fq).

Example 6.9.12 The elementary matrix e\. in GLn(R) is the matrix that co-
incides with the identity matrix except for the single nonzero entry X in the
(/, j) spot. The subgroup En(R) of GLn(R) generated by the elementary ma-
trices is a perfect group when n > 3 because \e\., e^k] = e\^ for / ^ k. We now
describe the universal central extension of En(R).

Definition 6.9.13 Let R be any ring. For n > 3 the Steinberg group Stn(R) is
the group that is presented as having generators xf- (X e R, 1 < /, j < n) and
relations

" XiJXiJ =XiJ '

2. [**•, x^k] = xf^ for / ^ A:; and

3. [xfj, xfy = 1 for j ^ it and i ^ €.

There is a homomorphism Stn(R) -^ £n(/?) sending JC?". to e^ because these
relations are also satisfied by the elementary matrices. It is known [Milnor]
[Swan, p. 208] that Stn(R) is actually the universal central extension of En(R)
for n > 5. The kernel of Stn(R) -* En(R) is denoted ^2(ft> ^) and may be
identified with the Schur multiplier. The direct limit K2(R) of the groups
K2(n, R) is an important part of algebraic ^-theory. See [Milnor] for more
details and computations.

6.10 Covering Spaces in Topology

Let G be a group that acts on a topological space X. We shall assume that
each translation X -> X arising from multiplication by an element g e G is
a continuous map and that the action is proper in the sense that every point
of X is contained in a small open subset U such that every translate gU is
disjoint from U. Under these hypotheses, the quotient topology on the orbit
space X/G is such that the projection p: X ->• X/G makes X into a covering
space of X/G. Indeed, every small open set U is mapped homeomorphically
onto its image in X/G.
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204 Group Homology and Cohomology

Example 6.10.1 Let Y be a connected, locally simply connected space, so
that its universal covering space Y -> Y exists. The group G = n\(Y) acts
properly on X = F, and 7 /G = Y.

Lemma 6.10.2 IfG acts properly on X, the singular complex S*(X) of X is
a chain complex of free ZG-modules, and S*(X)G is the singular complex of
X/G.

Proof Let Bn denote the set of continuous maps a: An —> X. G acts on Bn,
with go being the composition of a with translation by g e G. Since Sn(X)
is the free Z-module with basis 23, Sn(X) is a G-module. Since translation
by g sends the faces of or to the faces of go, the boundary map d: Sn(X) ->
Sn-\(X) is a G-map, so Sn(X) is a G-module complex.

Let B'n denote the set of continuous maps af\ An - • X/G. The unique path
lifting property of a covering space implies that any a'\ An - • X/G may be
lifted to a map a: An -+ X and that every other lift is go for some g e G.
As the ga are distinct, this proves that S = G x ^ a s a G-set. Choosing one
lift for each a' gives a map B' - • S, hence a basis for 5n(X) as a free ZG-
module. This proves that the natural map from Sn(X) to Sn(X/G) induces an
isomorphism Sn(X)G ^ Sn(X/G). O

Corollary 6.10.3 If G acts properly on X, #*(X, Z) and H*\X, Z) are G-
modules.

Definition 6.10.4 (Classifying space) A CW complex with fundamental
group G and contractible universal covering space is called a classifying space
for G, or a model for BG\ by abuse of notation, we will call such a space
BG, and write EG for its universal covering space. From the Serre fibration
G-+ EG-+ BGwz see that

0 otherwise

It is well known that any two classifying spaces for G are homotopy equiva-
lent. One way to find a model for BG is to find a contractible CW complex X
on which G acts properly (and cellularly) and take BG = X/G.

Theorem 6.10.5 H*(BG;Z)^ #*(G; Z) and //*(£G; Z) ^ #*(G; Z).

Proof Since H*(EG) = //*(point) is 0 for * ^ 0 and Z for * = 0, the chain
complex S*(EG) is a free ZG-module resolution of Z. Hence //*(G; Z) =
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6.10 Covering Spaces in Topology 205

H*(S*(EG) <g)ZG Z) = H*(S*(EG)G) = H*(S*(BG)) = H*(BG; Z). Simi-
larly, //*(G; Z) is the cohomology of

HomG(S*(£G), Z) = HomAb(S*(£G)G, Z) = HomAb(S*(£G), Z),

the chain complex whose cohomology is H*(BG; Z). <>

Remark The relationship between the homology (resp. cohomology) of G and
BG was worked out during World War II by Hopf and Freudenthal (resp. by
Eilenberg and MacLane). MacLane asserts in [MacH] that this interplay "was
the starting point of homological algebra." Here are some useful models of
classifying spaces.

Example 6.10.6 The circle Sl and the complex units C* are two models for

expressing R (resp. C) as the universal cover of Sl (resp. C*) are well known.

Example 6.10.7 The infinite sphere S°° is contractible, and G = C2 acts
properly in such a way that S°°/G = RP°°. Hence we may take RP°° as our
model for BC2.

Example 6.10.8 Let S be a Riemann surface of genus g / 0. The funda-
mental group G = TT\(S) has generators a\, • • •, ag, b\, • • •, bg and the single
defining relation [a\, b\][a2, b2] • • • [ag, bg] = 1. One knows that the univer-
sal cover X of S is the hyperbolic plane, which is contractible. Thus S is the
classifying space BG.

Example 6.10.9 Any connected Lie group L has a maximal compact sub-
group K, and the homogeneous space X = L/K is diffeomorphic to Rd,
where d = dim(L) — dim(K). If F is a discrete torsionfree subgroup of L,
then F H K = {!}, so F acts properly on X. Consequently, the double coset
space F\X = F\L/K is a model for the classifying space BF.

For example, the special linear group SLn(R) has SOn(R) as maximal
compact, so X = SOn(R) \ SLn(R) ^ Kd where d = ^ ^ - 1. SLn(l) is a
discrete but not torsionfree subgroup of SLn(R). For N > 3, the principal con-
gruence subgroup F(N) of level N is the subgroup of all matrices in SLn(Z)
congruent to the identity matrix modulo N. One knows that F(N) is torsion-
free, so XI F(N) is a model for BF(N).
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206 Group Homology and Cohomology

Theorem 6.10.10 Let G act properly on a space X with TTQ(X) = 0. Then for
every abelian group A there are spectral sequences

JE2
pq = Hp(G; Hq{X, A)) => Hp+q(X/G, A);

llElq = HP(G; Hq(X, A)) => Hp+q(X/G, A).

Proof Let us write H*(G; —) for the hyperhomology functors D_*(—G) de-
fined in 6.1.15 (or 5.7.4). Since C = S*(X) ®j A is a chain complex of G-
modules, there are two spectral sequences converging to the group hyperho-
mology D-O*(G; C). Shapiro's Lemma 6.3.2 tells us that Hq(Sn(X) ®j A) is
0 for q ^ 0 and Sn(X/G) ®zAforq=0 (6.10.2). Hence the first spectral
sequence collapses to yield

Hp(G; C) = Hp(S*(X/G) ® A) = HP(X/G, A).

The second spectral sequence has the desired E2 term

nE2
pq = Hp(G; HqC) = Hp(G; Hq(X, A)).

Similarly, if we write H*(G; —) for the group hypercohomology K*(—G) and
D for HomAb(SOT> A), there are two spectral sequences (6.1.15) converging
to H*(G; D). Since

Dn = Hom(ZG ® Sn(X/G), A) = Hom(ZG, Hom(Sn(X/G), A)),

Shapiro's Lemma tells us that the first spectral sequence collapses to yield
H*(G; D) = H*(X/G, A), and the second spectral sequence has the desired
Ei term

llE{q = Hp(G; Hq(D)) = HP{G\ Hq(A)). O

Remark There is a map from X/G to BG such that X -+ X/G -> BG has
the homotopy type of a Serre fibration. The spectral sequences (6.10.10) may
then be viewed as special cases of the Serre spectral sequence 5.3.2.

6.11 Galois Cohomology and Profinite Groups

The notion of profinite group encodes many of the important properties of the
Galois group Gdl(L/K) of a Galois field extension (i.e., an algebraic extension
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6.11 Galois Cohomology and Profinite Groups 207

that is separable and normal but not necessarily finite). The largest Galois
extension of any field K is the separable closure Ks of K; Ks is the subfield
of the algebraic closure K consisting of all elements separable over K, and
KS = K if char(X) = 0.

Ks is also the union UL; of the partially ordered set {L; : / e 1} of all finite
Galois field extensions of K. If K C L/ c L;, the Fundamental Theorem of
finite Galois theory [BAI, 4.5] states that there is a natural surjection from
Gal(Lj/K) to Gdl(Lt/K) with kernel Gal(L7/L/). In other words, there is
a contravariant functor Gal(—/K) from the filtered poset / to the category of
finite groups.

KrulPs Theorem 6.11.1 The Galois group Gal(Ks/K) of all field automor-
phisms of K fixing K is isomorphic to the inverse limit lim Gd\(Li/K) of finite
groups.

Proof Since the L; are splitting fields over K, any automorphism a of Ks

over K restricts to an automorphism a\ of L/. The resulting restriction maps
Gal(Ks/K) -> Gal(L//^T) are compatible and yield a group homomorphism
0 from GQ\.(KSIK) to the set lim Gal(L//^T) of all compatible families (at) e

n Gal(Li/K). If a / 1, then a(x) ^ x for some x e Ks = UL,-; if x G L/,
then Qf/(x) = a(jc) / x. Therefore 0(a) ^ 1, that is, 0 is injective. Conversely,
if we are given (ot{) in limGal(L//^T), define a e Gal(X5/AT) as follows. If

x e Ks, choose L( containing x and set a(x) = at(x)\ compatibility of the a/'s
implies that a(x) is independent of the choice of /. Since any x, y e Ks lie in
some Li, a is a field automorphism of Ks, that is, an element of Gal(Ks/K).
By construction, (p(a) = (a/). Hence 0 is surjective and so an isomorphism.

Example 6.11.2 If F^ is a finite field, its separable and algebraic closures co-

incide. The poset of finite extensions ¥qn of F^ is the poset of natural numbers,

partially ordered by divisibility, and Gal(F^/F^) is lim(Z/nZ) = I = l\p Tp.

For every prime /?, let K be the union of all the F̂ n with (/?, n) = 1; then

There is a topology on Gal(X5/#) = limGal(L//^) that makes it into a

compact Hausdorff group: the profinite topology. To define it, recall that the
discrete topology on a set X is the topology in which every subset of X is both
open and closed. If we are given an inverse system {Xi} of topological spaces,
we give the inverse limit lim Xi the topology it inherits as a subspace of the
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208 Group Homology and Cohomology

product FIX/. If the X; are all finite discrete sets, the resulting topology on
X = lim X; is called the profinite topology on X. Since each Gdl(Li/K) is a

finite discrete set, this defines the profinite topology on Gdl(Ks/K). To show
that this is a compact Hausdorff group, we introduce the concepts of profinite
set and profinite group.

Profinite Sets 6.11.3 A profinite set is a set X that is the inverse limit lim X;

of some system {X;} of finite sets, made into a topological space using the
profinite topology described above. The choice of the inverse system is not
part of the data; we will see below that the profinite structure is independent of
this choice.

The Cantor set is an interesting example of a profinite set; the subspace
{0, 1, j , . . . , i , . . . } of R is another. Profinite groups like Zp and Ga\(Ks/K)
form another important class of profinite sets.

Some elementary topological remarks are in order. Any discrete space is
Hausdorff; as a subspace of FIX;, limX; is Hausdorff. A discrete space is

compact iff it is finite. A topological space X is called totally disconnected
if every point of X is a connected component, and discrete spaces are totally
disconnected.

Exercise 6.11.1 Suppose that {X;} is an inverse system of compact Hausdorff
spaces. Show that lim Xi is also compact Hausdorff. Then show that if each of

the Xi is totally disconnected, lim X; is also totally disconnected. This proves

one direction of the following theorem; the converse is proven in [Magid].

Theorem 6.11.4 Profinite spaces are the same thing as totally disconnected,
compact Hausdorff topological spaces. In particular, the profinite structure of
X = lim Xi depends only upon the topology and not upon the choice of inverse

system {Xi}.

Exercise 6.11.2 Let X be a profinite set.

1. Show that there is a canonical choice of the inverse system {X;} making
X profinite, namely the system of its finite topological quotient spaces.

2. Show that every closed subspace of X is profinite.
3. If X is infinite, show that X has an open subspace U that is not profinite.

Definition 6.11.5 A profinite group is a group G that is an inverse limit of fi-
nite groups, made into a topological space using the profinite topology. Clearly
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6.11 Galois Cohomology and Profinite Groups 209

G is a profinite set that is also a compact Hausdorff topological group. In fact,
the converse is true: Every totally disconnected compact Hausdorff group is a
profinite group. A proof of this fact may be found in [Shatz], which we recom-
mend as a good general reference for profinite groups and their cohomology.

Examples 6.11.6 (Profinite groups)

1. Any finite group is trivially profinite.
2. The p-adic integers 1p = lim Z/plZ are profinite by birthright.

3. Krull's Theorem 6.11.1 states that GdX{Ks/K) is a profinite group.
4. (Profinite completion) Let G be any (discrete) group. The profinite com-

pletion G of G is the inverse limit of the system of all finite quotient

groups G/H of G. For example, the profinite completion of G = Z is

I = lim(Z/nZ), but the profinite completion of G = Q/Z is 0. The ker-

nel of the natural map G ->• G is the intersection of all subgroups of

finite index in G.

Exercise 6.11.3 Show that the category of profinite abelian groups is dual to
the category of torsion abelian groups. Hint: Show that A is a torsion abelian
group iff its Pontrjagin dual Hom(A, Q/Z) is a profinite group.

Exercise 6.11.4 Let G be a profinite group, and let H be a subgroup of G.

1. If H is closed in G, show that H is also a profinite group.
2. If H is closed and normal, show that G/H is a profinite group.
3. If H is open in G, show that the index [G : H] is finite, that H is closed

in G, and therefore that H is profinite.

It is useful to have a canonical way of writing a profinite group G as the
inverse limit of finite groups, and this is provided by the next result.

Lemma 6.11.7 If G is a profinite group, let U be the poset of all open normal
subgroups U of G. Then U forms a fundamental system of neighborhoods of
1, each G/U is a finite group, and G = lim G/U.

Proof If G = lim G/, then the £/,- = ker(G —• Gt) are open normal subgroups

of G and the natural map G -> lim G; factors through lim G/U(. Since lim is

left exact, this yields G = lim G/Ut and shows that {£/;} (hence U) forms a

fundamental system of neighborhoods of 1. Hence every open subgroup U of
G contains some £/,-, and this suffices to show that G = \im{G/U : U e U}.

(Check this!) O
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210 Group Homology and Cohomology

Exercise 6.11.5 (Fundamental Theorem of Galois theory) Prove that the
usual correspondence of Galois theory induces a bijection between the set
of topologically closed subgroups H of G = Gdl(Ks/K) and the set of in-
termediate fields K C L C Ks. (Here L = (KS)

H and H = {g\gx = x for all
x € L}.) Show that the closed normal subgroups of G correspond to the Galois
extensions L of K. Conclude that if L/K is any Galois field extension, then
Gal(L//O is a profinite group: Gal(L/iO = G/H.

To connect this result to more familiar Galois theory, show that the open
subgroups H ofGa\(Ks/K) correspond to the finite field extensions of K, and
that the open normal subgroups of Ga\(Ks/K) correspond to the finite Galois
extensions of A'.

In order to discuss the cohomology of profinite groups, we need to introduce
an appropriate notion of G-module.

Definition 6.11.8 Let G be a profinite group. A discrete G-module is a G-
module A such that, when A is given the discrete topology, the multiplication
map G x A -> A is continuous. The next exercise provides a more elementary
description of this.

Exercise 6.11.6

1. If A is a discrete G-module, show that for every a e A the stabilizer U =
{g e G : ga = a} is an open subgroup of G, and a e Au, the submodule
fixed by U.

2. If A is any G-module, let UAU denote the union of all subgroups Au as
U runs over the set of open subgroups of G. Show that A is a discrete
G-module «=^ UAU = A.

Examples 6.11.9 The field Ks is a discrete Gal(^/X')-module for every K.
If G is a finite group, every G-module is discrete, because G x A has the
discrete topology.

A map of discrete G-modules is defined to be just a G-module map, so
that the category Co of discrete G-modules is a full additive subcategory of
G-mod. The following exercise shows that in fact Co is an abelian subcate-
gory of G-mod.

Exercise 6.11.7 Let / : A -> B be a map of discrete G-modules. Show that
the G-modules ker(/) = [a e A : f(a) = 0}, / (A) , and coker(/) = B/f(A)
are discrete G-modules. Conclude that CG is an abelian category and that the

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.007
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:29:31, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.007
https:/www.cambridge.org/core
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inclusion CG C G-mod is an exact functor. Then show that for all discrete
G-modules A and all G-modules B,

HomG(A, B) = HomG(A, UBU).

Conclude that the inclusion CG C G-mod has the functor U(-)u as right ad-
joint.

Lemma 6.11.10 The abelian category CG has enough injectives.

Proof We may embed any discrete G-module A in an injective G-module / .
By the above exercise, A c UIU c / . Since U(—)u is right adjoint to the exact
functor CG C G-mod, it preserves injectives (2.3.10). Consequently UIU is
an injective object in CG- •

Remark CG does not have enough projectives.

Profinite Cohomology 6.11.11 The cohomology groups H*(G\ A) of a
profinite group G with coefficients in a discrete G-module A are defined to be
the right derived functors of the functor CG -> Ab sending A to AG, applied
to A.

From this definition, we see that //°(G; A) = AG and that when G is a finite
group, H*(G; A) agrees with the usual group cohomology.

In fact, many of the results for the cohomology of finite groups carry over
to profinite groups. For example, there is a category of profinite groups, a mor-
phism being a continuous group homomorphism, and H*(G; A) is contravari-
ant in G via the restriction maps. Indeed, the entire discussion of the functori-
ality of H* in sections 6.3 and 6.7 carries through verbatim to our context. Of
course, the inflation maps inf: H*(G/H; AH) -> //*(G; A) are only defined
when H is a closed normal subgroup of G, because the map G -> G/H is only
continuous when H is a closed normal subgroup of G. Similarly, whenever
H is a closed normal subgroup of G, we can construct a Lyndon/Hochschild-
Serre spectral sequence (6.8.2):

Ep
2
q = HP(G/H; Hq(H\ A)) =» Hp+q(G; A).

Since CG doesn't have enough projectives, we need to modify the discussion
in section 6.5 about the bar construction in order to talk about cocycles.

Cochains and cocycles 6.11.12 If A is a discrete G-module, let Cn(G, A)
denote the set of continuous maps from Gn to A. (When n = 0, C°(G, A) = A
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212 Group Homology and Cohomology

because G° = {1}.) Under pointwise addition, Cn(G, A) becomes an abelian
group, a subgroup of the group of n-cochains Home (#", A) described in
6.5.4. The explicit formula for d shows that C*(G, A) is a subcomplex of the
cochain complex HomG(#", A).

Exercise 6.11.8 Show that a map cp:Gn-+A is continuous iff cp is locally
constant, that is, iff each point of Gn has a neighborhood on which cp is con-
stant.

Exercise 6.11.9 Show that Cn(G, —) is an exact functor from CG to Ab.
Hint: If g: B ->• C is onto, use the fact that every continuous <p: Gn -» C is
locally constant to lift cp to Cn(G, B).

Exercise 6.11.10 Show that Cn(G, A) = lim Cn(G/U, Au), where U runs

through all open normal subgroups of G.

Theorem 6.11.13 Let G be a profinite group and A a discrete G-module.
Then

#*(G; A) ^ H*(C*(G, A))

^limH*(G/U; Au),

where U runs through all open normal subgroups of G.

Proof For simplicity, set Tn(A) = //n(C*(G, A)). We first calculate that

T°(A) = ker(A -^> Cl(G, A))

= {aeA:(VgeG) 0= (da)(g) = ga - a}

= AG.

Since C*(G, A) = lim C*(G/U; Au), and lim commutes with cohomology

(2.6.15), we see that Tn(A) = lim Hn{C*{G/U, Au)) = lim Hn(G/U\ Au).

It now suffices to show that the {Tn} form a universal cohomological 8-
functor in the sense of 2.1.4, for this will imply that Tn(A) = Hn(G;A). To
see that they form a 5-functor, l e t O - > A — > - # - > C ^ > 0 b e a short exact
sequence of discrete G-modules. By exercise 6.11.9, each sequence

0 -> Cn(G, A) -+ Cn(G, B) -* Cn{G, C) -+ 0
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6.11 Galois Cohomology and Profinite Groups 213

is naturally exact, so we get a short exact sequence of cochain complexes.
The associated long exact cohomology sequence with its natural coboundary
8n: Tn{C) -> Tn+X(A) makes {Tn} into a cohomological 5-functor.

To see that {Tn} is universal, it suffices to show that each Tn (except T°)
vanishes on injective objects, for then Tn will be effaceable in the sense of
exercise 2.4.5. If / is an injective object in CG and U is an open normal
subgroup of G, then Iu is an injective object in CG/U = G/U-mod because
(as in 6.8.1) —u is right adjoint to the forgetful functor. Hence if n ^ 0, then

Tn(I) = limHn(G/U; Iu) = 0. O

Corollary 6.11.14 For n > 1, the Hn(G\ A) are torsion abelian groups.

Proof Each G/U is a finite group, so Hn(G/U, Au) is a torsion group. O

Exercise 6.11.11 Let G be the profinite group Zp. Show that

1P / e v e n

0 i odd

Low Dimensions 6.11.15 We have already seen that //°(G; A) = AG. A cal-
culation using the complex C*(G, A) shows that Hl(G; A) is the group of
continuous derivations of G in A, modulo the (ctn.) principal derivations,
and that Hl(G; Z) is the group of continuous maps from G to Z. Similarly,
H2(G; A) is the group of classes of continuous factor sets of G in A. If A is
finite, H2(G\ A) classifies the profinite extensions of G by A. (The discrete
group A is only profinite when it is finite.)

Hilbert's Theorem 90 6.11.16 Let K be a field and set G = Gz\(Ks/K).
Then Ks and its units K* are discrete G-modules with (KS)

G = K and
(K*)G = K*. Moreover

2. Hl(G;K*)=0.

Proof Let U be an open normal subgroup of G and L = K^ the correspond-
ing Galois extension of K, so that G/U = Gel(L/K) and (K*)u = L*. By
Hilbert's Theorem 90 for L/K (6.3.7, 6.4.7), we see that

Hl(G/U;L*) =
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214 Group Homology and Cohomology

Now take the limit over all U to get the result. <C>

Brauer group 6.11.17 The classical Brauer group of K is the set of all
equivalence classes of central simple ^-algebras A (with equivalence relation
M( (A) ss My (A')). It is also isomorphic to the set of all finite-dimensional
division ^-algebras A with center K. The relative Brauer groups Br(L/K)
of 6.6.11 were constructed so that Br(K) is the union of the relative groups
Br(L/K). On the other hand, since Br(L/K) = H2(Ga\(L/K), L*) by
6.6.11, H2(G\ K*) is also the direct limit of the Br(L/K), because if U
is an open normal subgroup and L = (Ks)

u, then G/U' = Ga\(L/K) and
(K*)u = L*. Therefore Br(K) is naturally isomorphic to the profinite co-
homology group H2(G; K*). The following result provides a cohomological
proof of the fact that each Br(L/K) is a subgroup of Br (K).

Proposition 6.11.18 If K C L is a Galois field extension with Galois group
G = Ga\(L/K), there is an exact sequence

0 -> Br(L/K) - ^ Br(K) - ^ Br(L)G -> //3(G; L*) - • H3(K, K*).

In particular, Br(L/K) is the kernel of Br (K) -> Br(L).

Proof Let H C Ga\(Ks/K) be the closed normal subgroup corresponding
to L, so that G = Ga\(Ks/K)/H. The Hochschild-Serre spectral sequence
6.11.11 is

Ep
2
q = Hp(G\ Hq(H\ K*)) => H*(Gz\(Ks/K); K*).

Along the jc-axis we find HP(G\ L*). By Hilbert's Theorem 90 for L, the row
q = 1 vanishes. The exact sequence of low degree terms is the sequence in
question. <>

Exercise 6.11.12 Let F^ be a finite field. Show that Br(L/\fq) = 0 for every
finite extension L of F^ and conclude that Br(^q) = 0. Hint: Gal(L/F^) is
cyclic of order n = [L: \fq] and the norm map TV: L* —• K* is onto (6.4.8).

Vista 6.11.19 Many deep results about the Brauer group can be established
more easily using cohomological machinery. We list a few here, referring the
reader to [Shatz] for more details.

• If char(#) = p^0, Br(K) is divisible by p.
• (Tsen's Theorem) If K is a function field in one variable over an alge-

braically closed field, then Br{K) = 0.
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6.11 Galois Cohomology and Profinite Groups 215

Br(R) = Z/2, the quaternion algebra H being nontrivial. (See 6.4.8.)
(Hasse) If AT is a local field, that is, the p-adic rationals Q p , or a finite
extension of Q p , then there is a canonical isomorphism Br(K) = Q/Z.
The element of Q/Z corresponding to a central simple ^-algebra A is
called the Hasse invariant of A.
The Brauer group of Q injects into Br(R) = Z/2 plus the direct sum
over all primes p of the groups Br(Qp) = Q/Z, with cokernel Q/Z.
Thus the Hasse invariants uniquely determine Z?r(Q), and the sum of the
Hasse invariants is zero.
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Lie Algebra Homology and Cohomology

Lie algebras were introduced by Sophus Lie in connection with his studies of
Lie groups; Lie groups are not only groups but also smooth manifolds, the
group operations being smooth. If G is a Lie group, the tangent space g of G
at the identity e e G is a Lie algebra over IR. The vector space of left invariant
vector fields on G is canonically isomorphic to g, and the Lie bracket [X, Y]
of vector fields X and Y may be defined as a vector field:

[X, Y]f = X(Yf) - Y(Xf), f a smooth function on G.

This rich interplay with Differential Geometry forms the original motivation
for the abstract study of Lie algebras. More history is given in 7.8.14 below.

7.1 Lie Algebras

Let k be a fixed commutative ring. A nonassociative algebra A is a ^-module
equipped with a bilinear product A <g)& A -> A. Note that we do not assume the
existence of a unit, so that 0 is the smallest possible nonassociative algebra. A
Lie algebra g is a nonassociative algebra whose product, written as [xy] or
[x, y] and called the Lie bracket, satisfies (for x, y, z e g):

Skew-symmetry: [x, x] = 0 (and hence [x, y] — —[y, x]);
JacobVs Identity: [JC, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

An ideal of g is a A:-submodule f) such that [g, f)] c fj, that is, for all g e g and
h e f) we have [g, h] e \). Note that an ideal is a Lie algebra in its own right,
and that the quotient g/J) inherits the structure of a Lie algebra as well. There
is a category whose objects are (fc-)Lie algebras; a morphism cp: g —> f) is a

216
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7.1 Lie Algebras 217

product-preserving fc-module homomorphism. Thus every ideal [ ) C 0 yields a

short exact sequence (!) of Lie algebras:

Example 7.1.1 An abelian Lie algebra is one in which all the Lie brackets
[x, y] = 0. Every ^-module has the structure of an abelian Lie algebra.

If g is any Lie algebra, define [g, g] to be the &-submodule of g generated
by all Lie brackets [JC, y] with x,y e Q. Then [g, g] is an ideal of g, and the
quotient gab = Q/[Q, g] is an abelian Lie algebra. Obviously, Qab is the largest
quotient Lie algebra of g that is abelian.

Example 7.1.2 The primordial Lie algebra is the Lie algebra a = Lie(A) of
an associative ^-algebra A (even if A is an algebra without a unit). This is the
underlying ^-module A, given the commutator product [JC, y] = xy — yx. We
leave it to the reader (exercise!) to verify Jacobi's identify, that is, that a is a
Lie algebra, and to check that this defines a functor "Lie" from the category of
(associative, possibly nonunital) A;-algebras to the category of Lie algebras.

Examples 7.1.3 If A is an associative ^-algebra, so is Mm(A), the m x m ma-
trices with coefficients in A. We write Qtm(A) for the Lie algebra Lie(Mm(A)).
If A = k, we write glm for Qlm(k).

Here are some famous Lie subalgebras of #im(A); if A = k, it is traditional
to drop the reference to A, writing merely, om, slm, tm, and nm instead of
om(&), slm(k), and so on.

1. The orthogonal algebra om(A) of all skew-symmetric matrices: {g :

2. The special linear algebra slm(A). If A is commutative, this is the al-
gebra of all matrices of trace 0. If A is not commutative, then we must
consider the trace as taking values in A/[A, A], because a matrix change
of basis changes the trace J2 8u by an element of [A, A]. Thus slm(A)
is the kernel of the trace map, yielding the short exact sequence of Lie
algebras:

0 - • slm(A) -> Qlm(A) ^ > A/[A, A] - • 0.

3. The upper triangular matrices tm(A) : {g : gtj = 0 if / < j}.
4. The strictly upper triangular matrices nm(A) : {g : gtj = 0 if i < j}.
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218 Lie Algebra Homology and Cohomology

Example 7.1.4 (Derivation algebras) Let A be a nonassociative (= not nec-
essarily associative) ^-algebra. A derivation D of A (into itself) is a fc-module
endomorphism of A such that the Leibnitz formula holds

D(ab) = (Da)b + a(Db) (a, b e A).

The set Der(A) of derivations of A is clearly a A:-submodule of Endfc(A).
Moreover, the commutator [D\, D2] of two derivations is a derivation, since

[D{D2]ab = Di(D2(ab)) - D2(Dx(ab))

= D{((D2a)b) + Dx(a(D2b)) - D2({Dxa)b) - D2(a{Dxb))

= (DiD2a)b + a(D\D2b) - (D2D\a)b - a(D2D\b)

Hence Der(A) is a Lie algebra; it is called the derivation algebra of A.

Example 7.1.5 Given a A;-module M, the free Lie algebra on M is a Lie al-
gebra f(M), containing M as a submodule, which satisfies the usual universal
property: Every ^-module map M —> Q into a Lie algebra extends uniquely to
a Lie algebra map f(M) - • g. In other words, as a functor f is left adjoint to
the forgetful functor from Lie algebras to modules

H o mfc-mod(M ' fl) = HomLie(f(Af), 0).

The existence of f (M) follows from general considerations of category the-
ory (the Adjoint Functor Theorem); a concrete construction will be given in
section 7.3. Clearly f(M) is unique up to isomorphism.

If X is a set, the free Lie algebra on X is f(M), where M is the free k-
module on the set X. Clearly

HomSets(X 0) ^ HomLie(f(X), 0),

so there is a corresponding universal property for f(X).

Exercise 7.1.1 Show that the free Lie algebra f({x}) = f(k) on the set {x} is
the 1-dimensional abelian Lie algebra k. Then show that f({x, y}) is a graded,
free ^-module having an infinite basis of monomials

x, y, [xy], [x[xy]], [y[xy]], [x[x[xy]fl, [x[y[xy]]], [y[y[xy]]],

(There are 6 monomials of degree 5. In general, there are \ S / | d ^ ( 0 2 ^ '
monomials of degree d, where JJL denotes the Mobius function [Bour, ch. 2,
sec. 3.3, thm. 2].)
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72 %-Modules 219

Exercise 7.1.2 (Product Lie algebra) If g and \) are Lie algebras, we can
make the fc-module g x () into a Lie algebra by a slotwise product: [(gi, h\),
(g2, ̂ 2)] = ([g\, g2\, [h\, h2]). Show that g X [) is the product in the category
of Lie algebras.

Nilpotent Lie Algebras 7.1.6 In analogy with group theory, we define the
lower central series of a Lie algebra g to be the following descending sequence
of ideals:

0 2 s2=[0,0] 2 o3 = to2,0] 2 • • • 2 0" = [0"-1,0] 2 • • •.

We say that g is a nilpotent Lie algebra if g" = 0 for some n. For example, the
strictly upper triangular Lie algebra nm(A) is nilpotent for every fc-algebra A;
nm(A)n is the ideal of matrices (gij) with gtj = 0 unless i > j + n. Abelian
Lie algebras are another obvious class of nilpotent Lie algebras.

Solvable Lie Algebras 7.1.7 Again following group theory, we define the
derived series of g to be the descending sequence of ideals

9 2 fl' = [fl, fl] 5 fl" = (fl')' 2 • • • 2 fl(ll) = [0(n-1}, S(n"1}] 2 • • • .

We say that g is a solvable Lie algebra if g^ — 0 for some n.

Lemma 7.1.8 Every nilpotent Lie algebra is solvable.

Proof It suffices to show that [g1, g7] c gl+-/, for then by induction we see
that g(n) c g". To see this we proceed by induction on 7, the case j = \ being
the definition g'+1 = [g1, g]. Inductively, we compute

[fl1", fly'+1] = [fl1", fS7', fl]] c [[fl1", fl], fl'] + [[fl1", fl'], g]

Example 7.1.9 The upper triangular Lie algebra tm(A) of a commutative k-
algebra A is solvable but not nilpotent.

7.2 g-Modules

Let g be a Lie algebra over k. A (left) g-module M is a ^-module equipped
with a fc-bilinear product g ®£ M —>• M (written x (8) m i-* xm) such that

[x, y]m = i(}?m) — v(xm) for all JC, v G g and m e M.
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220 Lie Algebra Homology and Cohomology

Examples 7.2.1

1. If A is an associative algebra and g = Lie(A), any left A-module may be
thought of as a left g-module in an obvious way.

2. The Lie bracket makes g itself into a left g-module (by Jacobi's identity).
This module is usually called the adjoint representation of g.

3. A trivial g-module is a ^-module M on which g acts as zero: xm = 0 for
all x e g, m e M.

A g-module homomorphism f:M-> N is a A>module map that is product-
preserving, that is, f(xm) = xf(m). We write HomB(M, N) for the set of all
such g-module homomorphisms. If a e k, then af is also a g-module map, so
therefore Homs(M, N) is a &-submodule of Hom^(M, N).

The left g-modules and g-module homomorphisms form a category called
g-mod. By the above remarks, it is an additive category. The following exer-
cise shows that it is in fact an abelian category.

Exercise 7.2.1

1. Let f:M—> N be a g-module homomorphism. Show that the ^-modules
ker(/), im(/) , and coker(/) are the kernel, image, and cokernel of / in
g-mod.

2. Show that a monic (resp., epi) in g-mod is also a monic (resp., epi) in
&-mod. By (1), this proves that g-mod is an abelian category.

Exercise 7.2.2 Let E = Endk(M) be the associative algebra of ^-module en-
domorphisms of a ^-module M. Show that maps $ <S> M -> M making M
into a g-module are in 1-1 correspondence with Lie algebra homomorphisms
Q -> Lie(£). Conclude that a g-module may also be described as a ^-module
M together with a Lie algebra homomorphism g -> Lie(End^(M)).

Exercise 7.2.3 There is also a category mod-g of right g-modules, whose
definition should be obvious. If M is a right g-module, show that the product
xm = —mx (x e g, m e M) makes M into a left g-module, and that this
induces a natural isomorphism of categories: g-mod = mod-g.

Many of the notions we introduced for G-modules in Chapter 6 have ana-
logues for g-modules. For example, there is a trivial g-module functor from
&-mod to g-mod; it is the exact functor obtained by considering a ^-module
as a trivial g-module. Consider the following two functors from g-mod to
A:-mod:
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72 ^-Modules 221

1. The invariant submodule M0 of a g-module M,

MQ = [m e M : xm = 0 for all x e g}.

Considering A: as a trivial g-module, we have M s = Hom0(&, M).
2. The coinvariants MQ of a g-module M, M0 = M/gM.

Exercise 7.2.4 Let M be a g-module.

1. Show that M9 is the maximal trivial g-submodule of M, and conclude
that —Q is right adjoint to the trivial g-module functor. Conclude that —s

is a left exact functor.
2. Show that MQ is the largest quotient module of M that is trivial, and

conclude that — s is left adjoint to the trivial g-module functor. Conclude
that — Q is a right exact functor.

We will see in the next section that the category g-mod has "enough" pro-
jectives and injectives in the sense of Chapter 2. Therefore we can form the
derived functors of —Q and — fl.

Definition 7.2.2 Let M be a g-module. We write #*(g, M) or //*Lie(g, M) for
the left derived functors L*(—Q)(M) of —0 and call them the homology groups
of g wzY/z coefficients in M. By definition, //o(g, M) = M0.

Similarly, we write //*(g, M) or H£ie(#, M) for the right derived functors
R*(—Q)(M) of —s and call them the cohomology groups of g vwYft coefficients
in M. By definition, //°(g, M) = M*.

Examples 7.2.3

0. If g = 0, MQ = M® = M. Since the higher derived functors of an exact
functor vanish, //*Lie(0, M) = #£ ie(0, M) = 0 for * / 0.

1. Let g be the free fc-module on basis {e\, • • •, ^ } , made into an (abelian)
Lie algebra with zero Lie bracket. Since a g-module is just a ^-module
with n commuting endomorphisms e\, • • •, en, it follows that g-mod is
isomorphic to the category /?-mod of left modules over the polynomial
ring R = k[e\, • • •, en]. If k is the trivial g-module, considered as an
/^-module on which the et act as zero, then Mg = k <8>R M and M® =
Hon\R(k, M). Therefore we have

#*Lie(0, M) = Torf (fc, M)and ^Lie(fl' M ) = Ext]?(^' M ) -

These functors were discussed in Chapter 3.
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222 Lie Algebra Homology and Cohomology

2. Let f be the free Lie algebra on a set X. In this case an f-module is
just a ̂ -module M with an arbitrary set {ex : x e X} of endomorphisms.
That is, the category f-mod is isomorphic to the category R-mod of left
modules over the free ring R = k{X] on the set X. If k denotes the trivial
f-module, then M^ — k <S>R M and M^ = Horn/?(A:, M). Therefore

#*Lie(f, M) = Torf (fc, M) and fl£ie(f, M) = Ext J (it, M).

We end this section with a calculation of the H* and //* groups for f.

Proposition 7.2.4 The ideal 3 = Xk{X] of the free ring k{X) is free as a
right k{X}-module with basis the set X. Hence

is a free resolution of k as a right k{X}-module.

Proof As a free ^-module, k{X} has for basis the set W of words in the
elements of the set X, and J is a free ^-module on basis W — {1}. Every
element of W — {1} has a unique expression of the form xw with x e X and
w e W, so {xw : x e X, w e W} is another basis for 3 as a /c-module. For each
x G X the &-span xk{X} of the set {xw : w e W} is isomorphic to k{X}, and 3
is the direct sum of the xk{X], both as ̂ -modules and as right k{X}-mod\xlts.
That is, J is a free right &{X}-module with basis X, as claimed. O

Corollary 7.2.5 If f is the free Lie algebra on a set X, then #^ie(f, M)
^Lie^' M ) = ° for al1 n - 2 and al1 ^-modules M. Moreover //0

Lie(f, k)

H°ie(f, k) = k, while

and fl£e(f,*)
xeX xeX

Proof Using the given free resolution of k, //^ie(f, M) is the homology of
the complex 0 - > 3 ( g ) / ? M - > M ^ 0 , and #Lie(f, M) is the homology of the
complex 0 -> M -> Horned, M) -> 0. For M = k, the differentials are zero.

•

Exercise 7.2.5 Let r be an ideal of a free Lie algebra f on a set X. Show that
i f t /O, then[f , t ] / t .
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7.3 Universal Enveloping Algebras 223

7.3 Universal Enveloping Algebras

The universal enveloping algebra UQ of a Lie algebra Q plays the same formal
role as the group ring 1G of a group G does. In particular, g-mod is naturally
isomorphic to the category t/g-mod of left £/g-modules. This isomorphism
provides an easy proof that g-mod has enough projectives and injectives in
the sense of Chapter 2, so that the derived functor definitions of //*(g, M) and
//*(g, M) make sense.

In this section we will develop some of the ring-theoretic properties of U$.
Since Ug will be a quotient ring of the tensor algebra 7"(g), we first describe
the tensor algebra T(M) of a ^-module M.

Definition 7.3.1 If M is any A;-module, the tensor algebra T(M) is the fol-
lowing graded associative algebra with unit generated by M:

T(M) = fc0M0(M(g)M)e(M<g)M<g)M)e..-e M®n © .. •.

Here M®n denotes M 0 • • • 0 M, the tensor product (over k) of n copies of M,
whose elements are finite sums of terms x\ 0 • • • 0 xn (JC/ e M). The product
0 in T(M) amounts to concatenation of terms. Writing /: M - • T(M) for the
evident inclusion, this means that T(M) is generated by i(M) as a ^-algebra.
Clearly T is a functor from &-mod to the category of (associative, unital) k-
algebras.

Here is a presentation of T(M) as an algebra. T(M) is the free algebra on
generators i(x), x e M, subject only to the /^-module relations on i(M):

ai(x) = i(ax) and i(x) + i(y) = i(x + v) (a G I:; i , j G M).

If M is a free module with basis {x\,...}, then T(M) is the free /:-algebra
^{xi, . . .}. In particular, T(k) is isomorphic to the polynomial ring k[x]. In
general T(M) is not a commutative algebra except when M = k or M = k/I
for some ideal / of k.

Exercise 7.3.1 Show that T is the left adjoint of the forgetful functor from k-
alg to &-mod, and that i\M^> T(M) is the unit of this adjunction. That is,
show that for every associative ^-algebra A,

, A).

Exercise 7.3.2 (Free Lie algebras) Given a ^-module M, consider the Lie al-
gebra Lie(!T(Af)) underlying the tensor algebra T(M). Let f denote the Lie
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224 Lie Algebra Homology and Cohomology

subalgebra generated by M. That is, elements of f are sums of iterated brack-
ets [x\, [x2[- • •, xn]]] of elements xt e M. Show that f satisfies the universal
property of a free Lie algebra of M (see 7.1.5). This provides a constructive
proof of the existence of free Lie algebras.

Definition 7.3.2 If g is a Lie algebra over k, the universal enveloping algebra
U(g) is the quotient of T(g) by the 2-sided ideal generated by the relations

(*) *([*> y]) = i(*)i(y) ~ i(y)i(x) (*, y e g).

Alternatively, Ug is the free algebra on generators i(x), x e g, subject to the
^-module relations on g as well as the relation (*). The relation (*) guarantees
that i preserves the Lie bracket, that is, that i:g-> Lie(t/g) is a Lie algebra
homomorphism and that Ug is a left g-module. Since the construction is natu-
ral in g, U is a functor from Lie algebras to associative A:-algebras. See [BAII,
section 3.9] [JLA, ch. V].

Exercise 7.3.3 Show that U is the left adjoint of the "Lie" algebra functor
described in 7.1.2 and that i is the unit of the adjunction. That is, for every
associative ^-algebra A, there is a natural isomorphism

HomLie(0, Lie(A)) = Homfc_aig(£/g, A).

This isomorphism explains the term "universal"; any Lie algebra map g ->•
Lie(A) extends to a unique ^-algebra map Ug -> A.

Theorem 7.3.3 If g is a Lie algebra, then every left g-module is naturally a
left Ug-module, and conversely. The category g-mod is naturally isomorphic
to the category Ug-mod of left Ug-modules.

Proof Let M be a ^-module and write E = End^(M) for the A:-algebra of all
A:-module endomorphisms of M. By adjointness,

HomLie(g, Lie(E)) = Honu_aig(£/g, End*(M)).

A g-module is a A:-module M together with a Lie algebra map g -> Lie(£)
(see exercise 7.2.2). But a f/g-module is a ^-module M together with an asso-
ciative algebra map Ug —> End^(M), so the theorem follows. O

Corollary 7.3.4 The category g-mod has enough projectives and enough
injectives in the sense of Chapter 2. In particular, Ug is a projective object
in g-mod.
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7.3 Universal Enveloping Algebras 225

Here is a more concrete description of the correspondence between g-
modules and (/^-modules. Given a 9-module M and a monomial x\ • • • xn

in Ug (xt e g), the formula

(x\ '"Xn)m =x\(x2(- - - (xnm))),m e M,

makes M into a £/g-module. Conversely, if M is a £/g-module and x e g ,
the formula im = i(x)m (m e M) makes M into a g-module because of the
relation (*) of 7.3.2.

Example 7.3.5 (Augmentation ideal) There is a unique ^-algebra homomor-
phism s: Ug —>> k, sending i(g) to zero, called the augmentation. This is clear
from the presentation of Ug, and s corresponds to the zero Lie algebra map
Q -> Lie(&) under the adjunction. It is the analogue for Lie algebras of the aug-
mentation map e: 1G -> Z of a group ring. Following that analogy, we define
the augmentation ideal 3 to be the kernel of e; 3 is evidently the (2-sided)
ideal of Ug generated (as a left ideal) by i(g). Therefore 3 is a £/g-module
and *=£

Corollary 7.3.6 Let M be a g-module. Then

Proof To show any two derived functors are isomorphic, we only need show
the underlying functors are isomorphic. Therefore we need only observe

k®UQM = (Ug/3) ®UQ M ^ M/3 M = M/QM = M0;

it, M) = Hom0(A:, M) = M s . <C>

We conclude this section by stating the Poincare-Birkhoff-Witt Theorem,
which gives the structure of Ug when k is a field (or more generally when g is
a free A:-module). A proof may be found in [JLA, V.2] or [CE, XIII.3]. Let {ea}
be a fixed ordered £-basis of g. If / = (a\, • • •, ap) is a sequence of indices,
we shall use the notation ej for the product eai • • • eap in Ug. The sequence
/ is called increasing if a\ < • • • < ap. By convention, we regard the empty
sequence 0 as increasing, and set e^ = 1. If / = (a) is a single index, note that
ea e g, but e^) = i(ea) is in Ug.
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226 Lie Algebra Homology and Cohomology

Poincare-Birkhoff-Witt Theorem 7.3.7 If g is a free k-module, then Ug is
also a free k-module. If{ea] is an ordered basis of g, then the elements ei with
I an increasing sequence form a basis ofUg.

Corollary 7.3.8 The map i: g —> Ugis an injection, so we may identify g with

Corollary 7.3.9 If \) eg is a Lie subalgebra, and k is a field, then Ug is a
free U\)-module.

Proof First pick an ordered basis for f), and then complete it to an ordered
basis of g. The ej with increasing / = (ai, • • •, ap) such that no eai is in J)
will form a basis of Ug over U\). O

Exercise 7.3.4 (Horn as a g-module) Let M and N be left g-modules. Then
Hom^(M, N) is a g-module by (xf){m) = xf(m) — f(xm), x e g, m e M.
Show that there is a natural isomorphism Hom0(M, N) = Hom^(M, N)®.

Exercise 7.3.5 (Cohomological dimension) Extend the natural isomorphism
Homfl(M, N) = Hom^(M, N)® of exercise 7.3.4 to a natural isomorphism of
8 -functors:

Ext^(M, N) = H£[e(g, Honu(M, A )̂)

By the Global Dimension Theorem (4.1.2), this proves that the global dimen-
sion of Ug equals the Lie algebra cohomological dimension of g (see 7.7.4).

Exercise 7.3.6 (Associated graded algebra) For any Lie algebra g, let Fp =
FpUg be the A:-submodule of Ug generated by all products x\ • • •*/ of ele-
ments of g with / < p. By convention, F$Ug = k, and clearly F\Ug = k + g.
Show that

k = F0Ug c FiUg c F2Ug c • •.

is an increasing filtration in the sense that Fp • Fq c Fp+q. Then show that
A = k 0 (F1/F0) 0 (F2/Fi) 0 • • • 0 (Fp/Fp-i) 0 • • • is a commutative, as-
sociative graded A:-algebra. Finally, if g is a free ^-module on basis {ea}, show
that F\/Fo = g and that A is a polynomial ring on the indeterminates ea:

Exercise 7.3.7 (Hopf algebra) In this exercise we show that Ug is a Hopf
algebra (see 6.7.15).
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7.3 Universal Enveloping Algebras 227

1. Use the universal property of Ug to show that U(g x J)) = Ug<g>k £/J). In
particular, U(g x g) = Ug ®£ Ug.

2. Show that the diagonal map A: g -> g x g induces a ring homomorphism
A: Ug -> £/g 0/: £/g with A(x) = x <g> 1 4- 1 0 x for x e g.

3. Show that there is an isomorphism s : Ug = (£/g)o/7, called the antipode,
and that the resulting isomorphism between left and right g-modules

mod-g = mod-t/g = (Ug)op-mod = Ug-mod = g-mod

is the correspondence xm = —mx of 1.23.
4. Show that the maps A and s make Ug into a Hopf algebra.

Exercise 7.3.8 (Products) Let g and rj be Lie algebras. Use the Kiinneth for-
mula (3.6.3) as in 6.1.13 to construct split exact sequences

p+q
=n-\

, k) (g> H«(l), k)

The map x is called the cross product. Composition with A*: Hn($ xg )
//n(g) gives a graded bilinear product on H*($,k), called the cw/?
uct. Show that the cup product makes //*(g, fc) into an associative graded-
commutative ^-algebra (see 6.7.11). Dually, when A: is a field, show that
#*(g, k) is a coalgebra (6.7.13).

Exercise 7.3.9 (Restricted Lie algebras) Let A: be a field of characteristic p ^
0. A restricted Lie algebra over A: is a Lie algebra g, together with a set map
x f-> x^ of g such that [x^p\ y] equals the p-fold product [x[x[- • • [jry]]]];
(a x)[P] = of^[^] for all a e k\ (x + j ) [ p ] = x[^] + j [ ^ ] + ^ f j " / 5/(JC, y),

where / • $/(JC, y) is the coefficient of A/"1 in the formal (p — l)-fold product
[Xx + y[--- [kx + y, x]]]. See [JLA, V.7].

1. If A is an associative ^-algebra, show that Lie(A) is a restricted Lie
algebra with a^ =ap.ln particular, this makes the abelian Lie algebra
k into a restricted Lie algebra.

2. Let w(g) denote the quotient of Ug by the ideal generated by all elements
xp — x W; u (g) is called the restricted universal enveloping algebra of g.
If g is n-dimensional over k, show that w(g) is ^^-dimensional as a vector
space.

3. A restricted g-module M is a g-module in which the /7-fold product
(x(x(- • • (xm)))) equals x^m for all m e M and x e g. Show that the
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228 Lie Algebra Homology and Cohomology

category of restricted g-modules is equivalent to the category of
modules.

4. Define the restricted cohomology groups //r?s(g, M) to be the right de-
rived functors of MQ on the category of restricted ^-modules. Show that
//r*s(0,M)^Ext*(g)(fc,M).

5. Show that there is a canonical map from //r?s(g, M) to the ordinary co-
homology //*(g, M).

1A Hl and Hx

The results in Chapter 6 for H\(G) and Hl(G) have analogues for H\($) and
H1(Q). AS there, we begin with the exact sequence of g-modules:

If M is a g-module, applying Tor* 0(—, M) yields

Hn(g, M) = Tor^0(/:, M) ^ T o r ^ j P , M), n > 2

and the exact sequence

(f) 0 -

Exercise 7.4.1 (Compare with exercise 6.1.4.)

1. Show that /: Q -> £/$ maps [g, 9] to 32. Conclude that it induces a map
1: ga* - • a/J2 , where O

ab = g/[fl, fl].
2. Show that there is a /:-module map a: f/g —• Qab sending 32 to zero and

i(x) to Jc. Hint: First define a map from the tensor algebra T(g) to gab

sending Q <S>k 9 to zero and then pass to the quotient U$.
3. Deduce from (1) and (2) that 3/32 = $ab.

Theorem 7.4.1 For any Lie algebra g, H\ (g, k) = gab.

Proof Taking M = k in (f) yields the exact sequence

But for the right g-module 3 the exercise 7.4.1 above yields

(UQ/3) £ 3/32 ^ g^ . O
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7A Hl and Hi 229

Corollary 7.4.2 If M is any trivial g-module, H\(g, M) = gab <g>k M.

Proof Since M = Affl, (t) yields H\(g, M)^3 ®UQ M^(3 ®UQ k)®kM^

gab ®it M. O

Exercise 7.4.2 Let g be a free ^-module on basis {e\, • • •, en}, made into an

abelian Lie algebra. Show that Hp(g,k) = Apg = k^p\ the pth exterior power

of the /[-module g. Hint: Ug = k[e\, • • •, en].

Exercise 7.4.3 Consider the Lie algebra g\m{A) of n x n matrices over an
associative ^-algebra A.

1. Write e?j for the matrix whose (/, j)-entry is a, all the other entries being
0. If /, j and k are distinct, show that

\pa pb T _ ab J r a b A _ ab _ ba
l-eij> ejk* — eik a n a leij> ejii — eii ejj '

2. Recall from 7.1.3 that the special linear Lie algebra sin(A) is the kernel
of the trace map from gin(A) to A/[A, A]. Show that for n > 3

Hi(8ln(A),k) = 0 and Hi(gln(A), k) ^ A/[A, A].

We now turn our attention to cohomology. Applying Ext^ (—, M) to the
sequence 0->3—>• Ug-> k —>• 0 yields

Hn(g, M) ̂  E x t ^ 1 ^ , M), n > 2

and the exact sequence

0 -> M0 -^ M -+ Homfl(3, M) -^ H 1 ^ , M) -^ 0.

To describe Hl(g, M), it remains to interpret Homg(3, Af) as derivations and
interpret the image of M as inner derivations.

Definition 7.4.3 If M is a g-module, a derivation from g into M is a ^-linear
map D:g-+ M such that the Leibnitz formula holds

D([x,y])=x(Dy)-y(Dx).

The set of all such derivations is denoted Der(g, M); it is a /c-submodule
of Hom^(g, M). Note that if g = M, then Der(g, g) is the derivation algebra
Der(g) of 7.1.4. If M is a trivial g-module, then Der(g, M) = Hom^(0a^, M).
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230 Lie Algebra Homology and Cohomology

Example 7.4.4 (Inner derivations) If m e Af, define Dm(x) = xm. Dm is a
derivation:

Dm([x, y]) = [x, y]m = x(ym) - y{xm).

The Dm are called the inner derivations of Q into Af, and they form a k-
submodule Derinn(g, M) of Der(g, Af).

Example 7.4.5 If cp: 3 -> M is a g-map, let D^:g - • M be defined by
D^(JC) = cp(i(x)). This too is a derivation:

£?([*, J]) = (pdMi(y) - i(y)i(x)) = x(p(i(y)) - y<p(i(x)).

As in the analogous discussion for group cohomology (6.4.4), the next step
is to show that every derivation is of the form D^.

Lemma 7.4.6 The map (pH> D^ is a natural isomorphism ofk-modules:

Proof The formula cp H> D<p defines a natural homomorphism, so it suffices
to show that it is an isomorphism. For this we use the fact (7.3.5) that the
product map U$ <8)kQ-+ (U$)Q = 3 is onto, and that its kernel is the ^-module
generated by the terms (u ® [xy] — ux <S) y + uy ® x) with u e UQ and x, y e

9-
Given a derivation D: g —>• M, consider the map

/ : tffl ®* fl - • M, / ( I I ® JC) = u(Dx).

Since D is a derivation, f(u (8) [xy] — wx 0 y + «y ® x) = 0 for all u, JC, and y.
Therefore / induces a map <p: 3 —> M, which is evidently a left g-module map.
Since Dy(x) = (p(i(x)) = / ( I <g> x) = Dx, we have lifted D to an element of
Hoirig(3, Af). On the other hand, given D = Dh for some /z e Hom0(J, Af),
we have cp(ux) = u(Dx) = uh{x) = h(ux) for all u e t/g, iGg . Hence (p = h
as maps from 3 = (C/g)g to Af. <>

Theorem 7.4.7 HX(Q, M) ^ Der(g , Af ) /Der i n n (g , M ) .

Proof If ^?: 3 —> Af extends to a g-map C/g —> Af sending 1 to m e Af, then

D<p(x) = <p(x • 1) = xm = D m (x) .
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7A Hl and Hi 231

Hence D^ is an inner derivation. This shows that the image of

M -> Homs(J, M) = Der(g, M)

is the submodule of inner derivations, as desired. O

Corollary 7.4.8 If M is a trivial Q-module

H\Q, M) £ Der(g, M) ^ HomLie(g, M) ^ Hom*(flfl*, M).

Semidirect Products 7.4.9 Given a Lie algebra g and a (left) g-module M,
we can form the semidirect product Lie algebra M ^ g , much as we did in
group theory. The ^-module underlying M xi g is the product M x g , and the
product is given by the formula

As in group theory, M xi g is a Lie algebra and both M x O and 0 x g are Lie
subalgebras.

We will study other Lie algebra extensions of g by M in section 7.6 below.
But first, here is an interpretation of Hl(g, M) in terms of automorphisms of
M x] g; it is the analogue of a result for semidirect products of groups (exercise
6.4.2). We say that a Lie algebra automorphism a of M x g stabilizes M and
g if o(m) = m for all m in M = M x 0 and if the induced automorphism on
the quotient g = (M xi g)/M is the identity, that is, if there is a commutative
diagram of Lie algebras:

0 —> M —> M xi g — • g —> 0

0 —> M —> M x g — > g — ^ 0 .

Exercise 7.4.4 If D is a derivation of g into Af, show that GD, defined by

) = (m + D(g), g),

is a Lie algebra automorphism of M xi g that stabilizes M and g. Then show
that Der(g, M) is isomorphic to the subgroup of Aut(M xi g) of all automor-
phisms stabilizing M and g. Evidently the inner derivations correspond to the
subgroup of all "inner" automorphisms of the form

a(m, g) = (m + ga, g), a e M.
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232 Lie Algebra Homology and Cohomology

In this way we can identify H1(Q, M) with a subquotient of Aut(M x g).

Exercise 7.4.5 (Extensions of g-modules) Use the natural isomorphism
Extl

u&(M, N) ^ Hl($, Homk(M, N)) of exercise 7.3.5 to interpret Hl in
terms of extensions of g-modules. In particular, show that Hl(#, N) classifies
extensions of g-modules of the form

Exercise 7.4.6 Let g be a restricted Lie algebra over a field of character-
istic / ? / 0 , and let N be a restricted g-module (exercise 7.3.9). Show that
ftL(g, N) classifies extensions of restricted g-modules of the form

Conclude that the natural map //rL(g, N) ->• H1(Q, M) is an injection.

7.5 The Hochschild-Serre Spectral Sequence

In this section we develop the Hochschild-Serre spectral sequence, which is
the analogue of the Lyndon/Hochschild-Serre spectral sequence for groups.
The analogue of a normal subgroup of a group is an ideal of a Lie algebra.
If \) is an ideal of g, then g/f) inherits a natural Lie algebra structure from g,
and there is an exact sequence of Lie algebra homomorphisms

The proof of the following lemma is exactly the same as the proof of the
corresponding result 6.8.4 for groups, and we omit it here.

Lemma 7.5.1 If \) is an ideal of a Lie algebra g and M is a %-module,
then both M^ and M^ are g/t)-modules. Moreover, the forgetful functor from
g/[)-mod to g-mod has —^ as left adjoint and —^ as right adjoint.

Hochschild-Serre Spectral Sequence 7.5.2 For every ideal f) of a Lie alge-
bra g, there are two convergent first quadrant spectral sequences:

E2
pq = Hpio/f), Hq(f), A/)) => Hp+q(g, M)

pq , M)) =» Hp+q(g, M).
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7.5 The Hochschild-Serre Spectral Sequence 233

Proof We claim that the functors — fl and —0 factor as follows.

g-mod —> g/f)-mod g-mod —> g/f)-mod

The proof of this claim is the same as the proof of the corresponding claim for
groups, and we leave the translation to the reader. To apply the Grothendieck
spectral sequence (5.8.3), we need only see that —j> preserves projectives and
that —̂  preserves injectives. This follows from the preceding lemma (see
2.3.10): — fj is left adjoint and —̂  is right adjoint to the forgetful functor, which
is an exact functor. O

Low Degree Terms 7.5.3 The exact sequences of low degree terms in the
Hochschild-Serre spectral sequence are

0, M) -> //i(0/f), Mj,) -> 0;

0 -> i / 1 ^ / ! ) , M^) -> Z/1^ , M) -> Z/ 1 ^ , M)fl/^ -^> #2(0/f), M^) - • / /2(0, M).

Exercise 7.5.1

1. Show that there is an exact sequence

#2(fl/f), *) 0 [fl, W - • (1^ - • g ^ -> (0/())^ ^ 0.

2. If M is a g/[)-module, show that there is an exact sequence

0 - • Der(0/f), M) -* Der(0, M) -> Hom0({)aZj, M) -> //2(0/f), M) - • H2(g, M).

3 . L e t ri3 b e t he n i l p o t e n t L i e a l g e b r a of s t r ic t ly u p p e r t r i a n g u l a r 3 x 3

m a t r i c e s o v e r k ( 7 . 1 .3 ) . U s i n g t h e e x t e n s i o n

0 -> ke\3 -> xi3(k) -> ken 0 ke23 -> 0,

calculate 7/*(n3, k) and //*(ri3, /:).
4. Let g be the Lie subalgebra of gl3 generated by e\\, en, <?i3, and ^23- Use

the extension 0->ri3—•$—•/:—•() to compute Z / 1 ^ k) and //2(g, A:).

Exercise 7.5.2 Suppose that f is a free Lie algebra on a set of generators of
a Lie algebra Q and that r is the kernel of the natural surjection f —> Q. Using
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234 Lie Algebra Homology and Cohomology

the low degree sequence 7.5.3, show that the analogue of Hopf's theorem 6.8.8
holds, that is, that

Exercise 7.5.3 (Inflation and restriction) The forgetful map g -mod^ f)-mod
is exact for every Lie algebra homomorphism \) -^ g. Show that the natural
injection M0 ->• M^ extends to a morphism res?: //*(g, M) -> H*(fy, M) of
5-functors, called the restriction map. If f) is an ideal of g, the inflation map is
the composite

inf: H*(o/t), M) ^> //*(g, m*>) -> //*(g, M).

Show that the edge maps of the Hochschild-Serre spectral sequence for
//*(g, M) are the inflation and restriction maps. (Cf. 6.7.1, 6.8.2.)

7.6 H2 and Extensions

In Chapter 6 we showed that H2(G; A) classified extensions of groups. There
is an analogous result for H^Q(Q, M), which we shall establish in this section.

Definition 7.6.1 An extension of Lie algebras (of g by M) is a short exact
sequence of Lie algebras

in which M is an abelian Lie algebra. Such an extension makes M into a
g-module in a well-defined way: If g e g and m e M, define gm to be the
product [g, m] in e, where 7t(g) = g. Since M is abelian, gm is independent
of the choice of g.

Exercise 7.6.1 Let M be a g-module, and form the semidirect product

1. Show that the induced g-module structure on M agrees with the original
g-module structure.

2. We say an extension splits if n has a Lie algebra section o\ g —• e. Show
that an extension splits if and only if e is isomorphic to the semidirect
product Lie algebra M x g constructed in 7.4.9, and that under this iso-
morphism 7i corresponds to the projection M x g —> g.
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7.6 H2 and Extensions 235

3. Let e = n?>{k) to be the Lie algebra of strictly upper triangular matrices.
Show that [e, e] is the 1-dimensional subalgebra ke\?> of matrices sup-
ported in the (1,3) spot, and that g = tab is a 2-dimensional abelian Lie
algebra. Finally, show that the following extension does not split:

Extension Problem 7.6.2 Given a g-module M, we would like to determine
how many extensions of g by M exist in which the induced action of g on
M recovers the given g-module structure of M. As with groups (6.6.2), we
say that two extensions 0 -» M -+ e; -> g - • 0 are equivalent if there is an
isomorphism tp\ t\ = e2 so that

0 —> M — • ei —> g —^ 0

0 —> M —> e2 —> Q —> 0

commutes, and we ask for a description of the set Ext(g, M) of equivalence
classes of extensions.

Classification Theorem 7.6.3 Let M be a ^-module. The set Ext(g, M) of
equivalence classes of extensions of Q by M is in 1-1 correspondence with

The canonical approach to classifying extensions of groups (Chapter 6, sec-
tion 6) has an analogue only for extensions in which $ is a free /:-module (e.g.,
if A: is a field). Rather than pursue that method, which calls for a canonical g-
module resolution of k and a notion of 2-cocycle (see exercise 7.7.5), we shall
resort to a more functorial method.

Suppose first that O ^ M ^ - e - ^ g — > 0 i s a n extension of g by an abelian
Lie algebra M. The low degree terms sequence of 7.5.3 with \) = M is

0 -> / / !(g, M) -> / / !(e, M) -+ Hom0(M, M) -^> //2(g, M) -> //2(e, M).

This sequence is natural with respect to extensions, so d2: Homg{M,M)^>
H2(g,M) depends only on the equivalence class of the extension in Ext(g,M).
Therefore assigning d2(idM) to the extension gives a well-defined set map
from Ext(g, M) to //2(g, Af), called the classifying map.

Before showing that the classifying map is a bijection, we consider a uni-
versal case. Choose a presentation ofg: 0 - ^ t — > f ^ g ^ O with f free on
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236 Lie Algebra Homology and Cohomology

some set. Modding out by the ideal [r, r] of f gives an extension of g by xab =
t / [ r , r ] :

Let u e H2(Q, xab) be the image of this extension under the classifying map.
If e -> g is a central extension of g by M, we can lift f —> g to a map f —> e.

This yields maps of Lie algebra extensions:

0 — • t —* f —• g —+ 0t —

1
xab _

M -

-> f
1

-»• f/[t,t]

1
0 Q

Comparing low degree term sequences (for the Hochschild-Serre spectral se-
quences 7.5.2) and using 7.2.5 yields a diagram

Homfl(M, M) —> H2(Q,M)

(r^, M) -^-> //2(g, M)

I ~ II

,2

Q 2M)

Exercise 7.6.2 In this exercise we show that u e //2(g, tah) is universal in
the sense that the class of any extension of g by M is <p*(u) for some <p e
Homg(t^, M). To do this, let cp: xab ->• M be the map induced from f —• e.
Considered as an element of Homg(r^^, M) we see from (*) that d2(<p) =
d2(idM) in //2(g, M). Show that the corresponding map <p*: //2(g, xah) ->
//2(g,M) sends w to t/2(idM).

Lemma 7.6.4 Every element of H2(Q, M) arises as the class of an extension.

Proof Since f is free, //2(f, M) = 0. By (*), every element of //2(g, M) is
d2(<p) for some element cp of
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7.6 H2 and Extensions 237

H\x, M ) S ^ Hom*(t**, A/)0 = Hornet**, M).

Regarding M as an f-module via f -> g, form the semidirect product M xi f.
The set f) = {(<p(—r), r) : r e r} is an ideal o f M x f ; set e = (M xi f)/f). Evi-
dently [) D M = 0 so we have an extension

0-> M -> e ^ g - > 0

together with a map f -> e over g. The resulting map from Hom0(M, M) to
, M) sends id^ to (p. By diagram (*), the class of this extension is
= d2(<p) as desired. O

We are now ready to prove the classification theorem. The above lemma
shows that the classifying map Ext(g, M) -> //2(g, M) is onto; it suffices to
show that this map is an injection. Suppose that O - » A f - > e / - * g - » O (/ =
1, 2) are two extensions of g by M that both map to 0 e //2(g, M).

Choosing lifts T[\ f -> e/, the above argument yields ^/ G Homg(t^, M)
with d2((pi) = 9 in diagram (*). By making f larger if necessary, we may
assume that f maps onto both ei and t^. (For this it suffices to add M to the
set of generators of f.) Since d2(cp2 — <pi) = 0, we see from (*) that there is a
derivation D: f -> M such that the class of D in //!(f, M) maps to <p2 — <p\ in
Hom0(t^, M). Define a map r: f —> ei by sending x e f to r\ (x) + D(x). This
is a Lie algebra homomorphism, since

= [Tl(x),Ti(y)]+x(Dy)-y(Dx)

There is no harm in replacing r\ by r, except that we replace cp\ by cp\ + D =
cp2 in Homfl(t^, M). We are now in the situation

0 —•> t —> f — • g — • 0

0 — • M —> tt —> g — • 0.

As f maps onto e/, we see that ker(< )̂ is an ideal of f and that t\ = f/ ker(^) =
t2- As this isomorphism is a homomorphism over g, ci, and e2 define the same
element of Ext(g, M). O
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238 Lie Algebra Homology and Cohomology

Exercise 7.6.3 We saw in Corollary 7.2.5 that if f is a free Lie algebra on a
set, then Hn(f, M) = 0 for n > 2 and all f-modules M. Give a direct proof that
//2(f, M) = 0 by showing that all extensions O - * f j - * e - * f - * O split. Show
that conversely if g is free as a ^-module and H2(g, M) = 0 for all g-modules
M, then g is a free Lie algebra. Hint: Writing g = f/r for some free Lie algebra
f, with r c [f, f], it suffices to show that r = [f, r] (exercise 7.2.5). But H2(g,
t / [ f , t ] )=O.

Exercise 7.6.4 (Restricted extensions) Let k be a field of characteristic p ^ 0.
Let g be a restricted Lie algebra and M a restricted g-module such that M^ =
0. (See exercise 7.3.9.) A restricted extension e of g by M is a restricted Lie
algebra e containing M as a restricted ideal, together with a restricted ho-
momorphism e ->• g whose kernel is M. Let Extres(g, M) denote the equiva-
lence classes of restricted extensions of g by M, e and z' being equivalent if
there is a restricted homomorphism e —• er over g. Show that there is a natu-
ral isomorphism Extres(£, M) = H£S(Q, M) compatible with the isomorphism
Ext(g, M) = #2(g, M) of the Classification Theorem 7.6.3.

7.7 The Chevalley-Eilenberg Complex

Throughout this section g will denote a Lie algebra over k that is free as a
/c-module. We shall construct the t/g-module chain complex V*(g) originally
used by C. Chevalley and S. Eilenberg [ChE] in 1948 to define #*ie(g, M).

Let Ap# denote the //^-exterior product of the ^-module g, which is gen-
erated by monomials x\ A • • • A xp with X[ e g; see 4.5.1 above. Our chain
complex has Vp(g) = Ug <g>k Apg; since Apg is a free /c-module, Vp(g) is free
as a left Ug-modu\e. By convention, A°g = k and A1^ = g, so Vb = ^ 0 and
Vi = L̂ g 0A: g. We define e : Vo(g) = Ug -> A: to be the augmentation 7.3.5
and d: Vi(g) -> Vb(fl) t 0 be the product map d(u ® x) = ux from Ug (8) g to
£/g whose image is the augmentation ideal 3. By 7.3.5, we have an exact se-
quence

Vi(g) ^ V0(g) ^ k ^ 0.

Definition 7.7.1 For p > 2, let d: Vp(g) -> Vp_i(g) be given by the formula
d(u ® JCI A • • • A JCP) = 0\ + 02> where (for u eUg and x; G g):

—l)i+1wx/ (8) x\ A - • • A xi A • • • Axp

1 = 1

02 = T ^ ( — 1 ) I + I / ' M (8) [AT/JCy] A X\ A • • • A Xi A • • • A Xj A • • • A X
p.
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7.7 The Chevalley-Eilenberg Complex 239

(The notation xi indicates an omitted term.) For example, if p = 2, then

d(u <g>xAy) = ux<g)y — uy <g> x — w <g) [xy].

V*(g) with this differential is called the Chevalley-Eilenberg complex. It is
sometimes also called the standard complex.

Exercise 7.7.1 Verify that d2 = 0, so that V* is indeed a chain complex of
f/g-modules. Hint: Writing d(Ot) — On + 0/2, show that —On is the / = 1 part
of 02i and that 022 = 0. Then show that —0i2 is the i > 1 part of 021-

Theorem 7.7.2 V*(fl) —̂ > k is a projective resolution of the ^-module k.

Proof (Koszul) It suffices to show that Hn(V*($)) = 0 for n ^ 0.
Choose an ordered basis {ea} of Q as a ^-module. By the Poincare-Birkhoff-

Witt Theorem (7.3.7), Vn(g) is a free /:-module with a basis consisting of terms

(*) ej (8> (eai A • • • A ett/i)» a\ < • • • < an and / = (/?i, • • •, ^m) increasing.

We filter V*(g) by /c-submodules, letting F p Vn be the submodule generated by
terms (*) with m + n < p. Since [e,-e/] is a linear combination of the ea in g,
this is actually a filtration by chain subcomplexes

0 c FoV* c Fi V* c • • • c V*(a) = UFPV*.

This filtration is bounded below and exhaustive (see 5.4.2), so by 5.5.1 there is
a convergent spectral sequence

E°pq = FpVp+q/Fp-iVp+c! => Hp+q(V*(a)).

This spectral sequence is concentrated in the octant p > 0, q <0, p + q > 0.
The first column is FoV*, which is zero except in the (0,0) spot, where E®0 is

We claim that each column E^ is exact for p ^ O . This will prove that the

spectral sequence collapses at El, with El
pq =0 for (p,q) ^ (0, 0), yielding

the desired computation: Hn(V*) = 0 for n ^ 0.
Let Aq be the free A:-submodule of Ug on basis

{̂ 7 ; / = (f3h .. •, pq) is an increasing sequence}.

Then Aq = FqVo/Fq-iVo and E°pq = A-q ®k Ap+qg. Moreover, the formula
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240 Lie Algebra Homology and Cohomology

for the differential in V* shows that the differential d°: E®pq -> E® x is given
by

d°(a 0 eai A • • • A ean) = 0\ =

We saw in exercise 7.3.6 that A = AQ 0 A\ 0 • • • is a polynomial ring on the
indeterminates ea : A = k[e\, ei, • • •]• Comparing formulas for d, we see that
the direct sum 0 E^ of the chain complexes E^ is identical to the Koszul
complex

A ®k A*g = A*(0Aea) = K(x)

of 4.5.1 corresponding to the sequence x = (e\, ei, • • •). Since x is a regular
sequence, we know from loc. cit. that

Hn(x, A) = Hn(At 5A *fl)
OO

p=0

OO

p° >̂ — ffi F1

^p*^ ~~ V]7 P,n-pp=0

is zero for n ^ 0 and A/xA = k for n = 0. Since £Q0 = fc, it follows that
E\ = 0 for (/?, ^) ^ (0, 0), as claimed. <0>

Corollary 7.7.3 (Chevalley-Eilenberg) If M is a right %-module, then the
homology modules H*(Q, M) are the homology of the chain complex

M ®UQ V*(g) = M ®Ug UQ ®k A*g = M ®k A*g.

If M is a left ^-module, then the cohomology modules //*(g, M) are the coho-
mology of the cochain complex

Homg(V(g), M) = Hom9(£/g (g)* A*g, M) ^ Hom^(A*g, M).

In this complex, an n-cochain f:Ang^M is just an alternating k-multilinear
function f(x\,--',xn)ofn variables in g, taking values in M. The cobound-
ary 8f of such an n-cochain is the (n + I)-cochain

Sf(xu • • •, xn+i) =
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7.7 The Chevalley-Eilenberg Complex 241

Application 7.7.4 (Cohomological dimension) If g is n-dimensional as a
vector space over a field k, then Hl(g, M) = Hi(g, M) = 0 for all / > n. In-
deed, Alg = 0 in this range. The following exercise shows that Hn(g, M) ^ 0
for some g-module M, so that g has cohomological dimension n = dim^(g).

Exercise 7.7.2 If k is a field and g is n-dimensional as a vector space, show
that U$ has global dimension rc (4.1.2). To do this, we proceed in several steps.
First note that pduQ(k) < n because V*(g) is a projective resolution of k.

1. Let Ang = k be given the g-module structure

n

[ y , X \ A ••• A l n ] = ^ ] l i A ••• A [ y X i ] A ••• A * n .
i = l

Show that #"(0, A*g) = /:. This proves that pdUQ(Ang) = n and hence
thatg/.dim(£/g) > n.

2. Use the natural isomorphism Ext£^(M, N) = H^ic(g, Homk(M, N))
(exercise 7.3.5) and the Global Dimension theorem 4.1.2 to show that
gl. dim(Ug) < n, and hence that gl. dim(Ug) = n.

Exercise 7.7.3 Use the Chevalley-Eilenberg complex to show that

Exercise 7.7.4 (1-cocycles and module extensions) Let M be a left g-module.

If 0 -> M —> N —> k —> 0 is a short exact sequence of g-modules, and n e N
is such that n(n) = 1, define / : g -> M by f(x) = xn. Show that / is a 1-
cocycle in the Chevalley-Eilenberg complex Hom&(A*g, M) and that its class
[/] e Hl(g, M) is independent of the choice of n. Then show that Hl(g, M)
is in 1-1 correspondence with the equivalence classes of g-module extensions
of k by M. (Compare to exercise 7.4.5.)

Exercise 7.7.5 (2-cocycles and algebra extensions) Let M be a left g-module,
with g free as a ^-module.

1. If 0 ->• M —• e —> g —• 0 is an extension of Lie algebras, and a\ g ->
e is a ^-module splitting of n, show that the Lie algebra structure on
e = M x g may be described by an alternating ^-bilinear function f:gx
g -> M defined by

[cr(x), cr(y)] = a([xy]) + / (* , v), x, v e g.
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242 Lie Algebra Homology and Cohomology

Show that / is a 2-cocycle for the Chevalley-Eilenberg cochain complex
Hom^(A*g, M). Also, show that if a' is any other splitting of JT, then
the resulting 2-cocycle / ' is cohomologous to / . This shows that such
an extension determines a well-defined element [/] e H£iQ(Q, M).

2. Using part (1), show directly that #Lie(g, M) is in 1-1 correspondence
with equivalence classes of Lie algebra extensions of g by M. This is
the same correspondence as we gave in section 7.6 by a more abstract
approach.

Exercise 7.7.6 If M is a right g-module and g e g , show that the formula

(m ® x\ A • • • A xp)g = [mg] ® x\ A • • • A xp

m <S> x\ A • • • A [xtg] A • • • A Xp

makes M ® V*(g) into a chain complex of right g-modules. Then show that
the induced g-module structure on //*(g; M) is trivial.

7.8 Semisimple Lie Algebras

We now restrict our attention to finite-dimensional Lie algebras over a field k
of characteristic 0. We will give cohomological proofs of several main theo-
rems involving solvable and semisimple Lie algebras. First, however, we need
to summarize the main notions of the classical theory of semisimple Lie alge-
bras.

Definitions 7.8.1 An ideal of g is called solvable if it is solvable as a Lie
algebra (see 7.1.7). It is not hard to show that the family of all solvable ideals
of g forms a lattice, because the sum and intersection of solvable ideals is a
solvable ideal [JLA, 1.7]. If g is finite-dimensional, there is a largest solvable
ideal of g, called the solvable radical rad g of g. Every ideal f) of g contained
in rad g is a solvable ideal.

A Lie algebra g is called simple if it has no ideals except itself and 0, and
if [0̂  0] 7̂  0 (i-e-> 0 = [£J> 0])- F°r example, sln{k) is a simple Lie algebra for
n > 2 (as char(£) / 2).

A Lie algebra g is called semisimple if rad g = 0, that is, if g has no nonzero
solvable ideals. In fact, g is semisimple iff g has no nonzero abelian ideals; to
see this, note that the last nonzero term (rad g) ( n - 1 ) in the derived series for
rad g is an abelian ideal of g. Clearly simple Lie algebras are semisimple.

Lemma 7.8.2 If g is a finite-dimensional Lie algebra, then g/(radg) is a
semisimple Lie algebra.
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7.8 Semisimple Lie Algebras 243

Proof If not, g/radg contains a nonzero abelian ideal a = fj/radg. But
[a, a] = 0, so r/ = [I), ()] must lie inside rad g. Hence tf is solvable, and there-
fore so is f). This contradicts the maximality of rad g. O

Definition 7.8.3 (Killing form) If g is a Lie subalgebra of gln we can use ma-
trix multiplication to define the symmetric bilinear form /3(JC, y) = traceQty)
on g. This symmetric form is "g-invariant" in the sense that for JC, y, z G g
we have p([xy], z) = fi(x, [yz]), or equivalently 0([xy]9 z) + /3(JC, [ZJ]) = 0.
(Exercise!)

Now suppose that g is an n-dimensional Lie algebra over k. Left multiplica-
tion by elements of g gives a Lie algebra homomorphism

ad: g -> Lie(End^(g)) = gln,

called the adjoint representation of g. The symmetric bilinear form on g ob-
tained by pulling back /3 is called the Killing form of g, that is, the Killing
form is K(X, y) = trace(aJ(x)aJ(y)). The importance of the Killing form is
summed up in the following result, which we cite from [JLA, III.4]:

Cartan's Criterion for Semisimplicity 7.8.4 Let & be a finite-dimensional
Lie algebra over afield of characteristic 0.

L g is semisimple if and only if the Killing form is a nondegenerate sym-
metric bilinear form on the vector space g.

2. Ifg c $[n and g is semisimple, then the bilinear form /3(x,y) = trace (xy)
is also nondegenerate on g.

Structure Theorem of Semisimple Lie Algebras 7.8.5 Let g be a finite-
dimensional Lie algebra over a field of characteristic 0. Then g is semisimple
iff g = QI x g2 x • • • x gr is the finite product of simple Lie algebras g/. In
particular, every ideal of a semisimple Lie algebra is semisimple.

Proof If the g/ are simple, every ideal of g = gi x • • • x gr is a product of g; 's
and cannot be abelian, so g is semisimple.

For the converse, it suffices to show that every minimal ideal a of a semisim-
ple Lie algebra g is a direct factor: g = a x b. Define b to be the orthogonal
complement of a with respect to the Killing form. To see that b is an ideal of
g, we use the g-invariance of AT: for a e a, b e b, and x e g,

K(a,[x,b]) = K([ax],b) = 0

because [ax] e a. Hence [xb] e b and b is an ideal of g.
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244 Lie Algebra Homology and Cohomology

To conclude, it suffices to show that a Pi b = 0, since this implies g = a x b.

Now a fl b is an ideal of g; since a is minimal either a n b = a o r a H b = 0.

If a fl b = a, then K([a\a2], x) = tc(a\, [tf2*]) = 0 for every a\, #2 £ ci and

Jt e g. Since K is nondegenerate, this implies that \_a\a2\ = 0. Thus a is abelian,

contradicting the semisimplicity of g. Hence a f) b = 0, and we are done. <C>

Corollary 7.8.6 If$ is finite-dimensional and semisimple (and char(k) = 0),
then g = [g, g]. Consequently,

Proof If g = [g, g], then ga/? = 0. On the other hand, we saw in 7.4.1 and 7.4.8
that #1(0, it) ^ Qab and /^(g, it) ^ Hom*(flfl*, it). O

Corollary 7.8.7 Ifg c g[n w semisimple, then gc.sln = [gln, g[n].

Exercise 7.8.1 Suppose that A; is an algebraically closed field of characteristic
0 and that g is a finite-dimensional simple Lie algebra over k.

1. Use Schur's Lemma to see that Hom0(g, g) = k.
2. Show that g = Hom&(g, k) as g-modules.
3. If / : g ® g -> & is any g-invariant symmetric bilinear form, show that /

is a multiple of the Killing form K, that is, f = aic for some a e k.
4. If V is any ^-vector space and f:g<8>&^ V is any g-invariant symmet-

ric bilinear map, show that there is a v e V such that f(x,y) = ic(x,y)v.

Exercise 7.8.2 (Counterexample to structure theorem in char, p ^ 0) Let k
be a field of characteristic p ^ 0, and consider the Lie algebra gin, n > 3.
Show that the only ideals of Qin are $in = [g(n, g(n] and the center fc-1. If p\n,
show that the center is contained inside $in. This shows that pgin = &ln/k-l
has only one ideal, namely psin = sln/k-l, and that psln is simple. Conclude
that pgln is semisimple but not a direct product of simple ideals and show that

The Casimir Operator 7.8.8 Let g be semisimple and let M be an m-
dimensional g-module. If rj is the image of the structure map

then g = J) x ker(p), f) c g[m, and the bilinear form p on Pj is nondegenerate
by Cartan's criterion 7.8.4. Choose a basis [e\, • • •, er] of f); by linear algebra
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7.8 Semisimple Lie Algebras 245

there is a dual basis {e\ • • •, er} of rj such that /3(e,, e7) = <5/7. The element
CM = 5^ eie' e ^ 9 *s caHed the Casimir operator for M; it is independent of
the choice of basis for f). The following facts are easy to prove and are left as
exercises:

1. If x e g and |>/, x] = Y^cijeh t n e n [*» ^7] = 2Lc0"^-
2. CM is in the center of Ug and CM e 3. //mf: Use (1).
3. The image of CM in the matrix ring Endfc(M) is r/m times the identity

matrix. In particular, if M is nontrivial as a g-module, then r ^ O and CM
acts on M as an automorphism. Hint: By (2) it is a scalar matrix, so it
suffices to show that the trace is r = dim(rj).

Exercise 7.8.3 Let g = sl2 with basis x = (° *), y = (° °), A = (^_°1). If M is

the canonical 2-dimensional g-module, show that CM = 2xy — h + h2/2, while

its image in End(M) is the matrix (0 3/2)-

Theorem 7.8.9 Let gbe a semisimple Lie algebra over afield of characteris-
tic 0. If M is a simple ^-module, M ^ k, then

Hiie(g,M) = H^ie(g,M) = 0 for all 1.

Proof Let C be the center of Ug. We saw in 3.2.11 and 3.3.6 that //*(g, M) =
Tor* Q(k, M) and H*(Q, M) = Ext^ (k, M) are naturally C-modules; more-
over, multiplication by c e C is induced by c: k —• k as well as c: M -> M.
Since the Casimir element CM acts by 0 on A; (as CM € 3) and by the invertible
scalar r/m on M, we must have 0 = r/m on //*(g, M) and //*(g, M). This
can only happen if these C-modules are zero. O

Corollary 7.8.10 (Whitehead's first lemma) Let g be a semisimple Lie alge-
bra over a field of characteristic 0. If M is any finite-dimensional g-module,
then H^e(g, M) = 0. That is, every derivation from g into M is an inner
derivation.

Proof We proceed by induction on dim(M). If M is simple, then either M = k
and Hl(g, k) = g/[g, g] = 0 or else M ^ k and //*(g, M) = 0 by the theo-
rem. Otherwise, M contains a proper submodule L. By induction, H^{g, L) =
Hl(g, M/L) = 0, so we are done via the cohomology exact sequence

• • • Hl(g, L) -> Hl(g, M) -* Hl(g, M/L) • • •. O
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246 Lie Algebra Homology and Cohomology

WeyPs Theorem 7.8.11 Let g be a semisimple Lie algebra over a field of
characteristic 0. Then every finite-dimensional g-module M is completely re-
ducible, that is, is a direct sum of simple g-modules.

Proof Suppose that M is not a direct sum of simple modules. Since dim(M)
is finite, M contains a submodule M\ minimal with respect to this property.
Clearly M\ is not simple, so it contains a proper g-submodule Mo. By induc-
tion, both MQ and M2 = M\/M$ are direct sums of simple g-modules yet M\
is not, so the extension M\ of M2 by Mo must be represented (3.4.3) by a
nonzero element of

fl2, M0) ^ fl£e(fl, Hom*(M2, Mo))

(see exercise 7.3.5), and this contradicts Whitehead's first lemma. <>

Corollary 7.8.12 (Whitehead's second lemma) Let g be a semisimple Lie al-
gebra over afield of characteristic 0. If M is any finite-dimensional g-module,

Proof Since //* commutes with direct sums, and M is a direct sum of simple
g-modules, we may assume that M is simple. If M ^ k we already know the
result by 7.8.9, so it suffices to show that H2(g, k) = 0, that is, that every Lie
algebra extension

splits. We claim that e can be made into a g-module in such a way that n is a
g-map. To see this, let x be any lift of x e Q to e and define x o y to be [x, y]
for y e e. This is independent of the choice of x because k is in the center of
e. The g-module axioms are readily defined (exercise!), and by construction
7i(x o y) = [JC, 7i(y)]. This establishes the claim.

By Weyl's Theorem e and g split as g-modules, and there is a g-module
homomorphism a: g —> e splitting n such that e = k x g as a g-module. If we
choose x = cr(x), then it is clear that a is a Lie algebra homomorphism and
that e = k x g as a Lie algebra. This proves that H2(g, k) — 0, as desired. O

Remark H3(sl2, k) = k (exercise 7.7.3), so there can be no "third Whitehead
lemma."

Levi's Theorem 7.8.13 Ifg is a finite-dimensional Lie algebra over afield of
characteristic zero, then there is a semisimple Lie subalgebra C of g (called a
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7.8 Semisimple Lie Algebras 247

Levi factor ofg) such that g is isomorphic to the semidirect product

g = (rad g) x C.

Proof We know that g/(rad g) is semisimple, so it suffices to show that the
following Lie algebra extension splits.

0 -* rad g -> g -> g/rad g -> 0

If rad g is abelian then these extensions are classified by //2(g/(rad g), rad g),
which vanishes by Whitehead's second lemma, so every extension splits.

If rad g is not abelian, we proceed by induction on the derived length of
rad g. Let r denote the ideal [rad g, rad g] of g. Since rad(g/t) = (rad g)/r is
abelian, the extension

0 -> (rad g)/r -> g/r -> g/(rad g) -* 0

splits. Hence there is an ideal f) of g containing r such that g/r = (rad g)/r x
f)/t and J)/t = g/(rad g). Now

rad(fj) = rad(g) n f) = t,

and t has a smaller derived length than rad g. By induction there is a Lie
subalgebra C of f) such that f) = r x £ and C = l)/t = g/rad g. But then £
is our desired Levi factor of g. <>

Remark Levi factors are not unique, but they are clearly all isomorphic to
g/(rad g) and hence to each other. Malcev proved (in 1942) that the Levi
factors are all conjugate by nice automorphisms of g.

Historical Remark 7.8.14 (see [Bour]) Sophus Lie developed the theory of
Lie groups and their Lie algebras from 1874 to 1893. Semisimple Lie alge-
bras over C are in 1-1 correspondence with compact, simply connected Lie
groups. In the period 1888-1894 much of the structure of Lie algebras over
C was developed, including W. Killing's discovery of the solvable radical and
semisimple Lie algebras, and the introduction of the "Killing form" in E. Car-
tan's thesis. The existence of Levi factors was announced by Cartan but only
proven (publicly) by E. E. Levi in 1905. Weyl's Theorem (1925) was origi-
nally proven using integration on compact Lie groups. An algebraic proof of
Weyl's theorem was found in 1935 by Casimir and van der Waerden. This and
J. H. C. Whitehead's two lemmas (1936-1937) provided the first clues that
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248 Lie Algebra Homology and Cohomology

enabled Chevalley and Eilenberg (1948 [ChE]) to construct the cohomology
//*(g, M). The cohomological proofs in this section are close parallels of the
treatment by Chevalley and Eilenberg.

Exercise 7.8.4 If g is a finite-dimensional Lie algebra over a field of charac-
teristic 0, show that g is semisimple iff Hl(g, M) = 0 for all finite-dimensional
g-modules M.

Exercise 7.8.5 (Reductive Lie algebras) A Lie algebra g is called reductive if
g is a completely reducible g-module (via the adjoint representation). That is,
g is reductive if g is a direct sum of simple g-modules. Now assume that g is
finite-dimensional over a field of characteristic 0, so that g = (rad g) xi C for
some semisimple Lie algebra C by Levi's theorem. Show that the following
are equivalent:

1. g is reductive
2. [fl,0] = £
3. rad(g) is abelian and equals the center of g
4. g = a x C where a is abelian and C is semisimple

Then show that g(m is a reductive Lie algebra, and in fact that glm =k x $lm.

7.9 Universal Central Extensions

A central extension e of a Lie algebra g is an extension 0-^ M -> e - % g -> 0 of
Lie algebras such that M is in the center of e (i.e., it is just an extension of Lie
algebras of g by a trivial g-module M in the sense of 7.6.1). A homomorphism

over g from e to another central extension 0 - • M' -> tf —> g -* 0 is a map
/ : e —> e' such that n — it1 f. e is called a universal central extension of g if
for every central extension tf of g there is a unique homomorphism f:z—> i'
over g. Clearly, a universal central extension of g is unique up to isomorphism
over g, provided it exists. As with groups (6.9.2), if g has a universal central
extension, then g must be perfect, that is, Q = [Q,Q].

Construction of a Universal Central Extension 7.9.1 We may copy the
construction 6.9.3 for groups. Choose a free Lie algebra f mapping onto g and
let r c f denote the kernel, so that g = f/r. This yields a central extension
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7.9 Universal Central Extensions 249

If g is perfect, [f, f] maps onto g, and we claim that

0 -> (r n [f, f])/[r, f] -> [f, f]/[r, f] -> g -+ 0

is a universal central extension of g. Note that #2(0, ^) = (r fl [f, f])/[t, f] by
exercise 7.5.2.

Theorem 7.9.2 A Lie algebra g has a universal central extension iff g is
perfect. In this case, the universal central extension is

(*) 0 -> //2(g, *) ~* [f, f]/[t, f] -> 0 -> 0.

We have seen that (*) is a central extension. Set e = [f, f]/[t, f]. Since
[f, f] maps onto g, any x,y ef may be written as x = x' + r, y = y' + 5- with
x\ yr e [f, f] and r,set. Thus in f/[r, f]

[x, y] - [*', / ] + [x7, 5] + [r, / ] + [r, s] = [x\ / ] .

7T
This shows that e is also a perfect Lie algebra. If 0 -^ M -> er —> 9 -> 0
is another central extension, lift f - • g to a map 0: f —• er. Since 7T0(t) = 0,
000 ^ M. This implies that 0([t, f]) = 1. As in 6.9.5, 0 induces a map / : e —•
er over g. If /1 is another such map, the difference 8 = f\ — f: e -> M is zero
because e = [e, e] and

/1 ([*?]) = U(x) + «(*), / (v ) + 8(y)] = [fix), f(y)} = / ( [* , y]).

Hence /1 = / , that is, / is unique. <>

By copying the proofs of 6.9.6 and 6.9.7, we also have the following two
results.

Lemma 7.9.3 // 0 - > M ^ e ^ g ^ 0 and 0 - • M' -+ tr -> g -> 0 ar^
central extensions, and e is perfect, there is at most one homomorphism from e
to e; over g.

Recognition Criterion 7.9.4 Call a Lie algebra g simply connected if every
central extension 0 - > M — ^ e ^ g — > 0 splits in a unique way as a product
Lie algebra e = g x M. A central extension 0 - > M ^ e - > g - > 0 / 5 universal
iff e is perfect and simply connected. Moreover, H\{t, k) = H2(z, k) = 0. In
particular, ifg is perfect and H2(t, k) = 0, then g is simply connected.
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Corollary 7.9.5 Let g be a finite-dimensional semisimple Lie algebra over a
field of characteristic 0. Then H2(t,k) = 0 and g is simply connected.

Proof M = Hi(t, k) is a finite-dimensional g-module because it is a sub-
quotient of A2g in the Chevalley-Eilenberg complex. By Whitehead's second
lemma 7.8.12, H2(g, M) = 0, so the universal central extension is e = M x g.
By universality, we must have M = 0. O

Exercise 7.9.1 Show that simply connected Lie algebras are perfect.

Exercise 7.9.2 If 0 —• M, -> e£- —• gi -> 0 are universal central extensions,
show that 0 -> M\ x M2 - • t\ x ti -> g\ x 02 —• 0 is also a universal central
extension.

In the rest of this section, we shall use the above ideas in the construction of
Affine Lie algebras g corresponding to simple Lie algebras.

Let Q be a fixed finite-dimensional simple Lie algebra over a field k of char-
acteristic 0. Write g[t, t~l] for the Lie algebra Q <8>k k[t, t~l] over k[t, t~1].
Elements of g[f, t~l] are Laurent polynomials 5Z Jtif1 with JC, e Q and i e Z.
Since the Chevalley-Eilenberg complex V*(g[f, t~1]) is V*(g) ^ A:[r, t~l], we
have

//*(0U, ^~ 1 ] , k[t, t~1]) = //*(g, *) 0^ *[f, r x ] .

In particular, H\ = #2 = 0 (7.8.6, 7.8.12) so g[r, / - 1 ] is perfect and simply
connected as a Lie algebra over the ground ring k[t,t~1].

Now we wish to consider $[t, t~l] as an infinite-dimensional Lie algebra
over k. Since g[t, t~l] is perfect, we still have H\(g[t, t~l], k) = 0, but we
will no longer have H2(g[t,t~l],k) = 0. We now construct an example of a
nontrivial central extension of $[t, t~l] over k.

Affine Lie Algebras 7.9.6 If K: $ (8) Q -> k is the Killing form (7.8.3), set

Since /3 is alternating bilinear, it is a 2-cochain (7.7.3). Because & is a triv-
ial g[t, t"^-module, y0 is a 2-cocycle: if x = ^xit1, y = ^yjt-i, and z =
J2 Zktk, then the g-invariance of the Killing form gives
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7.9 Universal Central Extensions 251

8/3(x, y, z) = -P([xy]t z) + P([xz], y) - P([yz], x)

= £ -P(l*iyj]ti+j, zkt
k) + P([xiZk]ti+k, yjtJ) - P([yjzk]tJ+k, xtt1)

J2 [xiZkl yj) ~ U + k)K([yjZk], xt)

i+j+k=O

l+y+ifc=O

= 0.

The class [/3] e H2($[t, t~*]9k) corresponds to a central extension of Lie al-
gebras over k\

The Lie algebra g is called the Ajfine Lie algebra corresponding to g. It is a
special type of Kac-Moody Lie algebra. We are going to prove that Q is the
universal central extension of g[r, t~l] following the proof in [Wil].

Lemma 7.9.7 Q is perfect.

Proof Let p: g[t, t~l] -> g be the vector space splitting corresponding to the
2-cocycle p. If *, y e g then [p(xt*), p(yt~1)] = p([xy]) 4- i K(X, y) for i =
0, 1 so k c [g, g\. Since [g, g] maps onto the perfect g[t, t~l], we must have
S = [&§]. <>

N o w fix an arbi t rary centra l ex tens ion 0 —• M - > e — > ^ [ ^ , ^ - 1 ] —>- 0. If
o\ g[t, t~l] —> e is a vector space splitting of n, recall (exercise 7.7.5) that the
corresponding 2-cocycle fa\ A2(g[t, t~1]) —> M is defined by

and that conversely every 2-cocycle / determines a a such that / ' = fo. Let
denote the set of all splittings o of n such that

/^, y) = 0 for all x / j e g and / 6 1.

Lemma 7.9.8 S is nonempty for every central extension ofg[t, t 1 ] .

Proof Given any splitting a, write fl
G{x,y) for fa(xtl,y). Each /£(—, y)

is an element of Hom^(g, M), so we may think of fl
o as a 1-cochain, that
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252 Lie Algebra Homology and Cohomology

is, a map from g to Hom^(g, M). In fact, fl
a is a cocycle (exercise!). But

Hom^(g, M) is finite-dimensional, so by Whitehead's first lemma (7.8.10)
there exists <pl e Hom^(g, M) such that fl

G(x, y) = cpl([xy]). Assembling the
<pl into a ̂ -linear map <p:g[t, t~l] ->• Mby the rule 0>Q^*/f*) = Z^'(•*/)> we
see that the 2-cocycle 8(p: A2#[t, t~l] -» M satisfies

W l ) - - J2 fl(Xh y) = -fC£xtt\ y).

Hence the splitting r corresponding to the 2-cocycle / + 8<p is an element
of 5. O

Exercise 7.9.3 Show that S contains exactly one element.

Lemma 7.9.9 Ifk = C and a e S, then there exist dj e M such that

where K is the Killing form on g.

Proof Because a e S, we have

0 = &f(xtt\ yjtJ, z) = fo([xiz]t\ yjt
j) - fa([xit\ [z, yj]tj).

Therefore each fj(x, y) = fG(xtl, yt^) is a g-invariant bilinear form on g:

On the other hand the Killing form is a nondegenerate g-invariant bilinear
form on g. Since k = C, any g-invariant symmetric bilinear form must there-
fore be a multiple of K (exercise 7.8.1). Thus fj = KCIJ for some QJ e M.

Corollary 7.9.10 If k = C fl/i^/ a G 5, f/&en r/ier^ is a c e M such that for

Proof Setting c = ci,_i, it suffices to prove that c/,_/ = ic and that c// = 0
if / ^ — 7. As a e 5, QO = 0 for all /; since fa is skew-symmetric, we have
ctj = —Cjt. Since K is g-invariant and symmetric,

0 = 8fa(xt\ ytj, ztk) = -K(
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7.9 Universal Central Extensions 253

which yields 0 = <:,•+_/,* + Q+fc,y + cj+k,i- Taking i + j = I and k = — 1, so
that j -\-k = —i, we get

By induction on |/1 > 0, this yields c/,_/ = /c for all / G Z. Taking i + j +k =
s and k = 1, we get

Q- l , l = Q,;+l — Q+l,7-

Summing from / = 0 to s — 1 if s > 0 (or from / = s to — 1 if s < 0) yields
scs-\t\ = 0, so Q,I = 0 unless t = — 1. This yields Qj+i = C(+\j unless
/ + j — — 1. Fixing .y ^ 0, induction on |/1 shows that c/5_/ = 0 for all / G Z.

Theorem 7.9.11 (H. Garland) Let g be a finite-dimensional simple Lie alge-
bra over k = C Then the corresponding Affine Lie algebra § (7.9.6) is the
universal central extension of#[t, £ - 1].

Proof Let 0 -> M -> e —^ g[r, r 1 ] - > 0 be a central extension. Choose a
splitting a in S (7.9.8), and let c i ; G M be the elements constructed in lemma
7.9.9. Recall that there is a vector space splitting r. $[t, t~l] -> Q correspond-
ing to the 2-cocycle /?, which yields a vector space decomposition g = k x
g[r, r" 1] . Define F:k —> M by F(a) = aci7_i and extend this to a vector
space map from g to e by setting F(i{x)) = a(x) for x G g[r, ^~ 1 ] . Since

x, y]) + F(P(x, y))

, y])

and A: is in the center of g, F is a Lie algebra homomorphism Q -> e over
g[£, ^ - 1 ] . Since g is perfect, there is at most one such map, so F is unique.

•

Remark 7.9.12 If g is semisimple over C, then g = Q\ X • • • x gr for simple
Lie algebras g/. Consequently the universal central extension of g|>, t~l] is the
product

0 ^ ^ ^ f l i x . . . x g r ^ g[f, t~l] -+ 0.

If A; is a subfield of C and g is simple over k, g (8) C is semisimple over C
If g ® C is simple then since ^ ( g , k) <g>* C = //2(g ®it C, C) = C it follows
that g is still the universal central extension of g[>, t~1]. However, this fails if
g <g) C = gi x • • • x gr because then //2(g, ^) = A:r.
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8
Simplicial Methods in Homological Algebra

By now, the reader has seen several examples of chain complexes in which
the boundary maps Cn —• Cn-\ are alternating sums do — d\ H ± dn. The
primordial example is the singular chain complex of a topological space X\
elements of Cn(X) are formal sums of maps / from the ^-simplex An into X,
and d[ ( / ) is the composition of / with the inclusion A n _ iC Anof the ith face
of the simplex (1.1.4). Other examples of this phenomenon include Koszul
complexes (4.5.1), the bar resolution of a group (6.5.1), and the Chevalley-
Eilenberg complex of a Lie algebra (7.7.1). Complexes of this form arise from
simplicial modules, which are the subject of this chapter.

8.1 Simplicial Objects

Let A be the category whose objects are the finite ordered sets [n] = {0 < 1 <
• • • < n] for integers n > 0, and whose morphisms are nondecreasing mono-
tone functions. If A is any category, a simplicial object A in A is a con-
travariant functor from A to A, that is, A: Aop —> A. For simplicity, we write
An for A([n]). Similarly, a cosimplicial object C in A is a covariant functor
C: A —> A, and we write An for A([rc]). A morphism of simplicial objects is
a natural transformation, and the category SA of all simplicial objects in A is
just the functor category AA°P.

Example 8.1.1 (Constant simplicial objects) Let A be a fixed object of A.
The constant functor A —> A sending every object to A is called the constant
simplicial object in A at A. We have An = A for all n, and a* = identity
morphism for every a in A.

254
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8.1 Simplicial Objects 255

We want to give a more combinational description of simplicial (and cosim-
plicial) objects, and for this we need to study the simplicial category A di-
rectly. The reader interested in more details about simplicial sets may want to
read [May].

It is easy to see that for each n there are n + 1 maps [0] -> [n] but only one

map [n] -> [0]. There are (n+2) maps [1] -> [n] and more generally ("++I1)
maps [/] —> [n] in A. In order to make sense out of this chaos, it is useful
to introduce the face maps £; and degeneracy maps r\i. For each n and / =
0, • • •, n the map £/ : [n — 1] —> [n] is the unique injective map in A whose
image misses / and the map rji : [n + 1] —>> [n] is the unique surjective map in
A with two elements mapping to /. Combinationally, this means that

7 if / <

Exercise 8.1.1 Verify the following identities in A:

SjSi =£i£j-\ if i < j

rjjSt = | identity if / = j or i = j + 1
[ fij-i^- if/ >7 + 1.

Lemma 8.1.2 Every morphism a: [n] —> [m] m A /z«5 # unique epi-monic
factorization a — er\, where the monic e is uniquely a composition of face
maps

s = stx- - • Sis with 0 <is < • - - <i\ <m

and the epi r\ is uniquely a composition of degeneracy maps

rl = rlji'" Vh with O<ji<--<jt<n.

Proof Let is < • • • < i\ be the elements of [m] not in the image of a and
y'l < • • • < U be the elements of [n] such that a(j) = a(j + 1). Then if p =
n — t = m — s, the map a factors as

[n] ^ > [p] ^ [ml

The rest of the proof is straightforward. (Check this!) <0>
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256 Simplicial Methods in Homological Algebra

Proposition 8.1.3 To give a simplicial object A in A, it is necessary and
sufficient to give a sequence of objects An, Ai, • • • together with face operators
di'.An - • An-\ and degeneracy operators <j[\ An —• An+\ (i = 0, 1, • • •, n),
which satisfy the following usimplicial" identities

didj = dj-\di if i < j

if/ <j

I (7j-\di if/ < j

identify if i — j or / = j + 1

(Tjdi-i i f / > y + l.

Under this correspondence 3/ = A(£i) and O[ = A(rn).

Proof If A is simplicial, we obtain the above data by setting An = A([n])
and considering only faces and degeneracies. Conversely, given the data and
a map in A written in the standard form a = eix. - • rjjt of the lemma, we set
A(a) = Ojt - • • 9/r Since the simplicial identities control composition in A,
this makes A into a contravariant functor, that is, a simplicial object. <>

If we dualize the above discussion, we get cosimplicial objects. Recall that
a cosimplicial object is a covariant functor A: A - • A.

Corollary 8.1.4 To give a cosimplicial object A in A, it is necessary and suf-
ficient to give a sequence of objects A0, A1, • • • together with coface operators
dl: An~l —> An and codegeneracy operators ol\ A"+1 -> An (/ = 0, • • •, n)
which satisfy the "cosimplicial" identities

dJd( = didj~i if/ < j

aJa( =Giaj+x if i <j

I dloJ-x ifi<j
identity if / = j or i = j + I
dl-laJ i f / > y + l.

Example 8.1.5 (Simplices) The geometric n-simplex A" is the subspace
of IT+1

If we identify the elements of [n] with the vertices i>n = (1, 0, • • •, 0), • • •,
vn = (0, • • •, 0, 1) of A", then a map a: [n] -» [p] in A sends the vertices of
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8.1 Simplicial Objects 257

A" to the vertices of Ap by the rule a(v() = va^). Extending linearly gives a
map a*: An -+ Ap and makes the sequence A0, A1, • • •, A", • • • into a cosim-
plicial topological space. Geometrically, the face map ei induces the inclusion
of A""1 into A" as the ith face (the face opposite the vertex V(), and the degen-
eracy map rji induces the projection Aw+1 -> An onto the ith face that identi-
fies vt and vt+\. This geometric interpretation provided the historical origins
of the terms face and degeneracy operators.

Geometric Realization 8.1.6 If X is a simplicial set, its geometric realiza-
tion \X\ is a topological space constructed as follows. For each n > 0, topol-
ogize the product Xn x A" as the disjoint union of copies of the ^-simplex
An indexed by the elements x of Xn. On the disjoint union \\Xn x Aw,
define the equivalence relation ~ by declaring that (x,s) e Xm x Am and
(v, t) e Xn x A" are equivalent if there is a map a: [m] —> [n] in A such that
a*(y) = x and a*(s) = t. That is,

The identification space \J(Xn x An)/ ~ is the geometric realization |X|. It is
easy to see that in forming |Z| we can ignore every n-simplex of the form
Oi(y) x A", so we say that the elements <7;(j) are degenerate. An element
x e Xn is called non-degenerate if it is not of the form 07 (v) for some / < ft
and y e Xn-\\ the nondegenerate elements of Xn index the rc-cells of |X|,
which implies that |X| is a "CW complex." A more detailed discussion of the
geometric realization may be found in [May].

Example 8.1.7 (Classifying space) Let G be a group and consider the simpli-
cial set BG defined by BG0 = {1}, BG\ = G, • • •, BGn = Gn,- •. The face
and degeneracy maps are defined by insertion, deletion, and multiplication:

<*i(gu • • • ^ g n ) = ( g i , • • •, g i ,

I (g2, . . . , g n ) i f * = 0

(gu . . . , ^ i ^ / + i , • •. ,gn) ifO<i <n

(gi,..., gn-i) if i =n.
The geometric realization \BG\ of the simplicial set BG is called the clas-
sifying space of G. The name comes from the theory of fiber bundles; if
X is a finite cell complex then the set [X, \BG\] of homotopy classes of
maps X —• |Z?G| gives a complete classification of fiber bundles over X with
structure group G. We will see in 8.2.3 and 8.3.3 that \BG\ is an Eilenberg-
MacLane space whose homology is the same as the group homology //*(G)
of Chapter 6. Thus we recover definition 6.10.4 as well as 6.10.5.
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258 Simplicial Methods in Homological Algebra

Example 8.1.8 (Simplicial complexes) A (combinational) simplicial com-

plex is a collection K of nonempty finite subsets of some vertex set V such

that i f 0 ^ r C c r c V and a e K then r e K. If the vertex set is ordered, we

call K an ordered simplicial complex. To every such ordered simplicial com-

plex we associate a simplicial set SS(K) as follows. Let SSn(K) consist of

all ordered (n + l)-tuples (i>o, --- ,vn) of vertices, possibly including repeti-

tion, such that the underlying set {uo, • • •, vn] is in K. If a: [n] -> [p] is a map

in A, define a?*: SSP(K) -> SSn(K) by a*(uo, '",Vp) = (va(0), • • •, va(/i)).

Note that i>o < • • • < vn and that

9/(vo, • • •, vn) = (uo, • • •, V/-

a J ( u 0 , • - ,Vn) = (Vo, • • • , Vi , Ui , • • • , Vn).

The following exercises explain how combinatorial simplicial complexes
correspond to triangulated polyhedra. Clearly a triangulated polyhedron P
gives rise to a combinatorial simplicial simplex K whose elements correspond
to the faces of P, the vertices of P forming the vertex set V of K (see 1.1.3).

Exercise 8.1.2 Show that if K is an ordered combinatorial simplicial com-
plex, then SS(K) determines K, because there is a bijection between K and
the subset of SS(K) consisting of non-degenerate elements.

Exercise 8.1.3 Let K be the collection of all nonempty subsets of a vertex
set V having n + 1 elements. (K is the combinational simplicial complex
arising from the polyhedron A".) Show that the geometric realization |SS(AT)|
is homeomorphic to the geometric ^-simplex A".

Exercise 8.1.4 (Geometric simplicial complexes) If K is a combinatorial
simplicial complex (8.1.8), let | ^ | denote the geometric realization \SS(K)\ of
the simplicial set SS(K) associated to some ordering of K. Show that \K\ is
a triangulated polyhedron with one face eG for each a e K. (If a has n + 1
elements, then eo is homeomorphic to an n-simplex.) Therefore K is the
combinational simplicial complex arising from \K\. The polyhedron |̂ f| is
sometimes called the geometric simplicial complex associated to K.

Definition 8.1.9 (Semisimplicial objects) Let A5 denote the subcategory of
A whose morphisms are the injections e:[i]c-^ [n]. A semisimplicial object

K in a category A is a contravariant functor from As to A.

For example, an ordered combinational simplicial complex K yields a semi-

simplicial set with Kn = {r e K:T has n + 1 elements}. Every simplicial set
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8.2 Operations on Simplicial Objects 259

becomes a semi-simplicial set by forgetting the degeneracies, but the degen-
eracies provide a richer combinatorial structure.

The forgetful functor from simplicial objects to semi-simplicial objects
has a left adjoint L when A has finite coproducts; {LK)n is the coproduct
LJ/?<n LL ^pM> where for each p <n the index r\ runs over all the surjec-
tions [n] -+ [p] in A and Kp[rj] denotes a copy of Kp. The maps defining the
simplicial structure on LK are given in the following tedious exercise 8.1.5;
LK is called the left Kan extension of K along A5 C A in [MacCW, X.3].
When A is abelian we will give an alternate description of LK in exercise
8.4.3.

Exercise 8.1.5 (Left Kan extension) If a: [m] -> [n] is any morphism in A,
define LK(a): LKn -> LKm by defining its restrictions to Kp[t]] for each sur-
jection r\ as follows. Find the epi-monic factorization EY}' of rja with r/: [m] ->
[q] and e\ [q] ->• [n]; the restriction of LK(a) to ^[77] is defined to be the
map K(e) from Kp to the factor Kq[rjf] of the coproduct (LK)m. Show that
these maps make LK into a simplicial object of A.

Exercise 8.1.6 Show that a semi-simplicial object K is the same thing as
a sequence of objects KQ, K\, • • • together with face operators 9/: ^ ->•
ATn_i (/ = 0, • • •, n) such that if 1 < 7 then dtdj = dj-\dt.

dp 9o

Historical Remark 8.1.10 Simplicial sets first arose in Eilenberg and Zil-
ber's 1950 study [EZ] under the name "complete semi-simplicial sets" (c.s.s.).
For them, semi-simplicial sets (defined as above) were more natural, and the
adjective "complete" reflected the addition of degeneracies. By 1954, this ad-
jective was often dropped, and "semi-simplicial set" was a common term for a
c.s.s. By the late 1960s even the prefix "semi" was deleted, influenced by the
book [May], and "simplicial set" is now universally used for c.s.s. In view of
modern usage, we have decided to retain the original use of "semi-simplicial"
in definition 8.1.9.

8.2 Operations on Simplicial Objects

Definition 8.2.1 Let A be a simplicial (or semi-simplicial) object in an
abelian category A. The associated, or unnormalized, chain complex C =
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260 Simplicial Methods in Homological Algebra

C(A) has Cn = An, and its boundary morphism d: Cn -> Cn-\ is the alternat-
ing sum of the face operators 3,-: Cn —• Cn-\:

The (semi-) simplicial identities for 3/3y- imply that d2 = 0. (Check this!)

Example 8.2.2 (Koszul complexes) Let x = (x\, • • •, xm) be a sequence of
central elements in a ring R. Then the sequence Rm, A2Rm, • • •, An+lRm, • • •
of exterior products of Rm forms a semi-simplicial /^-module with

di(ea0 A • • • A ean) = xaieao A • • • A ea. A - • • A ean.

The Koszul complex K(x) of 4.5.1 is obtained by augmenting the chain com-
plex associated to the semi-simplicial module {An+lRm}. If R is a ^-algebra,
this defines an action of the abelian Lie algebra g = km on R, and K(x) coin-
cides with the Chevalley-Eilenberg complex 7.7.1 used to compute H*(Q, R).

An extremely useful observation is that if we apply a functor F: A - • B to
a simplicial object A in A, we obtain a simplicial object in B. Similar remarks
apply to semisimplicial and cosimplicial objects.

Example 8.2.3 (Simplicial homology) If R is a ring, the free module R[X]
on a set X is a functor Sets —• /?-mod. Whenever X = {Xn} is a (semi-)
simplicial set, R[X] = [R[Xn]} is a (semi-) simplicial /^-module. The chain
complex associated to R[X] is the chain complex used to form the simplicial
homology of the cellular complex |X| with coefficients in R. (See 1.1.3.)

Motivated by this example, we define the simplicial homology //*(X; R) of
any simplicial set X to be the homology of the chain complex associated to the
simplicial module R[X]. Thus H*(X\ R) = H*(\X\; R).

For example, consider the classifying space \BG\ of a group G (8.1.7). The
chain complex associated to R[BG] is the canonical chain complex used in
6.5.4 to compute the group homology //*(G; R) of G with coefficients in the
trivial G-module R. This yields the formula

//*(G; R) ^ H*(BG; R) = H*(\BG\; R).

Example 8.2.4 (Singular chain complex) Let X be a topological space. Ap-
plying the contravariant functor HomxOp(—, X) to the cosimplicial space {A"}
gives a simplicial set S(X) with Sn(X) = HomxOp(An, X), called the singu-
lar simplicial set of X. The singular chain complex of X used to compute the
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8.2 Operations on Simplicial Objects 261

singular homology of X with coefficients in /? (1.1.4) is exactly the chain com-
plex associated to the simplicial /^-module

Remark There is a natural continuous map |5(X)| —> X, which is a homotopy
equivalence if (and only if) X has the homotopy type of a CW complex. It
is induced from the maps Sn(X) x An ->• X sending (/, t) to fit). In fact,
S is the right adjoint to geometric realization: for every simplicial set K,
Horn-Top(I^1, X) = HomssetsC^ S(X)). These assertions are proven in [May,
section 16].

Example 8.2.5 For each « > 0 a simplicial set A[n] is given by the functor
HoniA(—, [n]). These are universal in the following sense. For each simplicial
set A, the Yoneda Embedding 1.6.10 gives a 1-1 correspondence between
elements a e An and simplicial morphisms / : A[n] —>> A; / determines the
element a/ = /(id[wj) and conversely fa is defined on A. e HomA([m], [n]) by

Exercise 8.2.1 Show that A[n] is the simplicial set SS(An) associated (8.1.8)
to the combinatorial simplicial complex underlying the geometric n-simplex
An.

Cartesian Products 8.2.6 The cartesian product A x B o f two simplicial

objects A and B is defined as (A x B)n = An x Bn with face and degeneracy

operators defined diagonally:

di(a, b) = (9/a, dtb) and crt(a, b) = (aria, O[b).

If B is a simplicial set and A is a simplicial object in a category A having
products, then we can also make sense out of A x B by defining An x Bn to
be the product of Bn copies of An. This construction is most interesting when
each Bn is finite, in which case A need only have finite products.

Exercise 8.2.2 If K and L are combinorial simplicial complexes (8.1.8),
there is a combinational simplicial complex P with |P | = \K\ x \L\ as poly-
hedra, defined by SS(P) = SS(K) x SS(L)\ see [May, 14.3] or [EZ]. Verify
this assertion by finding combinational simplicial complexes underlying the
square A1 x A1 and the prism A2 x A1 whose associated simplicial sets are
A[l] x A[l]and A[2] x A[l].

Fibrant Simplicial Sets 8.2.7 From the standpoint of homotopy theory, it
is technically useful to restrict one's attention to those simplicial sets X that
satisfy the following Kan condition:
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262 Simplicial Methods in Homological Algebra

For every n and k with 0 < k < n + 1, if xo, • • •, Xk-\,
Xn are such that 9/JC7 = 9/-iJt/ for all / < j (i and 7 not equal to k), then
there exists a y e A -̂f 1 such that dt(y) = JC/ for all / / A:.

We call such simplicial sets fibrant; they are sometimes called Kan com-
plexes after D. Kan, who first isolated this condition in 1955 and observed that
the singular simplicial set S(X) of a topological space X (8.2.4) is always fi-
brant. The class of fibrant simplicial sets includes all simplicial groups and all
simplicial abelian groups by the following calculation.

Lemma 8.2.8 If G is a simplicial group (a simplicial object in the category of
groups), then the underlying simplicial set is fibrant. A fortiori every simplicial
abelian group, and every simplicial R -module, is fibrant when considered as a
simplicial set.

Proof Suppose given x; e Gn (i ^ k) such that 9/x/ — 9/-ix/ for i < j . We
use induction on r to find gr e Gn+\ such that 9/(gr) = Xi for all / <r,i ^ k.
We begin the induction by setting g-\ = 1 e Gn+\ and suppose inductively
that g = gr-\ is given. If r = k, we set gr = g. If r ^ k, we consider u =
x~\drg). If i < r and / ^ k, then 3/(«) = 1 and hence di(aru) = 1. Hence
gr = g(oku)~l satisfies the inductive hypothesis. The element y = gn there-
fore has 3/ (y) — X[ for all i ^ k, so the Kan condition is satisfied. <>

Exercise 8.2.3 Show that A[«] is not fibrant if n ^ 0. Then show that any
fibrant simplicial set X is either constant (8.1.1) or has a non-degenerate "n-
cell" x e Xn for every n (8.1.6).

Exercise 8.2.4 Show that BG is fibrant for every group G but that BG is a
simplicial group if and only if G is abelian.

Fibrations 8.2.9 A map n: E -> B of simplicial sets is called a (Kan)^bra-
tion if

for every n, b e Bn+\ and k < n + 1, if JCO, • • •, JC*_I, jty+i, • • •, xn+\ e
En are such that 9/fr = n(xi) and d(Xj = dj-\xt for all / < j (/, j ^ k),
then there exists a y e En+\ such that n(y)=b and di(y) for all / ^ k.

This notion generalizes that of a fibrant simplicial set X, which is after all just
a simplicial set such that X —> * is a fibration. The following two exercises
give some important examples of fibrations.

Exercise 8.2.5 Show that every surjection E —> B of simplicial groups is a
fibration.
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8.3 Simplicial Homotopy Groups 263

Exercise 8.2.6 (Principal G-fibrations) We say that a group G acts on a sim-
plicial set X (or X is a simplicial G-set) if G acts on each Xn, and the action
commutes with the face and degeneracy operators. The orbit spaces Xn/G fit
together to form a simplicial set X/G\ if G acts freely on X(gx ^ x for every
g / 1 and every JC) we say that X -> X/G is a principal G-fibration. Show
that every principal G-fibration is a fibration.

Front-to-Back Duality 8.2.10 Simplicial constructions (e.g., homotopy in
8.3.11) always have a "front-to-back" dual formulation. Consider the invo-
lution "on A, which fixes every object [h\\ it is defined on the morphisms
in A by

d] = dn-i:[n-l]^[n] and G] = an-i\ [n + 1] -> [n].

We may think of it as reversing the ordering of [n] = (0 < 1 < • • • < n) to
get the ordering (n < • • • < 1 < 0). That is, if a: [m] —> [n] then a(i) = n —
a(m — i). If A is a simplicial object in A, then its front-to-back dual A is the
composition of A with this involution.

8.3 Simplicial Homotopy Groups

Given a fibrant simplicial set X (8.2.7) and a basepoint * e Xo, we define
7tn(X) as follows. By abuse of notation, we write * for the element <7Q (*) of
Xn and set Zn = {x e Xn : 3/(JC) = * for all / = 0, • • •, n}. We say that two
elements x and xf of Zn are homotopic, and write x ~ x7, if there is a j e Xn+\
(called a homotopy from x to JC') such that

Lemma/Definition 8.3.1 ifX is a fibrant simplicial set, then ~ w an equiva-
lence relation, and we set nn(X) — Zn/ ~.

Proof The relation is reflexive since y = (crnx) is a homotopy from JC to itself.
To see that ~ is symmetric and transitive, suppose given homotopies / and
y" from x to x' and from x to xr/. The Kan condition 8.2.7 applied to the
elements *,••• ,*, / , y" of Xn+\ with ^ = n + 2 yields an element z G Xn+2
with dnz = y\ dn+\z = y" and dtz = * for / < n. The element y = dn+2Z is a
homotopy from JC; to JC". (Check this!) Therefore x' ~ JC/;. O
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264 Simplicial Methods in Homological Algebra

Remark If X is a fibrant simplicial set, nn(X) agrees with the topological
homotopy group nn(\X\); see [May, 16.1]. Since 7rn(|X|) = jrn(\S(X)\), one
usually defines nn{X) as 7TnS(X) when X is not fibrant. Thus n\(X) is a
group, and nn(X) is an abelian group for n > 2.

Example 8.3.2 no(X) = XQ/ ~, where for each y e X\ we declare do(y) ~

Example 8.3.3 (Classifying space) Consider the classifying space BG of a
group G. By inspection Zn = {1} for n ^ 1 and Z\ = G. From this we deduce
that

Definition 8.3.4 If G is a group, then an Eilenberg-MacLane space of type
K(G, n) is a fibrant simplicial set ^ such that nnK — G and ntK = 0 for
i / n . Note that G must be abelian if n > 2. The previous example shows
that 5G is an Eilenberg-MacLane space of type K(G, 1). In the next section
(exercise 8.4.4), we will construct Eilenberg-MacLane spaces of type K(G, n)
for n > 2 as an application of the Dold-Kan correspondence 8.4.1. The term
"space," rather than "simplicial set," is used for historical reasons as well as to
avoid a nine-syllable name.

Exercise 8.3.1 If G is a simplicial group (or simplicial module), considered
as a fibrant simplicial set, show that any two choices of basepoint lead to
naturally isomorphic nn(G). Hint: Go acts on G.

If G is a simplicial group (or simplicial module), considered (by 8.2.8)
as a fibrant simplicial set with basepoint * = 1, it is helpful to consider the
subgroups

Nn(G) = {x e Gn : dtx = 1 for all i ^ n}.

Then Zn = ker(3n: Nn -> A^-i) and the image of the homomorphism dn+\\
Nn+\ -+ Nn is Bn = {x : x ~ 1}. Hence nn(G) is the homology group Zn/Bn

of the (not necessarily abelian) chain complex TV*

1 xr 9 l \r 9 2 \r

1 <r- NQ <— N\ <— N2 < .
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8.3 Simplicial Homotopy Groups 265

Exercise 8.3.2 Show that Bn is a normal subgroup of Zn, so that 7tn(G) is a
group for all n > 0. Then show that nn{G) is abelian for n > 1. //z>tf: Consider

and (a^Hcr^-iy) for*, j G Gn.

Exercise 8.3.3 If G —> G" is a surjection of simplicial groups with kernel G',
show that there is a short exact sequence of (not necessarily abelian) chain
complexes 1 -> NGr -» NG -> NG" —• 1. By modifying the discussion in
Chapter 1, section 3 show that there is a natural connecting homomorphism
d: nnG" -> nn-\G' fitting into a long exact sequence

• • * Kn+\G" > TCnG' - > 7TnG - > I n G ' ' > 7Tn-\G
f

Remark 8.3.5 More generally, suppose that n: E -> 5 is a fibration with £
and 5 fibrant. Suppose given basepoints *^ e £̂ o and *^ = TT(*E) € 5o; the
fibers Fn = TC~1(OQ(*)) form a fibrant simplicial subset F of E. Given b e Bn

with 3/(Z?) = * for all /, the fibration condition yields e e En with 7t(e) = b
and d((e) = * for all / < n. The equivalence class of dn(e) in nn-\(F) is
independent of the choices of e and induces a map dn:nn(B) —> nn-\(F)
fitting into a long "exact" sequence of homotopy "groups":

• • • nn+x(B) -^ nn(F) - • nn(E) ^ > nn(B) ^ nn^(F)

For more details, see [May].

This remark and exercise 8.3.3 show that the homotopy groups n* form a
(nonabelian) homological 8-functor. This observation forms the basis for the
subject of nonabelian homological algebra. We shall not pursue this subject
much, referring the reader to [DP] and [Swan 1]. Instead we use it as a model
to generalize the definition of homology to any abelian category A, even if the
objects of A have no underlying set structure.

Definition 8.3.6 (Homotopy groups) Suppose that A is a simplicial object in
an abelian category A. The normalized, or Moore, chain complex N(A) is the
chain complex with

n-\

^,(A)=P|kerO/:An->An_i)
i=0

and differential d = (— \)ndn. By construction, N(A) is a chain subcomplex of
the unnormalized complex C(A) and we define
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266 Simplicial Methods in Homological Algebra

nn(A) = Hn(N(A)).

If A is the category of abelian groups or /^-modules, this recovers the defi-
nition 8.3.1 of JTn(A) obtained by regarding A as a fibrant simplicial set and
taking homotopy.

Exercise 8.3.4 Show that N(A) is naturally isomorphic to its front-to-back
dual N(A) = TV (A), which has Nn(A) = {x e An : dtx = 0 for all i ^ 0} and
differential d0. (See 8.2.10.)

Now let D(A) denote the "degenerate" chain subcomplex of C(A) gener-
ated by the images of the degeneracies 07, so that Dn(A) = J2 °i (Cn-\A).

Lemma 8.3.7 C(A) = N(A) 0 D(A). Hence N(A) ^ C(A)/D(A).

Proof We will use an element-theoretic proof, which is valid by the Freyd-
Mitchell Embedding Theorem 1.6.1. An element of Dn(A) is a sum y =
]T Oj{xj) with xi e Cn-\(A). If y e Nn{A) and / is the smallest integer such
that Oi{xi) ̂  0, then 9/(v) = JC/, which is a contradiction. Hence DnC\Nn = 0.
To see that Dn + Nn = Cn, we pick y eCn and use downward induction on
the smallest integer j such that dj(y) / 0. The element y is congruent modulo
Dn to / = y — <7jdj(y), and for / < j the simplicial identities yield

3i(/) = di(y) - crj-idj-iddy) = 0.

Since 9/( / ) = 0 as well, yf is congruent modulo Dn to an element of Nn by
induction, and hence Dn + Nn = Cn. O

Theorem 8.3.8 In any abelian category A, the homotopy n*(A) of a simpli-
cial object A is naturally isomorphic to the homology //*(C) of the unnormal-
ized chain complex C = C(A):

Proof It suffices to prove that D(A) is acyclic. Filter D(A) by setting F$Dn —
0, FpDn = Dn if n < p and FpDn = ao(Cn_i) H h ap{Cn-\) otherwise.
The simplicial identities show that each FpD is a subcomplex. (Check this!)
Since this filtration is canonically bounded, we have a convergent first quad-
rant spectral sequence

El
pq = Hp+q{FpD/Fp-\D) =• Hp+q{D).
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8.3 Simplicial Homotopy Groups 267

Therefore it suffices to show that each complex FpD/Fp-\D is acyclic.
Note that (FpD/Fp-\D)n is a quotient of ap(Cn-\) and is zero for n < p.
In element-theoretic language, if x e Cn_i(A), the simplicial identities yield
inFpD/Fp-iD:

n

dcrp(x) = y (— Y)lGpdi—\(x)i
i=p+\

n+l n
d(Tp(x)-ap-\dcrp(x)= ^T, (-\)lopdi-\op(x) - ^ (-\)lofa

i=p+2 i=p+2

Hence {sn = (— \)p+lap} forms a chain contraction of the identity map of
FpD/Fp-\D, which is therefore null homotopic and hence acyclic (1.4.5).

O

Application 8.3.9 (Hurewicz homomorphism) Let X be a fibrant simplicial
set, and T[X] the simplicial abelian group that in degree n is the free abelian
group with basis the set Xn (8.2.3). The simplicial set map h: X - • Z[X] send-
ing X to the basis elements of Z[X] is called the Hurewicz homomorphism,
since on homotopy groups it is the map

7T*yA) —> TT^yiLyX\) = tl*L,\/LyX\) = r i*(A, IL)

corresponding via 8.2.4 and 8.3.1 to the topological Hurewicz homomorphism
7r*(|X|) -> H*{\X\\ Z). (To see this, represent an element <p of nn(\X\) by a
map f:An^ \X\ and consider / as an element of Sn(\X\). The class of h(f)
in HnZ[S(\X\)] = Hn(\X\); Z) is the topological Hurewicz element h(cp).)

Proposition 8.3.10 Let A be a simplicial abelian group. Then the Hurewicz
map h*\ TT*(A) -> //*(A; Z) = //*(|A|; Z) wa 5/7/1Y monomorphism.

Proof There is a natural surjection from the free abelian group Z[G] onto
G for every abelian group G, defined on the basis elements as the identity.
Thus there is a natural surjection of simplicial abelian groups j : Z[A] —>• A.
The composite simplicial set map jh: A —>• Z[A] -^ A is the identity, so on
homotopy groups j*h*:n*(A) -> 7r*(Z[A]) —> ^ ( A ) is the identity homo-
morphism. O
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268 Simplicial Methods in Homological Algebra

Remark The above proposition is the key result used to prove that every
simplicial abelian group has the homotopy type of a product of Eilenberg-
MacLane spaces of type K(nnA, ri)\ see [May, 24.5].

8.3.1 Simplicial Homotopies

8.3.11 Let A and B be simplicial objects in a category A. Two simplicial
maps / , g\ A -> B are said to be (simplicially) homotopic if there are mor-
phisms hi'. An -> Bn+\ in A (i = 0, ••-,«) such that 9o/*o = / and dn+\hn =
g, while

We call [hj] a simplicial homotopy from f to g and write f — g.
If .4 is an abelian category, or the category of sets, the next theorem gives

a cleaner definition of simplicial homotopy using the Cartesian product A x
A[l] of 8.2.6 and the two maps eo,e\: A — A x A[0] - • A x A[l] induced
by the maps £o, s\\ [0] —> [1] in A.

Theorem 8.3.12 Suppose that A is either an abelian category or the category
of sets. Let A, B be simplicial objects and f,g:A—> B two simplicial maps.
There is a one-to-one correspondence between simplicial homotopies from f
to g and simplicial maps h: A x A[l] —>> B such that the following diagram
commutes.

£0 E\

A —> A x A[l] <— A

B

Proof We give the proof when A is an abelian category. The set A[l]n con-
sists of the maps a?;: [n] —• [1] (/ = — 1, • • •, n), where a; is characterized by
of-^O) = {0, 1, • • • , / - 1}. Thus (A x A[l])n is the direct sum of n + 2 copies
of An indexed by the a?;. A map h^: (A x A[l])n -> Bn is therefore equiva-
lent to a family of maps nf : An -> Bn (i = — 1, • • •, n). Given a simplicial
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8.3 Simplicial Homotopy Groups 269

homotopy {hj} we define h{"\ = g, h^ = / and h\n) = di+\hi for 0 < i < n.
It is easily verified that dth

{n) = h{n~X)di and Oih{n) = /i("+1)a/, so that the
h^ form a simplicial map h such that /*£o = / and he\ = g. (Exercise!) Con-
versely, given h the maps hi = nf1 07: An —>• £n+i define a simplicial ho-
motopy from / to g. O

Exercise 8.3.5 (Swan) Show that the above theorem fails when A is the cat-
egory of groups, but that the theorem will hold if A x A[l] is replaced by
the simplicial group A * A[l], which in degree n is the free product of n + 2
copies of An indexed by the set A[l]n .

Exercise 8.3.6 In this exercise we show that simplicial homotopy is an addi-
tive equivalence relation when A is any abelian category. Let f, f\ g, gf be
simplicial maps A - • B, and show that:

1. / - / •
2. if / - g and f - gf, then (/ + / ' ) - (g + gf).
3. if / ~ g, then ( - / ) 2̂  (-g), (/ - g) ^ 0 and g ~ / .
4. if / ~ g and g — h, then f — h.

Lemma 8.3.13 L^ 4̂ be an abelian category and f,g:A^B two sim-
plicially homotopic maps. Then /*, g*\ N(A) ->- N(B) are chain homotopic
maps between the corresponding normalized chain complexes.

Proof By exercise 8.3.6 above we may assume that / = 0 (replace g by
g — / ) . Define sn = ^2(—\yhj as a map from An to Bn+\, where {hj} is
a simplicial homotopy from 0 to g. The restriction of sn to ZW(A) lands in
Zn(B), and we have

(Check this!) Therefore {(—l)"^} is a chain homotopy from 0* to g*. O

Path Spaces 8.3.14 There is a functor P: A -» A with P[n] = [/1 4- 1] such
that the natural map £o: [n] —> [n + 1] = P\n\ is a natural transformation
id A => P. It is obtained by formally adding an initial element 0' to each [n]
and then identifying (0; < 0 < • • • < n) with [n + 1]. Thus P(£/) = £;+i and
P(y//) = r\i+\. If A is a simplicial object in A, the path space PA is the sim-
plicial object obtained by composing A with P. Thus (PA)n = Aw+i, the /r/l

face operator on PA is the 9/+i of A, and the ith degeneracy operator on PA
is the oT/+i of A. Moreover, the maps 3Q: An+i ->• An form a simplicial map
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270 Simplicial Methods in Homological Algebra

PA —»• A. The path space will play a key role in the proof of the Dold-Kan
correspondence.

Exercise 8.3.7 (PAc^ AQ) Let A be a simplicial object, and write Ao for the
constant simplicial object at Ao- The natural maps CTQ+1: Ao -> An+\ form a
simplicial map t: Ao -> PA, and the maps An+i ->• Ao induced by the canoni-
cal inclusion of [0] = {0} in [n + 1] = (0 < 1 < • • • < n + 1) form a simplicial
map p: PA —> Ao such that pt is the identity on Ao. Use ao to construct a
homotopy from tp to the identity on PA. This shows that PA is homotopy
equivalent to the constant object Ao.

Exercise 8.3.8 If G is a group one usually writes EG for the simplicial set
P(BG). By the previous exercise 8.3.7, EG ^ {1}. Show that the surjection
do: EG —>• BG is a principal G-fibration (exercise 8.2.6). Then use the long
exact homotopy sequence of a fibration (exercise 8.3.3) to recalculate TT*(BG).

Exercise 8.3.9 (J. Moore) Let A be a simplicial object in an abelian category
A. Let A A denote the simplicial object of A which is the kernel of do: PA ->
A; AA is a kind of brutal "loop space" of A. To see this, let Ao[l] denote
the chain complex that is Ao concentrated in degree —1, and let cone(7VA) be
the mapping cone of the identity map of NA (1.5.1). Show that Nn(AA) =
Nn+\ (A) for all n > 0 and that there are exact sequences:

0 -> A0[l] - • NA[l] -> N(AA) -> 0,

0 -* A0[l] -> cone(NA)[l] -> N(PA) -+ 0.

That is, N(AA) is the brutal truncation a>0NA[l] of NA[l] and A^(PA) is
the brutal truncation of cone(NA)[l], in the sense of 1.2.7 and 1.2.8.

8.4 The Dold-Kan Correspondence

Let A be an abelian category. The normalized chain complex N(A) of a sim-
plicial object A of A (8.3.6) depends naturally on A and forms a functor TV
from the category of simplicial objects in A to the category of chain com-
plexes in A. The following theorem, discovered independently by Dold and
Kan in 1957, is called the Dold-Kan correspondence. (See [Dold].)

Dold-Kan Theorem 8.4.1 For any abelian category A, the normalized chain
complex functor N is an equivalence of categories between SA and Ch>o(*4).
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8.4 The Dold-Kan Correspondence 111

f simplicial \ N A \ c n a m complexes C in A
I objects in .A J ~ } with Cn = 0 for n < 0

Under this correspondence, simplicial homotopy corresponds to homology
(i.e., 7r*(A) = H*(NA)) and simplicially homotopic morphisms correspond to
chain homotopic maps.

Corollary 8.4.2 (See 2.4.7) The simplicial homotopy groups ix*A of a simpli-
cial object A of A form a universal 8-functor (the left derived functors of the
functor 7To).

Corollary/Definition 8.4.3 (Dual Dold-Kan correspondence) For any abe-
lian category A, there is an equivalence

f cosimplicial \ N* >Q } cochain complexes C in A1

objects in A J > 1 with Cn = 0 for n < 0 J '
N*A is a summand of the unnormalized cochain CA of A. We define the co-
homotopy of a cosimplicial object A to be the cohomology of N*A, that is, as
n'A = ///(A^*A). Then nlA ^ Hl{CA). Finally, if A has enough injectives,
the cohomotopy groups n*A are the right derived functors of the functor 7r°.

8.4.4 The equivalence in the Dold-Kan Theorem is concretely realized by an
inverse functor K:

ru (A\ K <ZA I s i m P l i c i a l
Ch>0(A) —> S A = \ .

[ objects in A

which is constructed as follows. Given a chain complex C we define Kn(C)
to be the finite direct sum @p<n 0 ^ Cp[r]], where for each p < n the index ij
ranges over all surjections [n] —> [p] in A and Cp[rj] denotes a copy of Cp.

If a: [m] —> [n] is any morphism in A, we shall define K(a): Kn(C) —>
Km(C) by defining its restrictions K(a, rj): Cp[n] —• Km(C). For each surjec-
tion rj: [n] -> [p], find the epi-monic factorization er\' of r\ot (8.1.2):

[m] -

n'i
[q] -

-> M

+ [pi

If p = q (in which case rja = nf) we take K(a, rj) to be the natural identifica-
tion of Cp[rj] with the summand Cp[r]f] of Km(C). If p = q + 1 and e = sp
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272 Simplicial Methods in Homological Algebra

(in which case the image of r]a is the subset {0, • • •, p — 1} of [/?]), we take
K (a, r}) to be the map

Otherwise we define K(a, rj) to be zero. Here is a picture of K(C):

Co 1= c0 e cx ^ c0 e cx e C\ © c 2 1= c0 e (co3 e (c2)
3 e c3 •

Exercise 8.4.1 Show that K(C) is a simplicial object of A. Since it is clearly
natural in C, this shows that K is a functor.

It is easy to see that NK(C) = C. Indeed, if 77: [n] -> [/?] and n / /?, then
r] = r]ix" - r]it and Cp[r/] = (a,, • • • <T/1Cp)[id/7] lies in the degenerate subcom-
plex D{K{C)). If r] is the identity map of [n], then 3/ restricted to Cn[idn]
is K(si, idn), which is 0 if i ^ n and d if / = ft. Hence Nn(KC) = Cn[idn]
and the differential is J. Therefore in order to prove the Dold-Kan Theorem
we must show that KN(A) is naturally isomorphic to A for every simplicial
object A in A.

We first construct a natural simplicial map X/ZA'- KN(A) —> A. If t]\ [n] ->
[p] is a surjection, the corresponding summand of KNn(A) is NP(A), and we

define the restriction of ^ to this summand to be NP(A) C Ap —> An. Given
a: [m] -> [/i] in A, and the epi-monic factorization st]f of rja in A (8.1.2) with
r)'\ [m] -> [q], the diagram

4 ^ —̂  M (A} c~ A v A

r\) _j iy p\r\j v̂_ .n p 7- rvn

*l [s is |«

KNm(A) D Nq(A) C Aq -^U Am

commutes because s: NP(A) —> Nq(A) is zero unless s = sp. (Check this!)
Hence \J/A is a simplicial morphism from KN(A) to A and is natural in A.
We have to show that \J/A is an isomorphism for all A. From the definition
of XJ/A it follows that NX/TA- NKN(A) —> N(A) is the above isomorphism
NK(NA) = NA. The following lemma therefore implies that X//A is an iso-
morphism, proving that TV and K are inverse equivalences.

Lemma 8.4.5 If f: B - • A is a simplicial morphism such that Nf: N(B) ->
N(A) is an isomorphism, then f is an isomorphism.
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8.4 The Dold-Kan Correspondence 273

Proof We prove that each fn\Bn^ An is an isomorphism by induction on
n, the case n = 0 being the isomorphism Bo = NoB = NoA = A. Recall from
exercise 8.3.9 that the brutal loop space AA is the kernel of 3o: PA -> A,
(PA)n = An +i, and that N(AA) is the translate ((NA)/AO)[1]. Therefore
NAf:N(AB)^ N(AA) is an isomorphism. By induction both fn and
(A/)n are isomorphisms. From the 5-lemma applied to the following diagram,
we deduce that / n + i is an isomorphism. <C>

9o

Exercise 8.4.2 Show that Af and K are adjoint functors. That is, if A is a
simplicial object and C is a chain complex, show that \j/ induces a natural
isomorphism:

HomsA(K(C), A) S HomCh(C, NA).

Exercise 8.4.3 Given a semi-simplicial object B in A, KC(B) is a simplicial
object. Show that KC is left adjoint to the forgetful functor from simplicial
objects to semi-simplicial objects. (Cf. exercise 8.1.5.) Hint: Show that if A is
a simplicial object, then there is a natural split surjection KC(A) -> A.

To conclude the proof of the Dold-Kan Theorem 8.4.1, we have to show
that simplicially homotopic maps correspond to chain homotopic maps. We
saw in 8.3.13 that if / ~ g then Nf and Ng were chain homotopic. Con-
versely suppose given a chain homotopy {sn} from f to g for two chain maps
f,g:C -+ C. Define ht\ K(C)n -> K(C')n+\ as follows. On the summand Cn

of K(C)n corresponding to r\ = id, set

1 07 / if / < n — 1

<*n-\f -onsn-\d \ii—n-\
on(f - sn-\d) -sn if/ —n.

On the summand Cp[rj] of K(C)n corresponding to rj: [n] -> [p], « ^ p, we
define /i, by induction on n — p. Let y be the largest element of [n] such that
rj(j) = rj(j + 1) and write 77 = rfrjj. Then cry maps Cp[rjf] isomorphically onto
Cp[rj]9 and we have already defined the maps hi on Cp[rj']. Writing h\ for the
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274 Simplicial Methods in Homological Algebra

composite of Cp[r]] = Cp[rjf] with hj restricted to Cp[rj'], we define

if 7 > i.

A straightforward calculation (exercise!) shows that {hi} form a simplicial
homotopy from K(f) to K(g). O

Exercise 8.4.4 (Eilenberg-MacLane spaces) Let G be an abelian group, and
write G[—n] for the chain complex that is G concentrated in degree n (1.2.8).

1. Show that the simplicial abelian group K(G[—n]) is an Eilenberg-
MacLane space of type K(G,n) in the sense of 8.3.4 and that the
loop space of exercise 8.3.9 satisfies AK(G[-n - 1]) = K(G[-n\) for
n > 0.

2. Suppose that a simplicial abelian group A is an Eilenberg-MacLane
space of type K(G, n). Use the truncation z>nNA (1.2.7) to show that
there are simplicial maps A <— B -> K(G[—n\) that induce isomor-
phisms on homotopy groups. Hence A has the same simplicial homotopy
type as K(G[—n]). A similar result holds for all Eilenberg-MacLane
spaces, and is given in [May, section 23].

Exercise 8.4.5 Suppose that A has enough projectives, so that the category of
SA of simplicial objects in A has enough projectives (exercise 2.2.2). Show
that a simplicial object P is projective in SA if and only if (1) each Pn is
projective in A, and (2) the identity map on P is simplicially homotopic to
the zero map.

Augmented Objects 8.4.6 An augmented simplicial object in a category A
is a simplicial object A* together with a morphism e\ Ao -> A-\ to a fixed
object A_i such that edo = sd\. If A is an abelian category, this allows us to
augment the associated chain complexes C(A) and N(A) by adding A_i in
degree — 1.

n A y£ A d()~dl A yd d

An augmented simplicial object A* -> A_i is called aspherical if izn(A*) =
0 for n / 0 and s: ;ro(A*) = A_i. In an abelian category, this is equivalent to
the assertion that the associated augmented chain complexes are exact, that
is, that C(A) and N(A) are resolutions for A-\ in A. For this reason, A*
is sometimes called a simplicial resolution of A_i. We will use aspherical
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8.5 The Eilenberg-Zilber Theorem 275

simplicial objects to construct canonical resolutions in 8.6.8. The following

exercise gives a useful criterion for A* —> A-\ to be aspherical.

An augmented simplicial object A* —> A_i is called {right) contractible
if there are morphisms fn: An —> An+i for all n (including f-\\ A-\ -> Ao)
such that ef-\ = id, dn+ifn = id for n > 0, ao/o = / - i £ , and a,-//i = //i-i3/
for all 0 < i < n. (It is called left contractible if its dual A -^» A_i (8.2.10) is
right contractible, that is, if ef-\ = id, dofn = id, 3_i/o = / - i £ , and 3//n =

Exercise 8.4.6 (Gersten)

1. If A is an abelian category, prove that every contractible augmented
simplicial object is aspherical, and that the associated augmented chain
complexes are split exact.

2. Now suppose that A is the category of sets. Let X be a fibrant simplicial
set with basepoint * and e\X -> X-\ an augmentation. Prove that if
X -+ X-\ is (left or right) contractible and /«(*) = * for all n, then X
is aspherical. Hint: Set y = fn(x) in 8.3.1.

8.5 The Eilenberg-Zilber Theorem

A bisimplicial object in a category A is a contravariant functor A from A x A
to A. Alternatively, it is a bigraded sequence of objects Apq (p,q > 0),
together with horizontal face and degeneracy operators dj*:Apq —>• Ap-\,q
and o^'.Apq ->• Ap+i>9 as well as vertical face and degeneracy operators
3": Apq —>> Ap^q-\ and cr-u: A ^ —> A ^ + i . These operators must satisfy the
simplicial identities (horizontally and vertically), and in addition every hori-
zontal operator must commute with every vertical operator.

There is an (unnormalized) first quadrant double complex CA = {Apq} as-
sociated to any bisimplicial object A. The horizontal maps dh are £](—1)*3^
and we use the sign trick (1.2.5) to define the vertical maps dv: Apq -> APtq-\

tobe(-l^E(-W-
Clearly we may regard a bisimplicial object as a simplicial object in the

catagory SA of simplicial objects in A. The Dold-Kan correspondence im-
plies that the category of bisimplicial objects is equivalent to the category of
first quadrant double chain complexes, the normalized double complex corre-
sponding to A being quasi-isomorphic to CA.

The diagonal diag(A) of a bisimplicial object A is the simplicial object
obtained by composing the diagonal functor A - > A x A with the functor A.
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276 Simplicial Methods in Homological Algebra

Thus diag(A)n = Ann, the face operators are 3/ = df d/\ and the degeneracy

operators are at = o^o?.

Eilenberg-Zilber Theorem 8.5.1 Let Abe a bisimplicial object in an abe-
lian category A. Then there is a natural isomorphism

Moreover there is a convergent first quadrant spectral sequence

El
pq = nv

q{Ap*), E2
pq = nh

pn
v
q{A) =» Tr

Proof We first observe that no = Ho. By inspection, we have decomposi-
tions Aio = OQ (Aoo) © Mo, ^oi = o"o (Aoo) © #oi, and An = cr^a^(Aoo) 0
^(Nl0) © ^ ( ^ o i ) 0 tfn. Now HoTot(CA) = A0o/O?(#io) + dv

{(NOi))
and 7Todiag(A) is the quotient of Aoo by

af dfaXNio e crfiNoi e #n) = af (#io) + ai'(#oi) + o.

Hence there is a natural isomorphism 7rodiag(A) = Ho Tot(A).
Now the functors diag(A) and Tot(CA) are exact, while 7r* and //* are

^-functors, so both 7r*diag(A) and //*Tot(CA) are homological <5-functors
on the category of bisimplicial objects in A. We will show that they are
both universal <5-functors, which will imply that they are naturally isomor-
phic. (The isomorphisms are given explicitly in 8.5.4.) This will finish the
proof, since canonical first quadrant spectral sequence associated to the double
complex CA has El

pq = H"(CP*) = nv
q{Ap*) and E2

pq = Hh
p(C(nv

q{Ap*))) =
Kp7Tq(A) and converges to Hp+q Tot(CA) = 7r/7+^diag(A).

To see that 7r* diag and //* Tot C are universal 5-functors, we may assume
(using the Freyd-Mitchell Embedding Theorem 1.6.1 if necessary) that A has
enough projectives. (Why?) We saw in exercise 2.2.2 that this implies that
the category of double complexes—and hence the category of bisimplicial
objects by the Dold-Kan correspondence—has enough projectives. By the next
lemma, diag and Tot C preserve projectives. Therefore we have the desired
result:

7r*diag = (L*7T0)diag = L*(7T*diag),

//*Tot C = (L*#o)Tot C = L*(H0Tot C). O

Lemma 8.5.2 The functors diag and Tot C preserve projectives.
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8.5 The Eilenberg-Zilber Theorem 277

Proof Fix a projective bisimplicial object P. We see from exercise 8.4.5 that
any bisimplicial object A is projective if and only if each Apq is projective
in A, each row and column is simplicially null-homotopic, and the vertical
homotopies hv

t are simplicial maps. Therefore diag(P) is a projective simpli-
cial object, since each diag(P)n = Pnn is projective and the maps hi = h^hv

t

form a simplicial homotopy (8.3.11) from the identity of diag(P) to zero. Now
Tot(CP) is a non-negative chain complex of projective objects, so it is projec-
tive in Ch>o(^4) if and only if it is split exact if and only if it is exact. But every
column of Tot(CP) is acyclic, since H*(CPp*) = 7r*(Pp*) = 0, so Tot(CP) is
exact by the Acyclic Assembly lemma 2.7.3 (or a spectral sequence argument).

O

Application 8.5.3 (Kunneth formula) Let A and B be simplicial right and
left /^-modules, respectively. Their tensor product (A ®R B) = Ap <S>R Bq is
a bisimplicial abelian group, and the associated double complex C(A 0 B)
is the total tensor product Tot C(A) <S>R C(B) of 2.7.1. The Eilenberg-Zilber
Theorem 8.5.1 states that

7r*diag(A ®R B) ^ //*(Tot C(A) ®R C(B)).

This is the form in which Eilenberg and Zilber originally stated their theorem
in 1953. Now suppose that X and Y are simplicial sets and set A = R[X],
B = R[Y] 8.2.3. Then diag(A ® B) = R[X x F], and the computation of the
homology of the product X x Y (8.2.6) with coefficients in R is

Hn(X xY;R) = 7rndiag(A ® B) ^ Hn(Joi C(X) <8> C(Y)).

The Kunneth formula 3.6.3 yields Hn(X x Y) £ @p+q=n HP(X) ® Hq(Y)
when R is a field. If R = 1 there is an extra Tor term, as described in 3.6.4.

The Alexander-Whitney Map 8.5.4 For many applications it is useful to
have an explicit formula for the isomorphisms in the Eilenberg-Zilber Theo-
rem 8.5.1. If p + q = n, we define fpq: Ann -+ Apq to be the map

The sum over p and q yields a map fn\ Ann -+ Totn(CA), and the fn assemble
to yield a chain complex map / from C(diag(A)) to Tot(CA). (Exercise!) The
map / is called the Alexander-Whitney map, since these two mathematicians
discovered it independently while constructing the cup product in topology.
Since / is defined by face operators, it is natural and induces a morphism of
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278 Simplicial Methods in Homological Algebra

universal 5-functors /*:7r*diagA -> H*Tot(CA). Moreover, /o: Aoo = Aoo>
so /* induces the natural isomorphism 7rodiag A = //oTot(CA). Therefore the
Alexander-Whitney map is the unique chain map (up to equivalence) inducing
the isomorphism /* of the Eilenberg-Zilber Theorem.

The inverse map V: Tot(CA) - • C(diagA) is related to the shuffle product
on the bar complex (6.5.11). The component Vpq: Apq -> Ann (n = p -\-q) is
the sum

\ V i \ u h h

over all (/?, g)-shuffles \x. The proof that V is a chain map is a tedious but
straightforward exercise. Clearly, V is natural, and it is easy to see that V*
induces the natural isomorphism //oTot(CA) = TTodiag A. Therefore V* is
the unique isomorphism of universal 5-functors given by the Eilenberg-Zilber
Theorem. In particular, V* is the inverse of the Alexander-Whitney map /*.

Remark The analogue of the Eilenberg-Zilber Theorem for semi-simplicial
simplicial objects is false; the degeneracies are necessary. For example, if
Apq is zero for p ^ 1, then 7Tidiag(A) = An need not equal H\ Tot(CA) =

8.6 Canonical Resolutions

To motivate the machinery of this section, we begin with a simplicial descrip-
tion of the (unnormalized) bar resolution of a group G. By inspecting the con-
struction in 6.5.1 we see that the bar resolution

is exactly the augmented chain complex associated to the augmented simpli-

cial G-module

< r>

in which B% is the free ZG-module on the set Gn. In fact, we can construct
the simplicial module #" directly from the trivial G-module Z using only the
functor F = ZG®Z: G-mod -> G-mod; B% is F"+ 1Z = ZG ® z • • • ®z ZG,
the face operators are formed from the natural map e\ ZG <S>z M -+ M, and
the degeneracy operators are formed from the natural map rf. M = 1 <g>z M ->
ZG ®z M.
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8.6 Canonical Resolutions 279

In this section we formalize the above process (see 8.6.11) so that it yields
augmented simplicial objects whose associated chain complexes provide
canonical resolutions in a wide variety of contexts. To begin the formalization,
we introduce the dual concepts of triple and cotriple. (The names "triple" and
"cotriple" are unfortunate because nothing occurs three times. Nonetheless
it is the traditional terminology. Some authors use "monad" and "comonad",
which is not much better.)

Definition 8.6.1 A triple (T, rj, /x) on a category C is a functor T:C -> C,
together with natural transformations rj: idc =>• T and [i\ T T => T, such that
the following diagrams commute for every object C.

TT(TC)

!„,
T(TC)

lbolically

= T(TTC) >

fiC

, we may write

• T(TC)

TC

these as JX(

TC • T(TC) <

-N. I . • -
TC

1 » = /x(/xT) and /x(T^y)

TC

= id =

Dually, a cotriple (_L, e, 6) in a category .4 is a functor ±: ^l -> ^4, together
with natural transformations s\ _L=̂  id^ and 8: ±=^_L_L, such that the follow-
ing diagrams commute for every object A.

_LA > 1(1A) ±A

\sA \s±A =/ I 5 \ =i
J_(_LA) >_L(J_J_A) = _L_L(_LA) ± A< 1(1A)

Symbolically, we may write these as (J_ 8)8 = (8 ±.)8 and (J_ e)<5 = id =
(e J_ )<5. Note the duality: a cotriple in A is the same as a triple in *4op.

Exercise 8.6.1 Provided that they exist, show that any product TlTa of triples
Ta is a triple and that any coproduct U ±a of cotriples ±a is again a cotriple.

Exercise 8.6.2 Show that the natural transformation s of a cotriple satisfies
the identity e(e J_) — £(J_ £). That is, for every A the following diagram com-
mutes:
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280 Simplicial Methods in Homological Algebra

l-BA

-L(J-A) > _LA

_LA - ^ A.

Main Application 8.6.2 (Adjoint functors) Suppose we are given an adjoint
pair of functors (F, U) with F left adjoint to U.

That is, Hom^(FC, B) = Homc(C, UB) for every C in C and # in S. We
claim that T = UF: C -> C is part of a triple (T, yy, /x) and that _L = FU: B ->
S is part of a cotriple (_L, £, 8).

Recall from A.6.1 of the Appendix that such an adjoint pair determines two
natural transformations: the unit of the adjunction 77: id^ —̂  UF and the counit
of the adjunction e: FU => idc- We define 8 and /z by

8B = F(riUB): F(UB) -+ F(UF(UB)), /xc - U(sFC): U(FU(FC)) -* f/(FC).

In the Appendix, A.6.2 and exercise A.6.3, we see that (sF) o (Fr;): FC ->
FC and {Us) o (yyC/): C/5 -> t / 5 are the identity maps and that e o (FC/e) =
^ o (sFU): FU(FU(B)) -> B. From these we deduce the triple axioms for

= id, ^(iyT) = ((Us) o (^t/))F = id,

o (UFUsF) = U(s o t /Fe)F = t/(e o e t /F )F =

By duality applied to the adjoint pair (£/op, Fop), (±, e, 8) is a cotriple on B.

Example 8.6.3 The forgetful functor U: G-mod ->• Ab has for its left ad-
joint the functor F(C) = ZG <S)j C. The resulting cotriple on G-mod has
_L= Ft / , and ± (Z) = ZG. The following construction of a simplicial object
out of the cotriple _L on the trivial G-module Z will yield the simplicial G-
module used to form the unnormalized bar resolution described at the begin-
ning of this section; see 8.6.11.

Simplicial Object of a Cotriple 8.6.4 Given a cotriple _L on A and an object
A, set ±n A =_L"+1 A and define face and degeneracy operators

dt = JJ s ±n~L. ± n + 1 A ->_L"A,

at = ±l 8 ±n-L. _L"+1 A ->J_"+2A.
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8.6 Canonical Resolutions 281

We claim that _L* A is a simplicial object in A. To see this, note that

3/(7/ =_L/ (e ±)S - L ^ W ' " (1) ±n~i= identity, and

3/+1C7/ =_L/ (J_ e)<5 J ^ W 1 ' (1) J.1 1"^ identity.

Similarly, we have

3/3/ + 1 - X1" (8(1. 8)) ±n~l = ±l (8(8 !_)) ±n~l = 3idh

= ±l ((!_ 8)8) I."'1 = A.1 ((8 ±)8) ±»-i = atah

The rest of the simplicial identities are formally valid. The map 8A : -L A —> A
satisfies 8do = ed\ (because e(e _L) = e(J_ 8)), so in fact _L* A —> A is an
augmented simplicial object.

Dually, given a triple T on C, we define Ln = T"+ 1C and dl = TI'T/T/1-1",

a1 = T'/LtT""1'. Since a triple T on C is the same as a cotriple T°P on Cop,
L* = T*+1C is a cosimplicial object in C for every object C of C.

Definition 8.6.5 Let _L be a cotriple in a category A. An object A is called
±-projective if e^: _L A -> A has a section / : A ->± A (i.e., if e ^ / = id^).
For example, if ± = F t / for an adjoint pair (F, £/), then every object FC is
_L-projective because Fy;: FC -> F(UFC) = ± (FC) is such a section.

Paradigm 8.6.6 (Projective /^-modules) If R is a ring, the forgetful functor
U: R-mod -> Sets has the free /^-module functor F as its left adjoint; we call
FU the free module cotriple. Since FU(P) is a free module, an /^-module
P is Ft/-projective if and only if P is a projective /^-module. This paradigm
explains the usage of the suggestive term "_L-projective." It also shows that a
cotriple on /?-mod need not be an additive functor.

_L-Projective Lifting Property 8.6.7 Let U.A^C have a left adjoint F,
and set J_ = FU. An object P is ^-projective if and only if it satisfies the
following lifting property: given a map g: A\ -> A^ in A such that UA\ —•
UAi is a split surjection and a map y: P —> A2, there is a map /3: P —>• A\
such that y = g/3.

Proof The lifting property applied to FU(P) - • P shows that P is _L-
projective. For the converse we may replace P by FU(P) and observe that
since HomA(FU(P), A) ^ Homc(UP,UA), the map HomA(FU(P),Ai) -+
HomA(FU(P), A2) is a split surjection. <C>
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282 Simplicial Methods in Homological Algebra

Exercise 8.6.3 Show that an object P is _L-projective if and only if there is
an A in A such that P is a retract of _L A. (That is, there are maps i: P -+.L A
and r: _L A —• P so that r/ = idp.)

Proposition 8.6.8 (Canonical resolution) Let L be a cotriple in an abelian
category A If A is any L-projective object, then the augmented simplicial ob-
ject _L* A —> A is aspherical, and the associated augmented chain complex
is exact.

0 <- A <—± A <—± A <—_L A <—

Proof For n > 0, set /„ =±n+lf: _L"+1 A ^_L"+2A, and set /_i = / . By
definition, dn+\fn =l_n+x (sf) = identity and 9o/o = (e J_)(J_ / ) = fe. If
n > 1 and 0 < i < n + 1, then (setting j = n — i and B =_L; A) naturality of s
with respect to g =J_7/ yields

difn = a1" ̂ ±5)a/± g) = a1" g)af" ̂ ) = &-&•

We saw (in 8.4.6 and exercise 8.4.6) that such a family of morphisms {fn}
makes _L* A -> A "contractible," hence aspherical. O

Corollary 8.6.9 7/" 4̂ /s abelian and U:A->C is a functor having a left
adjoint F:C —> A, then for every C in C the augmented simplicial object
_L* (FC) —• FC w contractible, hence aspherical in A.

Proposition 8.6.10 Suppose that U:A-+C has a left adjoint F:C - • A.

Then for every A in A the augmented simp
left contractible in C and hence aspherical.
Then for every A in A the augmented simplicial object U(-L*A) —> U A is

Proof Set /_i = r\U\ UA -+ UFUA = U(± A) and fn = rjU ±n. Then the
{/„} make £/(_L* A) left contractible in the sense of 8.4.6. (Check this!) O

8.6.1 Applications

Group Homology 8.6.11 If G is a group, the forgetful functor U: G-mod - •
Ab has a left adjoint F(C) = 1G <S>i C. For every G-module M, the re-
sulting simplicial G-module _L* M -> M is aspherical because its underly-
ing simplicial abelian group £/(_!_* M) -> UM is aspherical by 8.6.10. More-
over by Shapiro's Lemma 6.3.2 the G-modules _L"+1M = F(C) are acyclic
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8.6 Canonical Resolutions 283

for //*(G; —) in the sense of 2.4.3. Therefore the associated chain complex
C(JL* M) is a resolution by //*(G; — )-acyclic G-modules. It follows from
2.4.3 that we can compute the homology of the G-module M according to the
formula

//*(G; M) = #*(C(J_* M)G) = TT*((_L* M)G),

using the homotopy groups of the simplicial abelian group (_L* M)Q.
If we take M = Z, C(_L* 2) is exactly the unnormalized bar resolution of

6.5.1. The proof given in 6.5.3 that the bar resolution is exact amounts to a
paraphrasing of the proof of proposition 8.6.10.

The Bar Resolution 8.6.12 Let k -> R be a ring homomorphism. The for-
getful functor U: R-mod -> /;-mod has F(M) = R 0& M as its left adjoint,
so we obtain a cotriple _L= FU on /?-mod. Since the homotopy groups of the
simplicial /^-module _L*M may be computed using the underlying simplicial
^-module £/(_L*M), it follows that _L*M -> M is aspherical 8.4.6 (J_*M is
a simplicial resolution of M). The associated augmented chain complexes are
not only exact in /?-mod, they are split exact when considered as a complex
of /:-modules by 8.6.10. The unnormalized chain complex fi(R, M) associ-
ated to ±* M is called the (unnormalized) bar resolution of a left 7?-module
M. Thus P(R, M)o = R®kM, and 0(R, M)n is fl®^1) ®k M. Note that
P(R,M) = P(R, R)®RM:

0 «- M ^ - R<g>kM <- R<g>kR<g)kM < .

The normalized bar resolution of M, written B(R, M), is the normalized chain
complex associated to _L* M and is described in the following exercise.

Exercise 8.6.4 Write R for the cokernel of the ^-module homomorphism
k -> R sending 1 to 1, and write <g) for <S>k- Show that the normalized bar res-
olution has Bn(R, M) = R 0 R 0 • • • (8) R (8) M with n factors ^ , with (well-
defined) differential

d(ro <g> r\ 0 • • • rn <g> m) = r$r\ 0 ?2 0 • • • 0 rn <S> nt

n-\

V' 0 • • • 0 m

(-1)% 0 n 0 • • • 0 rn-\
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284 Simplicial Methods in Homological Algebra

Proposition 8.6.13 Suppose k is commutative. If M (resp. M') is a left mod-
ule over a k-algebra R (resp. Rf), then there is a chain homotopy equivalence
of bar resolutions of the R 0 Rr-module M 0 M':

Tot(j0(/?, M) <8>* P(R', Mf)) -^> P(R ®k R\ M ®k Af').

Proof Let A (resp. Af) denote the simplicial ^-module R®* 0 M (resp.
/̂<g>* ^ ^ / ^ where (8) denotes 0£. The diagonal of the bisimplicial ^-module

A 0 A7 is the simplicial ^-module [p] i-> (R®P 0 M) 0 (/?/<8^ 0 M) ^ (R 0
/ O 0 p 0 (M 0 MO whose associated chain complex is P(R 0 /?', M 0 MO-
The Eilenberg-Zilber Theorem (in the Kiinneth formula incarnation 8.5.3)
gives a chain homotopy equivalence V from the total tensor product Tot
C(A 0 A') = Tot C(A) 0 C(A0 = Tot P(R, M) 0 P(R\ Mf) to C diag (A 0
AO = P(R 0 /?r, M 0 MO. •

Remark The homotopy equivalence Tot P(R, R) 0 ^(Z?', /?') - ^
R 0 /?0 is fundamental; applying <S)R®R>(M 0 MO to it yields the proposition.

Exercise 8.6.5 (Shuffle product) Use the explicit formula for the shuffle map
V of 6.5.11 and 8.5.4 to establish the explicit formula (where \x ranges over all
(p, g)-shuffles):

V((r0 0 • • • 0 rp 0 m) 0 (r£ 0 • • • 0 rr
q 0 m')) =

^ ( - l ) M ( r o 0 r'o) 0 w^{\) 0 • • • 0 w^p+q) 0 (m 0 mO-

Here the r/ are in /?, the rj are in R\ m e M, m' e Mr, and u;i, • • •, wp+q

is the ordered sequence of elements r\ 0 1, • • •, rp 0 1, 1 0 r[, • • •, 1 0 r'q of

Free Resolutions 8.6.14 Let R be a ring and FU the free module cotriple,
where U: R-mod ->• Sets is the forgetful functor whose left adjoint F(X) is
the free module on X. For every R -module M, we claim that the augmented
simplicial /^-module (FU)*M —> M is aspherical (8.4.6). This will prove that
FU*M is a simplicial resolution of M, and that the associated chain complex
C = C(FU*M) is a canonical free resolution of M because

{ M i = 0
0 iVO
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8.6 Canonical Resolutions 285

Indeed, the underlying augmented simplicial set U(FU)*M ->• UM is fi-
brant and contractible by 8.6.10. If we choose [0] = rj(O) as basepoint in-
stead of 0, then the contraction satisfies /n([0]) = [0] for all n, and therefore
U(FU)*(M) is aspherical (by exercise 8.4.6). As the sets 7inU(FU)*M are
independent of the choice of basepoint (exercise 8.3.1), the augmented simpli-
cial 7?-module FU*(M) —> M is also aspherical, as claimed.

Sheaf Cohomology 8.6.15 Let X be a topological space and Sheaves(X)
the category of sheaves of abelian groups on X (1.6.5). If T is a sheaf we
can form the stalks Tx and take the product T(JF) = Ylxex x*(^x) of the
corresponding skyscraper sheaves as in 2.3.12. As Fx = x* and UxiJ7) = Tx

are adjoint, each FXUX(T) = x*{Tx) is a triple. Hence their product T is
a triple on Sheaves(X). Thus we obtain a coaugmented cosimplicial sheaf
T —> (T*+1.F) and a corresponding augmented cochain complex

The resulting resolution of T by the F-acyclic sheaves T*+1(.F) is called the
Godement resolution of T, since it first appeared in [Gode]. (The proof that
the Godement resolution is an exact sequence of sheaves involves interpreting

as a sheaf on the disjoint union X8 of the points of X.)

Example 8.6.16 (Commutative algebras) Let & be a commutative ring and
Commalg the category of commutative fc-algebras. Let P* -> R be an aug-
mented simplicial object of Commalg; if its underlying augmented simplicial
set is aspherical we say that P* is a simplicial resolution of R.

The forgetful functor U: Commalg —>• Sets has a left adjoint taking a set
X to the polynomial algebra k[X] on the set X\ the resulting cotriple _L on
Commalg sends R to the polynomial algebra on the set underlying R. As with
free resolutions 8.6.14, £/(_!_* R) -> UR is aspherical, so X* R is a simplicial
resolution of R. This resolution will be used in 8.8.2 to construct Andre-
Quillen homology.

Another cotriple ±s on arises from the left adjoint Sym of the forgetful
functor U'\ Commalg -> /:-mod. The Symmetric Algebra Sym(M) of a k-
module M is defined to be the quotient of the tensor algebra T(M) by the
2-sided ideal generated by all (JC <g> y — y <g> x) with JC, y e M (under the iden-
tification i:M ^ T(M)). From the presentation of T(M) = k © M 0 • • • 0
M®m 0 • • • in 7.3.1 it follows that Sym(M) is the free commutative algebra
on generators /(JC), X e M, subject only to the two ^-module relations on M:

ai(x) = i(ax) and i{x) + i(y) = i(x + y) (a e k; JC, y e M).
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286 Simplicial Methods in Homological Algebra

Thus any /c-module map M -> R into a commutative ^-algebra extends
uniquely to an algebra map Sym(M) -> R. This gives a natural isomorphism
Hom^(M, R) = Homcommaig(Sym(M), /?), proving that Sym is left adjoint
U. The resulting cotriple on Commalg sends R to the symmetric algebra
±S(R) = Sym(U'R) and we have a canonical adjunction e: Sym(U'R) ->• R.
As the simplicial ^-module (/'(-L* /?) —> £/'/? is aspherical, J_£ /? —• /? is an-
other simplicial resolution of R in Commalg, and there is a simplicial map
_L*7? ->J-f/?, natural in /?.

Exercise 8.6.6 Let X be a set and M the free ^-module with basis X. Show
that Sym(M) is the commutative polynomial ring k[X]. Then show that the
map _L* k[X] -^J-f fc[X] is a simplicial homotopy equivalence.

Exercise 8.6.7 In general, show that Sym(M) = k 0 M 0 S2(M) 0 • • • ©
Sn{M) 0 • • •, where Sn(M) is the module (M <g> • • • ® M)Sn of coinvariants
for the evident permutation action of the nth symmetric group Yln

 o n t n e n~
fold tensor product of M.

8.7 Cotriple Homology

Suppose that A is a category equipped with a cotriple J_= (_L, £, 5) as de-
scribed in the previous section, and suppose given a functor E: A -> M with
.M some abelian category. For each object A in A we can apply E to the aug-
mented simplicial object ±*A -> A to obtain the augmented simplicial object

! ) - > £ ( A ) i n M

Definition 8.7.1 (Barr and Beck [BB]) The cotriple homology of A with
coefficients in E (relative to the cotriple _L) is the sequence of objects
Hn(A; E) = nnE(±*A). From the Dold-Kan correspondence, this is the same
as the homology of the associated chain complex C(E _L* A):

0 <- E(±A) J— E(±2A) ^— £(_L3A) < .

Clearly cotriple homology is functorial with respect to maps A —> Ar in
A and natural transformations of the "coefficient functors" E —> E''. The
augmentation gives a natural transformation e^\ //o(A; E) = TTQ(E _L* A) ->
E(A), but at this level of generality e£ need not be an isomorphism. (Take
±=0.)

Dually, if (T, 77, /x) is a triple on a category C and E: C —• A4 is a functor,
the fn/?/e cohomology of an object C with coefficients in £ is the sequence of
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8.7 Cotriple Homology 287

objects Hn(C\ E) = 7r"£(T*+1C), which by definition is the cohomology of
the associated cochain complex

0 -> E(TC) -^» E(T2C) -^ £(T3C) -» • • •

associated to the cosimplicial object £(T*+ 1C) of M. By duality, Hn(C\ E)
is the object Hn(C; Eop) in the opposite category M°v corresponding to
£°P; Cop -> Mop; we shall not belabor the dual development of triple coho-
mology.

Another variant occurs when we are given a contravariant functor E
from A to M. In this case E(±*A) is a cosimplicial object of M. We set
Hn(A; E) = 7TnE(A.*A) and call it the cotriple cohomology of A with co-
efficients in E. Of course if we consider _L to be a triple on Aop and take as
coefficients E: Aop —> Ai, then cotriple cohomology is just triple cohomology
in disguise.

Example 8.7.2 (Tor and Ext) Let R be a ring and _L the free module cotriple
on mod-/? (8.6.6). We saw in 8.6.14 that the chain complex C(_L*M) is a
free resolution of M for every R-module M. If N is a left R-module and we
take E(M) = M ®R N, then homology of the chain complex associated to
E(.L*M) = (_L*M) <S)R N computes the derived functors of E. Therefore

Similarly, if N is a right /^-module and E(M) = Hom#(M, N), then the co-
homology of the cochain complex associated to £(_L*M) = Hom/?(_L*M, N)
computes the derived functors of E. Therefore

Hn(M; Hom*(-, N)) = Extn
R(M, N).

Definition 8.7.3 (Barr-Beck [BB]) Let J_ be a fixed cotriple on A and M
an abelian category. A theory of ±-left derived functors (Ln, A, 9) is the as-
signment to every functor E: A ->• M a sequence of functors EnE\A->M,
natural in E, together with a natural transformation A: LQE => E such that

1. X : LQ(E±) ^ E± and Ln(E±) = 0 fovn ^ 0 and every E.
2. Whenever S\ 0 -> E1 -> E ->• E" -> 0 is an exact sequence of functors

such that 0 - • E'L-^ E A_-^ E"_L—• 0 is also exact, there are "connect-
ing" maps 9: LnE" —>• Ln-\E\ natural in E, such that the following se-
quence is exact:

• • • LnE
r -> LnE - • LnE" -^ Ln-iE

f - • Ln-XE • • •.
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288 Simplicial Methods in Homological Algebra

Uniqueness Theorem 8.7.4 Cotriple homology //*(—; E) is a theory of 1-
left derived functors. Moreover, if (Ln, A, 3) is any other theory of 1-left
derived functors then there are isomorphisms LnE = Hn{—; E), natural in
E, under which X corresponds to s and d corresponds to the connecting map
forH*(-;E).

Proof A theory of left derived functors is formally similar to a universal (ho-
mological) 5-functor on the functor category A4^, the El. playing the role of
projectives. The proof in 2.4.7 that left derived functors form a universal 8-
functor formally goes through, mutatis mutandis, to prove this result as well.

8.7.1 Relative Tor and Ext

8.7.5 Fix an associative ring k and let k —> R be a ring map. The forget-
ful functor £/:mod-/? - • mod-A: has a left adjoint, the base-change functor
F(M) = M <S>k R- If N is a left /^-module, the relative Tor groups are defined
to be the cotriple homology with coefficients in <8)RN (relative to the cotriple
± = FU):

ToTp/k(M, N) = Hp(M; ®RN) = TTP((_L*M) ®R N),

which is the homology of the associated chain complex C(±*M <g> N) (8.3.8).
Since (_L^+1M) ®R N = {1PM) ®k R ®R N ^ 1?M ®k N, we can give an
alternate description of this chain complex as follows. Write 0 for ®£ and
R®P for R 0 R 0 • • 0 R, so that _L^M = M (8) R®P. Then (_L*M 0 N) is
the simplicial abelian group [p] \-+ M 0 R®p 0 Â  with face and degeneracy
operators

9/ (m 0 n 0 • • • 0 r^ 0 n) =
mr\ (8) 7*2 0 • • • (8) rp 0 n if i = 0
m 0 • • • 0 r/r/+i (8) • • • 0 n if 0 < / < p
m (8) n (8) • • • 0 f/7-i 0 r^fl if / = p\

ai(m (g> r\ g> - - • g> rp <g> n) = m <g) - • - g) r/_i 0 1 0 n 0 • • • 0 n.

RI k

(Check this!) Therefore Tor*; (M, Â ) is the homology of the chain complex

O^M^iV ^ M®R®N<^-M®R®2®N< M(g>

As in 2.7.2, one could also start with left modules and form the cotriple homol-
ogy of the functor M<S)R'. R-mod —• Ab relative to the cotriple lf{N) = R (8>&
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8.7 CotripleHomology 289

TV on /?-mod. The resulting simplicial abelian group [p] H> M (g) R®p 0 TV is
just the front-to-back dual (8.2.10) of the one described above. This proves
that relative Tor is a "balanced" functor in the sense that

Tor*/k(M, N) = HP(M; ®RN) = Hp(N; M®R).

If TV is a right R-module we define the relative Ext groups to be the cotriple
cohomology with coefficients in the contravariant functor Hom#(—, N):

Extp
R/k(M, N) = HP{M; Hom*(-, N)) = ixp Hom/K-UM, TV),

which is the same as the cohomology of the associated cochain complex
C(Hom/?(-U Af, A0). Since HomR(M ®k R, N) = Horn* (Af, N) by 2.6.3,
Hom/?(±*M, N) is naturally isomorphic to the cosimplicial abelian group
[p] h^ Hom^(M 0 R®p, N) = {^-multilinear maps M x Rp -+ N} with

I f(mro,ru • • •, rp) if / = 0
f(m,...,n-iri,...) ifO<i<p
f(m,ro, ...,rp-\)rp if i = p\

(crlf)(m, n , • • •, rp-\) = f(m, • • •, r,-, 1, ri+\, • • •, rp-\).

Exercise 8.7.1 Show that Tor£A(M, N) = M®RN and Ext°R/k(M, N) =

, N).

Example 8.7.6 Suppose that R = k/I for some ideal / of k. Since _LM =
M for all M, (J_*M) (8) Â  and Hom/?(±*M, iV) are the constant simplicial
groups M <g> N and Hom(M, N), respectively. Therefore Torf/k(M, N) =
Extl

R,k(M, N) = 0 for / ^ 0. This shows one way in which the relative Tor
and Ext groups differ from the absolute Tor and Ext groups of Chapter 3.

Just as with the ordinary Tor and Ext groups, the relative Tor and Ext groups
can be computed from J_-projective resolutions. For this, we need the follow-
ing definition.

Definition 8.7.7 A chain complex P* of /^-modules is said to be k-split if
the underlying chain complex U(P*) of ^-modules is split exact (1.4.1). A
resolution P* -> M is called £-split if its augmented chain complex is £-split.

Lemma 8.7.8 If 8:0 - • M1 —• M ->• M" - • 0 is a k-split exact sequence of

R-modules, there are natural long exact sequences
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290 Simplicial Methods in Homological Algebra

• • • Torf /k(M\ N) -> Torf /k(M, N) -> Torf lk{M", N) -^> Tor^\(Mf, N) • • •

• • • Ext*R/k(M", N) -> Ext*R/k(M, N) -> Ext*R/k(M', N) -?•* Ext*^(M", N) • - •

Proof Since U(£) is split exact, for every p>\ the complexes ( ± / 7 + 1

£)®RN = U(S) <g>* (rt®^ <g>/? A )̂ and Hom/e(±^ + 1 5 , iV) = Hom^(f/^ ®k

R®p, N) are exact. Taking (co-) homology yields the result. <0>

By combining adjectives, we see that a "&-split _L-projective resolution" of
an /^-module M is a resolution P* -^ M such that each P( is ±-projective and
the augmented chain complex is &-split.

0 <- M +±- Po ^ Pi ^ P2 - • •.

For example, we saw in 8.6.12 that the augmented bar resolutions B(R, M) —•
M and /3(/?, M) -> M are ^-split _L-projective resolutions for every /^-module
M.

Comparison Theorem 8.7.9 Let P* -* M be a k-split L-projective reso-
lution and f: M —> N an R-module map. Then for every k-split resolution
Q* —> N there is a map f:P*-> Q* lifting f. The map f is unique up to
chain homotopy equivalence.

Proof The proof of the Comparison Theorem 2.2.6 goes through. (Check
this!) <>

Theorem 8.7.10 If P* ^ M is any k-split ±-projective resolution of an R-
module M, then there are canonical isomorphisms:

Torf /k(M, N) ^ H*(P ®R N),

Ext*R/k(M, N) ^ H* Hom/?(P, N).

Proof Since ®RN is right exact and Hom/?(—, N) is left exact, we have iso-

morphisms Tor*7*(M, N)^M <S)RN^ HO(P ®R N) and Ext°R/k(M, N) ^

Hom/?(Af, N) = H°HomR(P, N). Now the proof in 2.4.7 that derived func-
tors form a universal 8-functor goes through to prove this result. <>

Lemma 8.7.11 Suppose R\ and R2 are algebras over a commutative ring
k; set _L; = /?/0 and J-12 = R\<S)R2(S)' If P\ is -L\-projective and P2 is J_2-
projective, then P\ (8) Pi is -L\2-projective.
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8.7 Cotriple Homology 291

Proof In general Pi is a summand of Ri 0 P;, so P\ 0 ft is a summand of

J-12 (P\ ® ft) = (# 1 ® ft) ® (#2 0 ft). <>

Application 8.7.12 (External products for Tor) Suppose /: is commutative,
and we are given right and left R\-modules M\ and N\ (resp. /?2-modules M2
and A^2). Choose £-split J_;-projective resolutions Pi —> Ni\ Tot(Pi 0 ft) is
therefore a &-split J_i2-projective resolution of the R\ 0 / ^ - m o d u l e TVi 0 #2-
(Why?) Tensoring with M\ 0 M2 yields an isomorphism of chain complexes

Tot{(Mi 0 / ?1 Px) 0 (M2 0/?2 P2)} = (Mi 0 M2) ®RI®R2 Tot(Pi 0

Applying homology yields the external product for relative Tor:

Torf /k(Mu Ni) 0^ TorJ2A(M2, A 2̂) -^ Tor^0 i ? 2 ) / / :(Mi 0 M2, TVi 0 N2).

As in 2.7.8, the (porism version of the) Comparison Theorem 2.2.7 shows that
this product is independent of the choice of resolution. The external product is
clearly natural in M\, N\, M2, N2 and commutes with the connecting homo-
morphism 8 in all four arguments. (Check this!) When i = j = 0, it is just the
interchange (Mi 0 ^ N\) 0* (M2 0/?2 N2) ^ (Mi 0 M2) 0/?1(g)/?2 (N\ 0 N2).

The bar resolutions P(Rt, Ni) of 8.6.12 are concrete choices of the P(. The
shuffle map V: Tot fi(Ru N\) 0 P(R2, N2) -+ fi{R\ 0 R2, N\ 0 N2) of 8.6.13
and exercise 8.6.5 may be used in this case to simplify the construction (cf.
[MacH, X.7]).

Exercise 8.7.2 (External product for Ext) Use the notation of 8.7.12 to pro-
duce natural pairings, commuting with connecting homomorphisms:

I, N2) ®k Ext£2/jk(Af2, N2) -+ E x t J + ^ ^ / ^ M i 0 M2, Nx 0

If i = j = 0, this is just the map

Hom(Mi, N\) 0 Hom(M2, A 2̂) -^ Hom(Mi 0 M2, N\ 0 N2).

Example 8.7.13 Suppose that R is a flat commutative algebra over k. If /
is an ideal of R generated by a regular sequence x = (jq, • • •, Xd), then T =
Torf /k(R/I, R/I) is isomorphic to (R/I)d and

TorR/k(R/I, R/I) ^ A(T for / > 0.
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292 Simplicial Methods in Homological Algebra

In particular these vanish for / > d. To see this, we choose the Koszul reso-
lution K(x) -> R/I (4.5.5); each Kt(x) = AlRd is _L-projective. Since every
differential in R/I 0 # K(X) is zero, we have

Torf>/k(R/I, R/I) ^ R/I ®R Kt(x) ^ AT.

More is true: we saw in exercise 4.5.1 that K(x) is a graded-commutative
DG-algebra, so Tor* (R/I, R/I) is naturally a graded-commutative R/I-
algebra, namely via the exterior algebra structure. This product may also be
obtained by composing the external product

Torf /k(R/I, R/I)®TovR/k(R/I, R/I) -> TorR®R/k (R/I® R/I,

with multiplication arising from R® R -> R and R/I ® R/I —• R/I. Indeed,
the external product is given by K(x) 0 K(x) and the multiplication is re-
solved by the Koszul product K(x) ® K(x) - • K(x); see exercise 4.5.5.

Theorem 8.7.14 (Products of rings) Let k -> R and k -> R' be ring maps.
Then there are natural isomorphisms

ToriRxR')/k(M xMr,N x N') ^ Torf /k(M, N) 0 Torf /k(Mf, Nf),

Exf{RxR,)/k(M x M\N x N') = Ext*R/k(M, N) 0 Ext*R/k(M\ Nf).

Here M and N are R-modules, Mr and N' are R -modules, and we consider
M x M' and N x Nf as (R x Rf)-modules by taking products componentwise.

Proof Write _L and U for the cotriples ®R and ®R\ so that ± 0 ± ' is
the cotriple ®(R x R'). Since (_L 0 A.')(M x Mf) ^ (_L M) 0 (_L Mr) 0 (_Lr

M) 0 (Lf Mr), both ±M = M ® R and ± ' Mr = Mf ® /?' are (_L 0 ±0-
projective (/? x /^-modules (exercise 8.6.3). The bar resolutions f$(R, M) ->
M and fi(Rf, M') -+ M' are therefore &-split (± 0 .LO-projective resolutions;
so is the product f$(R,M) x /*(/?', Mf) -> M x Afr. Using this resolution to
compute relative Tor and Ext over R x Rf yields the desired isomorphisms, in
view of the natural /:-module isomorphisms

(M x Mr) ®{RxR>) (N x Nf) ^ (M 0/? Â ) 0 (Mr 0 ^ ^ ) ,

Hom/?x/?/(M x M\N x A^r) ^ Horn*(M, iV) 0 Hom^(Mr, A^r). <>

Call a right /^-module P relatively flat if P 0/? TV* is exact for every &-split
exact sequence of left /^-modules N*. As in exercise 3.2.1 it is easy to see that
P is relatively flat if and only if Torf /k(P, N) = 0 for * ^ 0 and all left mod-
ules N.
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8.7 CotripleHomology 293

Relatively Flat Resolution Lemma 8.7.15 If P -> M is a k-split resolution

ofM by relatively flat R-modules, then Torf /lc(M, N) ^ H*(P (g)/? N).

Proof The proof of the Flat Resolution Lemma 3.2.8 goes through in this
relative setting. O

Corollary 8.7.16 (Flat base change for relative Tor) Suppose R —> T is a
ring map such that T is flat as an R-module. Then for all T-modules M and
all R-modules N:

Torf//C(M, N) ^ Torl/k(M, T ®R N).

Moreover, if R is commutative and M = L ®R T these are isomorphic to

TorR/k(L ®R T,N)^T ®R Torf M (L, N).

Proof This is like the Flat base change 3.2.9 for absolute Tor. Write P -+ M
for the &-split resolution associated to J_* M -> M, with J_ = <S>RT. The right
side is the homology of the chain complex P <S>T (T <S>R N) = P <8>R N, SO

it suffices to show that each Pn = (±n M) 0^ T is a relatively flat /^-module.
Because k is commutative there is a natural isomorphism P ®RN = T ®R
N <g>k (_Ln M) for every N. If N* is a &-split exact sequence of left /^-modules,
so is N* <8>k (-Ln M); since T is flat over R, this implies that P ®R N* =
T ®R N* (g)* (±n M) is exact. <>

Exercise 8.7.3 (Localization) Let S be a central multiplicative set in R, and
M, N two R-modules. Show that

Tors~*R/k(S~lM, S~lN) ^ TorR/k(S~lM, N) ^ S~l Torf /k(M, N).

Vista 8.7.17 (Algebraic K -theory) Let 1Z be the category of rings-without-
unit. The forgetful functor U\Tl^> Sets has a left adjoint functor F:Sets —•
1Z, namely the free ring functor. The resulting cotriple ±:7Z-+ 1Z takes a
ring R to the free ring-without-unit on the underlying set of R. For each
ring R, the augmented simplicial ring _L* R -> R is aspherical in the sense
of 8.4.6: the underlying (based, augmented) simplicial set £/(_L* R) -> UR
is aspherical. (To see this, recall from 8.6.10 that £/(JL* R) is flbrant and
left contractible, hence aspherical). If G: 1Z -> Groups is any functor, the ±-
left derived functors of G (i.e., derived with respect to _L) are defined to be
LnG(R) = 7rnG(_L* R), the homotopy groups of the simplicial group G(_L*
R). This is one type of non-abelian homological algebra (see 8.3.5).
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294 Simplicial Methods in Homological Algebra

Classical examples of such a functor G are the general linear groups
GLm(R), defined for a ring-without-unit R as the kernel of the augmenta-
tion GLm(l 0 R) -> GLm(I). The inclusion of GLm(R) in GLm+\(R) by
M H> (cf ?) allows us to form the infinite general linear group GL(R) as the
union UGLm(R). By inspection, LnGL(R) = limm^oo LnGLm(R).

One of the equivalent definitions of the higher AT-theory of a ring /?, due to
Gersten and Swan, is

Kn(R) = Ln-2GL(R) = nn-2GL(U R) for n > 3,

while K\ and A^ are defined by the exact sequence

0 -> K2(R) -» L0GL(R) -> GL(R) -> #i(fl) -> 0.

If /? is a free ring, then Kn(R) = 0 for n > 1, because GL(_L* 7?) -
is contractible (8.6.9). If R has a unit, then LoGL(R) is the infinite Stein-
berg group St(R) = lim Stn(R) of 6.9.13; St(R) is the universal central ex-
tension of the subgroup E(R) of GL(R) generated by the elementary matrices
(6.9.12). For details we refer the reader to [Swanl].

8.8 Andre-Quillen Homology and Cohomology

In this section we fix a commutative ring k and consider the category Com-
malg = A:-Commalg of commutative A:-algebras R. We begin with a few defi-
nitions, which will be discussed further in Chapter 9, section 2.

8.8.1 The Kdhler differentials of R over k is the /^-module £lR/k having the
following presentation: There is one generator dr for every r e R, with da = 0
if a G k. For each r, s e R there are two relations:

d(r + s) = (dr) + (ds) and d(rs) = r(ds) + s(dr).

If M is a /c-module, a k-derivation D: R -> M is a ^-module homomorphism
satisfying Z)(rs) = r(Z)1s

<) + s(Dr); the map d: R ^ &R/k (sending r to dr)
is an example of a ^-derivation. The set Devk(R, M) of all ^-derivations is an
/^-module in an obvious way.

Exercise 8.8.1 Show that the ^-derivation d: R —>• £2R/JC is universal in the
sense that Der^(/?, M) = HomR(QR/k, M).

Exercise 8.8.2 If R = k[X] is a polynomial ring on a set X, show that
is the free /^-module with basis {dx : x G X}. If f̂ is a A:-algebra,

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.009
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:27:47, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.009
https:/www.cambridge.org/core


8.8 Andre-Quillen Homology and Cohomology 295

conclude that QK[X]/K = K <S>k &k[X]/k- These results will be generalized in
exercise 9.1.3 and theorem 9.1.7, using 9.2.2.

Recall from 8.6.16 that there is a cotriple _L on Commalg, ±R being
the polynomial algebra on the set underlying R. If we take the resulting
augmented simplicial ^-algebra _]_*/? -> R, we have canonical maps from
-LnR= _Ln+1 R to R for every n. This makes an /^-module M into a
±n /^-module. The next definitions were formulated independently by M.
Andre and D. Quillen in 1967; see [Q].

Definitions 8.8.2 The Andre-Quillen cohomology Dn(R/k,M) of R with
values in an ^-module M is the cotriple cohomology of R with coefficients

Dn(R/k, M) = nn Derfc(_U#, M) = Hn(R; Der*(-, M)).

The cotangent complex i-R/k = LR/IC(-L*R) of the ^-algebra R is defined
to be the simplicial /^-module [n] \-+ R <8>(±nR) &(±nR)/k> The Andre-Quillen
homology of R with values in an R-module M is the sequence of R-modules

When M = R, we write D*(R/k) for the /^-modules D*(R/k, R) = 7T*LR/k.
There is a formal analogy: D* resembles Tor* and D* resembles Ext*.

Indeed, the cotangent complex is constructed so that Hom#([L/?/&, M) =
Der£(_U#, M) and hence that D*(R/k, M) ^ 7r*Hom/?(L/?/^, M). To see
this, note that for each n we have

®(±nR) &(±nR)/k, M) = Hom±nR(Q(±nR)/k, M) ^ Derk(±nR, M).

Exercise 8.8.3 Show that D°(R/k, M) ^ Der*(#, M) and D0(R/k, M) ^
M ®

Exercise 8.8.4 (Algebra extensions [EGA, IV]) Let Exalcomm^(/?, M) de-
note the set of all commutative fc-algebra extensions of R by M, that is, the
equivalence classes of commutative algebra surjections E -> R with kernel
M, M2 = 0. Show that

Exalcomnu(/?, M)^Dl(R,M).

Hint: Choose a set bijection E = R x M and obtain an element of the mod-
ule Homsets(-L/?, M) = Der^(_L2/?, M) by evaluating formal polynomials
f e±R in the algebra E.
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296 Simplicial Methods in Homological Algebra

Exercise 8.8.5 Polynomial A:-algebras are _L-projective objects of Commalg
(8.6.7). Show that if R is a polynomial algebra then for every M and / ^ 0
Dl(R/k, M) = Di(R/k, M) = 0. We will see in exercise 9.4.4 that this van-
ishing also holds for smooth A:-algebras.

Exercise 8.8.6 Show that for each M there are universal coefficient spectral
sequences

E2
pq = TorR

p(Dq(R/k), M) =» Dp+q(R/k, M);

E{q = Extp
R(Dq(R/k), M) => Dp+q(R/k, M).

If A: is a field, conclude that

Dq(R/k, M) ^ Dq{R/k) <S>R M and Dq(R/k, M) ^ HomR(Dq(R/k), M).

In order to give the theory more flexibility, we need an analogue of the fact
that _L-projective resolutions may be used to compute cotriple homology. We
say that an augmented simplicial A;-algebra P* —> R is a simplicial polynomial
resolution of R if each P, is a polynomial ^-algebra and the underlying aug-
mented simplicial set is aspherical. The polynomial resolution _L* R —• R is
the prototype of this concept. Since polynomial ^-algebras are _L-projective,
there is a simplicial homotopy equivalence P* —>±.*R (2.2.6, 8.6.7). There-
fore Der*(P*, M) ^ Der*(_L* R, M) and D*(R/k, M) ^ nn Der^(P*, M).
Similarly, there is a chain homotopy equivalence between the cotangent com-
plex !_/?/£ and the simplicial module D_/?/£(P*): [n] \-^ R (g)pn Qpn/k- (Exer-
cise!) Therefore we may also compute homology using the resolution P*.

8.8.3 Here is one useful application. Suppose that k is noetherian and that R
is a finitely generated /c-algebra. Then it is possible to choose a simplicial poly-
nomial resolution P* —• R so that each Pn has finitely many variables. Conse-
quently, if M is a finitely generated /^-module, the /^-modules Dq(R/k, M)
and Dq{R/k, M) are all finitely generated.

8.8.4 (Flat base change) As another application, suppose that R and K are
/:-algebras such that Torf (K, R)=0 for i / 0. This is the case if K is flat
over k. Because these Tors are the homology of the ^-module chain complex
C(K<S)k -L*R), it follows that K<g>k X*R -> K <g>k R is a simplicial polyno-
mial resolution (use 8.4.6). Therefore

D*(K®kR IK, M) ^ n*DerK(K®k ±*R, M)

£ 7T* Der*(_U/?, M) = D*(/?/^, M)
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8.8 Andre-Quillen Homology and Cohomology 297

for every K ® /^-module M. Similarly, from the fact that QK[X]/JC = K <&k
&k[X]/k for a polynomial ring k[X] it follows that LK®R/K — K <S>k ^-R/k and
hence that D*(K®kR /K) = K <g>k D*(R/k). This family of results is called
Flat base change.

Exercise 8.8.7 Show that D*(R/k, M) = D*(R/k, M)=0ifRis any local-
ization ofk.

8.8.5 As a third application, suppose that R is free as a ^-module. This will
always be the case when k is a field. We saw in 8.6.16 that the forgetful
functor U'\ Commalg ->• &-mod has a left adjoint Sym; the resulting cotriple
±S(R) = Sym(U'R) is somewhat different than the cotriple _L Our assump-
tion that R is free implies that Sym(UfR) is a polynomial algebra, and free
as a fc-module. Hence J_£ (R) —>• R is also a simplicial polynomial resolu-
tion of R. Therefore D*(R/k, M) is isomorphic to the cotriple cohomology
7r*(±f R, M) of R with respect to the cotriple ±s. Similarly, LR/k and Ls

R/k =
{R ®(±SR) &(±s

nR)/k} a r e homotopy equivalent, and D*(R/k, M) = n*(M <8>R

8.8.6 (Transitivity) A fourth basic structural result, which we cite from [Q],
is Transitivity. This refers to the following exact sequences for every A;-algebra
map K -> R and every R -module M:

0 - • DerK(R, M) -+ Derk(R, M) -> Derk(K, M) -?-> Exalcomm/^(/?, M) -+

Exalcomm^C/?, M) -+ Exalcomm^C/i:, M) -^> D2(R/K, M) -+ • • •

• Dn{R/K, M) - • Dn(R/k, M) -> Dn(K/k, M) -^ Dn+l(R/K, M) -+ • • •,

and its homology analogue:

• • • - • Dn+l(R/K) -^R®K Dn{K/k) -+ Dn{R/k) - • Dn{R/K) -^ D

The end of this sequence is the first fundamental sequence 9.2.6 for

Exercise 8.8.8 Suppose that A: is a noetherian local ring with residue field
F = R/m. Show that Dl(F/k) = D\(F/k) = m/m2, and conclude that if R
is a ^//-algebra we may have D*(R/k, M) / D*(R/(k/I), M).

Exercise 8.8.9 (Barr) In this exercise we interpret Andre-Quillen homology
as a cotriple homology. For a commutative A>algebra R, let Commalg//?
be the "comma" category whose objects are ^-algebras P equipped with
an algebra map P —> R, and whose morphisms P -+ Q are algebra maps
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298 Simplicial Methods in Homological Algebra

such that P -> R factors as P -> Q -> R. Let Diff: Commalg/7? -> R-mod
be the functor Diff(P) = Qp/k <8>p R. Show that J_ induces a cotriple on
Commalg//?, and that if we consider R as the terminal object in Commalg//?,
then the cotriple homology groups (8.7.1) are Andre-Quillen homology:

Dn(R/k) = Hn(R; Diff) and Dn(R/k, M) = Hn(R; Diff ®R M).

8.8.1 Relation to Hochschild Theory

When A: is a field of characteristic zero, there is a much simpler way to calcu-
late D*(R/k, M) and D*(R/k, M), due to M. Barr [Barr].

Barr's Theorem 8.8.7 Suppose C*(R) is an R-module chain complex, natu-
ral in R for each R in Commalg, such that

L H0(C*(R)) ^ QR/k for each R.
2.IfR is a polynomial algebra, C*(R) - • QR/JC is a split exact resolution.
3. For each p there is a functor Fp\ fc-mod -> &-mod such that Cp(R) =

R ®k Fp(UR), where UR is the k-module underlying R.

Then there are natural isomorphisms

Dq(R/k, M) ^ Hq HomR(C*(R), M) and

Dq(R/k, M) 9* Hq(M ®R C*(R)).

Proof We give the proof for cohomology, the proof for homology being simi-
lar but more notationally involved. Form the first quadrant double complex

with horizontal differentials coming from C* and vertical differentials coming
from the naturality of the Cp. We shall compute H* Tot(£n) m t w o ways.

If we fix q, the ring ±^R is polynomial, so by (2) C*(±qR) - • &±sR/fc is

split exact. Hence Hp HomR(C*(±%R), M) = 0 for p ^ 0, while

H°HomR(C*(±%R), M) ^ Hom^C^^/^, M) ^ Derk(±
s
qR, M).

Thus the spectral sequence 5.6.2 associated to the row-filtration on EQ degen-
erates at E2 to yield Hq Tot(£0) = Hq Der^(±f/?, M) = Dq(R/k, M).

On the other hand, if we fix p and set G(L) = Homk(Fp(L), M) we see
by condition (3) that £Q* = G(U±%R). But the augmented simplicial k-
module U±1R -> UR is left contractible (8.4.6), because ±sR = Sym(UR)
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8.8 Andre-Quillen Homology and Cohomology 299

(see 8.6.10). As G is a functor, E?* -> G(UR) = HomR(Cp(R), M) is
also left contractible, hence aspherical. Thus Hq(E^) = 0 for q ^ 0, and
H°(E^*) = HomR(Cp(R), M). Thus the spectral sequence 5.6.1 associated
to the column filtration degenerates at £2 as well, yielding HpTot(Eo) =

R),M). O

Preview 8.8.8 In the next chapter, we will construct the Hochschild homol-
ogy //*(/?, R) of a commutative A:-algebra R as the homology of a natural R-
module chain complex C%(R) with Ch

p{R) = R ®k Fp(UR), Fp{L) being the
/7-fold tensor product (L <S>k L <S>k • • • <8>k L). There is a natural isomorphism
H\(R, R) = QR/k and the map C\(R) -> CQ(R) is zero. We will see in 9.4.7
that if R is a polynomial algebra, then Hn(R, R) = ^n

Ri^ so C\ does not quite
satisfy condition (2) of Barr's Theorem.

To remedy this, we need the Hodge decomposition of Hochschild homol-

ogy from 9.4.15. When Q c k there are natural decompositions Fp(L) =

0F p (L) ( / ) such that each C%(R)(i) = R ®k F*(UR)(i) is a chain subcomplex

of C*(R) and C*(R) = ©C^(/?)(/). If M is an fl-module (an R-R bimod-

ule via mr = rm), set //n
( 0(#, M) = Hn(M ®R C%(R){i)) and H£t)(R, M) =

Hn HomR(C%(R){i\ M). The Hodge decomposition is

Hn(R, M) = 0//n
(/)(/?, M) and Hn(R, M) = ®H^(R, M).

If R is a polynomial algebra, then H^\R, R)=0 for i ^ n, and //^(tf, /?) ^
fi^/^ is a free /^-module (exercise 9.4.4). In particular, since C^{R)^ = 0 for

/ > n the augmented complex C%(R)^ -> £2^^[—/] is split exact for all /.

If we let CP(R) be Ch
p+l(R)(l\ then the above discussion show that C*

satisfies the conditions of Barr's Theorem 8.8.7. In summary, we have proven

the following.

Corollary 8.8.9 Suppose that k is a field of characteristic zero. Then Andre-
Quillen homology is a direct summand of Hochschild homology, and Andre-
Quillen cohomology is a direct summand of Hochschild cohomology:

Dq(R/k, M) ^ H^X(R, M) and Dq(R/k, M) ^ H^l(R, M).
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9
Hochschild and Cyclic Homology

In this chapter we fix a commutative ring k and construct several homology
theories based on chain complexes of ^-modules. For legibility, we write 0
for ®k and R®n for the n-fold tensor product R 0 • • • 0 R.

9.1 Hochschild Homology and Cohomology of Algebras

9.1.1 Let R be a A:-algebra and M an R—R bimodule. We obtain a simplicial
^-module M 0 R®* with [n] H> M 0 #®" (M 0 fl®° = M) by declaring

I mri 0 r2 0 • • • 0 rn if / = 0

m 0 r\ 0 • • • 0 r;r;+i 0 • • • 0 rn if 0 < / < n
rnm 0 r\ 0 • • • 0 rw_i it i = n

O[(m 0 r\ 0 • • • 0 rn) = m 0 • • • 0 T{ 0 1 0 r i + i 0 • • • 0 rn,
where m e M and the r; are elements of R. These formulas are ^-multilinear,
so the 3/ and O[ are well-defined homomorphisms, and the simplicial identities
are readily verified. (Check this!) The Hochschild homology H*(R, M) of R
with coefficients in M is defined to be the /:-modules

Hn(R, M) = nn(M 0 R®*) = HnC(M 0 R®*).

Here C(M 0 R®*) is the associated chain complex with d = J](—1)^3/ :
9o—d\ d d

For example, the image of 3o — 3i is the A;-submodule [M, R] of M that is gen-
erated by all terms mr-rm (m e M,r e R). Hence Ho(R, M) = M/[M, R].

300
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9.1 Hochschild Homology and Cohomology of Algebras 301

Similarly, we obtain a cosimplicial ^-module with [n] i-> Homk(R®n, M) =
{^-multilinear maps / : Rn -> M} (Hom(/?®°, M) = M) by declaring

[ r o / ( r i , . . . , r n ) i f i = 0
O7)(r0 , , rn) = j /(r0 , . . . , n-m, . . .) if 0 < i < /i

I /(ro, . . . ,rn_i)rn if / = n

The Hochschild cohomology H*(R9 M) of R with coefficients in M is defined
to be the ^-modules

Hn(R, M) = 7rn(Uomk(R®*, M)) = HnC(Homk(R®*, M)).

Here C Hom^(/?*, M) is the associated cochain complex

0 —> M > H o m k ( R , M ) — > H o m k ( R (8) R , M) — > ••-.

For example, it follows immediately that

H°(R, M) = {meM :rm = mr for all r e R}.

Exercise 9.1.1 If R is a commutative fc-algebra, show that M ® R®* is a
simplicial /^-module via r • (m ® n <g> • • •) = (rm) (8) r\ <g> • • • . Conclude that
each Hn(R, M) is an /^-module. Similarly, show that Hom/?(/?®*, M) is a
cosimplicial /^-module, and conclude that each Hn(R, M) is an /^-module.

Exercise 9.1.2 If 0 -> Mo -^ Mi -> M2 —• 0 is a ^-split exact sequence of
bimodules (8.7.7), show that there is a long exact sequence

d-> Ht(R, M0) -> //;(/?, Mi) - • Ht(R, M2) -^ Hi-i(R, Mo) • • •.

Example 9.1.2 (Group rings) Let R be the group ring k[G] of a group G, and
M a right G-module. Write eM for M considered as a G—G bimodule with
trivial left G-module structure (gm = m for all g e G, m e M). If Z?" denotes
the unnormalized bar resolution of 6.5.1, then //*(G; M) is the homology of
M ®IG B*> m e chain complex that in degree / is M ® (ZG)®1. By inspec-
tion, this is the same complex used in 9.1.1 to define the Hochschild homol-
ogy of ZG, provided that we take coefficients in the bimodule eM. Similarly,
//*(G; M) is the cohomology of the chain complex Homo(5", M), which is
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302 Hochschild and Cyclic Homology

the same as the complex Hoiri£((2G)®*,£M) used to define Hochschild coho-
mology. Thus

#*(G; M) ^ H*(ZG;SM) and #*(G; M) = H*(lG; eM).

The above definitions, originally given by G. Hochschild in 1945, have the
advantage of being completely natural in R and M. In order to put them into
a homological framework, it is necessary to consider the enveloping algebra
Re = R®k 7?°P of R. Here 7?op is the "opposite ring"; flop has the same un-
derlying abelian group structure as R, but multiplication in Rop is the opposite
of that in R (the product r • s in R°v is the same as the product sr in R). The
main feature of R°v is this: A right /^-module M is the same thing as a left
/?op-module via the product r • m = mr because associativity requires that

(r • s) • m = (sr) • m = m(sr) = (ms)r = r • (ms) = r • (s • m).

Similarly a left /^-module N is the same thing as a right /?op-module via
n - r = rn. Consequently, the main feature of Re is that an R—R bimodule
M is the same thing as a left /^-module via the product (r (8) s) • m = rms,
or as a right /?£-module via the product m • (r ® s) = smr. (Check this!) This
gives a slick way to consider the category R-mod-R of R—R bimodules as
the category of left /^-modules or as the category of right /^-modules. In
particular, the canonical R—R bimodule structure on R makes R into both a
left and right /^-module.

Lemma 9.1.3 Hochschild homology and cohomology are isomorphic to rel-
ative Tor and Ext for the ring map k -> Re = R (8) R°v :

H*(R, M) ^ Torf 7*(M, /?) and H*(R, M) ^ Ext£v*(rt, M).

Proof Consider the unnormalized bar resolution fi(R, R) of R as a left /?-
module (8.6.12). Each term £(/?, #)„ = /?®/I+1 ® /? is isomorphic as an /?-/?
bimodule to fl <8> fl0/I ® /? ^ (/? ® /?op) (8) /? 0 n and hence is _L-projective
(8.6.5), where _L = /?£(8). Since )0(R, R) is a /:-split _L-projective resolution
of the /^-module 7?, 8.7.10 yields

Torf A ( M , /?) = H*(M ®Re P(R, R)) and

Ext^ / i t(/?, M) = //*Hom r(i0(/?, /?), M).

On the other hand, the isomorphism M ®Re (R <S> R®n <8> R) ^ M ® Rn send-
ing m (g) (ro 0 • • • 0 fVj+i) to (rn+imro) 0 (ri (8) • • • <8) rn) identifies M ®Re
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9.1 Hochschild Homology and Cohomology of Algebras 303

P(R, R) with the chain complex C(M ® R®*) used to define Hochschild ho-
mology. Similarly, the isomorphism HomRe(R®R®n®R, M) -> Hom^/?®",
M) sending / to / ( I , —, 1) identifies Hom#e(/*(/?, /?), M) with the cochain
complex C(Homk(R®*, M)) used to define Hochschild cohomology. O

Next we show that in good cases, such as when A; is a field, we can identify
Hochschild homology and cohomology with the absolute Tor and Ext over the
ring Re.

Lemma 9.1.4 If P and Q are flat (resp. projective) k-modules, then so is

P®Q.

Proof Let £ be an exact sequence of ^-modules. If P and Q are flat, then
by definition £ 0 P and hence £ <g> P 0 Q are exact; hence P 0 Q is flat. If
P and Q are projective, then Hom(<2, £) and hence Hom(P, Hom(<2, £)) =
Hom(P 0 Q, £) are exact; as we saw in 2.2.3, this implies that P 0 Q is
projective. <>

Corollary 9.1.5 IfR is flat as a k-module, then //*(/?, M) ^ Torf (M, /?). / /
/? is projective as a k-module, then H*(R, M) = Ext^(/?, M).

If /? is flat (resp. projective), then each R®n is a flat (resp. projective)
^-module, and hence each fi(R, R)n = Re 0 R®n is a flat (resp. projective)
Re-modu\Q. Thus f$(R, R) is a resolution of /? by flat (resp. projective) Re-
modules. It follows that the relative Tor (resp. relative Ext) modules are iso-
morphic to the absolute Tor (resp. absolute Ext) modules. O

Here are three cases in which H*(R, M) is easy to compute. First, let us
recall from 7.3.1 that the tensor algebra of a ^-module V is the graded algebra

T(v) = k e v e (v (8) v) e • • • e v®j e • • •.

Proposition 9.1.6 Let T = T(V) be the tensor algebra of a k-module V, and
let M be a T — T bimodule. Then ///(T, M) = 0 for i ^ 0, 1 and there is an
exact sequence

0 -> H\(T, M) -+ M <g> V - ^ M -+ H0(T, M) -> 0

where b is the usual map b(m (8) v) = mv — vm. In particular, if a denotes the
cyclic permutation o (v\ (g> • • • (g) Vj) = Vj ® v\ 0 • • • Vj-\ ofV®J and we write
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304 Hochschild and Cyclic Homology

and (V®-7)̂ . for the invariants and covariants of this group action,
then we have

H0(T,T) = k®®(V*J
7 = 1

)„, Hi(T,T)
OO

7 = 1

Proof The formula d(t 0 v 01') = tv 0 t' — t 0 i;f' defines a T—T bimodule
map from T 0 V 0 7 to T 0 T. As the kernel / of the multiplication /x: 7 0
r -> r is generated by the elements i; 0 1 — 1 ® i; = d{\ 0 f 0 1) and {id =
0, the image of d is / . As d is a direct sum (over /? and g) of maps from
V®? 0 V 0 VV to V®/^1 0 v®* and to V®^ 0 V®**1, each of which is an
isomorphism, d is an injection. (Check this!) Hence

is a _L-projective resolution of the Te-module T\ \JL is £-split by the map id 0
Te Ik

1: r —>> 7 0 7. Hence we can compute Tor^ (M, T) using this resolution.
Tensoring with M yields H((T, M) = 0 for / ^ 0, 1 and the advertised exact
sequence for H\ and H$. O

Exercise 9.1.3 (Polynomials) If R = k[x\, • • •, xm], show that /?g is isomor-
phic to the polynomial ring k[y\9 • • •, yn,zi, • • •, zm] and that the kernel of
Re ->• /? is generated by the regular sequence x = (ji — z\, • • •, ym — zm)- Us-
ing the Koszul resolution K(x) of 4.5.5, show that Hp(R, R) = HP(R, R) =
AP(Rn) for p = 0, • • •, n, while HP(R, M) = H?(R, M) = 0 for p > n and
all bimodules M. This is a special case of Theorem 9.4.7 below.

Exercise 9.1.4 (Truncated polynomials) If R = A:[jc]/(jcn+1 = 0), let u = x 0
1 - 1 0 x and v = xn 0 1 + xn~l 0 JC H h JC 0 JC""1 + 1 0 xn as elements

in /?*. Show that

<— K <— K < / v << 7\ -< 7v -< 7\ ^ • • •

is a periodic /^-resolution of /?, and conclude that //;(/?, M) and Hl(R, M)
l

n+l
are periodic of period 2 for / > 1. Finally, show that when —j-r e R we have

///(/?, /?) ^ ^ ' ( / ? , /?) ^ R/(xnR) for all / > 1.

Let k —> I be a commutative ring map. If /? is a fc-algebra, then Ri = R 0£ t
is an ^-algebra. If M is an Rg—R^ bimodule then via the ring map R —>
/fy (r M> r 0 1) we can also consider M to be an R—R bimodule. We would
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9.I Hochschild Homology and Cohomology of Algebras 305

like to compare the Hochschild homology H%(R, M) of the fc-algebra R with
the Hochschild homology H*(Ri, M) of the ^-algebra Ri = R®1.

Theorem 9.1.7 (Change of ground ring) Let R be a k-algebra and k —> I a
commutative ring map. Then there are natural isomorphisms for every Rg—Ri
bimodule M:

H*(R, M) ^ H^Rti M) and H£(R, M) ^ H?(Ri, M).

Proof The unnormalized chain complexes used for computing homology are
isomorphic by the isomorphisms M ®k R <S>k • • • ®fc R = M <S>i (R ®k £) 0£
-•®£(R®kt)- Similarly, the unnormalized cochain complexes used for com-
puting cohomology are isomorphic, by the bijection between ^-multilinear
maps Rn —• M and ^-multilinear maps (Ri)n -^ M. O

Theorem 9.1.8 (Change of rings) Let R be a k-algebra and M an R—R
bimodule.

1. (Product) If R' is another k-algebra and Mf an Rf—Rf bimodule, then

H*(R xR',Mx Mf) ^ H*(R, M) 0 H*(R\ Mf)

H*(R x Rf,M x Mf) ^ //*(/?, M) 0 H*(^ , Mf).

2. (Flat base change) If R is a commutative k-algebra and R —> T is a ring
map such that T is flat as a (left and right) R-module, then

H*(T, T®RM®RT)^T®R //*(/?, M).

3. (Localization) If S is a central multiplicative set in R, then

H*(S~lR, S~lR) £ //*(/?, S~lR) ^ S~lH*(R, R).

Proof For (1), note that (R x R')e £ Re x R'e x (R ® #/0P) x (R' (8) /?°P);
since M and M' are left Re and /^^-modules, respectively, this is a special case
of relative Tor and Ext for products of rings (8.7.14). For (2), note that Re ->
Te makes Te flat as an /^-module (because Te <g>Re M = T <g>R M ®R T). By
flat base change for relative Tor (8.7.16) we have

, M)^T ®R TorfA( /? , M).

The first part of (3) is also flat base change for relative Tor 8.7.16 with T =
S~lR, and the isomorphism H*(R, S~lR) = S~lH*(R, R) is a special case
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306 Hochschild and Cyclic Homology

of the isomorphism Tor*/k(S~lM, N) ^ S~l Torf A ( M , N) for localization
(3.2.10 or exercise 8.7.3). O

Here is one way to form R—R bimodules. If M and TV are left 7?-modules,
Hom£(M, N) becomes an R—R bimodule by the rule rfs : m H> rf(sm).
The Hochschild cohomology of this bimodule is just the relative Ext of 8.7.5:

Lemma 9.1.9 Let M and N be left R-modules. Then

Hn(R, Homk(M, N)) ^ Extn
R/k(M, N).

Proof Let B = B(R, R) be the bar resolution of R. Thinking of M as an R—k
bimodule, we saw in 2.6.2 that the functor ®RM: R-mod-R —• R-mod-k is
left adjoint to the functor Hom^(M, —). Naturality yields an isomorphism of
chain complexes:

HomR(B ®R M, N) = HomR-R(B, Hom^(M, N)).

As B <S>R M is the bar resolution B(R, M), the homology of the left side
is the relative Ext. Since the homology of the right side is the Hochschild
cohomology of R with coefficients in Hom(M, N), we are done. <>

9.2 Derivations, Differentials, and Separable Algebras

It is possible to give simple interpretations to the low-dimensional Hochschild
homology and cohomology modules. We begin by observing that the kernel of
the map d: Hom^(/?, M) -> Homk(R 0 R, M) is the set of all ^-linear func-
tions / : / ? - > M satisfying the identity

f(ron) = rof(r\) + f(ro)r\.

Such a function is called a k-derivation (or crossed homomorphism); the
^-module of all ^-derivations is written Der^(7?, M) (as in 8.8.1). On the
other hand, the image of the map d: M —> Hom&(/?, M) is the set of all k-
derivations of the form fm(r) — rm—mr\ call fm a principal derivation and
write PDer(/?, M) for the submodule of all principal derivations. Taking Hl,
we find exactly the same situation as for the cohomology of groups (6.4.5):

Lemma 9.2.1 Hl(R, M) = Derk(R, M)/PDerk(R, M).

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.010
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:30:06, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.010
https:/www.cambridge.org/core


9.2 Derivations, Differentials, and Separable Algebras 307

Now suppose that R is commutative. Recall from 8.8.1 that the Kdhler
differentials of R over k is the /^-module QR/k defined by the presentation:
There is one generator dr for every r e R, with da = 0 if a e k. For each
n , r2 e R there are two relations:

d(ro + n) = d(r0) + d(n) and d(ror\) = ro(dr\) + (dro)ri.

We saw in exercise 8.8.1 that Derk(R, M) = Hom#(£2/?/£, M) for every right
R -module M. If we make M into a bimodule by setting rm — mr for all r e /?,
m e M then Hl(R, M)= Der^(/?, M). This makes the following result seem
almost immediate from the Universal Coefficient Theorem (3.6.2), since the
chain complex C(M ® fl®*) is isomorphic to M ®/? C(/e ® fl®*).

Proposition 9.2.2 Let R be a commutative k-algebra, and M a right R-
module. Making M into an R—R bimodule by the rule rm = mr, we have
natural isomorphisms Ho(R, M) = M and H\(R, M) = M ®R QR/JC> In par-
ticular,

Proof Since rm = mr for all m and r, the map 3o — 3i: M (8) R -> M is zero.
Therefore Ho = M and H\(R, M) is the quotient of M <g>k R by the relations
that for all m e M, rt e R mr\ ® ri — m ® r\ri + rim ® ri = 0. It follows
that there is a well-defined map //i(Z?, M) ->• M ®/e ^7?/^ sending m ® r
io m ® dr. Conversely, we see from the presentation of £lR/k that there is
an R-bilinear map M x QR/k -> i^i(/?, M) sending (m, ri^r2) to the class
of mri ® r2; this induces a homomorphism M ®/? QR/k -> ^i(/?, M). By
inspection, these maps are inverses. O

Corollary 9.2.3 If S is a multiplicatively closed subset of R, then

Proof The Change of Rings Theorem (9.1.8) states that H{(S~lR, S~lR) =
l R ) . O

Alternate Calculation 9.2.4 For any ^-algebra R, let / denote the kernel of
the ring map e: R (g) R - • R defined by e(r\ (8) ri) = r\ri. Since r v^ r ® 1
defines a /c-module splitting of e, the sequence 0-* I ^ Re —> R -> 0 is k-
split. As H\(R, Re) = 0, the long exact homology sequence (exercise 9.1.2)
yields

, M) ^ ker(/ ® ^ M -> /M).
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308 Hochschild and Cyclic Homology

If R is commutative and rm = mr, then IM = 0 and H\(R,M) =
I /I2 ® RM. In particular, if we take M = R this yields

Explicitly, the generator dr e ^IR/U corresponds to 1 0 r — r 0 1 e I /I2.
(Check this!)

Example 9.2.5 Let k be a field and R a separable algebraic field extension
of k. Then QR/]C = 0. In fact, for any r e R there is a polynomial /(JC) e &[;c]
such that f(r) = 0 and / ' ( r ) ^ 0. Since d: R -> £2#/£ is a derivation we have
f\r)dr = d(f(r)) = 0, and hence dr = 0. As SlR/k is generated by the dr's,
we get ft/?/* = 0.

Exercise 9.2.1 Suppose that R is commutative and M is a bimodule satisfy-
ing rm = mr. Show that there is a spectral sequence

£ ^ = TovR
p(Hq(R, R), M) => //^+^(/?, M).

Use this to give another proof of proposition 9.2.2. Then show that if M (or
every #*(/?, R)) is a flat /^-module, then //«(/?, M) = Hn(R, R) 0/? M for
all/i.

The following two sequences are very useful in performing calculations.
They will be improved later (in 9.3.5) by adding a smoothness hypothesis.

First Fundamental Exact Sequence for Q, 9.2.6 Let k - • R -> T be maps
of commutative rings. Then there is an exact sequence of T-modules:

The maps in this sequence are given by a(dr 0 0 = tdr and /3(dt) = dt.

Proof Clearly p is onto. By the Yoneda Lemma (1.6.11), in order for this
sequence of T-modules to be exact at Qr/k, it is sufficient to show that for
every T -module TV the sequence

a* P*

be exact. But this is just the sequence of derivation modules

?, N) <- Der^(r, N) <r- Der^(r, N),
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9.2 Derivations, Differentials, and Separable Algebras 309

and this is exact because any ^-derivation D:T -+ N satisfying D(R) = 0 is
an /^-derivation. O

Second Fundamental Exact Sequence for Q 9.2.7 Let / be an ideal of
a commutative A;-algebra R. Then there is an R -module map 8:1 /I2 —>
&R/k ®/? R/I defined by 8(x) = dx <g> 1, fitting into an exact sequence

I/12 ^ QR/k ®R R/I -^ n{K/n/k -> 0.

Proof If JC G / and r e R, then 8(rx) = dx <g) r as dr ® x = 0; if r e I then
rx G I2 and <5(rx) = 0. Hence 8 is well defined and /^-linear. Once more we
use the Yoneda Lemma 1.6.11 to take an /^//-module Af and consider

Hom^/7( / / / 2 , N) / - Deik(R, N) £- Der*(/?//, N) <r- 0.

If D: R -> N is a ^-derivation, then (5*D)(x) = D(x), so if <$*£> = 0, then
D(I) = 0, and D may be considered as a ̂ -derivation on R/L O

9.2.7 Finite Separable Algebras

A finite-dimensional semisimple algebra R over a field A: is called separable if
for every extension field k C £ the ̂ -algebra Ri = R <8)k I is semisimple.

Lemma 9.2.8 7/" ̂  w a ^n/fe ^e/J extension of k, this definition agrees
with the usual definition of separability: every element of K is separable
over k.

Proof If x G K is not separable, its minimal polynomial / G k[X] has mul-
tiple roots in any splitting field L Then K <g) I contains k(x) <g> £ = l[X]/f,
which is not reduced, so K (8) € is not reduced. Otherwise we can write K =
k(x), where the minimal polynomial f of x has distinct roots in any field ex-
tension I of k. Hence K ®l = £[X]/(f) is reduced, hence semisimple. O

Corollary 9.2.9 A finite-dimensional commutative algebra over afield is sep-
arable if and only if it is a product of separable field extensions.

Proof A finite commutative algebra R is semisimple if and only if it is a
product of fields. R is separable if and only if these fields are separable. <>

The matrix rings Mm(k) form another important class of separable algebras,
since Mm{k) <g)k I = Mm(£). More generally, Wedderburn's Theorem states

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.010
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:30:06, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.010
https:/www.cambridge.org/core


310 Hochschild and Cyclic Homology

that every semisimple ring R is a finite product of simple rings, each isomor-
phic to Mm(A) for some m and some division algebra A; R is separable if and
only if each of its simple factors is separable.

Suppose that Mm(A) is separable. If F is the center of A, then F 0 I is
a subring of A 0 I and Afw(A) 0 £,, so F must also be a finite separable
extension of k. It is easy to see that if I is a splitting field of F, then F 0 £ is
a finite product of copies of I, so each of the simple factors of Mm (A) 0 1 has
center I. As we saw in 6.6.10 (see [BAII, 8.4]), there exists a finite extension
L of I such that L 0£ Mm(A) = L 0 | (I 0£ Mm(A)) is a product of matrix
rings over L. In summary, we have proven that if R is separable over k, then
there is a finite extension L of k such that /? 0 L is a finite product of matrix
rings Mm/(L).

Lemma 9.2.10 If R = Mm(k), then R is aprojective Re-module.

Proof The element e = J2 ^ 1 0 *ii of Re = Mm(k) 0 Mm(k)°v is idempotent
(e2 = e) and the product map s: R 0 /?op - • /? sends e to J ] ea = 1- Define
a: /? ->• /?g by a(r) = re. Since the basis elements etj of /? satisfy etje =
gn 0 l̂y- = g -̂y, we have r^ = er for all r e / ? ; hence a is an /?—R bimodule
map. Since ea is the identity on R, this shows that R is a summand of /?^. <>

Theorem 9.2.11 Let R be an algebra over afield k. The following are equiv-
alent:

1. R is a finite-dimensional separable k-algebra.
2. R is projective as a left Re-module.
3. H*(R, M) = Ofor all*^0 and all bimodules M.
4. //*(/?, M) = Ofor all*^0 and all bimodules M.

Proof From the "pd" and "fd" lemmas of 4.1.6 and 4.1.10 we see that (2),
(3), and (4) are equivalent. If R is separable, choose k c I so that Rt is a finite
product of matrix rings Rj = Mmi(i). Since every R—R bimodule is a product
M = TlMi of Ri-Rt bimodules M; we have H*(R, M) = UH*(Ri, Mt) = 0
by 9.1.8 and the above lemma. Thus (1) =» (3).

Now assume that (2) holds for R. Then (2), (3), and (4) hold for every R 0 1
because R 0 I is projective over the ring

(R£)
e = (R 0 I) <s,t (R 0 £)op = (R 0 R°V) 0 £ = (/?*) 0 L

We have isolated the proof that dim(R) < oo in lemma 9.2.12 following this
proof. Now each Rg is semisimple if and only if Rt has global dimension 0
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9.3 H2, Extensions, and Smooth Algebras 311

(4.2.2). If M and N are left /^-modules, we saw in 9.1.3 and 9.1.9 that

Ext^(M, N) = Ext*Ri/k(M, N) ^ //*(#£, Hom^(M, N)).

As (4) holds for /fy, the right side is zero for * / 0 and all M, TV; the Global
Dimension Theorem (4.1.2) implies that Ri has global dimension 0. Hence (2)
=>d). O

Lemma 9.2.12 (Villamayor-Zelinsky) Let R be an algebra over afield k. If
R isprojective as an Re-module, then R is finite-dimensional as a vector space
over k.

Proof Let {JC/} be a basis for R as a vector space and {f1} a dual basis for
Homk(R, k). As Re is a free left /^-module on basis {1 <8) */} with dual basis
{1 <8> /<} c HomR(Re, R), we have

u = ]T(1 0 f)(u) (8) xt for all u e Re".

Now if /? is a projective /^-module, the surjection s\Re ^ R must be split.
Hence there is an idempotent e e Re such that Re - e = R and e(e) = 1. In
particular, (1 <g) r — r (g> l)e = 0 for all r e R. Setting « = ( l 0 r ) g = ( r 0 l)g
yields

(*) r = e(u) = J2(l (8) //)((r ® l)g) - JC/ = r

Therefore the sum in (*) is over a finite indexing set independent of r. Writing
£ = J^ eapxa (8) JĈ  with âyg e A: allows us to rewrite (*) as

r =

Therefore the finitely many elements xaxi span /̂  as a vector space. O

9.3 H2, Extensions, and Smooth Algebras

From the discussion in Chapter 6, section 6 about extensions and factor sets
we see that H2(R, M) should have something to do with extensions. By a
(square zero) extension of R by M we mean a /:-algebra E, together with
a surjective ring homomorphism s\E ->• R such that ker(£) is an ideal of
square zero (so that ker(£) has the structure of an R—R bimodule), and an
7?-module isomorphism of M with ker(e). We call it a Hochschild extension
if the short exact sequence 0 ^ M - > £ - > / ? ^ 0 i s &-split, that is, split
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312 Hochschild and Cyclic Homology

as a sequence of ^-modules. Choosing such a splitting a\ R —• E yields a k-
module decomposition E = R 0 M, with multiplication given by

(*) (n, wi)(r2, w2) = (nr2 , nm 2 -f m\r2 + / ( n , r2)).

We call the function f:R<g)R^ M the factor set of the extension corre-
sponding to the splitting a. Since the product (ro, 0)(n, 0)(r2, 0) is associa-
tive, the factor set must satisfy the cocycle condition

, r2) - / ( ron , r2) + /(ro, nr 2 ) - /(ro, n>2 = 0.

Conversely, any function satisfying this cocycle condition yields a Hochschild
extension with multiplication defined by (*). (Check this!) A different choice
a'\ R ->• E of a splitting yields a factor set / ' , and

= o\ri)[a\r2) - cr(r2)] - W

+ [or /(n)-or(n)]a(r2) ,

which is the coboundary of the element (crf — a) e Hom(/?, M). Hence a
Hochschild extension determines a unique cohomology class, independent of
the choice of splitting a.

The trivial extension is obtained by taking E = R 0 M with product
(ri, rai)(r2, ra2) = (n^2, rim2 + mir2). Since its factor set is / = 0, the trivial
extension yields the cohomology class 0 e H2(R, M).

As with group extensions, we say that two extensions E and E' are equiv-
alent if there is a ring isomorphism <p : E = E' making the familiar diagram
commute:

0 —> M —> E —> R —> 0

0 —> M —> E! —> R —> 0.

Since E and E' share the same factor sets, they determine the same cohomol-
ogy class. We have therefore proven the following result.

Classification Theorem 9.3.1 Given a k-algebra R and an R — R bimodule
M, the equivalence classes of Hochschild extensions are in 1-1 correspon-
dence with the elements of the Hochschild cohomology module H2(R, M).
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9.3 H2, Extensions, and Smooth Algebras 313

Here is a variant of the Classification Theorem 9.3.1 when R is a commutative
^-algebra. If a commutative algebra E is a Hochschild extension of R by an
R-R bimodule M, then M must be symmetric in the sense that rm — mr for
every m e M andr e i?. A moment's thought shows that symmetric bimodules
are the same thing as i^-modules.

If we choose a ^-splitting a : 7? —>• E for a commutative Hochschild ex-
tension, then the corresponding factor set / must satisfy f(r\, ri) = /0*2, n ) ,
because <x(ri) and a(>2) must commute in E. Let us call such a factor set sym-
metric. If / is a symmetric factor set, the equation (*) shows that multiplication
in E is commutative.

Let us write H2(R, M) for the submodule of H2(R, M) consisting of the
equivalence classes of symmetric factor sets. With this notation, we can sum-
marize the above discussion as follows

Commutative Extensions 9.3.1.1 Let R be a commutative k-algebra and
M an R-module. Then the equivalence classes of commutative Hochschild ex-
tensions ofRbyM are in 1-1 correspondence with the elements of the module
H}{R, M).
Remark Let A: be a field. This classification, together with Exercise 8.8.4, proves
that H2(R, M) is just the Andre-Quillen cohomology Dl(R, M). The charac-
teristic zero version of this was given in 8.8.9.
9.3.2 We say that a A:-algebra is quasi-free (over k) if for every square-zero
extension 0 - * M ^ £ - ^ > r - > 0 o f a ^-algebra T by a T-T bimodule
M and every algebra map v : R -> 7\ there exists a k-algebra homomorphism
u : R - • E lifting v in the sense that eu — v. For example, it is clear that every
free algebra is quasi-free over k.

k —> R

I / ;v
0 ^ M ^ E —> T —* 0

s

If R is quasi-free and / is a nilpotent ideal in another A:-algebra E, then every
algebra map R - • E/J may be lifted to a map R - • E. In fact, we can lift it
successively to R - • E/J2, to i? ->- E/J3, and so on. Since J m = 0 for some
w, we eventually lift it to R -> £ / J m = £.
Proposition 9.3.3 (J.H.C. Whitehead-Hochschild) / / k is a field, then a k-
algebra R is quasi-free iff and only if H2(R, M) = 0 for all R-R bimod-
ules M.
Proof If R is quasi-free, every extension of R by a bimodule M must be trivial,
so H2(R, M) = 0 by the Classification Theorem 9.3.1. Conversely, given an
extension 0 - • M -> E -> r -> 0 and v: /? -> 7\ let D be the pullback D =
{(r, e) e R x r : v(r) = e? in T}. Then D is a subring ofRxE and the kernel
of D -> /? is a square zero ideal isomorphic to M.
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314 Hochschild and Cyclic Homology

0 —> M —> D —> R —^ 0

II i | v
0 —> M —> E —> T — • 0.

Since k is a field, D is a Hochschild extension of R and is classified by an
element of H2(R, M). So if H2(R, M) = 0, then there is a fc-algebra splitting
a: R ->• D of D -> /?; the composite of a with D -> E is a lifting of R - • 7\
Quantifying over all such M proves that 7?! is quasi-free. <>

Corollary 9.3.3.1 If R is an algebra over afield k and H2(R, M) = Ofor
every R — R bimodule M, then any k-algebra surjection E -> R with nilpotent
kernel must be split by a k-algebra injection a : R -> E.

Exercise 9.3.1 (Wedderburn's Principal Theorem) Let R be a finite-dimen-
sional algebra over a field k, with Jacobson radical J — J(R). It is well known
that the quotient R/J is a semisimple ring ([BAII, 4.2]). Prove that if R/J
is separable, then there is a /c-algebra injection R/JcR splitting the natural
surjection R -» R/J. Hint: Use the General Version 4.3.10 of Nakayama's
Lemma to show that J is nilpotent.

9.3.1 Smooth Algebras

For the rest of this section, all the algebras we consider will be commutative.
We say that a commutative A:-algebra is smooth (over k) if for every square-

zero extension 0 —> M -> E —> T —> Oof commutative/:-algebras and every
algebra map v : R -> 7\ there exists a />algebra homomorphism u : R -> E
lifting v in the sense that su = v. For example, it is clear that every polynomial
algebra R = k[x\,..., xn] is smooth over k.

Proposition 9.3.4 (Whitehead-Hochschild) Let R be an algebra over afield
k. Then R is smooth if and only ifH2(R, M) = Ofor all R-modules M.

IfR is smooth, then any surjection E —> R of commutative k-algebras with
nilpotent kernel J must be split by a k-algebra injection o : R —> E.

Proof The proof of the Whitehead-Hochschild result 9.3.3, and the arguments

in 9.3.2, go through with no changes for commutative algebras. <̂

Exercise 9.3.2
1. (Localization) If R is smooth over k and S c R is a central multiplicative

set, show that S~lR is smooth over k.
2. (Transitivity) If R is smooth over K and K is smooth over k, show that

R is smooth over k.
3. (Base change) If R is smooth over k and A: —> £ is any ring map, show

that R <g>k I is smooth over I.
4. If k is a field, show that any filtered union of smooth algebras is smooth.
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9.3 H2, Extensions, and Smooth Algebras 315

Exercise 9.3.3 Let 0 -> M —> E —> T —> 0 be a square zero algebra exten-
sion and u: R -> E a A:-algebra map. If u'\ R —» F is any ^-module map with
£w' = £w, then uf = u + D for some ^-module map D: /? -> M. Show that w'
is a ^-algebra map if an3 only if D is a /^-derivation.
Fundamental Sequences for Q with Smoothness 9.3.5 Let k ->• /? —• r
be maps of commutative rings.

1. If T is smooth over /?, then the first fundamental sequence 9.2.6 becomes
a split exact sequence by adding 0 -> on the left:

0 -> £2R/k <g)R T —> QT/k —> &T/R -> 0.

2. If T = / ? / / and T is smooth over k, then the second fundamental se-
quence 9.2.7 becomes a split exact sequence by adding 0 -> on the left:

0 -> / / / 2 _ ^ j ^ ®R R/I _^ Q(R/I)/k -> 0.

Proof For (1), let TV be a T-module, and D: R -+ N a ^-derivation. Define
a ring map <p from /? to the trivial extension T 0 N by <p(r) = ( / ( r ) , Dr).
By smoothness, the projection T 0 TV -> T is split by an /^-module homo-
morphism o\T -+ T 0 N. Writing cr(t) = (f, D'r), then Dr: r -> Â  is a it-
derivation of r such that D ' / = D. (Check this!) Now take TV to be QR/k (g)/?
T\ D' corresponds to a T-bilinear map y: Qr/k -> /̂?/A; 0/? ^- If D is the
derivation D(r) = dr (8) 1, then ya? is the identity on TV and y splits a.

For (2), note that smoothness of T = R/I implies that the sequence 0 ->•

I/I2 -* R/I2 -U R/I -^ 0 is split by a fc-algebra map a: / ? / / -> R/I2. The
map D=l-af:R-> R/I2 satisfies fD = f - (fcr)f = 0, so the image of
D lies in I/I2 and D is a derivation. Moreover the restriction of D to / is the
natural projection / —• I /I2. By universality, D corresponds to an /^-module
map 0: QR/k -^ I /I2 sending rds to rD(s). Thus 0 kills IQR/k and factors
through QR/k ®R R/I, with 08 the identity on I/I2. O

We are going to characterize those field extensions K that are smooth over
k. For this, we recall some terminology and results from field theory [Lang,
X.6]. Let k be a field and K a finitely generated extension field. We say that K
is separately generated over k if we can find a transcendence basis (t\, • • •, tr)
of K/k such that K is separably algebraic over the purely transcendental field
k(t\, • • •, tr). If char(/c) = 0, or if k is perfect, it is known that every finitely
generated extension of k is separably generated.

Proposition 9.3.6 Ifk is afield, every separably generated extension field K
is smooth over k.
Proof K is separably algebraic over some purely transcendental field F =
k(t\, • • •, tr). As F is a localization of the polynomial ring k[t\, • • •, tr], which
is smooth over &, F is smooth over k. By transitivity of smoothness, it suffices
to prove that K is smooth over F. Since K is a finite separable algebraic
extension of F, we may write K = F(x), where f(x) = 0 for some irreducible
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316 Hochschild and Cyclic Homology

polynomial / with f'{x) ^ 0. Suppose given a map v: K —• T and a square
zero extension 0 - > M - > £ — > - r ^ 0 . Choosing any lift v e E of v(x) e T,
we have f(y + m) = / ( j ) + f'(y)m for every m e M. Since v(/(x)) = 0
and v(/r(jc)) is a unit of 7\ / (y ) e M and / ' (y) is a unit of E. If we put
m = —f(y)/f'(y), then f(y + ra) = 0, so we may define a lift AT —• E by
sending ;t to y + m. O

Corollary 9.3.7 Ifk is a perfect field, every extension field K is smooth over
k. In particular, every extension field is smooth when char(k) — 0.

Proof If Ka is a finitely generated extension subfield of K, then Ka is
separablygeneratedandhencesmooth.IfMisa^r-module,then///(ATa, M) =
0. As tensor products and homology commute with filtered direct limits, we
have H?(K, M) = lim H}(Ka, M) = 0. Hence K is smooth. O

When char(&) / 0 and k is not perfect, the situation is as follows. Call K
separable (over k) if every finitely generated extension subfield is separably
generated. The proof of the above corollary shows that separable extensions
are smooth; in fact the converse is also true [Mat, 20.L]:

Theorem 9.3.8 Let k c K be an extension of fields. Then

K is separable over k <£• K is smooth over k.

Remark 9.3.9 One of the major victories in field theory was the discovery
that a field extension k c K is separable if and only if for any finite field
extension k c £ the ring K <S>k £ is reduced. If char(A:) = p, separability is also
equivalent to MacLanefs criterion for separability: K is linearly disjoint from
the field I = kl/p°° obtained from k by adjoining all /7-power roots of elements
of k. See [Mat, 27.F] and [Lang, X.6]. Here is the most important part of this
relationship.

Lemma 9.3.10 Let K be a separably generated extension of a field k. Then
for every field extension k C I the ring K (g)* I is reduced.

Proof It is enough to consider the case of a purely transcendental extension
and the case of a finite separable algebraic extension. If K = k(x) is purely
transcendental, then each K (8) £ = £(x) is a field. If A' is a finite separable
extension, we saw that K <g> I is reduced for every £ in 9.2.8 O

Exercise 9.3.4 A commutative algebra R over a field k is called separable
if R is reduced and for any algebraic field extension k c £ the ring R (g>*• £ is
reduced. By the above remark, this agrees with the previous definition when R
is a field. Show that
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1. Every subalgebra of a separable algebra is again separable.
2. The filtered union of separable algebras is again separable.
3. Any localization of a separable algebra is separable.
4. If char(fc) = 0, or more generally if k is perfect, every reduced A>algebra

is separable; this completely classifies separable algebras over k.
5. An artinian fc-algebra R is separable if and only if R is a finite product of

separable field extensions of k (see 9.2.9).
6. A finite-dimensional algebra R is separable in the sense of this exercise

if and only if it is separable in the sense of section 9.2.1.

9.3.2 Smoothness and Regularity

For the next result, we shall need the Hilbert-Samuel function hR(n) = length
of R/mn of a d-dimensional noetherian local ring R. There is a polynomial
HR(t) of degree d, called the Hilbert-Samuel polynomial, such that hR(n) =
HR(n) for all large n\ see [Mat, 12.C&H]. For example, if R is the localization
of the polynomial ring K[x\, • • •, Xd\ at the maximal ideal M = (xi, • • •, xj),
then hR(n) = HR(n) = ( W ^ 1 ) = n ( n + 1 ) ^ + ^ 1 ) for all n > 1.

Theorem 9.3.11 Let R be a noetherian local ring containing afield k. If R is
smooth over k, then R is a regular local ring.

Proof Set d = dim#(m/m2), and write S for the local ring of K[x\, • • •, Xd\
at the maximal ideal Af = (jq, • • •, xt). Note that S/M2 = K © m/m2. By re-
placing k by its ground field if necessary, we may assume that the residue field
K = R/xn is also smooth over k. This implies that the square zero extension
R/m2 -> K splits, yielding an isomorphism R/m2 = K © (m/m2) = S/M2.
Since R is smooth, we can lift R -+ R/m2 = S/M2 to maps /? -> S/Mn for
every rc. By Nakayama's Lemma 4.3.9, if R maps onto S/Mn, then /? maps
onto S/Mn+l (because m(S/Mn+l) contains Mn/Mn+l). Inductively, this
proves that R/mn maps onto S/Mn for every n and hence that hR{n) > hs(n)
for all n. Therefore the Hilbert polynomial HR(t) has degree > d, and hence
dim(R) > d. Since we always have dim(R) < d (4.4.1), this yields dim(/?) =
d, that is, R is a regular local ring. O

Definition 9.3.12 A commutative noetherian ring R is called regular if the
localization of R at any prime ideal is a regular local ring (see 4.4.1). We say
that R is geometrically regular over a field k if R contains k, and for every
finite field extension k c •£ the ring /? (g>fc € is also regular.

Corollary 9.3.13 Let R be a commutative noetherian ring containing afield
k.IfR is smooth over k, then R is geometrically regular over k.

Proof If R is smooth over k, then so is every localization of R. Hence R is
regular. For each k c I, R (8) t is smooth over I, hence regular. <>
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318 Hochschild and Cyclic Homology

Remark In fact the converse is true: Geometrically regular A:-algebras are
smooth over k; see [EGA, 0/v(22.5.8)].

Theorem 9.3.14 If R is a smooth k-algebra, then QR/JC is a projective R-
module.

Proof We will show that QR/JC satisfies the projective lifting property. Sup-
pose given an /^-module surjection u: M —> N and a map v: SlR/k —> N.If I
is the kernel of Re —> R, then the square zero algebra extension Re/12 -> R is
trivial, that is, Re/I2 = R 0 I/I2 as a A:-algebra. Moreover, I/I2 = QR/k by
9.2.4. We thus have a diagram of ^-algebras

Re — • Re/I2 ^ R 0 n^/ik

( 1 , M )

/? 0 M • R ® N.

The kernel of R(BM-^R®N is the square zero ideal 0 0 ker(w). By base
change (exercise 9.3.2) Re = R <g)k R is smooth over R, hence over k, so Re —>
R (& N lifts to a fc-algebra map w: Re —> R 0 M. Since w(/) is contained in
0 0 M (why?), w(/2) = 0. Thus w induces an ^-module lifting I/I2 - • M
of u. <>

Remark T h e rank of ^2/?/^ is given in 9.4.8.

Application 9.3.15 (Jacobian criterion) Suppose that R = k[x\, • • •, xn]/J,
where 7 is the ideal generated by polynomials f\, • • •, fm. The second fun-
damental sequence 9.2.7 is

J/J2 ^ R n ^ QR/IC - • 0,

where Rn denotes the free /^-module on basis {dx\, • • •, dxn}. Since J/J2

is generated by f\, • • •, fm the map 8 is represented by the m x n Jacobian
matrix (dfi/dxj). Now suppose that R is smooth, so that this sequence is
split exact and J/J2 is also a projective /^-module. If M is a maximal ideal
of k[x\, • • •, xn] with residue field K = R/M, and d = dim(/?M), then 7M
is generated by a regular sequence of length n — d, so (J/J2) ®R K is a
vector space of dimension ft — d. Therefore the Jacobian matrix (dfi/dxj) has
rank n — d when evaluated over K = R/M. This proves the necessity of the
following criterion; the sufficiency is proven in [EGA, 0iv(22.6.4)], and in
[Mat, section 29].

Jacobian criterion: R is smooth if and only if the Jacobian matrix
(dfi/dxj) has rank n — dim(/?A/) when evaluated over R/M for every
maximal ideal M.
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9.4 Hochschild Products 319

9.4 Hochschild Products

There are external and internal products in Hochschild homology, just as there
were for absolute Tor (and Ext) in 2.7.8 and exercise 2.7.5, and for relative
Tor (and Ext) in 8.7.12 and exercise 8.7.2. All these external products involve
two fc-algebras R and Rf and their tensor product algebra R (g) Rf. To obtain
internal products in homology we need an algebra map R 0 R -> R, which
requires R to commutative. This situation closely resembles that of algebraic
topology (pretend that R is a topological space X; the analogue of R being
commutative is that X is an //-space). We shall not discuss the internal prod-
uct for cohomology, since it is entirely analogous but needs an algebra map
R -> R 0 R, which requires R to be a Hopf algebra (or a bialgebra).

We begin with the external product for Hochschild homology. Let R and Rf

be ^-algebras. Since the bar resolution fi(R, R) is an R—R bimodule resolu-
tion of R and P(R', Rf) is an R'—R' bimodule resolution of R\ their tensor
product P(R, R) 0 fi(R', R) comes from a bisimplicial object in the category
bimod of (R ® Rf)-(R 0 R') bimodules. In 8.6.13 we showed that the shuffle
product V induces a chain homotopy equivalence in bimod:

, R) <8> p(R\ Rf) -^> p(R <S> R\ R 0 R').

If M is an R—R bimodule and M' is an R'—R' bimodule, then we can tensor
over (R 0 R')e with M 0 M' to obtain a chain homotopy equivalence

Tot{(M ®Re fi(R, R)) ® (Mf ®R,e /3(R', /?'))} - ^ (M ® M') ®{Rmr £{R ® R', R ® R').

Recall from 9.1.3 that the Hochschild chain complex C(M 0 R®*) is isomor-
phic to M ®Re P(R, R). Hence we may rewrite the latter equivalence as

Tot{C(M 0 R®*) (8) C(Mf 0 fl/(8)*)} -^> C((M 0 Mr) 0 (R 0 T?7)0*).

If we apply Hombimod(—, M ® ^ 0 we get an analogous cochain homotopy
equivalence

Tot Hombimod(£(/?, R) (8) )8(/?', /?'), M ® M') ^+C Yiomk((R ® Z?')0*, M <8> Mr),

but the natural map from Hom/?(/3, M) (8) Hom/?/(^
/, Mr) to

P\ M <8) Mr) is not an isomorphism unless R or R' is a finite-dimensional al-
gebra. The Kiinneth formula for complexes (3.6.3) yields the following result.

Proposition 9.4.1 (External products) The shuffle product V induces natural
maps
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320 Hochschild and Cyclic Homology

Hi(R, M) 0 Hj(R\ Mf) -^> Hi+j(R 0 #', M 0 M'),

Hl(R, M) 0 Hj(R\ Mf) -^> Hi+j(R 0 /?', M 0 M').

For i = j =0 these products are induced by the identity map on M 0 M'. 7f
/: w a field, the direct sum of the shuffle product maps yields natural isomor-
phisms

Hn(R 0 /?', M 0 Mf) = [//*(#, M) 0 H*{R\ M')]n

Hi(R,M)<g>Hj(R\M/).
i+j=n

Similarly, the shuffle product V: #*(/?, M) ® //*(/?r, Mr) -* //*(/? (8) /?',
M 0 Mr) w a« isomorphism when either R or R' is finite-dimensional over
a field k.

Remark The explicit formula for V in exercise 8.6.5 shows that the external
product is associative from H(R, M) (8) H(R\ Mf) (8) H{R", M") to H(R ®
R' <g>R/\M®M'®M").

Exercise 9.4.1 Let 0 —• Mo - • Mi -> M2 -> 0 be a ^-split exact sequence of
R—R bimodules. Show that V commutes with the connecting homomorphism
9 in the sense that there is a commutative diagram

#/(/*, Mi) (8) Hj(R\ Ml) -^> Hi+j(R 0 R\ M2 ® M7)

Rf, Mo

P.4.7 Internal Product

Now suppose that /? is a commutative ^-algebra. Then the product /? 0 /? ->•
/? is a /:-algebra homomorphism. Composing the external products with this
homomorphism yields a product in Hochschild homology

Hp(R, M) 0 /^( /? , Mr) -> H p + 9 (« , M 0 ^ M;).

Here M 0 W is an /? - /^ bimodule by r(m 0 mr)^ = (r/n) 0 (m^). When
M = Mr = /?, the external products yield an associative product on H*(R, R).
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9.4 Hochschild Products 321

In fact, more is true. At the chain level, the shuffle product 8.6.13 gives a map

Tot C(R ® fl®*) ® C(R ® /?®*) -^» C((/? <g> /?) 0 (/? 0 /?)®*) - ®

Proposition 9.4.2 If R is a commutative k-algebra, then

1. C(R<8> R®*) = R (SiRe P(R, R) is a graded-commutative differential
graded k-algebra (4.5.2).

2. H*(R, R) is a graded-commutative k-algebra.

Proof It suffices to establish the first point (see exercise 4.5.1). Write C* for
C(R ® R®*) = R ®Re p(R, R). The explicit formula for V (exercise 8.6.5)
becomes

n ® • • • ® p o

^) (8) r M -

where /x ranges over all (/?, g)-shuffles. The product V is associative, be-
cause an (n, p, q)-shuffle may be written uniquely either as the composi-
tion of a (/?, g)-shuffle and an (n, p + g)-shuffle, or as the composition of
an (n, /?)-shuffle and an (n + p, g)-shuffle. Interchanging p and q amounts
to precomposition with the shuffle v — (p + 1, • • •, p + q, 1,••,/?); since
(—l)y = (—l)pq the product V is graded-commutative. Finally, we know that
V: Tot(C* (8) C*) —> C* is a chain map. Therefore if we set p = (ro, n , • • •, 0?)
and pr = (T*Q, r^+i, • • •, rp+^) and recall the sign trick 1.2.5 for dv we have the
Leibnitz formula:

+ dv){p (8) pr) = (dp)Vpr + (-\)PpV(dpf). O

Corollary 9.4.3 If R is commutative and M is an R—R bimodule, then
H*(R, M) is a graded H*(R, R)-module.

9.4.2 The Exterior Algebra Q*R/k

As an application, recall that H\(R, R) is isomorphic to the /^-module QR/JC of
Kahler differentials of R over k. If we write Qn

R ,k for the nth exterior product
then the exterior algebra Q*R,k on QR/IC is
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322 Hochschild and Cyclic Homology

Note that Q°R ,k = R and £ll
R,k = QR/IC- &*R/k *s m e ^ree graded-commutative

/^-algebra generated by £2/?/&; if ^* is a graded-commutative /^-algebra, then
any R-module map £2R/JC —>• K\ extends uniquely to an algebra map Q*R ,k —>

Corollary 9.4.4 If R is a commutative k-algebra, the isomorphism £l\ik =
H\ (R, R) extends to a natural graded ring map \j/\ &*R,k -> H*(R, R). IfQ C
R, this is an injection, split by a graded ring surjection e: H*(R, R) —> Q*R ,k.

Proof Since //*(/?, R) is graded-commutative, the first assertion is clear. For
the second, define a map e: R®n+l -> Qn

R,k by the multilinear formula

e(ro <S> r\ (8) • • • ® rn) = —jodr\ A • • • A drn.
n\

The explicit formula for V shows that e(pVp') = e(p) A e(pf) in Sl*R,k. There-
fore e is a graded /^-algebra map from 7?®*+1 to ^^/^. An easy calculation
shows that e(b(ro <g> • • • 0 rn+\)) — 0. (Check this!) Hence e induces an alge-
bra map HH*(R, R) -> &*R,k. To see that e splits \/r, we compute that

A • • • A drn) = g((r0 ® n)V(l ® r2)V •

= e(r0 (8) n ) A e(\ <g> r2) A • • • A e(l ® rn)

= rodr\ A r2 A • • • A rn. ^

Definition 9.4.5 We say that a commutative A:-algebra R is essentially of fi-
nite type if it is a localization of a finitely generated ^-algebra. If k is noethe-
rian, this implies that R and Re — R (g) R are both noetherian rings (by the
Hilbert Basis Theorem).

Proposition 9.4.6 Suppose that R is a commutative algebra, essentially of
finite type over afield k. If R is smooth over k, then Re is a regular ring.

Proof We saw in 9.3.13 that smooth noetherian /:-algebras are regular. By
smooth base change and transitivity (exercise 9.3.2), Re = R (8) R is smooth
over R and hence smooth over k. Since Re is noetherian, it is regular. <>

Theorem 9.4.7 (Hochschild-Kostant-Rosenberg) Let R be a commutative al-
gebra, essentially of finite type over a field k. If R is smooth over k, then \j/ is
an isomorphism of graded R-algebras:

^:Q%/k^ H*(R,R).
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9.4 Hochschild Products 323

Proof As with any R-module homomorphism, x// is an isomorphism if and
only if \// ®R Rm is an isomorphism for every maximal ideal m of /?. The
Change of Rings Theorem (9.1.8) states that //*(/?, R) 0/? Rm ^ H*(Rm, Rm).
Since Q*R ,k <8)R Rm = ^^m/^, ^ ®R ^m is obtained by replacing R by Rm.
Hence we may assume that R is a local ring.

Let / be the kernel ofR®R-^R and M the pre-image of m in Re =
R (g) R. M is a maximal ideal in the regular ring Re, so S = (R6)M is a regular
local ring. By flat base change (8.7.16) H*(R, R) ^ Torf/k(R, R). Since S
and R = S/IM are regular local rings, IM is generated by a regular sequence
of length d = dim(R) = dim(S) — dim(R); see exercise 4.4.2. We also saw in

S / Ic

8.7.13 that the external product makes Tor*7 (/?, R) isomorphic to A*QR/JC =
^R,k as a graded-commutative /^-algebra. Since the external product can also
be computed via the bar resolution and the shuffle product (8.7.12), the above

SI k

product agrees with the internal product on H*(R, R) = Tor* (R, R). <>
Remark 9.4.8 We saw in 9.3.14 and 8.7.13 that QR/IC is a projective mod-
ule whose localization at a maximal ideal m of R is a free module of rank
dim(/?m). Hence for d = dim(R) = max{dim(/?m)} we have Qd

R/k ^ 0 and
Hn(R, R) = Qn

R/k = 0 for n > d. The converse holds: If Hn(R,R) = 0 for
all large n, then R is smooth over k. See L. Avramov and M. Vigue-Poirrier,
"Hochschild homology criteria for smoothness," International Math. Research
Notices (1992, No.l), 17-25.

Exercise 9.4.2 Extend the Hochschild-Kostant-Rosenberg Theorem to the
case in which k is a commutative noetherian ring; if R is smooth over k and
essentially of finite type, then \\r : Q*R,k = H*(R, R). Hint: Although S and
R = S/I may not be regular local rings, the ideal / is still generated by a
regular sequence of length d.

9 A3 Hodge Decomposition

When Q c R and R is commutative, we shall show (in 9.4.15) that the
Hochschild chain complex C%(R) = C(R <g) R®*) decomposes as the direct
sum of chain complexes C%(R)(l\ The resulting decompositions H*(R, R) =
0/ / i o ( /? , R) and H*(R, R) = ®H^(R9 R) are called the Hodge decomposi-
tions of Hochschild homology and cohomology in order to reflect a relation-
ship with the Hodge decomposition of the cohomology of complex analytic
manifolds. (This relationship was noticed by Gerstenhaber and Schack [GS];
see Remark 9.8.19 for more details.) In the process, we will establish the
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324 Hochschild and Cyclic Homology

facts needed to apply Barr's Theorem (8.8.7), showing that the summand

H*X\R, R) may be identified with the Andre-Quillen homology modules

If R does not contain Q, there is a filtration on //*(/?, R) but need be no
decomposition [Q]. This filtration may be based on certain operations Xk; see
[Loday, 4.5.15]. When Q C R the eigenspaces of the Xk give the decomposi-
tion; A* acts as multiplication by ±kl on C^(R){i) and hence on //*(0(fl, R)
and H*^(R, R). For this reason, the Hodge decomposition is often called the
X- decomposition.

The symmetric group £„ acts on the ft-fold tensor product R®n and hence
on M 0 R®n by permuting coordinates: o(m 0 r\ 0 • • • 0 rn) = m 0 rG-\l 0
• • • 0 r r i r Consider, for example, the effect of the signature idempotent
£n — r̂ J2aexn(~^a(r °f Q^«» t n e definition of the shuffle product V shows
that in R 0 R®n we have the identity:

n!en(r0 0 r\ 0 • • • 0 rn) = ro(l 0 n)V • • • V(l 0 rn).

This element is an n-cycle in the Hochschild complex representing the ele-
ment 1r(rodr\ A • • • A drn) of Hn(R, R), where xjs : Q*R/k

 c ^ //*(/?, /?) is the
injection discussed in 9.4.4. The formula for the chain-level splitting e: R 0
#®* _• fi^^ of iff is skew-symmetric, so we also have e(ro 0 r\ 0 • • • 0
rn) = c(en(ro 0 r\ 0 • • • 0 rn)). Hence ^ factors through en(R 0 /?(8)").

The following criterion for recognizing the signature idempotent will be
handy. Consider the action of £„ on the module R 0 R®n.

Barr's Lemma 9.4.9 If u e QT,n satisfies bu{\ 0 r\ 0 • • • 0 rn) = Ofor all
algebras R, then u = cenfor some c e Q.

Proof Write u = ^coa with caeQ. We consider its action on the ele-
ment x = (1 0 r\ 0 • • • 0 rn) of R 0 R®n, where R is the polynomial ring
k[r\, . . . , rn]. In b{ux) = J2 cob{\ 0 rG-\x 0 • • • 0 ra-in) the term

1 0 ro-xx 0 • • • 0 r^ - i f^ - i^ ! ) 0 • • • 0 ra-\n

occurs once with coefficient (— l)lco and once with coefficient (— l)lcTa,
where r is the transposition (/, i + 1). Since these terms form part of a
basis for the free /:-module R 0 R®n, we must have ca = —cTG for all
a and all r = (/, / + 1). Hence co = (— \)°c\ for all <J€T<n, and therefore
u = ciJ2(-l)acr==ci£n. O

To fit this into a broader context, fix n > 1 and define the "shuffle" elements
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9.4 Hochschild Products 325

spq of ZEn to be the sum J^(—l)M/x over all (/?, #)-shuffles in En (so by
convention spq = 0 unless p + q =n). Let sn be the sum of the spq for 0 <
p < n.

Lemma 9.4.10 bsn = sn-\b for every n.

Proof If p + q = n, x = ro <8> • • • ® rp and y = 1 ® r p + i (8) • • • <g> rn, then
= spq(ro <8> • • • 0 rn). Since /?®*+1 is a DG-algebra (9.4.2), we have

bspq(r0 ® • • • ® rn) = Z7(xV>;) = (fejc)Vy + (-l)pxV(by)

= sP-l,q((bx) ® v) + (- l)% ff_i( jc (

Summing over /? gives Z?5n = sn-\b. <>

Propos i t i on 9 .4 .11 ( [GS]) The minimal polynomial for sn€QlEn is

fn(x) = X(JC — A.2) - • • (JC — kn), where A.,- = 2' - 2.

Therefore the commutative subalgebra Q[sn] o/QDn contains n uniquely de-

termined idempotents en , / = 1 , . . . , n SMC/I /̂ifl/ ^ = ^ A./^ anJ Q[sn] =

%\ In particular, ef e^ = Ofor i # j . O

Definition 9.4.12 The idempotents e£ are called the Eulerian idempotents

of QE n . Because sn has only n eigenvalues, e^ = 0 for / > n. By convention,

4 0 ) = 1 and 4 0 ) = 0 otherwise.

Proof If n = 1 then s\ = 0, while if r = (1, 2) then 52 = 1 — r satisfies
JC(JC — 2). For n > 3 w e proceed by induction. Since bsn = sn-\b, we have
bfn-i(sn) = fn-\(sn-i)b = 0. By Barr's Lemma, fn-i(sn) = csn for some
constant c. To evaluate c, note that snsn = Xnen because sn has kn terms and
£na = {—\)n6n for every a€E n . Thus

fn-\{Sn) =Snfn-l(Sn) = fn-l(SnSn) = fn-\{K^n) — C8n ^ 0 ,

where c = A.n/W_i(l) # 0. Thus fn(sn) = csn(sn - Xn) - 0. <C>

Corollary 9.4.13 e£ is the signature idempotent en.

Proof Q[sn] contains sn = fn-\(sn)/c, and snsn = knen. O

Corollary 9.4.14 bef = e{^_xb for i < n, and be^ = 0.
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326 Hochschild and Cyclic Homology

Proof For all /, let pt(x) be the product of the terms (x — kj)/(k( — kj) for

j ^ i, j < n, so that Pi(sn) = ell a nd Pi(sn-\) = en-v t m s *s t n e Lagrange
interpolation formula for diagonalizable operators and is most easily checked
using Q[sn] = f] Qen\ Since bsn — sn-\b, we have

bef = bPi(sn) = A-^n-i)* - ^ i * .

As a special case, we have the formula be™ — en-\b = 0- ^

Definition 9.4.15 Suppose that R is a commutative ^-algebra containing Q.

For / > 1, let C%(R){i) denote the summand e^R ® /?0/I of C^(/?) = R ®
. By 9.4.14, each c£(/?)(/) is a chain subcomplex of C*{R). For i = 0 we

let C%(R){{)) denote the complex that is R, concentrated in degree zero, so that

C%(R) is the direct sum of the chain subcomplexes C%(R)^ for / > 0. We

define H%\R, R) to be Hn(C%(R)(i)). The resulting formula

Hn(R, R) = H^l)(R, R)®---® H^n)(R, R), n^O,

is called the Hodge decomposition of Hochschild homology. Similarly, we
define H^iR, R) to be Hn HomR(C^(R)(i\ R) and call the resulting formula

Hn(R, R) = H^iR, R) 0 • • • 0 Hfn)(R, R), n / 0,

the Hodge decomposition of Hochschild cohomology.
The Hodge decomposition (or A-decomposition) arose implicitly in [Barr]

(via 9.4.9 and 8.8.7) and [Q] and was made explicit in [GS].

Exercise 9.4.3 Let C%(R){i) denote the summand e^R ® (R/k)®n of the

normalized Hochschild complex R ® (R/k)®n. Show that H^}(R, R) =

Exercise 9.4.4 Show that H^n){R, R) = Qn
R/R for every R. Conclude that if

R is smooth and essentially of finite type over k, then Hn(R, R) = Hnn)(R, R).

9.5 Morita Invariance

Definition 9.5.1 Two rings R and S are said to be Morita equivalent if there
is an R—S bimodule P and an S—R bimodule Q such that P <S)s Q = R
as R—R bimodules and Q <g)R P = S as S—S bimodules. It follows that the
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9.5 Morita Invariance 327

functors (g^Pimod-/? - • mod-S and <g)sQ.mod-S - • mod-/? are inverse
equivalences, because for every right /^-module M we have (M 0/? P) <S>s
Q = M ®R (P ®s Q) = M and similarly for right S-modules.

Exercise 9.5.1 Show that

1. Morita equivalence is an equivalence relation.
2. If R and S are Morita equivalent, so are R°v and Sop.
3. If R and S are Morita equivalent, then the bimodule categories

R-mod-R and S-mod-S are equivalent (via Q<S>R — <8>RP).

Proposition 9.5.2 The matrix rings Mm(R) are Morita equivalent to R.

Proof Let P be the module of row vectors (n, • • •, rm) of length m and Q
the module of column vectors of length m. The matrix ring S = Mm(R) acts
on the right of P and the left of Q by the usual matrix multiplication, so P is
an R—S bimodule and Q is an S—R bimodule. Matrix multiplication yields
bimodule maps P <g>s Q -> R and Q <S>R P -+ S: if p = (p\, • • •, pm) and

q = (qi,..., qm)T', then p <g> q maps to Y^ PiQi a n d q <8> p maps to the matrix

(qtPj). It is easy to check that these maps are isomorphisms (do so!). O

Corollary 9.5.3 The isomorphism R-mod-R -> Mm(R)-mod-Mm(R) as-
sociates to an R — R bimodule M the Mm(R)—Mm(R) bimodule Mm(M) of
all m x m matrices with entries in M.

Lemma 9.5.4 If P and Q define a Morita equivalence between R and S, then
P is a finitely generated projective left R-module. P is also a finitely generated
projective right S-module.

Proof Given p e P and q e Q we write p • q and q • p for the elements of R
and S corresponding to p 0 q e P <g>s Q and q (8) p e Q <8)R P, respectively.
As Q <8)R P = S, we can write 1 = q\ • p\ -\ h qm • pm for some m. Define
e:P-+Rm bye(p) = (p • qu • • •, p • qm) and/z: Rm -» P by h(ru • • •, rm) =
Y2riPi> e a nd h are left /^-module homomorphisms. Since he(p) = Y1(P '
qi)Pi = ^2 p(<li ' Pi) — P> this expresses P as a summand of Rm in /?-mod.
The proof that P is a summand of some Sn in mod-5 is similar. O

Exercise 9.5.2 Show that the bimodule structures induce ring isomorphisms

Conclude that if all projective R-modules are free, then any ring which is
Morita equivalent to R must be a matrix ring Mm(R).
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328 Hochschild and Cyclic Homology

Lemma 9.5.5 If L is a left R-module and Q is a projective right R-module
then Hi(R,L® Q) = Ofori / 0 and HQ(R, L <g> Q) ^ Q®RL.

Proof By additivity, it suffices to prove the result with Q = R. The standard
chain complex (9.1.1) used to compute //*(/?, L ® R) is isomorphic to the bar
resolution fi(R, L) of the left ^-module L (8.6.12), which has ///(£) = 0 for
i 7̂  0 and H0(p) ^R®RL. O

Theorem 9.5.6 (R. K. Dennis) Hochschild homology is Morita invariant.
That is, if R and S are Morita equivalent rings and M is an R — R bimodule,
then

//*(/?, M) = //*(£, Q®RM®R P).

Proof Let L denote the S—R bimodule Q ®R M. Consider the bisimplicial k-
module Xtj = S®( <g)L<g> R®j (8) P, where the j t h row is the standard complex
9.1.1 for the Hochschild homology over S of the S-S bimodule L <g) R®J ® P
and the ith column is the standard complex for the Hochschild homology of
the R-R bimodule P ® S01' (g> L (with the P rotated). Using the sign trick
1.2.5, form a double complex C**. We will compute the homology of Tot(C)
in two ways.

L&R&R&P <—

i i
L 0 / ? 0 P <— S®L<g>R<g) P <—

I I i
L®P <— 5(8)L(8)P <— S® S® L® P . . .

Since P is a projective right 5-module, the j t h row is exact except at / = 0,
where H0(C*j) = P ®s (L ® R®J) ^ M ® R®J (9.5.5). The vertical differ-
entials of the chain complex HQ(C*J) make it isomorphic to the standard com-
plex for the Hochschild homology of M. Thus /// Tot(C) ^ Ht(R, M) for all
/. On the other hand, since P is a projective left /^-module, the ith column
is exact except at j = 0, where #0(Q*) = S®* ® L ®s P (9.5.5). The hor-
izontal differentials of 7/o(Q*) make it isomorphic to the standard complex
for the Hochschild homology of L ®s P = Q <8>R M ®S P- Thus Ht Tot(C) =
Ht(S, Q®RM®S P) for all i. O
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9.5 Morita Invariance 329

Definition 9.5.7 (Trace) The usual trace map from Mm{R) to R is the map
sending a matrix g = (gij) to its trace Yl §a- More generally, given an R—R
bimodule M we can define maps trace,* from Mm(M) <g> Mm(R)®n to M <S>
R®n by the formula

These maps are compactible with the simplicial operators 9/ and 07 (check
this!), so they assemble to yield a simplicial module homomorphism from
Mm(M)®Mm(/?)®* to M®R®*. They therefore induce a map on Hochschild
homology, called the trace map.

Corollary 9.5.8 The natural isomorphism of theorem 9.5.6 is given by the
trace map H*(Mm(R), Mm{M)) -> H*(R, M).

Proof Let us write F = F(R,S,P, Q,M) for the natural isomorphism //*(/?,
M) -> H*(S, Q <8> M <S> P) given by the bisimplicial fc-module X of theorem
9.5.6. Fixing R, set S' = R and S = Mm(R), Pr = R and P = Rm, Q'= R
and Q = (Rm)T. The diagonal map A: R -+ Mm(R) sending r e R to the

r 0
is compatible with the maps P' -+ P and Qrdiagonal matrix

0
Q sending p e P' and q e Qf to (/?, 0, • • •, 0 ) r and (q, 0, • • •, 0), respectively.
It therefore yields a map A: X(R, S\ P', Qr) -+ X(R, S, P, Q). (Check this!)
This yields a commutative square

Hn(R,M)
F'

Hn(R,R®RM®RR) = Hn(R,M)

Hn(R,M) — • Hn(Mm(R),Q®M®P) = Hn(Mm(R), Mm(M)).

It follows that A is an isomorphism. At the chain level, we have

A(ra (8) r\ > rm) =
m
0
0

0

0

0
0
0

r1
09

1 0

0 1. . . 6 ? ) . . . 6 ? )

n 1

rn

0

0

Clearly tracen(A(m ® n ® • • • ® rn)) = m (8) r\ (8) • • • ® rn, so the trace map
H*(Mm(R), Mm(M)) —> //*(/?, M) is the inverse isomorphism to A. <>
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330 Hochschild and Cyclic Homology

Exercise 9.5.3 For m < n, consider the (nonunital) inclusion r. Mm(R) c->

Mn(R) sending g to ^ . Show that t induces a chain map t* from the

complex Mm(M) ® Mm{R)®* to the complex Mn(M) 0 Mn(R)®* for every
R-module M. Then show that this chain map is compatible with the trace maps
(i.e., that trace = trace o**), and conclude that i* induces the Morita invariance
isomorphism

H*(Mm(R), Mm(M)) ^ H*(Mn(R), Afn(Af)).

Exercise 9.5.4 Let e//(r) denote the matrix with exactly one nonzero entry,
namely r, occurring in the (/, j) spot. Show that

trace enin) ® ^23(^2) ® • • • ® en\(rn) = r\ <S> - • • <8) rn.

Then show that for any permutation o of {1, 2, • • - , «}

r\ (g) • • • (g) rn if cr e Cn
trace ^al,a2(^l) (8) ean,G\(rn) =

1 0 if not,

where Cw is the subgroup of the symmetric group generated by (12 • • • n).

9.6 Cyclic Homology

The simplicial ^-module ZR = R® R®* used to construct the Hochschild
homology modules //*(/?, R) has a curious "cyclic" symmetry, which is sug-
gested by writing a generator ro 0 r\ 0 • • • 0 rw of R (8) 7?®" in the circular
form illustrated here.

The arrow —• serves as a place marker, and there are n + 1 of the symbols
0 . The n + 1 face and degeneracy operators replace the appropriate symbol 0
by a product or a "(8)10," respectively. This symmetry defines an action of the
cyclic group Cn+i on R 0 R®n\ the generator t of Cn+i acts as the operator
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9.6 Cyclic Homology 331

t (ro <8> • • • <8> rn) = rn <g> ro <g> • • • 0 rn- \. We may visualize t as a rotation of the
above circular representation (with the place marker fixed). Clearly d(t = tdi-\
and Git = tO[-\ for / > 0; for / = 0 we have dot = dn and aot = t2an. (Check
this!) This leads to the notion of an abstract cyclic ^-module: a simplicial k-
module with this extra cyclic symmetry. After giving the definition in this
fashion, we shall construct a category AC such that a cyclic /c-module is a
contravariant functor from AC to &-mod, paralleling the definition in Chapter
8 of a simplicial object.

Definition 9.6.1 A cyclic object A in a category A is a simplicial object to-
gether with an automorphism tn of order n + 1 on each An such that d(t =
tdt-i and O[t — tO[-\ for / ^ 0, dtfn = dn and crotn = t^+lon. (Writing t in-
stead of tn is an abuse of notation we shall often employ for legibility.)

We will use the term "cyclic module" for a cyclic object in the category of
modules. For example, there is a cyclic ^-module ZR associated to every k-
algebra R\ ZnR is R®n+l and the rest of the structure was described above.

Example 9.6.2 We will also use the term "cyclic set" for a cyclic object in
the category of sets. For example, let G be a group. The simplicial set BG
(8.1.7) may be considered as a cyclic set by defining t on BGn — Gn to be
t(gu '",8n) = (go, gw-, gn-i), w h e r e go = (gi-- gn)~l- A n o t h e r cycl ic
set is ZG, w h i c h has (ZG)n = G " + 1 ,

(go, • • • , g i g i + i , ' -,gn) if i<n

O7(#0, '-',gn) = (gO, ' • • , gi, 1, gi + 1, ' ' ')

t(gO, " ' , gn) = (gn, gO, • ' • , gn-l)-

As the notation suggests, there is a natural inclusion BG C ZG and the free
^-modules k(ZG)n fit together to form the cyclic ^-module Z(kG).

We now propose to construct a category AC containing A such that a cyclic
object in A is the same thing as a contravariant functor from AC to A. Recall
from Chapter 8, section 1 that the simplicial category A has for its objects
the finite (ordered) sets [n] = {0, 1, • • •, n], morphisms being nondecreasing
monotone functions. Let tn be the "cyclic" automorphism of the set [n] defined
b y t n ( 0 ) = n a n d t n ( j ) = j - l f o r j / 0 .

Definition 9.6.3 Let HorriAc(l/*L [p]) denote the family of formal pairs
(ot,tl), where 0 <i <n and a: [n] —> [p] is a nondecreasing monotone func-
tion. Let Home(|>i], [/?]) denote the family of all set maps <p: [n] -> [p]
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332 Hochschild and Cyclic Homology

which factor as <p = atl
n for some pair (a, tl) in HorriAc(l/*L [/?])• Note that

<p(i) < <?(* + 1) 5 • • * < <p(i — 1) in this case. Therefore the obvious surjec-
tion from HOIIIAC([«], IPY) to Homcfl/i], [/?]) is almost a bijection—that is,
(p uniquely determines (a, tl) such that <p — at1 unless cp is a constant map,
in which case <p determines a (a = <p) but all n + 1 of the pairs (<p,tl) yield
the set map cp. We identify HoniA([n], [p]) as the subset of all pairs (a, 1) in

HomAc(M, [p]).
There is a subcategory C of Sets, containing A, whose objects are the sets

[n], n>0, and whose morphisms are the functions in Homcfl/z], [/?]). To see
this we need only check that the composition of\l/ = pt3

m and (p = atl
n is in C,

and this follows from the following identities of set functions for the functions
S{\ [n — 1] —>• [n] and rjji [n + 1] —> [n] generating A (see exercise 8.1.1)

n , - = nl and ^Vntl+l / =

i - \ t n - \ « > O J

Proposition 9.6.4 (A. Connes) The formal pairs in Horn^ciWAp]) form
the morphisms of a category AC containing A, the objects being the sets [n]
for n > 0. Moreover, a cyclic object in a category A is the same thing as a
contravariant functor from AC to A.

Proof We need to define the composition (y,tk) of (/3,tJ) e
and (a, tl) e HorriAcfl/*], [p]) in such a way that if / = j = 0, then (y, tk) =
(a/3, 1). If f$ is not a constant set map, then the composition tlpt-i in C is not
constant, so there is a unique (/3f, tk) such that tl fit* = firtk; we set (y, ^ ) =
(«)8', ^ ) . If ft is constant, we set (y, ^ ) = («)3, f-7'). By construction, the pro-
jections from HomAc to Hom^ are compatible with composition; as C is a
category, it follows that the (id,l) are 2-sided identity maps and that composi-
tion in AC is associative (except possibly for the identity (<p o (ft, t->)) o x/r =
cp o ((/J, t-i) o \]/) when p is constant, which is easily checked). Thus AC is a
category and A - • AC - • C are functors. The final assertion is easily checked
using the above identities for tst and trjj. O

Remark The original definition given by A. Connes in [Connes] is that
HomAc(M> [p]) is the set of equivalence classes of continuous increasing
maps of degree 1 from S1 = {z € C: \z\ = l j t o ^ 1 sending the (n + l)st roots
of unity to (p + l)st roots of unity. Connes also observed that AC is isomor-
phic to its opposite category (AC)op. See [Loday] for more details.
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9.6 Cyclic Homology 333

Exercise 9.6.1 Show that the automorphisms of [n] in AC form the cyclic
group Cw+i of orders + 1.

Definitions 9.6.5 Let A be a cyclic object in an abelian category A. The chain
complex C%(A) associated to the underlying simplicial object of A (8.2.1)
is called the Hochschild complex of A. It is traditional to write b for the
differential of C%(A), so that b = d0 - d\ + • • • ± dn goes from C%(A) = An to
C%_{(A) = An-\. The Hochschild homology HH*(A) of A is the homology
of C*(A); when A = ZR (9.6.1) we will write HH*(R) for HH*(ZR) =
H*(R, R). The acyclic complex of A, C%(A), is the complex obtained from
C%(A) by omitting the last face operator. Thus C%(A) = An, and we write bf

for the resulting differential do — d\ -\ =F dn-\ from An to An-\.

Exercise 9.6.2 Show the "acyclic" complex C%(A) is indeed acyclic. Hint:
The path space PA (8.3.14) is a simplicial resolution of An.

Definition 9.6.6 (Tsygan's double complex) If A is a cyclic object in an abe-
lian category, there is an associated first quadrant double complex CC**(A),
first found by B. Tsygan in [Tsy], and independently by Loday and Quillen in
[LQ]. The columns are periodic of order two: If p is even, the pth column is
the Hochschild complex C\ of A; if p is odd, the pth column is the acyclic
complex C% of A with differential — b'. (The minus sign comes from the sign
trick of 1.2.5.) Thus CCpq(A) is Aq, independently of p. The qth row of
CC**(A) is the periodic complex associated to the action of the cyclic group
Cq+\ on Aq, in which the generator acts as multiplication by {—\)qt. Thus the
differential Aq -» Aq is multiplication by 1 — (—l)qt when p is odd; when p
is even it is multiplication by the norm operator

l-t N l-t N

A2 < A2 < A2 < A2 <

1+f N 1+r N
A\ < A\ <— A\ < A\ <—

i"
l-t N l-t N

An < AQ <— An < An <—

Tsygan's double complex CC**(A)
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334 Hochschild and Cyclic Homology

Definition 9.6.7 The cyclic homology HC*(A) of a cyclic object A is the
homology of Tot CC**(A). The cyclic homology HC*(R) of an ^-algebra
R is the cyclic homology of the cyclic object ZR (= R <S> R®*) of 9.6.1. In
particular, HC0(A) = HH0(A) and HC0(R) = R/[R, Rl

One of the advantages of generalizing from algebras to cyclic objects is that
a short exact sequence 0 ^ A - > # ^ C ^ 0 o f cyclic objects gives rise to
short exact sequences of Hochschild complexes as well as Tsygan complexes,
which in turn give rise to long exact sequences

• • • HHn(A) -> HHn(B) -> HHn(C) -> HHn+x(A) • • •

• • • HCn(A) -> HCn(B) -> HCn(C) -> HCn-X{A)

Lemma 9.6.8 CC**(A) is a double complex.

Proof Set r] = (-l)q. We have to see that b{\ - rjt) = (1 + rjt)b' and Nb =
b'N as maps from Aq to Aq-\. Now b — b' = rjdq and the cyclic relations
imply that bt = dq — tbf, yielding the first relation. The cyclic relations also
imply that

b^Y.i-tY^'1 and b =
i=0 i=0

(Check this!) S ince (1 - r]t)N — 0, w e have tlN = rfN on A q . S ince N{\

rjt) = 0, we have Nt( = (-rjYN on Aq-\. Thus

i=0

q-\
nb'N = r) Y^i-tydq^N = f]q+l ^(-ritydqN = NdqN.

i=0

This yields the second relation, Nb = b'N. O

Corollary 9.6.9 Let An/ ~ denote the quotient of An by the action of the
cyclic group. These form a quotient chain complex A*/ ~ of the Hochschild
complex C%(A):

Indeed, A*/ ~ w the cokernel of the chain map CC\* —> CCo*, so there is a
natural map from Hn(A*/ ~) to HCn(A).
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9.6 Cyclic Homology 335

Remark Some authors define the cyclic homology of R to be Hn(R®*+1 / ~ ) ,
especially when k = C The following lemma states that their definition is
equivalent to ours.

Lemma 9.6.10 If k contains Q, then HC*(A) may be computed as the ho-
mology of the quotient complex A*/ ~ of the Hochschild complex.

Proof Filtering Tsygan's double complex 9.6.6 by rows yields a spectral se-
quence starting with group homology of the cyclic groups:

El
pq = Hp(Cq+i; Aq) => HCp+q(A).

The edge map from HC*(A) to the homology of E\ = Ho(Cq+\; Aq) =

Aq/ ~ arises from the augmentation CCoq —• Aq/ ~, so the £ 2 edge map
maps Hn(A*/ ~) to HCn(A). In characteristic zero the group homology van-
ishes (6.1.10) and the spectral sequence degenerates at £ 2 . <0>

Remark Filtering Tsygan's double complex by columns yields the even more
interesting spectral sequence 9.8.6 (see exercise 9.8.2).

The three basic homomorphisms S, B, and / relating cyclic and Hochschild
homology are obtained as follows. The inclusion of C%(A) as the column p =
0 in CC^(A) yields a map /: HHn(A) -> HCn{A). Now let CC^\ denote the
double subcomplex of CC**(A) consisting of the columns p = 0, 1; the inclu-
sion of Cj(A) into CC®1 induces an isomorphism HHn(A) ^ Hn Tot(CC^)
because the quotient is the acyclic complex C%(A). The quotient double com-
plex CC[-2] = CC/CC°\ which consists of the columns p > 2, is isomor-
phic to CC** except that it has been translated 2 columns to the right. The quo-
tient map Tot(CC**) - • Tot(CC[-2]) therefore yields a map S: HCn(A) ->
HCn-2(A). The short exact sequence of double complexes

0 -> CC01 - U CC(A) - ^ CC[-2] -> 0

yields the map B: HCn-\(A) -^ HHn(A) and the following "SBI" sequence.

Proposition 9.6.11 (SBI sequence) For any cyclic object A there is a long
exact "SBI" sequence

• • • HCn+l(A) -±> HCn-X(A) -^> HHn(A) - U HCn(A) -^> //Cn

/n particular, there is a long exact sequence for every algebra R:

• • • HCn+l(R) ^ > HCn-i(R) -^ Hn(R, R) - U HCn(R) -?-> HC
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336 Hochschild and Cyclic Homology

Remark In the literature the "SBI" sequence is also called "Connes' se-
quence" and the "Gysin" sequence. See exercise 9.7.4 for an explanation.

Corollary 9.6.12 If A-> A1 is a morphism of cyclic objects with
HHn(A

f), then the induced maps HCn(A) —> HCn(A') are all isomorphisms.

Proof This follows from induction on n via the 5-lemma and 9.6.7. <0>

Application 9.6.13 Let R be a ^-algebra. The explicit formula in 9.5.7 for
the trace map Z(MmR) —>• Z(R) shows that it is actually a map of cyclic
^-modules. Since it induces isomorphisms on Hochschild homology, it also
induces isomorphisms

HC*{MmR) ^ HC*{R).

Exercise 9.6.3 For m < n, show that the nonunital inclusion t\Mm(R) ^
Mn(R) of exercise 9.5.3 induces a cyclic map ZMm(R) - • ZMn(R), which
in turn induces isomorphisms

Example 9.6.14 Since Hn(k,k) = 0 for n / 0, the SBI sequence quickly
yields

k if^ is even

with the maps S: HCn+2(k) -^ HCn(k) all isomorphisms. The same calcula-
tion applies for any finite separable algebra R over a field k because we saw in
9.2.11 that Hn(R,R) = 0 for all n ± 0.

HCi 9.6.15 The SBI sequence interprets HC\(R) as a quotient of H\(R, R):

H0(R, R) -^> HX(R, R) -+ HCi(R) -> 0.

Now suppose that R is commutative, so that HQ(R, R) = R and H\(R, R) =
QR/IC- The map B: R -> &R/k maps r e R to dr. (Check this!) Therefore we
may identify B with d and make the identification

HCi(R)^QR/k/(dR).
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9.6 Cyclic Homology 337

Example 9.6.16 Since Hn(k[x], k[x]) = 0 for n > 2, the S: HCn+2(k[x]) ->
HCn(k[x]) are isomorphisms for all n > 1 and there is an exact sequence

0 -+ HC2(k[x]) -^> k[x] -^» ^[JC]/A; -^> # C i (£[*]) -* 0.

If & contains Q, then xndx = d(xn+l/n + 1) for all n >0, so d is onto and
HC\(k[x]) = 0. This yields the calculation

k[x] ifn = 0
HCn(k[x]) = { k if n > 2 is even

0 if n > 1 is odd.

Similar remarks pertain to the Laurent polynomial ring k[x, x~l], except that
the map d:k[x, x~l] —> ^ ^ x- i ] /^ = k[x,x~l] has cokernel A: (on dx/x)
when Q c L Thus when Q c ^ w e have

HCn(k[x,x~l])^k for all n > 1.

Remark We will compute HC*(R) for a smooth algebra R in 9.8.11 and
9.8.12 in terms of de Rham cohomology.

Exercise 9.6.4 Consider the truncated polynomial ring R = k[x]/(xn+l) over
a field k of characteristic 0. We saw in exercise 9.1.4 that dim^ H((R, R) =
n for i > 0. Show explicitly that HC\(R) = 0. Then use the SBI sequence
to show that HCt(R) = 0 for all odd i, while for even / ^ 0 HQ(R) ^
HQ(k) © H((R, R) = kn+l. Another approach will be given in exercise 9.9.2.

9.6.1 Variations: HP and HN

9.6.17 We may use the periodicity of Tsygan's first quadrant double complex
CC**(A) to extend it to the left, obtaining an upper half-plane double complex
CC^(A). (See 9.6.6.) The periodic cyclic homology of A is the homology of
the product total complex

If we truncate CC^ to the left of the 2pth column, we obtain Tsygan's double
complex 9.6.6 translated 2p times. These truncations {CC**[—2p]} form a
tower of double chain complexes in the sense of Chapter 3, section 5. The
homology of this tower of double complexes is the tower of ^-modules

^> HCn+A(A) -^ HCn+2(A) -^ HCn(A).
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338 Hochschild and Cyclic Homology

As we saw in 3.5.8, this means that there is an exact sequence

0 -> lim xHCn+lp+\(A) -> HPn(A) -> lim HCn+2p(A) -> 0.

Moreover, it is visually clear from the periodicity of CC^(A) that each map
S: HPn+2(A) - • HPn(A) is an isomorphism. This accounts for the name "pe-
riodic cyclic homology": the modules HPn(A) are periodic of order 2.

Similarly, we can consider the "negative" subcomplex CC^(A) of the peri-
odic complex CC^(A) consisting of the columns with p < 0. This is a second
quadrant double complex. The negative cyclic homology of A is defined to be
the homology of the product total complex of CC^(A):

We leave it to the reader to check that there is an SBI exact sequence 9.6.11
for I: HN*^> HP* fitting into the following commutative diagram:

H P n + l ( A ) —• H C n - i ( A ) — > H N n ( A ) —• / / / ^ ( A ) —• / / C n _ 2 ( A ) •••

i' I' I*
//A^n(A) HNn^(A) = HNn-i(A)

9.7 Group Rings

In this section we fix a commutative ring k and a group G. Our goal is to
compute HH* and //C* of the group ring kG (9.7.5 and 9.7.9). To prepare
for this we calculate //C* of kBG, which we call HC*(G).

In 9.6.2 we saw that BG could be regarded as a cyclic set by defining
t(g\, - - •> gn) = ((g\- • - gn)~l, gu • - <> gn-i)- Applying the free /c-module

functor to BG therefore yields a cyclic ^-module kBG. If we adopt the no-
tation HH*(G) = HH*(kBG), HC*(G) = HC*(kBG), and so on, then we
see (using 8.2.3) that

HHn(G) = nn{kBG) = Hn(BG; k) = Hn{G\ k).
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9.7 Group Rings 339

Theorem 9.7.1 (Karoubi) For each group G,

HCn(G) ^ Hn(G\ k) 0 Hn-2(G; k) 0 Hn-A(G\ k) 0 •. •.

Moreover, the maps S:HCn(G) -> HCn-2(G) are the natural projections
with kernel Hn(G; k), and the maps B are zero.

Remark It is suggested to write Karoubi's Theorem in the form HC*(G) =

Proof Consider the path space EG = P(BG) of EG (8.3.14 and exercise

8.3.8), which as a simplicial set has (EG)n — G" + 1 and 9/(go> •••>£«) =

(• • •, g/gj+i, • • •) for i ^ n and dn(go, • • •, gn) = (go, • • •, gn-i). If we define

*(gO, ' - , g n ) = ( g O - ' g n , (gl'" g n ) ~ \ gU g2, ' ' ' , ^ n - l ) ,

then the cyclic identities (tnJrX = 1, drf = tdt-i, etc.) are readily verified. (Do
so!) Therefore EG is also a cyclic set, and the projection n: EG —• 5G,
which forgets go, is a morphism of cyclic sets. Applying the free ^-module
functor, n: kEG -> kBG is a morphism of cyclic ^-modules. More is true:
The group G acts on EG by g(go, gi, • • •) = (ggo. gi> • • •) in a way that
makes kEG into a cyclic left £G-module, and &#G = k (S>kG kEG. In partic-
ular, Tsygan's double complex CC**(kEG) is a double complex of free kG-
modules and CC**(kBG) = k ®kG CC**(kEG). It follows that HC*(G) =
H*Tot(CC**(kBG)) is the hyperhomology H*(G; TotCC**(££G)) of the
group G (6.1.15), because each summand CCpq(kEG) of TotCC**(kEG) is
a free (hence flat) kG-modu\c.

We saw in exercise 8.3.7 that the augmentation EG ->• 1 is a simplicial
homotopy equivalence. Applying the free module functor, the augmentation
kEG -> k is a simplicial homotopy equivalence. Hence C%(kEG) is a res-
olution of the trivial £G-module k, just as C%(kEG) is a resolution of the
fc.G-module 0. Fitting these together, Tsygan's double complex CC**(kEG)
is a "resolution" (in the sense of hyperhomology) of the trivial chain complex

which has K( = 0 for / < 0 or / odd and K( = k for / even, / > 0. But the
hyperhomology of K* is easy to compute:

oo

HCn(G) = Hn(G; Km) = 0 Hn_2,(G; *) = 0 Ha-2i(G; k).
i=0
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340 Hochschild and Cyclic Homology

The assertions that the maps S: HCn(G) —• HCn-2(G) are the natural projec-
tions with kernel HHn(G) = Hn(G; k), and that the maps B: HCn-\(G) ->
HHn(G) are thus all zero, follow from a visual inspection of 0-0*(G; K*). <>

Corollary 9.7.2

HPn(G) = lim HCn+2i(G) = ( [ £ > *» ( G ; « ' ^ * ™

Exercise 9.7.1 When Q c it, use kBG/ ~ to compute HC*(G).

We now turn to the Hochschild homology of the group ring kG. Let < G >
denote the set of conjugacy classes of elements of G. Our first step is to find a
decomposition of the cyclic set ZG of 9.6.2 and the cyclic module Z(kG) =
k(ZG) which is indexed by < G > . There is a cyclic set map from ZG to the
trivial cyclic set < G > , which sends (go, gi, • • •, gn) £ (ZG)n = Gn+l to the
conjugacy class of the product go • • • g« in < G>. (Check this!) For n = 0 this
yields an isomorphism

HC0(kG) = HH0(kG) ^ >

Indeed, the kernel of the surjection kG -+ k<G> is generated by the el-
ements x-gxg-l=g-l(gx)-(gx)g-l=b(g~1®gx), and HCo(k<G>) =
k<G> .

Definition 9.7.3 For J C G G , let Zn{G, x) denote the subset of Gn+l = ZnG
consisting of all (go, • • •, gn) such that go • • • gn is conjugate to JC, that is,
Zn(G,x) is the inverse image of <x> e <G> . As n varies, these form
a cyclic subset Z(G,x) of ZG. Note that Z(G, 1) is isomorphic to the
cyclic set BG (forget go). Applying the free A:-module functor gives cyclic
fc-submodules kZ(G, x) of kZ(G), one for each conjugacy class. We shall
write HH*(G,x) for HH*(kZ(G,x)), HC*(G, x) for HC*(kZ(G,x)), etc.
for simplicity. As Z(G) is the disjoint union of the cyclic sets Z(G, JC), kZ(G)
is the direct sum of the kZ(G, x). Therefore HH*(kG) = 0 X ////*(G, x) and

To describe HH*(G,x) etc. we recall that the centralizer subgroup of x e
G is the subgroup CG(X) = {g £ G : gxg~l = x}. If x' is conjugate to x, then
Cc(xf) and CGM are conjugate subgroups of G. In fact, if we let G act on
itself by conjugation, then CG(X) is the stabilizer subgroup of x\ if we choose
a set {v} of coset representatives for G/CG(X), then for each x' conjugate to x
there is a unique coset representative y such that vjc'y"1 = x.
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9.7 Group Rings 341

Proposition 9.7.4 For each x e G the inclusion CG(X) ^ G induces isomor-
phisms HH*(CG(x), x) ^ HH*(G, x) and HC*(CG(x), x) = HC*(G, x).

Proof Write H for CG(X), and choose a set {y} of coset representatives
for G// / , the coset of H being represented by y = 1. Given (go, • • •, gn) £
Zn(G, x), let j / be the (unique) coset representative such that yi(gi+\ • • • gngo
'-gi)yfl =x and set

Each y^jg. j r 1 is in # (check this!), so p(g0, • • •, gn) e Zn(// , x). By in-
spection, p: Z(G, x) -» Z(// , x) is a cyclic morphism splitting the inclusion
i: Z(// , x)c—• Z(G, x). There is a simplicial homotopy /* from the identity
map of Z(G, x) to tp defined by

7 = 0, • • •, n. (Check this!) Hence the inclusion Z(// , x) c Z(G, JC) is a sim-
plicial homotopy equivalence. This implies that kZ(H,x) c kZ(G, x) is
also a homotopy equivalence. Hence HH*(H, x) = n*kZ(H, x) is isomor-
phic to ////*(G, JC) = 7T*£Z(G, JC), which in turn implies that HC*(H, x) =
HC*(G,x). O

Corollary 9.7.5 For each x e G, HH*(G, x) ^ H*(CG(x); k). Hence

HH*(kG)= ^ H*(CG(x)',k).
xe<G>

Proof We have to show that HH*{CG(X), X) is isomorphic to H*(CG(X); k)
for each x, so suppose x is in the center of G. There is an isomorphism
Z(G, 1) - • Z(G, x) of simplicial sets given by (g0, • • •, gn) \-> (xgo, gu - •,
gn). Therefore H*(G\k) = HH*(kBG) = HH*(G,1) is isomorphic to
HH*(G,x). O

Remark One might naively guess from the above calculation that HC*(kG)
would be the sum of the modules HC*(CG(x)) = H*(CG(x); k) <g> HC*(k).
However, when G is the infinite cyclic group T and Q c fc, we saw in 9.6.16
that for n > 1

t[r, t~1]) = k^ HCn{T).

Therefore if Q c k, then for all x ^ 1 in T we have HCn(T, x)=0,n
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342 Hochschild and Cyclic Homology

Exercise 9.7.2 Show that tn~x ® t e Z\{kT, tn) represents the differential
tn~ldt in HH\(kT) = QkT/k, and use this to conclude that for general k.

k, i = 0
HCt(T, tn) ^ { k/nk, i > 1 odd

Tor(Jfc, Z/n), i > 2 even.

Lemma 9.7.6 / / Q c ^ ^n J x e G is a central element of finite order, then

h x) ^ HC*(G) ^ //*(G; k) (8) //C*(£).

Proof Let G denote the quotient of G by the subgroup [x] generated by JC,
and write g for the image of g e G in G. The map of cyclic sets Z(G, JC) —>
Z(G, 1) sending (go, • - , gn) to (^o, • • • ,gn) induces the natural map from
H*(G\ k) = ////*(G, JC) to #*(G; k) ^ ////*(G, 1), because its composition
with the simplicial isomorphism Z(G, 1) - • Z(G,x) is the natural quotient
map. The Hochschild-Serre spectral sequence E2

pq — Hp(G; Hq({x}\ k)) =>>
Hp+q(G\ k) degenerates since Q c k (6.1.10) to show that the natural map
Hp(G; k) -> Hp(G; k) is in fact an isomorphism. This yields HC*(G) ^
HC*(G) by Karoubi's Theorem 9.7.1, as well as HC*(G, x) ^ HC*(G, 1) ^

O

Corollary 9.7.7 IfQ<^k and G is a finite group, then

xe<G>

Remark When A: is a field of characteristic zero, Maschke's Theorem states
that kG is a semisimple (hence separable) ^-algebra. In 9.2.11 we saw that this
implied that HHn(kG) = 0 for n ^ 0, so the SBI sequence yields an alternate
proof of this corollary.

Example 9.7.8 (G = Ci) Things are more complicated for general k, even
when G is the cyclic group Ci — {1, x] of order 2. For example, when k — lL
the group HCn(C2, x) is Z for n even and 0 for n odd, which together with
Karoubi's Theorem for HC*(C2) yields

I Z e Z' n even

This calculation may be found in {G. Cortinas, J. Guccione, and O. Villa-
mayor, "Cyclic homology of K[Z/pI]" K-theory 2 (1989), 603-616}.
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9.7 Group Rings 343

Exercise 9.7.3 (Kassel) Set k = 1 and show that HPn(lC2) is not the inverse
limit of the groups HCn+2i(%-C2) by showing that

HP0(C2, x) ^ Urn 1//C2/+i(C2, JC) = Z2/Z,

where Z2 denotes the 2-adic integers. Hint: Show that the SBI sequence breaks
up, conclude that S is multiplication by 2, and use 3.5.5.

Theorem 9.7.9 (Burghelea) Suppose that Q c k. Then HC*(kG) is the di-
rect sum of

x e <G> x e <G>
finite order finite order

and

Here W(x) denotes the quotient group CcM/{xn}.

Proof We have already seen that HC*(kG) is the direct sum over all x in
< G > of the groups HC*(CG(x), JC), and that if x has finite order this equals
HC*(CG(X)). Therefore it remains to suppose that x e G is a central element
of infinite order and prove that //C*(G,x) ^ //*(G/T; ifc), where T is the
subgroup of G generated by x. For this, we pull back the path space E(G/T)
of 9.7.1 to Z(G, *).

Let £ be the cyclic subset of E(G/T) x Z(G,x) consisting of all pairs
0 , z) which agree in B(G/T). Forgetting the redundant first coordinates of
e and z, we may identify En with (G/T) x G" in such a way that (for £o £

(gO, gl , • . . , g n - l ) , « =W

O, gl, ' ' ' , g/i) = (gO ' ' ' 8n, (gl ' ' • gn)"1 , gl , ' ' ' , gn-l)-

As in the proof of Karoubi's theorem 9.7.1, the action of G/T on the go co-
ordinate makes E into a cyclic G/T-set and makes the morphism of cyclic
sets n: E —> Z(G, x) into a principal G/T-fibration (exercise 8.2.6). There-
fore kZ(G, x) = k <S*kG/T kE, Tsygan's double complex CC**(kE) consists

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.010
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:30:06, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.010
https:/www.cambridge.org/core


344 Hochschild and Cyclic Homology

of free ^G/T-modules and CC**kZ(G,x) = k ®UG/T CC**(kE). We will
prove that TotCC**(kE) is a free kG/T-module resolution of k, so that

G, x) = H*(k ®kG/T TotCC^(kE)) ^ H*(G/T; k).

The homotopy sequence for the principal G/T-fibration E -> Z(G,x)
(exercise 8.2.6 and 8.3.5) shows that 7r,-(£) = 0 for i ^ 1 and n\(E) = T.
The natural cyclic map Z(7\ x) -> £, which sends (to, ••-,tn)e Tn+l to
(1, fi, • • •, tn) e En = (G/T) x Gn induces isomorphisms on simplicial ho-
motopy groups and therefore on simplicial homology (see 8.2.3). That is,
#/ /*(7\ JC) = HH*(kE). It follows that if Q c jfc, then

Hence the natural map from CCoo(kE) = kG/T to k = HCo(kE) provides
the augmentation making Tot CC**(kE) - • k into a free kG/T -resolution of
k, as claimed. <C>

Exercise 9.7.4 Show that the SBI sequence for Z(G,x) may be identified
with the Gysin sequence of 6.8.6:

. . . Hn(G; k)
 c_^f

 Hn(G/T; k) -+ Hn.2(G/T; k) -+ Hn-i(G; k) • • •.

Hint: Compare C%(G, x) -> CC**{G,x) to the coinflation map for G
G/T.

9.8 Mixed Complexes

We can eliminate the odd (acyclic) columns in Tsygan's double complex 9.6.6
CC**(A), and obtain a double complex B**(A) due to A. Connes. To do this,
fix the chain contraction sn = tan\ An -> An+i of the acyclic complex C%(A)
and define B: An —> An+\ to be the composite (1 + (—l)nt)sN, where TV
is the norm operator on An. (Exercise: Show that s is a chain contraction.)
Setting rj = (—1)", we have

B2 = (1 - r)t)sN(l + rjt)sN = 0

bB + Bb = b{\ + r)t)sN + (1 - rjt)sNb = (1 - rjt)(brs + sb')N

= (l-rjt)N = O.
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9.8 Mixed Complexes 345

Connes' double complex B**(A) is formed using b and B as vertical and
horizontal differentials, with Bpq = Aq-p for p > 0. We can formalize this
construction as follows.

B B B

M3 <— M2 <— Mi <— MQ

I*
M2

I"

B B

M2 <— Mi <— Mo

Mi ^— Mo

M0

Definition 9.8.1 (Kassel) A mixed complex (M, b, B) in an abelian category
A is a graded object {Mm: m > 0} endowed with two families of morphisms
b: Mm -> Mm_i and B: Mm -> Mm+i such that b2 = B2 = bB + Bb = 0.
Thus a mixed complex is both a chain and a cochain complex.

The above calculation shows that every cyclic object A gives rise to a
mixed complex (A, b, B), where A is considered as a graded object, b is the
Hochschild differential on A and B is the map constructed as above.

Definition 9.8.2 (Connes' double complex) Let (M, b, B) be a mixed com-
plex. Define a first quadrant double chain complex #**(M) as follows. Bpq

is Mq-P if 0 < p <q and zero otherwise. The vertical differentials are the b
maps, and the horizontal differentials are the B maps.

We write H*(M) for the homology of the chain complex (M, b), and
HC*(M) for the homology of the total complex Tot(#**(M)). HC*(M) is
called the cyclic homology of the mixed complex (M, b, B), a terminology
which is justified by the following result.

Proposition 9.8.3 If A is a cyclic object, then HC*(A) is naturally isomor-
phic to the cyclic homology of the mixed complex (A, b, B).

Proof For each 0 < p <q, set t = q — p and map Bpq = At to CC2p,t ®
CCip-\,t+\ = At 0 Ar+i by the map (1, sN). The direct sum over /?, q gives
a morphism of chain complexes Tot(B**) -> Tot(CC**). (Check this!) These
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two complexes compute HC*(A,b, B) and HC*(A), respectively by 9.8.2
and 9.6.6; we have to see that this morphism is a quasi-isomorphism. For
this we filter B** by columns and select the "double column" filtration for
CC** : FpCC = e{CCst : t < 2p). The morphism Tot(#**) -» Tot(CC**) is
filtration-preserving, so it induces a morphism of the corresponding spectral
sequences 5.4.1. To compare these spectral sequences we must compute the
El terms. Clearly El

pq(B) = Hq-P(A). Let Tp denote the total complex of the
2-column double complex obtained from the (2/7 — l)st and (2p)th columns
of CC**; the degree p + q part of Tp is CC2p,q-P 0 CC2p-\,q-P+i. The
translates (1.2.8) of C%(A) and C%(A) fit into a short exact sequence 0 —•

- 2p] -> Tp^ C%(A)[-2p] -> 0, so the spectral sequence 5.4.1

associated to the double column filtration of CC has EQ
pq = (Tp)p+q and

El
pq(CC) = Hp+q(Tp) ^ Hp+q(C*(A)[-2p]) = Hq-P(A).

By inspection, the map El
pq(B) -» Epq(CC) is an isomorphism for all p

and q. By the Comparison Theorem (5.2.12), Tot(#) -> Tot(CC) is a quasi-
isomorphism. <̂

Remark If A is a cyclic object, any other choice of the chain contraction
s, such as sn = {—\)nan, will yield a slightly different mixed complex M =
(A, b, Bf). The proof of the above proposition shows that we would still have
HC*(M) = HC*(A). Our choice is dictated by the next application and by the
historical selection s(ro (8) • • • ® rn) = 1 (8) ro <8> • • • (8) rn for A = ZR in [LQ].

Application 9.8.4 (Normalized mixed complex) By the Dold-Kan Theorem
8.4.1, the Hochschild homology of a cyclic fc-module A may be computed
using either the unnormalized chain complex C^(A) or the normalized chain
complex C*(A) = C%(A)/D*(A), obtained by modding out by the degener-
ate subcomplex D*(A). Since D*(A) is preserved by t (why?) as well as our
choice of s, it is preserved by B = (1 ± t)s(J2 ± tl). Hence B passes to the
quotient complex C*(A), yielding a mixed complex (C*(A), b, B). Since the
morphism of mixed complexes from (A, b, B) to (C*(A), b, B) induces an
isomorphism on homology, it follows (say from the SBI sequence 9.8.7 be-
low) that it also induces an isomorphism on cyclic homology: HC*(A) =

One advantage of the normalized mixed complex is that it simplifies the
expression for B = (1 ± t)sN. Since ts = t2an = a$t — 0 on Cn(A), we have

B = tGnN — ton + (-l)nt2crn-i -\ h {-\)mtl + lon-i H h (-l)n/"+1cro.
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9.8 Mixed Complexes 347

In particular, if R is a A:-algebra and A — ZR, then in Cn(A) = Bn(R, R):

n

rn) = ^ (
i=0

Example 9.8.5 (Tensor algebra) Let T = T(V) be the tensor algebra (7.3.1)
of a fc-module V. If v\, • • •, Vj • e V, write (v\ • • • uy) for their product in the
degree j part V®y of T\ the generator a of the cyclic group Cj acts on V®J
bycr(i;i •••VJ) = (VJV\ • • • Vj-\). In 9.1.6 we saw that Ht(T, T) =Ofor/ ^ 0,
so to use Connes' double complex 9.8.2 it suffices to describe the map

B: H0(T, T) = 0 ( V ^ ) a -> QiV®')* = H{(T, T).

Of course the definition of B: T -+ T (8) T yields B(r) = l ® r + r (8 ) l for

every r e R. If we modify this by elements of the form Z?(ro ® r\ <g> rj) =

ron (8) 7*2 — ro 0 rir2 + r^r® 0 ri we obtain a different representative of the

same element of H\(T, T). Thus for r = (v\ • • • uy) we have

B(r) = r ® 1 + 1 ® r ~ v\ ® (V2- - Vj) + (V2- • • Vj) ® v\ + r ® 1

(^3 * * * Vj) + (l>3 ' ' ' VyVl) 0 U2

• Vj) (8) u 1 + r 0 1

Upon identifying the degree j part of T <S> V with V®-7' and ignoring the degen-
erate term r <8> 1 by passing to C*, we see that B(r) = (1 + cr -\ \- aj~l)r
as a map from (V®-7')̂  to (V<8>-7')or. Identifying 5 with the norm map for the
action of Cj on V®-7, we see from Connes' complex and 6.2.2 that

00

HCn(T) = HCn(k) 0 0 Hn(Cj\ V®j).

In particular, if Q c k, then HCn(T) = HCn(k) for all n / 0.

Exercise 9.8.1 If R has an ideal / with I2 = 0 and / ? / / = ifc, show that

n+l
HCn(R) = HCn{k) 0
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348 Hochschild and Cyclic Homology

Connes' Spectral Sequence 9.8.6 The increasing filtration by columns on
B**(M) gives a spectral sequence converging to HC*(M), as in 5.6.1. Since
the pth column is the translate M[—p] of (M, ± b), we have

El
pq = Hq-P(M) => HCp+q(M)

with dl differential //;(M) —• Hi+\(M) induced by Connes' operator B.
This quickly yields HC0(M) = H0(M), HC\(M) = Hi(M)/B(M0) and a se-
quence of low degree terms

H\ (M) -^» H2(M) -U HC2(M)-> H0(M) -^ H\ (M) -UHC\(M) -> 0.

In order to extend this sequence to the left, it is convenient to proceed as
follows. The inclusion of M* as the column p = 0 of B = S**(M) yields a
short exact sequence of chain complexes

0 -> M* - U Tot(S) -^> Tot(B)[-2] ^ 0,

since B/M* is the double complex obtained by translating B up and to the
right. The associated long exact sequence in homology is what we sought:

• • • HCn+l(M) -^> HCn-i(M) ^ > Hn(M) -U HCn(M) -^> HCn-2(M)

(9.8.7)

We call this the "SBI sequence" of the mixed complex M, since the proof
of 9.8.3 above shows that when M = (A, b, B) is the mixed complex of a
cyclic object A this sequence is naturally isomorphic to the SBI sequence of
A constructed in 9.6.11. As in loc. cit., if M -> M' is a morphism of mixed
complexes such that //*(M) ^ //*(M0, then HC*(M) ^ HC*{Mf) as well.

Exercise 9.8.2 Show that the spectral sequence 5.6.1 arising from Tsygan's
double complex CC**(A), which has E\ = HHq(A), has for its d2 differ-
ential the map HHq{A) -» HHq+\(A) induced by Connes' operator B. Then
show that this spectral sequence is isomorphic (after reindexing) to Connes'
spectral sequence 9.8.6. Hint: Show that the exact couple 5.9.3 of the filtration
on B** is the derived couple of the exact couple associated to CC**(A).

Notational consistency Our uses of the letter "Z?" are compatible. The map
B\ Mm -> Mm+i defining the mixed complex M induces the dl differentials
B: Hm(M) -> Hm+\(M) in Connes' spectral sequence because it is used for
the horizontal arrows in Connes' double complex 9.8.2. This is the same
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9.8 Mixed Complexes 349

map as the composition BI: Hm(M) -+ HCm(M) —• Hm+\(M) in the SBI se-
quence (9.8.7). (Exercise!)

Trivial Mixed Complexes 9.8.8 If (C*, b) is any chain complex, we can
regard it as a trivial mixed complex (C*, b, 0) by taking B = 0. Since the
horizontal differentials vanish in Connes' double complex we have

Hcn(c^ b, 0) = Hn(o e Hn-2(C) 0 Hn-*(C) e • • •.

Similarly, if (C*, B) is any cochain complex, we can regard it as the trivial
mixed complex (C*, 0, B). Since the rows of Connes' double complex are the
various brutal truncations (1.2.7) of C, we have

HCn(C\ 0, B) = Cn/B(Cn~l) 0 Hn~2(C) 0 Hn~4(C) 0 • • •.

The de Rham complex 9.8.9 provides us with an important example of this
phenomenon.

9.8.1 de Rham Cohomology

9.8.9 Let R be a commutative ^-algebra and Q*R,k the exterior algebra of
Kahler differentials discussed in sections 9.2 and 9.4. The de Rham differential

d\ £ln
R,k —• £lnju\ is characterized by the formula

d(rodr\ A • • • A drn) = dro A dr\ A • • • A drn (rt e R).

We leave it to the reader to check (using the presentation of QR/JC in 8.8.1;
see [EGA, IV. 16.6.2]) that d is well defined. Since d2 = 0, we have a cochain
complex (Q*R,k, d) called the de Rham complex', the cohomology modules
HdR^ = H*(Q*R/k) are called the (algebraic) de Rham cohomology of R.
All this is an algebraic parallel to the usual construction of de Rham cohomol-
ogy for manifolds in differential geometry and has applications to algebraic
geometry that we will not pursue here. The material here is based on [LQ].

Exercise 9.8.3 Show that d makes Q*R/k into a differential graded algebra
(4.5.2), and conclude that H%R(R) is a graded-commutative ^-algebra.

If we consider (Q*R,k, d) as a trivial mixed complex with b — 0, then by
9.8.8

HCn(n*R/k, 0, d) = nn
R/k/dQ"-l 0 Hn

dR
2(R) 0 • • •.
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350 Hochschild and Cyclic Homology

In many ways, this serves as a model for the cyclic homology of R. For ex-
ample, in 9.4.4 we constructed a ring homomorphism \jr: Q*R,k - • H*(R, R),
which was an isomorphism if R is smooth over k (9.4.7). The following result
allows us to interpret the dx differentials in Connes' spectral sequence.

Lemma 9.8.10 The following square commutes:

®R/k - ^ Hn(R,R)

' I I"
^R/k > Hn+l(R, R)-

Proof Given a generator co = r$dr\ A • • • A drn of &n
R/k, ^(co) is the class of

(r0 ® n)V(l ® r2)V • • • V(l <g> rn) = nl£n(r0 (g) • • • <g> rn)

where a ranges over all permutations of {1, • • •, n] and V denotes the shuf-
fle product on fi(R, R) given in 9.4.2. Passing to the normalized complex
Bn(R,R), defining <j(0)=0 and applying #, the description in 9.8.4
gives us

where / ranges over the cyclic permutations p \-+ p + / of {0, 1, • • •, n}. Since
every permutation /x of {0, 1, • • •, n} can be written uniquely as a composite
tcr, this expression equals the representative of yjf{drQ A dr\ A • • • A Jrw) :

(n + 1 ) M 1 ® r0 (8) • • • (8) rn)

Porism Suppose that l/(n + 1)! e R. The above proof shows that

B(n\en)(ro ® • • • ® rn) = (n + l)!

Dividing by n\ gives the identity Ben = £n+\B.
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9.8 Mixed Complexes 351

Corollary 9.8.11 If R is smooth over k, the E terms of Connes' spectral

sequence are

F2

ifp>0.

We will now show that in characteristic zero this spectral sequence collapses
at E2; we do not know if it collapses in general. Of course, when R is smooth,
the sequence of low-degree terms always yields the extension (split if 1/2 e
R):

0 -> Q2
R/k/dQR/k -> HC2(R) -> HJ}R(R) -> 0.

9.8.12 Assuming that R is commutative and Q c /?, we saw in 9.4.4 that the
maps e: R®n+l -> £ln

R,k defined by e(ro <S> • • •) = rodr\ A • • • A drn/n\ satis-
fied eb = 0 and e\j/ = identity. In fact, e is a morphism of mixed complexes
from (#®*+1, 6, B) to (fij / fc, 0, J) because by 9.8.4

eB(ro <S> • • • ) = / 7 777^ A ' ' ' A drn A dro A • • • A drt-\ = de(r0 <g> • • •)•
^—' (n + 1)!

Therefore ^ induces natural maps

w -• Hcn(n*R/k) = Qn
R/k/dQn

R-[
k e //^z(/?) e # £ r ( / o e • • • .

Theorem 9.8.13 If R is a smooth commutative algebra, essentially of finite
type over afield k of characteristic 0, then e induces natural isomorphisms

HCn(R) ^ Qn
R/k/dQn

R-l
k 0 Hn

dR
2(R) 0 Hn

dR\R) ® • • •,

iel

Proof On Hochschild homology, e induces maps Hn{R,R)-^ HHn(Q*R,k) =
Qn

R,k. When R is smooth, the Hochschild-Kostant-Rosenberg Theorem 9.4.7
states that these are isomorphisms. It follows (9.8.7) that e induces isomor-
phisms on HC* and HP* as well. O

Exercise 9.8.4 When R is commutative and Q C /?, show that Q^^/dQ^l

and HdR (R) are always direct summands of HCn(R). I do not know if the

other HdR
21 (R) are direct summands.
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352 Hochschild and Cyclic Homology

Exercise 9.8.5 Show that the SBI sequence for a trivial mixed complex
(C*, 0, B) is not split in general. Conclude that the SBI sequence of a smooth
algebra R need not split in low degrees. Of course, if R is smooth and finitely
generated, we observed in 9.4.8 that Hn(R, R) = 0 for n > d = dim(R), so
the first possible non-split map is S: HCd+\(R) —

9.8.2 Hodge Decomposition

There is a decomposition for cyclic homology analogous to that for Hoch-
schild homology. To construct it we consider Connes' double complex S**
(9.8.2) for the normalized mixed complex (C*(fl), b, B). Lemma 9.8.15 be-
low shows that B sends C%(R)(i) to C^+1(/?)( /+1). Therefore there is a double

subcomplex B*l of B** whose pth column is the complex C%(R)(i~p) shifted
p places vertically.

1* I'
(/-I) B B -(1

- (n D - a w D D - (w D

Definition 9.8.14 (Loday) If i > 1, then HC^(R) = HnTot B{Jl Because

4 0 ) = 0 for n / 0, HCiO)(R) = HC^0)(R) = R. The Hodge decomposition of
HCn forn > 1 is

Hcn(R) = Hc{
n

l\R) e HC^ e • • • e HC^\R).

Lemma 9.8.15 e^B = Be^ for every n and i < n.

Proof When n = i = 1 we have Be[l\ro <g> r\) = B(ro 0 r\) = 1 (g) ro <S> r\ —
1 (8) r\ (8) ro, which is S2B(ro (g) r\). More generally, if / = n, the equality
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proceed by induction. Set F = e^^B — Bel} . The following calculation
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sn+\B = Bsn was established in the porism to lemma 9.8.10. For / < n, we
proceed by induction
shows that b(F) = 0:

be^B = e^l)bB = -e^Bb = -Bef_xb = -Bbe™ =

Now observe that there is an element u of QX^+i such that

M(1 0 r0 <g) • • • <8> rn) = e^Biro 0 • • • ® rn) - Be%\r0 (g) • • • (8) rn).

By Barr's Lemma 9.4.9, u — cen and it suffices to evaluate the constant c.

Because / < n w e have e«+i^_}!1
1^ = 0 and Ene^ = 0. Therefore

4°(r0 ® '' • ® rn)

= 0.

This gives the desired relation u = sn+\u = 0. O

Corollary 9.8.16 HC^n)(R) = Qn
R/k/dQn

R-l
k.

Proof Filtering B+l by columns and looking in the lower left-hand corner,

we see that HC^iR) is the cokernel of the map B = d: H^_~1\R, R) ->

H^n)(R,R). O

Theorem 9.8.17 When Q c / ? , the SB I sequence breaks up into the direct
sum of exact sequences

Proof The quotient double complex B(^/C^(R)(i) is a translate of B{^1\ O

Corollary 9.8.18 Let k be afield of characteristic zero. Then

HC^(R) ^ H^\R, R) ^ Dn-i(R/k)

(Andre-Quillen homology) for n > 3, while for n = 2 there is an exact se-
quence

0 -> Dx(R/k) -> HC(
2
l) -+ H$R(R/k) -+ 0.
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354 Hochschild and Cyclic Homology

Exercise 9.8.6 Show that if R is smooth over k, then HC%](R) = 0 for i <

n/2, while ifn/2 < / < n we have HcH\R) ^ Hf~n{R/k).

Exercise 9.8.7 Show that there is also a Hodge decomposition for HP*(R):

If R is smooth, show that HP^n(R) ^ H^~n(R/k).

Remark 9.8.19 (Schemes) It is possible to extend Hochschild and cyclic
homology to schemes over k by formally replacing R by Ox and R®n by
O®n to get chain complexes of sheaves on X, and then taking hyperco-
homology (Chapter 5, section 7). For details, see [G-W]. If X is smooth
over k and contains Q, it turns out that HH^{X) = Hl~n{X, &x) and
HPn\x) = Hjl^~n(X). If X is a smooth projective scheme and p = i — n,

then HC%\X) is the pth level FPHf~n{X) of the classical Hodge filtration
on H%R(X) = H*(X(Q; k). This direct connection to the classical Hodge
filtration of H^R(X) justifies our use of the term "Hodge decomposition."

9.9 Graded Algebras

Let R = ®Ri be a graded ^-algebra. If ro, • • •, rp are homogeneous elements,
define the weight of ro ® • • • ® rp e R®P+l to be u; = J2 \ri l» where |r/1 = y
means that r/ G /?7-. This makes the tensor product R®P+l into a graded fc-
module, (/?<8>P+1)M; being generated by elements of weight w. Since the face
and degeneracy maps, as well as the cyclic operator t, all preserve weight,
the {(R®p+l)w} form a cyclic submodule (ZR)W of ZR = R®*+1 and al-
lows us to view ZR = (&(ZR)W as a graded cyclic module or cyclic ob-
ject in the abelian category of graded ^-modules (9.6.1). As our definitions
work in any abelian category, this provides each HHp(R) = HHp(ZR) and
HCP(R) = HCP(ZR) with the structure of graded ^-modules: HHp(R)w =
HHp((ZR)w) and HCP(R)W = HCP((ZR)W). We are going to prove the fol-
lowing theorem, due to T. Goodwillie [Gw].

Goodwillie's Theorem 9.9.1 If R is a graded k-algebra, then the image of
S: HCp(R)w —> HCp-2(R)w is annihilated by multiplication by w. In par-
ticular, i / Q C R, then S = 0 on HC*(R)wfor w ^ 0, and the SBI sequence
splits up into short exact sequences

0 -+ HCP-X(R)W -^ HHp(R)w -U HCP(R)W -+ 0.
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If R is positively graded (R = Ro® R\® - •), then clearly (Z/?)o = Z(RQ),

so that the missing piece w = 0 of the theorem has HC(R)o = HC(Ro).

Corollary 9.9.2 If R is positively graded and Q c R, then HP*(R) =
HP*(R0).

Corollary 9.9.3 (Poincare Lemma) If R is commutative, positively graded,
and Q C R, then

Proof It suffices to show that the weight w part of the de Rham complex
(&*R/k, d) of 9.8.9 is zero for w / 0. This is a direct summand (by 9.4.4,
exercise 9.4.4) of the chain complex (HH*(R)W, BI), which is exact because
the kernel of BI: HHp(R)w -» HHp+x{R)w is HCP-\(R)W. O

Example 9.9.4 The tensor algebra T = T(V) of a ^-module V may be
graded by setting Tt = V®1'. We saw in 9.1.6 that HHn(T) = 0 for n ^ 0, 1.
If Q ^ k9 this immediately yields HCn(T)w = 0 for n / 0 and w ^ 0, and
hence we have HCn{T) = HCn(k) for n / 0. If Q qL k, the explicit calcu-
lation in 9.8.5 shows that HCn(T)w ^ Hn(Cw\ V®w), which is a group of
exponent w as the cyclic group Cw has order w.

Exercise 9.9.1 Given a fc-module V we can form the ring R = k 0 V with
V2 = 0. If we grade R with R\ = V and fix w ^ 0, show that

Exercise 9.9.2 Let R be the truncated polynomial ring k[x]/(xm+{), and sup-
pose that Q c k. We saw that HHn(R) ^ £m for all n ^ 0 in exercise 9.1.4.
Show that HCn(R) = 0 for n odd, while for n even HCn(R) ^ fcm+1. Com-
pare this approach with that of exercise 9.6.4.

Exercise 9.9.3 (Generating functions) Let k be a field of characteristic zero,
and suppose that R is a positively graded /c-algebra with each Rt finite-
dimensional. Show that h(n, w) = dim HHn(R)w is finite and that for every
w / O w e have

dim HCn(R)w = (-l)n

i=0
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356 Hochschild and Cyclic Homology

Now set hw(t) = J2 h(n> w)*11, fw(t) = J2 d i m HCn(R)w tn, and show that

MO = d+O/u;(O.
In order to prove Goodwillie's Theorem, we work with the normalized

mixed complex C*(R) of R. First we describe those maps F\R®m+x —•
Cn(R) which are natural with respect to the graded ring R (and k). For
each sequence of weights w = (wo, • • •, wm) we must give a map Fw from
RWo 0 ''' 0 ^u;m to Cn{R). Let 7^ denote the free fc-algebra on elements
xo, - — , xm, graded so that JC/ has weight u;/. Given r,- 6 i?^. there is a graded
algebra map Tw -> R sending JC,- to n; the map Cn(Tw) -> Cn(#) must send
v = Fu;(xo 0 • • • (8) Jcm) to F^ro 0 • • • (8) rm). Thus F^ is determined by the
element y = yQto, • • •, *m) of Cn(Tw) = TW <g> fw <g> • - -, that is, by a ^-linear
combination of terms Mo <8> • • • ® Mn, where the Mj are noncommutative
monomials in the X(, and Mj ^ 1 for / ^ 0. In order for y to induce a natural
map Fw we must have multilinearity:

Xy(x0, -",xm) = y(xo, • • •, A.*,-, • • •, x m )

for all / and all kek. Changing k if necessary (so that for each j there is a
A e k such that A; ^ A), this means there can be at most one occurrence of
each xi in each monomial Mo ® • • • <g> Mn in y(^o, • • •, Jcm).

If n > m + 2, then at least two of the monomials Mi must be one in each
term Mo 0 • • • 0 Mn of y. This is impossible unless y = 0. If n = m + 1, then
we must have Mo = 1 in each term, and y must be a linear combination of the
monomials 1 0 XGQ 0 • • • 0 xom as cr runs over all permutations of {0, • • •, m}.
An example of such a natural map is B; the universal formula in this case
is given by y = B(xo 0 • • • 0 xm), where only cyclic permutations are used.
From this we make the following deduction.

Lemma 9.9.5 Any natural map F: R®m+l -» Cm+\(R) must satisfy FB =
BF = 0, and induces a map F: Cm(R) -> Cm+i(/?).

Examples 9.9.6 If m = n, there is a natural map D: Cm(R) -> Cm(R) which
is multiplication by w — J2 Wi o n Rw0 0 • • • 0 RWm- When m — 0, D is the
map from R = Co(R) to itself sending r e Rw to wr. The formula

^(r0 0 • • • 0 rm) = (-l)m-\Drm)r0 0 n 0 • • • 0 rm_i

gives a natural map e: Cm(R) ->• Cm-\(R). This map is of interest because
£& + Z?e = 0 (check this!), and also because of its resemblance to the face
map dn (which is natural on R®m+l but does not induce a natural map Cm ->
Cm-\).
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9.9 Graded Algebras 357

Proof of Theorem 9.9.1 Since D commutes with B and b, it is a map of
mixed complexes and induces an endomorphism of HC*(R) — namely, it is
multiplication by w on HC*(R)W. We must show that DS = 0. To do this we
construct a chain contraction Se + SE of DS: Totn £** - • Tot«_2 5**, where
#** is Connes' double complex for the normalized complex C*(R) and S is
the periodicity map Bpq -+ Bp-\,q-\. The map e\ Bpq —• Bp+\,q is the map
Cm -> Cm_i given in 9.9.6, and £ will be a map # M -> Bp,q+\ induced by
natural maps Em: Cm -> Cm+i. If we choose E so that /) equals

(*) (e + £)(£ + b) + (5 + ft)(g + E) = eB + Be + Eb + bE

I*

on Cm(R), then S ê + £") will be a chain contraction of DS. Note that the term
eB of (*) does not make sense on Boq, but the term SeB does.

All that remains is to construct Em: Cm(R) -> Cm+i(/?), and we do this by
induction on m, starting with Eo = 0 and £i (ro 0 n ) = 1 ® Dri 0 ^o. Because

(eB + fle)(r0) = e(l 0 r0) =

r\) = e(l®ro<8>ri-l<g)ri® r0)

+ b{\ ® Drx ® r0)

+

the expression (*) equals D on Co(R) and Ci(/?). For m > 2, we assume
^m-i, ^m-2 constructed; for each w we need to find elements y e Cm+\(TW)
such that

by + O£ + Be + £m_i6)(jc0 (8) • • • ® xm) = D(x0 ® • • • <8> xm)

in Cm(Tw). Set z = (D - eB - Be - Em-\b)(xo (8) • • • (g) xm); by induction
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358 Hochschild and Cyclic Homology

and (*),

bz = (Db + ebB + Bbe - bEm-\b - Em-2b
2)(x0 ® • • • ® xm)

= (D-eB-Be- bEm-X ~ Em-2b)b(x0 ® • • • ® JCOT)

= 0.

We saw in 9.1.6 that Hm(Tw, Tw) = 0 for m > 2, so the normalized complex
C^Tu;) and hence its summand C*(TW)W of weight w are exact at m. Thus
there is an element y in (^+1(7^)^ such that by = z. Since y has weight tu/
with respect to each X[, there can be at most one occurrence of each x\ in each
monomial in y(xo, • • •, xm). Hence if we define

Em(ro ® • • • ® rm) = v(ro, • • •, rm),

then Em is a natural map from Cm(R) to Cm+i(/£) such that (*) equals D
on Cm(R). This finishes the construction of E and hence the proof of Good-
willie's Theorem. <>

Remark 9.9.7 The "weight" map D: R -+ R is a derivation, and Good-
willie's Theorem 9.9.1 holds more generally for any derivation acting on a
^-algebra R; see [Gw], All the basic formulas in the proof—such as the for-
mula (*) for D—were discovered by G. Rinehart 20 years earlier; see sections
9, 10 of "Differential forms on general commutative algebras, Trans. AMS 108
(1963), 195-222.

As an application of Goodwillie's Theorem, suppose that / is an ideal in a k-
algebra R. Let Z{R, I) denote the kernel of the surjection Z(R) -> Z(R/I);
we define the cyclic homology modules HC*(R, I) to be the cyclic homol-
ogy of the cyclic module Z(R, I). Since cyclic homology takes short exact
sequences of cyclic modules to long exact sequences, we have a long exact
sequence

• • • HCn+x(R) -> HCn+i(R/I) -+ HCn(R, I) -> HCn(R) -+ HCn(R/I)

Thus HC*(R, I) measures the difference between HC*(R) and HC*(R/I).

We can filter each module ZpR = /?(g)/7+1 by the submodules Fl
p generated

by all the /'° (8) • • • <8> Ilp with IQ -\- • — + ip = i. Since the structure maps
3/, <T/, t preserve this filtration, the F^ are cyclic submodules of ZR. As F*

is Z(R, /) , we have F°/F* = Z(R/I).

Exercise 9.9.4 If A: is a field, show that the graded cyclic vector spaces

and Z(grR) are isomorphic, where gr(R) = R/I 0 I/I2 0 - 0

. . . is the associated graded algebra of / c R.
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9.9 Graded Algebras 359

Proposition 9.9.8 Let k be afield of characteristic zero. lflm+l = 0, then the
mapsSi:HCp+2i(R, / ) - > HCp(R, /) are zero for i >m{p + 1).

Proof By the above exercise, HC*(grR)w ^ HC*(F?/F?+l). Since gr(R)
is graded, the map S is zero on all but the degree zero part of HC*(grR).
Hence Sl = 0 on HC*(Fl/F/+1). Since F^,+1 = 0 for i > m(p + 1), the map
Sl factors as

Fl/Fl+l) = HCP(R, / ) ,

which is the zero map. O

Corollary 9.9.9 / / / is a nilpotent ideal of R, then HP*(R,I) = 0 and

Proof The tower {//C*+2/ (R, I)} satisfies the trivial Mittag-Leffler condition.

Exercise 9.9.5 If / is a nilpotent ideal of R and k is a field with char(fc) = 0,
show that H%R(R) ^ H*R(R/I). Hint: Study the complex (HH*(R), BI).

9.9.1 Homology of DG-Algebras

9.9.10 It is not hard to extend Hochschild and cyclic homology to DG-alge-
bras, that is, graded algebras with a differential d: Rn —• Rn-\ satisfying the
Leibnitz identity d(ron) = (dro)r\ + (-l)|rolro(<iri); see 4.5.2. (Here |ro| = j
if ro e Rj.) If we forget the differential, we can consider ZR (9.6.1) as a
graded cyclic module as in Goodwillie's Theorem 9.9.1. If we lay out the
Hochschild complex in the plane with (R®q+l)p in the (p, q) spot, then there
is also a "horizontal" differential given by

q
d(ro 0 • • • 0 rq) = /~^(— l)'r°'H l"'r'~1'ro 0 • • • <8> drt <g> • • • 0 rq.

i=0

Thus the Hochschild complex becomes a double complex C%(R, d)*\ we de-
fine the Hochschild homology HH^G(R) to be the homology of ToteC^(/?)*.
If R is positively graded, then Ch(R, d) lies in the first quadrant and there is
a spectral sequence converging to HH®G(R) with E2

pq = Hp(HHq(R)*).
Warning: If R is a graded algebra endowed with differential d = 0, then
HH®G(R) is the sum of the HHq(R)p with p + q = n and not HHn(R).
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360 Hochschild and Cyclic Homology

In the literature (e.g., in [MacH, X]) one often considers DG-algebras to
have a differential d\Rn -> Rn+X and Rn = 0 for n < 0. If we reindex Rn

as R-n this is a negatively graded £>G-algebra. It is more natural to convert
C%(R, d)* into a cochain double complex in the fourth quadrant and to write
HHn

DG(R) for HH?n
G(R).

Exercise 9.9.6 If R° = k and Rl = 0, construct a convergent fourth quadrant
spectral sequence converging to HH^G(R) with E™ = HpHH-q(R).

Exercise 9.9.7 Let (/?*, d) be a £>G-algebra and M a chain complex that is
also a graded R -module in such a way that the Leibnitz identity holds with
ro G M, r\ e R. Define H®G(R, M) to be the homology of the total complex
(M ® /?®*)p obtained by taking ro e M in 9.9.10. If M and /? are positively
graded, show that there is a spectral sequence

E2
pq = Hh

pHq(R, M) => H™(R, M).

We now return to the cyclic viewpoint. The chain complexes Zq(R)* =
(#0*+ 1)* fit together to form a cyclic object Z(R,d) in Ch(fc-mod), the
abelian category of chain complexes, provided that we use the sign trick to
insert a sign of (—l)I^KIrol+-+l^-il) m the formulas for dq and t. (Check
this!) As in any abelian category, we can form HH* and HC* in Ch(&-mod).
However, since C%(Z(R, d)) is really a double complex whose total complex
yields HH^G(R) it makes good sense to imitate 9.6.7 and define HC®G(R)
as H* Tot® CC**Z(R, d). If R is positively graded, then we can define
HP®G(R) using the product total complex of CC^Z(R, d). All the major
structural results for ordinary cyclic homology clearly carry over to this DG-
setting.

Proposition 9.9.11 / / / : (/?, d) -> (R\ df) is a homomorphism of flat DG-
algebras such that H*(R) = H*(Rf), then f induces isomorphisms

G(Rf) and HC?G(R) ^ HC°G(Rf).

Proof As each R®n is also flat as a ^-module, the chain maps

are quasi-isomorphisms for all n. Filtering by rows 5.6.2 yields a convergent
spectral sequence

E\a =
pq
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9.9 Graded Algebras 361

By the Comparison Theorem 5.2.12, we have HH°G(R,d) = HH®G(R\d').
The isomorphism on HC®G follows formally using the 5-lemma and the SBI
sequence 9.6.11. <>

Vista 9.9.12 (Free loop spaces) Suppose that X is a fixed simply connected
topological space, and write C*(X) for the DG-algebra of singular chains
on X with coefficients in a field k\ the singular cohomology H*(X) of X is
the cohomology of C*(X). Let X1 denote the space of all maps / : / —• X, /
denoting the interval [0,1]; the free loop space AX is {/ e X1: / (0) = / ( I )}
and if * e X is fixed, the loop space QX is {/ e X1: / (0) = / ( I ) = *}. The
general machinery of the "Eilenberg-Moore spectral sequence" [Smith] for the
diagram

QX —

i
* —

-» AX

i
-+ X

— • X1

i
A

—> X x X

yields isomorphisms:

Hn(QX) ^ #//£G(C*(X), k) ^ HH°f(C*(X), k)\

Hn(AX) ^ HHn
DG(C*(X)) ^ HHDG{C*(X)).

We say that a space X is formal (over k) if there are DG-algebra homo-
morphisms C*(X) ^- R —> H*(X) that induce isomorphisms in cohomol-
ogy. Here we regard the graded ring H*(X) as a DG-algebra with d = 0,
either positively graded as a cochain complex or negatively graded as a
chain complex. Proposition 9.9.11 above states that for formal spaces we
may replace C*(X) by H*(X) in the above formulas for Hn(QX) and
//"(AX).

All this has an analogue for cyclic homology, using the fact that the topo-
logical group S1 acts on AX by rotating loops. The equivariant homology
Hf(AX) of the S^space AX is defined to be //*(AX x5i ESl), the sin-
gular homology of the topological space AX xsi ESl = {(A.,e) e AX x
ESl:X(l) = n(e)}. Several authors (see [Gw], for example) have identified
Hf(AX) with the cyclic homology HC?G(R*) of the DG-algebra R* whose
homology is H*(QX).
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362 Hochschild and Cyclic Homology

9.10 Lie Algebras of Matrices

In this section we fix a field k of characteristic zero and an associative k-
algebra with unit R. Our goal is to relate the homology of the Lie algebra
gim(R) =Lie(Mm(R)) ofmxm matrices, described in Chapter 7, to the
cyclic homology of R. This relationship was discovered in 1983 by J.-L. Lo-
day and D. Quillen [LQ], and independently by B. Feigin and B. Tsygan. We
shall follow the exposition in [LQ].

The key to this relationship is the map

H^ie(Qlm(R); k) - ^ HC*(Mm(R)) ^ HC*(R)

constructed as follows. Recall from 7.7.3 that the homology of a Lie algebra g
can be computed as the homology of the Chevalley-Eilenberg complex A*g =
k <8>UQ V*(£0, with differential

d(x\ A • • • A Xp) = 2_J(~-1)*+ I / ' [*M xj] A X\ A • • - A Xi A - • • A Xj A - • - A Xp.

On the other hand, we saw in 9.6.10 that the cyclic homology of R may be
computed using the quotient complex C*(R) = C%(R)/ ~ of the Hochschild
complex Cj(/O. Define X: A^+1glm(fl) -> C*(Mm(fl)) by

where the sum is over all possible permutations a of {1, • • •, p}. (Exercise:
Why is X well defined?)

Lemma 9.10.1 X is a morphism of chain complexes, and induces maps

X*: Hp+l(Qlm(R); k) ^ HCP(R).

Moreover X is compatible with the usual nonunital inclusion c Mm{R) c->

Mm+\(R), i{g) = \ , in the sense that the following diagram commutes.

_,, A trace

A*+1
flIw+1(rt) —> C*(Mm+i(/?)) > C*(/?).
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9.10 Lie Algebras of Matrices 363

Proof Commutativity of the right square amounts to the assertion that i* is
compatible with the trace maps, and was established in exercise 9.5.3. Now set
co = xo A • • • A xp with xt e &lm(R). The formula for X shows that t*(Xco) =
X(txo A • • • A ixp) = k(cco), which gives commutativity of the left square. It
also shows that

bk(co) = (-l

t h e s u m b e i n g o v e r all p e r m u t a t i o n s v of {0, 1, • • • , / ? } . S i n c e

CO = (—l)*+ < / ' + 1JC| A Xj A Xo A • • • A JC; A • • • A Xj A • • • A Xp

for / < j , it is readily verified (do so!) that k(dco) — b(Xco). This proves that X
is a morphism of complexes. O

Primitive Elements 9.10.2 An element x in a coalgebra H (6.7.13) is called
primitive i fA(jc)=jc®l + l®jc. The primitive elements form a submodule
Prim(//) of the A:-module underlying H. If H is a graded coalgebra and A is a
graded map, the homogeneous components of any primitive element must be
primitive, so Prim(//) is a graded submodule of H.

We saw in exercise 7.3.8 that the homology H = H*(Q; k) of any Lie alge-
bra $ is a graded coalgebra with coproduct A: H —> H (& H induced by the
diagonal g - ^ g x g . When 9 is the Lie algebra gl(R) = Uglm(/?), we are go-
ing to prove in 9.10.10 that Prim Hi($\ k) ^ HQ-\(R).

The first step in the proof is to recall from exercise 7.7.6 that any Lie group Q
acts on AnQ by the formula [x\ A • • • A xn, g] = J2 *i A • • • A [xtg] A • • • A xn.
This makes the Chevalley-Eilenberg complex A*g into a chain complex of
right g-modules, and $ acts trivially on //*(£j; k) = //*(A*g), again by exercise
7.7.6. Applying this to $lm(R), we observe that A*$[m(R) is a chain complex
of modules over glm(7?) and hence over the simple Lie algebra sim = 5im(k) of
matrices over k with trace 0 (7.1.3, 7.8.1). Therefore we may take coinvariants
to form the chain complex Ho(slm; A*$lm(R)).

Proposition 9.10.3 Taking coinvariants gives a quasi-isomorphism of com-
plexes

A*Qim(R) ^ H0(slm; A*Qlm(R)).

Proof Weyl's Theorem 7.8.11 states that, like every finite-dimensional s\m-
module, An$[m(k) is a direct sum of simple modules. As R is a free ^-module,
each AnQlm(R) = An$[m(k) (8) R is also a direct sum of simple modules. Write
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364 Hochschild and Cyclic Homology

Qn for the direct sum of the simple modules on which slm acts non-trivially,
so that A*glm(R) = Q* 0 Ho(slm; A*$lm(R)) as an slm-module complex. As
sim acts trivially on the homology of A*glm(R) by exercise 7.7.6, the complex
<2* has to be acyclic, proving the proposition. <>

Corollary 9.10.4 If m > n the maps Hn(gim(R); k) -> HCn-\(R) are split
surjections.

Proof Let e//(r) denote the matrix which is r in the (z, j) spot and zero
elsewhere. Exercise 9.5.4 showed that if we set

co = co(r\, • • •, rn) = e\2(r\) A ̂ 23(̂ 2) A • • • A en-\tn(rn-i) A en\(rn),

then co e An$lm(R) satisfies trace(A&>) = (—l)n~Vi (8) • • • ® rn. Moreover

-dco = ei3(rir2) A • • • + enin) A ̂ 24(̂ 2^3) A • • •

Modulo coinvariants this equals — co(b(r\ ® • • • ® rn)). Therefore co defines a
chain complex homomorphism from the translated cyclic complex R®*/ — =
(/j®*+i/ - ) [ - l ] to H0(slm\ A*Qlm(R)). As co is split by trace(A), the result
follows upon taking homology. <C>

Invariant Theory Calculation 9.10.5 Let En be the symmetric group of per-
mutations of {1, • • •, n] and (sgn) the 1-dimensional £„-module on which
or e Tin acts as multiplication by its signature (— \)°. If £„ acts on V®n by
permuting coordinates, then AnV = V®n <8>kxn (sgn). In particular,

An$lm(R) = (glm(k) 0 R)®n ®kxn (sgn) = (Qlm(k)®n 0 R®») ̂ E / z (sgn).

To compute the coinvariants, we pull a rabbit out of the "hat" of classical in-
variant theory. The action of £„ on V®n gives a homomorphism from kTn to
End(V®n) = End(V)0"; the Lie algebra Q associated (7.1.2) to the associa-
tive algebra End(V) also acts on V®n and the action of Ew is ^-invariant, so
the image of kY,n belongs to the invariant submodule (EndCV)®")0 = (g®")0.
The classical invariant theory of [Weyl] asserts that kTn = (&®n)Q whenever
dim(V) > n. If dim(V) = m, then $ = $lm(k) = k x slm(k) and the abelian
Lie algebra k acts trivially on (g®*). By Weyl's Theorem (7.8.11), g®" is a
direct sum of simple 5im (k)-modules, so

kTn^(Q®n)5l^(Q®»)5[m(kh m>n.
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9.10 Lie Algebras of Matrices 365

Tensoring with the trivial g-module R®n therefore yields (for m>n):

H0(slm; Angim(k)) = H0(5im; (gi^ ® R®n) ®*En (sgn))

; gl®n) ® R®

The action of Hn on /:£„ in the final term is by conjugation.

Corollary 9.10.6 (Stabilization) For every associative k-algebra R and every
n the following stabilization homomorphisms are isomorphisms:

Hn(gln(R); k) ^ Hn(g[n^(R); k) ^ ---^ Hn(gi(R); k).

Proof The invariant theory calculation shows that the first n + 1 terms (resp.
n terms) of the chain complex Ho(slm\ A*$lm(R)) are independent of ra, as
long as m > n + 1 (resp. m > n). This yields a surjection Hn(gin(R); k) ->
Hn(gln+i(R); k) and stability for m > n + 1. For the more subtle invariant
theory needed to establish stability for m = n,wt cite [Loday, 10.3.5]. O

Remark 9.10.7 (Loday-Quillen) It is possible to describe the obstruction to
improving the stability result to m = n — 1. If R is commutative, we have a
naturally split exact sequence

tfn(0ln-i(*); *) -+ Hn(gln(R); k) ^ > Qn
R-l/dQn

R-2
k -+ 0.

The right-hand map is the composite of A*: Hn(gin(R); k) -+ HCn-\(R), de-
fined in 9.10.1, and the projection HCt{R) -> Q^^/dQ1'^ of 9.8.12. The
proof of this assertion uses slightly more invariant theory and proposition
9.10.9 below; see [LQ, 6.9]. If R is not commutative, we only need to replace
Q^l/dQ^j by a suitable quotient of AnR; see [Loday, 10.3.3 and 10.3.7]
for details.

9.10.8 In order to state our next proposition, we need to introduce some stan-
dard facts about /)G-coalgebras, expanding upon the discussion of graded
coalgebras in 6.7.13 and 9.10.2.

If V is any vector space, the exterior algebra A*(V) is a graded coalgebra
with counit e: A*(V) -> A*(0) = k induced by V - • 0 and coproduct

A: A*(VP) - • A*(V x V) ^ (A*V) (8) (A*V)

induced by the diagonal V ^ V x V . (Check this!) In particular, A*g is a
graded coalgebra for every Lie algebra Q. Since g -> 0 and g -> g x g are
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366 Hochschild and Cyclic Homology

Lie algebra maps, //o(J); A*g) is a coalgebra for every Lie subalgebra rj of
g. (Check this!) In particular, Ho(slm(k); A*gim(R)) is a graded coalgebra for
eachra.

A differential graded coalgebra (or DG-coalgebra) C is a graded coalgebra
endowed with a differential d making it into a chain complex in such a way
that s\ C* —• £ and A: C —• C(8)C are morphisms of complexes. For example,
A*g and Ho(slm(k); A*g[m(7?)) are Z)G-coalgebras because s and A arise
from Lie algebra homomorphisms. By the Kunneth formula 3.6.3, A induces
a map

making the homology of a DG-coalgebra C again into a graded coalgebra.
Moreover, if x e Cn is primitive (9.10.2), then dx e Cn-\ is primitive, because

A(dx) = dA(x) =d(x®l + l®x) = (dx) <8> 1 + 1 <g> (dx).

Therefore the graded submodule Prim(C) is a chain subcomplex of C.

Proposition 9.10.9 The chain complex L* = H0(sl(k); A*QI(R)) is a DG-
coalgebra whose primitive part Prim(L^) is the translate C*-\(R) = 7?®*/ ~
of the chain complex for cyclic homology.

Proof Recall from the discussion 9.10.5 on invariant theory that we have

Ln = (kHn (8) R®n) (8)^En (sgn).

This Tin -module splits into a direct sum of modules, one for each conjugacy
class of elements of £„. Let Un be the conjugacy class of the cyclic permuta-
tion T = (12 • • • n)\ we first prove that Vnm(Ln) is (kUn <g> Rn) ®£En (sgn). If
a G Y,n and r; e R, then consider the element x = a (g> (r\ <g> • • • (8) rn) of Ln.
We have

A(x) = ^ ( 0 7 (8) (• • • 0 n (8) • • •)) 0 (ay (8) (• • • <g) ry (g) • • •)),

where the sum is over all partitions (/, J) of {1, • • •, n] such that a (I) = I
and a(J) = 7, and where 07 (resp. 07) denotes the restriction of a to / (resp.
to J). (Check this!) By inspection, x is primitive if and only if a admits no
nontrivial partitions (/, 7), that is, if and only if a e Un.

Now En acts on Un by conjugation, the stabilizer of r being the cyclic group
Cn generated by r. Hence Un is isomorphic to the coset space Tn/Cn = {Cno}
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9.10 Lie Algebras of Matrices 367

and k[T,n/Cn] = k ®kcn kYtn. From this we deduce the following sequence of
isomorphisms:

Prim(Ln) ^ (kUn 0 R®n) ®*E|I (sgn)

= R®n ®kcn (sgn)

^ R®n/ ~ ,

because R®n ®kcn (sgn) is the quotient of R®n by 1 - ( - l ) n r . Note that this
sequence of isomorphism sends the class of

co = en(n) A e23(>2) A . . . A enX(rn) e AnQin(R)

to (— \)n~lr\ (8) • • • 0 rn. We leave it as an exercise for the reader to show that
the class of dco e An~lgln(R) is sent to b(r\ <g> • • • 0 rn). This identifies the
differential d on Prim(L*) with the differential b of R®*/ — up to a sign. O

Theorem 9.10.10 (Loday-Quillen, Tsygan) Let k be afield of characteristic
zero and R an associative k-algebra. Then

1. The restriction of trace (X) to primitive elements is an isomorphism

Prim Hn(Qi(R)- k) ^ HCn-i(R).

2. H*(#[(R); k) is a graded Hopf algebra, isomorphic to the tensor product

Sym ( 0//C2/-i(*) J ®k A* f ®HC2i(R)) .

Proof The direct sums ®:gim(R) x $ln(R) -+ &m+n(
R) sending (x,y) to

x ® y = f g ^ j yield chain complex homomorphisms

Because we have taken coinvariants, which allow us to move the indices
o f &lm+n around inside g[m+/i+i» t h e m a P s Vmn, Mm,«+h and /xm+i,n are
compatible. Taking the limit as m,n -> oo yields an associative product /x
on L* = f/o(sl; A*gl(/?)). This makes L* into a DG-algebra as well as a
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368 Hochschild and Cyclic Homology

DG-coalgebra. In fact L* is a graded Hopf algebra (6.7.15) because the for-
mula (*, x) 0 (y, y)^(x®y,x®y) in Qlm+n(R) x Qlm+n(R) shows that
A: L*^* L*<& L* is an algebra map. It follows that //*($[(/?); k) = //*(L*)
is also a Hopf algebra.

The classification of graded-commutative Hopf algebras H* over a field k of
characteristic zero is known [MM]. If Ho = k, then //* = Sym(P^) 0 A*(PO),
where Pe (resp. Po) is the sum of the Prim(//,-) with / even (resp. / odd). Thus
(1) implies (2). Applying this classification to L*, a simple calculation (exer-
cise!) shows that Prim Hn(L*) = HnPnm(L*). But //wPrim(L*) = HCn-\{R)
by Proposition 9.10.9. O

Exercise 9.10.11 (Bloch, Kassel-Loday) Use the Hochschild-Serre spectral
sequence (7.5.2) for si c &l to show that H2(s{2(R); k) = HC\{R).
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10
The Derived Category

There are many formal similarities between homological algebra and algebraic
topology. The Dold-Kan correspondence, for example, provides a dictionary
between positive complexes and simplicial theory. The algebraic notions of
chain homotopy, mapping cones, and mapping cylinders have their historical
origins in simplicial topology.

The derived category D(A) of an abelian category is the algebraic ana-
logue of the homotopy category of topological spaces. D(^4) is obtained from
the category Ch(*4) of (cochain) complexes in two stages. First one con-
structs a quotient K(A) of Ch(A) by equating chain homotopy equivalent
maps between complexes. Then one "localizes" K(A) by inverting quasi-
isomorphisms via a calculus of fractions. These steps will be explained below
in sections 10.1 and 10.3. The topological analogue is given in section 10.9.

10.1 The Category K(A)

Let A be an abelian category, and consider the category Ch = Ch(*4) of
cochain complexes in A. The quotient category K = K(A) of Ch is defined as
follows: The objects of K are cochain complexes (the objects of Ch) and the
morphisms of K are the chain homotopy equivalence classes of maps in Ch.
That is, Homx(A, B) is the set Homch(^> B)/ ~ of equivalence classes of
maps in Ch. We saw in exercise 1.4.5 that K is well defined as a category and
that K is an additive category in such a way that the quotient Ch(A) -> K(A)
is an additive functor.

It is useful to consider categories of complexes having special properties. If
C is any full subcategory of Ch(A), let /C denote the full subcategory of K(A)
whose objects are the cochain complexes in C. K is a "quotient category" of C

369
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370 The Derived Category

in the sense that

, B) = HomK(A, B) = HomCh(A, B)/ - = Homc(A, B)/ - .

If C is closed under 0 and contains the zero object, then by 1.6.2 both C and
/C are additive categories and C -> /C is also an additive functor.

We write Kb(A), K~(A), and K+(.4) for the full subcategories of K(.4)
corresponding to the full subcategories Ch^, Ch~, and Ch+ of bounded,
bounded above, and bounded below cochain complexes described in section
1.1. These will be useful in section 5 below.

Of course, we could have equally well considered chain complexes in-
stead of cochain complexes when constructing K. However, the historical ori-
gins of derived categories were in Grothendieck's study of sheaf cohomology
[HartRD], and the choice to use cochains is fixed in the literature.

Having introduced the cast of categories, we turn to their properties.

Lemma 10.1.1 The cohomology H*(C) of a cochain complex C induces a
family of well-defined functors Hl from the category K(A) to A.

Proof As we saw in 1.4.5, the map «*: Hl(A) -> Hl(B) induced by u: A -»
B is independent of the chain homotopy equivalence class of u. O

Proposition 10.1.2 (Universal property) Let F\ Ch(^4) -> V be any functor
that sends chain homotopy equivalences to isomorphisms. Then F factors
uniquely through K(A).

Ch(.4)

1
KM)

F
—> V

Proof Let cyl(Z?) denote the mapping cylinder of the identity map of B\ it
has Bn 0 Z?"+1 0 Bn in degree n. We saw in exercise 1.5.4 that the inclusion
a(b) = (0, 0, b) of B into cyl(Z?) is a chain homotopy equivalence with ho-
mopy inverse ft(br, b,"b) = b' + b\ /3a = id# and aj3 ~ idcyi(#). By assump-
tion, F(a): F(B) -> F(cy\(B)) is an isomorphism with inverse F(/3). Now
the map a'\ B - • cyl(B) defined by a'(b) = (fe, 0, 0) has $a! = id#, so

F(a) = F(a)F(P)F(a) = F(a)F(Pa) = F(a).

Now suppose there is a chain homotopy s between two maps / , g: B -> C.
Then y = (/, 5, g): cy\(B) -> C is a chain complex map (exercise 1.5.3).
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10.1 The Category K(A) 371

Moreover, ya' = f and ya = g. Hence in T> we have

F{f) = F(y)F(a') = F(y)F(a) = F(g).

It fol lows that F factors th rough the quot ient K(^4) of Ch(^4). <>

Exercise 10.1.1 Taking F to be Ch(.4) -> K(A), the proof shows that
a': B —• cyl(B) is a chain homotopy equivalence. Use an involution on cyl(Z?)
to produce an explicit chain homotopy pa' ~ idcyi(#).

Definition 10.1.3 (Triangles in K(*4)) Let u\ A -> B be a morphism in Ch.
Recall from 1.5.2 that the mapping cone of u fits into an exact sequence

0-+ B - % cone(w) -^-> A [ - l ] -> 0

in Ch. (The degree n part of cone(w) is An + 1 0 Bn and An + 1 is the degree n
part of A[— 1]; see 1.2.8.) The strict triangle on u is the triple («, v, 8) of maps
in K; this data is usually written in the form

cone(w)

s/ \v

u
A > B.

Now consider three fixed cochain complexes A, B and C. Suppose we are
given three maps w.A^B, v: B ->• C, and w.C —• A[— 1] in K. We say
that (w, i>, w;) is an exact triangle on (A, B, C) if it is "isomorphic" to a strict
triangle (u', v\ 8) on u'\ A' -^ B' in the sense that there is a diagram of chain
complexes,

U V W

fi [g [h [f[-l]

A' - ^ B' - ^ cone(u') —> A^-l],

commuting in K (i.e., commuting in Ch up to chain homotopy equivalences)
and such that the maps / , g, h are isomorphisms in K (i.e., chain homotopy
equivalences). If we replace w, v, and w by chain homotopy equivalent maps,
we get the same diagram in K. This allows us to think of (w, i>, w) as a triangle
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372 The Derived Category

in the category K. A triangle is usually written as follows:

C

B.

Corollary 10.1.4 Given an exact triangle (w, v,w) on (A, B, C), the coho-
mology sequence

... X H\A) X H\B) X H\C) ^ ///+1(A) X • • •

w exact. Here we have identified H*(A[-1]) and //*+1(A).

Proof For a strict triangle, this is precisely the long exact cohomology se-
quence of 1.5.2. Exactness for any exact triangle follows from this by the def-
inition of a triangle and the fact that each Hl is a functor on K. O

Example 10.1.5 The endomorphisms 0 and 1 of A fit into the exact triangles

A 0 A [ - 1 ] 0

/ \ / \

o l
A > A A —> A.

Indeed, cone(O) = A 0 A[— 1] and we saw in exercise 1.5.1 that cone(l) is a
split exact complex, that is, cone(l) is isomorphic to zero in K.

Example 10.1.6 (Rotation) If (w, v, w) is an exact triangle, then so are its
"rotates"

A[- l ] B

B - ^ C and C[+l] ~W[l\ A.

To see this, we may suppose that C = cone(w). In this case, the assertions
amount to saying that the maps cone(f) —• A[— 1] and B[— 1] -> cone(<5)
are chain homotopy equivalences. The first was verified in exercises 1.5.6
and 1.5.8, and the second assertion follows from the observation that
cone(5) = cyl(—u)[— 1].
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10.2 Triangulated Categories 373

Remark 10.1.7 Given a short exact sequence 0 - • A - % B —> C —• 0 of
complexes, there may be no map C —> A[— 1] making (w, i>, w) into an exact
triangle in K(*4), even though there is a long exact cohomology sequence
begging to be seen as coming from an exact triangle (but see 10.4.9 below).
This cohomology sequence does arise from the mapping cylinder triangle

and the quasi-isomorphisms /3:cyl(w) -> B and <p:cone(w) -> C of exer-
cises 1.5.4 and 1.5.8.

Exercise 10.1.2 Regard the abelian groups Z/2 and Z/4 as cochain com-
plexes concentrated in degree zero, and show that the short exact sequence

0 -> Z/2 —> Z/4 —> Z/2 —• 0 cannot be made into an exact triangle (2, 1,
w) on (Z/2, Z/4, Z/2) in the category K(.4).

10.2 Triangulated Categories

The notion of triangulated category generalizes the structure that exact trian-
gles give to K(.4). One should think of exact triangles as substitutes for short
exact sequences.

Suppose given a category K equipped with an automorphism T'. A triangle
on an ordered triple (A, B, C) of objects of K is a triple (w, i>, w) of mor-
phisms, where u: A ->• B, v: B ->• C, and w.C —• T(A). A triangle is usually
displayed as follows:

A —> B

A morphism of triangles is a triple (/, g, h) forming a commutative diagram
inK:

A —

if

A! —

-> B -

is

-> B' -

-> C —>

-+ c' —>

TA

IT

TA'.
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374 The Derived Category

Definition 10.2.1 (Verdier) An additive category K is called a triangulated
category if it is equipped with an automorphism T: K ->• K (called the trans-
lation functor) and with a distinguished family of triangles (w, v, w) (called
the exact triangles in K), which are subject to the following four axioms:

(TR1) Every morphism u: A -> B can be embedded in an exact triangle
(w, v, w). If A = B and C = 0, then the triangle (idA, 0, 0) is exact.
If (M, U, W) is a triangle on (A, B, C), isomorphic to an exact triangle
(u\ i/, u/) on (A7, #' , C'), then (w, t>, w) is also exact.

A —> B —> C —> TA

|= 1= |= | =
, u' , v' , w'

A! —> B' —> C' —> TA!

(TR2) (Rotation). If (w, v, w) is an exact triangle on (A, B,C), then both
its "rotates" (v,w,—Tu) and (—T~lw, u, v) are exact triangles on
(B, C, TA) and (T~lC, A, B), respectively.

(TR3) (Morphisms). Given two exact triangles

C C'

w/ \u and w'/ \u'

II Uf

A —> B A —> B'

with morphisms / : A - • Ar, g: B -+ B' such that gu = u' f, there exists
a morphism /*: C ->• C so that (/, g, h) is a morphism of triangles.

U V W

A —> B —> C —> TA

/ u' , v> , w'
A! —> B' —> C' —> TA!

(TR4) (The octahedral axiom). Given objects A,B,C,Af, Bf, C in K, sup-
pose there are three exact triangles: (w, j , 3) on (A, B, C')\ (v, x, i) on
(5, C, A'); (UM, y, 6) on (A, C, £r). Then there is a fourth exact triangle
(/, 8, (Tj)i) on (C7, .B7, A')

A1

(Tj)i/ \ g
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10.2 Triangulated Categories 375

such that in the following octahedron we have (1) the four exact triangles
form four of the faces; (2) the remaining four faces commute (that is, 3 =
8f: C -> B' -> TA and x = gy: C -> B' -* A')\ (3) yv = fj: B -> B'\
and (4) u8 = ig: B' -> £.

Exercise 10.2.1 If (w, t>, w;) is an exact triangle, show that the compositions
vu, wv, and (Tu)w are zero in K. /fmf: Compare the triangles (id^, 0, 0) and
(w, f, w;).

Exercise 10.2.2 (5-lemma) If (/, g, h) is a morphism of exact triangles, and
both / and g are isomorphisms, show that h is also an isomorphism.

A

if
Af •

B

u
B1 c

TA

TA!

Remark 10.2.2 Every exact triangle is determined up to isomorphism by any
one of its maps. Indeed, (TR3) gives a morphism between any two exact tri-
angles (w, v, w) on (A, B, C) and (w, v\ wf) on (A, B, Cf), and the 5-lemma
shows that it is an isomorphism. In particular, the data of the octahedral axiom
are completely determined by the two maps A - % B —% C.

Exegesis 10.2.3 The octahehral axiom (TR4) is sufficiently confusing that it
is worth giving another visualization of this axiom, following [BBD]. Write
the triangles as straight lines (ignoring the morphism C -> T(A)), and form
the diagram

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.011
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:30:27, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.011
https:/www.cambridge.org/core


376 The Derived Category

C

The octahedral axiom states that the three lines through A, B, and C determine
the fourth line through (C", Bf, Af). This visualization omits the identity 3 =
Sf.

Proposition 10.2.4 K(A) is a triangulated category.

Proof The translation TA = A[— 1] is defined in 1.2.8. We have already seen
that axioms (TR1) and (TR2) hold. For (TR3) we may suppose that C =
cone(w) and C' = cone(V); the map h is given by the naturality of the map-
ping cone construction.

It remains to check the octahedral axiom (TR4). For this we may assume
that the given triangles are strict, that is, that Cf = cone(w), A! — cone(u), and
B' = cone(uii). Define fn from (C')n = Bn 0 An+1 to {Bf)n = Cn 0 An+X

by fn(b, a) = (v(b), a), and define gn from (B')n = Cn 0 An+1 to (A')n =
Cn 0 Bn+X by gn(c, a) = (c, u(a)). Manifestly, these are chain maps, d = Sf
and x = gy. Since the degree n part of cone(/) is (Cn 0 An+X) 0 (Bn+l 0
Art+2), there is a natural inclusion y of Af into cone(/) such that the following
diagram of chain complexes commutes.

C

C

B>

B'

A'

IK

cone(/)

C'[-l]

To see that y is a chain homotopy equivalence, define <p:cone(/) —> A! by
(p(c, an+\, b, an+2) = (c,b + u(an+\)). We leave it to the reader to check that

cp is a chain map, that (py = id^/ and that yep is chain homotopic to the identity
map on cone(/). (Exercise!) This shows that (/, g, (Tj)i) is an exact triangle,
because it is isomorphic to the strict triangle of / . <>

Corollary 10.2.5 Let C be a full subcategory of C\\{A) and Kits correspond-
ing quotient category. Suppose that C is an additive category and is closed

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.011
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:30:27, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.011
https:/www.cambridge.org/core


10.2 Triangulated Categories 377

under translation and the formation of mapping cones. Then /C is a triangu-
lated category.

In particular, Kb(A), K~(A), andK+(A) are triangulated categories.

Definition 10.2.6 A morphism F: K7 —• K of triangulated categories is an
additive functor that commutes with the translation functor T and sends exact
triangles to exact triangles. There is a category of triangulated categories and
their morphisms. We say that K7 is a triangulated subcategory of K if K7 is a
full subcategory of K, the inclusion is a morphism of triangulated categories,
and if every exact triangle in K is exact in K7.

For example, Kb, K+ , and K~ are triangulated subcategories of K(*4).
More generally, /C is a triangulated subcategory of K in the above corollary.

Definition 10.2.7 Let K be a triangulated category and A an abelian cate-
gory. An additive functor H:K —> A is called a (covariant) cohomological
functor if whenever (w, v, w) is an exact triangle on (A, B, C) the long se-
quence

^> H(TlA) -^> H{TlB) -^> H{TlC) -^> H(Ti+lA) -^> • • •

is exact in A. We often write Hl(A) for H(TlA) and H°(A) for H{A) be-
cause, as we saw in 10.1.1, the zeror/l cohomology H°:K(A) —> A is the
eponymous example of a cohomological functor. Here is another important
cohomological functor:

Example 10.2.8 (Horn) If X is an object of a triangulated category K, then
HomxC^, —) is a cohomological functor from K to Ab. To see this, we have
to see that for every exact triangle (w, v, w) on (A, B, C) that the sequence

HomK(X, A) - ^ HomK(X, B) - ^ HomK(X C)

is exact; exactness elsewhere will follow from (TR2). The composition is zero
since vu = 0. Given g e HomxC^, B) such that vg = 0 we apply (TR3) and
(TR2) to

X = X —> 0 —> TX

a|/ U 1° 3iTf
U V W

A —> B —> C —> TA

and conclude that there exists an / e HomK(X, A) so that uf = g.
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378 The Derived Category

Exercise 10.2.3 If K is triangulated, show that the opposite category Kop

is also triangulated. A covariant cohomological functor H from Kop to A is
sometimes called a contravariant cohomological functor on K. If Y is any
object of K, show that HOITIK(-, Y) is a contravariant cohomological functor
onK.

Exercise 10.2.4 Let A1 be the category of graded objects in A, a morphism
from A = {An} to B = {Bn} being a family of morphisms fn: An -> Bn. De-
fine TA to be the translated graded object A[— 1], and call (w, u, w) an exact
triangle on (A, B, C) if for all n the sequence

A U D V ^ W A U D

An —> Bn —> Cn —> An-\ —> Bn-\

is exact. Show that axioms (TR1) and (TR2) hold, but that (TR3) fails for
A = Ab. If A is the category of vector spaces over a field, show that A?- is
a triangulated category, and that cohomology //*: K(A) -» A1 is a morphism
of triangulated categories.

Exercise 10.2.5 Let H be a cohomological functor on a triangulated category
K, and let K# denote the full subcategory of K consisting of those objects
A such that Hl(A) = 0 for all /. Show that K// is a triangulated subcategory
ofK.

Exercise 10.2.6 (Verdier) Show that every commutative square on the left in
the diagram below can be completed to the diagram on the right, in which all
the rows and columns are exact triangles and all the squares commute, except
the one marked "-" which anticommutes. Hint: Use (TR1) to construct every-
thing except the third column, and construct an exact triangle on (A, Bf, D).
Then use the octahedral axiom to construct exact triangles on (C, D, B"),
(A," D, CO, and finally (C, C", C).

i

A —>

4
A' — •

B

i
B'

i

A —>

4
A' — •

4
A" — •

-1
r(A) A

B'

i
B"

i
T(B)

-^ C

i

i
—• c"

— • T(A)

— • T(A')

—> T(A")

- IT,

-^ T2(A)
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10.3 Localization and the Calculus of Fractions 379

10.3 Localization and the Calculus of Fractions

The derived category D(*4) is defined to be the localization Q~lK(A) of
category K(*4) at the collection Q of quasi-isomorphisms, in the sense of the
following definition.

Definition 10.3.1 Let S be a collection of morphisms in a category C. A
localization of C with respect to S is a category S~lC, together with a functor
q:C-> S~lC such that

1. q(s) is a isomorphism in S~lC for every s e S.
2. Any functor F:C - • V such that F(s) is an isomorphism for all s e S

factors in a unique way through q. (It follows that S~lC is unique up to
equivalence.)

Examples 10.3.2

1. Let S be the collection of chain homotopy equivalences in Ch(^4). The
universal property 10.1.2 for Ch(^4) -> K(A) shows that K(A) is the
localization S~lCh(A).

2. Let Q be the collection of all quasi-isomorphisms in Ch(A). Since Q
contains the S of part (1), it follows that

-lCh(A) = Q-l(S-lCh(A)) = Q~lQ-lCh(A) = Q-l(S-lCh(A)) = Q~lK(A) = D(A).

Therefore we could have defined the derived category to be the localization
Q~lCh(A). However, in order to prove that Q~lCh(A) exists we must first
prove that Q~lK(A) exists, by giving an explicit description of the mor-
phisms.

Set-Theoretic Remark 10.3.3 If C is a small category, every localization
S~lC of C exists. (Add inverses to the presentation of C by generators and
relations; see [MacH, II.8].) It is also not hard to see that S~lC exists when
the class S is a set. However, when the class S is not a set, the existence of
localizations is a delicate set-theoretic question.

The standard references [Verd], [HarRD], [GZ] all ignore these set-theoretic
problems. Some adherents of the Grothendieck school avoid these difficulties
by imagining the existence of a larger universe in which C is small and con-
structing the localization in that universe. Nevertheless, the issue of whether
or not S~lC exists in our universe is important to other schools of thought,
and in particular to topologists who need to localize with respect to homology
theories; see [A, III. 14].
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380 The Derived Category

In this section we shall consider a special case in which localizations S~~lC
may be constructed within our universe, the case in which S is a "locally small
multiplicative system." This is due to the presence of a kind of calculus of
fractions.

In section 10.4 we will see that the multiplicative system Q of quasi-
isomorphisms in K(^4) is locally small when A is either mod-/? or
Sheaves(X). This will prove that D(A) exists within our universe. We will
also see that if A has enough injectives (resp. projectives), the existence of
Cartan-Eilenberg resolutions 5.7.1 allows us to forget about the set-theoretical
difficulties in asserting that D+(^l) exists (resp. that D~(y4) exists).

Definition 10.3.4 A collection S of morphisms in a category C is called a
multiplicative system in C if it satisfies the following three self-dual axioms:

1. S is closed under composition (if s, t e S are composable, then st e S)
and contains all identity morphisms (id* e S for all objects X in C).

2. (Ore condition) If t: Z -> Y is in 5, then for every g: X —• Y in C there
is a commutative diagram "gs = tf" in C with s in S.

f
w —
i
x J

-+ z
1

7

^ Y

(The slogan is "f lg = fs x for some / and sT) Moreover, the sym-
metric statement (whose slogan is "fs~l = t~lg for some t and g") is
also valid.

3. (Cancellation) If / , g: X -> Y are parallel morphisms in C, then the fol-
lowing two conditions are equivalent:

(a) sf = sg for some s e S with source Y.
(b) ft = gt for some t e S with target X.

Prototype 10.3.5 (Localizations of rings) An associative ring R with unit
may be considered as an additive category 1Z with one object • via R —
Endft(-). Let 5 be a subset of R closed under multiplication and containing
1. If R is commutative, or more generally if S is in the center of R, then S is
always a multiplicative system in 1Z\ the usual ring of fractions S~lR is also
the localization S~l1Z of the category 1Z.

If S is not central, then S is a multiplicative system in 1Z if and only if
S is a "2-sided denominator set" in R in the sense of [Faith]. The classical
ring of fractions S~lR is easy to construct in this case, each element being
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10.3 Localization and the Calculus of Fractions 381

represented as either fs~l or t~lg (f,geR and s, t e S), and again S~~lR is
the localization of the category 1Z.

The construction of the ring of fractions S~lR serves as the prototype for
the construction of the localization S~lC. We call a chain in C of the form

fs"l:X^-Xi -U Y

a (left) "fraction" if s is in S. Call fs~l equivalent to X <— X2 —> Y just in
case there is a fraction X <— X3 -* Y fitting into a commutative diagram in C:

V T \ /

x <— x3 —• y .

*\ i f*
x2

It is easy to see that this is an equivalence relation. Write Horns(X, Y) for the
family of equivalence classes of such fractions. Unfortunately, there is no a
priori reason for this to be a set, unless S is "locally small" in the following
sense.

Set-Theoretic Considerations 10.3.6 A multiplicative system 5 is called lo-
cally small (on the left) if for each X there exists a set Sx of morphisms in S,
all having target X, such that for every X\ -» X in S there is a map X2 -> Xi
in C so that the composite X2 -» Xi -> X is in S*.

If S is locally small, then Horns(X, Y) is a set for every X and Y. To see

this, we make Sx the objects of a small category, a morphism from Xi —> X

to X2 —U X being a map X2 -> Xi in C so that r is X2 -> Xi -^> X. The 0re
condition says that by enlarging Sx slightly we can make it a filtered category
(2.6.13). There is a functor Homc(—, Y) from Sx to Sets sending s to the set
of all fractions fs~l, and Horns(X, Y) is the colimit of this functor.

Composition of fractions is defined as follows. To compose X *r- X' —> Y

with y <— Y' —• Z we use the Ore condition to find a diagram

w

x'
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382 The Derived Category

with 5 in 5; the composite is the class of the fraction X —̂ W -> Z in
Homs(X, Z). The slogan for the Ore condition, t~lg = fs~l, is a symbolic
description of composition. It is not hard to see that the equivalence class
of the composite is independent of the choice of Xf and Y', so that we have
defined a pairing

Hom5(X, Y) x Hornby, Z) -* Hom5(X, Z).

(Check this!) It is clear from the construction that composition is associative,
and that X = X = X is a 2-sided identity element. Hence the Hom5(X, Y) (if
they are sets) form the morphisms of a category having the same objects as C;
it will be our localization S~lC.

Gabriel-Zisman Theorem 10.3.7 ([GZ]) Let S be a locally small multiplica-
tive system of morphisms in a category C. Then the category S~lC constructed
above exists and is a localization ofC with respect to S. The universal functor

q:C^ S~XC sends f:X-+Y to the sequence X = X - A Y.

Proof To see that q:C -> S~1C is a functor, observe that the composition

of X = X -U Y and Y = Y -^ Z is X = X -^ Z since we can choose
t = idx and / = g. If s is in S, then q(s) is an isomorphism because the com-
posi t ion ofX = X^+Y<mdY<^X = XisX = X = X ( take W = X).
Finally, suppose that F: C -> T> is another functor sending S to isomorphisms.
Define S~lF: S~lC -* V by sending the fraction fs~l to F(f)F(s)~l. Given
g and f, the equality gs = tf in C shows that F(g)F(s) = F(t)F(f), or
F(t~lg) = F(fs~l); it follows that S - 1 F respects composition and is a func-
tor. It is clear that F = (S~lF) o q and that this factorization is unique. <>

Corollary 10.3.8 S~lC can be constructed using equivalence classes of

"right fractions" t~lg:X —> Yf <— Y, provided that S is "locally small

on the right" (the dual notion to locally small, involving maps Y —> Yf in S).

Proof 5 ° P is a mult ipl icat ive sys tem in C°P. S ince C o p -> ( ,S o P) - 1 C o p is a
local izat ion, so is its dual C - > [ (S o p )~" 1 (C o p ) ] o p . Bu t this is const ructed us ing
the fractions t ~l g. <>

Corollary 10.3.9 Two parallel maps f,g:X—> Y in C become identified in
S~lC if and only ifsf = sgfor some s-.X^-* X in S.
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10.3 Localization and the Calculus of Fractions 383

Exercise 10.3.1

1. If Z is a zero object (resp. an initial object, a terminal object) in C, show
that q(Z) is a zero object (resp. an initial object, a terminal object) in
S~lC.

2. If the product X xY exists in C, show that q(X x Y) = q(X) x q(Y) in
S~lC.

Corollary 10.3.10 Suppose that C has a zero object. Then for every X in C:

q(X) = 0 in S~lC <& S contains the zero map X —> X.

Proof Since q(0) is a zero object in S~lC, q(X) = 0 if and only if the parallel
maps 0, idx: X -> X become identified in S~[C, that is, iff 0 = sO = s for
some s. <>

Corol lary 10.3.11 If C is an additive category, then so is S~XC, and q is an
additive functor.

Proof If C is an additive category, we can add fractions from X to Y as
follows. Given fractions /isj~ l and fis^1, we use the Ore condition to find
an s: X2 -> X in S and / / , ft X2 -> Y so that f{ s~l - f[s~x and f2 s^1 -

f{s~x\ the sum {f[ + f£)s~l is well defined up to equivalence. (Check this!)
Since q(X x Y)^q(X) x q(Y) in S~lC (exercise 10.3.1), it follows that
S~lC is an additive category (A.4.1) and that q is an additive functor. O

It is often useful to compare the localizations of subcategories with S~XC.
For this we introduce the following definition.

Definition 10.3.12 (Localizing subcategories) Let B be a full subcategory of
C, and let S be a locally small multiplicative system in C whose restriction
S fl B to B is also a multiplicative system. For legibility, we will write S~[B
for (S fl B)~lB. B is called a localizing subcategory of C (for S) if the natural
functor S~lB - • S~lC is fully faithful. That is, if it identifies S~lB with the
full subcategory of S~lC on the objects of B.
Lemma 10.3.13 A full subcategory B of C is localizing for S iff (1) holds.
Condition (2) implies that B is localizing if S is locally small on the left, and
condition (3) implies that B is localizing ifS is locally small on the right.

1. For each B and Br in B, the colimit HomsnisiB, B') (taken in B) maps
bijectively to the colimit Homs(B, Bf) (taken in C).
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384 The Derived Category

2. Whenever C —> B is a morphism in S with B in B, there is a morphism
Bf -> C in C with B' in B such that the composite B' -> B is in S.

3. Whenever B —> C is a morphism in S with B in B, there is a morphism
C -+ B' in C with Bf in B such that the composite B - • Bf is in S.

Proof The statement that S~lB -> S~lC is fully faithful means that the mor-
phisms coincide (A.2.3), which by the Gabriel-Zisman Theorem 10.3.7 is as-
sertion (1). Part (2) states that every left fraction B +- C -> B" is equivalent
to a fraction B <- B' —> B", which must lie in the full subcategory B. In
particular, if two left fractions B are equivalent via a fraction B <- C —> B"
with C in C, they are equivalent via a fraction with C in B. Thus (2) implies (1)
when S is locally small on the left. Replacing 'left' by 'right' and citing 10.3.8
proves that (3) implies (1) when S is locally small on the right. O
Corollary 10.3.14 If B is a localizing subcategory ofC, and for every object
C in C there is a morphism C -> B in S with B in B, then S~lB = S~XC.

Suppose in addition that S C\ B consists of isomorphisms. Then

B^S~lB^S-lC.
Example 10.3.15 Assume D(A) exists. The subcategories Kb(A), K+(.4),
and K~(A) of K(A) are localizing for Q (check this). Thus their localizations
exist and are the full subcategories Db(A), D+(*4), and D~(A) of D(A) whose
objects are the cochain complexes which are bounded, bounded below, and
bounded above, respectively.

Example 10.3.16 Let S be a multiplicative system in a ring, and let E be
the collection of all morphisms A —• B in mod-/? such that S~lA -> S~lB
is an isomorphism. It is not hard to see that £ is a multiplicative system in
mod-/?. The subcategory mod-S~lR is localizing, because the natural map
A -> S~l A is in £ for every /^-module A. Since E Pi mod-.S'"1/? consists of
isomorphisms, we therefore have

mod-S~lR = E~lmod-R.

Exercise 10.3.2 (Serre subcategories) Let A be an abelian category. An
abelian subcategory B is called a Serre subcategory if it is closed under sub-
objects, quotients, and extensions. Suppose that B is a Serre subcategory of A,
and let £ be the family of all morphisms f in A with ker(/) and coker(/)
inB.

1. Show that £ is a multiplicative system in A. We write A/B for the
localization £~lA (provided that it exists).

2. Show that q(X) = 0 in A/B if and only if X is in B.
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10.4 The Derived Category 385

3. Assume that B is a small category, and show that £ is locally small. This
is one case in which A/B = Z~lA exists. More generally, A/B exists
whenever A is well-powered, that is, whenever the family of subobjects
of any object of A is a set; see [Swan, pp.44ff].

4. Show that A/B is an abelian category, and that q: A —• A/B is an exact
functor.

5. Let S be a multiplicative system in a ring /?, and let mod^/? denote
the full subcategory of /^-modules A such that S~lA = 0. Show that
mods/? is a Serre subcategory of mod-/?. Conclude that mod-S"1/? =
mod-/? /mods R-

10.4 The Derived Category

In this section we show that D(*4) is a triangulated category and that D+(y4)
is determined by maps between bounded below complexes of injectives. We
also show that D(A) exists within our universe, at least if A is mod-/? or
Sheaves(X).

For this we generalize slightly. Let K be a triangulated category. The system
S arising from a cohomological functor H.K —> A is the collection of all
morphisms s in K such that Hl(s) is an isomorphism for all integers /. For
example, the quasi-isomorphisms Q arise from the cohomological functor H°.

Proposition 10.4.1 If S arises from a cohomological functor, then

1. S is a multiplicative system.
2. S~lK is a triangulated category, and K -+ S~lK is a morphism of tri-

angulated categories (in any universe containing S~lK).

Proof We first show that the system S is multiplicative (10.3.4). Axiom (1)
is trivial. To prove (2), let / : X —• Y and s:Z -> Y be given. Embed s in an
exact triangle (s, u, 8) on (Z, F, C) using (TR1). Complete uf:X -* C into
an exact triangle (t, uf, v) on (W, X, C). By axiom (TR3) there is a morphism
g such that

t uf v

W —> X —> C —> W[-l]

g[ if I iTg
s u 8

Z —> Y —> C —> Z [ - l ]

is a morphism of triangles. If H*(s) is a isomorphism, then //*(C) = 0 .
Applying this to the long exact sequence of the other triangle, we see that
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386 The Derived Category

H*(t) is also an isomorphism. The symmetric assertion may be proven simi-
larly, or by appeal to K°P -* A0?.

To verify axiom (3), we consider the difference h = f — g. Given s: Y -> Yf

in S with sf = sg, embed s in an exact triangle (M, S, 8) on (Z, Y, Yf). Note
that //*(Z) = 0. Since HomK(X, - ) is a cohomological functor (by 10.2.8),

HomK(X, Z) - % HomK(X, Y) - % HomK(X, F')

is exact. Since s(f — g) = 0, there is a g: X —• Z in K such that / — g = ug.
Embed g in an exact triangle 0, g, w) on (X', X, Z). Since gt = 0, ( / — g)/ =
wg/ = 0, whence / / = gt. And since H*(Z) = 0, the long exact sequence for
H shows that H*(Xf) = H*(X), that is, t e S. The other implication of axiom
(3) is analogous and may be deduced from the above by appeal to Kop - • Aop.

Now suppose that S~lK exists. The formula T(fs~l) = T(f)T(s)~l de-
fines a translation functor T on S~lK. To show that 5 - 1 K is triangulated,
we need to define exact triangles. Given wsj~ : A —> 5, i>5̂ ~ : B —> C, and
u ;^ 1 : C ^^ Cr -> T(A), the Ore conditionfor S yields morphisms ri: A! -> A
and r2: 5 ' -^ ,B in 5 and w': Ar -> 5' , v'\ B' -> C' in C so that iisj"1 = ^M^f1

and vs^ = s^v't^ . We say that (us^\ vs^ , 1^3 ) is an ^x^c^ triangle in
5 - 1 K just in case (u\ vf, w) is an exact triangle in K. The verification that
5~1K is triangulated is left to the reader as an exercise, being straightforward
but lengthy; one uses the fact that Horns(X, Y) may also be calculated using
fractions of the form t~lg. O

Corollary 10.4.2 (Universal property) Let F: K - • L be a morphism of tri-
angulated categories such that F(s) is an isomorphism for all s in S, where
S arises from a cohomological functor. Since q:K-> S~lK is a localization,
there is a unique functor F'\ 5~*K -> L such that F = Ff o q. In fact, F' is a
morphism of triangulated categories.

Corollary 10.4.3 D(.A), Db(A), D+(.4) and D~{A) are triangulated cate-
gories (in any universe containing them).

Proposition 10.4.4 Let R be a ring. Then D(A) exists and is a triangulated
category if A is mod-/?, or either of

• P res heave s(X), presheaves of R-modules on a topological space X, or
• Sheaves(X), sheaves of R-modules on a topological space X.

Proof We have to prove that the multiplicative system Q is locally small
(10.3.6). Given a fixed cochain complex of /^-modules A, choose an infinite
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10.4 The Derived Category 387

cardinal number K larger than the cardinality of the sets underlying the A1 and
R. Call a cochain complex B petite if its underlying sets have cardinality < /c;
there is a set of isomorphism classes of petite cochain complexes, hence a set
Sx of isomorphism classes of quasi-isomorphisms A! -> A with A! petite.

Given a quasi-isomorphism B -> A, it suffices to show that B contains a
petite subcomplex B' quasi-isomorphic to A. Since //*(A) has cardinality
< /c, there is a petite subcomplex Bo of B such that the map /0*: H*(Bo) ->
//*(A) is onto. Since ker(/0*) has cardinality </^, we can enlarge Bo to a
petite subcomplex #1 such that ker(/0*) vanishes in H*(B\). Inductively, we
can construct an increasing sequence of petite subcomplexes Bn of B such that
the kernel of H*(Bn) -> //*(A) vanishes in H*(Bn+i). But then their union
B' = U Bn is a petite subcomplex of # with

#*(£') ^ lim #*(£„) = #*(A).

The proof for presheaves is identical, except that K must bound the number
of open subsets U as well as the cardinality of A(U) for every open subset
U of X. The proof for sheaves is similar, using the following three additional
facts, which may be found in [Hart] or [Gode]: (1) if A: bounds card A(U)
for all U and the number of such U, then K also bounds the cardinality of
the stalks Ax for xeX (2.3.12); (2) a map B -» A is a quasi-isomorphism in
Sheaves(Z) iff every map of stalks Bx -+ Ax is a quasi-isomorphism; and (3)
for every directed system of sheaves we have //*(lim Bn) = lim H*(Bn). <>

Remark 10.4.5 (Gabber) The proof shows that D(A) exists within our uni-
verse for every well-powered abelian category A that satisfies (AB5) and has
a set of generators.

We conclude with a discussion of the derived category D+(*4). Assuming
that A has enough injectives and we are willing to always pass to complexes
of injectives, there is no need to leave the homotopy category K+(^4). In
particular, D+(^4) will exist in our universe even if D(*4) may not.

Lemma 10.4.6 Let Y be a bounded below cochain complex of injectives.
Every quasi-isomorphism t:Y -^ Z of complexes is a split injection in K(.4).

Proof The mapping cone cone(0 = T(Y) 0 Z is exact (1.5.4), and there is a
natural map cp: cone(0 -> T(Y). The Comparison Theorem of 2.3.7 (or rather
its proof; see 2.2.6) shows that cp is null-homotopic, say, by a chain homotopy
v = (k, s) from T(Y) 0 Z to Y. The first coordinate of the equation — y =
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388 The Derived Category

, z) = (vd + dv)(j, z) yields the equation

y = (kdy + sty — dky) + (dsz — sdz).

Thus ds = sd (i.e., 5 is a morphism of complexes) and st = idy + dk — kd,
that is, k is a chain homotopy equivalence st — idy. Hence st = idy in K+CA).

Corollary 10.4.7 If I is a bounded below cochain complex of injectives, then

for every X. Dually, if P is a bounded above cochain complex of projectives,
then

HomD M )(P, X) ^ HomK(^)(P, X).

Proof We prove the assertion for Y = / , using the notation of the lemma. Ev-
ery right fraction t~lg: X -^> Z ^— F is equivalent to sg = (st)t~lg: X ->
y. Conversely, if two parallel arrows f,g:X-+ Y in K(^4) become identified
in D(*4) = Q~lK(A), then r / = tg for some quasi-isomorphism t: Y -> Z by
10.3.9, which implies that / = stf = stg = g in K(.A). •

Exercise 10.4.1 In the situation of the lemma, show that (tk, l):cone(0 ->
Z induces an isomorphism Z = F ® cone(0 in

Theorem 10.4.8 Suppose that A has enough injectives. Then D+(*4) exists in
our universe because it is equivalent to the full subcategory K+(X) ofK^(A)
whose objects are bounded below cochain complexes of injectives

Dually, if A has enough projectives, then the localization D~(A) ofK~(A)
exists and is equivalent to the full subcategory K~(P) of bounded above
cochain complexes of projectives in K~(^4) :

Proof Recall from 5.7.2 that every X in Ch+(.A) has a Cartan-Eilenberg reso-
lution X —>> / with Tot(/) in K+(X); since X is bounded below, this is a quasi-
isomorphism (exercise 5.7.1). If Y —> X is a quasi-isomorphism, then so is
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10.4 The Derived Category 389

Y -> Tot(7); by 10.3.13(3), K + (J ) is a localizing subcategory of K+CA). This
proves that D+(*4) = S~1K+{1), and by 10.3.14 it suffices to show that every
quasi-isomorphism in K+(X) is an isomorphism. Let Y and X be bounded be-
low cochain complexes of injectives and t\Y —* X a. quasi-isomorphism. By
lemma 10.4.6, there is a map s: X -> Y so that st = idy in K+(*4). Interchang-
ing the roles of X and Y, s and t, we see that us = idx for some u. Hence t is
an isomorphism in K+(X) with t~l = s.

Dually, if A has enough projectives, then Aop has enough injectives and
D~(A) = D + C4°P)°P ^ K+CP°P)°P ^ K"0P). O

Example 10.4.9 Every short exact sequence 0 -> A - % B —% C -> 0 of
cochain complexes fits into an exact triangle in D(*4), isomorphic to the strict
triangle on u. Indeed, the quasi-isomorphism <p: cone(w) —>- C of 1.5.8 allows
us to form the exact triangle (w, v, 5^- 1) on (A, 5 , C). This construction
should be contrasted with the observation in 10.1.7 that there may be no simi-
lar exact triangle («, v, w) in K(A).

Note that the construction of D(*4) implies the following two useful criteria.
A chain complex X is isomorphic to 0 in D(*4) iff it is exact. A morphism
/ : X ->• Y in Ch(.4) becomes the zero map in D(A) iff there is a quasi-
isomorphism s:Y —> Y' such that sf is null homotopic (chain homotopic to
zero). The following exercise shows the subtlety of being zero.

Exercise 10.4.2 Give examples of maps / , g in Ch(*4) such that (1) / =
0 in D(^4), but / is not null homotopic, and (2) g induces the zero map

on cohomology, but g ^ 0 in D(A). Hint: For (2) try X: 0 -> I -^» Z -> 0,

Y: 0 -> 1 - U Z/3 -^ 0, g = (1, 2).

Exercise 10.4.3 (K#(*4) and D#(.A)) Let S be a Serre subcategory of A, and
let 7r: ^l -^ A/B be the quotient map constructed in exercise 10.3.2.

1. Show that H = TTH°: K(A) -> A -> >t/B is a cohomological functor,
so that K//(*4) is a triangulated category by exercise 10.2.5. The notation
KB(A) is often used for KH(A), because of the description in part (2).

2. Show that X is in KB(A) iff the cohomology H((X) is in B for all i.
3. Show that K#(^4) is a localizing subcategory of K(*4), and conclude that

its localization Dg(A) is a triangulated subcategory ofD(A) (10.2.6).
4. Suppose that B has enough injectives and that every injective object of

B is also injective in A. Show that there is an equivalence D+(B) =
D+C4).
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390 The Derived Category

Exercise 10.4.4 (Change of Universe) This is a continuation of the previ-
ous exercise. Suppose that our universe is contained in a larger universe U,
and that mod-/? and Sheaves(X) are small categories in U. Let MOD-/?
and SHEAVES(X) denote the categories of modules and sheaves in U,
respectively. Show that mod-/? and Sheaves(X) are Serre subcategories
of MOD-/? and SHEAVES(X), respectively. Conclude that D(mod-/?) =
Dmod-/?(M O D -^) andD(Sheaves(X)) = DSheaves(X) (SHEAVES (X)).

Exercise 10.4.5 Here is a construction of D(A) when A is mod-/?, valid
whenever A has enough projectives and satisfies (AB5). It is based on the
construction of CW spectra in algebraic topology [LMS]. Call a chain complex
C cellular if it is the increasing union of subcomplexes Cn, with Co = 0, such
that each quotient Cn/Cn-\ is a complex of projectives with all differentials
zero. Let Kcen denote the full subcategory of K(A) consisting of cellular
complexes. Show that

1. For every X there is a quasi-isomorphism C —> X with C cellular.
2. If C is cellular and X is acyclic, then every map C -> X is null-

homo topic.
3. If C is cellular and / : X -> Y is a quasi-isomorphism, then

/* : HomKU)(C, X) ^ UomKiA)(C, Y).

4. (Whitehead's Theorem) If / : C —• D is a quasi-isomorphism of cellular
complexes, then / is a homotopy equivalence, that is, C = D in K(^4).

5. Keen is a localizing triangulated subcategory of K(*4).
6. The natural map is an equivalence: Kcen = T>(A).

Exercise 10.4.6 Let /? be a noetherian ring, and let M(/?) denote the category
of all finitely generated /?-modules. Let Dfg(/?) denote the full subcategory of
D(mod-/?) consisting of complexes A whose cohomology modules Hl (A) are
all finitely generated, that is, the category DM(/?)(mod-/?) of exercise 10.4.3.
Show that Dfg(/?) is a triangulated category and that there is an equivalence
D~(M(/?)) = D^(/?). Hint: M(/?) is a Serre subcategory of mod-/? (exer-
cise 10.3.2).

10.5 Derived Functors

There is a category of triangulated categories; a morphism F :K -> K' of
triangulated categories is a (covariant) additive functor that commutes with the
translation functor T and sends exact triangles to exact triangles. Morphisms
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10.5 Derived Functors 391

are sometimes called covariant d-functors; a morphism Kop —> K' is of course
a contravariant 9-functor.

For example, suppose given an additive functor F:A-+ B between two
abelian categories. Since F preserves chain homotopy equivalences, it extends
to additive functors Ch(A) -> Ch(S) and K(A) - • K(B). Since F commutes
with translation of chain complexes, it even preserves mapping cones and ex-
act triangles. Thus F: K(A) -> K(S) is a morphism of triangulated categories.

We would like to extend F to a functor D(.4) -> D(B). If F: A -> B is
exact, this is easy. However, if F is not exact, then the functor K(A) -> K(S)
will not preserve quasi-isomorphisms, and this may not be possible. The thing
to expect is that if F is left or right exact, then the derived functors of F will
be needed to extend something like the hyper-derived functors of F.

Our experience in Chapter 5, section 7 tells us that the right hyper-derived
functors RlF work best if we restrict attention to bounded below cochain
complexes. With this in mind, let K denote K+(^4) or any other localizing
triangulated subcategory of K(A), and let D denote the full subcategory of the
derived category D(A) corresponding to K.

Definition 10.5.1 Let F :K -> K(S) be a morphism of triangulated cate-
gories. A (total) right derived functor of F on K is a morphism RF:D —•
D(B) of triangulated categories, together with a natural transformation £ from
qF: K -> K(S) -> D(S) to (RF)q: K -> D -> D(S) which is universal in
the sense that if G: D —• D(#) is another morphism equipped with a natural
transformation t;:qF => Gg, then there exists a unique natural transformation
77: RF => G so that £4 = T^A ° ?A f°r every A in D.

This universal property guarantees that if RF exists, then it is unique up to
natural isomorphism, and that if K' c K, then there is a natural transformation
from the right derived functor R'F on D' to the restriction of RF to D'. If there
is a chance of confusion, we will write RhF, R + F , R#F, and so on for the
derived functors of F on Kb(A), K+C4), KB(A), etc.

Similarly, a (total) left derived functor of F is a morphism LF: D ->• D(S)
together with a natural transformation £: (LF)q ^ qF satisfying the dual uni-
versal property (G factors through rj: G => LF). Since LF is R(Fop)°P, where
Fo p : Kop -^ K(#op), we can translate any statement about RF into a dual
statement about LF.

Exact Functors 10.5.2 If F: A - • B is an exact functor, F preserves quasi-
isomorphisms. Hence F extends trivially to F: D(*4) —> D(/3). In effect, F is
its own left and derived functor. The following two examples generalize this
observation.
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392 The Derived Category

Example 10.5.3 Let K + ( J ) denote the triangulated category of bounded be-
low complexes of injectives. We saw in 10.4.8 that every quasi-isomorphism
in K+(T) is an isomorphism, so K+(X) is isomorphic to its derived category

D+ (J) . The functor qFq-l:D+(I)^ K+(T) -^> K+(B) -> D+(B) satisfies
qF = (qFq~l)q, so it is both the left and right total derived functor of F.

Similarly, for the category K~(V) of bounded above cochain complexes of
projectives, we have K~(V) = D~(P). Again, qFq~l is both the left and right
derived functor of F.

Definition 10.5.4 Let F :K —• K(B) be a morphism of triangulated cate-
gories. A complex X in K is called F-acyclic if F(X) is acyclic, that is, if
Hl(FX) ^ 0 for all i. (Compare with 2.4.3.)

Example 10.5.5 (F-acyclic complexes) Suppose that K is a triangulated
subcategory of K(*4) such that every acyclic complex in K is F-acyclic. If
s: X ->• Y is a quasi-isomorphism in K, then coneO) and hence F(cone(»)
is acyclic. Since F preserves exact triangles, the cohomology sequence shows
that F(s)* : H*(FX) ^ H*(FY), that is, that F(s) is a quasi-isomorphism.
By the universal property of the localization D = <2-1K there is a unique
functor Q~lF from D to D(B) such that qF = (Q~lF)q. Once again, Q~lF
is both the left and right derived functor of F.

Existence Theorem 10.5.6 Let F: K+(A) -> K(B) be a morphism of trian-
gulated categories. If A has enough injectives, then the right derived functor
R + F exists on D+(^4), and if I is a bounded below complex of injectives, then

Dually, if A has enough projectives, then the left derived functor L~F exists
on D~(*4), and if P is a bounded above cochain complex of projectives, then

Proof Choose an equivalence U:D+(A) —^ K+(X) inverse to the natural

map 7:K+(X) -=> D + (^ ) of 10.4.8, and define RF to be the composite
qFU:

D+CA) -=> K+(X) -^> K+(B) -?

To construct f we use the natural isomorphism of 10.4.7

HomD+(A)(qX, TUqX) ^ HomK+(v4)(X, UqX).
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10.5 Derived Functors 393

Under this isomorphism there is a natural map fx'- X -> UqX in K+(*4) cor-
responding to the augmentation rj:qX —• TUqX in D+CA). We define §x to
be the natural transformation qF(fx):qF(X) -> qF(UqX) ^ (qFU)(qX).
It is not hard to see that § has the required universal property, making
(RF, f) into a right derived functor of F. As usual, the dual assertion that
the composite

D~(A) ^ > K~(V) -^ K~(B) -U D~(B)

is a left derived functor of F follows by passage to Fo p . O

Corollary 10.5.7 Let F'.A^Bbean additive functor between abelian cat-
egories.

1. If A has enough injectives, the hyper-derived functors Rl F(X) are the
cohomology ofRF(X): WF(X) ^ HlR^F(X)for all i.

2. If A has enough projectives, the hyper-derived functors IL;F(X) are the
cohomology ofLF(X): L;F(X) ^ H^L'F(X)for all i.

Remark 10.5.8 The assumption in 5.7.4 that F be left or right exact was
not necessary to define W F or IL/F; it was made to retain the connection
with F. Suppose that we consider an object A of A as a complex concen-
trated in degree zero. The assumption that F be left exact is needed to ensure
that the K'F(A) are the ordinary derived functors RlF(A) and in particu-
lar that K°F(A) = F(A). Similarly, the assumption that F be right exact is
needed to ensure that Q_;F(A) is the ordinary derived functor LiF(A), and that

= F(A).

Exercise 10.5.1 Suppose that F: K+(*4) -> K(C) is a morphism of triangu-
lated categories and that B is a Serre subcategory of A. If A has enough in-
jectives, show that the restriction of R + F to D^(*4) is the derived functor
R^F. If in addition B has enough injectives, which are also injective in A, this

proves that the composition D+(#) -» D+(.4) —> D+(C) is the derived func-
tor R + F | S of the restriction F\B of F to B, since we saw in exercise 10.4.3
that in this case D+(£) ^

Generalized Existence Theorem 10.5.9 ([HartRD, 1.5.1]) Suppose that Kr

is a triangulated subcategory ofK such that

1. Every X in K has a quasi-isomorphism X -> X' to an object
ofKr.
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394 The Derived Category

2. Every exact complex in K7 is F-acyclic (10.5.4).

Then D^>DandRF:D = Df^-+ D(B) is a right derived functor of F.

Proof By (1) and 10.3.14, K' is localizing and D' -=» D. Now modify the
proof of the Existence Theorem 10.5.6, using F-acyclic complexes. <C>

Definition 10.5.10 Let F: A - • B be an additive functor between abelian cat-
egories. When A has enough injectives, so that the usual derived functors Rl F
(of Chapter 2) exist, we say that F has cohomological dimension n if Rn F = 0
for all / > n, yet RnF ^0. Dually, when A has enough projectives, so that the
usual derived functors L\F exist, we say that F has homological dimension n
if LiF = 0 for all / > n, yet LnF / 0.

Exercise 10.5.2 If F has finite cohomological dimension, show that every
exact complex of F-acyclic objects (2.4.3) is an F-acyclic complex in the
sense of 10.5.4.

Corollary 10.5.11 Let F.A-^Bbean additive functor. If F has finite coho-
mological dimension n, then RF exists on D(A), and its restriction to D+(*A)
is R + F . Dually, if F has finite homological dimension n, then LF exists on

), and its restriction to D~(A) is L~F.

Proof Let K' be the full subcategory of K(^4) consisting of complexes of F-
acyclic objects in A (2.4.3). We need to show that every complex X has a
quasi-isomorphism X -^ Xr with Xr a complex of F-acyclic objects. To see
this, choose a Cartan-Eilenberg resolution X -> / and let r / be the double
subcomplex of / obtained by taking the good truncation z<n(I

p) of each col-
umn (1.2.7). Since each Xp - • Ip is an injective resolution, each r<n(I

p) is a
finite resolution of Xp by F-acyclic objects. Therefore X' = Tot(r/) is a chain
complex of F-acyclic objects. The bounded spectral sequence HpHq{xI) =>>

Hp^(Xf) degenerates to yield //*(X) ^ > //*(X0, that is, X -+ X1 is a
quasi-isomorphism. O

10.6 The Total Tensor Product

Let R be a ring. In order to avoid notational problems, we shall use the letters
A, B, and so on to denote cochain complexes of /^-modules. For each cochain
complex A of right /^-modules the total tensor product complex 2.7.1 is a
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10.6 The Total Tensor Product 395

functor F(B) = Tote(A ®R B) from K(/?-mod) to K(Ab). Since fl-mod has
enough projectives, its derived functor L~F: D~(/?-mod) —> D(Ab) exists by
10.5.6.

Definition 10.6.1 The total tensor product of A and B is

A ®\B = L" Tote(A ®R -)B.

Lemma 10.6.2 If A, Af, and B are bounded above cochain complexes and
A —• Af is a quasi-isomorphism, then A (g)̂  B = A! (g)̂  B.

Proof We may change B up to quasi-isomorphism to suppose that B is a
complex of flat modules. In this case A (g)̂  B is Tote(A <g>R B) and A! (g)̂  B
is Tote(A/ $/? B) by 10.5.5. Now apply the Comparison Theorem 5.2.12 to
Ep

x
q(A)-> Epq(Af), where

R BP ^ Hp+q(A ®Jj B).

The spectral sequences converge when A, A7, and B are bounded above 5.6.2.

•

Theorem 10.6.3 The total tensor product is a functor

(g^:D~(mod-/?) x D~(/?-mod) -> D"(Ab).

Its cohomology is the hypertor of 5.7.8:

Torf (A, B) ^ H~l{A ®\ B).

Proof For each fixed B, the functor F(A) = A®\B from K"(mod-/?) to
D~(Ab) sends quasi-isomorphisms to isomorphisms, so F factors through the
localization D~(mod-/?) of K~(mod-/?). If P and Q are chain complexes
of flat modules, then by definition the hypertor groups Tor^(P, Q) are the
homology of Tote P ®R Q. Reindexing the chain complexes as cochain com-
plexes, the cochain complex Tote(P <S>R Q) is isomorphic to P (g)̂  Q. O

Corollary 10.6.4 If A and B are R-modules, the usual Tor-group Torf (A, B)
of Chapter 3 is H~l(A 0 ^ B), where A and B are considered as cochain
complexes in degree zero.

Exercise 10.6.1 Form the derived functor LTote(— ®R B) and show that
A (g)̂  B is naturally isomorphic to L~ T o t e ( - 0/? B)A in D(Ab). This iso-
morphism underlies the fact that hypertor is a balanced functor (2.7.7).
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396 The Derived Category

Exercise 10.6.2 If A is a complex of R\-R bimodules, and B is a complex
of R-R2 bimodules, A ®R B is a double complex of R1-R2 bimodules. Show
that the total tensor product may be refined to a functor

0^ : D~(R\-mod-R) x D~(R-mod-R2) -> D~(Ri-mod-R2).

By "refine" we mean that the composition to D(Ab) induced by the usual
forgetful functor is the total tensor product in D(Ab). Then show that if R is a
commutative ring, we may refine it to a functor

5 j x D~(/?-mod) -> D~(/?-mod),

and that there is a natural isomorphism A ^ f i = 5 0 ^ A .

Remark 10.6.5 (see [HartRD, II.4]) If X is a topological space with a sheaf
Ox of rings, there is a category of Ox-modules [Hart]. This category has
enough flat modules (see [Hart, exercise III.6.4]), even though it may not
have enough projectives, and this suffices to construct the total tensor product
S (g>£, T of complexes of Ox-modules.

10.6.1 Ring Homomorphisms and L/*

10.6.6 Let / : / ? - > S be a ring homomorphism. By the Existence Theorem
10.5.6, the functor / * = — <S>R S from /^-modules to ^-modules has a left-
derived functor

L / * = L ( - ®R S): D-(mod-fl) -* D"(mod-5).

The discussion in 5.7.8 shows that the hypertor groups are

Torf (A, S) = L//*(A) ^ #- f ' (L/*A).

If S has finite flat dimension n (4.1.1), then / * has homological dimen-
sion n, and we may extend the derived functor L / * using 10.5.11 to L/*:
D(mod-#) -> D(mod-S).

The forgetful functor /*: mod-S1 - • mod-/? is exact, so it "is" its own de-
rived functor f*:D(mod-S) -> D(mod-Z?). The composite /*(L/*)A is the
total tensor product A (g)̂  S because, when A is a bounded above complex of
flat modules, both objects of the derived category are represented by A <8>R S.
We will see in the next section that /* (= R/*) and L / * are adjoint functors
in a suitable sense.
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10.6 The Total Tensor Product 397

Remark If we pass from rings to schemes, the map / reverses direction, going
from Spec(S) to Spec(/?). This explains the use of the notation /*, which
suggests a covariant functor on Spec(/?). Of course /* is not always exact
when we pass to more general schemes, and one needs to replace /* by R/*;
see [HartRD, II.5.5].

Lemma 10.6.7 If f: R —• S is a commutative ring homomorphism, there is a
natural isomorphism in D~(mod-S) for every A, B in D~(mod-/?):

L/*(A) ®£ L/*(fi) -^ L/*(A <g>L B).

Proof Replacing A and B by complexes of flat /^-modules, this is just the
natural isomorphism (A ®R S) ®s (S ®R B) = (A ®R B) ®R S. O

Exercise 10.6.3 (finite Tor-dimension) The Tor-dimension of a bounded
complex A of right /^-modules is the smallest n such that the hypertor
Tor^(A, B) vanish for all modules B when / > n. If A is a module, the Tor-
dimension is just the flat dimension of 4.1.1.

1. Show that A has finite Tor-dimension if and only if there is a quasi-
isomorphism P ->• A with P a bounded complex of flat /^-modules.

2. If A has finite Tor-dimension, show that the derived functor A ®^ — on
D~(R-mod) extends to a functor

L(A®R):D(R-mod) -> D(Ab).

3. Let / : R - • S be a ring map, with S of finite flat dimension over R.
Show that the forgetful functor f*:Db(mod-S) -> D^(mod-#) sends
complexes of finite Tor-dimension over S to complexes of finite Tor-
dimension over R.

10.6.2 The Derived Functors of T and /*

10.6.8 Let I be a topological space, and F the global sections functor
from Sheaves(X) (sheaves of abelian groups) to Ab; see 2.5.4. For sim-
plicity, we shall write D(Z), D+(X), and so on for the derived categories
D(Sheaves(Z)), D+(Sheaves(X)), and so on. By 2.3.12 the category
Sheaves(Z) has enough injectives. Therefore F has a right-derived functor
R + F : D+(X) —• D+(Ab), and for every sheaf T the usual cohomology func-
tors H[(X,T) of 2.5.4 are the groups //'(R+FCF)). More generally, if T* is
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398 The Derived Category

a bounded below complex of sheaves on X, then the hypercohomology groups
of 5.7.10 are given by:

In algebraic geometry, one usually works with topological spaces that are
noetherian (the closed subspaces satisfy the descending chain condition) and
have finite Krull dimension n (the longest chain of irreducible closed subsets
has length n). Grothendieck proved in [Tohuku, 3.6.5] (see [Hart, III.2.7]) that
for such a space the functors Hl(X, —) vanish for / > n, that is, that F has
cohomological dimension n. As we have seen in 10.5.11, this permits us to
extend R + F to a functor

Now let / : X -> Y be a continuous map of topological spaces. Just as for
f, the direct image sheaf functor /* (2.6.6) has a derived functor

If T is a sheaf on X, its higher direct image sheaves (2.6.6) are the sheaves

When X is noetherian of finite Krull dimension, the functor /* has finite
cohomological dimension because, by [Hart, III.8.1], /?7*CF) is the sheaf on
Y associated to the presheaf sending U to Hl(f~l(U), J7). Once again, we
can extend R/* from D+(X) to a functor R/*: D(X) -> D(F).

RF is just a special case of R/*. Indeed, if Y is a point, then Sheaves(F) =
Ab and F is /*; it follows that RF is R/*.

10.7 ExtandRHom

Let A and B be cochain complexes. In 2.7.4 we constructed the total Horn
cochain complex Horn (A, B), and observed that Hn Horn*(A, B) is the group
of chain homotopy equivalence classes of morphisms A ->• B[—n\. That is,

HomKcA)(A, TnB) = //"(Horn (A, B)).

Both Horn (A, —) and Horn (—, B) are morphisms of triangulated functors,
from K(^4) and K(^4)op to K(Ab), respectively. In fact, Horn* is a bimorphism

Horn- : K(A)op x K(A) -* K(Ab).
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10.7 Ext andRHom 399

(Exercise!) In this section we construct an object RHom(A, B) in the derived
category D(^4) and prove that if A and B are bounded below, then

HomDM)(A, TnB) = //"(RHom(A, B)).

Since D+(^4) is a full subcategory of D(y4), this motivates the following.

Definition 10.7.1 Let A and B be cochain complexes in an abelian category
A. The nth hyperext of A and B is the abelian group

Ext" (A, B) = HomDC4)(A, TnB).

Note that since D(A) is a triangulated category, its Hom-functors Ext"(A, —)
and Ext"(—, 5) are cohomological functors, that is, they convert exact trian-
gles into long exact sequences (10.2.8). Since K(*4) is a triangulated category,
its Hom-functors //"Horn (A, —) and //"Horn (—, B) are also cohomologi-
cal functors, and there are canonical morphisms

//" Horn (A, B) = HomK(^)(A, TnB) -> HomD(^)(A, TnB) = Ext"(A, B).

Definition 10.7.2 Suppose that A has enough injectives, so that the derived
functor R+Hom (A, — ):D+(*4) —> D(Ab) exists for every cochain complex
A. We write RHom(A, B) for the object R + Horn-(A, -)B of D(Ab).

Lemma 10.7.3 If A -> A! is a quasi-isomorphism, then RHom(Ar, B) —̂ >

Proof We may change B up to quasi-isomorphism to suppose that B is a
bounded below cochain complex of injectives. But then RHom(A', B) =
Horn (Ar, B) is quasi-isomorphic to RHom(A, B) = Horn (A, B), because
we saw in 10.4.7 that

/ /" Horn (A', B) = HomK(^)(A/, TnB)

^ HomDU)(A/, TnB) ^ HomDM)(A, TnB)

^ HomKU)(A, TnB) = Hn Horn (A, B). O

Theorem 10.7.4 If A has enough injectives, then KHom is a bifunctor

RHom:D(^)op x D + U) -> D(Ab).

Dually, if A has enough projectives, then RHom is a bifunctor

RHom:D"(^)op x D(A) -» D(Ab).
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400 The Derived Category

In both cases, we have Ext"(A, B) ^ //"(RHom(A, B)).

Proof The lemma shows that, for each fixed B, the functor F{A) = RHom(A,
B) from K(v4.)op to D(Ab) sends quasi-isomorphisms to isomorphisms, so
F factors through the localization D(,4)op of K(A)op. Therefore, to com-
pute //"(RHom(A, B)) we may suppose that B is a bounded below cochain
complex of injectives. But then by the construction of RHom(A, B) as
Horn (A, B) we have

Hn RHom(A, B) = Hn Horn (A, B) = HomKU)(A, B) = HomD(^)(A, B). O

Corollary 10.7.5 If A has enough injectives, or enough projectives, then for
any A and B in A the group Extn(A, B) is the usual Ext-group of Chapter 3.

Proof If B -> / is an injective resolution, then the usual definition of Ext"(A,
B) is //"Hom(A, / ) = //"TotHom(A, / ) ̂  //nRHom(A, B). Similarly, if
P -> A is a projective resolution, the usual Ext"(A, B) is Hn Hom(P, B) =
HnRHom(A,B). O

Exercise 10.7.1 (balancing RHom) Suppose that A has both enough injec-
tives and enough projectives. Show that the two ways of defining the functor
RHom:D~(^4)op x D+(*4) - • D+(Ab) are canonically isomorphic.

Exercise 10.7.2 Suppose that A has enough injectives. We say that a bounded
below complex B has injective dimension n if Ext' (A, B) = 0 for all / > n and
all A in A, and Ext"(A, B) ^ 0 for some A.

1. Show that B has finite injective dimension o there is a quasi-isomorph-
ism B —• / into a bounded complex I of injectives.

2. If B has finite injective dimension, show that RHom(—, B): D(.4)op —•
D(Ab) of 10.7.4 is the derived functor 10.5.1 of Hom(-, B).

10J.I AdjointnessofLf*andf*

We can refine the above construction slightly when A is the category /?-mod
of modules over a commutative ring R. For simplicity we shall write D(/?),
D+(/?), and so on for the derived categories D(/?-mod), D+(/?-mod), and
so on. Write Hom^(A, B) for Horn*(A, B), considered as a complex of R-
modules. If we replace D(Ab) by D(R) in the above construction, we obtain
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10.7 Ext andRHom 401

an object RHom#(A, B) in D(R) whose image under D(R) —• D(Ab) is the
unrefined RHom(A, B) of 10.7.2.

Suppose now that / : R -> S is a map of commutative rings. The forget-
ful functor f*:mod-S -> mod-/? is exact, so it is its own derived functor
f*:D(S) -> D(R). If A is in D(S), the functor /*RHom5(A, - ) :D + (5 ) ->
D(/?) is the right derived functor of /* Hom,s(A, —) because if / is a complex
of injectives, then /* RHoms(A, /) = /* Homs(A, / ) . The universal property
of derived functors yields a natural map:

(t) £:/*RHom5(A, B) -> RHom*(/*A, /*£) .

Theorem 10.7.6 If f: R —> S is a map of commutative rings, then the functor
L/*: D'(R) -> D"(5) w fe^f adjoint to /*: D+(5) -> D+(#). TTiaf w,/or A in
D~(R) and B in D+(5) there is a natural isomorphism

(*) HomD(5)(L/*A, B) -=> HomD W(A, /*B).

77ẑ  adjunction morphisms are T]A'> A —>• f*Lf*A and SB'- L/*(/*Z?) —> B, r^-
spectively. Moreover, the isomorphism (*) comes from a natural isomorphism

x : /*RHoms(L/*A, B) ^ > RHom^CA, /*£) .

Prao/ Since /* is exact, / * L / * is the left derived functor of /*/*; the univer-
sal property gives a map TJA'- A —• L(/*/*)A = /*L/*A. Using (t), this gives
the map

r : /*RHom5(L/*A, B) - U RHomJ?(/*L/*A, /*B) X - RHom^CA, /*5).

To evaluate this map, we suppose that A is a bounded above complex of
projective /^-modules. In this case the map r is the isomorphism

Tot(/*Hom5(A ®R S, B)) ^ Tot(Hom/?(A, Hom.sCS, B)))

Passing to cohomology, r induces the adjoint isomorphism (*). <0>

Remark For schemes one needs to be able to localize the above data to form
the Ox-module analogue of RHom#. By 3.3.8 one needs A to be finitely pre-
sented in order to have an isomorphism S~l Hom#(A, B) = Homs-\R(S~lA,
S~lB). Thus one needs to restrict A to a subcategory of D(X) which is locally
the Dfg(/?) of exercise 10.4.6; see [HartRD, II.5.10] for details.
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402 The Derived Category

Exercise 10.7.3 Let X be a topological space. Given two sheaves £, T on
X, the sheaf horn is the sheaf Hom{8, T) is the sheaf on X associated to the
presheaf sending U to Hom(£|(/, ,F|L0; s e e [Hart, exercise II.1.15]. Mimic
the construction of RHom to obtain a functor

RHom:D(X)op x D+(X) -> D(X).

Now suppose that f:X -> Y is a continuous map, and that X is noetherian
of finite Krull dimension. Generalize (f) for S in D~(X), JF in D+(X) to
obtain a natural map in D+(F) :

f: R/*

10.8 Replacing Spectral Sequences

We have seen that the objects RF(A) in the derived category are more flex-
ible than their cohomology groups, the hyper-derived functors IR'F(A) =
HlRF(A). Of course, if we are interested in the groups themselves, we
can use the spectral sequence E{q = (RPF)(H«A) =>> RP^F(A) of 5.7.9.
Things get more complicated when we compose two or more functors, be-
cause then we need spectral sequences to compute the Zs2-terms of other
spectral sequences.

Example 10.8.1 Consider the problem of comparing the two ways of form-
ing the total tensor product of three bounded below cochain complexes A e
D~(mod-#), B e D-(/?-mod-S), and C e D^S-mod). Replacing A and C
by complexes of projectives, we immediately see that there is a natural iso-
morphism

(*) A <8>£ (B <g>£ C) ^ (A <g>5? B) ®5 C.

However, it is quite a different matter to try to establish this quasi-isomorph-
ism by studying the two hypertor modules Torf (A, B) and Tors(B,C)\
Cf. [EGA, III.6.8.3]. Another way to establish the isomorphism (*) is to set
F = Tot(A®/?) and G = Tot(®5C). Since FG = GF, (*) follows immedi-
ately from the following result.

Composition Theorem 10.8.2 Let K c K(A) and Kf c K(S) be localizing
triangulated subcategories, and suppose given two morphisms of triangulated
categories G:K - • K7, F:Kf -+ K(C). Assume that RF, RG, and R(FG)
exist, with RF(D) c Dr. Then:
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10.8 Replacing Spectral Sequences 403

1. There is a unique natural transformation £ = £f,G'-R(FG) =>> RF o
RG, such that the following diagram commutes in D(C)for each A in K.

qFG(A) -^> (RF)(qGA)

KqA

R(FG)(qA) • (RF)(RG)(qA)

2. Suppose that there are triangulated subcategories Ko c K, KQ C Kf sat-
isfying the hypotheses of the Generalized Existence Theorem 10.5.9 for
G and F, and suppose that G sends Ko to KQ. Then f is an isomorphism

f : R(FG) ^ (RF) o (RG).

Proof Part (1) follows from the universal property 10.5.1 of R(FG). For (2)
it suffices to observe that if A is in Ko, then

R(FG)(qA) = qFG(A) £ RF(q(GA)) ^ RF(RG(qA)). O

Corollary 10.8.3 (Grothendieck spectral sequences) Let A, B, and C be
abelian categories such that both A and B have enough injectives, and sup-
pose given left exact functors G: A^ B and F:B —> C.

G
A — • B

FG\ / F

C

IfG sends injective objects of A to F-acyclic objects ofBy then

? : R+(FG) ^ (R+F) o (R+G).

If in addition G sends acyclic complexes to F-acyclic complexes, and both
F and G have finite cohomological dimension, then R(FG):D(*4) —>• D(C)
exists, and

In both cases, there is a convergent spectral sequence for all A:

Ep
2
q = (RpF)(RqG)(A) => Rp+q(FG)(A).

If A is an object of A this is the Grothendieck spectral sequence of 5.8.3.
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404 The Derived Category

Proof The hypercohomology spectral sequence 5.7.9 converging to
(RP+iF)(RG(A)) has E™ term (RPF)HHRG(A)) = (RPF)(R«G(A)).

O

Remark 10.8.4 Conceptually, the composition of functors R(FG) = (RF) o
(RG) is much simpler than the original spectral sequence. The reader having
some familiarity with algebraic geometry may wish to glance at [EGA, III.6],
and especially at the "six spectral sequences" of III.6.6 or III.6.7.3, to appreci-
ate the convenience of the derived category.

Exercise 10.8.1 If F, G, H are three consecutive morphisms, show that as
natural transformations from R(FGH) to RF o RG o RH we have

£G,H ° KF,GH = KF,G ° £FG,H-

In the rest of this section, we shall enumerate three consequences of the
Composition Theorem 10.8.2, usually replacing a spectral sequence with an
isomorphism in the derived category. We will implicitly use the dual formula-
tion LF o LG = L(FG) of the Composition Theorem without comment.

10.8.1 The Projection Formula

10.8.5 Let / : R - • S be a ring homomorphism, A a bounded above com-
plex of right /^-modules, and B a complex of left S-modules. The func-
tor /*:mod-/? -> mod-iS sends A to A <S)R S, SO it preserves projectives.
Since /*(A) ®s B = (A ®R S) ®s B ^ A ®R f*B, the Composition Theorem
10.8.2 yields

(*) L/*(A) ^ f i ^ A ^ (f^B)

in D(Ab). If S is commutative, we may regard B as an S-S bimodule and f*B
as an /?-£ bimodule. As we saw in exercise 10.6.2, this allows us to interpret
(*) as an isomorphism in D(S). From the standpoint of algebraic geometry,
however, it is better to apply /* to obtain the following isomorphism in D(R):

This is sometimes called the "projection formula"; see [HartRD, II.5.6] for the
generalization to schemes. The projection formula underlies the "Base change
for Tor" spectral sequence 5.6.6.
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10.8 Replacing Spectral Sequences 405

Exercise 10.8.2 Use the universal property of ®^ to construct the natural
map L/*(A) ®£ B -+ A ®\ (/*£).

10.8.6 Similarly, if g: S —• T is another ring homomorphism, we have
(gf)* = g*f*. The Composition Theorem 10.8.2 yields a natural isomor-
phism

This underlies the spectral sequence Tor£(Tor*(A, 5), T) => Tor*+^(A, T).

10.8.2 Adjointness of ®L and RHom

Theorem 10.8.7 If R is a commutative ring and B is a bounded above com-
plex of R-modules, then ®\B\ D~(R) ->• D~(R) is left adjoint to the functor
RHom* (5, - ) : D+(#) -> D+(^). That is, for A in D~(R) and C in D+(R)
there is a natural isomorphism

HomD(/?)(A, RHom/^B, C)) = HomD(^)(A 0 ^ B, C).

This isomorphism arises by applying / /° to the isomorphism

(t) RHom/?(A, RHom/KB, C)) -=> RHom/?(A ®\ B, C)

in D+(/?). The adjunction morphisms are r]A'. A —• RHom/?(5, A

, C) ®^ 5 -> C.

Proof Fix a projective complex A and an injective complex C. The functor
A ®5? ~ preserves projectives, while the functor Hom/?(—, C) sends pro-
jectives to injectives. By the Composition Theorem 10.8.2, the two sides
of (t) are both isomorphic to the derived functors of the composite functor
Hom(A, Hom(£, C)) = Hom(A ®R B, C). <C>

Exercise 10.8.3 Let R be a commutative ring and C a bounded complex of
finite Tor dimension over R (exercise 10.6.3). Show that there is a natural
isomorphism in D(R):

RHom#(A, B) ® \ C ^ > RHom/?(A, B ® \ C).
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406 The Derived Category

Here A is in D(R) and B is in D+(/?). For the scheme version of this result,
see[HartRD,II.5.14].

We now consider the effect of a ring homomorphism / : / ? — • S upon
RHom. We saw in 2.3.10 that Hom/?(£\ —): mod-/? -> mod-S preserves in-
jectives. Therefore for every S-module complex A, and every bounded below
R -module complex B, we have

RHoms(A, RHom#(S, B)) ^ RHomR(f*A, B).

This isomorphism underlies the "Base change for Ext" spectral sequence of
exercise 5.6.3.

Exercise 10.8.4 Suppose that S is a flat /^-module, so that / * is exact and
L / * = /*. Suppose that A is quasi-isomorphic to a bounded above complex
of finitely generated projective modules. Show that we have a natural isomor-
phism for every B in D+(/?):

L / * RHom#(A, B) -> RHom5(L/*A, L /*£ ) .

Exercise 10.8.5 (Lyndon/Hochschild-Serre) Let H be a normal subgroup of
a group G. Show that the functors AH = A <S>ZH ^ a nd A77 = Horn//(2, A) of
Chapter 6 have derived functors A (g)^ 2: D(G-mod) ->• D(G///-mod) and
RHom# (Z, A): D(G-mod) -> D(G///-mod) such that

A ®^ Z = (A ®^ Z) <8)G/// Z and

RHomG(Z, A) ^ RHomG/H(2, RHom^(Z, A)).

Use these to obtain the Lyndon/Hochschild-Serre spectral sequences 6.8.2.

10.8.3 Leray Spectral Sequences

10.8.8 Suppose that / : X -> Y is a continuous map of topological spaces.
We saw in 5.8.6 that /* preserves injectives and that the Leray spectral
sequence

E{q = Hp(Y\ Rqf*F) => Hp+q(X; T)
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10.9 The Topological Derived Category 407

arose from the fact that F(X, T) is the composite F(F, f*T). The Composi-
tion Theorem 10.8.2 promotes this into an isomorphism for every T in D+(X):

Of course, if X and Y are noetherian spaces of finite Krull dimension, then this
isomorphism is valid for every T in D(X).

We can generalize this by replacing F(F, —) by g*, where g: Y ->• Z is
another continuous map. For this, we need the following standard identity.

Lemma 10.8.9 (gf)*F = g*(UF) for every sheaf T on X.

Proof By its very definition (2.6.6), for every open subset U of X we have

= Hf-lg~lU) = iUD{g-lU) = g*(f*F)(U). O

Corollary 10.8.10 For every T in D+(X) there is a natural isomorphism

in D(Z). If moreover X and Y are noetherian of finite Krull dimension, then
this isomorphism holds for every T in D(X).

Exercise 10.8.6 If T is an injective sheaf, the sheaf horn Hom(£, T) is F-
acyclic ("flasque") by [Gode, II.7.3.2]. For any two sheaves £ and T, show
that Homx(£, T) = F(X, Hom(£, J7)). Then use the Composition Theorem
10.8.2 to conclude that there is a natural isomorphism

RHom(£, T) ^ (RF) o RHom(£, T)

of bifunctors from D-(X)°P x D+(X) to D(Ab).

10.9 The Topological Derived Category

At the same time (1962-1963) as Verdier was inventing the algebraic notion
of the derived category [Verd], topologists (e.g., D. Puppe) were discovering
that the stable homotopy category D(<S) was indeed a triangulated category.
In this last section we show how to construct this structure with a minimum
of topology, mimicking the passage from chain complexes to the homotopy
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408 The Derived Category

category K(Ab) in section 10.1 and the localization from K(Ab) to the derived
category D(Ab). This provides a rich analogy between derived categories and
stable homotopy theory, which has only recently been exploited (see [Th] and
[Rob], for example).

Our first task is to define the category of spectra S. Here is the "modern"
(coordinatized) definition, following [LMS].

Definition 10.9.1 A spectrum E is a sequence of based topological spaces En

and based homeomorphisms an: En —^ QEn+\. A map of spectra f:E—>
F is a sequence of based continuous maps fn: En —> Fn strictly compatible
with the given structural homeomorphisms. As these maps are closed under
composition, the spectra and their maps form a category S. The sequence of
1-point spaces forms a spectrum *, which is the zero object in 5, because
Hom<s(*, E) = Hom<s(£, *) = {point} for all E. The product E x F of two
spectra is the spectrum whose nth space is En x Fn.

Historically, spectra arose from the study of "infinite loop spaces;" EQ is an
infinite loop space, because we have described it as the /7-fold loop space EQ =
QpEp for all p. The most readable reference for this is part III of Adams' book
[A], although it is far from optimal on the foundations, which had not yet been
worked out in 1974.

Looping and Delooping 10.9.2 If E is a spectrum, we can form its loop
spectrum QE by setting (£lE)n — Q(En), the structural maps being the
Q(an). More subtly, we can form the delooping Q~*E by reindexing and
forgetting Eo: (Q~1E)n = En+\. Clearly QQ~lE = Q~lQE = E, so Q is a
automorphism of the category S. When we construct a triangulated structure
on the stable homotopy category, Q~l will become our "translation functor."

Example 10.9.3 (Sphere spectra) There is a standard map from the m-sphere
Sm to the QSm+l (put Sm at the equator of Sm+l and use the longitudes). The
n-sphere spectrum Sn is obtained by applying Ql and taking the colimit

Of course, to define the negative sphere spectrum S" we only use i > —n.
The zero-th space of the sphere spectrum S° is often written as Q^S00. Note
that our notational conventions are such that for all integers n and p we have
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10.9 The Topological Derived Category 409

Definition 10.9.4 (The stable category) The homotopy groups of a spectrum
E are:

nnE = 7Tn+i(Ei) for i > 0, n + i > 0.

These groups are independent of the choice of /, because for all m ni+\Em =
TTi (QEm). We say that / : £ —• F is a weak homotopy equivalence if / induces
an isomorphism on homotopy groups. Let W denote the family of all weak
homotopy equivalences in <S. The stable homotopy category, or topological
derived category D(<S), is the localization W~lS of S at W.

Of course, in order to see that the stable category exists within our universe
we need to prove something. Mimicking the procedure of section 1 and sec-
tion 3, we shall first construct a homotopy category K(<S) and prove that the
system W of weak homotopy equivalences form a locally small multiplicative
system in K(<S) (10.3.6). Then we shall show that the homotopy category of
"CW spectra" forms a localizing subcategory K(Scw) of K(5) (10.3.12), and
that we may take the topological derived category to be K(Scw)- This paral-
lels theorem 10.4.8, that the category D+(Ab) is equivalent to the homotopy
category of bounded below complexes of injective abelian groups.

For this program, we need the notion of homotopy in S and the notion
of a CW spectrum, both of which are constructed using prespectra and the
"spectrification" functor £2°°. Let SX denote the usual based suspension of a
topological space X, and recall that maps SX —> Y are in 1-1 correspondence
with maps X —> QY.

Definition 10.9.5 Aprespectrum D is a sequence of based topological spaces
Dn and based continuous maps S(Dn) -» Dn+i, or equivalently, maps Dn ->
QDn+1. If C and D are prespectra, a function f: C —• D is a sequence of based
continuous maps fn'-Cn -> Dn which are strictly compatible with the given
structural maps. There is a category V of prespectra and functions, as well as a
forgetful functor S ->• V. A CW prespectrum is a prespectrum D in which all
the spaces Dn are CW complexes and all the structure maps SDn —»> Dn+i are
cellular inclusions.

Warning: Terminology has changed considerably over the years, even since
the 1970s. A prespectrum used to be called a "suspension spectrum," and the
present notion of spectrum is slightly stronger than the notion of
"£2-spectrum," in which the structural maps were only required to be weak
equivalences. Our use of "function" agrees with [A], but the category of CW
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410 The Derived Category

prespectra in [A] has more morphisms than just the functions; see [A, /?.14O]
or [LMS, p.2] for details.

10.9.6 There is a functor Q°°:V -> S, called "specification." It sends a
CW prespectrum D to the spectrum £2°°D whose nth space is

where the colimit is taken with respect to the iterated loops on the maps Dj ->
C2D/+1. The structure maps (Q°°D)n -> (Q°°D)n+i are obtained by shifting
the indices, using the fact that Q commutes with colimits. The effect of £2°°
on functions should be clear.

A CW spectrum is a spectrum of the form E = Q°°D for some CW prespec-
trum D. The full subcategory of S consisting of CW spectra is written as Sew-
Although the topological spaces En of a CW spectrum are obviously not CW
complexes themselves, they do have the homotopy type of CW complexes.

Exercise 10.9.1 Show that Q°°E ^ £ in <S for every spectrum E.

Topology Exercise 10.9.2 If D is a CW prespectrum, show that the structure
maps Dn -> £2Dn+\ are closed embeddings. Use this to show that

Analogy 10.9.7 There is a formal analogy between the theory of spectra and
the theory of (chain complexes of) sheaves. The analogue of a presheaf is a
prespectrum. Just as the forgetful functor from sheaves to presheaves has a
left adjoint (sheafification), the forgetful functor from spectra to prespectra has
£2°° as its left adjoint. The reader is referred to the Appendix of [LMS] for
the extension of £2°° to general spectra, as well as the verification that £2°° is
indeed the left adjoint of the forgetful functor.

Just as many standard operations on sheaves (inverse image, direct sum,
cokernels) are defined by sheafification, many standard operations on spectra
(cylinders, wedges, mapping cones) are defined on spectra by applying £2°° to
the corresponding operation on prespectra. This is not surprising, since both
are right adjoint functors and therefore must preserve coproducts and colimits
by 2.6.10.

Example 10.9.8 (Coproduct) Recall that the coproduct in the category of
based topological spaces is the wedge vaXa, obtained from the disjoint union
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10.9 The Topological Derived Category 411

by identifying the basepoints. If {Da} is a family of prespectra, their wedge
is the prespectrum whose nth space is (vDa)n = v(Da)n; it is the coproduct
in the category of prespectra. (Why?) Since £2°° preserves coproducts, vDa =
Q°°{v(Da)n} is the coproduct in the category of spectra.

Example 10.9.9 (Suspension) The suspension SE of a spectrum E is Q°°
applied to the prespectrum whose nth space is SEn and whose structure maps
are the suspensions of the structure maps SEn -> En+\. Adams proves in
[A, III.3.7] that the natural maps En —> QS(En) induce a weak homotopy
equivalence E -> QSE, and hence a weak homotopy equivalence

Definition 10.9.10 (Homotopy category) The cylinder spectrum cyl(E) of
a spectrum E is obtained by applying £2°° to the prespectrum (/+ A E)n =
[0, 1] x En/[0, 1] x {*}. Just as in ordinary topology, we say that two maps
of spectra /o, f\\ E -> F are homotopic if there is a map h: cyl(E) - • F such
that the ft are the composites E = {/} x E ^ cyl(E) -> F. It is not hard to
see that this is an equivalence relation (exercise!).

We write [E, F] for the set of homotopy classes of maps of spectra; these
form the morphisms of the homotopy category K(<S) of spectra. The full sub-
category of K(<S) consisting of the CW spectra is written as K(Scw)-

Exercise 10.9.3 Show that E x F and E v F are also the product and co-
product in K(«S).

Proposition 10.9.11 K(5) is an additive category.

Proof Since K(<S) has a zero object * and a product E x F, we need only
show that it is an Ab-category (Appendix, A.4.1), that is, that every Horn-
set [E, F] has the structure of an abelian group in such a way that composi-
tion distributes over addition. The standard proof in topology that homotopy
classes of maps into any loop space form an abelian group proves this; one
splits cyl(F) into [0, ^] x F/ ~ and [ | , l ] x F / ~ and concatenates loops.
We leave the verification of this to readers familiar with the standard proof. O

Corollary 10.9.12 The natural map E v F —• E x F is an isomorphism
inK(S).

The role of CW spectra is based primarily upon the two following funda-
mental results.
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412 The Derived Category

Proposition 10.9.13 For each spectrum E there is a natural weak homotopy
equivalence C —> E, with C a CW spectrum. In particular, K(Scw) is a lo-
calizing subcategory ofK(S) in the sense of 10.3.12.

Proof Let Sing(Z) denote the singular simplicial set (8.2.4) of a topological
space X, and |Sing(X)| - • X the natural map. Since |Sing(Z)| is a CW com-
plex, the cellular inclusions S|Sing(En)| ^ |Sing(SEn)| <^ |Sing(£n+i)|
make |Sing(£)| into a CW prespectrum and give us a function of prespec-
tra |Sing(£)| —• E. Taking adjoints gives a map of spectra C -* E, where
C = ft°°|Sing(£)|. Since 7r*|Sing(X)| = TT*(X) for every topological space
X, we have

for all m and /. Since nn(C) = colim/^oo7rn+/(|Sing(£'n+/)| by the topology
exercise 10.9.2, it follows that C -> E is a weak homotopy equivalence. O

Whitehead's Theorem 10.9.14

1. If C is a CW spectrum, then for every weak homotopy equivalence
f\E -* F of spectra (10.9.4) we have /* : [C, E] = [C, F].

2. Every weak homotopy equivalence of CW spectra is a homotopy equiva-
lence (10.9.10), that is, an isomorphism in K(<S).

Proof See [A, pp. 149-150] or [LMS, p.30]. Note that (1) implies (2), by
setting C — F. O

Corollary 10.9.15 The stable homotopy category D(5) exists and is equiva-
lent to the homotopy category of CW spectra

Proof The generalities on localizing subcategories in section 3 show that
D(5) ^ W~lK(Scw)' But by Whitehead's Theorem we have K(SCw) =

l O

We are going to show in 10.9.18 that the topological derived category
D(<S) = K(Scw) is a triangulated category in the sense of 10.2.1. For this
we need to define exact triangles. The exact triangles will be the coflbration
sequences, a term that we must now define. In order to avoid explaining a tech-
nical hypothesis ("cofibrant") we shall restrict our attention to CW spectra.
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10.9 The Topological Derived Category 413

Mapping Cones 10.9.16 Suppose that u: E -> F is a map of spectra. The
sequence of topological mapping cones cone(wn) = cone(£n) UM Fn form a
prespectrum (why?), and the mapping cone of f is defined to be the spectrum
£2°°{cone(/n)}. Applying £2°° to the prespectrum functions in: Fn —• cone(/n)
and cone(/n) —• SEn give maps of spectra i:F -> cone(/) and j:cone(/) - •
Sis. The triangle determined by this data is called the Puppe sequence associ-
ated to / :

E - ^ F - U cone(w) - U S£.

A cofibration sequence in K(<ScwO is a ny triangle isomorphic to a Puppe se-

quence. Since * —> E —> E —»> * is a Puppe sequence, the following ele-

mentary exercise shows that cofibration sequences satisfy axioms (TRl) and

(TR2).

Exercise 10.9.4 (Rotation) Use the fact that SEn is homotopy equivalent to
the cone of in: Fn -> cone(/n) to show that SE = cone(/). Then show that

i j -Su

F —> cone(w) —> SE > SF

is a cofibration sequence.

We say that a diagram of spectra is homotopy commutative if it commutes
in the homotopy category K(5).

Proposition 10.9.17 Every homotopy commutative square of spectra

u

E —> F

if is

E' ^ F>

can be made to commute. That is, there is a homotopy commutative diagram

E —> cyl(w)

| / is'

E> X F>
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414 The Derived Category

in which the bottom square strictly commutes in S and the map — is a homo-
topy equivalence.

Proof Let cy\(un) denote the topological mapping cylinder of un (Chapter
1, section 5). The mapping cylinder spectrum cyl(w) is £2°° of the prespec-
trum {cy\(un)}. It is homotopy equivalent to F because the homotopy equiv-
alences Fn —=•> cy\(un) are canonical. The map cyl(E) ->• F' expressing the
homotopy commutativity of the square corresponds to a prespectrum function
from {cy\(En)} to F'\ together with g they define a prespectrum function from
{cyl(un)} to F1 and hence a spectrum map g'\ cyl(w) -> F'. The inclusions of
En into the top of cy\(un) give the middle row after applying Q°°. It is now
a straightforward exercise to check that the diagram homotopy commutes and
that the bottom square commutes. O

Theorem 10.9.18 K(Scw) is a triangulated category.

Proof We have already seen that axioms (TRl) and (TR2) hold. For (TR3) we
may suppose that C = cone(w) and C' — cone(w') and that gu = u' f in <S; the
map h is given by the naturality of the mapping cone construction.

It remains to check the octahedral axiom (TR4). For this we may assume
that the given triangles are Puppe sequences, that is, that C' = cone(w), A' =
cone(f), and B' = cone(vu). We shall mimic the proof in 10.2.4 that the
octahedral axiom holds in K(*4). Define a prespectrum function {fn} from
[cone(un)} to [cone(vnun)} by letting fn be the identity on cone(A^) and vn

on Bn. Define a prespectrum function {gn} from {cone(vnun)} to {cone(i;n)}
by letting gn be cont(un)\ cone(A^) -> cone(Bw) and the identity on C. Man-
ifestly, these are prespectrum functions; we define / and g by applying £2°°
to {fn} and {gn}. Since it is true at the prespectrum level, d is the composite

cone(w) —> cone(i>w) —> SA and x is the composite C —> cone(uw) —>•
cone(u). (Check this!)

Since cone(/n) is a quotient of the disjoint union of cone(cone(A^)),
cone(#n), and Cn, the natural maps from cone(Bn) and Cn to cone(/n) induce
an injection cone(f^) c-> cone(fn). As n varies, this forms a function of pre-
spectra. Applying £2°° gives a natural map of spectra y: cone(u) -^ cone(/)
such that the following diagram of spectra commutes in S:

SCf

C' - ^ B' —> cone(/) —> SC'.
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10.9 The Topological Derived Category 415

To see that y is a homotopy equivalence, define (pn: cone(/n) - • cone(fn) by
sending cone(#n) and Crt to themselves via the identity, and composing the
natural retract cone (cone (An)) —> cone(0 x An) with cont(un)\ cone(An) ->
cone(#n). Since the ^ are natural, they form a function of prespectra; ap-
plying £2°° gives a map of spectra (p: cone(/) -> cone(i>). We leave it to the
reader to check that (py is the identity on cone(t>) and that yep is homotopic
to the identity map on cone(/). (Exercise!). This shows that (/, g, (Tj)i) is
a cofibration sequence (exact triangle), because it is isomorphic to the Puppe
sequence of / . <>

Geometric Realization 10.9.19 By the Dold-Kan correspondence (8.4.1),
there is a geometric realization functor from Ch(Ab) to Sew- Indeed, if A is a
chain complex of abelian groups, then the good truncation zA = r>o(A) corre-
sponds to a simplicial abelian group, and its realization \rA\ is a CW complex.
In the sequence

TA —> rcone(A) —> r (A[- l ] ) ,

the map 8 is a Kan fibration (8.2.9, exercise 8.2.5). Since the mapping cone
is contractible (exercise 1.5.1), there is a weak homotopy equivalence \xA\ ->
£2|rA[—1]|, and its adjoint S\zA\ - • \rA[—1]| is a cellular inclusion. (Check
this!) Thus the sequence of spaces |rA[—n]\ form a CW prespectrum; ap-
plying £2°° gives a spectrum. This construction makes it clear that the func-
tor |r|: Ch(Ab) -> Sew sends quasi-isomorphisms to weak equivalences and
sends the translated chain complex A[n] to fiw|r A|. In particular, it induces a
functor on the localized categories |r |: D(Ab) —> D(<S).

Vista 10.9.20 Let HZ denote the geometric realization |rZ| of the abelian
group Z, regarded as a chain complex concentrated in degree zero. It turns
out that HZ is a "ring spectrum" and that D(Ab) is equivalent to the stable
category of "module spectra" over HZ. This equivalence takes the total tensor
product (g)| in D(Ab) to smash products of module spectra over HZ. See
[Rob] and {A. Elmendorf, I. Kriz, and J. P. May, "£oo Modules Over Eoo Ring
Spectra," preprint (1993)}.
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Appendix A
Category Theory Language

This Appendix provides a swift summary of some of the basic notions of
category theory used in this book. Many of the terms are defined in Chapters 1
and 2, but we repeat them here for the convenience of the reader.

A.I Categories

Definition A.I.I A category C consists of the following: a class obj(C) of
objects, a set Homc(A, B) of morphisms for every ordered pair (A, B) of
objects, an identity morphism id A £ Home (A, ^) for each object A, and a
composition function Hom^(A, B) x Home(#, C) —> Home (A, C) for every
ordered triple (A, 5 , C) of objects. We write f:A—> B to indicate that / is
a morphism in Homc(A, B), and we write gf or go f for the composition of
f\A-+B with g: B —• C. The above data is subject to two axioms:

Associativity Axiom: (hg)f = h(gf) for f: A-> B, g: B -+ C,h:C -+ D

Unit Axiom: id# of = f = f o id A for f:A-+B.

Paradigm A.1.2 The fundamental category to keep in mind is the category
Sets of sets. The objects are sets and the morphisms are (set) functions, that is,
the elements of Homsets(A, B) are the functions from A to B. Composition of
morphisms is just composition of functions, and id^ is the function id A(a) = a
for all a e A. Note that the objects of Sets do not form a set (or else we would
encounter Russell's paradox of a set belonging to itself!); this explains the
pedantic insistence that obj(C) be a class and not a set. Nevertheless, we shall
often use the notation C e C to indicate that C is an object of C.

Examples A.1.3 Another fundamental category is the category Ab of abelian
groups. The objects are abelian groups, and the morphisms are group ho-
momorphisms. Composition is just ordinary composition of homomorphisms.

417
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418 Appendix A

The categories Groups of groups (and group maps) and Rings of rings (and
ring maps) are defined similarly.

If R is a ring, /?-mod is the category of left /^-modules. Here the objects are
left /^-modules, the morphisms are /^-module homomorphisms, and composi-
tion has its usual meaning. The category mod-/? of right /^-modules is defined
similarly, and it is the same as /?-mod when R is a commutative ring.

A discrete category is one in which every morphism is an identity mor-
phism. Every set (or class!) may be regarded as a discrete category, since com-
position is forced by discreteness.

Small categories A.1.4 A category C is small if obj(C) is a set (not just a
class). Sets, Ab and R-mod are not small, but a poset or a group may be
thought of as a small category as follows.

A partially ordered set, or poset, is a set P with a reflexive, transitive
antisymmetric relation <. We regard a poset as a small category as follows.
Given /?, q e P the set Horn/>(/?, q) is the empty set unless p < q, in which
case there is exactly one morphism from p to q (denoted p < q of course).
Composition is given by transitivity and the reflexive axiom (p < p) yields
identity morphisms.

A category with exactly one object * is the same thing as a monoid, that
is, a set M (which will be Hom(*, *)) equipped with an associative law of
composition and an identity element. In this way we may consider a group as
a category with one object.

The word "category" is due to Eilenberg and MacLane (1947) but was
taken from Aristotle and Kant. It is chiefly used as an organizing principle for
familiar notions. It is also useful to have other words to describe familiar types
of morphisms that we encounter in many different categories; here are a few.

A morphism / : B -> C is called an isomorphism in C if there is a morphism
g:C —• B such that gf = id# and fg = idc« The usual proof shows that if
g exists it is unique, and we often write g = f~l. An isomorphism in Sets
is a set bijection; an isomorphism in the category Top of topological spaces
and continuous maps is a homeomorphism; an isomorphism in the category of
smooth manifolds and smooth maps is called a diffeomorphism. In most alge-
braic categories, isomorphism has its usual meaning. In a group (considered as
a category), every morphism is an isomorphism.

A.1.5 A morphism / : # —• C is called monic in C if for any two distinct
morphisms e\, e2- A —>• B we have fe\ / fe^\ in other words, we can cancel
/ on the left. In Sets, Ab, tf-mod,..., in which objects have an underlying
set ("concrete" categories; see A.2.3), the monic morphisms are precisely the
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morphisms that are set injections (monomorphisms) in the usual sense. If B ->
C is monic, we will sometimes say that B is a subobject of C. (Technically a
subobject is an equivalence class of monies, two monies being equivalent if
they factor through each other.)

A morphism / : # ^ C is called epi in C if for any two distinct morphisms
g\,g2'- C -» D we have g\f / #2/ ; in other words, we can cancel / on the
right. In Sets, Ab, and /?-mod the epi morphisms are precisely the onto maps
(epimorphisms). In other concrete categories such as Rings or Top this fails;
the morphisms whose underlying set map is onto are epi, but there are other
epis.

Exercise A.I.I Show that H c Q is epi in Rings. Show that Q c K is epi in
the category of Hausdorff topological spaces.

A.1.6 An initial object (if it exists) in C is an object / such that for every
C in C there is exactly one morphism from / to C. A terminal object in C
(if it exists) is an object T such that for every C in C there is exactly one
morphism from C to T. All initial objects must be isomorphic, and all terminal
objects must be isomorphic. For example, in Sets the empty set 0 is the initial
object and any 1-point set is a terminal object. An object that is both initial and
terminal is called a zero object. There is no zero object in Sets, but 0 is a zero
object in Ab and in R-mod.

Suppose that C has a zero object 0. Then there is a distinguished element
in each set Homc(#, C), namely the composite B -> 0 -> C; by abuse we
shall write 0 for this map. A kernel of a morphism / : B -> C is a morphism
i\A^B such that / / = 0 and that satisfies the following universal property:
Every morphism e\ A' -> B in C such that fe = 0 factors through A as e = ie'
for a unique e'\ Af -> A. Every kernel is monic, and any two kernels of / are
isomorphic in an evident sense; we often identify a kernel of / with the cor-
responding subobject of B. Similarly, a cokernel of / : B ->• C is a morphism
p:C —> D such that pf = 0 and that satisfies the following universal property:
Every morphism g: C - • D' such that gf = 0 factors through D a s g = gfp
for a unique gf: D —> D'. Every cokernel is an epi, and any two cokernels are
isomorphic. In Ab and /?-mod, kernel and cokernel have their usual mean-
ings.

Exercise A.1.2 In Groups, show that monies are just injective set maps, and
kernels are monies whose image is a normal subgroup.

Opposite Category A.1.7 Every category C has an opposite category Cop.
The objects of Cop are the same as the objects in C, but the morphisms (and
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420 Appendix A

composition) are reversed, so that there is a 1-1 correspondence / \-^ / o p

between morphisms f:B-+CinC and morphisms / o p : C —• B in Cop. If
/ is monic, then / o p is epi; if / is epi, then / o p is monic. Similarly, taking
opposites interchanges kernels and cokernels, as well as initial and terminal
objects. Because of this duality, Cop is also called the dual category of C.

Example A.1.8 If R is a ring (a category with one object), Rop is the ring
with the same underlying set, but in which multiplication is reversed. The cat-
egory (jRop)-mod of left /?op-modules is isomorphic to the category mod-/?
of right /^-modules. However, (jR-mod)op cannot be 5-mod for any ring S
(see A.4.7).

Exercise A.1.3 (Pontrjagin duality) Show that the category C of finite abelian
groups is isomorphic to its opposite category Cop, but that this fails for the
category T of torsion abelian groups. We will see in exercise 6.11.4 that To p

is the category of profinite abelian groups.

Products and Coproducts A.1.9 If {C,-:/ € 1} is a set of objects of C, a
product Ylizi Ci (if ^ exists) is an object of C, together with maps ny. \\ Ci ->
Cj (j e I) such that for every A e C, and every family of morphisms or,-: A ->
Ci (i <= / ) , there is a unique morphism a: A —• f~[ C; in C such that 7r,-a = oil
for all i e I. Warning: Any object of C isomorphic to a product is also a
product, so ]~[ Ci is not a well-defined object of C. Of course, if f~[ Q exists,
then it is unique up to isomorphism. If / = {1, 2}, then we write C\ x C2
for Yliei Ci- Many concrete categories (Sets, Groups, Rings, /?-mod, . . .
A.2.3) have arbitrary products, but others (e.g., Fields) have no products at
all.

Dually, a coproduct \JieI Ci of a set of objects in C (if it exists) is an
object of C, together with maps ij\ Cj -> ]_[ Ci (j e I) such that for every
family of morphisms a/: C; -> A there is a unique morphism a : [ ] Q —• A
such that aij = ctj for all j e / . That is, a coproduct in C is a product in Cop.
If / = {1, 2}, then we write C\ U C2 for \}ieI C/. In Sets, the coproduct is
disjoint union; in Groups, the coproduct is the free product; in /?-mod, the
coproduct is direct sum.

Exercise A.1.4 Show that Homc(A, Y\Ci) = n/ e /Homc(A, Q) and that

Homc(LJ Q, A) ^ n,-e/ Homc(Q, A).

Exercise A.1.5 Let {of,: A/ -> C/} be a family of maps in C. Show that

1. If I I Ai and ]~[ C/ exist, there is a unique map or: J~[ ̂ 4/ —̂  ]~~[ C; such that

mot = aity for all /. If every on is monic, so is a.
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Category Theory Language 421

2. If ]J Ai and JJ C; exist, there is a unique map a: JJ A/ —> JJ Q s u c n m a t

i/«/ = a^ for all /. If every ot[ is an epi, so is a.

A.2 Functors

By a functor F:C -+ V from a category C to a category £> we mean a rule
that associates an object F(C) (or FC or even Fc) of V to every object C of
C, and a morphism F(f): F(C\) —> F(Ci) in V to every morphism f:C\—>
C2 in C. We require F to preserve identity morphisms (F(idc) = id^c) and
composition (F(gf) = F(g)F(f)). Note that F induces set maps

Homc(Ci, C2) -> Homp(FCi, FC2)

for every C\, C2 in C. If G: D -> £ is another functor, the composite GF:C-+
£ is defined in the obvious way: (GF)(C) = G(F(C)) and (GF)(f) =
G(F(f)).

The identity functor idc: C -> C is the rule fixing all objects and morphisms,
that is, idc(C) = C, idc(f) = f. Clearly, for a functor F : C ^ D w e have
F o id<? — F = idp o F. Except for set-theoretic difficulties, we could form a
category CAT whose objects are categories and whose morphisms are func-
tors. Instead, we form Cat, whose objects are small categories; Homcat(C, T>)
is the set (!) of all functors from C to V, the identity of C is idc, and composi-
tion is composition of functors.

Horn and Tensor Product A.2.1 Let R be a ring and M a right /^-module.
For every left /^-module N the tensor product M <S)R N is an abelian group
and M ®R — is a functor from /?-mod to Ab. For every right /^-module N,
HornR(M, N) is an abelian group and RomR(M, —) is a functor from mod-/?
to Ab. These two functors are discussed in Chapter 3.

Forgetful Functors A.2.2 A functor that does nothing more than forget some
of the structure of a category is commonly called a forgetful functor, and
written with a U (for "underlying"). For example, there is a forgetful functor
from /?-mod to Ab (forget the /^-module structure), one from Ab to Sets
(forget the group structure), and their composite from 7?-mod to Sets.

Faithful Functors A.2.3 A functor F: C •-» V is called faithful if the set maps
Homc(C, CO -> Hom£>(FC, FCf) are all injections. That is, if f\ and f2 are
distinct maps from C to C in C, then F(f\) ^ F( / 2 ) . Forgetful functors are
usually faithful functors, and a category C with a faithful functor U:C - • Sets

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136.012
Downloaded from https:/www.cambridge.org/core. University of Florida, on 31 Jan 2017 at 06:34:21, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136.012
https:/www.cambridge.org/core


422 Appendix A

is called a concrete category. In a concrete category, morphisms are com-
pletely determined by their effect on the underlying sets. /?-mod and Ab are
examples of concrete categories.

A subcategory B of a category C is a collection of some of the objects
and some of the morphisms, such that the morphisms of B are closed under
composition and include id# for every object B in B. A subcategory is a
category in its own right, and there is an (obvious) inclusion functor, which
is faithful by definition.

A subcategory B in which Homg(Z?, Bf) = Homc(B, B') for every B, B1 in
B is called a full subcategory. We often refer to it as "the full subcategory on
the objects" obj(/3), since this information completely determines B.

A functor F:C^V is full if the maps Homc(C, C") -> Hom^(FC, FC')
are all surjections. That is, every g: F(C) -> F(Cf) in V is of the form g =
F(f) for some / : C -> C'. A functor that is both full and faithful is called
fully faithful. For example, the inclusion of a full subcategory is fully faithful.
The Yoneda embedding (see A.3.4) is fully faithful. Another example of a
fully faithful functor is "reflection" onto a skeletal subcategory, which we now
describe.

Skeletal Subcategories A.2.4 By a skeletal subcategory S of a category C we
mean a full subcategory such that every object of C is isomorphic to exactly
one object of S. For example, the full subcategory of Sets on the cardinal
numbers 0 = 0, 1 = {0}, . . . is skeletal. The category of finitely generated R-
modules is not a small category, but it has a small skeletal subcategory.

If we can select an object FC in S and an isomorphism Oc'-C = FC for
each C in C, then F extends to a "reflection" functor as follows: if / : B ->
C, then F(f) = 0cf0~l. Such a reflection functor is fully faithful. We will
discuss reflections and reflective subcategories more in A.6.3 below. The set-
theoretic issues involved here are discussed in [MacCW, 1.6].

Contravariant Functors A.2.5 The functors we have been discussing are
sometimes called covariant functors to distinguish them from contravariant
functors. A contravariant functor F: C -» V is by definition just a covariant
functor from Cop to V. That is, it associates an object F(C) of V to every
object C of C, and a morphism F(f): F(C2> -> F(C\) in V to every f\C\^
C2 in C. Moreover, F(idc) = id^c and F reverses composition: F(gf) =
F(f)F(g).

The most important example in this book will be the contravariant functor
Hom/?(—, N) from mod-/? to Ab associated with a right /^-module N. Its de-
rived functors Ext^(—, N) are also contravariant (see 2.5.2). Another example
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is a presheaf on a topological space X\ this is by definition a contravariant
functor from the poset of open subspaces of X to the category Ab.

A.3 Natural Transformations

Suppose that F and G are two functors from C to V. A natural transformation
r\\ F => G is a rule that associates a morphism ^c* F(C) —> G(C) in D to
every object C of C in such a way that for every morphism / : C ->• C in C
the following diagram commutes:

F(C) > F{C')

G(C) - ^

This gives a precise meaning to the informal usage, "the map rjc'. F(C) - •
G(C) is natural in C " If each rjc is a n isomorphism, we say that 77 is a natural
isomorphism and write rj: F = G.

Examples A.3.1

1. Let T(A) denote the torsion subgroup of an abelian group A. Then T
is a functor from Ab to itself, and the inclusion T(A) c A is a natural
transformation T => idAb-

2. Let h: M —> M' be an /^-module homomorphism of right modules. For
every left module N there is a natural map h <g) N: M 0/? N —> M' ®R
N, forming a natural transformation Af®/? =»• M'®R. For every right
module TV there is a natural map ^^iHom^CM7, Af) -> Hom/?(M, Â )
given by rjN(f) = fh, forming natural transformation Hom/^M', —) =̂>
Hom/^(M, —). These natural transformations give rise to maps of Tor
and Ext groups; see Chapter 3.

3. In Chapter 2, the definitions of 8-functor and universal 8-functor will
revolve around natural transformations.

Equivalence A.3.2 We call a functor F: C -> V an equivalence of categories
if there is a functor G:V - • C and there are natural isomorphisms idc = GF,
idp = FG. For example, the inclusion of a skeletal subcategory is an equiv-
alence (modulo set-theoretic difficulties, which we ignore). The category of
based vector spaces (objects = vector spaces with a fixed basis, morphisms =
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matrices) is equivalent to the usual category of vector spaces by the forgetful
functor. Equivalence of categories is the useful version of "isomorphism" most
often encountered in practice. As a case in point, the category of based vector
spaces is not isomorphic to the category of vector spaces, in which the basis
choices are not explicitly given.

Functor Categories A.3.3 Given a category / and a category A, the functors
F.I —• A form the objects of the functor category A1. The morphisms in A1

from F to G are the natural transformations rj: F => G, the composition £rj
of rj with £: G => H is given by (£77), = £77,, and the identity morphism of
F is given by {idf)i = idp^). (Exercise: show that A1 is a category when /
is a small category.) We list several examples of funtor categories in Chapter 1,
section 7 in connection with abelian categories; if A is an abelian category, then
so is A1 (exercise A.4.3). Here is one example: If G is a group, the AbG is the
category of G-modules discussed in Chapter 6.

Example A.3.4 The Yoneda embedding is the functor h: I -> Sets7°P given by
letting hi be the functor h((j) = Hom/O", /). This is a fully faithful functor. If
/ is an Ab-category (see A.4.1 below), the Yoneda embedding is sometimes
thought of as a functor from / to Ab7°P (which is an abelian category). In
particular, the Yoneda embedding allows us to think of any Ab-category (or
any additive category) as a full subcategory of an abelian category. We discuss
this more in Chapter 1, section 6.

A.4 Abelian Categories

The notion of abelian category extracts the crucial properties of abelian groups
out of Ab, and gives homological algebra much of its power. We refer the
reader to [MacCW] or Chapter 1, section 3 of this book for more details.

A.4.1 A category A is called an Ab-category if every hom-set Hom^(C, D)
in A is given the structure of an abelian group in such a way that composition
distributes over addition. For example, given a diagram in A of the form

/ 8f h
A —> B =$ C —> D

g

we have h(g + g')f = hgf + hgff in Hom(A, D). Taking A = B = C = D,
we see that each Hom(A, A) is an associative ring. Therefore, an Ab-category
with one object is the same thing as a ring. At the other extreme, R-mod is an
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Ab-category for every ring R, because the sum of R-module homomorphisms
is an R-module homomorphism.

We call A an additive category if it is an Ab-category with a zero object
0 and a product A x B for every pair A, B of objects of A. This structure is
enough to make finite products the same as finite coproducts, and it is tradi-
tional to write A 0 B for A x B. Again, /?-mod is an additive category, but
so is the smaller category on objects {0, R, R2, R3,...} with Hom(/?n, Rm) =
all m x n matrices in R.

Definition A.4.2 An abelian category is an additive category A such that:

1. (AB1) Every map in A has a kernel and cokernel,
2. (AB2) Every monic in A is the kernel of its cokernel, and
3. Every epi in A is the cokernel of its kernel.

Thus monic = kernel and epi = cokernel in an abelian category. Again,
/?-mod is an abelian category (kernel and cokernel have the usual mean-
ings).

Exercise A.4.1 Let A be an Ab-category and / : 5 - > C a morphism. Show
that:

1. / is monic O for every nonzero e\ A —• B, fe^ 0;
2. / is an epi 4> for every nonzero g:C -> D, gf ^ 0.

Exercise A.4.2 Show that Aop is an abelian category if A is an abelian
category.

Exercise A.4.3 Given a category / and an abelian cateory A, show that the
functor category A1 is also an abelian category and that the kernel of 77: B ->
C is the functor A, A(i) =

In an abelian category every map f:B->C factors as

e m

B —> im(/) —>C

with m = ker(coker / ) monic and e epi. Indeed, m is obviously monic; we
leave the proof that e is epi as an exercise. The subobject im(/) of C is called
the image of / , because in "concrete" abelian categories like /?-mod (A.2.3)
the image is im(/) = {f(b)\ b e B] as a subset of C.

/ g

A sequence A —> B —> C of maps in an abelian category is called ex-
act (at B) if ker(g) = im(/) . This implies in particular that the composite
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gf: A ->• C is zero. Homological algebra might be thought of as the study of
the circumstances when sequences are exact in an abelian category.

A.4.3 The following axioms for an abelian category A were introduced by
Grothendieck in [Tohoku]. Axioms (AB1) and (AB2) were described above.
The next four are discussed in Chapter 1, section 3; Chapter 2, sections 3
and 6; and in Chapter 3, section 5.

(AB3) For every set {A;} of objects of A, the coproduct \J A, exists in A.
The coproduct is often called the direct sum and is often written as 0A/.
Rather than say that A satisfies (AB3), we often say that A is cocomplete
(seeA.5.1).

(AB3*) For every set {A/} of objects of A, the product \\ At exists in A.
Rather than say that A satisfies (AB3*), we usually say that A is complete
(see A.5.1 below).

Example A.4.4 Ab and /?-mod satisfy both (AB3) and (AB3*), but the
abelian category of finite abelian groups satisfies neither and the abelian cat-
egory of torsion abelian groups satisfies (AB3) but not (AB3*). For purposes
of homological algebra, it is often enough to assume that \\ M a nd ]J A/ exist
for countable sets of objects {A/}; for example, this suffices to construct the
total complexes of a double complex in 1.2.6 or the functor lim1 of Chapter 3,
section 5.

Exercise A.4.4 (Union and intersection) Let {A/} be a family of subobjects of
an object A. Show that if A is cocomplete, then there is a smallest subobject
^2 M of A containing all of the A/. Show that if A is complete, then there is a
largest subobject Pi A/ of A contained in all the A/.

(AB4) A is cocomplete, and the direct sum of monies is a monic.
(AB4*) A is complete, and the product of epis is an epi.

Example A.4.5 Ab and #-mod satisfy both (AB4) and (AB4*). The abelian
category Sheaves(X) of sheaves of abelian groups on a fixed topological space
X (described in Chapter 1, section 7) is a complete abelian category that does
not satisfy (AB4*).

Exercise A.4.5

1. Let A be a complete abelian category. Show that A satisfies (AB4*)
if and only if products of exact sequences are exact sequences, that is,
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for every family {A/ -> B[ -> C,} of exact sequences in A the product
sequence

is also an exact sequence in A.
2. By considering Aop, show that a cocomplete abelian category satisfies

(AB4) if and only if direct sums of exact sequences are exact sequences.

A.4.6 For the last two axioms, we assume familiarity with filtered colimits
and inverse limits (see A.5.3 below). These axioms are discussed in Chapter 2,
section 6 and Chapter 3, section 5.

(AB5) A is cocomplete, and filtered colimits of exact sequences are exact.
Equivalently, if {A/} is a lattice of subobjects of an object A, and B is any
subobject of A, then

(AB5*) A is complete, and filtered inverse limits of exact sequences are
exact. Equivalently, if {A/} is a lattice of subobjects of A and B is any
subobject of A, then

n (A;+ £) = £ +(HA;).

Examples A.4.7

1. We show in 2.6.15 that Ab and /?-mod satisfy (AB5). However, they
do not satisfy (AB5*), and this gives rise to the obstruction lim1 A/

discussed in Chapter 2, section 7. Hence (/?-mod)op cannot be S-mod
for any ring 5.

2. Sheaves(X) satisfies (AB5) but not (AB5*); see A.4.5.

Exercise A.4.6 Show that (AB5) implies (AB4), and (AB5*) implies (AB4*).

Exercise A.4.7 Show that if A ^ 0, then A cannot satisfy both axiom (AB5)
and axiom (AB5*). Hint: Consider ®A; -> f ] A/.

A.5 Limits and Colimits (see Chapter 2, section 6)

A.5.1 The limit of a functor F: I —• A (if it exists) is an object L of A,
together with maps nc. L -> F; (/ e /) in A which are "compatible" in the
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sense that for every a: j; —• / in / the map 717 factors as Fa7Tj\ L -> Fj -> F,,
and that satisfies a universal property: for every A e A and every system of
"compatible" maps /,: A -» F/ there is a unique A: A -> L so that // = 717A..
This universal property guarantees that any two limits of F are isomorphic.
We write lim,€/ F, for such a limit. For example, if / is a discrete category,
then lim/G/ F, = Yliei ^ " s o Pr°ducts are a special kind of limit.

A category A is called complete if lim F; exists for all functors F: / —> A
in which the indexing category / is small. Many familiar categories like Sets,
Ab, /?-mod are complete. Completeness of an abelian category agrees with
the notion (AB3*) introduced in A.4.3 by the following exercise, and will be
crucial in our discussion of lim1 in Chapter 3, section 5.

Exercise A.5.1 Show that an abelian category is complete iff it satisfies
(AB3*).

Dually, the colimit of F: / -> A (if it exists) is an object C = colim/ ej Ft

of A, together with maps i/: F; -» C in A that are "compatible" in the sense
that for every a: j —• / in / the map tj factors as iiFa\ Ft -> Ft ^ C, and that
satisfies a universal property: for every A e A and every system of "compati-
ble" maps ft: F[ -> A there is a unique y: C —>• A so that // = yi[. Again, the
universal property guarantees that the colimit is unique up to isomorphism,
and coproducts are a special kind of colimit. Since F: / —• A is the same as a
functor Fo p : / o p —• *4°p, it is also clear that a colimit in A is the same thing as
a limit in Aop.

A category A is called cocomplete if colim F/ exists for all functors F: / —>
.4 in which the indexing category / is small. Many familiar categories like
Sets, Ab, /?-mod are also cocomplete. Cocompleteness plays a less visible
role in homological algebra, but we shall discuss it and axiom (AB3) briefly in
Chapter 2, section 6.

Exercise A.5.2 Show that an abelian category is cocomplete iff it satisfies
axiom (AB3).

As a Natural Transformation A.5.2 There is a diagonal functor A: A ->• A1

that sends A e A to the constant functor: (AA); = A for all / e / . The compat-
ibility of the maps n}•: lim(F/) —• Fj is nothing more than the assertion that n
is a natural transformation from A (lim F{) to F. Similarly, the compatibility
of the maps Lj\ FJ —»• colim F/ is nothing more than the assertion that 1 is a
natural transformation from F to A (colim F/). We will see that lim and colim
are adjoint functors to A in exercise A.6.1.
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Filtered Categories and Direct Limits A.5.3 A poset / is called filtered, or
directed, if every two elements i, j e I have an upper bound k e I (i < k and
j <k). More generally, a small category / is called filtered if

1. For every /, j e / there is a k E / and arrows / —> k, j —> k in / .
2. For every two arrows w, v:i —> j there is an arrow w: j —> k such that

wu = wv in Hom(/, k).

This extra generality is to include the following example. Let M be an abelian
monoid and write / for the "translation" category whose objects are the el-
ements of M, with Hom/(/, j) = {m e M:mi = j}. I is a filtered category,
because the upper bound in (1) is k = ij = ji, and in axiom (2) we can take
w = i e Hom/O', ij).

A filtered colimit in a category A is just the colimit of a functor A: / -» A
in which / is a filtered category. We shall give such a colimit the special sym-
bol colim(A;), although (filtered) colimits over directed posets are often called

direct limits and are often written lim A/. We shall see in Chapter 1, section 6

that filtered colimits in /?-mod (and other cocomplete abelian categories) are
well behaved; for example, they are exact and commute with Tor. This pro-
vides an easy proof (3.2.2) that S~lR is a flat /^-module, using the translation
category of the monoid S.

Example A.5.4 Let / be the (directed) poset of nonnegative integers. A func-
tor A: I -> A is just a sequence Ao - • A\ -^ A2 -> • • • of objects in A, and
the direct limit lim/^ooA; is our filtered colimit colimA/. A contravariant

functor from / to A is just a tower • • • -> A2 —• A\ -> Ao, and the "inverse
limit" is the filtered limit lim A/ we discuss in Chapter 3, section 5.

A.6 Adjoint Functors (see sections 2.3 and 2.6)

A.6.1 A pair of functors L: A —• B and R: B —> A are called adjoint if there
is a set bijection for all A in A and 5 in B:

x = TAB\ Hom^(L(A), B) ^ > Honu(A,

which is "natural" in A and B in the sense that for all / : A ->• A' in .4 and
g\B^> B' in $ the following diagram commutes.
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KomB(L(A'),B) — ^ Hom#(L(A), B) -^» Hom#(L(A), Bf)

1* I* I*
HomA(A\R(B)) —> HornA(A, R(B)) —^> HornA(A, R(B'))

That is, r is a natural isomorphism between the functors Hom#(L, —) and
H o n u ( - , R) from A°v x B to Sets. We say that L is the left adjoint of /?,
and R is the ng/tf adjoint of L. We also say that (L, /?) is an adjoint pair.

Here is a familiar example of a pair of adjoint functors. Let k be a field and
L: Sets - • (k-vector spaces) the functor sending a set X to the vector space
with basis X. (L(X) is the set of formal linear combinations of elements of
X). This is left adjoint to the forgetful functor U, because Hom^(L(X), V) is
the same as Homsets(^ U(V)).

We will see many other examples of adjoint functors in Chapter 2, section 6.
The most important for Chapter 3 is the following adjunction between Horn
and tensor product. Let R be a ring and B a left /^-module. For every abelian
group C HomAb(#, C) is a right ^-module: (fr)(b) = f(rb). The resulting
functor Hom\\y(B, —): Ab - • mod-/? has L(A) = A <S>R B as its left adjoint.
(See 2.3.8 and 2.6.2.)

Exercise A.6.1 Fix categories / and A. When every functor F: I -> A has a
limit, show that lim: A1 —• A is a functor. Show that the universal property of
lim Ft is nothing more than the assertion that lim is right adjoint to A. Dually,
show that the universal property of colim F/ is nothing more than the assertion
that colim: A1 —> A is left adjoint to A.

Theorem A.6.2 An adjoint pair (L, R):A^- B determines

1. A natural transformation ^:id^4 =>• RL (called the unit of the adjunc-
tion), such that the right adjoint of f: L(A) -> B is R(f) o r\p,\ A ->
R(B).

2. A natural transformation e: LR =>• id# (called the counit of the adjunc-
tion), such that the left adjoint ofg: A -> R(B) is £B o L(g): L(A) - • B.

Moreover, both of the following composites are the identity:

(*) L(A) ^ l LRL(A) -^> L(A) and R(B) - ^ RLR(B) ^ l R(B).

Proof The map rjA'. A -+ RL(A) is the element of Hom(A, RL(A)) corre-
sponding to id^A ^ Hom(L(A), L(A)). The map ^^: LR(B) -> B is the el-
ement of Hom(LR(B), B) corresponding to id#£ e Uom(R(B), R(B)). The
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rest of the assertions are elementary manipulations using the naturality of r
and are left to the reader as an exercise. The lazy reader may find a proof in
[MacCW,IV.l]. O

Exercise A.6.2 Suppose given functors L:*4—• B, R:B -> A and natural
transformations r\\ id̂ 4 => RL, s: LR =$> id# such that the composites (*) are
the identity. Show that (L, R) is an adjoint pair of functions.

Exercise A.6.3 Show that s o (LRs) = s o (eLR) and that (RLrj) o rj =
(rjRL) o rj. That is, show that the following diagrams commute:

LR(LR(B)) % LR(B) A > RL(A)

£ RLrj

LR(B) > B RL(A) > RL(RL(A))

Reflective Subcategories A.6.3 A subcategory B of A is called a reflective
subcategory if the inclusion functor t: B c A has a left adjoint L: A -> #; L
is often called the reflection of A onto #. If # is a full subcategory, then by
the above exercise B = R(B) for all # in B. The "reflection" onto a skeletal
subcategory is a reflection in this sense.

Here are two examples of reflective subcategories. Ab is reflective in
Groups; the reflection is the quotient L(G) = G/[G, G] by the commutator
subgroup. In 2.6.5 we will see that for every topological space X the category
of sheaves on X is a reflective subcategory of the category of presheaves on
X\ in this case the reflection functor is called "sheafification."
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Index

Ab (category of abelian groups), xiv, 25ff,
39ff, ch.3, 152ff, 160ff, 189ff, 196,
Appendix A.

Ab-category, 5,411, 424-425
Abelian category, 6ff, 18, 25ff, ch.2, 79, 80,

82, 86, 116, ch.5, 211, 220, ch.8, ch.9,
ch.lO,424ff

Abelian subcategory, 7, 12, 26
AB3 axiom, 426. See also cocomplete abelian

category.
AB3* axiom, 426. See also complete abelian

category.
AB4 axiom, 125,426
AB4* axiom, 80ff, 86, 125, 153, 426
AB5 axiom, 57-58, 153, 387, 390, 427
AB5* axiom, 427
Acyclic Assembly Lemma, 9, 59ff, 145, 277
acyclic chain complex (exact complex), 3, 9,

15-16, 59ff, 113, 148, 150, 266-7, 277,
364, 403

CJ (in Hochschild homology), 333ff, 344
acyclic object. See F-acyclic object.
Adams, J. R, 408
additive category, 5ff, 25, ch.10, 425
additive functor, 5, 26ff, 115, ch.2, 147, 281,

377, 383, 390ff, 424-5
adjoint functors, 27, 41ff, 51-58, 70, 75, 116,

160ff, 195ff, 218, 221, 223-4, 232ff,
259, 261, 273, 280ff, 297, 400-410, 428,
429ff

right adjoints preserving injectives. See
injective objects.

adjoint representation of Q, 220, 243, 248
Adjoints and Limits Theorem, 55
Afflne Lie algebra, 250ff
Alexander-Whitney map, 277-278
algebraic K -theory. See A'-theory,
alternating groups An, 199, 202
amplitude of a chain complex, 3
analytic neighborhood of a point, 105
Andre, M., 295
Andre-Quillen homology D*(R/k) and

cohomology D*(R/k), 285, 294ff,
324ff, 353

antipode. See Hopf algebra.
Aristotle, 418
Artin-Rees theorem, 115
ascending chain of ideals, 103, 118. See also

noetherian ring,
aspherical (augmented) simplicial object,

274-5, 282-286, 293, 296, 299
associated graded algebra, 226, 358
associated prime ideals, 106
augmentation ideal of a group ring, 162-178,

225
of a Lie algebra, 222, 225, 228ff, 245

Auslander-Buchsbaum equality, 109
automorphism stabilizing G or Q, 176-7, 231
Avramov, L., 323

B. See Connes' double complex.
B(C). See boundaries.
Baer, R., 38, 78
Baer's criterion, 39, 70, 94
Baer sum, 78ff
balanced functor, 64, 67, 99, 143, 149, 289,

395,400
bar resolution (normalized and unnormalized)

for an algebra or module (B(R, M) and
P(R, M)), 283, 291ff, 299, 300ff, 319ff,
328

of a group (5*(G) and B»{G)), 177ff, 211,
245, 278ff, 290-292

Barr, M., 286-287, 297, 298, 324
Barr's Lemma, 324ff, 353
Barr's Theorem, 298, 324
base change for Tor and Ext, 144, 145, 152,

171,293,404,406
— for smooth algebras, 314-318, 322
derived functors for — See Lf*.

based loops. See loop spaces,
based section, 185, 187
base space. See Serre fibration.
base terms of a spectral sequence, 124
Beck, J., 286-287
BG (classifying space), 204, 257, 260ff, 264,

270, 331,338ff
bialgebra, 194,319
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bicomplex. See double complex,
bidegree of a map, 154ff
bimodule, 52ff, 145, 174, ch.9
binary icosahedral group, 199
bisimplicial objects, 275ff, 284, 319, 328ff
Bloch, S., 368
Boardman, M., 138
Boardman's criterion, 138ff
Bockstein spectral sequence, 158ff
boundaries, 2, 60ff, 83, 87, 127, 145
bounded above. See chain complex,
bounded below. See spectral sequence, chain

complex.
bounded complex. See chain complex,
bounded convergence. See convergence,
bounded filtration. See filtration,
bounded operators on a Hilbert space, 97
bounded spectral sequence. See spectral

sequence.
Bourbaki, N., 3, 17, 62, 92, 125, 145
Brauer, R., 96
Brauer group Br(K), 176, 187, 214ff
Browder, W., 158
brutal loop space A A. See loop space,
brutal truncation oC. See truncation.
Buchsbaum, D., 109
Burghelea, D., 343

C* (complex units), 27, 164, 199, 205
calculus of fractions, 369, 379ff
cancellation. See multiplicative system.
Cantor set is profinite, 208
Cartan, E., 247
Cartan-Eilenberg resolution, 145ff, 149, 151,

380, 388, 394
Cartan's criterion for semisimplicity, 243, 244
Casimir, H., 247
Casimir operator CM, 244ff
Cat (category of small categories), 421
category, 417
Cauchy sequence, 82
CC**, 333. See also Tsygan's double complex,
cellular chain complex, 19, 21, 84, 260, 390
cellular complex. See CW complex,
cellular inclusion, 409, 412, 415
central extensions. See extensions,
centralizer subgroup CQ(X), 340ff
CQ (category of discrete G-modules), 210
chain complex, Iff, 29

associated to a simplicial object. See
unnormalized —.

augmented chain complex, 34, 99, 114, 145,
149, 238, 260, 274, 278ff, 290, 299

bounded, bounded below, bounded above,
3, 16, 31-2, 143, 147ff, 166-7, 370, 385,
387ff, 409

cellular—, 19,390
Ch (category of chain complexes), 3ff, 18,

26,34,40,80, 147, ch. 10, 415
Ch*, Ch~, Ch+, 3, 370
Chevalley-Eilenberg —. See Chevalley-

Eilenberg complex,
filtered. See filtration,
of flat modules, 87, 143, 148, 167, 395ff
Hochschild —. See Hochschild chain

complex.
Moore —, 265. See also normalized —.
non-negative (Ch>0), 3, 31, 264, 27Iff, 277
normalized, 265ff, 270ff, 283, 346, 350,

352, 356ff
of projectives. See resolution by projectives.
simplicial —, 4, 260
singular —, 5, 88, 132, 204ff, 260ff, 254
split —. See split complex,
standard —. See Hochschild chain complex,
unnormalized, 259, 265-278, 282ff, 301,

302
chain contraction, 17, 36, 180, 267, 344, 346,

357
chain homotopy of maps of complexes, 15, 17,

21, 44, 147, 269, 273, 319, 370, 387
chain homotopy equivalence. See homotopy

equivalence.
of maps of double complexes, 146ff

chain map. See morphism.
Change of Rings Theorems, 99ff

First— lOOff, 108
General —, 99
Hochschild homology —, 295, 305, 307,

323
Injective—, 104, 107
Second— lOlff
Third— 102ff, 109ff

Chevalley, C , 238, 248
Chevalley-Eilenberg complex V*(g), 238ff,

250, 254, 260, 362ff
circuits of a graph, 4
Classical Convergence Theorem, 135
Classification Theorems for Extensions, 77,

183, 188,235, 238, 312ff
classifying map for extensions, 235
classifying space BG for G. See BG.
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Clayburgh, J., 11
coalgebra, 193, 227, 363, 365ff
coboundaries, 3, 149, 179, 185, 187, 240, 312
cochains, 179ff, 212ff, 240, 250
cochain complex, 3, 150, 212, 271, 285, 349,

ch.10
de Rham —. See de Rham complex.
ofinjectives, 149ff, 387ff

cocomplete category, 428
— abelian category (AB3), 9, 43, 54ff, 147,

426ff
cocycles, 3, 179, 184-187, 21 Iff, 235,

241-242, 250ff, 312
codegeneracy operators, 256
coefficient functor, 286
coeffaceable functor. See functor,
coface operators, 256
cofibrant topological space, 412
cofibration sequence, 412ff
Cohen-Macaulay ring, 105ff, 111, 117, 119
cohomological dimension. See dimension,
cohomological functor, 377ff, 386, 397
cohomological 5-functor, 30ff, 49, 81, 86, 113,

189, 195,212,423
cohomology:

of a cochain complex, 3, 31, 32, 49, 271
cotriple —. See cotriple (co)homology.
de Rham —. See de Rham cohomology.
generalized cohomology theory, 85
of groups, ch.6

Hl and derivations, 175, 213, 230
H and extensions. See extensions.
Hochschild —. See Hochschild homology.
of Lie algebras, ch.7
local cohomology, 115ff
of profinite groups, 21 Iff
ring structure (cup product), 192, 227
sheaf— 26, 51, 53, 115, 150, 152, 285,

370
of a topological space, 5, 89, 379
triple —. See triple cohomology.

cohomotopy n*(X), 271, 287, 295ff, 301
coinduced G-module, 17Iff
coinflation (coinf), 190, 196, 344
coinvariants of a G-module, 160ff, 283, 286,

304
-of a g-module, 221ff, 363-367.

cokernel, 1, 6ff, 15, 26, 29, 54ff, 81, 220, 410,
419, 425ff

collapsing spectral sequence. See spectral
sequence.

colimits, 54ff, 428^30. See also limits,
filtered colimit (direct limit), 55ff, 66ff, 74,

115ff, 212ff, 314, 316, 387, 410, 427,
429. See also (AB5) axiom.

Commalg (commutative algebras), 285,
297ff

commutator subalgebra [0, 0], 217, 228, 236,
242, 244, 248ff

commutator subgroup [G, G], 163ff, 199ff,
431

Comparison Theorem for resolutions, 35-36,
40, 44ff, 65, 79, 290, 291

for spectral sequences, 126ff, 346, 395
compatible map of spectral sequences, 126
complete category, 428

— abelian category (AB3*), 9, 43, 55ff, 80,
426ff

Complete Convergence Theorem, 139ff
complete filtration. See filtration,
complete topological group, 82
completely reducible module, 246, 248
complex. See chain complex, simplicial

complex.
complex algebraic variety, 105, 119, 131, 354
Composition Theorem, 402ff
concrete category, 418, 422, 425
cone(f):

mapping cone, 10, 18ff, 34, 49, 59, 63, 149,
270, 371ff, 387-391, 415

mapping cone spectrum, 410, 413ff
topological cone, 19-20, 24, 413ff

congruence subgroup V(N), 205
conjugacy classes < G >, 340ff, 366
conjugation, 183, 190-191, 247, 340, 365
connecting homomorphism 3, lOff, 19, 24, 46,

65, 77, 265, 287ff, 320
Connes, A., 332, 344, 348
Connes' double complex B, 345ff

Connes' operator B, 344-349, 352
Connes' sequence, 336
Connes' spectral sequence, 346. See also

spectral sequence,
constant sheaf. See sheaves.
Construction Theorem for spectral sequences,

132ff
Continuum Hypothesis, 92, 98
contour integral, 27
contractible simplicial object, 20, 275ff, 282ff,

293-294, 298
contractible space, 20, 129, 204ff, 415
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convergence of spectral sequences, 123, 126,
135ff, 395

approaches (abuts to), 126, 141
bounded convergence, 123-125, 132, 135,

143
Classical Convergence Theorem, 132, 135,

137,139, 142, 157
Complete Convergence Theorem, 139-142,

157
convergent above, 125
weakly converges, 126, 135ff, 140-2, 150,

156
coproduct in a category, 5, 29, 55, 170, 259,

420^28
— in a coalgebra. See coalgebra.
— of spectra. See wedge,

corestriction (cor), 189ff, 196, 199
Cortinas, G., 342
cosimplicial objects, 86, 254, 256, 257, 260,

271,281,285,287,301
cotangent complex LR/k, 295, 297
cotriple ±, 279-299
cotriple (co)homology, 286ff, 295, 297-298
counit e of an adjunction, 430. See also adjoint

functors.
— in a coalgebra. See coalgebra.

covering space, 203ff
crossed homomorphisms, 174ff, 306
crossed modules, 187ff
crossed product algebras, 187ff
cross product. See products.
c.s.s. (complete semisimplicial set), 259
cup product. See products.
CW complex, 19, 21, 24, 84, 204, 257-261,

409, 412, 415
CW prespectrum, 409, 412. See also

prespectrum.
CW spectrum, 410. See also spectrum,

cycles, 2, 14, 17, 23, 36, 60ff, 83, 127, 133ff,
156

cyclic category AC, 33Iff
cyclic groups Cn, 140, 162, 167ff, 173, 176-

7, 189-193, 197, 205, 304, 330-334,
341-343, 347, 350, 355, 366

homology and cohomology of—, 168
cyclic homology HC, ch.9.

negative — HN, 338
of an algebra HC*(R), 334ff
of a cyclic object, 334ff
ofDG-algebras, 359ff
of a group, 338ff

of an ideal, 347, 358-359
of a mixed complex, 345ff
periodic — HP, 337-338, 340, 343, 351,

354, 355
of a smooth algebra, 337, 351, 354

cyclic objects, 330ff, 354
— G-sets, 339, 343
— modules, 331,336, 338ff
— sets, 331, 338ff
ZG, 331, 340ff
ZR, 330-333, 346, 354-360

cylinder cyl(f) :
mapping cylinder, 20ff, 370ff
topological cylinder, 21, 411, 414
cylinder spectrum, 410-414

A. See simplicial category.
AC. See cyclic category.

3-functor, 391. See also triangulated
categories.

<$-functor. See cohomological —, homological
—, universal —.

D*{R/k), D*(R/k). See Andre-Quillen
homology and cohomology.

T>(A), 63, 369, 379. See also derived category.
D b U ) , D ~ U ) , D+OA), 384, 388ff,

392-407
D(R), 400ff
D(<S). See stable homotopy category.
D(X), 397ff, 402, 407

Dedekind domain, 90, 98
degeneracy maps rji in A, 255, 332
degeneracy operators 07, 256, ch.8, 330, 354
degenerate subcomplex D(A), 266, 272, 346
delooping of a spectrum, 408
Dennis, R. K., 328
denominator set, 380
de Rham cohomology, 337, 349ff, 355, 359

— complex, 349
derivation, 174ff, 213, 218, 229ff, 237, 245,

294ff,306ff, 314-315,358
Der(G), Der(g), 174ff, 179, 229-233, 294ff,

306ff
derived category D, ch.10, 385

bounded, bounded above/below, 384, 386
exists, 386-388
topological derived category, 407ff
is triangulated, 385

derived couple, 154ff, 348
derived functors of F, ch.2, ch.10. See also

homology, cohomology.
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derived functors of F (cont.)

hyper-derived L[F,W F. See hyper-derived
functors,

left — (Lt F), 43ff, 50, 53, 63, 68, 143, 147,
157, 161,221,271,391

of lim, 81, 86, 139. See also lim1.
right — (R'F), 49ff, 53, 64, 115, 161,211,

221,228,271,391
_L-left —, 287, 293
total left —LF, 39Iff
total right — RF, 39Iff
are universal <5-functors, 47, 50, 225,

290
derived series of a Lie group, 219, 242, 247
descending chain condition, 82
DG-algebra, 112, 134, 181ff, 292, 321, 325,

349,359-361,367
DG-coalgebra, 366, 368
diagonal simplicial object, 275ff, 284
differential graded algebra. See DG-algebra.
differentials of a chain complex, 2, ch.l, 58,

61, 83, 86, 122, 177, 333, 345, 360
Diff(P*), 298
in a spectral sequence, 120-127, 130, 133,

140, 240, 346, 348
Kahler —. See Kahler differentials,

dihedral groups, 177, 183, 191, 197, 202
dimensions, ch.4

cohomological —, 226, 241, 394, 398, 403
embedding — (emb. dim), 105, 110, 111
flat — (fd\ 91ff, 108, 144, 396, 397
global — (gl. dim), 91ff, 100, 108-111,

114,226,241,310
homological —, 92, 394, 396
injective — (id), 91ff, 104, 107, 114, 400
Krull — (dim), 97, 98, 105ff, 114, 317ff,

323, 398, 402, 407
projective — (/?d), 91-111, 161, 169,241
Tor—,92ff, 397,405
weak —, 92

dimension shifting, 44, 47, 71, 80, 93, 147ff,
169

direct image sheaf (f*T), 42, 51-54, 152,
396ff, 402, 406ff

direct limit. See colimit.
discrete category, 25, 80, 418, 428
discrete G-module, 21 Off
discrete valuation ring, 98, 105
divisible abelian group, 39, 73, 74, 158, 214.

See also injective module.
Dold, A., 21,270

Dold-Kan correspondence, 264, 270-276, 286,
346, 415

domain (integral domain), 68, 106, 116
double chain complex, 7ff, 15, 58ff, 85, 99,

141-150, 276, 335, 352ff, 359ff, 426
first quadrant —, 8, 60, 63, 120ff, 143ff,

275ff, 298, 328, 337, 359
fourth quadrant —, 62, 142, 143, 360
half plane —, 60ff, 143, 145ff, 337
Horn —, 62. See also Horn,
second quadrant —, 62, 86, 142, 143, 338
tensor product —,58. See also tensor

product.
total complex of —. See total complex.
Tsygan's — CC**, 333ff, 339, 343-348

duality. See also Pontrjagin duality,
dual category. See opposite category,
dual module B*. See Pontrjagin dual,
front-to-back dual simplicial object AC),

263, 266, 275, 289

E°° terms, 125. See also spectral sequence.
edge map. See spectral sequence.
effaceable functor. See functor.
EG. See BG, path space.
Eilenberg, S., 80, 205, 238, 248, 259, 277, 418
Eilenberg-MacLane space K(n, n), 257, 264,

268, 274
Eilenberg-Moore filtration sequence, 136, 140,

142, 338
Eilenberg-Moore spectral sequence, 361
Eilenberg-Zilber Theorem, 88, 275ff, 284
elementary matrices En, 203, 229, 294
Elmendorf, A., 415
embedding:

embedding dimension. See dimension.
Freyd-Mitchell Embedding Theorem, 12,

14, 25ff, 79, 266, 276
Yoneda embedding, 28, 422, 424. See also

Yoneda Lemma.
enough injectives. See injectives.
enough projectives. See projectives.
enveloping algebra Re, 302ff. See also

universal enveloping algebra,
epi morphism, 6ff, 13, 220, 255, 419, 425ff
equivalence of categories, 270, 423
equivariant homology, 361
espace totale. See Serre fibration.
essentially of finite type, 322, 323, 326, 351

Eulerian idempotents e^ . See idempotents.
exact couples, 153ff, 348
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exact functor, 25, 27, ch.2, ch.3, 115,116, 144,
152, 160ff, 21 Iff, 221, 276, 391, 429.

preserves derived functors, 45, 53
exact sequence, 1, 3, 7, 16, 79, 285, 425ff. See

also short exact, long exact sequence.
— of low degree terms. See low degree

terms.
exact triangle, 15, ch.10. See also triangle.
Exalcomm(/?, M), 295, 297
exhaustive filtration. See filtration.
Existence Theorem for total derived functors,

393-396, 403
exponential map, 27, 205
extensions:

algebra—,31 Iff
central —, 198ff, 236, 248ff
commutative algebra —. See Exalcomm.
cyclic galois —, 173, 176

group — (and H2(G)\ 182ff, 198ff, 234,
235

Hochschild — (and H2(R)\ 31 Iff, 317
Lie algebra — (and H2(Q)), 231, 234ff,

241,246,248ff
module — (Ext1 and Hl), 76ff, 232, 241,

246,351
of profinite groups, 213
of restricted Lie algebras, 238
split —, 76ff, 182ff, 234, 31 Iff
universal —. See universal central

extensions,
exterior algebra complex A*M, 112, 229,

238ff, 292, 304, 365
exterior algebra Q*. See Kahler

differentials.
external products. See products.
Ext functor Ext^(A, B), 50-51, 63, ch.3, 91ff,

106ff, 114-119, 145, 161ff, 172, 221,
225-229, 241, 246, 287, 289, 295, 422,
423

Ext(g, M). See extensions of Lie algebras.
Ext1 and module extensions, 76ff
external product for Ext, 291
hyperext Extn(A*, £*), 399ff
relative Ext, 288ff, 302ff, 311
Yoneda Ext, 79ff, 188

/* of a sheaf. See direct image sheaf.
/* of an 5-module, 396-405
/ * of an fl-module (= ®RS), 396-7, 400-406
face maps £; in A, 255, 332

face operators dt, 256, ch.8, 277, 330, 354,
356

factor set, 184ff, 213, 311, 312
F-acyclic object, 44, 47, 50, 51, 148, 150ff,

162, 282ff, 392ff, 403ff. See also flat,
projective modules.

Faith, C , 96
fd(A). See dimension.
fd lemma, 93, 94, 310
Feigin, B., 362
fiber. See Serre fibration.

fiber bundles for G, 257
fiber terms (of a spectral sequence), 124
fibrant simplicial set (Kan complex), 262,

263ff, 267, 275, 285, 293
fibration:

G-. See G-fibration.
Kan fibration (of simplicial sets), 262, 263,

265,270,415
Serre —. See Serre fibration.

filtered category, 56ff, 69, 86, 207, 429
filtered colimit. See colimit.

filtration of a chain complex, 84, 131-143,
155, 239, 324, 346, 358

bounded— 132ff, 135ff
bounded above —, 125, 132, 140
bounded below —, 132-140, 157, 239
canonical bounded —, 132-135, 142ff, 266
complete, 132, 135-141
exhaustive, 125, 131, 135ff, 156, 239
Hausdorff, 132, 135ff
— of a double complex, 141ff, 335, 348,

360
regular—, 124

finitely generated algebra, 296, 352
finitely generated module, 25, 70, 73-76, ch.4,

158, 166, 180,296,422
finitely presented module, 70ff, 75, 93, 98, 401
first fundamental exact sequence for SlR/k,

297,308,314,360,368
first quadrant double complex.See double

complex.
5-lemma, 13, 23, 71, 75, 123, 273, 361, 375
flasque sheaf, 407
flat base change for Tor, 72, 163, 293, 296,

305, 323
— for Andre-Quillen homology, 297

flat dimension. See dimension.
flat modules, 68-74, 87-88, 91ff, 101, 111,

112, 143ff, 163, 167, 193, 291-293,
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303-305, 308, 339, 360, 363, 395, 406,
429

finitely presented flat modules are
projective, 71, 96

tensor product of—, 303, 360
are Tor-acyclic, 44, 69

Flat Resolution Lemma, 71, 293
forgetful functor U, 41, 44, 53, 96, 101, 189,

195, 218, 223, 232ff, 259, 280-284, 410,
421,424,430

formal space, 361
fourth quadrant double complex. See double

complex,
fractions, 379ff
free groups, 161, 167, 169ff, 199. See also

presentations.
free abelian groups, 66ff, 84, 87ff, 169, 267

free Lie algebra. See Lie algebra,
free loop space. See loop space,
free modules, 33, 90, 98-103, 109, 162, 169ff,

177, 189, 221-226, 229, 235, 238ff, 260,
278, 294, 297, 318, 324, 338-344.

free module cotriple, 281, 284, 286
free product (coproduct) of groups, 170, 269
free ring (free algebra), 222, 223, 285,

293-294, 356ff
Freudenthal, H., 205
Freyd, J. P., 25
Freyd-Mitchell Embedding Theorem. See

Embedding.
Frobenius algebra, 96ff
front-to-back duality. See dual,
full subcategory (full functor), 25, A22-A25
function between prespectra, 409ff
functor, 14,421

additive. See additive functors.
adjoint. See adjoint functors.
— category. See functor category.
coeffaceable, 49
0-functor, 391
derived. See derived functor.
effaceable,28,49,213
exact functor. See exact functor.
faithful, 421
forgetful. See forgetful functor.
fully faithful, 12,25,383,422
hyper-derived. See hyper-derived functor.
left balanced, 64
left exact, 25, 27-32, 49-53, 83, 115, 149,

150ff, 160,221,290
right balanced, 64

right exact, 25, 27, 30ff, 43ff, 52ff, 71,
147-151,157,161,221,290

functor category, 25ff, 43, 54ff, 80ff, 160, 288,
424-430

fundamental sequences for QR/IC> 297,
308-309,314,360,361,368

G(A). See grade.
Gabber, O., 387
Gabriel, P., 29, 382
Gabriel-Zisman Theorem, 382
Galois extension of fields, 173, 175ff, 186-7,

206ff, 214
Fundamental Theorem of Galois Theory,

207,210
Galois group. See Galois extension.
Garland, H., 253
General Change of Rings Theorem, 99
general linear group. See GLn, gin.
generating functions, 355
geometric realization |X|, 257-261, 264, 267,

415
adjoint to singular simplicial set, 261

geometrically regular algebra, 317
Gersten, S., 294
Gerstenhaber, M , 323
G-fibration, 263, 265, 270, 343
g-invariant bilinear form, 243ff, 250ff
{fin Lie algebra, 217, 229, 233, 244-248, 362ff
GLn{A), 182, 186,203,294
global dimension gl. dim(/?). See dimension.
Global Dimension Theorem, 91, 94, 114, 226,

241,311
global sections functor T, 51, 54, 115, 150,

152,285, 397, 407
G-module, 160, ch.6, 278-282, 339, 343, 424
0-module, 219, ch.7
Godement resolution. See resolution.
Goodwillie, T, 354, 361
Goodwill 's Theorem, 354-359
Gorenstein ring, 97ff, 107-111
Grade 0 Lemma, 109, 110
grade G(A) of a module, 105ff, 116ff
graded abelian group or module, 25, 29, 127,

145, 158,218
graded algebra, 65, 112, 135, 223, 32Iff, 349,

354-359
associated —, 226, 358
differential —. See DG-algebra.
graded-commutative —, 112, 181-2, 192ff,

227, 292, 32Iff, 349, 368
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graded coalgebra. See coalgebra.
graph, 3-4
Grothendieck, A., 30, 80, 82, 150, 370, 379,

398, 426
Grothendieck spectral sequence. See spectral

sequence.
group ring kG, Ch.6, 223, 301, 338ff
Guccione, J., 342
Gysin sequence, 131, 197, 336, 344

half plane double complex. See double
complex.

Hartshorne, R., 119
Hasse invariants, 215
Hausdorff topological space (or group), 97,

135, 208ff, 419
Hausdorff filtration. See filtration,
hereditary ring, 90, 98
higher direct image sheaf functors (Rl /*) , 53,

397ff, 402, 406ff
Hilbert, D., 176
Hilbert basis theorem, 322
Hilbert-Samuel function h(n), 317

— polynomial //(/i), 317
Hilbert space, 97
Hilbert's Syzygy Theorem, 102, 114
Hilbert's Theorem 90, 173, 175ff, 213ff
Hochschild, G., 195, 302, 313, 322, 351
Hochschild chain complex c j , 299, 300, 319,

323, 328, 333, ch.9
Hochschild extension. See extension.
Hochschild homology (and cohomology), 299,

300, 333, ch.9
Hochschild-Kostant-Rosenberg Theorem,

322ff,351
Hochschild-Serre. See spectral sequence.
Hodge decomposition:

in cyclic homology, 352ff
in Hochschild homology, 299, 323ff, 353

Horn double complex, 62ff, 90, 398ff
Horn functor, 3, 5, 27, 34, 40ff, 51ff, 62ff, 115,

118, 161ff, 377, 382, 42Iff, 429ff. See
also Ext.

as a g-module, 226, 244
in derived categories. See hyperext.
is left exact, 27-28, 52
sheaf Horn Horn. See sheaf Horn,

homogeneous space, 205
homological 5-functor, 30ff, 43, 45ff, 113,

146,189, 195, 265, 276, 423
homological dimension. See dimension.

homologism, 3
homology:

of a chain complex, Iff, 31, 32, 49, 87ff,
120ff,266, 271

cotriple —. See cotriple (co)homology.
cyclic —. See cyclic homology.
generalized homology theory, 21, 85
of a group, ch.6, 257, 260, 282, 338ff
Hochschild —. See Hochschild homology.
of a Lie algebra, ch.7, 362ff
simplicial —, 4, 260, 267, 277
singular—, 4-5, 88, 158, 260, 267, 361
Universal Coefficient Theorem, 88

homotopism, 17
homotopy. See chain homotopy, homotopy

equivalence,
homotopy category of chain complexes in

A. See K(A)).
homotopy category of spectra K(<S), 409,

411ff
homotopy classes of maps [E, F], 41 Iff
homotopy commutative diagram, 413
homotopy lifting property. See Serre

fibration.
simplicial homotopy from / to g, 268ff,

273-277, 339, 341
homotopy equivalence, 261

chain —, 17-23, 35ff, 40, 63, 65, 147, 284,
290, 296, 319, 360, ch. 10

simplicial —, 204, 270, 273, 296-297, 339,
341

weak — of spectra, 409ff
homotopy groups TT*(X), 128, 129, 158, 188,

204, 263ff, 271,409
of a simplicial object, 265ff, 271, 276,

283-286, 293
of a simplicial set, 263ff, 271, 276ff
of a spectrum, 409ff

Hopf, H., 198, 205
Hopf algebra, 194, 226-7, 319, 367ff
Hopf's Theorem, 198, 200, 234
Horseshoe Lemma, 36, 37, 45, 46, 99, 146
//-space, 159
Hurewicz homomorphism, 129, 267
hyperbolic plane, 205
hypercohomology, 150, 166, 354, 398, 404
hyper-derived functors (L*F and [R*F,

147-151, 166, 391-395, 402ff
hyperext Extn(A*, B*), 399ff
hyperhomology, 145ff, 157, 166, 206, 309,

339
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hyper-derived functors Q_*F and R*F (cont.)
hypertor Tor, 148ff, 167, 395ff, 402

id {A). See dimension.
id lemma, 93
ideal of a Lie algebra, 216, 232ff, 242ff
idempotent element, 97-98, 163, 311

Eulerian —4°,325ff,352ff
signature —. See signature idempotent.

image of/ , 1,6,220,425
induced G-module, 17Iff
infinite loop space, 408
inflation map (inf), 189ff, 196, 211, 214, 234
initial obect, 5, 383,419
injective objects, 38ff, 50, 149, 213

abelian groups (are divisible), 39, 73
cochain complexes of —, 40, 387ff, 392ff,

399ff, 405, 409
enough injectives, 38ff, 49-52, 79, 80ff,

116, 149, 150ff, 211, 223ff, 271, 380,
387-388, 399^03

injective dimension. See dimension,
injective resolution. See resolution,
modules, 38ff, 50, 69-70, 73ff, ch.4
preserved by right adjoint to exact functor,

41, 96, 116, 153, 196, 211, 213, 233, 406
inner automorphism, 177, 231
inner derivations, 229ff, 245
integral closure of an integral domain, 117
internal product for Tor. See products.
invariant subgroup of a G-module, 160ff, 304
invariant subgroup of a g-module, 22Iff, 226,

364
invariant theory, 364ff
inverse image sheaf (f~lQ), 53ff, 58, 410
inverse limit. See limits.
Jacobian criterion, Jacobian matrix, 318
Jacobi's identity, 216ff
Jacobson radical /(/?), 103, 104, 314

K(^) homotopy category, 15, 18, 63, ch. 10
K b U ) , K ± U ) , 370, 384, 388-395
K(S). See homotopy category of spectra.
Kac-Moody Lie algebra, 251
Kahler differentials QR/k, 294ff, 307ff, 314,

318,336,365

exterior algebra Q*R/Jc, 321ff, 349ff

— are projective if R is smooth, 295, 318,
323

A:—split. See split exact complex.

Kan, D., 262, 270
Kan complex, 262. See also fibrant simplicial

set.
Kan condition, 262, 263
Kan extension, 259
Kan fibration. See fibration of simplicial

sets.
Kant, I., 418
Karoubi, M., 339
Karoubi's Theorem for HC(G), 339ff
Kassel, C , 343, 345, 368
kernel, 1-2, 6ff, 15, 55ff, 81, 220, 419, 425ff
Killing, W., 247
Killing form, 243ff, 247, 250ff
Kostant,D., 322, 351
Koszul,J., 120,239
Koszul complex, 111-119, 240, 254, 260
Koszul resolution, 69, 114, 229, 292, 304
Kriz,I.,415
Krull dimension dim(/?). See dimension.
Krull's Theorem in Galois Theory, 207ff
AT-theory, 85, 203, 293-4
Kummer sequence, 186
Kunneth Formula, 87ff, 144, 277, 284

for complexes, 88, 164ff, 227, 319
for Koszul complexes, 113, 118
spectral sequence, 143

^-decomposition, 324, 326
A*M. See exterior algebra.
AX. See loop space, brutal and free.
Lf*, 396-397, 400-401, 404-406
LF. See derived functors.
Laurent polynomials, 161, 250, 337, 341
left adjoint. See adjoint functors.
left exact functor, 27. See exact functor.
left resolution, 34
Leibnitz rule, 112, 127, 134, 174, 181, 218,

229,321,359,360
Leray,J., 120, 127
Leray-Serre spectral sequence. See spectral

sequence.
Levi, E. E., 247
Levi factor, 246ff
Levi's Theorem, 246, 248
Lie, S., 216, 247
Lie algebra, ch.7, 362ff

abelian —, 217-221, 227, 229, 234ff, 243,
364

Affine (Kac-Moody) —, 250ff
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Lie algebra (cont.)
free — (see presentations), 218ff, 221-224,

233-238, 248
Lie(A) for associative algebras A, 217, 220,

223-227, 244, 362
nilpotent—,219,233
perfect —, 248ff
product of— ,219,248, 250
reductive —, 248
restricted —. See restricted Lie algebra.
semisimple —, 242-248, 250, 253
simple —, 242-244, 250ff, 363
simply connected —, 249ff
solvable—,219, 242
solvable radical Q, 242-247

Lie bracket, 216,220-224
Lie group, 131, 158, 205, 216, 247
lifting property, 33, 34ff, 78, 281, 290,

318
lim1 functor, 74, 80ff, 136ff, 153, 338, 343,

426ff
limits, 55ff, 427ff, 430

direct limits. See colimits.
inverse limits, 55, 80ff, 126, 137, 153,

207ff, 340, 343, 427, 429
local coefficients, 128
local cohomology, 115ff
localization of a category, 379-386, 389, 395,

408,415
— of a ring. See multiplicatively closed set.

Localization Theorems:
for Horn and Ext, 75ff, 163
for Tor, 73, 293,305
of regular rings, 111
of smooth algebras, 314, 316

localizing subcategory, 29, 383ff, 389, 391,
394,402,409,412

locally small multiplicative system, 381-386,
409

local field, 215
local ring, 73, 76, 97ff, 102-111, 297
Loday, J.-L., 333, 352, 362, 365, 367, 368
logarithm, 27
long exact sequences, lOff, 30ff, 45ff, 81, 113,

115, 128, 130, 148ff, 158, 168, 213, 265,
290,301,334,358

loop space QX, 129-130, 361, 408ff, 411
brutal loop space A A, 270, 273-274
free loop space AX, 361
infinite loop space, 408
-o f spectra, 408, 410

low degree terms (from a spectral sequence),
121, 129, 151, 196, 198, 214, 233ff

lower central series of a Lie algebra, 219
Lyndon, R., 195

MacLane, S., 205, 316,418
MacLane's criterion for separability, 316
Malcev, 247
manifold, 26, 105, 131, 216, 323, 349, 418
map of spectra, 408ff
mapping cone of / . See cone.
mapping cylinder cyl(f). See cylinder.
mapping lemma for spectral sequences, 123,

125, 126
Maschke's Theorem, 95, 342
Massey, W., 153
matrices, 1, 4, 70, 217, 318, 327-330, 364,

424, 425
matrix Lie algebras, 217. See also #ln, sin,

etc.
matrix ring Mn(A), 33, 95, 176, 187, 217,

245, 309ff, 327ff, 336, 362
maximal ideal, 73, 76, 97, 102-111, 318, 323
May, J. P., 415
Mayer-Vietoris sequence, 115, 119
Milnor, J., 84, 85
Mitchell, B., 25, 29, 86
Mittag-Leffler condition, 82ff, 140

trivial—, 82ff, 117, 139,359
mixed complex, 344ff

normalized —, 346ff, 352, 356ff
trivial —, 349, 352

module spectra, 415
monad (= triple), 279
monic morphism, 6ff, 13, 28, 49, 57, 220, 255,

418ff,425ff
monoid, 418
Moore, J., 270
Moore complex NA, 265. See also chain

complex.
Morita equivalent rings, 326ff

Morita invariance, 328ff, 336
morphism, 417

of chain complexes, 2ff, ch.2, 72, 75, 277,
330, 362ff

of ^-functors, 32, 48, 189, 194ff, 226, 234,
278

of spectral sequences, 122-125, 134, 135,
155,346

of triangulated categories, 377, 385, 390ff,
402

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 10 Jul 2018 at 02:08:20, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136
https://www.cambridge.org/core


Index 445

multiplicatively closed set, 69, 75ff, 111, 293,
305, 307, 380, 384

multiplicative structure. See spectral sequence,
multiplicative system, 380ff, 385

V. See shuffle product.
nm (strictly upper triangular matrices), 217,

219, 233, 235
Nagata,M., I l l
Nakayama's Lemma, 102-109, 314, 317
natural transformation, 25, 3Iff, 46ff, 54, 254,

269, 279, 286, 39Iff, 423ff, 428, 430
negative cyclic homology. See cyclic

homology.
Nesbitt, E., 96
nilpotent Lie algebra. See Lie algebra,
noetherian ring, 25, 75ff, ch.4, 296ff, 317,

322ff
noetherian topological space, 398, 402, 407
Noether's equations, 176
Noether's Theorem, 174, 176
nonabelian homological algebra, 265, 293
nonassociative algebra, 216
nondegenerate elements of a simplicial set,

257ff
nonzerodivisor, 32, 68, 100-114
Normal Basis Theorem, 173
normalized chain complex. See chain complex,
norm element of a finite group, 162ff, 167,

173, 176, 180,333,344,347
norm of a field extension, 176, 214
null homotopic, 17, 19-21, 63, 180, 267, 277,

387-389

£2°° functor, 408ff
^-spectrum, 409
QX. See loop space, Kahler differentials.
objects of a category, 417
obstruction to being split, 77
octahedral axiom, 374ff, 414
opposite category, 26ff, 40, 43, 50, 55, 57,

149, 152, 254, 279, 280, 287, 332, 378,
382,386,391,419-428

opposite ring, 302, 327, 420
0re condition, 380ff
orthogonal Lie algebra om, 217
Osofsky, B., 92
outer automorphism, 177

n*(X). See homotopy groups.
K*(X). See cohomotopy.

p-adic integers. See Zp.
path connected topological space, 90
path space PA, 129, 269ff, 273, 333, 339, 343
pd(A). See dimension.
pd lemma, 93, 310
perfect group, 199ff, 248
perfect Lie algebra, 248ff
periodic cyclic homology. See cyclic

homology.
petite complex, 387
PGLn (projective linear group), 182, 186
p$in (semisimple but not simple), 244
p-group, 25, 159
/7-torsion subgroup p A of A, 31, 66ff, 342
Poincare, H., 1
Poincare-Birkhoff-Witt Theorem, 225ff, 239

Poincare lemma, 355
polyhedron, 127,258,261
polynomial ring, lOlff, 114, 193, 221, 223,

226, 240, 285ff, 294-297, 304, 313, 315,
317,337

Laurent —. See Laurent polynomials.
truncated —, 304, 337, 355, 358, 397, 418

Pontrjagin dual B* of B, 39, 69ff, 73, 199,
209.

Pontrjagin duality, 209, 420
posets (partially ordered sets), 26, 56, 80, 86,

139, 152,207,418
directed poset, 429. See also filtered

category.
of open sets in X, 26, 53, 423
of open subgroups, 209, 212

power series ring, 100, 105
(/?, (?)-shuffles. See shuffle product, shuffle

element,
presentations for groups, 198, 203, 294, 307

— for algebras, 223, 224, 285
— for Lie algebras, 233, 235ff, 248

preserves injectives. See injective.
preserves projectives. See projective.
preserving derived functors. See exact functor,
presheaves, 26ff, 42, 53, 387, 402, 410, 423

Presheaves(X), 26ff, 53, 55, 386, 431
prespectrum, 409ff

CW prespectrum, 409, 410, 415
prime ideal, 73, 76, 105ff, 111, 115,317
primitive elements in a coalgebra, 363ff
principal congruence group T(N), 205
principal derivations, 174ff, 179, 213, 306
principal G-fibration. See G-fibration.
principal ideal domain, 39, 69, 90, 98

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139644136
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 10 Jul 2018 at 02:08:20, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139644136
https://www.cambridge.org/core


446 Index

products:
in a category, 5, 55, 383, 420, 425-428. See

also cocomplete category,
cross product in cohomology, 165ff, 192,

227
cup product in cohomology, 192ff, 227, 277
direct product of groups, 164, 192ff, 201ff
external —, 36, 64ff, 112-114, 227,

291-292, 319ff
Hochschild—,319ff
internal —, 65, 114, 319-323
— of Lie algebras, 227, 243, 246, 248, 250,

253
— of rings, 292, 302, 310, 316
— of simplicial objects, 261, 277
— of spectra, 408, 411
— of topological spaces, 89, 408

profinite:
cohomology, 21 Iff
completion, 209
groups, 206, 208ff, 420
sets, 208
topology, 207ff

projection formula, 404ff
projective:

— abelian groups are free, 33, 66, 73
chain complex of—, 34, 392ff, 401, 405
enough projectives, 33ff, 43, 47, 51-58, 79,

145ff, 151, 211, 221-224, 274, 276, 380,
388-396

— lifting property. See lifting property.
— modules, 33ff, 50, 68, 71, 77, 89, 90,

ch.4, 167, 173, 189, 281, 303, 310ff, 318,
323, 327ff

— objects, 29, 33ff, 40, 44ff, 51, 162, 224,
274, 277, 288

— preserved (by left adjoint to exact
functor), 41, 233, 276, 404ff

— resolutions. See resolutions.
_L -projective, 281ff, 290ff, 296
projective dimension. See dimension.

projective linear group.&?<? PGLn, pgin.
projective representation. See representa-

tions,
projective special linear groups. See PSLn,

projective n-space, 131, 205
proper group action, 203ff
PSLn (projective special linear group), 199,

202
sln is a simple Lie algebra, 244

pullback, 29, 78ff, 86, 182, 185, 201, 313, 343
punctured spectrum of a ring, 116
Puppe,D.,21,407
Puppe sequence, 413ff
pushout, 54, 77ff

quasi-Frobenius ring, 96ff
quasi-isomorphism, 3, 15-21, 59, 63, 99,

146ff, 275, 346, 360, 363, ch.10
quaternion algebra H, 176, 215
Quillen, D., 295, 333, 362, 365, 367
quotient category, 18, 29, 369, 384, 411
quotient complex, 6, 20, 22, 178, 266, 335,

362

reductive Lie algebra, 248, 364
reflection functor; reflective subcategory, 29,

422,431
regular filtration of a complex, 124
regular rings, 105ff, 317ff, 322ff

finite global dimension, 110
geometrically regular algebra, 317
smooth over a field, 317
von Neumann regular rings, 97ff
regular sequence (A-sequence), 105-114,

119,240,291,304,318,323
regular spectral sequence, 126
relations. See presentations,
relative Ext. See Ext.
relative Tor. See Tor.
relatively flat module, 292
representations, 164, 202, 243

projective representation, 182, 186
resolutions:

bar. See bar resolution.
canonical, 177, 235, 275, 282fT
Cartan-Eilenberg —, 145ff. See also

resolution.
of a chain complex. See hyperhomology.
Chevalley-Eilenberg —. See Chevalley-

Eilenberg complex.
F-acyclic, 44, 47, 50, 51, 71, 148, 283, 285,

392
flat,71,87,91ff, 144, 303
free, 67, 75, 76, 114, 164-169, 178, 193,

204, 222, 284, 287
Godement, 285
injective, 32, 40, 42, 50ff, 63, 73ff, 85, 91ff,

149, 151,394
it-split, 289ff, 298, 304
Koszul —. See Koszul resolution.
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resolutions (cont.)
left, 34, 44
non-projective, 68
periodic, 67, 74, 167, 178, 304, 333
projective, 34, ch.2, ch.3, 91-100, 109, 111,

143ff, 162ff, 172, 191ff, 239, 241, 303,
397

right, 40
simplicial, 274ff, 283ff, 296, 333
simplicial polynomial — of a ring, 296ff
truncated, 99
J_ -projective, 282, 289ff, 302

restricted Lie algebra, 227, 232, 238
— cohomology, 261, 232, 238
— extensions, 232, 238
— modules, 227, 232
universal enveloping algebra U(Q), 227

restriction map (res), 174, 185, 189-196, 211,
214,234

Rf*, 53, 396-398, 402, 406ff. See also /*.
RF. See derived functor.
RHom and hyperext, 63, 398ff, 405ff
Riemann surface, 205
right adjoint. See adjoint functors,
right exact functor, 27. See exact functor,
right resolution, 40
Rinehart, G., 358
Rings (category of rings), 418ff
ring spectrum, 415
R-mod, xiv, 1,25,418
Rosenberg, A., 322, 351
rotation of triangles. See triangles.
Russell's paradox, 417

Sl (circle), 131,205,331,361
Sn. See sphere, sphere spectrum.
SA (category of simplicial objects in ^4), 254,

271ff
satellite functors, 32
saturated. See multiplicative system.
SBI sequence, 335-338, 342-348, 352, 354,

361
Schack, S. D., 323
Scheja,G., 114
schemes, 354, 396, 401, 406
Schur,L, 182, 186, 199
Schur's Lemma on simple modules, 244
Schur multiplier, 199,203
Schur-Zassenhaus Theorem, 186
Second fundamental sequence for QR/JC, 309,

314,318

section of an extension, 77, 182, 185, 187
section of a sheaf. See global section,
semidirect product:

of groups, 176, 182ff, 197
of Lie algebras, 231-234, 237, 247, 248

semisimple rings, 95ff, 110, 309, 314, 342
— Lie algebra. See Lie algebra,

semi-simplicial objects, 258ff, 273, 278
sequence. See exact —, Koszul —, regular —.
separable algebras, 309ff, 316, 336, 342
separable closure Ks of a field, 207ff, 213, 214
separable field extension, 207, 308-309, 316ff
separably generated field extension, 315ff
Serre fibration 127ff, 188, 204ff
Serre,J.-R, 117, 128, 195
Serre subcategory, 384-5, 389-390, 393
Sets (category of sets), 260, 281-285, 293,

332,417^24,428,430
set-theoretic problems, 183, 379-382, 422,

423. See also universes.
Shapiro's Lemma, 162, 169, 171ff, 195, 206,

282
sheafification, 27, 53, 55, 410, 431
sheaves on a space X, 25, 26ff, 42, 51, 53ff,

115, 152, 285, 354, 387, 396, 398,
406-410

Sheaves(X) (category of sheaves on X), 26,
42, 51-55, 58, 80, 115, 152, 285, 380,
386, 390, 397ff, 426-431

constant sheaf, 26, 51, 54
of C°° functions, 26
of continuous functions, 26, 27
direct image —. See direct image sheaf,
enough injective sheaves, 42, 80
inverse image —. See inverse image sheaf,
sheaf Horn Horn, 402, 407
skyscraper sheaf, 42, 51, 54, 285
stalk of a sheaf, 42, 54, 285, 387

short exact sequence, 27-31, 45, 49, 76, 130,
212

of complexes, 7, lOff, 19, 23ff, 45, 87, 334
of cyclic objects, 334
of Lie algebras, 217ff, 232, 234
of towers of modules, 8Iff, 137ff

shuffle elements spq, 324-5
shuffle product V, 181, 278, 284, 291, 319ff,

324,350

signature idempotent sn = e^\ 324ff, 350,
353, 364. See also idempotent.

sign trick, 8, 10, 58, 62, 99, 146, 193, 275,
321,328,333,359,360
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simple algebras. See Brauer group, Lie
algebras.

simplex (simplices), 4, 254, 256ff, 268
simplicial category A, 255ff, 269, 27Iff, 331ff
simplicial complex, 256-258. See also chain

complex.
combinatorial —, 258, 261, 262
geometric — 4, 5, 19, 256, 258, 261

simplicial homology. See homology.
— of a cotriple, 286ff

simplicial homotopy. See homotopy.
simplicial objects, ch.8, 295, 301, 329-344,

415
aspherical —. See aspherical.
augmented —, 274, 278ff, 286ff, 295, 298
constant —, 254, 270, 289
simplicial identities, 256, 275

simplicial resolution, 274. See also resolution,
simplicial set, 257-267, 270, 275, 293

fibrant —. See fibrant simplicial set.
singular—, 260ff, 264, 412

simply connected Lie algebra, 249ff
simply connected topological space, 128ff,

158,204, 247, 361
singular chain complex. See chain complex,
singular simplicial set S(X). See simplicial set.
skeletal subcategory, 422, 423, 431
SLn (special linear group), 199, 202-205
sin, 217, 229, 241-248, 363ff
small category, 12, 25, 29, 43, 80, 379ff, 418,

421,422,428
smash products of spectra, 415
smooth algebra, 296, 313ff, 322-326, 337,

35Off
smooth algebraic variety, 105
smooth manifold. See manifold.
Snake Lemma, 1 Iff, 31, 38, 68, 70, 81, 156
SOn, 131,205
solvable radical. See Lie algebras.
Spec(fl), 115,397
special linear group. See SLn.
special linear Lie algebra. See sln.
spectra in topology, 408ff

CW spectra, 390, 409, 410ff, 415
spectral sequences, 8, 9, 83, 100, 722, ch.5,

402ff
Bockstein—, 158ff
bounded— 123ff, 132, 135, 159
bounded below —, 125ff, 132, 135
bounded convergence, 123, 135. See also

convergence.

collapsing at Er, 124, 136, 143ff, 151, 197,
206, 239, 298ff, 335, 342, 351, 394

Connes' —, 346, 348ff
converging —, 123ff, 126, 135ff, 239. See

also convergence,
degenerates (= collapses at E2)
E2 terms, 121, 124, 128ff, 142ff, 196
E°° terms, 122-127, 135, 137, 140, 156,

158
edge maps, 124, 128, 151, 196, 234, 335
Eilenberg-Moore —, 361
first quadrant —, 120-127, 132, 135, 144,

145, 151ff, 195, 232, 266, 276, 296, 308,
335,359ff

Grothendieck —, 139, 150ff, 195ff, 233,
403ff

half plane— 125, 143
Hochschild-Serre — (for Lie algebras),

232-236, 342, 368
hyperhomology —, 148ff, 157, 166-7, 206,

402ff
Kunneth —, 143
Leray—, 152, 406ff
Leray-Serre — (for Serre fibrations), 127ff,

132, 206
Lyndon/Hochschild-Serre — (for groups),

190, 195ff, 211, 214, 232, 342, 406
multiplicative structure, 127, 134

— of a double complex, 141ff, 298, 394
— of an exact couple, 155ff. See also
exact couples.

regular— 125-126, 139ff, 157
"six spectral sequences" of EGA III, 404
with 2 columns, 121, 124
with 2 rows, 124

spectrification functor, 410. See also Q°°
functor.

spectrum. See spectra,
sphered", 130-131,205,406
sphere spectrum Sn, 408
Spin group Spinn, 202
split complex, 16-19, 24
split exact complex (or sequence), 2, 16ff, 34,

45, 87ff, 113, 114, 164ff, 178, 227, 275,
289,299,301,314,318,352

fc-split complex, 289ff, 298, 311
split extensions. See extensions,
splitting field, 207, 309
stabilization homomorphisms, 365
stable homotopy category D(<S), 407-415
Stallings, J., 176
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standard complex, 239. See also Chevalley-
Eilenberg complex.

Steinberg group Stn, 203, 294
Storch,U., 114
strict triangle on a map u, 37 Iff
strictly upper triangular matrices. See nm.
Structure Theorem of semisimple Lie algebras,

243
subcomplex, 6, 19ff, 83
suspension spectrum, 409
suspension SX of a space X, 24, 409

— SE of a spectrum E, 41 Iff
Swan, R., 170, 269, 294
symmetric algebra Sym(M), 285-286, 297ff,

368
symmetric group £„, 286, 324ff, 353, 364ff
syzygy, 47, 93ff, 99ff, 109

tm (upper triangular Lie algebra), 217, 219,
235

tangent space of a Lie group, 216
Tate cohomology, 168ff, 173
tensor algebra T{M), 223, 228, 254, 261, 285,

303, 337, 347, 355ff, 412, 418, 420ff
tensor product, 52, 145, 300, 354, 421. See

also Tor.
adjoint to Horn, 52ff, 405, 430
of chain complexes, 58ff, 65, 88ff, 111,

143ff, 165, 277, 284
of simplicial modules, 277, 319
total tensor product (in derived category),

394ff, 415
terminal object, 5, 298, 383, 419
tetrahedron, 4
Thomason, R., 408
3 x 3 Lemma, 11
Top (category of topological spaces), 418^-19
topological derived category. See stable

homotopy category,
topological group, 82, 209
topological space X, 4-5, 17, 19ff, 26ff, 42,

51, 53, 84, 88ff, 115, 127ff, 150, 152,
158, 203-208, 257ff, 260, 262, 319,
396-402, 406, 408ff, 423

presheaves on —. See presheaves.
sheaves on —. See sheaves.

Tor-dimension. See dimension.
Tor-dimension Theorem, 92, 94
Tor functor, 32, 36, 53, 56, 58, ch.3, 92ff, 104,

108, 110, 114, 128, 143-144, 148-149,

157, 161ff, 172, 221, 225, 228, 277, 287,
289, 295, 303, 342, 395ff, 404, 423, 429

external and internal products for Tor. See
products.

hypertor Tor. See hypertor.
relative Tor, 288ff, 302ff, 323

torsion group, 25, 31, 66ff, 73, 74, 158, 209,
213,420,423,426

torsionfree abelian group, 25, 67, 69, 74, 158
is flat, 67, 69

torsionfree group, 205
total complex (Tot), 8, 9, 15, 100, ch.5, 276ff,

335,345ff426
direct sum — Tot®, 8, 9, 58ff, 141-149,

193, 284, 328, 359ff, 394ff

product — Totll, 8, 9, 60ff, 85ff, 141ff,
149, 337-348, 352, 357, 360

total degree of a double complex, 122, 132,
154

total Horn. See Horn total complex, hyperext,
RHom.

totally disconnected space, 208ff
total space(see Serre fibration)
total tensor product ®L, 395ff, 402, 415

total tensor product chain complex. See
tensor product.

tower of abelian groups or modules, 80ff,
117ff, 133, 136, 140, 152, 337, 429. See
also Urn1.

double tower, 139, 153
trace, 173, 217, 229, 243ff
trace map in homology, 328ff, 336, 362ff
transcendence basis of a field, 315
transfer maps, 174, 194ff
transitivity of smoothness, 314, 315, 322

— for Andre-Quillen homology, 297
translate C[n] of a complex, 9, 10, 59, 63, 83,

99, 113, 147, 270, 273-274, 346, 348,
352, 364, 366, ch. 10

of a double complex, 60, 335, 337, 346,
348, 353

translation. See translate, triangulated category,
translation functor T, 374ff, 386, 390, 408
triangles, 15, 374ff, 412

exact triangles, 153ff, 371, 374ff, 390, 392,
399, 412ff

in D(A), 386, 389
in KCA), 37Iff, 385
rotation of—, 372, 374, 413

triangulated category K, 15, 374, ch.10
morphisms between —. See morphisms.
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triangulated category K (cont.)
triangulated subcategory, 377, 378, 389-

390, 402ff
triple T, 279ff
triple cohomology, 286ff
trivial G-module, 160ff, 278
trivial g-module, 216ff, 229
trivial mixed complex, 349ff
trivial module functor, 160-161, 220-221
truncated polynomials. See polynomial ring.
truncations (good truncation zC and brutal

truncation aC)
of a complex, 9, 99, 270, 274, 349, 415
of a double complex, 60, 85, 337

Tsen's theorem, 214
Tsygan, B., 333, 362, 367
Tsygan's double complex CC**, 333. See also

double complex.

Unique Factorization Domain, 111
unit x] of adjunction, 430. See also adjoint

functors.
universal central extension, 198ff, 248ff, 294
Universal Coefficient Theorems, 83, 87ff, 89,

128, 144, 164, 196, 296, 307
with supports, 115

universal <5-functor, 32ff, 43, 47-51, 67, 81,
86, 118, 189, 194, 212, 271, 276, 278,
288,290,423

universal enveloping algebra U(Q), 223ff,
238ff

of a restricted Lie algebra U(Q), 227
universes, 379-380, 385, 409
upper triangular matrices. See tm.

van der Waerden, B. L., 247
vector fields on a Lie group, 216
vector spaces over a field, Iff, 15, 25, 74, 83,

97, 103, 173, 227, 241, 244, 311, 318,
358,423,430

Verdier, J.-L., 374, 378, 407

Vigue-Poirrier, M., 323
Villamayor,O.,311,342
von Neumann, J., 97
von Neumann regular rings, 97ff

Walker, E., 96
Wang sequence, 130ff
weak dimension. See dimension.
weak homotopy equivalence. See homotopy

< equivalence.
weakly effaceable functor, 28ff
Wedderburn's Theorem, 95, 187, 309
Wedderburn's Principal Theorem, 314
wedge of spectra (E v F), 410ff
weight, 354ff
well-powered category, 385, 387
Weyl, H., 247
Weyl's Theorem, 246ff, 363, 364
Whitehead, J. H. C, 188, 247, 313
Whitehead's Lemmas, 245ff, 250, 252
Whitehead's Theorem, 390, 412
Whitney, H., 277

Yoneda embedding, 25, 28, 29, 261, 422, 424
Yoneda Ext groups, 79ff, 188
Yoneda Lemma, 28, 52, 308, 309
Yoneda, N., 79

2p (p-adic integers), 74, 82, 85, 207ff, 215,
343

lp°c (the divisible p-group), 39, 74, 85
Z(C) (cycles in a chain complex), 3
ZG, ZR. See cyclic objects.
Zassenhaus, H., 186
Zelinsky,D., 311
zerodivisors, 105ff. See also nonzerodivisors,
zero object, 5, 370, 383, 408, 411, 419, 425
Zilber, J., 259, 277
Zisman, M., 382
Zorn's Lemma, 39
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